1
|
Wu YW, Wu CY, Lin F, Wu JY. Exercise training benefits pancreatic islet by modulating the insulin-like growth factor 1/phosphatidylinositol 3-kinase/protein kinase B pathway. World J Diabetes 2025; 16:101447. [DOI: 10.4239/wjd.v16.i5.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/11/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Diabetes is characterized by insulin resistance as well as impaired insulin production, with β-cell dysfunction playing a critical role in disease progression. Exercise is known to improve insulin sensitivity, but its effects on pancreatic islet quality and function remain poorly understood. This work hypothesized that swimming training enhances glycemic control and insulin secretion by upregulating the insulin-like growth factor 1 (IGF-1)/phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway in streptozotocin (STZ)-induced diabetic rats.
AIM To investigate the effects of swimming on pancreatic islet quality and function in STZ-induced diabetic rats via the IGF-1/PI3K/AKT pathway.
METHODS Twenty-six Sprague-Dawley rats were grouped into diabetic and control groups, with each group further split into exercise and sedentary subgroups. Diabetic rats were induced with STZ. The exercise groups underwent swimming training for 60 minutes/day, 5 days/week, for 8 weeks. Body weight, food intake, blood glucose, insulin, lipids, and muscle glycogen were measured. Pancreatic islet morphology and the protein expression levels of IGF-1, PI3K, and AKT were analyzed. Data were analyzed using two-way repeated-measure ANOVA, followed by Tukey’s post-hoc test.
RESULTS Exercise training significantly improved body weight [diabetic exercise group (D-Ex): 390.66 ± 50.14 g vs diabetic sedentary group (D-Sed): 315.89 ± 50.12 g, P < 0.05], reduced blood glucose (D-Ex: 12.21 ± 4.43 mmol/L vs D-Sed: 17.79 ± 2.05 mmol/L, P < 0.05), and increased insulin levels (D-Ex: 53.50 ± 15.31 pmol/L vs D-Sed: 25.31 ± 10.23 pmol/L, P < 0.05) in diabetic rats. It also enhanced islet morphology, increased IGF-1 expression, and activated the PI3K/AKT pathway (P < 0.05). In-vitro experiments confirmed that IGF-1 positively regulated insulin expression and inhibited β-cell apoptosis via the PI3K/AKT pathway.
CONCLUSION Exercise training improves pancreatic islet quality and function in diabetic rats by modulating the IGF-1/PI3K/AKT pathway, highlighting its therapeutic potential for diabetes management.
Collapse
Affiliation(s)
- Ya-Wen Wu
- Department of Rehabilitation Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Chu-Yan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Feng Lin
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Jun-Ying Wu
- Department of Rehabilitation Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
2
|
Breunig M, Hohwieler M, Haderspeck J, von Zweydorf F, Hauff N, Pasquini LP, Wiegreffe C, Zimmer E, Mulaw MA, Julier C, Simon E, Gloeckner CJ, Liebau S, Kleger A. PPDPF is not a key regulator of human pancreas development. PLoS Genet 2025; 21:e1011657. [PMID: 40193385 PMCID: PMC12037078 DOI: 10.1371/journal.pgen.1011657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 04/28/2025] [Accepted: 03/16/2025] [Indexed: 04/09/2025] Open
Abstract
Given their capability to differentiate into each cell type of the human body, human pluripotent stem cells (hPSCs) provide a unique platform for developmental studies. In the current study, we employed this cell system to understand the role of pancreatic progenitor differentiation and proliferation factor (PPDPF), a protein that has been little explored so far. While the zebrafish orthologue exdpf is essential for exocrine pancreas specification, its importance for mammalian and human development has not been studied yet. We implemented a four times CRISPR/Cas9 nicking approach to knockout PPDPF in human embryonic stem cells (hESCs) and differentiated PPDPFKO/KO and PPDPFWT/WT cells towards the pancreatic lineage. In contrast to data obtained from zebrafish, a very modest effect of the knockout was observed in the development of pancreatic progenitors in vitro, not affecting lineage specification upon orthotopic transplantation in vivo. The modest effect is in line with the finding that genetic variants near PPDPF are associated with random glucose levels in humans, but not with type 2 diabetes risk, supporting that dysregulation of this gene may only result in minor alterations of glycaemic balance in humans. In addition, PPDPF is less organ- and cell type specifically expressed in higher vertebrates and its so far reported functions appear highly context-dependent.
Collapse
Affiliation(s)
- Markus Breunig
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | - Meike Hohwieler
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | - Jasmin Haderspeck
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Natalie Hauff
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | - Lino-Pascal Pasquini
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | | | - Eleni Zimmer
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
| | - Medhanie A. Mulaw
- Central Unit Single Cell Sequencing, Medical Faculty, Ulm University, Ulm, Germany
| | - Cécile Julier
- Institut Cochin, Inserm U1016-CNRS UMR8104-Université Paris Descartes, Paris, France
| | - Eric Simon
- Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
- Computational Biology & Genomics, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Christian Johannes Gloeckner
- DZNE-German Center for Neurodegenerative Diseases, Tübingen, Germany
- Institute for Ophthalmic Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
3
|
Wang L, Geng J, Wang H. Emerging Landscape of Supercharged Proteins and Peptides for Drug Delivery. ACS Pharmacol Transl Sci 2024; 7:614-629. [PMID: 38481692 PMCID: PMC10928892 DOI: 10.1021/acsptsci.3c00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2025]
Abstract
Although groundbreaking biotechnological techniques such as gene editing have significantly progressed, the effective and targeted transport of therapeutic agents into host cells remains a major obstacle to the development of biotherapeutics. Confronting the unique challenge posed by large macromolecules such as proteins, peptides, and nucleic acids adds complexity to this issue. Recent findings reveal that the supercharging of proteins and peptides not only enables control over critical properties, such as temperature resistance and catalytic activity, but also holds promise as a viable strategy for their use in drug delivery. This review provides a concise summary of the attributes of supercharged proteins and peptides, encompassing both their natural occurrence and engineered variants. Furthermore, it sheds light on the present status and future possibilities of supercharged proteins and peptides as carriers for significant biomolecules in the realms of medical research and therapeutic applications.
Collapse
Affiliation(s)
- Lidan Wang
- Laboratory
Medicine Department, Chinese Medicine Hospital
of Puyang, Puyang 457000, China
| | - Jingping Geng
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | - Hu Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21215, United States
| |
Collapse
|
4
|
Pelletier RM, Layeghkhavidaki H, Seidah NG, Prat A, Vitale ML. PCSK9 Contributes to the Cholesterol, Glucose, and Insulin2 Homeostasis in Seminiferous Tubules and Maintenance of Immunotolerance in Testis. Front Cell Dev Biol 2022; 10:889972. [PMID: 35586340 PMCID: PMC9108277 DOI: 10.3389/fcell.2022.889972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
The PCSK9 contribution to cholesterol and immunotolerance homeostasis and response to glucose, and insulin in testis and hypophysis were studied using Pcsk9-deficient (-/-) and transgenic [Tg (PCSK9)] mice, and diabetic, obese ob/ob and db/db mice. The spermatids/spermatozoa acrosome, peritubular vessels, and epididymal adipocytes were PCSK9- and LDL-R-positive. The pro-PCSK9/PCSK9 ratio was high in interstitial tissue-fractions (ITf) and spermatozoa and low in seminiferous tubule-fractions (STf) in normal adult mice. This ratio decreased in ITf in ob/ob and db/db mice but increased in tubules in ob/ob mice. Deleting pcsk9 lowered cholesterol in serum but increased testicular cholesterol. Furthermore, HMGCoA-red, ACAT-2 and LDL-R turnover increased whereas SR-BI decreased in ITf; in tubules, ABCA1 decreased and 160 kDa LDL-R increased in Pcsk9 -/- mice. Excess testicular cholesterol could result from increased cholesterol synthesis and uptake with reduction in SR-BI-mediated efflux in ITf and from the overload of apoptotic cells, lowered ABCA1-mediated efflux and stimulated LDL-R protein synthesis in tubules in Pcsk9 -/- mice. Concomitantly with the cholesterol accumulation, tubules showed infiltrates of immune cells, elevated IL-17A and IL-17RA, and changes in the immunotolerance homeostasis. PCSK9 deficiency decreased glucose in tubules and spermatozoa while increasing insulin2 in ITf and tubules not serum. Moreover, IR-α, and IR-β augmented in tubules but decreased in the anterior pituitary; IR-α increased whereas IR-β decreased in ITf. The histology and cholesterol levels were normal in Tg (PCSK9) mouse testis. The excess cholesterol creates a milieu favorable to the action of high IL-17A and IL-17RA, the development of inflammatory conditions and self-tolerance breakdown in testis.
Collapse
Affiliation(s)
- R.-Marc Pelletier
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada
| | - Hamed Layeghkhavidaki
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada
| | - Nabil G. Seidah
- Biochemical Neuroendocrinology Laboratory, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Annik Prat
- Biochemical Neuroendocrinology Laboratory, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - María L. Vitale
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
5
|
Narayan G, Sundaravadivelu PK, Agrawal A, Gogoi R, Nagotu S, Thummer RP. Soluble expression, purification, and secondary structure determination of human PDX1 transcription factor. Protein Expr Purif 2020; 180:105807. [PMID: 33309974 DOI: 10.1016/j.pep.2020.105807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 01/06/2023]
Abstract
The transcription factor PDX1 is a master regulator essential for proper development of the pancreas, duodenum and antrum. Furthermore, it is an indispensable reprogramming factor for the derivation of human β-cells, and recently, it has been identified as a tumor suppressor protein in gastric cancer. Here, we report the soluble expression and purification of the full-length human PDX1 protein from a heterologous system. To achieve this, the 849 bp coding sequence of the PDX1 gene was first codon-optimized for expression in Escherichia coli (E. coli). This codon-optimized gene sequence was fused to a protein transduction domain, a nuclear localization sequence, and a His-tag, and this insert was cloned into the protein expression vector for expression in E. coli strain BL21(DE3). Next, screening and identification of the suitable gene construct and optimal expression conditions to obtain this recombinant fusion protein in a soluble form was performed. Further, we have purified this recombinant fusion protein to homogeneity under native conditions. Importantly, the secondary structure of the protein was retained after purification. Further, this recombinant PDX1 fusion protein was applied to human cells and showed the ability to enter the cells as well as translocate to the nucleus. This recombinant tool can be used as a safe tool and can potentially replace its genetic and viral forms in the reprogramming process to induce a β-cell-specific transcriptional profile in an integration-free manner. Additionally, it can also be used to elucidate its role in cellular processes and for structural and biochemical studies.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Ranadeep Gogoi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Guwahati, Changsari, 781101, Guwahati, Assam, India; CSIR-North East Institute of Science & Technology, Jorhat, 785006, Assam, India.
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Pelletier RM, Layeghkhavidaki H, Vitale ML. Glucose, insulin, insulin receptor subunits α and β in normal and spontaneously diabetic and obese ob/ob and db/db infertile mouse testis and hypophysis. Reprod Biol Endocrinol 2020; 18:25. [PMID: 32183843 PMCID: PMC7079543 DOI: 10.1186/s12958-020-00583-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/04/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Type 2 diabetes touches young subjects of reproductive age in epidemic proportion. This study assesses glucose, total InsulinT, Insulin2 and insulin receptor subunits α and β in testis during mouse development then, in the spontaneously type 2 diabetes models associated with infertility db/db and ob/ob mice. IR-β and α were also assessed in spermatozoa (SPZ), anterior pituitary (AP) and serum. METHODS Serum and tissue glucose were measured with enzymatic colorimetric assays and InsulinT and Insulin2 by ELISAs in serum, interstitial tissue- (ITf) and seminiferous tubule (STf) fractions in14- > 60-day-old normal and db/db, ob/ob and wild type (WT) mice. IR subunits were assessed by immunoblotting in tissues and by immunoprecipitation followed by immunoblotting in serum. RESULTS Development: Glucose increased in serum, ITf and STf. InsulinT and Insulin2 dropped in serum; both were higher in STf than in ITf. In > 60-day-old mouse ITf, insulinT rose whereas Insulin2 decreased; InsulinT and Insulin2 rose concurrently in STf. Glucose and insulin were high in > 60-day-old ITf; in STf high insulin2 accompanied low glucose. One hundred ten kDa IR-β peaked in 28-day-old ITf and 14-day-old STf. One hundred thirty five kDa IR-α was high in ITf but decreased in STf. Glucose escalated in db/db and ob/ob sera. Glucose doubled in ITf while being halved in STf in db/db mice. Glucose significantly dropped in db/db and ob/ob mice spermatozoa. InsulinT and Insulin2 rose significantly in the serum, ITf and STf in db/db and ob/ob mice. One hundred ten kDa IR-β and 135 kDa IR-α decreased in db/db and ob/ob ITf. Only 110 kDa IR-β dropped in db/db and ob/ob STf and AP. One hundred ten kDa IR-β fell in db/db and ob/ob SPZ. One hundred ten kDa sIR-α rose in the db/db and ob/ob mouse sera. CONCLUSION Insulin regulates glucose in tubules not in the interstitium. The mouse interstitium contains InsulinT and Insulin2 whereas tubules contain Insulin2. Decreased 110 kDa IR-β and 135 kDa IR-α in the db/db and ob/ob interstitial tissue suggest a loss of active receptor sites that could alter the testicular cell insulin binding and response to the hormone. Decreased IR-β levels were insufficient to stimulate downstream effectors in AP and tubules. IR-α shedding increased in db/db and ob/ob mice.
Collapse
Affiliation(s)
- R-Marc Pelletier
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Pavillon Roger Gaudry, Case Postale 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| | - Hamed Layeghkhavidaki
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada
| | - María L Vitale
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
7
|
Daems C, Welsch S, Boughaleb H, Vanderroost J, Robert A, Sokal E, Lysy PA. Early Treatment with Empagliflozin and GABA Improves β-Cell Mass and Glucose Tolerance in Streptozotocin-Treated Mice. J Diabetes Res 2019; 2019:2813489. [PMID: 31467926 PMCID: PMC6701376 DOI: 10.1155/2019/2813489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 06/23/2019] [Indexed: 12/27/2022] Open
Abstract
While the autoimmune character of T1D (type 1 diabetes) is being challenged, it is currently recognized that inflammation plays a key role in its development. We hypothesized that glucotoxicity could contribute to β-cell mass destruction through participation in islet inflammation. We evaluated the potential of empagliflozin (EMPA) and GABA (gamma-aminobutyric acid) to protect β-cell mass against glucotoxicity and to increase β-cell mass after diagnosis of T1D. Empagliflozin is a SGLT2 (sodium-dependent glucose cotransporter) inhibitor which thereby blocks glucose recapture by the kidney and promotes glucose excretion in urine. GABA is an inhibitory neurotransmitter, which stimulates α-to-β cell transdifferentiation. In streptozotocin-treated mice, empagliflozin and/or GABA were delivered for a period of five days or three weeks. As compared to untreated T1D mice, EMPA-treated T1D mice had decreased FFA (free fatty acid) levels and improved glucose homeostasis. EMPA-treated T1D mice had higher islet density, with preserved architecture, compared to T1D mice, and EMPA-treated T1D mice also differed from T1D mice by the total absence of immune cell infiltration within islets. Islets from EMPA-treated mice were also less subjected to ER (endoplasmic reticulum) stress and inflammation, as shown by qPCR analysis. Glucose homeostasis parameters and islet area/pancreas area ratio improved, as compared to diabetic controls, when T1D mice were treated for three weeks with GABA and EMPA. T1D EMPA+GABA mice had higher glucagon levels than T1D mice, without modifications of glucagon area/islet area ratios. In conclusion, empagliflozin and GABA, used in monotherapy in streptozotocin-induced diabetic mice, have positive effects on β-cell mass preservation or proliferation through an indirect effect on islet cell inflammation and ER stress. Further research is mandatory to evaluate whether empagliflozin and GABA may be a potential therapeutic target for the protection of β-cell mass after new-onset T1D.
Collapse
Affiliation(s)
- Caroline Daems
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Sophie Welsch
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Hasnae Boughaleb
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Juliette Vanderroost
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Annie Robert
- Pôle d'Epidémiologie et Biostatistique, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Etienne Sokal
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| | - Philippe A. Lysy
- Pôle PEDI, Institut de Recherche Expérimentale et Clinique, UCLouvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| |
Collapse
|
8
|
Tixi-Verdugo W, Contreras-Ramos J, Sicilia-Argumedo G, German MS, Fernandez-Mejia C. Effects of Biotin Supplementation During the First Week Postweaning Increases Pancreatic Islet Area, Beta-Cell Proportion, Islets Number, and Beta-Cell Proliferation. J Med Food 2018; 21:274-281. [PMID: 29068758 PMCID: PMC5865616 DOI: 10.1089/jmf.2017.0077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023] Open
Abstract
During maturation, pancreatic islets achieve their full capacity to secrete insulin in response to glucose, undergo morphological changes in which alpha-cells decrease and beta-cell mass increases, and they acquire the normal alpha- and beta-cell proportion changes that are important for islet functions later in life. In rodents, the first week of postweaning is critical for islet maturation. Multiple studies have documented the detrimental effects of several conditions on pancreatic maturation; however, few studies have addressed the use of pharmacological agents to enhance islet maturation. Biotin might have a potential action on islet maturation. Pharmacological concentrations of biotin have been found to modify islet morphology and function. In a previous study, we found that mice fed a biotin-supplemented diet for 8 weeks after weaning showed an increase in basal and glucose stimulated insulin secretion, enlarged islet size, and modified islet structure. In the present study, we investigated the effect of biotin on maturation features during the first week postweaning. Female BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet for 1 week after weaning. Compared with the control, biotin-supplemented mice showed an increase in pancreatic islet number and area in addition to an augmented proportion of beta-cells in the islet. These effects were related to an increase in beta-cell proliferation. No differences were found in insulin secretion, blood glucose concentrations, or serum insulin levels. These results indicate that biotin supplementation is capable of affecting beta-cell proliferation and might be a therapeutic agent for establishing strategies for regenerative medicine.
Collapse
Affiliation(s)
- Wilma Tixi-Verdugo
- Nutritional Genetics Unit, Biomedical Research Institute, National Autonomous University of Mexico/Pediatrics National Institute, Mexico City, Mexico
| | - Juan Contreras-Ramos
- Nutritional Genetics Unit, Biomedical Research Institute, National Autonomous University of Mexico/Pediatrics National Institute, Mexico City, Mexico
| | - Gloria Sicilia-Argumedo
- Nutritional Genetics Unit, Biomedical Research Institute, National Autonomous University of Mexico/Pediatrics National Institute, Mexico City, Mexico
| | - Michael S. German
- Diabetes Center/Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, USA
| | - Cristina Fernandez-Mejia
- Nutritional Genetics Unit, Biomedical Research Institute, National Autonomous University of Mexico/Pediatrics National Institute, Mexico City, Mexico
| |
Collapse
|
9
|
Self-Transducible Bimodal PDX1-FOXP3 Protein Lifts Insulin Secretion and Curbs Autoimmunity, Boosting Tregs in Type 1 Diabetic Mice. Mol Ther 2017; 26:184-198. [PMID: 28988715 DOI: 10.1016/j.ymthe.2017.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/09/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by massive destruction of insulin-producing β cells by autoreactive T lymphocytes, arising via defective immune tolerance. Therefore, effective anti-T1D therapeutics should combine autoimmunity-preventing and insulin production-restoring properties. We constructed a cell-permeable PDX1-FOXP3-TAT fusion protein (FP) composed of two transcription factors: forkhead box P3 (FOXP3), the master regulator of differentiation and functioning of self-tolerance-promoting Tregs, and pancreatic duodenal homeobox-1 (PDX1), the crucial factor supporting β cell development and maintenance. The FP was tested in vitro and in a non-obese diabetic mouse T1D model. In vitro, FP converted naive CD4+ T cells into a functional "Treg-like" subset, which suppressed cytokine secretion, downregulated antigen-specific responses, and curbed viability of diabetogenic effector cells. In hepatic stem-like cells, FP potentiated endocrine transdifferentiation, inducing expression of Insulin2 and other β lineage-specific genes. In vivo, FP administration to chronically diabetic mice triggered (1) a significant elevation of insulin and C-peptide levels, (2) the formation of insulin-containing cell clusters in livers, and (3) a systemic anti-inflammatory shift (higher Foxp3+CD4+CD25+ T cell frequencies, elevated rates of IL-10-producing cells, and reduced rates of IFN-γ-secreting cells). Overall, in accordance with its design, PDX1-FOXP3-TAT FP delivered both Treg-stabilizing anti-autoimmune and de novo insulin-producing effects, proving its anti-T1D therapeutic potential.
Collapse
|
10
|
Borisov MA, Petrakova OS, Gvazava IG, Kalistratova EN, Vasiliev AV. Stem Cells in the Treatment of Insulin-Dependent Diabetes Mellitus. Acta Naturae 2016; 8:31-43. [PMID: 27795842 PMCID: PMC5081704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/02/2022] Open
Abstract
Diabetes affects over 350 million people worldwide, with the figure projected to rise to nearly 500 million over the next 20 years, according to the World Health Organization. Insulin-dependent diabetes mellitus (type 1 diabetes) is an endocrine disorder caused by an autoimmune reaction that destroys insulin-producing β-cells in the pancreas, which leads to insulin deficiency. Administration of exogenous insulin remains at the moment the treatment mainstay. This approach helps to regulate blood glucose levels and significantly increases the life expectancy of patients. However, type 1 diabetes is accompanied by long-term complications associated with the systemic nature of the disease and metabolic abnormalities having a profound impact on health. Of greater impact would be a therapeutic approach which would overcome these limitations by better control of blood glucose levels and prevention of acute and chronic complications. The current efforts in the field of regenerative medicine are aimed at finding such an approach. In this review, we discuss the time-honored technique of donor islets of Langerhans transplantation. We also focus on the use of pluripotent stem and committed cells and cellular reprogramming. The molecular mechanisms of pancreatic differentiation are highlighted. Much attention is devoted to the methods of grafts delivery and to the materials used during its creation.
Collapse
Affiliation(s)
- M. A. Borisov
- Pirogov Russian National Research Medical University, Ostrovitianov str. 1, Moscow, 117997, Russia
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| | - O. S. Petrakova
- Pirogov Russian National Research Medical University, Ostrovitianov str. 1, Moscow, 117997, Russia
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bld. 12, Moscow, 119991 , Russia
| | - I. G. Gvazava
- Pirogov Russian National Research Medical University, Ostrovitianov str. 1, Moscow, 117997, Russia
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| | - E. N. Kalistratova
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bld. 12, Moscow, 119991 , Russia
| | - A. V. Vasiliev
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1, bld. 12, Moscow, 119991 , Russia
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow, 119334, Russia
| |
Collapse
|
11
|
Zhao Q, Yang Y, Hu J, Shan Z, Wu Y, Lei L. Exendin-4 enhances expression of Neurod1 and Glut2 in insulin-producing cells derived from mouse embryonic stem cells. Arch Med Sci 2016; 12:199-207. [PMID: 26925137 PMCID: PMC4754381 DOI: 10.5114/aoms.2016.57596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/25/2014] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Stem cells involved cell replacement therapies for type 1 diabetes mellitus is promising, yet time-consuming and inefficient. Exendin-4 is a glucagon-like peptide-1 (GLP-1) receptor agonist which has been reported to possess anti-apoptotic effects, thereby increasing β-cell mass and improving β-cell function. The present study aimed to investigate whether exendin-4 would enhance the differentiation of embryonic stem cells into insulin-secreting cells and improve the pancreatic differentiation strategy. MATERIAL AND METHODS R1 embryonic stem cells were treated with different concentrations of exendin-4 and divided into three groups. In the high dosage group (group H), exendin-4 was added at the dosage of 10 nmol/l. In the low dosage group (group L), exendin-4 was added at the dosage of 0.1 nmol/l. Group C was a control. Expression of genes related to the β-cell phenotype and immunofluorescence staining of insulin and C-peptide were detected. RESULTS Compared with groups L and C, group H had the highest mRNA expression levels of Isl1, Pdx1, Ngn3, and Insulin1 (p < 0.05). Neurod1 and Glut2 only emerged at the final stage of differentiation in group H. Immunofluorescence analysis revealed that exendin-4 upregulated the protein expression of insulin and C-peptide. CONCLUSIONS Exendin-4 remarkably facilitated Neurod1 and Glut2 gene transcription, and was able to induce differentiation of embryonic stem cells into endocrine and insulin-producing cells.
Collapse
Affiliation(s)
- Qiaoshi Zhao
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Yuzhi Yang
- Division of Endocrinology, Heilongjiang Provincial Hospital, Harbin, China
| | - Jing Hu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Zhiyan Shan
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Yanshuang Wu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Dong H, Zhang Y, Song L, Kim DS, Wu H, Yang L, Li S, Morgan KA, Adams DB, Wang H. Cell-Permeable Peptide Blocks TLR4 Signaling and Improves Islet Allograft Survival. Cell Transplant 2016; 25:1319-29. [PMID: 26771084 DOI: 10.3727/096368916x690449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Toll-like receptor 4 (TLR4) activation in pancreatic β cells activates aberrant islet graft cellular pathways and contributes to immune rejection in allogeneic islet transplantation. As an approach to overcoming this problem, we determined the capacity of a 33-amino acid peptide consisting of a protein transduction domain (PTD) from the Hph-1 virus and a fragment of the intracellular domain of TLR4 from the C3H mice (PTD-dnTLR4) to block TLR4 signaling and improve allogeneic islet survival in vitro and after transplantation. The efficacy of PTD-dnTLR4 in blocking TLR4 signaling was assessed in the Raw264.7 macrophage line, in the islets, and the βTC3 cell line. In Raw264.7 cells, preculture with the peptide reduced LPS-induced NF-κB activation and production of proinflammatory cytokines (IL-1β, TNF-α, iNOS, and IL-6). In islets and β cells, preincubation with PTD-dnTLR4 suppressed LPS-induced TNF-α expression via inhibition of NF-κB activation and protected them from stress-induced cell death. In vivo, preincubation of BALB/c (H-2(d)) islets with PTD-dnTLR4 resulted in significantly longer survival than control islets in a streptozotocin-induced diabetes model (two of seven grafts survived long term >100 days). PTD-dnTLR4-treated grafts exhibited reduced expression of TNF-α and iNOS and reduced macrophage infiltration posttransplant. The data indicate that PTD-dnTLR4 blocked TLR4 signaling in both macrophages and β cells, and prolonged allograft survival at least in part by suppressing inflammation and macrophage infiltration. This strategy for blocking TLR4 activity has potential utilization in the treatment of diseases where excessive TLR4 activation contributes to the pathologic cellular pathways such as islet transplantation.
Collapse
Affiliation(s)
- Huansheng Dong
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Xie C, Zhang Y, Tran TDN, Wang H, Li S, George EV, Zhuang H, Zhang P, Kandel A, Lai Y, Tang D, Reeves WH, Cheng H, Ding Y, Yang LJ. Irisin Controls Growth, Intracellular Ca2+ Signals, and Mitochondrial Thermogenesis in Cardiomyoblasts. PLoS One 2015; 10:e0136816. [PMID: 26305684 PMCID: PMC4549318 DOI: 10.1371/journal.pone.0136816] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/07/2015] [Indexed: 12/31/2022] Open
Abstract
Exercise offers short-term and long-term health benefits, including an increased metabolic rate and energy expenditure in myocardium. The newly-discovered exercise-induced myokine, irisin, stimulates conversion of white into brown adipocytes as well as increased mitochondrial biogenesis and energy expenditure. Remarkably, irisin is highly expressed in myocardium, but its physiological effects in the heart are unknown. The objective of this work is to investigate irisin’s potential multifaceted effects on cardiomyoblasts and myocardium. For this purpose, H9C2 cells were treated with recombinant irisin produced in yeast cells (r-irisin) and in HEK293 cells (hr-irisin) for examining its effects on cell proliferation by MTT [3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and on gene transcription profiles by qRT-PCR. R-irisin and hr-irisin both inhibited cell proliferation and activated genes related to cardiomyocyte metabolic function and differentiation, including myocardin, follistatin, smooth muscle actin, and nuclear respiratory factor-1. Signal transduction pathways affected by r-irisin in H9C2 cells and C57BL/6 mice were examined by detecting phosphorylation of PI3K-AKT, p38, ERK or STAT3. We also measured intracellular Ca2+ signaling and mitochondrial thermogenesis and energy expenditure in r-irisin-treated H9C2 cells. The results showed that r-irisin, in a certain concentration rage, could activate PI3K-AKT and intracellular Ca2+ signaling and increase cellular oxygen consumption in H9C2 cells. Our study also suggests the existence of irisin-specific receptor on the membrane of H9C2 cells. In conclusion, irisin in a certain concentration rage increased myocardial cell metabolism, inhibited cell proliferation and promoted cell differentiation. These effects might be mediated through PI3K-AKT and Ca2+ signaling, which are known to activate expression of exercise-related genes such as follistatin and myocardin. This work supports the value of exercise, which promotes irisin release.
Collapse
Affiliation(s)
- Chao Xie
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Yuan Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Tran D. N. Tran
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States of America
| | - Hai Wang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Shiwu Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Eva Vertes George
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Haoyang Zhuang
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Peilan Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States of America
| | - Avi Kandel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Yimu Lai
- Department of Cell Biology and Anatomy, University of South Carolina of Medicine, Columbia, SC, 29209, United States of America
| | - Dongqi Tang
- Center for Stem Cell & Regenerative Medicine, The Second Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Westley H. Reeves
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
| | - Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, United States of America
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States of America
- * E-mail: (L-JY); (YD)
| | - Li-Jun Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, United States of America
- * E-mail: (L-JY); (YD)
| |
Collapse
|
14
|
Cardinale V, Puca R, Carpino G, Scafetta G, Renzi A, De Canio M, Sicilia F, Nevi L, Casa D, Panetta R, Berloco PB, Reid LM, Federici G, Gaudio E, Maroder M, Alvaro D. Adult Human Biliary Tree Stem Cells Differentiate to β-Pancreatic Islet Cells by Treatment with a Recombinant Human Pdx1 Peptide. PLoS One 2015; 10:e0134677. [PMID: 26252949 PMCID: PMC4529196 DOI: 10.1371/journal.pone.0134677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/13/2015] [Indexed: 12/28/2022] Open
Abstract
Generation of β-pancreatic cells represents a major goal in research. The aim of this study was to explore a protein-based strategy to induce differentiation of human biliary tree stem cells (hBTSCs) towards β-pancreatic cells. A plasmid containing the sequence of the human pancreatic and duodenal homeobox 1 (PDX1) has been expressed in E. coli. Epithelial-Cell-Adhesion-Molecule positive hBTSCs or mature human hepatocyte cell line, HepG2, were grown in medium to which Pdx1 peptide was added. Differentiation toward pancreatic islet cells were evaluated by the expression of the β-cell transcription factors, Pdx1 and musculoapo-neurotic fibrosarcoma oncogene homolog A, and of the pancreatic hormones, insulin, glucagon, and somatostatin, investigated by real time polymerase chain reaction, western blot, light microscopy and immunofluorescence. C-peptide secretion in response to high glucose was also measured. Results indicated how purified Pdx1 protein corresponding to the primary structure of the human Pdx1 by mass spectroscopy was efficiently produced in bacteria, and transduced into hBTSCs. Pdx1 exposure triggered the expression of both intermediate and mature stage β-cell differentiation markers only in hBTSCs but not in HepG2 cell line. Furthermore, hBTSCs exposed to Pdx1 showed up-regulation of insulin, glucagon and somatostatin genes and formation of 3-dimensional islet-like structures intensely positive for insulin and glucagon. Finally, Pdx1-induced islet-like structures exhibited glucose-regulated C-peptide secretion. In conclusion, the human Pdx1 is highly effective in triggering hBTSC differentiation toward functional β-pancreatic cells.
Collapse
Affiliation(s)
- Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rosa Puca
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Gaia Scafetta
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Anastasia Renzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Michele De Canio
- Departments of Science and Chemical Technologies, University of Tor Vergata, Rome, Italy
| | - Francesca Sicilia
- Departments of Science and Chemical Technologies, University of Tor Vergata, Rome, Italy
| | - Lorenzo Nevi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Domenico Casa
- Italian Federation of Juvenile Diabetes (FDG), Rome, Italy
| | - Rocco Panetta
- Italian Federation of Juvenile Diabetes (FDG), Rome, Italy
| | | | - Lola M. Reid
- Departments of Cell and Molecular Physiology, Program in Molecular Biology and Biotechnology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Giorgio Federici
- Departments of Science and Chemical Technologies, University of Tor Vergata, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Marella Maroder
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
- Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy
- * E-mail:
| |
Collapse
|
15
|
Donelan W, Li S, Wang H, Lu S, Xie C, Tang D, Chang LJ, Yang LJ. Pancreatic and duodenal homeobox gene 1 (Pdx1) down-regulates hepatic transcription factor 1 alpha (HNF1α) expression during reprogramming of human hepatic cells into insulin-producing cells. Am J Transl Res 2015; 7:995-1008. [PMID: 26279745 PMCID: PMC4532734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Ectopic expression of Pdx1 triggers rapid hepatocyte dedifferentiation by down-regulating liver-enriched transcription factors and liver-specific functional genes such as hepatic nuclear factor-1α (HNF1α), albumin, and AAT. However, the links between Pdx1 over-expression and hepatic gene down-regulation are incompletely understood. HNF1α and HNF4α are important transcription factors that establish and maintain the hepatocyte phenotype. The human HNF4α gene contains two promoters (P1 and P2) that drive expression of P1-(HNF4α 1-6) or P2-(HNF4α 7-9)-derived isoforms, which are used in different tissues and at different times during development. We hypothesized that the relative expression of HNF1α and HNF4α following ectopic Pdx1 expression may promote hepatic cell dedifferentiation and transdifferentiation toward pancreatic beta-cells. We produced lentiviruses expressing Pdx1, Pdx1-VP16, and Ngn3, along with dual-color reporter genes to indicate hepatic and pancreatic beta-cell phenotype changes. Using these PTF alone or in combinations, we demonstrated that Pdx1 not only activates specific beta-cell genes but down-regulates HNF1α. Pdx1-mediated reduction of HNF1α is accompanied by altered expression of its major activator, HNF4α isoforms, down-regulating hepatic genes ALB and AAT. Pdx1 up-regulates HNF4α via the P2 promoter. These P2-driven isoforms compete with P1-driven isoforms to suppress target gene transcription. In Huh7 cells, the AF-1 activation domain is more important for transactivation, whereas in INS1 cells, the F inhibitory domain is more important. The loss and gain of functional activity strongly suggests that Pdx1 plays a central role in reprogramming hepatocytes into beta-cells by suppressing the hepatic phenotype.
Collapse
Affiliation(s)
- William Donelan
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Shiwu Li
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Hai Wang
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Shun Lu
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Chao Xie
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Dongqi Tang
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Lung-Ji Chang
- Department of Molecular Genetics & Microbiology, University of Florida College of MedicineGainesville, Florida 32610
| | - Li-Jun Yang
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| |
Collapse
|
16
|
Expression of biologically active TAT-fused recombinant islet transcription factors. Life Sci 2014; 114:45-50. [DOI: 10.1016/j.lfs.2014.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/11/2014] [Accepted: 08/05/2014] [Indexed: 11/17/2022]
|
17
|
Anti-CD3 antibody treatment induces hypoglycemia and super tolerance to glucose challenge in mice through enhancing glucose consumption by activated lymphocytes. J Immunol Res 2014; 2014:326708. [PMID: 24741590 PMCID: PMC3987876 DOI: 10.1155/2014/326708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/01/2014] [Accepted: 01/04/2014] [Indexed: 01/12/2023] Open
Abstract
Anti-CD3 antibody has been employed for various immune-mediated disorders. However, whether anti-CD3 administration leads to rapid metabolic alternation has not been well investigated. In the current study, we studied how anti-CD3 treatment affected blood glucose levels in mice. We found that anti-CD3 treatment induced immediate reduction of blood glucose after administration. Furthermore, a single dose of anti-CD3 treatment corrected hyperglycemia in all nonobese diabetic mice with recently diagnosed diabetes. This glucose-lowering effect was not attributable to major T cell produced cytokines. Of interest, when tested in a normal strain of mice (C57BL/6), the serum levels of C-peptide in anti-CD3 treated animals were significantly lower than control mice. Paradoxically, anti-CD3 treated animals were highly tolerant to exogenous glucose challenge. Additionally, we found that anti-CD3 treatment significantly induced activation of T and B cells in vitro and in vivo. Further studies demonstrated that anti-CD3 treatment lowered the glucose levels in T cell culture media and increased the intracellular transportation of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2 deoxyglucose (2-NBDG) particularly in activated T and B cells. In addition, injection of anti-CD3 antibodies induced enhanced levels of Glut1 expression in spleen cells. This study suggests that anti-CD3 therapy-induced hypoglycemia likely results from increased glucose transportation and consumption by the activated lymphocytes.
Collapse
|
18
|
Wu J, Liu S, Yu J, Zhou G, Rao D, Jay CM, Kumar P, Sanchez R, Templeton N, Senzer N, Maples P, Nemunaitis J, Brunicardi FC. Vertically integrated translational studies of PDX1 as a therapeutic target for pancreatic cancer via a novel bifunctional RNAi platform. Cancer Gene Ther 2014; 21:48-53. [PMID: 24457987 DOI: 10.1038/cgt.2013.84] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022]
Abstract
RNA interference (RNAi) represents a powerful, new tool for scientific investigation as well as a promising new form of targeted gene therapy, with applications currently in clinical trials. Bifunctional short hairpin RNA (shRNA) are synthetic RNAi molecules, engineered to utilize multiple endogenous RNAi pathways to specifically silence target genes. Pancreatic and duodenal homeobox 1 (PDX1) is a key regulator of pancreatic development, β-cell differentiation, normal β-cell function and pancreatic cancer. Our aim is to review the process of identifying PDX1 as a specific, potential RNAi target in pancreatic cancer, as well as the underlying mechanisms and various forms of RNAi, with subsequent testing and development of PDX1-targeted bifunctional shRNA therapy.
Collapse
Affiliation(s)
- J Wu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - S Liu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - J Yu
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - G Zhou
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - D Rao
- Gradalis, Carrollton, TX, USA
| | - C M Jay
- Gradalis, Carrollton, TX, USA
| | - P Kumar
- Gradalis, Carrollton, TX, USA
| | - R Sanchez
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - N Senzer
- 1] Gradalis, Carrollton, TX, USA [2] Mary Crowley Cancer Research Center, Dallas, TX, USA
| | | | - J Nemunaitis
- 1] Gradalis, Carrollton, TX, USA [2] Mary Crowley Cancer Research Center, Dallas, TX, USA
| | - F C Brunicardi
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
19
|
Transient Alteration of Gene Expression in Adipose-Derived Stem Cells Using Liposomal-Driven Protein Extracts. Cell Mol Bioeng 2013. [DOI: 10.1007/s12195-013-0298-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
20
|
Ding L, Gysemans C, Mathieu C. β-Cell differentiation and regeneration in type 1 diabetes. Diabetes Obes Metab 2013; 15 Suppl 3:98-104. [PMID: 24003926 DOI: 10.1111/dom.12164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/24/2013] [Indexed: 12/15/2022]
Abstract
Pancreatic insulin-producing β-cells have traditionally been viewed as a quiescent cell population. However, several recent lines of evidence indicated that like most tissues the β-cell mass is dynamically regulated with ongoing β-cell regeneration throughout life to replenish lost or damaged β-cells. In type 1 diabetes (T1D), this fine-tuned balance between β-cell death and β-cell renewal in the endocrine pancreas is lost and the deficit in β-cell mass is largely caused by autoimmune-mediated apoptosis. Currently, the concept that a cure for T1D will require both re-establishment of immunological tolerance along with replacement or regeneration of a functional β-cell mass in T1D patients is generally accepted. In this study our current understanding of the events directing β-cell replication, β-cell reprogramming from different cell types and β-cell regeneration is reviewed, in view of the results of various immunomodulatory strategies aiming at blocking autoimmune responses against pancreatic β-cells and at improving β-cell mass and function in subjects with T1D.
Collapse
Affiliation(s)
- L Ding
- Laboratory of Clinical and Experimental Endocrinology, Campus Gasthuisberg O&N1, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
21
|
Anti-Diabetic Activities of Jiaotaiwan in db/db Mice by Augmentation of AMPK Protein Activity and Upregulation of GLUT4 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:180721. [PMID: 23818920 PMCID: PMC3681272 DOI: 10.1155/2013/180721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/11/2013] [Accepted: 04/01/2013] [Indexed: 02/05/2023]
Abstract
Jiaotaiwan (JTW), which is composed of Coptis chinensis (CC) and cinnamon (CIN), is one of the most well-known traditional Chinese medicines. In this study, we investigated the antidiabetic effects and mechanism of JTW in db/db mice. Results showed that JTW significantly decreased the level of fasting blood glucose and improved glucose and insulin tolerance better than CC or CIN alone. JTW also effectively protected the pancreatic islet shape, augmented the activation of AMP-activated protein kinase (AMPK) in the liver, and increased the expression of glucose transporter 4 (GLUT4) protein in skeletal muscle and white fat. AMPK and GLUT4 contributed to glucose metabolism regulation and had an essential function in the development of diabetes mellitus (DM). Therefore, the mechanisms of JTW may be related to suppressing gluconeogenesis by activating AMPK in the liver and affecting glucose uptake in surrounding tissues through the upregulation of GLUT4 protein expression. These findings provided a new insight into the antidiabetic clinical applications of JTW and demonstrated the potential of JTW as a new drug candidate for DM treatment.
Collapse
|
22
|
Han S, Donelan W, Wang H, Reeves W, Yang LJ. Novel autoantigens in type 1 diabetes. Am J Transl Res 2013; 5:379-392. [PMID: 23724162 PMCID: PMC3665912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/03/2013] [Indexed: 06/02/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by recognition of beta cell proteins as self-antigens, called autoantigens (AAgs), by patients' own CD4+ and CD8+ T cells and/or the products of self-reactive B cells, called autoantibodies. These AAgs are divided into two categories on the basis of beta-cell-specificity. The list of the targets associated with beta cell-specific AAgs is continuously growing. Many T1DM-associated AAgs are well characterized and have important clinical applications for disease prediction, diagnosis, and antigen-specific tolerance immunotherapy. Identification of T1DM-associated AAgs provides insight into the pathogenesis of T1DM and to understanding the clinical aspects of the disease. Since many excellent reviews have covered the previously identified T1DM-associated AAgs exhaustedly, here we only focus on several recently discovered T1DM-AAgs (PDX1, ZnT8, CHGA, and IAAP).
Collapse
Affiliation(s)
- Shuhong Han
- Department of Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - William Donelan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Hai Wang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Westley Reeves
- Department of Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Li-Jun Yang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
- Tianjin University of Science & TechnologyTianjin, 300457, China
| |
Collapse
|
23
|
Donelan W, Wang H, Li SW, Pittman D, Li Y, Han S, Sun Y, Carter C, Atkinson M, Reeves W, Winter WE, Yang LJ. Novel detection of pancreatic and duodenal homeobox 1 autoantibodies (PAA) in human sera using luciferase immunoprecipitation systems (LIPS) assay. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:1202-1210. [PMID: 23696946 PMCID: PMC3657381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 04/16/2013] [Indexed: 06/02/2023]
Abstract
We have previously identified pancreatic and duodenal homeobox 1 (Pdx1) autoantibodies (PAA) in sera from both non-obese diabetic (NOD) mice and human type 1 diabetic (T1D) patients. A suitable non-radioactive, sensitive and specific assay is needed for large-scale testing to determine the clinical utility of PAA. Here we reported a liquid-phase luciferase immunoprecipitation system (LIPS) assay by generating a renilla luciferase (Rluc)-Pdx1 fusion protein as a sensitive non-radioactive antigen from mammalian cells combined with immunoprecipitation to detect PAA in human sera. Sera from healthy donors and the University of Florida Pathology Laboratories, Endocrine Autoantibody Laboratory were used to validate the LIPS assay for PAA. Antigenic specificity to Pdx1 was confirmed by using a Rluc-only control compared to Rluc-Pdx1 fusion antigen and by competition assays using purified recombinant Pdx1 protein. We then used the LIPS assay to assess the prevalence of triple autoantibodies (GADA, IA-2A, and IA-2βA), and PAA in non-T1D control sera, recent onset (RO)-T1D sera (mean duration of T1D = 9.5 weeks), and long standing (LS)-T1D sera. Compared to clinical radioimmunoprecipitation assays (RIPA), the LIPS assay showed comparable sensitivity and specificity for detection of GADA and IA-2A. PAA were detectable in human serum samples and higher in triple-positive T1D autoantibodies (21% PAA positive in triple positive sera and 4% PAA positive in triple negative sera). Interestingly, PAA were found to be highest in the non-T1D population, suggesting that PAA might have a clinical utility in screening high-risk population susceptible for developing T1D. In conclusion, we have developed a liquid-phase, non-radioactive, sensitive and specific LIPS assay to detect PAA in human sera, providing a useful tool for evaluating the clinical relevance of PAA.
Collapse
Affiliation(s)
- William Donelan
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - Hai Wang
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - Shi-Wu Li
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - David Pittman
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - Yi Li
- Department of Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Shuhong Han
- Department of Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Yu Sun
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - Christopher Carter
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - Mark Atkinson
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - Westley Reeves
- Department of Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - William E Winter
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
| | - Li-Jun Yang
- Department of Pathology, Immunology and Laboratory MedicineGainesville, Florida 32610, USA
- Tianjin University of Science & TechnologyTianjin, 300457, China
| |
Collapse
|
24
|
Tang DQ, Shun L, Koya V, Sun Y, Wang Q, Wang H, Li SW, Sun Y, Purich DL, Zhang C, Hansen B, Qian K, Atkinson M, Phillips MI, Yang LJ. Genetically reprogrammed, liver-derived insulin-producing cells are glucose-responsive, but susceptible to autoimmune destruction in settings of murine model of type 1 diabetes. Am J Transl Res 2013; 5:184-199. [PMID: 23573363 PMCID: PMC3612514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/08/2013] [Indexed: 06/02/2023]
Abstract
Many previous studies demonstrate that hepatocytes can be reprogrammed into insulin-producing cells (IPCs) utilizing viral vector-mediated delivery of pancreatic transcription factors (PTFs). However, whether these liver-derived IPCs are susceptible to autoimmune attack in animal models of type 1 diabetes remains unclear, in part due to the immunogenicity of the viral vectors used to introduce PTF genes. Adeno-associated virus serotype 2 vector-expressing Pdx1-VP16 (Pdx1) and Ngn3 were prepared and injected into the portal vein of streptozotocin (Stz)/diabetic NOD/SCID mice. The presence of glucose-responsive liver-IPCs and their susceptibility to anti-beta cell autoimmunity were assessed by blood glucose levels, insulin content, IPC cell distribution, and intraperitoneal glucose tolerance test following subtotal pancreatectomy (Px) and passive transfer of diabetogenic splenocytes isolated from diabetic female NOD mice. A combination of two PTF genes (Pdx1/Ngn3) effectively reprogrammed liver cells into glucose-responsive IPCs. These IPCs corrected hyperglycemia in Stz/diabetic NOD/SCID mice and maintained normoglycemia following subtotal Px, indicating that liver-derived IPCs could maintain glucose homeostasis. Importantly, we also demonstrated that the glucose-responsive liver-derived IPCs were susceptible to autoimmune destruction by diabetogenic splenocytes, as indicated by progressive elevation in blood glucose levels as well as mixed T-, and B-lymphocytic infiltrates surrounding liver-IPCs 2~3 weeks following transferring of diabetogenic splenocytes into NOD/SCID mice, and confirmed by immunohistochemical studies. In conclusion, genetically reprogrammed liver-IPCs, like pancreatic islet beta-cells, are susceptible to autoimmune attack, suggesting that for cell-replacement therapy of treating type 1 diabetes, beta-cell surrogates may require concomitant immunotherapy to avoid autoimmune destruction.
Collapse
Affiliation(s)
- Dong-Qi Tang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Lu Shun
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Vijay Koya
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Yuping Sun
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Qiwei Wang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Hai Wang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Shi-Wu Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Yu Sun
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Daniel L Purich
- Department of Biochemistry & Molecular Biology, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - Clare Zhang
- Obesity, Diabetes and Aging Research Center and Departments of Internal Medicine and Pediatrics, College of Medicine, University of South FloridaTampa, FL 33612, USA
| | - Barbara Hansen
- Obesity, Diabetes and Aging Research Center and Departments of Internal Medicine and Pediatrics, College of Medicine, University of South FloridaTampa, FL 33612, USA
| | - Keping Qian
- Center for Rare Disease Therapies, Keck Graduate InstituteClaremont, California, 91711, USA
| | - Mark Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| | - M Ian Phillips
- Center for Rare Disease Therapies, Keck Graduate InstituteClaremont, California, 91711, USA
| | - Li-Jun Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610, USA
| |
Collapse
|
25
|
Gibson TM, Gersbach CA. The role of single-cell analyses in understanding cell lineage commitment. Biotechnol J 2013; 8:397-407. [PMID: 23520130 DOI: 10.1002/biot.201200201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/08/2013] [Accepted: 02/26/2013] [Indexed: 12/18/2022]
Abstract
The study of cell lineage commitment is critical for improving our understanding of tissue development and regeneration, and for realizing stem cell-based therapies and engineered tissue replacements. Recently, the discovery of an unanticipated degree of variability in fundamental biological processes, including divergent responses of genetically identical cells to various stimuli, has provided mechanistic insight into cellular decision making and the collective behavior of cell populations. Therefore, the study of lineage commitment with single-cell resolution could provide greater knowledge of cellular differentiation mechanisms and the influence of noise on cellular processes. This will require the adoption of new technologies for single-cell analysis as traditional methods typically measure average values of bulk population behavior. This review discusses the recent developments in methods for analyzing the behavior of individual cells, and how these approaches are leading to a deeper understanding and better control of cellular decision making.
Collapse
Affiliation(s)
- Tyler M Gibson
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281, USA
| | | |
Collapse
|
26
|
Liang QL, Mo Z, Li XF, Wang XX, Li RM. Pdx1 protein induces human embryonic stem cells into the pancreatic endocrine lineage. Cell Biol Int 2012; 37:2-10. [PMID: 23339089 DOI: 10.1002/cbin.10001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/05/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Qing Le Liang
- Hubei Key Laboratory of Clinic Centre, Tai-He Hospital; Hubei University of Medicine; 32 S. Renmin Road, Shiyan, Hubei 442000 China
| | - Zhengying Mo
- Oncology Department of Tai-He Hospital; Hubei University of Medicine; 32 S. Renmin Road, Shiyan, Hubei 442000 China
| | - Xue Feng Li
- Endocrine Department of Tai-He Hospital; Hubei University of Medicine; 32 S. Renmin Road, Shiyan, Hubei 442000 China
| | - Xiao Xun Wang
- Hubei Key Laboratory of Clinic Centre, Tai-He Hospital; Hubei University of Medicine; 32 S. Renmin Road, Shiyan, Hubei 442000 China
| | - Rui Ming Li
- Hubei Key Laboratory of Clinic Centre, Tai-He Hospital; Hubei University of Medicine; 32 S. Renmin Road, Shiyan, Hubei 442000 China
| |
Collapse
|
27
|
Lima MJ, Docherty HM, Chen Y, Docherty K. Efficient differentiation of AR42J cells towards insulin-producing cells using pancreatic transcription factors in combination with growth factors. Mol Cell Endocrinol 2012; 358:69-80. [PMID: 22429991 DOI: 10.1016/j.mce.2012.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/24/2012] [Accepted: 02/26/2012] [Indexed: 01/12/2023]
Abstract
The AR42J-B13 rat pancreatic acinar cell line was used to identify pancreatic transcription factors and exogenous growth factors (GFs) that might facilitate the reprogramming of exocrine cells into islets. Adenoviruses were used to induce exogenous expression of the pancreatic transcription factors (TFs) Pdx1, MafA, Ngn3 and Pax4. Individually Pdx1, MafA and Pax4 had no effect on the expression of endocrine markers, whilst adeno-Ngn3 on its own increased the expression of Pax4, Ngn3 and NeuroD. In combination the four TFs had a significant effect on the expression of insulin 1 and 2 that was associated with a change in cell morphology from a rounded to a spindle-like shape. Amongst a range of growth factors, Betacellulin and Nicotinamide were shown to enhance the effects of the four TFs. The presence of adeno-Pax4 in the differentiation cocktail was important in limiting the expression of glucagon and in generating glucose sensitive insulin secretion. Further experiments asked whether the adenoviral TFs could be replaced by protein transduction domain (PTD)-containing TFs. The results showed that the PTD-TFs could mimic in part the effects of the adeno-TFs, but the resultant cells did not undergo the important morphological change associated with differentiation to endocrine lineages and levels of endogenous markers were very much lower. In summary, the results describe a cocktail of four TFs and two GFs that can be used to induce formation of glucose sensitive insulin secreting cells from ARJ42 cells, and demonstrate that it would be difficult to replace adenoviral transduction with PTD-TFS.
Collapse
Affiliation(s)
- Maria João Lima
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | |
Collapse
|
28
|
Lima MJ, Docherty HM, Chen Y, Vallier L, Docherty K. Pancreatic transcription factors containing protein transduction domains drive mouse embryonic stem cells towards endocrine pancreas. PLoS One 2012; 7:e36481. [PMID: 22563503 PMCID: PMC3341374 DOI: 10.1371/journal.pone.0036481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/05/2012] [Indexed: 12/31/2022] Open
Abstract
Protein transduction domains (PTDs), such as the HIV1-TAT peptide, have been previously used to promote the uptake of proteins into a range of cell types, including stem cells. Here we generated pancreatic transcription factors containing PTD sequences and administered these to endoderm enriched mouse embryonic stem (ES) cells under conditions that were designed to mimic the pattern of expression of these factors in the developing pancreas. The ES cells were first cultured as embryoid bodies and treated with Activin A and Bone morphogenetic protein 4 (BMP4) to promote formation of definitive endoderm. Cells were subsequently plated as a monolayer and treated with different combinations of the modified recombinant transcription factors Pdx1 and MafA. The results demonstrate that each transcription factor was efficiently taken up by the cells, where they were localized in the nuclei. RT-qPCR was used to measure the expression levels of pancreatic markers. After the addition of Pdx1 alone for a period of five days, followed by the combination of Pdx1 and TAT-MafA in a second phase, up-regulation of insulin 1, insulin 2, Pdx1, Glut2, Pax4 and Nkx6.1 was observed. As assessed by immunocytochemistry, double positive insulin and Pdx1 cells were detected in the differentiated cultures. Although the pattern of pancreatic markers expression in these cultures was comparable to that of a mouse transformed β-cell line (MIN-6) and human islets, the expression levels of insulin observed in the differentiated ES cell cultures were several orders of magnitude lower. This suggests that, although PTD-TFs may prove useful in studying the role of exogenous TFs in the differentiation of ES cells towards islets and other pancreatic lineages, the amount of insulin generated is well below that required for therapeutically useful cells.
Collapse
Affiliation(s)
- Maria João Lima
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Hilary M. Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Yuanxiao Chen
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Ludovic Vallier
- The Anne McLaren Laboratory for Regenerative Medicine, Cambridge, United Kingdom
| | - Kevin Docherty
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|
29
|
Lu J, Luo H, Wu H, Lan MS, Tan J, Lu D. Recombinant MafA protein containing its own protein transduction domain stimulates insulin gene expression in IEC-6 cells. Life Sci 2011; 89:72-7. [DOI: 10.1016/j.lfs.2011.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 03/21/2011] [Accepted: 04/05/2011] [Indexed: 11/17/2022]
|
30
|
Li SW, Sun Y, Donelan W, Yu H, Scian J, Tang D, Yang LJ. Expression, purification, and characterization of recombinant human pancreatic duodenal homeobox-1 protein in Pichia pastoris. Protein Expr Purif 2010; 72:157-61. [PMID: 20381624 PMCID: PMC3408096 DOI: 10.1016/j.pep.2010.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 04/02/2010] [Accepted: 04/05/2010] [Indexed: 02/08/2023]
Abstract
Pancreatic duodenal hemeobox-1 (PDX1) is essential for the development of the embryonic pancreas and plays a key role in pancreatic beta-cell differentiation, maturation, regeneration, and maintenance of normal pancreatic beta-cell insulin-producing function. Purified recombinant PDX1 (rPDX1) may be a useful tool for many research and clinical applications, however, using the Escherichia coli expression system has several drawbacks for producing quality PDX1 protein. To explore the yeast expression system for generating rPDX1 protein, the cDNA coding for the full-length human PDX1 gene was cloned into the secreting expression organism Pichia pastoris. SDS-PAGE and western blotting analysis of culture medium from methanol-induced expression yeast clones demonstrated that the rPDX1 was secreted into the culture medium, had a molecular weight by SDS-PAGE of 50kDa, and was glycosylated. The predicted size of the mature unmodified PDX1 polypeptide is 31kDa, suggesting that eukaryotic post-translational modifications are the result of the increased molecular weight. The recombinant protein was purified to greater than 95% purity using a combined ammonium sulfate precipitation with heparin-agarose chromatography. Finally, 120mug of the protein was obtained in high purity from 1L of the culture supernatant. Bioactivity of the rPDX1 was confirmed by the ability to penetrate cell membranes and activation of an insulin-luciferase reporter gene. Our results suggest that the P. pastoris expression system can be used to produce a fully functional human rPDX1 for both research and clinical application.
Collapse
Affiliation(s)
- Shi-Wu Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Reduction of beta cell function and a beta cell mass is observed in both type 1 and type 2 diabetes. Therefore, restoration of this deficiency might be a therapeutic option for treatment of diabetes. Islet transplantation has benefits, such as reduced incidence of hypoglycemia and achievement of insulin independence. However, the major drawback is an insufficient supply of islet donors. Transplantation of cells differentiated in vitro or in vivo regeneration of insulin-producing cells are possible approaches for beta cell/islet regenerative therapy. Embryonic and adult stem cells, pancreatic ductal progenitor cells, acinar cells, and other endocrine cells have been shown to differentiate into pancreatic beta cells. Formation of fully functional beta cells and the safety of these cells are critical issues for successful clinical application.
Collapse
Affiliation(s)
- Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| |
Collapse
|
32
|
Ribeiro MM, Xu X, Klein D, Kenyon NS, Ricordi C, Felipe MSS, Pastori RL. Endotoxin deactivation by transient acidification. Cell Transplant 2010; 19:1047-54. [PMID: 20412635 DOI: 10.3727/096368910x500643] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recombinant proteins are an important tool for research and therapeutic applications. Therapeutic proteins have been delivered to several cell types and tissues and might be used to improve the outcome of the cell transplantation. Recombinant proteins are propagated in bacteria, which will contaminate them with the lypopolysacharide endotoxin found in the outer bacterial membrane. Endotoxin could interfere with in vitro biological assays and is the major pathological factor, which must be removed or inactivated before in vivo administration. Here we describe a one-step protocol in which the endotoxin activity on recombinant proteins is remarkably reduced by transient exposure to acidic conditions. Maximum endotoxin deactivation occurs at acidic pH below their respective isoelectric point (pI). This method does not require additional protein purification or separation of the protein from the endotoxin fraction. The endotoxin level was measured both in vitro and in vivo. For in vitro assessment we have utilized Limulus Amebocyte Lysate method for in vivo the pyrogenic test. We have tested the above-mentioned method with five different recombinant proteins, including a monoclonal antibody clone 5c8 against CD154 produced by hybridomas. More than 99% of endotoxin was deactivated in all of the proteins; the recovery of the protein after deactivation varied between maximum 72.9% and minimum 46.8%. The anti-CD154 clone 5c8 activity remained unchanged as verified by the measurement of binding capability to activated lymphocytes. Furthermore, the effectiveness of this method was not significantly altered by urea, commonly used in protein purification. This procedure provides a simple and cost-efficient way to reduce the endotoxin activity in antibodies and recombinant proteins.
Collapse
Affiliation(s)
- Melina M Ribeiro
- Diabetes Research Institute, University of Miami Leonard Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Donelan W, Koya V, Li SW, Yang LJ. Distinct regulation of hepatic nuclear factor 1alpha by NKX6.1 in pancreatic beta cells. J Biol Chem 2010; 285:12181-9. [PMID: 20106981 PMCID: PMC2852957 DOI: 10.1074/jbc.m109.064238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 01/19/2010] [Indexed: 01/12/2023] Open
Abstract
Hepatic nuclear factor 1alpha (HNF1alpha) is a key regulator of development and function in pancreatic beta cells and is specifically involved in regulation of glycolysis and glucose-stimulated insulin secretion. Abnormal expression of HNF1alpha leads to development of MODY3 (maturity-onset diabetes of the young 3). We report that NK6 homeodomain 1 (NKX6.1) binds to a cis-regulatory element in the HNF1alpha promoter and is a major regulator of this gene in beta cells. We identified an NKX6.1 recognition sequence in the distal region of the HNF1alpha promoter and demonstrated specific binding of NKX6.1 in beta cells by electrophoretic mobility shift and chromatin immunoprecipitation assays. Site-directed mutagenesis of the NKX6.1 core-binding sequence eliminated NKX6.1-mediated activation and substantially decreased activity of the HNF1alpha promoter in beta cells. Overexpression or small interfering RNA-mediated knockdown of the Nkx6.1 gene resulted in increased or diminished HNF1alpha gene expression, respectively, in beta cells. We conclude that NKX6.1 is a novel regulator of HNF1alpha in pancreatic beta cells. This novel regulatory mechanism for HNF1alpha in beta cells may provide new molecular targets for the diagnosis of MODY3.
Collapse
Affiliation(s)
- William Donelan
- From the Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Vijay Koya
- From the Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Shi-Wu Li
- From the Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Li-Jun Yang
- From the Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610
| |
Collapse
|
34
|
Bone marrow transplantation temporarily improves pancreatic function in streptozotocin-induced diabetes: potential involvement of very small embryonic-like cells. Transplantation 2010; 89:677-85. [PMID: 20110858 DOI: 10.1097/tp.0b013e3181c9dc7d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The role of bone marrow (BM)-derived cells in pancreatic beta-cell regeneration remains unresolved. We examined whether BM-derived cells are recruited to the site of moderate pancreatic injury and contribute to beta-cell regeneration. METHODS Low-dose streptozotocin (STZ) treatment was used to induce moderate pancreatic damage and hyperglycemia. Enhanced green fluorescent protein-positive (EGFP) BM chimeras were evaluated for beta-cell regeneration after STZ treatment. RESULTS To test the hypothesis that pancreatic tissue injury induces a stromal cell-derived factor (SDF)-1 gradient to chemoattract the stem cells, we evaluated the expression of mRNA for SDF-1 in damaged pancreatic tissue. SDF-1 was significantly increased in the pancreas after damage, peaking at day 10. The majority of BM cells expressing mRNA for pancreatic development markers were detected in the subpopulation of CD45/Sca-1/Lin very small embryonic-like (VSEL) cells. VSEL cells mobilized from BM to peripheral blood in response to pancreatic damage, peaking in peripheral blood at day 5, and were enriched in the pancreas 10 to 15 days after STZ treatment. To confirm a role for BM-derived cells in pancreatic beta-cell regeneration, we prepared EGFP-->B6 chimeras. In the EGFP chimeras, EGFP cells were detected around duct and islets and were positive for insulin after STZ treatment. However, STZ-induced hyperglycemia was reduced only transiently (49-77 days) after pancreatic injury. CONCLUSIONS These data suggest that VSEL cells are mobilized into injured pancreatic tissue and contribute to beta-cell regeneration. Transplantation of BM-derived cells improves the function of injured pancreas, although the response is not sufficient to restore sustained normoglycemia.
Collapse
|
35
|
Pancreatic duodenal homeobox 1 protein is a novel beta-cell-specific autoantigen for type I diabetes. J Transl Med 2010; 90:31-9. [PMID: 19901909 PMCID: PMC3408089 DOI: 10.1038/labinvest.2009.116] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pancreatic duodenal homeobox 1 (Pdx1) protein is a key transcription factor involved in the regulation of insulin gene expression that is expressed at high levels in the beta-cells of the pancreatic islets. We asked whether Pdx1 is a target of anti-islet autoimmunity in type I diabetes (T1D). Pdx1 autoantibodies (PAAs) were detected in non-obese diabetic (NOD) mice using ELISA, western blotting, and radioimmunoprecipitation of [(35)S]-labeled insulinoma cell line-derived Pdx1 protein. PAAs were detected as early as at 5 weeks of age, and generally peaked before the onset of clinically overt diabetes in diabetes-prone female NOD mice. Levels declined substantially after the onset of diabetes. PAAs were not detected in the sera of NOD-scid, C57BL/6, or BALB/c mice. The titers of PAAs in NOD mouse sera were as high as 1/93 750 by ELISA. The fine specificity of PAAs was determined by western blotting using a series of truncated recombinant Pdx1 proteins. The immunodominant epitopes were located to the C-terminus of the Pdx1 (p200-283) in NOD mice. PAAs also were detected in sera from human T1D patients, but the major epitopes were localized to amino acids 159-200 as well as the same region (p200-283) recognized by PAAs from NOD mice. Using [(3)H]thymidine incorporation, the p83 fragment of Pdx1 specifically stimulated proliferation of splenic T cells from recent-onset diabetic NOD mice. The presence of PAAs in prediabetic NOD mice and human T1D patients, and Pdx1-specific T-cell proliferation in NOD mice provide a strong rationale for further investigation of the pathogenic role of immune responses against Pdx1 in T1D.
Collapse
|
36
|
In Vivo Regeneration of Insulin-Producing β-Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:627-40. [DOI: 10.1007/978-90-481-3271-3_27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Current Opinion in Endocrinology, Diabetes & Obesity. Current world literature. Curr Opin Endocrinol Diabetes Obes 2009; 16:189-202. [PMID: 19300094 DOI: 10.1097/med.0b013e328329fcc2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Delisle JC, Martignat L, Dubreil L, Saï P, Bach JM, Louzier V, Bösch S. Pdx-1 or Pdx-1-VP16 protein transduction induces beta-cell gene expression in liver-stem WB cells. BMC Res Notes 2009; 2:3. [PMID: 19134185 PMCID: PMC2637887 DOI: 10.1186/1756-0500-2-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 01/09/2009] [Indexed: 12/21/2022] Open
Abstract
Background Pancreatic duodenal homeobox-1 (Pdx-1) or Pdx-1-VP16 gene transfer has been shown to induce in vitro rat liver-stem WB cell conversion into pancreatic endocrine precursor cells. High glucose conditions were necessary for further differentiation into functional insulin-producing cells. Pdx-1 has the ability to permeate different cell types due to an inherent protein transduction domain (PTD). In this study, we evaluated liver-to-pancreas conversion of WB cells following Pdx-1 or Pdx-1-VP16 protein transduction. Findings WB cells were grown in high glucose medium containing Pdx-1 or Pdx-1-VP16 recombinant proteins for two weeks. β-like cell commitment was analysed by RT-PCR of pancreatic endocrine genes. We found that WB cells in high glucose culture spontaneously express pancreatic endocrine genes (Pdx-1, Ngn3, Nkx2.2, Kir6.2). Their further differentiation into β-like cells expressing genes related to endocrine pancreas development (Ngn3, NeuroD, Pax4, Nkx2.2, Nkx6.1, Pdx-1) and β-cell function (Glut-2, Kir6.2, insulin) was achieved only in the presence of Pdx-1(-VP16) protein. Conclusion These results demonstrate that Pdx-1(-VP16) protein transduction is instrumental for in vitro liver-to-pancreas conversion and is an alternative to gene therapy for β-cell engineering for diabetes cell therapy.
Collapse
|
39
|
Chen TH, Yeh CT, Ho YP, Hsu CM, Huang CC, Shiau SS, Liang CK, Chang ML. Hydrodynamics-based transfection of pancreatic duodenal homeobox 1 DNA improves hyperglycemia and is associated with limited complications in diabetic mice. Endocr J 2009; 56:783-90. [PMID: 19561381 DOI: 10.1507/endocrj.k09e-112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The biohazards caused by the viral delivery of pancreatic duodenal homeobox gene 1 (Pdx1) to the murine liver limits its application. We aimed to evaluate the feasibility of hydrodynamics-based transfection (HBT) with Pdx1 in improving hyperglycemia. Murine hepatocellular carcinoma (Hepa1-6) cells were transfected with the Pdx1-expressing plasmid, pcDNA3.1/V5-His A (pcDNA)-Pdx1. Hepatic delivery of pcDNA-Pdx1 or pcDNA in streptozocin- induced diabetic mice was achieved by HBT. The sequential serum glucose and alanine aminotransferase (ALT) levels were assessed. On the 3(rd) day after transfection, the transfection efficiency in the Hepa1-6 cells and the mice livers was 5% and 0.35 %, respectively. At 1 wk after HBT, asides from hepatic expression of insulin, the diabetic mice transfected with pcDNA-Pdx1 had a significantly lower sugar (211 +/- 61.6 vs. 413 +/- 62 mg/dL; p = 0.002) level than those transfected with pcDNA; however, the difference diminished afterward. No significant difference in the ALT levels was observed between the 2 groups. No mortality was noted in the mice transfected with pcDNA-Pdx1. The hypoglycemic effect of Pdx1 delivered by HBT was transient and associated with negligible complications. In studies on the short-term biological effects of Pdx1 in vivo, HBT is a potential alternative to viral delivery of Pdx1 to the murine liver.
Collapse
Affiliation(s)
- Tsung-Hsing Chen
- Liver Research Center and Department of Hepatogastroenterology, Chang Gung Memorial Hospital, Kuei Shan, Taoyuan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Niu L, Xu YC, Xie HY, Dai Z, Tang HQ. Expression of human insulin gene wrapped with chitosan nanoparticles in NIH3T3 cells and diabetic rats. Acta Pharmacol Sin 2008; 29:1342-9. [PMID: 18954529 DOI: 10.1111/j.1745-7254.2008.00888.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIM To study the expression of human insulin gene wrapped with chitosan nanoparticles in NIH3T3 cells and diabetic rats. METHODS pCMV.Ins, an expression plasmid of the human insulin gene, was constructed. In total, 100 microg pCMV.Ins wrapped with chitosan nanoparticles (chitosan-pCMV.Ins) was transfected to NIH3T3 cells and diabetes rats through lavage and coloclysis, respectively. The transfected cells were grown in Dulbecco's modified Eagle's medium, containing G418, for 72 h after transfection. The clones were selected and continued to grow in G418 medium for 24 d. The expression of human insulin was detected by immunohistochemistry. Human insulin in the culture medium of transfected cells was measured. Fasting blood glucose and plasma human insulin of diabetic rats were measured for 5 d after transfection. RT-PCR and Western blotting were performed to confirm the expression of the human insulin gene in diabetic rats. RESULTS Approximately 10% of NIH3T3 cells transfected by chitosan-pCMV.Ins expressed human insulin. Human insulin in the culture medium of NIH3T3 cells transfected by chitosan-pCMV.Ins significantly increased compared with that of the control group (P<0.01). Fasting blood glucose levels of the lavage group and the coloclysis group decreased significantly in 5 d (P<0.01) in comparison, while plasma insulin levels were much higher (P<0.01). The human insulin gene mRNA and human insulin were only detected in the lavage and the coloclysis groups. CONCLUSION The human insulin gene can be transfected and expressed successfully by chitosan- pCMV.Ins in NIH3T3 cells and diabetes rats, which indicates that chitosan is a promising, non-viral vector for gene expression.
Collapse
Affiliation(s)
- Li Niu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | | | | | | | | |
Collapse
|