1
|
Wang D, Zhang M, Zhang Y, Yin Z, Zhang S, Zhao Z, Duan Y. Hepatoprotective effects of polysaccharide from Morchella esculenta are associated with activation of the AMPK/Sirt1 signaling pathway in mice with NAFLD. Int J Biol Macromol 2025; 301:140444. [PMID: 39884630 DOI: 10.1016/j.ijbiomac.2025.140444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The functional food application of edible fungus polysaccharides has been widely studied based on their variety of potential pharmacological activities. However, the hepatoprotective effects and mechanisms of Morchella esculenta polysaccharide against nonalcoholic fatty liver disease (NAFLD) remain unknown. A high-fat diet (HFD) fed C57BL/6 J mice for 8 weeks was employed to establish NAFLD with simple steatosis, methionine choline deficiency (MCD) diet for 4 weeks induced hepatic steatohepatitis and fibrosis. The M. esculenta polysaccharide (MCP) or saline was administered intragastrically. MCP markedly reduced hepatic and serum triglyceride (TG) and cholesterol contents in HFD-fed mice. Moreover, treatment with MCP ameliorated nonalcoholic steatohepatitis (NASH) progression in MCD-fed mice, as evidenced by ameliorated hepatic steatosis, inflammatory response, and fibrosis. Mechanistically, MCP suppressed the expression of lipogenic genes and inflammatory cytokines and upregulated peroxisome proliferator-activated receptor (PPAR)-α expression to induce fatty acid β-oxidation. These beneficial effects were attributed to activating the AMP-activated kinase (AMPK)/Sirtuin 1 (Sirt1) signaling pathway. Therefore, we provided evidence that MCP might be an effective dietary supplement to ameliorate NAFLD.
Collapse
Affiliation(s)
- Dandan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230011, China; College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230601, China
| | - Menglian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230011, China
| | - Yaowen Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230011, China
| | - Zequn Yin
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Shuang Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230601, China
| | - Zhiwei Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Yajun Duan
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
2
|
Skawratananond S, Xiong DX, Zhang C, Tonk S, Pinili A, Delacruz B, Pham P, Smith SC, Navab R, Reddy PH. Mitophagy in Alzheimer's disease and other metabolic disorders: A focus on mitochondrial-targeted therapeutics. Ageing Res Rev 2025; 108:102732. [PMID: 40122398 DOI: 10.1016/j.arr.2025.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Mitochondria, as central regulators of cellular processes such as energy production, apoptosis, and metabolic homeostasis, are essential to cellular function and health. The maintenance of mitochondrial integrity, especially through mitophagy-the selective removal of impaired mitochondria-is crucial for cellular homeostasis. Dysregulation of mitochondrial function, dynamics, and biogenesis is linked to neurodegenerative and metabolic diseases, notably Alzheimer's disease (AD), which is increasingly recognized as a metabolic disorder due to its shared pathophysiologic features: insulin resistance, oxidative stress, and chronic inflammation. In this review, we highlight recent advancements in pharmacological interventions, focusing on agents that modulate mitophagy, mitochondrial uncouplers that reduce oxidative phosphorylation, compounds that directly scavenge reactive oxygen species to alleviate oxidative stress, and molecules that ameliorate amyloid beta plaque accumulation and phosphorylated tau pathology. Additionally, we explore dietary and lifestyle interventions-MIND and ketogenic diets, caloric restriction, physical activity, hormone modulation, and stress management-that complement pharmacological approaches and support mitochondrial health. Our review underscores mitochondria's central role in the pathogenesis and potential treatment of neurodegenerative and metabolic diseases, particularly AD. By advocating for an integrated therapeutic model that combines pharmacological and lifestyle interventions, we propose a comprehensive approach aimed at mitigating mitochondrial dysfunction and improving clinical outcomes in these complex, interrelated diseases.
Collapse
Affiliation(s)
- Shadt Skawratananond
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Daniel X Xiong
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Charlie Zhang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Sahil Tonk
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Aljon Pinili
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Brad Delacruz
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Patrick Pham
- Honors College, Texas Tech University, Lubbock, TX 79401, United States; Department of Biology, Texas Tech University, Lubbock, TX 79401, USA, Texas Tech University, Lubbock, TX 79401, United States.
| | - Shane C Smith
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States.
| | - Rahul Navab
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Internal Medicine, PES Institute of Medical Sciences and Research, Kuppam, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Li M, Ding L, Cao L, Zhang Z, Li X, Li Z, Xia Q, Yin K, Song S, Wang Z, Du H, Zhao D, Li X, Wang Z. Natural products targeting AMPK signaling pathway therapy, diabetes mellitus and its complications. Front Pharmacol 2025; 16:1534634. [PMID: 39963239 PMCID: PMC11830733 DOI: 10.3389/fphar.2025.1534634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Diabetes mellitus (DM) ranks among the most prevalent chronic metabolic diseases, characterized primarily by a persistent elevation in blood glucose levels. This condition typically stems from either insufficient insulin secretion or a functional defect in the insulin itself. Clinically, diabetes is primarily classified into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), with T2DM comprising nearly 90% of all diagnosed cases. Notably, the global incidence of T2DM has surged dramatically over recent decades. The adenylate-activated protein kinase (AMPK) signaling pathway is crucial in regulating cellular energy metabolism, marking it as a significant therapeutic target for diabetes and related complications. Natural products, characterized by their diverse origins, multifaceted bioactivities, and relative safety, hold considerable promise in modulating the AMPK pathway. This review article explores the advances in research on natural products that target the AMPK signaling pathway, aiming to inform the development of innovative antidiabetic therapies.
Collapse
Affiliation(s)
- Min Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Liyan Cao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| | - Xueyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zirui Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Qinjing Xia
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Kai Yin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zihan Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Haijian Du
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efcacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
4
|
Barik SK, Sengupta S, Arya R, Kumar S, Kim JJ, Chaurasia R. Dietary Polyphenols as Potential Therapeutic Agents in Type 2 Diabetes Management: Advances and Opportunities. Adv Nutr 2025; 16:100346. [PMID: 39566886 PMCID: PMC11697556 DOI: 10.1016/j.advnut.2024.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024] Open
Abstract
Poor dietary intake or unhealthy lifestyle contributes to various health disorders, including postprandial hyperglycemia, leading to type 2 diabetes mellitus (T2DM). Reduction of postprandial glucose concentrations through diet is a key strategy for preventing and managing T2DM. Thus, it is essential to understand how dietary components affect glycemic regulation. Dietary polyphenols (DPs), such as anthocyanins and other phenolics found in various fruits and vegetables, are often recommended for their potential health benefits, although their systemic effectiveness is subject to ongoing debate. Therefore, this review assesses the current and historical evidence of DPs bioactivities, which regulate crucial metabolic markers to lower postprandial hyperglycemia. Significant bioactivities such as modulation of glucose transporters, activation of AMP kinase, and regulation of incretins are discussed, along with prospects for diet-induced therapeutics to prevent the onset of T2DM.
Collapse
Affiliation(s)
- Sisir Kumar Barik
- The Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom.
| | - Srabasti Sengupta
- Department of Neurosurgery, University of Florida, Gainesville, Florida, 32608, United States
| | - Rakesh Arya
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea
| | - Surendra Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Jong Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea.
| | - Reetika Chaurasia
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06510, United States.
| |
Collapse
|
5
|
Zhao XY, Zhong QH, Tan HW, Yan R, Wang XY, Cai NL, Ji YC, Lau ATY, Xu YM. Non-cytotoxic levels of resveratrol enhance the anticancer effects of cisplatin by increasing the methyltransferase activity of CARM1 in human cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156127. [PMID: 39476485 DOI: 10.1016/j.phymed.2024.156127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/14/2024] [Accepted: 10/02/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Resveratrol (RSVL) is a plant-derived polyhydroxyphenolic compound with excellent anticancer properties, alone or in combination with other chemotherapeutic drugs. However, the anticancer mechanism of RSVL is diverse and high concentrations are often required for RSVL to exert its anticancer effect, which would also adversely affect normal cells. PURPOSE The main objective of this study is to investigate the molecular mechanism of how non-cytotoxic concentrations of RSVL enhance the anticancer effect of cisplatin involving a newly identified RSVL-binding protein. METHODS Cell viability of cell lines from three cancer types exposed to RSVL and/or cisplatin was measured by NBB staining assay. RSVL-binding proteins were identified using RSVL-bound CNBr-activated Sepharose 4B beads coupled with LC-MS/MS, and the binding between RSVL and novel RSVL-binding protein was further confirmed with an in vitro pull-down assay. The expression of proteins was examined by immunoblot analysis, and the activity of methyltransferase was evaluated by in vitro methylation assay. The methylation level of H3R17 in the gene promoter was investigated using ChIP-qPCR. Bioinformatics analysis was conducted to identify pathway enrichment of genes, predict drug sensitivity, and analyze the survival of cancer patients. RESULTS Low doses of RSVL might promote cancer cell growth whereas high doses of RSVL showed cytotoxic effects on normal cells. When co-treated with a lower cisplatin dose, non-cytotoxic RSVL levels showed synergistic anticancer effects. Here, coactivator-associated arginine methyltransferase 1 (CARM1) was identified as a novel RSVL-binding protein, and we showed that the upregulation of CARM1 increased the sensitivity of cancer cells to RSVL. Interestingly, we found that CARM1 was essential in the RSVL-induced sensitivity of cisplatin. Further molecular mechanistic studies revealed that RSVL could stabilize CARM1 protein, resulting in the upregulation and increased methyltransferase activity of CARM1. Additionally, we showed that the methylation levels of H3R17 in the promoter of p21, a downstream gene of CARM1 involving cell cycle arrest, were significantly increased after RSVL treatment. Finally, data from our bioinformatics analysis suggested that CARM1 could be utilized as a potential biomarker for chemotherapeutic drug sensitivity and prognosis in cancers. CONCLUSIONS This study identified CARM1 as a RSVL-binding protein for the first time and elucidated the potential roles of CARM1 in enhancing the efficacy of cisplatin by low doses of RSVL, which could have important clinical implications.
Collapse
Affiliation(s)
- Xiao-Yun Zhao
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Qiu-Hua Zhong
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Heng Wee Tan
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Rui Yan
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Xiu-Yun Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Na-Li Cai
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Yan-Chen Ji
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China
| | - Andy T Y Lau
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| | - Yan-Ming Xu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, PR China; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, PR China.
| |
Collapse
|
6
|
Yu Y, Poulsen SA, Di Trapani G, Tonissen KF. Exploring the Redox and pH Dimension of Carbonic Anhydrases in Cancer: A Focus on Carbonic Anhydrase 3. Antioxid Redox Signal 2024; 41:957-975. [PMID: 38970427 DOI: 10.1089/ars.2024.0693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Significance: Both redox and pH are important regulatory processes that underpin cell physiological functions, in addition to influencing cancer cell development and tumor progression. The thioredoxin (Trx) and glutathione redox systems and the carbonic anhydrase (CA) proteins are considered key regulators of cellular redox and pH, respectively, with components of the Trx system and CAs regarded as cancer therapeutic targets. However, the redox and pH axis in cancer cells is an underexplored topic of research. Recent Advances: Structural studies of a CA family member, CA3, localized two of its five cysteine residues to the protein surface. Redox-regulated modifications to CA3 have been identified, including glutathionylation. CA3 has been shown to bind to other proteins, including B cell lymphoma-2-associated athanogene 3, and squalene epoxidase, which can modulate autophagy and proinflammatory signaling, respectively, in cancer cells. Critical Issues: CA3 has also been associated with epithelial-mesenchymal transition processes, which promote cancer cell metastasis, whereas CA3 overexpression activates the phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, which upregulates cell growth and inhibits autophagy. It is not yet known if CA3 modulates cancer progression through its reported antioxidant functions. Future Directions: CA3 is one of the least studied CA isozymes. Further studies are required to assess the cellular antioxidant role of CA3 and its impact on cancer progression. Identification of other binding partners is also required, including whether CA3 binds to Trx in human cells. The development of specific CA3 inhibitors will facilitate these functional studies and allow CA3 to be investigated as a cancer therapeutic target. Antioxid. Redox Signal. 41, 957-975.
Collapse
Affiliation(s)
- Yezhou Yu
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| | - Sally-Ann Poulsen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| | | | - Kathryn F Tonissen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Australia
- School of Environment and Science, Griffith University, Nathan, Australia
| |
Collapse
|
7
|
Zima K, Khaidakov B, Banaszkiewicz L, Lemke K, Kowalczyk PK. Exploring the Potential of Ribes nigrum L., Aronia melanocarpa (Michx.) Elliott, and Sambucus nigra L. Fruit Polyphenol-Rich Composition and Metformin Synergy in Type 2 Diabetes Management. J Diabetes Res 2024; 2024:1092462. [PMID: 38919261 PMCID: PMC11199064 DOI: 10.1155/2024/1092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 04/30/2024] [Indexed: 06/27/2024] Open
Abstract
Type 2 diabetes, characterized by insulin resistance and impaired glucose homeostasis, is commonly managed through lifestyle interventions and medications such as metformin. Although metformin is generally well-tolerated, it may cause gastrointestinal adverse effects and, in rare cases, precipitate lactic acidosis, necessitating cautious use in individuals with renal dysfunction. Additionally, concerns regarding its impact on hepatic function have led to its discontinuation in cirrhotic patients. This study explores the potential synergistic benefits of a polyphenol-rich blend containing black currant, chokeberry, and black elderberry extracts alongside metformin in managing type 2 diabetes. In vitro results highlighted distinct effects of AMPK pathway modulation, showcasing reductions in cholesterol and triglyceride levels alongside a notable enhancement in glucose uptake. The blend, when combined with metformin, significantly reduced insulin levels and fasting glucose concentrations in an in vivo model. Furthermore, hepatic analyses unveiled a modulation in cellular pathways, suggesting a potential influence on lipid metabolism, attenuation of inflammatory pathways, a decrease in cellular stress response, and antioxidant defense mechanisms, collectively implying a potential reduction in liver fat accumulation. The findings suggest a potential complementary role of polyphenols in enhancing the efficacy of metformin, possibly allowing for reduced metformin dosage and mitigating its side effects. Further clinical studies are warranted to validate these findings and establish the safety and efficacy of this nutraceutical approach in managing type 2 diabetes.
Collapse
Affiliation(s)
- Katarzyna Zima
- Department of PhysiologyMedical University of GdańskDębinki 1 80-211, Gdańsk, Poland
- R&D DepartmentAronPharma Ltd.Trzy Lipy Street 3 80-172, Gdańsk, Poland
| | - Barbara Khaidakov
- R&D DepartmentAronPharma Ltd.Trzy Lipy Street 3 80-172, Gdańsk, Poland
| | | | - Krzysztof Lemke
- R&D DepartmentAronPharma Ltd.Trzy Lipy Street 3 80-172, Gdańsk, Poland
| | | |
Collapse
|
8
|
Su F, Koeberle A. Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:673-708. [PMID: 38036934 PMCID: PMC11156753 DOI: 10.1007/s10555-023-10156-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is an increasing burden on global public health and is associated with enhanced lipogenesis, fatty acid uptake, and lipid metabolic reprogramming. De novo lipogenesis is under the control of the transcription factor sterol regulatory element-binding protein 1 (SREBP-1) and essentially contributes to HCC progression. Here, we summarize the current knowledge on the regulation of SREBP-1 isoforms in HCC based on cellular, animal, and clinical data. Specifically, we (i) address the overarching mechanisms for regulating SREBP-1 transcription, proteolytic processing, nuclear stability, and transactivation and (ii) critically discuss their impact on HCC, taking into account (iii) insights from pharmacological approaches. Emphasis is placed on cross-talk with the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) axis, AMP-activated protein kinase (AMPK), protein kinase A (PKA), and other kinases that directly phosphorylate SREBP-1; transcription factors, such as liver X receptor (LXR), peroxisome proliferator-activated receptors (PPARs), proliferator-activated receptor γ co-activator 1 (PGC-1), signal transducers and activators of transcription (STATs), and Myc; epigenetic mechanisms; post-translational modifications of SREBP-1; and SREBP-1-regulatory metabolites such as oxysterols and polyunsaturated fatty acids. By carefully scrutinizing the role of SREBP-1 in HCC development, progression, metastasis, and therapy resistance, we shed light on the potential of SREBP-1-targeting strategies in HCC prevention and treatment.
Collapse
Affiliation(s)
- Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
9
|
Zhang S, Kiarasi F. Therapeutic effects of resveratrol on epigenetic mechanisms in age-related diseases: A comprehensive review. Phytother Res 2024; 38:2347-2360. [PMID: 38421057 DOI: 10.1002/ptr.8176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/28/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
Recently, various studies have shown that epigenetic changes are associated with aging and age-related diseases. Both animal and human models have revealed that epigenetic processes are involved in aging mechanisms. These processes happen at multiple levels and include histone modification, DNA methylation, and changes in noncoding RNA expression. Consequently, changes in the organization of chromatin and DNA accessibility lead to the regulation of gene expression. With increasing awareness of the pivotal function of epigenetics in the aging process, researchers' attention has been drawn to how these epigenetic changes can be modified to prevent, stop, or reverse aging, senescence, and age-related diseases. Among various agents that can affect epigenetic, polyphenols are well-known phytochemicals found in fruits, vegetables, and plants. Polyphenols are found to modify epigenetic-related mechanisms in various diseases and conditions, such as metabolic disorders, obesity, neurodegenerative diseases, cancer, and cardiovascular diseases. Resveratrol (RSV) is a member of the stilbene subgroup of polyphenols which is derived from various plants, such as grapes, apples, and blueberries. Therefore, herein, we aim to summarize how RSV affects different epigenetic processes to change aging-related mechanisms. Furthermore, we discuss its roles in age-related diseases, such as Alzheimer's, Parkinson's, osteoporosis, and cardiovascular diseases.
Collapse
Affiliation(s)
| | - Farzam Kiarasi
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Baňas Š, Tvrdá E, Benko F, Ďuračka M, Čmiková N, Lukáč N, Kačániová M. Kaempferol as an Alternative Cryosupplement for Bovine Spermatozoa: Cytoprotective and Membrane-Stabilizing Effects. Int J Mol Sci 2024; 25:4129. [PMID: 38612937 PMCID: PMC11012659 DOI: 10.3390/ijms25074129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Kaempferol (KAE) is a natural flavonoid with powerful reactive oxygen species (ROS) scavenging properties and beneficial effects on ex vivo sperm functionality. In this paper, we studied the ability of KAE to prevent or ameliorate structural, functional or oxidative damage to frozen-thawed bovine spermatozoa. The analysis focused on conventional sperm quality characteristics prior to or following thermoresistance tests, namely the oxidative profile of semen alongside sperm capacitation patterns, and the levels of key proteins involved in capacitation signaling. Semen samples obtained from 30 stud bulls were frozen in the presence of 12.5, 25 or 50 μM KAE and compared to native ejaculates (negative control-CtrlN) as well as semen samples cryopreserved in the absence of KAE (positive control-CtrlC). A significant post-thermoresistance test maintenance of the sperm motility (p < 0.001), membrane (p < 0.001) and acrosome integrity (p < 0.001), mitochondrial activity (p < 0.001) and DNA integrity (p < 0.001) was observed following supplementation with all KAE doses in comparison to CtrlC. Experimental groups supplemented with all KAE doses presented a significantly lower proportion of prematurely capacitated spermatozoa (p < 0.001) when compared with CtrlC. A significant decrease in the levels of the superoxide radical was recorded following administration of 12.5 (p < 0.05) and 25 μM KAE (p < 0.01). At the same time, supplementation with 25 μM KAE in the cryopreservation medium led to a significant stabilization of the activity of Mg2+-ATPase (p < 0.05) and Na+/K+-ATPase (p < 0.0001) in comparison to CtrlC. Western blot analysis revealed that supplementation with 25 μM KAE in the cryopreservation medium prevented the loss of the protein kinase A (PKA) and protein kinase C (PKC), which are intricately involved in the process of sperm activation. In conclusion, we may speculate that KAE is particularly efficient in the protection of sperm metabolism during the cryopreservation process through its ability to promote energy synthesis while quenching excessive ROS and to protect enzymes involved in the process of sperm capacitation and hyperactivation. These properties may provide supplementary protection to spermatozoa undergoing the freeze-thaw process.
Collapse
Affiliation(s)
- Štefan Baňas
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (Š.B.)
| | - Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (Š.B.)
| | - Filip Benko
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (Š.B.)
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Norbert Lukáč
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 010 43 Warsaw, Poland
| |
Collapse
|
12
|
Zhu Z, Ren W, Li S, Gao L, Zhi K. Functional significance of O-linked N-acetylglucosamine protein modification in regulating autophagy. Pharmacol Res 2024; 202:107120. [PMID: 38417774 DOI: 10.1016/j.phrs.2024.107120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Autophagy is a core molecular pathway that preserves cellular and organismal homeostasis. Being susceptible to nutrient availability and stress, eukaryotic cells recycle or degrade internal components via membrane transport pathways to provide sustainable biological molecules and energy sources. The dysregulation of this highly conserved physiological process has been strongly linked to human disease. Post-translational modification, a mechanism that regulates protein function, plays a crucial role in autophagy regulation. O-linked N-acetylglucosamine protein modification (O-GlcNAcylation), a monosaccharide post-translational modification of intracellular proteins, is essential in nutritional and stress regulatory mechanisms. O-GlcNAcylation has emerged as an essential regulatory mechanism of autophagy. It regulates autophagy throughout its lifetime by targeting the core components of the autophagy regulatory network. This review provides an overview of the O-GlcNAcylation of autophagy-associated proteins and their regulation and function in the autophagy pathway. Therefore, this article may contribute to further understanding of the role of O-GlcNAc-regulated autophagy and provide new perspectives for the treatment of human diseases.
Collapse
Affiliation(s)
- Zhuang Zhu
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| |
Collapse
|
13
|
Hao B, Yang Z, Liu H, Liu Y, Wang S. Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives. Curr Issues Mol Biol 2024; 46:2884-2925. [PMID: 38666911 PMCID: PMC11049524 DOI: 10.3390/cimb46040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
At present, the occurrence of a large number of infectious and non-communicable diseases poses a serious threat to human health as well as to drug development for the treatment of these diseases. One of the most significant challenges is finding new drug candidates that are therapeutically effective and have few or no side effects. In this respect, the active compounds in medicinal plants, especially flavonoids, are potentially useful compounds with a wide range of pharmacological activities. They are naturally present in nature and valuable in the treatment of many infectious and non-communicable diseases. Flavonoids are divided into fourteen categories and are mainly derived from plant extraction, chemical synthesis and structural modification, and biosynthesis. The structural modification of flavonoids is an important way to discover new drugs, but biosynthesis is currently considered the most promising research direction with the potential to revolutionize the new production pipeline in the synthesis of flavonoids. However, relevant problems such as metabolic pathway analyses and cell synthesis protocols for flavonoids need to be addressed on an urgent basis. In the present review, new research techniques for assessing the biological activities of flavonoids and the mechanisms of their biological activities are elucidated and their modes of interaction with other drugs are described. Moreover, novel drug delivery systems, such as nanoparticles, bioparticles, colloidals, etc., are gradually becoming new means of addressing the issues of poor hydrophilicity, lipophilicity, poor chemical stability, and low bioavailability of flavonoids. The present review summarizes the latest research progress on flavonoids, existing problems with their therapeutic efficacy, and how these issues can be solved with the research on flavonoids.
Collapse
Affiliation(s)
| | | | | | | | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (B.H.); (Z.Y.); (H.L.); (Y.L.)
| |
Collapse
|
14
|
Zhou Y, Chen X, Su T, Yuan M, Sun X. Kiwifruit Peel Extract Improves the Alterations in Lipid Metabolism in High-fat Diet-fed Model Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:113-119. [PMID: 38200210 DOI: 10.1007/s11130-023-01132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/12/2024]
Abstract
Previous studies have demonstrated that the kiwifruit peel, which is usually discarded by consumers and factories, has the highest polyphenol content among all parts of the kiwifruit. To maximize the utilization of these waste resources, the aim of this study was to examine the regulatory effects of polyphenols extracted from kiwifruit peel (KPE) on lipid metabolism and investigate their underlying mechanisms. Thirty-two male Sprague‒Dawley rats were divided into four groups: those fed a normal diet, those fed a high-fat (HF) diet, and those fed a HF diet with a low dose of KPE solution (50 mg/kg) or a high dose of KPE (100 mg/kg) by gavage. The findings of the study revealed that KPE effectively reduced body weight gain and the increases in triglycerides and total cholesterol in serum induced by the HF diet (HFD). Additionally, KPE supplementation led to a significant decrease in hepatic fat accumulation, potentially by increasing hepatic oxidation abilities. Hepatic lipidomics demonstrated that KPE influenced various metabolic pathways, including linoleic acid metabolism, steroid biosynthesis, and the biosynthesis of unsaturated fatty acids in HFD-induced rats, which were associated with the downregulation of FATP2, ACC, FAS, GPAT, DGTA1, DGTA2, and PPARγ expression as well as the upregulation of AMPK, PGC-1α, CPT-1, and PPARα expression. These findings suggest that KPE has considerable regulatory effects in rats with dyslipidaemia, which may provide supporting information for the reuse of kiwifruit peel.
Collapse
Affiliation(s)
- Yan Zhou
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Xiao Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Tianxia Su
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Minlan Yuan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaohong Sun
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| |
Collapse
|
15
|
González I, Lindner C, Schneider I, Diaz E, Morales MA, Rojas A. Emerging and multifaceted potential contributions of polyphenols in the management of type 2 diabetes mellitus. World J Diabetes 2024; 15:154-169. [PMID: 38464365 PMCID: PMC10921170 DOI: 10.4239/wjd.v15.i2.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with a considerable impact on human life, long-term health expenditures, and substantial health losses. In this context, the use of dietary polyphenols to prevent and manage T2DM is widely documented. These dietary compounds exert their beneficial effects through several actions, including the protection of pancreatic islet β-cell, the antioxidant capacities of these molecules, their effects on insulin secretion and actions, the regulation of intestinal microbiota, and their contribution to ameliorate diabetic complications, particularly those of vascular origin. In the present review, we intend to highlight these multifaceted actions and the molecular mechanisms by which these plant-derived secondary metabolites exert their beneficial effects on type 2 diabetes patients.
Collapse
Affiliation(s)
- Ileana González
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile
| | - Erik Diaz
- Faculty of Medicine, Catholic University of Maule, Talca 3460000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| |
Collapse
|
16
|
Barbarestani SY, Samadi F, Zaghari M, Pirsaraei ZA, Kastelic JP. Dietary supplementation with barley sprouts and d-aspartic acid improves reproductive hormone concentrations, testicular histology, antioxidant status, and mRNA expressions of apoptosis-related genes in aged broiler breeder roosters. Theriogenology 2024; 214:224-232. [PMID: 37924739 DOI: 10.1016/j.theriogenology.2023.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
The objective was to determine effects of dietary supplementation of barley sprouts (BS) and/or d-aspartic acid (DA) on the reproductive potential of aged broiler roosters. Birds (n = 32, 50 wk old) were randomly allocated to receive dietary supplements of BS powder (2 % of basal diet), and DA (200 mg/kg BW), both, or neither, for 12 wk. Roosters were housed individually, with 14-h light/10-h dark, ad libitum feed and water, and euthanized after 12 wk. Mean (±SEM) total phenolic compounds and IC50 in methanol extract of sprouted barley were 302.8 ± 10.9 mg GAE/g and 600.8 ± 50.5 mg TE per 100 g, respectively. In weekly semen collections, sperm total and progressive motility, plasma membrane integrity, sperm concentration, and sperm production were higher (P < 0.05) in both the DA + BS and BS groups compared to the Control, but sperm abnormalities were unaffected. Feeding DA increased right, left, and combined testicular weights (P < 0.05, P < 0.05, and P < 0.01, respectively) and, the testicular index (P = 0.01). Feeding BS increased seminiferous tubule diameter (P < 0.01), whereas BS + DA increased seminiferous epithelium thickness (P < 0.01). There were more spermatogonia (P < 0.01) and Leydig cells (P < 0.05) in BS-fed roosters but Sertoli cells were highest in BS + DA (P < 0.01). Serum MDA concentrations were lowest in BS (P < 0.01), whereas serum testosterone and LH were highest in DA (P < 0.05) and BS + DA (P < 0.01), respectively. Feeding BS reduced serum total cholesterol (P < 0.05) and increased serum HDL-cholesterol (P < 0.01), with decreases in serum LDL (P < 0.01) and the LDL/HDL ratio (P < 0.01) for BS + DA compared to Control. Relative expression of glutathione peroxidase mRNA was increased by BS (P < 0.01) or DA (P < 0.05), whereas relative mRNA expression of SOD was highest in BA (P < 0.01). Control roosters were highest for both BAX (P < 0.01) and the relative expression of the BAX/BCL-2 ratio (P < 0.01), whereas BS + DA increased BCL-2 (P < 0.05). In conclusion, feeding BS, and/or DA significantly improved reproductive potential in aged broiler roosters.
Collapse
Affiliation(s)
- Sarallah Yarmohammadi Barbarestani
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran.
| | - Firooz Samadi
- Department of Animal and Poultry Physiology, Faculty of Animal Science, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Golestan, Iran.
| | - Mojtaba Zaghari
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Zarbakht Ansari Pirsaraei
- Department of Animal Science, Sari Agricultural Science and Natural Resources University, Sari, Mazandaran, Iran
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
17
|
Kohandel Z, Darrudi M, Naseri K, Samini F, Aschner M, Pourbagher-Shahri AM, Samarghandian S. The Role of Resveratrol in Aging and Senescence: A Focus on Molecular Mechanisms. Curr Mol Med 2024; 24:867-875. [PMID: 37278035 DOI: 10.2174/1566524023666230602162949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Resveratrol (Res), a polyphenol found in red wine, has been shown to decelerate aging, the progressive loss of physiological integrity and cellular senescence, characterized by the inability to progress through the cell cycle. No successful clinical trials have yet to be completed in humans on dose limitations. Yet, the potent anti-aging and anti-senescence efficacy of Res has been documented in several in vivo animal models. In this review, we highlight the molecular mechanisms of Res efficacy in antiaging disorders, such as diabetes, neurodegenerative disorders, eye diseases, and cardiovascular diseases.
Collapse
Affiliation(s)
- Zeynab Kohandel
- Department of Biology, Faculty of Sciences, University of Tehran, Iran
| | - Majid Darrudi
- Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur, 9318614139, Iran
| | - Kobra Naseri
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariborz Samini
- Department of Neurosurgery, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
18
|
Singh S, Shukla A, Sharma S. Overview of Natural Supplements for the Management of Diabetes and Obesity. Curr Diabetes Rev 2024; 20:e061123223235. [PMID: 37933216 DOI: 10.2174/0115733998262859231020071715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 11/08/2023]
Abstract
Bioactive compounds found in various natural sources, such as fruits, vegetables, and herbs, have been studied for their potential benefits in managing obesity and diabetes. These compounds include polyphenols, flavonoids, other antioxidants, fiber, and certain fatty acids. Studies have found that these compounds may improve insulin sensitivity, regulate blood sugar levels, and promote weight loss. However, the effects of these compounds can vary depending on the type and amount consumed, as well as individual factors, such as genetics and lifestyle. Nutraceutical substances have multifaceted therapeutic advantages, and they have been reported to have disease-prevention and health-promoting properties. Several clinically used nutraceuticals have been shown to target the pathogenesis of diabetes mellitus, obesity, and metabolic syndrome and their complications and modulate various clinical outcomes favorably. This review aims to highlight and comment on some of the most prominent natural components used as antidiabetics and in managing obesity.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| | - Arpit Shukla
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| | - Shiwangi Sharma
- Institute of Pharmaceutical Research, GLA University, 17km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh 281406, India
| |
Collapse
|
19
|
Lira Chavez FM, Gartzke LP, van Beuningen FE, Wink SE, Henning RH, Krenning G, Bouma HR. Restoring the infected powerhouse: Mitochondrial quality control in sepsis. Redox Biol 2023; 68:102968. [PMID: 38039825 PMCID: PMC10711241 DOI: 10.1016/j.redox.2023.102968] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Sepsis is a dysregulated host response to an infection, characterized by organ failure. The pathophysiology is complex and incompletely understood, but mitochondria appear to play a key role in the cascade of events that culminate in multiple organ failure and potentially death. In shaping immune responses, mitochondria fulfil dual roles: they not only supply energy and metabolic intermediates crucial for immune cell activation and function but also influence inflammatory and cell death pathways. Importantly, mitochondrial dysfunction has a dual impact, compromising both immune system efficiency and the metabolic stability of end organs. Dysfunctional mitochondria contribute to the development of a hyperinflammatory state and loss of cellular homeostasis, resulting in poor clinical outcomes. Already in early sepsis, signs of mitochondrial dysfunction are apparent and consequently, strategies to optimize mitochondrial function in sepsis should not only prevent the occurrence of mitochondrial dysfunction, but also cover the repair of the sustained mitochondrial damage. Here, we discuss mitochondrial quality control (mtQC) in the pathogenesis of sepsis and exemplify how mtQC could serve as therapeutic target to overcome mitochondrial dysfunction. Hence, replacing or repairing dysfunctional mitochondria may contribute to the recovery of organ function in sepsis. Mitochondrial biogenesis is a process that results in the formation of new mitochondria and is critical for maintaining a pool of healthy mitochondria. However, exacerbated biogenesis during early sepsis can result in accumulation of structurally aberrant mitochondria that fail to restore bioenergetics, produce excess reactive oxygen species (ROS) and exacerbate the disease course. Conversely, enhancing mitophagy can protect against organ damage by limiting the release of mitochondrial-derived damage-associated molecules (DAMPs). Furthermore, promoting mitophagy may facilitate the growth of healthy mitochondria by blocking the replication of damaged mitochondria and allow for post sepsis organ recovery through enabling mitophagy-coupled biogenesis. The remaining healthy mitochondria may provide an undamaged scaffold to reproduce functional mitochondria. However, the kinetics of mtQC in sepsis, specifically mitophagy, and the optimal timing for intervention remain poorly understood. This review emphasizes the importance of integrating mitophagy induction with mtQC mechanisms to prevent undesired effects associated with solely the induction of mitochondrial biogenesis.
Collapse
Affiliation(s)
- F M Lira Chavez
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands.
| | - L P Gartzke
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - F E van Beuningen
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - S E Wink
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - R H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - G Krenning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands; Sulfateq B.V, Admiraal de Ruyterlaan 5, 9726, GN Groningen, the Netherlands
| | - H R Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands; Department of Internal Medicine, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| |
Collapse
|
20
|
Miao L, Liu C, Cheong MS, Zhong R, Tan Y, Rengasamy KRR, Leung SWS, Cheang WS, Xiao J. Exploration of natural flavones' bioactivity and bioavailability in chronic inflammation induced-type-2 diabetes mellitus. Crit Rev Food Sci Nutr 2023; 63:11640-11667. [PMID: 35821658 DOI: 10.1080/10408398.2022.2095349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diabetes, being the most widespread illness, poses a serious threat to global public health. It seems that inflammation plays a critical role in the pathophysiology of diabetes. This review aims to demonstrate a probable link between type 2 diabetes mellitus (T2DM) and chronic inflammation during its development. Additionally, the current review examined the bioactivity of natural flavones and the possible molecular mechanisms by which they influence diabetes and inflammation. While natural flavones possess remarkable anti-diabetic and anti-inflammatory bioactivities, their therapeutic use is limited by the low oral bioavailability. Several factors contribute to the low bioavailability, including poor water solubility, food interaction, and unsatisfied metabolic behaviors, while the diseases (diabetes, inflammation, etc.) causing even less bioavailability. Throughout the years, different strategies have been developed to boost flavones' bioavailability, including structural alteration, biological transformation, and innovative drug delivery system design. This review addresses current advancements in improving the bioavailability of flavonoids in general, and flavones in particular. Clinical trials were also analyzed to provide insight into the potential application of flavonoids in diabetes and inflammatory therapies.
Collapse
Affiliation(s)
- Lingchao Miao
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Conghui Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Meang Sam Cheong
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Ruting Zhong
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yi Tan
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Kannan R R Rengasamy
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Susan Wai Sum Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai San Cheang
- State Key Laboratory of Quality Control in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
21
|
Huang SM, Lin CH, Chang WF, Shih CC. Antidiabetic and antihyperlipidemic activities of Phyllanthus emblica L. extract in vitro and the regulation of Akt phosphorylation, gluconeogenesis, and peroxisome proliferator-activated receptor α in streptozotocin-induced diabetic mice. Food Nutr Res 2023; 67:9854. [PMID: 37850072 PMCID: PMC10578056 DOI: 10.29219/fnr.v67.9854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Background The fruits of Phyllanthus emblica L. are high in nutrients and have excellent health care function and developmental value. There are many management strategies available for diabetes and hyperlipidemia. Nevertheless, there is a lack of an effective and nontoxic drug. Objective The present study was designed to first screen four extracts of P. emblica L. on insulin signaling target gene expression levels, including glucose transporter 4 (GLUT4) and p-Akt/t-Akt. The ethyl acetate extract of P. emblica L. (EPE) exhibited the most efficient activity among the four extracts and was thus chosen to explore the antidiabetic and antihyperlipidemic activities in streptozotocin (STZ)-induced type 1 diabetic mice. Design All mice (in addition to one control (CON) group) were administered STZ injections (intraperitoneal) for 5 consecutive days, and then STZ-induced mice were administered EPE (at 100, 200, or 400 mg/kg body weight), fenofibrate (Feno) (at 250 mg/kg body weight), glibenclamide (Glib) (at 10 mg/kg body weight), or vehicle by oral gavage once daily for 4 weeks. Finally, histological examination, blood biochemical parameters, and target gene mRNA expression levels were measured, and liver tissue was analyzed for the levels of malondialdehyde (MDA), a maker of lipid peroxidation. Results EPE treatment resulted in decreased levels of blood glucose, HbA1C, triglycerides (TGs), and total cholesterol and increased levels of insulin compared with the vehicle-treated STZ group. EPE treatment decreased blood levels of HbA1C and MDA but increased glutathione levels in liver tissue, implying that EPE exerts antioxidant activity and could prevent oxidative stress and diabetes. The EPE-treated STZ mice displayed an improvement in the sizes and numbers of insulin-expressing β cells. EPE treatment increased the membrane expression levels of skeletal muscular GLUT4, and also reduced hepatic mRNA levels of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase thereby inhibiting hepatic gluconeogenesis. This resulted in a net glucose lowering effect in EPE-treated STZ mice. Furthermore, EPE increased the expression levels of p-AMPK/t-AMPK in both the skeletal muscle and liver tissue compared with vehicle-treated STZ mice. EPE-treated STZ mice showed enhanced expression levels of fatty acid oxidation enzymes, including peroxisome proliferator-activated receptor α (PPARα), but reduced expression levels of lipogenic genes including fatty acid synthase, as well as decreased mRNA levels of sterol regulatory element binding protein 1c (SREBP1c), apolipoprotein-CIII (apo-CIII), and diacylglycerol acyltransferase-2 (DGAT2). This resulted in a reduction in plasma TG levels. EPE-treated STZ mice also showed reduced expression levels of PPAR γ. This resulted in decreased adipogenesis, fatty acid synthesis, and lipid accumulation within liver tissue, and consequently, lower TG levels in liver tissue and blood. Furthermore, EPE treatment not only displayed an increase in the Akt activation in liver tissue, but also in C2C12 myotube in the absence of insulin. These results implied that EPE acts as an activator of AMPK and /or as a regulator of the insulin (Akt) pathway. Conclusions Taken together, EPE treatment exhibited amelioration of the diabetic and hyperlipidemic state in STZ-induced diabetic mice.
Collapse
Affiliation(s)
- Shin-Ming Huang
- Department of Gastroenterology, Jen-Ai Hospital, Dali Branch, Taichung City, Taiwan
| | - Cheng-Hsiu Lin
- Department of Internal Medicine, Fengyuan Hospital, Ministry of Health and Welfare, Taichung City, Taiwan
| | - Wen-Fang Chang
- Department of Cardiology, Jen-Ai Hospital, Taichung City, Taiwan
| | - Chun-Ching Shih
- Department of Nursing, College of Nursing, Central Taiwan University of Science and Technology, Taichung City, Taiwan
| |
Collapse
|
22
|
Cipriano A, Viviano M, Feoli A, Milite C, Sarno G, Castellano S, Sbardella G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J Med Chem 2023; 66:11632-11655. [PMID: 37650225 PMCID: PMC10510401 DOI: 10.1021/acs.jmedchem.3c00770] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/01/2023]
Abstract
NADPH oxidases (NOXs) form a family of electron-transporting membrane enzymes whose main function is reactive oxygen species (ROS) generation. Strong evidence suggests that ROS produced by NOX enzymes are major contributors to oxidative damage under pathologic conditions. Therefore, blocking the undesirable actions of these enzymes is a therapeutic strategy for treating various pathological disorders, such as cardiovascular diseases, inflammation, and cancer. To date, identification of selective NOX inhibitors is quite challenging, precluding a pharmacologic demonstration of NOX as therapeutic targets in vivo. The aim of this Perspective is to furnish an updated outlook about the small-molecule NOX inhibitors described over the last two decades. Structures, activities, and in vitro/in vivo specificity are discussed, as well as the main biological assays used.
Collapse
Affiliation(s)
- Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
23
|
Kabir T, Yoshiba H, Agista AZ, Sultana H, Ohsaki Y, Yeh CL, Hirakawa R, Tani H, Ikuta T, Nochi T, Yang SC, Shirakawa H. Protective Effects of Gnetin C from Melinjo Seed Extract against High-Fat Diet-Induced Hepatic Steatosis and Liver Fibrosis in NAFLD Mice Model. Nutrients 2023; 15:3888. [PMID: 37764672 PMCID: PMC10538079 DOI: 10.3390/nu15183888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common form of chronic liver disease, can progress to hepatic steatosis, inflammation, and advanced fibrosis, increasing the risk of cirrhosis. Resveratrol, a natural polyphenol with antioxidant and anti-inflammatory properties, is beneficial in treating multiple metabolic diseases. Gnetin C, a resveratrol derivative obtained from Melinjo seed extract (MSE), shares similar health-promoting properties. We investigated the role of gnetin C in preventing NAFLD in a mouse model and compared it with resveratrol. Male C57BL/6J mice were fed a control diet (10% calories from fat), a high-fat choline-deficient (HFCD) diet (46% calories from fat) and HFCD diet supplemented with gnetin C (150 mg/kg BW·day-1) or resveratrol (150 mg/kg BW·day-1) for 12 weeks. Gnetin C supplementation reduced body and liver weight, and improved blood glucose levels and insulin sensitivity. Both gnetin C- and resveratrol reduced hepatic steatosis, with gnetin C also decreasing liver lipid content. Gnetin C and resveratrol ameliorated HFCD diet-induced hepatic fibrosis. The mRNA expression results, and western blot analyses showed that gnetin C and, to some extent, resveratrol downregulated fibrosis markers in the TGF-β1 signaling pathway, indicating a possible safeguarding mechanism against NAFLD. These results suggest that gnetin C supplementation may protect against lipid deposition and hepatic fibrosis.
Collapse
Affiliation(s)
- Tohfa Kabir
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Haruki Yoshiba
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Afifah Zahra Agista
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Halima Sultana
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yusuke Ohsaki
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Chiu-Li Yeh
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Ryota Hirakawa
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hiroko Tani
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Okayama 708-0393, Japan
| | - Tomoki Ikuta
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc., Okayama 708-0393, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
24
|
Wang G, Qin S, Geng H, Zheng Y, Li R, Xia C, Chen L, Yao J, Deng L. Resveratrol Promotes Gluconeogenesis by Inhibiting SESN2-mTORC2-AKT Pathway in Calf Hepatocytes. J Nutr 2023; 153:1930-1943. [PMID: 37182694 DOI: 10.1016/j.tjnut.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND The glucose requirement of dairy cows is mainly met by increasing the rate of hepatic gluconeogenesis. However, due to negative energy balance, the liver of periparturient cows is under oxidative stress induced by lipid over-mobilization, and hepatic gluconeogenesis is reduced. Studies have demonstrated that resveratrol, which is widely known for its antioxidant properties, can alter hepatic gluconeogenesis. However, it is not clear whether resveratrol could regulate hepatic gluconeogenesis by its antioxidant properties. OBJECTIVES This study aims to investigate the precise effect of resveratrol in hepatic gluconeogenesis, the role of resveratrol on hydrogen peroxide (H2O2)-induced oxidative stress in hepatocytes and the potential mechanism using primary hepatocytes. METHODS Primary hepatocytes were isolated from 5 healthy Holstein calves (1 d old, 30 to 40 kg, fasted) and treated with different concentrations of resveratrol (0, 5, 10, 25, or 50 μM) combined with or without H2O2 (0, 100, or 200 μM) induction for 12 h. RESULTS Resveratrol enhanced the expression of gluconeogenic genes of calf hepatocytes in a dose-dependent manner (P < 0.05). Conversely, H2O2 suppressed the expression of gluconeogenic genes and induced oxidative stress (P < 0.05), which was improved by resveratrol in calf hepatocytes (P < 0.001). Furthermore, the mechanistic target of rapamycin complex 2 (mTORC2)-AKT pathway was found to negatively regulate gluconeogenesis. An AKT inhibitor was used to assess the role of the mTORC2-AKT pathway in the effects of resveratrol. The results showed resveratrol promoted hepatic gluconeogenesis by inhibiting the mTORC2-AKT pathway. Moreover, sestrin 2 (SESN2) upregulated the activity of mTORC2. We further found that resveratrol decreased SESN2 levels (P < 0.001). CONCLUSIONS This study indicated that resveratrol enhances the gluconeogenic capacity of calf hepatocytes by improving H2O2-induced oxidative stress and modulating the activity of the SESN2-mTORC2-AKT pathway, implying that resveratrol may be a promising target for ameliorating liver oxidative stress in transition cows.
Collapse
Affiliation(s)
- GuoYan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - SenLin Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - HuiJun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yining Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rongnuo Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - JunHu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
25
|
Mahboob A, Samuel SM, Mohamed A, Wani MY, Ghorbel S, Miled N, Büsselberg D, Chaari A. Role of flavonoids in controlling obesity: molecular targets and mechanisms. Front Nutr 2023; 10:1177897. [PMID: 37252233 PMCID: PMC10213274 DOI: 10.3389/fnut.2023.1177897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Obesity presents a major health challenge that increases the risk of several non-communicable illnesses, such as but not limited to diabetes, hypertension, cardiovascular diseases, musculoskeletal and neurological disorders, sleep disorders, and cancers. Accounting for nearly 8% of global deaths (4.7 million) in 2017, obesity leads to diminishing quality of life and a higher premature mortality rate among affected individuals. Although essentially dubbed as a modifiable and preventable health concern, prevention, and treatment strategies against obesity, such as calorie intake restriction and increasing calorie burning, have gained little long-term success. In this manuscript, we detail the pathophysiology of obesity as a multifactorial, oxidative stress-dependent inflammatory disease. Current anti-obesity treatment strategies, and the effect of flavonoid-based therapeutic interventions on digestion and absorption, macronutrient metabolism, inflammation and oxidative stress and gut microbiota has been evaluated. The use of several naturally occurring flavonoids to prevent and treat obesity with a long-term efficacy, is also described.
Collapse
Affiliation(s)
- Anns Mahboob
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Arif Mohamed
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Sofiane Ghorbel
- Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Nabil Miled
- College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali Chaari
- Department of Pre-medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
26
|
Pang J, Raka F, Heirali AA, Shao W, Liu D, Gu J, Feng JN, Mineo C, Shaul PW, Qian X, Coburn B, Adeli K, Ling W, Jin T. Resveratrol intervention attenuates chylomicron secretion via repressing intestinal FXR-induced expression of scavenger receptor SR-B1. Nat Commun 2023; 14:2656. [PMID: 37160898 PMCID: PMC10169763 DOI: 10.1038/s41467-023-38259-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Two common features of dietary polyphenols have hampered our mechanistic understanding of their beneficial effects for decades: targeting multiple organs and extremely low bioavailability. We show here that resveratrol intervention (REV-I) in high-fat diet (HFD)-challenged male mice inhibits chylomicron secretion, associated with reduced expression of jejunal but not hepatic scavenger receptor class B type 1 (SR-B1). Intestinal mucosa-specific SR-B1-/- mice on HFD-challenge exhibit improved lipid homeostasis but show virtually no further response to REV-I. SR-B1 expression in Caco-2 cells cannot be repressed by pure resveratrol compound while fecal-microbiota transplantation from mice on REV-I suppresses jejunal SR-B1 in recipient mice. REV-I reduces fecal levels of bile acids and activity of fecal bile-salt hydrolase. In Caco-2 cells, chenodeoxycholic acid treatment stimulates both FXR and SR-B1. We conclude that gut microbiome is the primary target of REV-I, and REV-I improves lipid homeostasis at least partially via attenuating FXR-stimulated gut SR-B1 elevation.
Collapse
Affiliation(s)
- Juan Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, PR China
| | - Fitore Raka
- Department of Molecular Structure and Function Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alya Abbas Heirali
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Dinghui Liu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Jianqiu Gu
- Department of Endocrinology and Metabolism and The Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, PR China
| | - Jia Nuo Feng
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Chieko Mineo
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philip W Shaul
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Bryan Coburn
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Khosrow Adeli
- Department of Molecular Structure and Function Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, PR China.
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
27
|
Gil Alabarse P, Chen LY, Oliveira P, Qin H, Liu-Bryan R. Targeting CD38 to Suppress Osteoarthritis Development and Associated Pain After Joint Injury in Mice. Arthritis Rheumatol 2023; 75:364-374. [PMID: 36103412 PMCID: PMC9998345 DOI: 10.1002/art.42351] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/11/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE This study was undertaken to determine the role of CD38, which can function as an enzyme to degrade NAD+ , in osteoarthritis (OA) development. METHODS Human knee cartilage from normal donors and OA donors were examined for CD38 expression. "Gain-of-function," through overexpression of CD38 via transient transfection, and "loss-of-function," through pharmacologic inhibition of CD38, approaches were used to assess the effects of CD38 on intracellular NAD+ :NADH ratio and catabolic activity in chondrocytes. We also initiated joint injury-induced OA by surgical destabilization of the medial meniscus (DMM) in CD38 knockout mice and wild-type (WT; C57BL/6) mice and in WT male mice in the presence or absence of apigenin treatment. Cartilage degradation, synovial inflammation, subchondral bone changes, and pain behavior were evaluated after DMM surgery. We also examined expression of CD38 and the neuropeptide calcitonin gene-related peptide (CGRP) in knee sections from these mice. RESULTS CD38 expression was up-regulated in human knee OA cartilage and in chondrocytes stimulated with the proinflammatory cytokine interleukin-1β (IL-1β). Overexpression of CD38 in chondrocytes resulted in reduced cellular NAD+ :NADH ratio and augmented catabolic responses to IL-1β. These effects were reversed by pharmacologic inhibition of CD38. Cartilage degradation and synovial inflammation, associated with increased CD38 expression in cartilage and synovium, osteophyte formation and subchondral bone sclerosis, and pain-like behavior linked to increased CGRP expression in the synovium were observed in WT mice after joint injury. Such effects were significantly reduced in mice deficient in CD38 through either genetic knockout or pharmacologic inhibition. CONCLUSION CD38 deficiency exerts OA disease-modifying effects. Inhibition of CD38 has the potential to be a novel therapeutic approach for OA treatment.
Collapse
Affiliation(s)
| | - Liang-Yu Chen
- VA San Diego Healthcare System and University of California San Diego
| | - Patricia Oliveira
- VA San Diego Healthcare System and University of California San Diego
| | | | - Ru Liu-Bryan
- VA San Diego Healthcare System and University of California San Diego
| |
Collapse
|
28
|
Dadkhah Tehrani S, Shojaei M, Bagherniya M, Pirro M, Sahebkar A. The effects of phytochemicals on serum triglycerides in subjects with hypertriglyceridemia: A systematic review of randomized controlled trials. Phytother Res 2023; 37:1640-1662. [PMID: 36756995 DOI: 10.1002/ptr.7763] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/02/2022] [Accepted: 01/22/2023] [Indexed: 02/10/2023]
Abstract
This systematic review aimed to evaluate the efficacy of phytochemicals on lipid parameters in patients with hypertriglyceridemia (HTG). A comprehensive search was performed in PubMed/Medline, Scopus, ISI Web of Science, and Google Scholar from inception up to October 2021 to recognize randomized controlled trials (RCTs) assessing the effects of phytochemicals on lipid profiles in patients with HTG. Forty-eight RCTs including 53 arms and comprising 3,478 HTG patients met the eligibility criteria. Phytochemicals significantly reduced the serum levels of triglycerides in 32 out 53 arms, total cholesterol in 22 out of 51, low-density lipoprotein cholesterol in 21 out of 48, very low-density lipoprotein cholesterol in 1 out of 5, apolipoprotein B in 2 out of 4, and lipoprotein(a) levels in 2 out of 4 arms. Furthermore, phytochemicals supplementation increased the levels of high-density lipoprotein cholesterol in 15 out of 48 arms. In brief, phytochemicals supplementation might have beneficial effects on HTG. In most of the studies, phytochemicals had a favorable effect on at least one of the lipid parameters.
Collapse
Affiliation(s)
- Sahar Dadkhah Tehrani
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnaz Shojaei
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, fahan, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Venkat R, Verma E, Daimary UD, Kumar A, Girisa S, Dutta U, Ahn KS, Kunnumakkara AB. The Journey of Resveratrol from Vineyards to Clinics. Cancer Invest 2023; 41:183-220. [PMID: 35993769 DOI: 10.1080/07357907.2022.2115057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With rising technological advancements, several factors influence the lifestyle of people and stimulate chronic inflammation that severely affects the human body. Chronic inflammation leads to a broad range of physical and pathophysiological distress. For many years, non-steroidal drugs and corticosteroids were most frequently used in treating inflammation and related ailments. However, long-term usage of these drugs aggravates the conditions of chronic diseases and is presented with morbid side effects, especially in old age. Hence, the quest for safe and less toxic anti-inflammatory compounds of high therapeutic potential with least adverse side effects has shifted researchers' attention to ancient medicinal system. Resveratrol (RSV) - 3,4,5' trihydroxystilbene is one such naturally available polyphenolic stilbene derivative obtained from various plant sources. For over 2000 years, these plants have been used in Asian medicinal system for curing inflammation-associated disorders. There is a wealth of in vitro, in vivo and clinical evidence that shows RSV could induce anti-aging health benefits including, anti-cancer, anti-inflammatory, anti-oxidant, phytoesterogenic, and cardio protective properties. However, the issue of rapid elimination of RSV through the metabolic system and its low bio-availability is of paramount importance which is being studied extensively. Therefore, in this article, we scientifically reviewed the molecular targets, biological activities, beneficial and contradicting effects of RSV as evinced by clinical studies for the prevention and treatment of inflammation-mediated chronic disorders.
Collapse
Affiliation(s)
- Ramya Venkat
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Elika Verma
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uzini Devi Daimary
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Aviral Kumar
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Sosmitha Girisa
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| | - Uma Dutta
- Department of Zoology, Cell and Molecular Biology Laboratory, Cotton University, Guwahati, India
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Cancer Biology Laboratory, Indian Institute of Technology (IIT) Guwahati, Guwahati, India
| |
Collapse
|
30
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
31
|
Chanu NR, Gogoi P, Barbhuiya PA, Dutta PP, Pathak MP, Sen S. Natural Flavonoids as Potential Therapeutics in the Management of Diabetic Wound: A Review. Curr Top Med Chem 2023; 23:690-710. [PMID: 37114791 DOI: 10.2174/1568026623666230419102140] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 04/29/2023]
Abstract
Flavonoids are important bioactive phenolic compounds abundant in plants and exhibit different therapeutic potentials. A wound is a significant problem in diabetic individuals. A hyperglycaemic environment alters the normal wound-healing process and increases the risk of microbial infection, leading to hospitalization, morbidity, and amputation. Flavonoids are an important class of phytochemicals with excellent antioxidant, anti-inflammatory, antimicrobial, antidiabetic, antitumor, and wound healing property. Quercetin, hesperidin, curcumin, kaempferol, apigenin, luteolin, morin, etc. have shown their wound healing potential. Flavonoids effectively exhibit antimicrobial activity, scavenge reactive oxygen species, augment endogenous antioxidants, reduce the expression and synthesis of inflammatory cytokines (i.e. IL-1β, IL-6, TNF-α, NF-κB), inhibit inflammatory enzymes, enhance anti-inflammatory cytokine (IL-10), enhance insulin section, reduce insulin resistance, and control blood glucose level. Several flavonoids like hesperidin, curcumin, quercetin, rutin, naringin, and luteolin have shown their potential in managing diabetic wounds. Natural products that maintain glucose haemostatic, exert anti-inflammatory activity, suppress/inhibit microbial growth, modulate cytokines, inhibit matrix metalloproteinase (MMP), stimulate angiogenesis and extracellular matrix, and modulate growth factor can be considered as a potential therapeutic lead to treat diabetic wound. Flavonoids were found to play a positive role in management of diabetic wounds by regulating MMP-2, MMP-8, MMP-9, MMP-13, Ras/Raf/ MEK/ERK, PI3K/Akt, and nitric oxide pathways. Therefore, it can be assumed that flavonoids could be potential therapeutics to prevent devastating effects of diabetic wounds. This paper focused on the potential role of flavonoids in managing diabetic wounds and discussed their possible mechanism of action.
Collapse
Affiliation(s)
| | - Pal Gogoi
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, 781026, India
| | - Pervej Alom Barbhuiya
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, 781026, India
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, 781026, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, 781026, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Guwahati, Assam, 781026, India
| |
Collapse
|
32
|
Sanayei M, Kalejahi P, Mahinkazemi M, Fathifar Z, Barzegar A. The effect of Chlorella vulgaris on obesity related metabolic disorders: a systematic review of randomized controlled trials. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:833-842. [PMID: 33951762 DOI: 10.1515/jcim-2021-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Chlorella vulgaris (CV) as a unicellular algae is a dietary supplement with beneficial nutritious content, used for decades in some countries. Positive effects for CV supplementation on metabolic parameters has been established in animal and human studies. However there is a gap for this results summary for a definite conclusion announce. This systematic review aimed to summarize the effects of CV on body weight, lipid profile, and blood glucose. CONTENT PRISMA guidelines were charted in this review. Subject search was performed in MEDLINE, ProQuest, PubMed, ISI web of sciences, Google scholar, Cochrane and Scopus databases for randomized clinical trials published in English languages, until December 2020, which assessed the effects of CV on metabolic syndrome related symptoms in clinical trials. SUMMARY Out of 4,821 records screened, after duplicate and irrelevant exclusion by title and abstract, 20 articles remained for full text screening. Finally a total of 12 articles met the study inclusion criteria and were assessed for study method and results. OUTLOOK The findings showed controversies in anthropometric, glycemic and lipid profile effects. CV may have beneficial effects on obesity-related metabolic disorders; however, collected studies lacked statistical power to reach a definite conclusion. More well-designed studies are required.
Collapse
Affiliation(s)
- Mahzad Sanayei
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parinaz Kalejahi
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Mahinkazemi
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Fathifar
- Student Research Committee, Faculty of Health Information Management, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Barzegar
- Nutrition Research Center, Department of Community Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Wu D, Li J, Fan Z, Wang L, Zheng X. Resveratrol ameliorates oxidative stress, inflammatory response and lipid metabolism in common carp ( Cyprinus carpio) fed with high-fat diet. Front Immunol 2022; 13:965954. [PMID: 36405693 PMCID: PMC9669426 DOI: 10.3389/fimmu.2022.965954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2023] Open
Abstract
High-fat diet is regarded as crucial inducers of oxidative stress, inflammation, and metabolic imbalance. In order to investigate the ameliorative potential of resveratrol against the progression of liver injury towards steatohepatitis, common carp (Cyprinus carpio) were distributed into six experimental groups and were fed with a normal-fat diet, a high-fat diet, and supplemented with resveratrol (0.8, 1.6, 2.4, and 3.2 g/kg diet) for 8 weeks. The high-fat diet decreased the antioxidant capacities, as well as causing the inflammatory response and lipid deposition of common carp. Resveratrol induced a marked elevation in the final body weight, weight gain rate, condition factor and significant decrease in the feed conversion ratio. Moreover, dietary resveratrol showed a significant decrease in the alanine aminotransferase, aspartate aminotransferase, triglyceride and low-density lipoprotein levels, which was accompanied by an increase in high-density lipoprotein concentration in serum. A significant elevation in total superoxide dismutase, catalase, glutathione peroxidase and a decreased malondialdehyde content were observed, along with a substantial elevation in antioxidant activities were found. Additionally, fish fed with resveratrol had an up-regulation of hepatic catalase, copper, zinc superoxide dismutase, glutathione peroxidase 1a, and glutathione peroxidase 1b gene expression via Nrf2 signaling pathway. Expectedly, our results also demonstrated that resveratrol regulates hepatic lipid metabolism in fish by inhibiting the expression of hepatic lipogenesis genes (acetyl-CoA carboxylase 1, fatty acid synthase, and sterol regulatory element binding protein 1), fatty acid uptake-related genes of lipoprotein lipase, and β-oxidation-related genes via PPAR-γ signaling pathway. Furthermore, dietary resveratrol reduced inflammation, as evident by down-regulating the interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor-α expression levels and upregulating the interleukin-10 and transforming growth factor-β2 expression levels via NF-κB signaling pathway. As a whole, our results demonstrated that resveratrol defensed the impacts against high-fat diet on the serum biochemical, hepatic antioxidants, inflammation, and lipid metabolism.
Collapse
Affiliation(s)
| | | | | | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xianhu Zheng
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
34
|
Sánchez-Rosales AI, Guadarrama-López AL, Gaona-Valle LS, Martínez-Carrillo BE, Valdés-Ramos R. The Effect of Dietary Patterns on Inflammatory Biomarkers in Adults with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022; 14:4577. [PMID: 36364839 PMCID: PMC9654560 DOI: 10.3390/nu14214577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Some evidence supports the fact that chronic low-grade inflammation contributes to the physiopathology of type 2 diabetes mellitus (T2DM), and circulating markers of inflammation (e.g., C-reactive protein (CRP), pro- and anti-inflammatory biomarkers (e.g., adiponectin), and endothelial function markers could indicate an ongoing pathology. Following certain dietary patterns (DPs) may result in favorable changes in inflammatory biomarkers. The overarching aim of this systematic review and meta-analysis is to explore the inflammatory effect of healthy DPs on inflammatory biomarkers in adults with T2DM. A systematic search of the literature was conducted using the electronic databases MEDLINE, SCOPUS, and Cochrane Central Register of Controlled Trials. A total of 10 randomized controlled clinical trials (RCTs) were analyzed. In our linear meta-analysis, the random-effects model was applied to estimate standardized mean differences (SMD) to associate the effect of the interventions. Dietary Approaches to Stop Hypertension (DASH), Diabetes UK healthy eating, Mediterranean Diet (MD), Diabetes Prevention Program (DPP), and the American Heart Association’s Therapeutic Lifestyle Changes diet were associated with a significant reduction in CRP (SMD: −0.83, 99% CI −1.49, −0.17, p < 0.001; I2 94%), while plasma levels of adiponectin were significantly higher with the intake of MD, DPP, and Diabetes UK healthy eating (SMD: 0.81, 99% CI 0.06,1.56, p < 0.005; I2 96%), both of which indicate less inflammation. Sensitivity analyses were carried out, and potential publication bias was examined. In conclusion, low- moderate-quality evidence from RCTs suggests that, for the DPs evaluated, there are favorable changes in CRP and adiponectin.
Collapse
Affiliation(s)
| | - Ana L. Guadarrama-López
- Multidisciplinary Clinic of Health, Universidad Autónoma del Estado de México, Toluca 50180, Mexico
| | - Laura S. Gaona-Valle
- Centro Médico Lic. Adolfo López Mateos, Instituto de Salud del Estado de México (ISEM), Toluca 50010, Mexico
| | | | - Roxana Valdés-Ramos
- Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca 50180, Mexico
| |
Collapse
|
35
|
Hsu CC, Peng D, Cai Z, Lin HK. AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol 2022; 85:52-68. [PMID: 33862221 PMCID: PMC9768867 DOI: 10.1016/j.semcancer.2021.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
The intrinsic mechanisms sensing the imbalance of energy in cells are pivotal for cell survival under various environmental insults. AMP-activated protein kinase (AMPK) serves as a central guardian maintaining energy homeostasis by orchestrating diverse cellular processes, such as lipogenesis, glycolysis, TCA cycle, cell cycle progression and mitochondrial dynamics. Given that AMPK plays an essential role in the maintenance of energy balance and metabolism, managing AMPK activation is considered as a promising strategy for the treatment of metabolic disorders such as type 2 diabetes and obesity. Since AMPK has been attributed to aberrant activation of metabolic pathways, mitochondrial dynamics and functions, and epigenetic regulation, which are hallmarks of cancer, targeting AMPK may open up a new avenue for cancer therapies. Although AMPK is previously thought to be involved in tumor suppression, several recent studies have unraveled its tumor promoting activity. The double-edged sword characteristics for AMPK as a tumor suppressor or an oncogene are determined by distinct cellular contexts. In this review, we will summarize recent progress in dissecting the upstream regulators and downstream effectors for AMPK, discuss the distinct roles of AMPK in cancer regulation and finally offer potential strategies with AMPK targeting in cancer therapy.
Collapse
Affiliation(s)
- Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Danni Peng
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
36
|
Shinde A, Deore G, Navsariwala KP, Tabassum H, Wani M. We are all aging, and here's why. Aging Med (Milton) 2022; 5:211-231. [PMID: 36247337 PMCID: PMC9549314 DOI: 10.1002/agm2.12223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/12/2022] Open
Abstract
Here, through this review, we aim to serve this purpose by first discussing the statistics and aging demographics, including the life expectancy of the world and India, along with the gender life expectancy gap observed throughout the world, followed by explaining the hallmarks and integral causes of aging, along with the role played by senescent cells in controlling inflammation and the effect of senescence associated secretory phenotype on longevity. A few of the molecular pathways which are crucial in modulating the process of aging, such as the nutrient-sensing mTOR pathway, insulin signaling, Nrf2, FOXO, PI3-Akt, Sirtuins, and AMPK, and their effects are also covered in paramount detail. A diverse number of ingenious research methodologies are used in the modern era of longevity exploration. We have attempted to cover these methods under the umbrella of three broad categories: in vitro, in vivo, and in silico techniques. The drugs developed to attenuate the aging process, such as rapamycin, metformin, resveratrol, etc. and their interactions with the above-mentioned molecular pathways along with their toxicity have also been reviewed in detail.
Collapse
Affiliation(s)
- Atharva Shinde
- Dr. D. Y. Patil Biotechnology and Bioinformatics InstituteDr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Gargi Deore
- Dr. D. Y. Patil Biotechnology and Bioinformatics InstituteDr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Kedar P. Navsariwala
- Dr. D. Y. Patil Biotechnology and Bioinformatics InstituteDr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Heena Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics InstituteDr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Minal Wani
- Dr. D. Y. Patil Biotechnology and Bioinformatics InstituteDr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
37
|
Jiang J, Tang T, Peng Y, Liu M, Liu Q, Mi P, Yang Z, Chen H, Zheng X. Research progress on antidiabetic activity of apigenin derivatives. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
38
|
Ravel-Chapuis A, Duchesne E, Jasmin BJ. Pharmacological and exercise-induced activation of AMPK as emerging therapies for myotonic dystrophy type 1 patients. J Physiol 2022; 600:3249-3264. [PMID: 35695045 DOI: 10.1113/jp282725] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder with variable clinical features. Currently, there is no cure or effective treatment for DM1. The disease is caused by an expansion of CUG repeats in the 3' UTR of DMPK mRNAs. Mutant DMPK mRNAs accumulate in nuclei as RNA foci and trigger an imbalance in the level and localization of RNA-binding proteins causing the characteristic missplicing events that account for the varied DM1 symptoms, a disease mechanism referred to as RNA toxicity. In recent years, multiple signalling pathways have been identified as being aberrantly regulated in skeletal muscle in response to the CUG expansion, including AMPK, a sensor of energy status, as well as a master regulator of cellular energy homeostasis. Converging lines of evidence highlight the benefits of activating AMPK signalling pharmacologically on RNA toxicity, as well as on muscle histology and function, in preclinical DM1 models. Importantly, a clinical trial with metformin, an activator of AMPK, resulted in functional benefits in DM1 patients. In addition, exercise, a known AMPK activator, has shown promising effects on RNA toxicity and muscle function in DM1 mice. Finally, clinical trials involving moderate-intensity exercise also induced functional benefits for DM1 patients. Taken together, these studies clearly demonstrate the molecular, histological and functional benefits of AMPK activation and exercise-based interventions on the DM1 phenotype. Despite these advances, several key questions remain; in particular, the extent of the true implication of AMPK in the observed beneficial improvements, as well as how, mechanistically, activation of AMPK signalling improves the DM1 pathophysiology.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Elise Duchesne
- Département des sciences de la santé, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada.,Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Hôpital de Jonquière, QC, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
39
|
Mohd Nor NA, Budin SB, Zainalabidin S, Jalil J, Sapian S, Jubaidi FF, Mohamad Anuar NN. The Role of Polyphenol in Modulating Associated Genes in Diabetes-Induced Vascular Disorders. Int J Mol Sci 2022; 23:6396. [PMID: 35742837 PMCID: PMC9223817 DOI: 10.3390/ijms23126396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 01/05/2023] Open
Abstract
Diabetes-induced vascular disorder is considered one of the deadly risk factors among diabetic patients that are caused by persistent hyperglycemia that eventually leads to cardiovascular diseases. Elevated reactive oxygen species (ROS) due to high blood glucose levels activate signaling pathways such as AGE/RAGE, PKC, polyol, and hexosamine pathways. The activated signaling pathway triggers oxidative stress, inflammation, and apoptosis which later lead to vascular dysfunction induced by diabetes. Polyphenol is a bioactive compound that can be found abundantly in plants such as vegetables, fruits, whole grains, and nuts. This compound exerts therapeutic effects in alleviating diabetes-induced vascular disorder, mainly due to its potential as an anti-oxidative, anti-inflammatory, and anti-apoptotic agent. In this review, we sought to summarize the recent discovery of polyphenol treatments in modulating associated genes involved in the progression of diabetes-induced vascular disorder.
Collapse
Affiliation(s)
- Nor Anizah Mohd Nor
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
- PICOMS International University College, Taman Batu Muda, Batu Caves, Kuala Lumpur 68100, Malaysia
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Juriyati Jalil
- Center for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Syaifuzah Sapian
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
| | - Fatin Farhana Jubaidi
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (N.A.M.N.); (S.B.B.); (S.S.); (F.F.J.)
| | - Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| |
Collapse
|
40
|
Mechanism of glycometabolism regulation by bioactive compounds from the fruits of Lycium barbarum: A review. Food Res Int 2022; 159:111408. [PMID: 35940747 DOI: 10.1016/j.foodres.2022.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/30/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
|
41
|
Praparatana R, Maliyam P, Barrows LR, Puttarak P. Flavonoids and Phenols, the Potential Anti-Diabetic Compounds from Bauhinia strychnifolia Craib. Stem. Molecules 2022; 27:2393. [PMID: 35458587 PMCID: PMC9032570 DOI: 10.3390/molecules27082393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 12/21/2022] Open
Abstract
Bioactive compounds from medicinal plants are good alternative treatments for T2DM. They are also sources of lead molecules that could lead to new drug discoveries. In this study, Bauhinia strychnifolia Craib. stem, a traditional Thai medicinal plant for detoxification, was extracted into five fractions, including crude extract, BsH, BsD, BsE, and BsW, by ethanolic maceration and sequential partition with hexane, dichloromethane, ethyl acetate, and water, respectively. Among these fractions, BsE contained the highest amounts of phenolics (620.67 mg GAE/g extract) and flavonoids (131.35 mg QE/g extract). BsE exhibited the maximum inhibitory activity against α-glucosidase (IC50 1.51 ± 0.01 µg/mL) and DPP-IV (IC50 2.62 ± 0.03 µg/mL), as well as dominantly promoting glucose uptake on 3T3-L1 adipocytes. Furthermore, the four compounds isolated from the BsE fraction, namely resveratrol, epicatechin, quercetin, and gallic acid, were identified. Quercetin demonstrated the highest inhibitory capacity against α-glucosidase (IC50 6.26 ± 0.36 µM) and DPP-IV (IC50 8.25 µM). In addition, quercetin prominently enhanced the glucose uptake stimulation effect on 3T3-L1 adipocytes. Altogether, we concluded that quercetin was probably the principal bioactive compound of the B. strychnifolia stem for anti-diabetic, and the flavonoid-rich fraction may be sufficiently potent to be an alternative treatment for blood sugar control.
Collapse
Affiliation(s)
- Rachanida Praparatana
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (R.P.); (P.M.)
| | - Pattaravan Maliyam
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (R.P.); (P.M.)
| | - Louis R. Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 81112, USA;
| | - Panupong Puttarak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; (R.P.); (P.M.)
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| |
Collapse
|
42
|
Comparative study on nutrient composition and antioxidant capacity of potato based on geographical and climatic factors. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Bioactive components in Bambara groundnut ( Vigna subterraenea (L.) Verdc) as a potential source of nutraceutical ingredients. Heliyon 2022; 8:e09024. [PMID: 35284682 PMCID: PMC8913303 DOI: 10.1016/j.heliyon.2022.e09024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/09/2020] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
The utilization of nutraceuticals on a global scale has significantly increased over the past few years due to their reported health benefits and consumer's reluctance to consume synthetic drugs. This paper provides information regarding new and potential value added uses of biologically active compounds in Bambara groundnut (BGN) as ingredients that could be further researched and exploited for various applications. Nutraceutical is a food or part of food that apart from providing basic nutrients, offers medicinal benefits either by prevention and or treatment of an illness. BGN is a legume with rich nutrient profile that is under exploited industrially. It is widely used in African traditional medicine for its various health outcome, but has not been explored scientifically for its numerous nutraceutical potentials. Compared to beans BGN has greater quantity of soluble fiber and also have high dietary fiber. It is rich in polyphenolic compound which include flavonoids subgroups like flavonols, flavanols, anthocyanindins, isoflavones and phenolic acids: both benzoic acid and cinnamic acid derivatives, biologically active polyunsaturated fatty acids, proteins and peptides, antioxidant vitamins and minerals. The rising interest and emphasis in plant-based biologically active components (nutraceuticals) for various health promotion, has positioned this African legume as a potential source of nutraceutical ingredients (bioactive components) that could be exploited for improved nutrition and health.
Collapse
|
44
|
Shahwan M, Alhumaydhi F, Ashraf GM, Hasan PMZ, Shamsi A. Role of polyphenols in combating Type 2 Diabetes and insulin resistance. Int J Biol Macromol 2022; 206:567-579. [PMID: 35247420 DOI: 10.1016/j.ijbiomac.2022.03.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 02/09/2023]
Abstract
Compromised carbohydrate metabolism leading to hyperglycemia is the primary metabolic disorder of non-insulin-dependent diabetes mellitus. Reformed digestion and altered absorption of carbohydrates, exhaustion of glycogen stock, enhanced gluconeogenesis and overproduced hepatic glucose, dysfunction of β-cell, resistance to insulin in peripheral tissue, and impaired insulin signaling pathways are essential reasons for hyperglycemia. Although oral anti-diabetic drugs like α-glucosidase inhibitors, sulfonylureas and insulin therapies are commonly used to manage Type 2 Diabetes (T2D) and hyperglycemia, natural compounds in diet also play a significant role in combating the effect of diabetes. Due to their vast bioavailability and anti-hyperglycemic effect with least or no side effects, polyphenolic compounds have gained wide popularity. Polyphenols such as flavonoids and tannins play a significant role in carbohydrate metabolism by inhibiting key enzymes responsible for the digestion of carbohydrates to glucose like α-glucosidase and α-amylase. Several polyphenols such as resveratrol, epigallocatechin-3-gallate (EGCG) and quercetin enhanced glucose uptake in the muscle and adipocytes by translocating GLUT4 to plasma membrane mainly by the activation of the AMP-activated protein kinase (AMPK) pathway. This review provides an insight into the protective role of polyphenols in T2D, highlighting the aspects of insulin resistance.
Collapse
Affiliation(s)
- Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates; College of Pharmacy & Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Fahad Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prince M Z Hasan
- Centre of Nanotechnology, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, United Arab Emirates; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
45
|
Jha AK, Gairola S, Kundu S, Doye P, Syed AM, Ram C, Kulhari U, Kumar N, Murty US, Sahu BD. Biological Activities, Pharmacokinetics and Toxicity of Nootkatone: A Review. Mini Rev Med Chem 2022; 22:2244-2259. [PMID: 35156582 DOI: 10.2174/1389557522666220214092005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/25/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Plant-based drugs have a significant impact on modern therapeutics due to their vast array of pharmacological activities. The integration of herbal plants in the current healthcare system has emerged as a new field of research. It can be used for the identification of novel lead compound candidates for future drug development. Nootkatone is a sesquiterpene derivative and an isolate of grapefruit. Shreds of evidence illustrate that nootkatone targets few molecular mechanisms to exhibit its pharmacological activity and yet needs more exploration to be established. The current review is related to nootkatone, drafted through a literature search using research articles and books from different sources, including Science Direct, Google Scholar, Elsevier, PubMed, and Scopus. It has been reported to possess a wide range of pharmacological activities such as anti-inflammatory, anticancer, antibacterial, hepatoprotective, neuroprotective, and cardioprotective. Although preclinical studies in experimental animal models suggest that nootkatone has therapeutic potential, it is further warranted to evaluate its toxicity and pharmacokinetic parameters before being applied to humans. Hence in the present review, we have summarized the scientific knowledge on nootkatone with a particular emphasis on its pharmacological properties to encourage researchers for further exploration in preclinical and clinical settings.
Collapse
Affiliation(s)
- Ankush Kumar Jha
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Shobhit Gairola
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Pakpi Doye
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Naresh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, PIN-781101, Assam, India
| |
Collapse
|
46
|
Maleki V, Foroumandi E, Hajizadeh-Sharafabad F, Kheirouri S, Alizadeh M. The effect of resveratrol on advanced glycation end products in diabetes mellitus: a systematic review. Arch Physiol Biochem 2022; 128:253-260. [PMID: 32125189 DOI: 10.1080/13813455.2019.1673434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advanced glycation end products (AGEs) lead to chronic oxidative stress and inflammation, which in turn augment diabetes complications. Resveratrol plays a potential role in relation to diabetes due to improving of hyperglycemia, oxidative stress, and inflammation. The aim of this review was to evaluate the scientific literature to identify the impacts of resveratrol on the accumulation of AGEs. The literature was searched in the online databases, viz. PubMed, SCOPUS, Embase, ProQuest, and Google Scholar until May 2019. From a total of 338 retrieved articles, 10 papers were eligible for the present analysis. Except one clinical trial, all studies were conducted on animals. All the included studies, except one, showed inhibitory effects of resveratrol on the accumulation of AGE or receptor for AGEs. The findings indicate that resveratrol is a potential protective agent against the accumulation of AGEs. There is, however, the need for future studies to investigate this effect on human.
Collapse
Affiliation(s)
- Vahid Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Foroumandi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hajizadeh-Sharafabad
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
47
|
Supplementing Soy-Based Diet with Creatine in Rats: Implications for Cardiac Cell Signaling and Response to Doxorubicin. Nutrients 2022; 14:nu14030583. [PMID: 35276943 PMCID: PMC8840593 DOI: 10.3390/nu14030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Nutritional habits can have a significant impact on cardiovascular health and disease. This may also apply to cardiotoxicity caused as a frequent side effect of chemotherapeutic drugs, such as doxorubicin (DXR). The aim of this work was to analyze if diet, in particular creatine (Cr) supplementation, can modulate cardiac biochemical (energy status, oxidative damage and antioxidant capacity, DNA integrity, cell signaling) and functional parameters at baseline and upon DXR treatment. Here, male Wistar rats were fed for 4 weeks with either standard rodent diet (NORMAL), soy-based diet (SOY), or Cr-supplemented soy-based diet (SOY + Cr). Hearts were either freeze-clamped in situ or following ex vivo Langendorff perfusion without or with 25 μM DXR and after recording cardiac function. The diets had distinct cardiac effects. Soy-based diet (SOY vs. NORMAL) did not alter cardiac performance but increased phosphorylation of acetyl-CoA carboxylase (ACC), indicating activation of rather pro-catabolic AMP-activated protein kinase (AMPK) signaling, consistent with increased ADP/ATP ratios and lower lipid peroxidation. Creatine addition to the soy-based diet (SOY + Cr vs. SOY) slightly increased left ventricular developed pressure (LVDP) and contractility dp/dt, as measured at baseline in perfused heart, and resulted in activation of the rather pro-anabolic protein kinases Akt and ERK. Challenging perfused heart with DXR, as analyzed across all nutritional regimens, deteriorated most cardiac functional parameters and also altered activation of the AMPK, ERK, and Akt signaling pathways. Despite partial reprogramming of cell signaling and metabolism in the rat heart, diet did not modify the functional response to supraclinical DXR concentrations in the used acute cardiotoxicity model. However, the long-term effect of these diets on cardiac sensitivity to chronic and clinically relevant DXR doses remains to be established.
Collapse
|
48
|
A comprehensive review on phytochemicals for fatty liver: are they potential adjuvants? J Mol Med (Berl) 2022; 100:411-425. [PMID: 34993581 DOI: 10.1007/s00109-021-02170-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome and, as such, is associated with obesity. With the current and growing epidemic of obesity, NAFLD is already considered the most common liver disease in the world. Currently, there is no official treatment for the disease besides weight loss. Although there are a few synthetic drugs currently being studied, there is also an abundance of herbal products that could also be used for treatment. With the World Health Organization (WHO) traditional medicine strategy (2014-2023) in mind, this review aims to analyze the mechanisms of action of some of these herbal products, as well as evaluate toxicity and herb-drug interactions available in literature.
Collapse
|
49
|
Schinzari F, Tesauro M, Cardillo C. Vasodilator Dysfunction in Human Obesity: Established and Emerging Mechanisms. J Cardiovasc Pharmacol 2021; 78:S40-S52. [PMID: 34840258 DOI: 10.1097/fjc.0000000000001108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022]
Abstract
ABSTRACT Human obesity is associated with insulin resistance and often results in a number of metabolic abnormalities and cardiovascular complications. Over the past decades, substantial advances in the understanding of the cellular and molecular pathophysiological pathways underlying the obesity-related vascular dysfunction have facilitated better identification of several players participating in this abnormality. However, the complex interplay between the disparate mechanisms involved has not yet been fully elucidated. Moreover, in medical practice, the clinical syndromes stemming from obesity-related vascular dysfunction still carry a substantial burden of morbidity and mortality; thus, early identification and personalized clinical management seem of the essence. Here, we will initially describe the alterations of intravascular homeostatic mechanisms occurring in arteries of obese patients. Then, we will briefly enumerate those recognized causative factors of obesity-related vasodilator dysfunction, such as vascular insulin resistance, lipotoxicity, visceral adipose tissue expansion, and perivascular adipose tissue abnormalities; next, we will discuss in greater detail some emerging pathophysiological mechanisms, including skeletal muscle inflammation, signals from gut microbiome, and the role of extracellular vesicles and microRNAs. Finally, it will touch on some gaps in knowledge, as well as some current acquisitions for specific treatment regimens, such as glucagon-like peptide-1 enhancers and sodium-glucose transporter2 inhibitors, that could arrest or slow the progression of this abnormality full of unwanted consequences.
Collapse
Affiliation(s)
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy; and
| | - Carmine Cardillo
- Department of Aging, Policlinico A. Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Catholic University, Rome, Italy
| |
Collapse
|
50
|
Zheng J, Hu S, Wang J, Zhang X, Yuan D, Zhang C, Liu C, Wang T, Zhou Z. Icariin improves brain function decline in aging rats by enhancing neuronal autophagy through the AMPK/mTOR/ULK1 pathway. PHARMACEUTICAL BIOLOGY 2021; 59:183-191. [PMID: 33556283 PMCID: PMC8871627 DOI: 10.1080/13880209.2021.1878238] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CONTEXT Icariin (ICA) is the main active ingredient of Epimedium brevicornu Maxim (Berberidaceae), which is used in the immune, reproductive, neuroendocrine systems, and anti-aging. OBJECTIVE To evaluate the effect of ICA on natural aging rat. MATERIALS AND METHODS 16-month-old Sprague-Dawley (SD) rats were randomly divided into aging, low and high-dose ICA groups (n = 8); 6-month-old rats were taken as the adult control (n = 8). Rats were fed regular feed (aging and adult control) or feed containing ICA (ICA 2 and 6 mg/kg group) for 4 months. HE and Nissl staining were used to assess pathological changes. Western blot was used to test the expression of autophagy (LC3B, p62, Atg5, Beclin1) and p-AMPK, p-mTOR and p-ULK1 (ser 757). Immunofluorescence was used to detect the co-localization of LC3 and neurons. RESULTS ICA improved neuronal degeneration associated with aging and increased the staining of Nissl bodies. Western blot showed that ICA up-regulated autophagy-related proteins LC3B (595%), Beclin1 (73.5%), p-AMPK (464%) protein (p < 0.05 vs. 20 M) in the cortex and hippocampus of aging rats, down-regulated the expression of p62 (56.9%), p-mTOR (53%) and p-ULK1 (ser 757) (65.4%) protein (p < 0.05 vs. 20 M). Immunofluorescence showed that the fluorescence intensity of LC3 decreased in the aging rat brain, but increased and mainly co-localized with neurons after ICA intervention. CONCLUSIONS Further research needs to verify the expression changes of AMPK/mTOR/ULK1 and the improvement effect of ICA in elderly. These results will further accelerate the applications of ICA and the treatment for senescence.
Collapse
Affiliation(s)
- Jie Zheng
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Shanshan Hu
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Jinxin Wang
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Xulan Zhang
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Ding Yuan
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Changcheng Zhang
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Chaoqi Liu
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
| | - Ting Wang
- Department of Pharmacy, College of Medicine, New Drug Innovation and Development Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- CONTACT Ting Wang Department of Pharmacy, College of Medicine, New Drug Innovation and Development Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhiyong Zhou
- Medical College of China Three Gorges University, Yichang, P. R. Chinas
- Zhiyong Zhou Medical College of China, Three Gorges University, 8 University Road, Yichang 443002, Hubei, China
| |
Collapse
|