1
|
Rodriguez-Calvo T, Laiho JE, Oikarinen M, Akhbari P, Flaxman C, Worthington T, Apaolaza P, Kaddis JS, Kusmartseva I, Tauriainen S, Campbell-Thompson M, Atkinson MA, von Herrath M, Hyöty H, Morgan NG, Pugliese A, Richardson SJ. Enterovirus VP1 protein and HLA class I hyperexpression in pancreatic islet cells of organ donors with type 1 diabetes. Diabetologia 2025; 68:1197-1210. [PMID: 40090995 PMCID: PMC12069150 DOI: 10.1007/s00125-025-06384-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/19/2024] [Indexed: 03/19/2025]
Abstract
AIMS/HYPOTHESIS Earlier studies of pancreases from donors with type 1 diabetes demonstrated enteroviral capsid protein VP1 in beta cells. In the context of a multidisciplinary approach undertaken by the nPOD-Virus group, we assessed VP1 positivity in pancreas and other tissues (spleen, duodenum and pancreatic lymph nodes) from 188 organ donors, including donors with type 1 diabetes and donors expressing autoantibody risk markers. We also investigated whether VP1 positivity is linked to the hyperexpression of HLA class I (HLA-I) molecules in islet cells. METHODS Organ donor tissues were collected by the Network for Pancreatic Organ Donors with Diabetes (nPOD) from donors without diabetes (ND, n=76), donors expressing a single or multiple diabetes-associated autoantibodies (AAb+, n=20; AAb++, n=9) and donors with type 1 diabetes with residual insulin-containing islets (T1D-ICIs, n=41) or only insulin-deficient islets (T1D-IDIs, n=42). VP1 was assessed using immunohistochemistry (IHC) and HLA-I using IHC and immunofluorescence, in two independent laboratories. We determined assay concordance across laboratories and overall occurrence of positive assays, on a case-by-case basis and between donor groups. RESULTS Islet cell VP1 positivity was detected in most T1D-ICI donors (77.5%) vs only 38.2% of ND donors (p<0.001). VP1 positivity was associated with HLA-I hyperexpression. Of those donors assessed for HLA-I and VP1, 73.7% had both VP1 immunopositivity and HLA-I hyperexpression (p<0.001 vs ND). Moreover, VP1+ cells were detected at higher frequency in donors with HLA-I hyperexpression (p<0.001 vs normal HLA-I). Among VP1+ donors, the proportion with HLA-I hyperexpression was significantly higher in the AAb++ and T1D-ICI groups (94.9%, p<0.001 vs ND); this was not restricted to individuals with recent-onset diabetes. Critically, for all donor groups combined, HLA-I hyperexpression occurred more frequently in VP1+ compared with VP1- donors (45.8% vs 16%, p<0.001). CONCLUSIONS/INTERPRETATION We report the most extensive analysis to date of VP1 and HLA-I in pancreases from donors with preclinical and diagnosed type 1 diabetes. We find an association of VP1 with residual beta cells after diagnosis and demonstrate VP1 positivity during the autoantibody-positive preclinical stage. For the first time, we show that VP1 positivity and HLA-I hyperexpression in islet cells are both present during the preclinical stage. While the study of tissues does not allow us to demonstrate causality, our data support the hypothesis that enterovirus infections may occur throughout the natural history of type 1 diabetes and may be one of multiple mechanisms driving islet cell HLA-I hyperexpression.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.
| | - Jutta E Laiho
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maarit Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pouria Akhbari
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Christine Flaxman
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Thomas Worthington
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Paola Apaolaza
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Matthias von Herrath
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Endocrine, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Noel G Morgan
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Alberto Pugliese
- Department of Diabetes Immunology, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sarah J Richardson
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
2
|
Singer M, Kandeel F, Husseiny MI. Salmonella-Based Vaccine: A Promising Strategy for Type 1 Diabetes. Vaccines (Basel) 2025; 13:405. [PMID: 40333284 PMCID: PMC12031388 DOI: 10.3390/vaccines13040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the progressive destruction of insulin-producing β-cells in the pancreas. Currently, no therapy exists to halt or cure T1D. Vaccination with diabetic autoantigens may offer protection against T1D development. Genetically modified, attenuated Salmonella utilizing the Salmonella-Pathogenicity Island 2 (SPI2)-encoded Type Three Secretion System (T3SS) can elicit robust immune responses, making it an attractive vaccine platform. Using SPI2-T3SS to deliver an autoantigen alongside immunomodulators and anti-CD3 antibodies induces antigen-specific regulatory T-cells. Our preclinical studies demonstrated the efficacy of a Salmonella-based vaccine in both preventing and reversing autoimmune diabetes in non-obese diabetic (NOD) mice while also exploring its genetic modifications, underlying mechanisms, and delivery strategies. This review evaluates the advantages of an oral T1D vaccine employing live, attenuated Salmonella for autoantigen delivery. We also discuss future directions for advancing this strategy in the treatment of other autoimmune diseases.
Collapse
Affiliation(s)
- Mahmoud Singer
- Department of Radiological Sciences, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Artur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohamed I. Husseiny
- Department of Translational Research and Cellular Therapeutics, Artur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
3
|
van der Heide V, McArdle S, Nelson MS, Cerosaletti K, Gnjatic S, Mikulski Z, Posgai AL, Kusmartseva I, Atkinson M, Homann D. Integrated histopathology of the human pancreas throughout stages of type 1 diabetes progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644000. [PMID: 40166299 PMCID: PMC11956956 DOI: 10.1101/2025.03.18.644000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Type 1 diabetes (T1D) is a progressive autoimmune condition that culminates in the loss of insulin-producing beta cells. Pancreatic histopathology provides essential insights into disease initiation and progression yet an integrated perspective of in situ pathogenic processes is lacking due to limited sample availability, the dispersed nature of anatomical lesions, and often restricted analytical dimensionality. Here, we combined multiplexed immunostaining, high-magnification whole-slide imaging, digital pathology, and semi-automated image analysis strategies to interrogate pancreatic tail and head regions obtained from organ donors across T1D stages including at-risk and at-onset cases. Deconvolution of architectural features, endocrine cell composition, immune cell burden, and spatial relations of ~25,000 islets revealed a series of novel histopathological correlates especially in the prodromal disease stage preceding clinical T1D. Altogether, our comprehensive "single-islet" analyses permit the reconstruction of a revised natural T1D history with implications for further histopathological investigations, considerations of pathogenetic modalities, and therapeutic interventions.
Collapse
Affiliation(s)
- Verena van der Heide
- Marc and Jennifer Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
- These authors contributed equally
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
- These authors contributed equally
| | - Michael S. Nelson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Sacha Gnjatic
- Marc and Jennifer Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
- Tisch Cancer Institute, Department of Medicine, ISMMS, New York, NY 10029, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Amanda L. Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Mark Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Dirk Homann
- Marc and Jennifer Lipschultz Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY 10029, USA
- Diabetes, Obesity & Metabolism Institute, Department of Medicine, ISMMS, New York, NY 10029, USA
- Lead contact
| |
Collapse
|
4
|
Alhamar G, Vinci C, Franzese V, Tramontana F, Le Goux N, Ludvigsson J, Nissim A, Strollo R. The role of oxidative post-translational modifications in type 1 diabetes pathogenesis. Front Immunol 2025; 16:1537405. [PMID: 40028329 PMCID: PMC11868110 DOI: 10.3389/fimmu.2025.1537405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025] Open
Abstract
The pathogenesis of type 1 diabetes (T1D) involves a complex interplay of genetic predisposition, immune processes, and environmental factors, leading to the selective destruction of pancreatic beta-cells by the immune system. Emerging evidence suggests that intrinsic beta-cell factors, including oxidative stress and post-translational modifications (PTM) of beta-cell antigens, may also contribute to their immunogenicity, shedding new light on the multifaceted pathogenesis of T1D. Over the past 30 years, neoepitopes generated by PTMs have been hypothesized to play a role in T1D pathogenesis, but their involvement has only been systematically investigated in recent years. In this review, we explored the interplay between oxidative PTMs, neoepitopes, and T1D, highlighting oxidative stress as a pivotal factor in immune system dysfunction, beta-cell vulnerability, and disease onset.
Collapse
Affiliation(s)
- Ghadeer Alhamar
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Chiara Vinci
- Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Valentina Franzese
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Rome, Italy
- Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Rome, Italy
- Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Flavia Tramontana
- Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Nelig Le Goux
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Johnny Ludvigsson
- Crown Princess Victoria Children’s Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ahuva Nissim
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Rocky Strollo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Rome, Italy
- Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
5
|
Dekkers MC, Pu X, Enciso-Martinez A, Zaldumbide A. Beta-Cell-Derived Extracellular Vesicles: Mediators of Intercellular Communication in the Islet Microenvironment in Type 1 Diabetes. Cells 2024; 13:1996. [PMID: 39682744 PMCID: PMC11640590 DOI: 10.3390/cells13231996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/23/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder characterised by an autoimmune response specifically mounted against the insulin-producing beta cells. Within the islet, high cellular connectivity and extensive vascularisation facilitate intra-islet communication and direct crosstalk with the surrounding tissues and the immune system. During the development of T1D, cytokines and extracellular vesicles released by beta cells can contribute to the recruitment of immune cells, further amplifying autoimmunity and aggravating beta cell damage and dysfunction. In this review, we will evaluate the role of beta-cell-derived extracellular vesicles as mediators of the autoimmune response and discuss their potential for early diagnosis and new therapeutic strategies in T1D.
Collapse
Affiliation(s)
- Mette C. Dekkers
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.C.D.); (X.P.); (A.E.-M.)
| | - Xudong Pu
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.C.D.); (X.P.); (A.E.-M.)
| | - Agustin Enciso-Martinez
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.C.D.); (X.P.); (A.E.-M.)
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Amsterdam Vesicle Center, Biomedical Engineering and Physics and Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (M.C.D.); (X.P.); (A.E.-M.)
| |
Collapse
|
6
|
Apaolaza PS, Chen YC, Grewal K, Lurz Y, Boulassel S, Verchere CB, Rodriguez-Calvo T. Quantitative analysis of islet prohormone convertase 1/3 expression in human pancreas donors with diabetes. Diabetologia 2024; 67:2771-2785. [PMID: 39404844 PMCID: PMC11604696 DOI: 10.1007/s00125-024-06275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/12/2024] [Indexed: 11/29/2024]
Abstract
AIMS/HYPOTHESIS Islet prohormone-processing enzymes convert peptide hormone precursors to mature hormones. Defective beta cell prohormone processing and the release of incompletely processed peptide hormones are observed prior to the onset of diabetes, yet molecular mechanisms underlying impaired prohormone processing during the development of diabetes remains largely unknown. Previous studies have shown that prohormone convertase 1/3 (PC1/3) protein and mRNA expression levels are reduced in whole islets from donors with type 1 diabetes, although whether PC1/3-mediated prohormone processing in alpha and beta cells is disrupted in type 1 diabetes remained to be explored. Herein, we aimed to analyse the expression of PC1/3 in islets from non-diabetic donors, autoantibody-positive donors and donors diagnosed with type 1 diabetes or type 2 diabetes. METHODS Immunostaining and high-dimensional image analysis were performed on pancreatic sections from a cross-sectional cohort of 54 donors obtained from the Network for Pancreatic Organ Donors with Diabetes (nPOD) repository, to evaluate PC1/3 expression patterns in islet alpha, beta and delta cells at different stages of diabetes. RESULTS Alpha and beta cell morphology were altered in donors with type 1 diabetes, including decreased alpha and beta cell size. As expected, the insulin-positive and PC1/3-positive areas in the islets were both reduced, and this was accompanied by a reduced percentage of PC1/3-positive and insulin-positive/PC1/3-positive cells in islets. PC1/3 and insulin co-localisation was also reduced. The glucagon-positive area, as well as the percentage of glucagon-positive and glucagon-positive/PC1/3-positive cells in islets, was increased. PC1/3 and glucagon co-localisation was also increased in donors with type 1 diabetes. The somatostatin-positive cell area and somatostatin staining intensity were elevated in islets from donors with recent-onset type 1 diabetes. CONCLUSIONS/INTERPRETATION Our high-resolution histomorphological analysis of human pancreatic islets from donors with and without diabetes has uncovered details of the cellular origin of islet prohormone peptide processing defects. Reduced beta cell PC1/3 and increased alpha cell PC1/3 in islets from donors with type 1 diabetes pinpointed the functional deterioration of beta cells and the concomitant potential increase in PC1/3 usage for prohormone processing in alpha cells during the pathogenesis of type 1 diabetes. Our finding of PC1/3 loss in beta cells may inform the discovery of new prohormone biomarkers as indicators of beta cell dysfunction, and the finding of elevated PC1/3 expression in alpha cells may encourage the design of therapeutic targets via leveraging alpha cell adaptation in diabetes.
Collapse
Affiliation(s)
- Paola S Apaolaza
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Yi-Chun Chen
- Department of Surgery, University of British Columbia & BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kavi Grewal
- Department of Surgery, University of British Columbia & BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Yannik Lurz
- Technical University of Munich, Munich, Germany
| | - Severin Boulassel
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia & BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia & BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.
| |
Collapse
|
7
|
Sarkar S, Zheng X, Clair GC, Kwon YM, You Y, Swensen AC, Webb-Robertson BJM, Nakayasu ES, Qian WJ, Metz TO. Exploring new frontiers in type 1 diabetes through advanced mass-spectrometry-based molecular measurements. Trends Mol Med 2024; 30:1137-1151. [PMID: 39152082 PMCID: PMC11631641 DOI: 10.1016/j.molmed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Type 1 diabetes (T1D) is a devastating autoimmune disease for which advanced mass spectrometry (MS) methods are increasingly used to identify new biomarkers and better understand underlying mechanisms. For example, integration of MS analysis and machine learning has identified multimolecular biomarker panels. In mechanistic studies, MS has contributed to the discovery of neoepitopes, and pathways involved in disease development and identifying therapeutic targets. However, challenges remain in understanding the role of tissue microenvironments, spatial heterogeneity, and environmental factors in disease pathogenesis. Recent advancements in MS, such as ultra-fast ion-mobility separations, and single-cell and spatial omics, can play a central role in addressing these challenges. Here, we review recent advancements in MS-based molecular measurements and their role in understanding T1D.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Geremy C Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yu Mi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Youngki You
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | | | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
8
|
Dahl-Jørgensen K. Virus as the cause of type 1 diabetes. Trends Mol Med 2024; 30:1020-1027. [PMID: 39003200 DOI: 10.1016/j.molmed.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/15/2024]
Abstract
Type 1 diabetes (T1D), a severe disease requiring intensive insulin treatment, carries an increased risk for complications and reduced lifespan. Certain viruses have been implicated in T1D's etiology, with 'live', replicating enteroviruses (EVs) recently found in the pancreas at diagnosis. This discovery prompted a trial to slow down disease progression using antiviral drugs. A 6-month treatment combining pleconaril and ribavirin in new-onset T1D patients preserved residual insulin production after 1 year, unlike placebo. The results support the theory that viruses may cause T1D in genetically susceptible individuals. A low-grade, persistent viral infection may initiate a cascade of pathogenic mechanisms initially involving the innate immune system, inducing β-cell stress and neoantigen release, leading to autoimmunity, and eventually the destruction of insulin-producing β-cells.
Collapse
Affiliation(s)
- Knut Dahl-Jørgensen
- Pediatric Department, Oslo University Hospital and Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
9
|
Rampazzo Morelli N, Préfontaine C, Pipella J, Thompson PJ. Secreted GDF15 maintains transcriptional responses during DNA damage-mediated senescence in human beta cells. Am J Physiol Endocrinol Metab 2024; 327:E552-E562. [PMID: 39196800 PMCID: PMC11482276 DOI: 10.1152/ajpendo.00257.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 08/30/2024]
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disease resulting from an autoimmune destruction of pancreatic beta cells. Beta cells activate various stress responses during the development of T1D, including senescence, which involves cell cycle arrest, prosurvival signaling, and a proinflammatory secretome termed the senescence-associated secretory phenotype (SASP). We previously identified growth and differentiation factor 15 (GDF15) as a major SASP factor in human islets and human EndoC-βH5 beta cells in a model of DNA damage-mediated senescence that recapitulates features of senescent beta cells in T1D. Soluble GDF15 has been shown to exert protective effects on human and mouse beta cells during various forms of stress relevant to T1D; therefore, we hypothesized that secreted GDF15 may play a prosurvival role during DNA damage-mediated senescence in human beta cells. We found that elevated GDF15 secretion was associated with endogenous senescent beta cells in an islet preparation from a T1D donor, supporting the validity of our DNA damage model. Using antibody-based neutralization, we found that secreted endogenous GDF15 was not required for senescent human islet or EndoC cell viability. Rather, neutralization of GDF15 led to reduced expression of specific senescence-associated genes, including GDF15 itself and the prosurvival gene BCL2-like protein 1 (BCL2L1). Taken together, these data suggest that SASP factor GDF15 is not required to sustain senescent human islet viability, but it is required to maintain senescence-associated transcriptional responses.NEW & NOTEWORTHY Beta cell senescence is an emerging contributor to the pathogenesis of type 1 diabetes, but candidate therapeutic targets have not been identified in human beta cells. In this study, we examined the role of a secreted factor, GDF15, and found that although it is not required to maintain viability during senescence, it is required to fine-tune gene expression programs involved in the senescence response during DNA damage in human beta cells.
Collapse
Affiliation(s)
- Nayara Rampazzo Morelli
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Camille Préfontaine
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jasmine Pipella
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter J Thompson
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Elgamal RM, Melton RL, Chiou J, McGrail CW, Gaulton KJ. Circulating pancreatic enzyme levels are a causal biomarker of type 1 diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311619. [PMID: 39148858 PMCID: PMC11326359 DOI: 10.1101/2024.08.08.24311619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Novel biomarkers of type 1 diabetes (T1D) are needed for earlier detection of disease and identifying therapeutic targets. We identified biomarkers of T1D by combining plasma cis and trans protein QTLs (pQTLs) for 2,922 proteins in the UK Biobank with a T1D genome-wide association study (GWAS) in 157k samples. T1D risk variants at over 20% of known loci colocalized with cis or trans pQTLs, and distinct sets of T1D loci colocalized with immune, pancreatic secretion, or gut-related proteins. We identified 23 proteins with evidence for a causal role in using pQTLs as genetic instruments in Mendelian Randomization which included multiple sensitivity analyses. Proteins increasing T1D risk were involved in immune processes (e.g. HLA-DRA) and, more surprisingly, T1D protective proteins were enriched in pancreatic secretions (e.g. CPA1), cholesterol metabolism (e.g. APOA1), and gut homeostasis. Genetic variants associated with plasma levels of T1D-protective pancreatic enzymes such as CPA1 were enriched in cis-regulatory elements in pancreatic exocrine and gut enteroendocrine cells, and the protective effects of CPA1 and other enzymes on T1D were consistent when using instruments specific to acinar cells. Finally, pancreatic enzymes had decreased acinar expression in T1D, including CPA1 which was altered prior to onset. Together, these results reveal causal biomarkers and highlight processes in the exocrine pancreas, immune system, and gut that modulate T1D risk.
Collapse
Affiliation(s)
- Ruth M Elgamal
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla CA
- Department of Pediatrics, UC San Diego, La Jolla CA
| | - Rebecca L Melton
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla CA
- Department of Pediatrics, UC San Diego, La Jolla CA
| | - Joshua Chiou
- Pfizer Research and Discovery, Pfizer Inc., Cambridge, MA
| | - Carolyn W McGrail
- Biomedical Sciences Graduate Program, UC San Diego, La Jolla CA
- Department of Pediatrics, UC San Diego, La Jolla CA
| | | |
Collapse
|
11
|
Lord SM, Bahnson HT, Greenbaum CJ, Liljenquist DR, Virostko J, Speake C. Testing a new platform to screen disease-modifying therapy in type 1 diabetes. PLoS One 2023; 18:e0293268. [PMID: 38096190 PMCID: PMC10721089 DOI: 10.1371/journal.pone.0293268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/06/2023] [Indexed: 12/17/2023] Open
Abstract
Studies of new therapies to preserve insulin secretion in early type 1 diabetes require several years to recruit eligible subjects and to see a treatment effect; thus, there is interest in alternative study designs to speed this process. Most people with longstanding type 1 diabetes no longer secrete insulin. However, studies from pancreata of those with longstanding T1D show that beta cells staining for insulin can persist for decades after diagnosis, and this is paralleled in work showing proinsulin secretion in individuals with longstanding disease; collectively this suggests that there is a reserve of alive but "sleeping" beta cells. Here, we designed a novel clinical trial platform to test whether a short course of therapy with an agent known to have effects in type 1 diabetes with residual endogenous insulin could transiently induce insulin secretion in those who no longer produce insulin. A therapy that transiently "wakes up" sleeping beta cells might be tested next in a fully powered trial in those with endogenous insulin secretion. In this three-arm non-randomized pilot study, we tested three therapies known to impact disease: two beta-cell supportive agents, liraglutide and verapamil, and an immunomodulatory agent, golimumab. The golimumab treated arm was not fully enrolled due to uncertainties about immunotherapy during the COVID-19 pandemic. Participants had mixed-meal tolerance test (MMTT)-stimulated C-peptide below the quantitation limit (<0.02 ng/mL) at enrollment and received 8 to 12 weeks of therapy. At the completion of therapy, none of the individuals achieved the primary outcome of MMTT-stimulated C-peptide ≥ 0.02 ng/mL. An exploratory outcome of the verapamil arm was MRI-assessed pancreas size, diffusion, and longitudinal relaxation time, which showed repeatability of these measures but no treatment effect. The liraglutide and golimumab arms were registered on clinicaltrials.gov under accession number NCT03632759 and the verapamil arm under accession number NCT05847413. Trail registration: Protocols are registered in ClinicalTrials.gov under accession numbers NCT03632759 and NCT05847413.
Collapse
Affiliation(s)
- Sandra M. Lord
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States of America
| | - Henry T. Bahnson
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States of America
| | - Carla J. Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States of America
| | | | - John Virostko
- Dell Medical School, University of Texas at Austin, Austin, TX, United States of America
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States of America
| |
Collapse
|
12
|
Sims EK, Geyer SM, Long SA, Herold KC. High proinsulin:C-peptide ratio identifies individuals with stage 2 type 1 diabetes at high risk for progression to clinical diagnosis and responses to teplizumab treatment. Diabetologia 2023; 66:2283-2291. [PMID: 37667106 PMCID: PMC10914155 DOI: 10.1007/s00125-023-06003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023]
Abstract
AIMS/HYPOTHESIS Tractable precision biomarkers to identify immunotherapy responders are lacking in type 1 diabetes. We hypothesised that proinsulin:C-peptide (PI:C) ratios, a readout of beta cell stress, could provide insight into type 1 diabetes progression and responses to immunotherapy. METHODS In this post hoc analysis, proinsulin and C-peptide levels were determined in baseline serum samples from 63 participants with stage 2 type 1 diabetes in the longitudinal TrialNet Teplizumab Prevention Study (n=41 in the teplizumab arm; n=22 in the placebo arm). In addition, previously tested demographic, C-peptide, glucose and proinsulin data were used for the new data analyses. The ratio of intact (unprocessed) proinsulin to C-peptide was analysed and relationships with progression to stage 3 diabetes were investigated. RESULTS Elevated baseline PI:C was strongly associated with more rapid progression of diabetes in both the placebo and teplizumab treatment groups, but teplizumab abrogated the impact of high pre-treatment PI:C on type 1 diabetes progression. Differential responses of drug treatment in those with high vs low PI:C ratios were independent of treatment effects of teplizumab on the PI:C ratio or on relevant immune cells. CONCLUSIONS/INTERPRETATION High pre-treatment PI:C identified individuals with stage 2 type 1 diabetes who were exhibiting rapid progression to stage 3 disease and who displayed benefit from teplizumab treatment. These data suggest that readouts of active disease, such as PI:C ratio, could serve to identify optimal candidates or timing for type 1 diabetes disease-modifying therapies.
Collapse
Affiliation(s)
- Emily K Sims
- Division of Pediatric Endocrinology and Diabetology and Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan M Geyer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
Fulcher JM, Swensen AC, Chen YC, Verchere CB, Petyuk VA, Qian WJ. Top-Down Proteomics of Mouse Islets With Beta Cell CPE Deletion Reveals Molecular Details in Prohormone Processing. Endocrinology 2023; 164:bqad160. [PMID: 37967211 PMCID: PMC10650973 DOI: 10.1210/endocr/bqad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 11/17/2023]
Abstract
Altered prohormone processing, such as with proinsulin and pro-islet amyloid polypeptide (proIAPP), has been reported as an important feature of prediabetes and diabetes. Proinsulin processing includes removal of several C-terminal basic amino acids and is performed principally by the exopeptidase carboxypeptidase E (CPE), and mutations in CPE or other prohormone convertase enzymes (PC1/3 and PC2) result in hyperproinsulinemia. A comprehensive characterization of the forms and quantities of improperly processed insulin and other hormone products following Cpe deletion in pancreatic islets has yet to be attempted. In the present study we applied top-down proteomics to globally evaluate the numerous proteoforms of hormone processing intermediates in a β-cell-specific Cpe knockout mouse model. Increases in dibasic residue-containing proinsulin and other novel proteoforms of improperly processed proinsulin were found, and we could classify several processed proteoforms as novel substrates of CPE. Interestingly, some other known substrates of CPE remained unaffected despite its deletion, implying that paralogous processing enzymes such as carboxypeptidase D (CPD) can compensate for CPE loss and maintain near normal levels of hormone processing. In summary, our quantitative results from top-down proteomics of islets provide unique insights into the complexity of hormone processing products and the regulatory mechanisms.
Collapse
Affiliation(s)
- James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Adam C Swensen
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yi-Chun Chen
- Department of Surgery, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - C Bruce Verchere
- Department of Surgery, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Vladislav A Petyuk
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
14
|
Stenlid R, Cerenius SY, Wen Q, Aydin BK, Manell H, Chowdhury A, Kristinsson H, Ciba I, Gjessing ES, Mörwald K, Gomahr J, Heu V, Weghuber D, Forslund A, Bergsten P. Adolescents with obesity treated with exenatide maintain endogenous GLP-1, reduce DPP-4, and improve glycemic control. Front Endocrinol (Lausanne) 2023; 14:1293093. [PMID: 38027106 PMCID: PMC10646558 DOI: 10.3389/fendo.2023.1293093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Background GLP-1 receptor agonists (GLP-1RA) are increasingly used to treat adolescent obesity. However, the effect on endogenous GLP-1 secretory patterns following treatment in adolescents is unknown. The GLP-1RA exenatide was shown to significantly lower BMI and 2-hour glucose in adolescents with obesity, in the placebo-controlled, randomized controlled trial Combat-JUDO. The aim of this study was to evaluate effects of weekly injections of 2 mg exenatide extended release on secretory patterns of endogenous hormones during OGTT. Subjects and Measurements This study was a pre-planned sub-study of the Combat-JUDO trial, set at the Pediatric clinic at Uppsala University Hospital, Sweden and Paracelsus Medical University, Austria. 44 adolescents with obesity were included and randomized 1:1 to treatment:placebo. 19 patients in the treatment group and 18 in the placebo group completed the trial. Before and after treatment, GLP-1, glucose, insulin, glucagon and glicentin levels were measured during OGTT; DPP-4 and proinsulin were measured at fasting. A per-protocol approach was used in the analyses. Results Exenatide treatment did not affect GLP-1 levels during OGTT. Treatment significantly lowered DPP-4, proinsulin and the proinsulin-to-insulin ratio at fasting, increased glicentin levels but did not affect insulin, C-peptide or glucagon levels during OGTT. Conclusion Weekly s.c. injections with 2 mg of exenatide maintains endogenous total GLP-1 levels and lowers circulating DPP-4 levels. This adds an argument in favor of using exenatide in the treatment of pediatric obesity. Clinical trial registration clinicaltrials.gov, identifier NCT02794402.
Collapse
Affiliation(s)
- Rasmus Stenlid
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Sara Y. Cerenius
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Quan Wen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Banu Küçükemre Aydin
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Hannes Manell
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Azazul Chowdhury
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Iris Ciba
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Erik S. Gjessing
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Katharina Mörwald
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Julian Gomahr
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Verena Heu
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Anders Forslund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatric Obesity, Uppsala University Children’s Hospital, Uppsala, Sweden
| |
Collapse
|
15
|
Desouter AK, Keymeulen B, Demeester S, Van de Velde U, De Pauw P, Van Dalem A, Lapauw B, De Block C, Gillard P, Pipeleers DG, Gorus FK. Baseline plasma proinsulin response to glucose for predicting therapeutic response to otelixizumab in recent-onset type 1 diabetes. Diabetes Res Clin Pract 2023; 205:110974. [PMID: 37884063 DOI: 10.1016/j.diabres.2023.110974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
AIMS In recent-onset type 1 diabetes, clamp-derived C-peptide predicts good response to anti-CD3. Elevated proinsulin and proinsulin/C-peptide ratio (PI/CP) suggest increased metabolic/inflammatory beta cell burden. We reanalyzed trial data to compare the ability of baseline acutely glucose-stimulated proinsulin, C-peptide and PI/CP to predict functional outcome. METHODS Eighty recent-onset type 1 diabetes patients participated in the placebo-controlled otelixizumab (GSK; NCT00627146) trial. Hyperglycemic clamps were performed at baseline, 6, 12 and 18 months, involving 3 h of induced euglycemia, followed by acutely raising and maintaining glycemia to ≥ 10 mmol/l for 140 min. Plasma proinsulin, C-peptide and PI/CP were determined after acute (minute 0 at 10 mmol/l; PI0, CP0, PI/CP0) and sustained glucose stimulation (AUC between minutes 60-140). Outcome was assessed as change in AUC60-140 C-peptide from baseline. RESULTS In multiple linear regression, higher baseline (≥median [P50]) PI0 independently predicted preservation of beta cell function in response to anti-CD3 and interacted significantly with IAA. During follow-up, anti-CD3 tempered a further increase in PI/CP0, but not in PI0. CP0 outperformed PI0 and PI/CP0 for post-treatment monitoring. CONCLUSIONS In recent-onset type 1 diabetes, elevated acutely glucose-stimulated proinsulin may complement or replace acutely or sustainedly stimulated C-peptide release for identifying good responders to anti-CD3, but not as outcome measure.
Collapse
Affiliation(s)
- Aster K Desouter
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Bart Keymeulen
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Simke Demeester
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Clinical Biology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Ursule Van de Velde
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Pieter De Pauw
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Annelien Van Dalem
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Clinical Biology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | - Bruno Lapauw
- Department of Endocrinology, University Hospital Ghent-UGent, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
| | - Christophe De Block
- Department of Endocrinology, Diabetology and Metabolism, University of Antwerp-Antwerp University Hospital, Drie Eikestraat 655, 2650 Edegem, Belgium.
| | - Pieter Gillard
- Department of Endocrinology, University Hospital Leuven-KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Daniel G Pipeleers
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Frans K Gorus
- Diabetes Research Center, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Diabetes and Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium.
| |
Collapse
|
16
|
Iida H, Kono T, Lee CC, Krishnan P, Arvin MC, Weaver SA, Jarvela TS, Branco RCS, McLaughlin MR, Bone RN, Tong X, Arvan P, Lindberg I, Evans-Molina C. SERCA2 regulates proinsulin processing and processing enzyme maturation in pancreatic beta cells. Diabetologia 2023; 66:2042-2061. [PMID: 37537395 PMCID: PMC10542743 DOI: 10.1007/s00125-023-05979-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023]
Abstract
AIMS/HYPOTHESIS Increased circulating levels of incompletely processed insulin (i.e. proinsulin) are observed clinically in type 1 and type 2 diabetes. Previous studies have suggested that Ca2+ signalling within beta cells regulates insulin processing and secretion; however, the mechanisms that link impaired Ca2+ signalling with defective insulin maturation remain incompletely understood. METHODS We generated mice with beta cell-specific sarcoendoplasmic reticulum Ca2+ ATPase-2 (SERCA2) deletion (βS2KO mice) and used an INS-1 cell line model of SERCA2 deficiency. Whole-body metabolic phenotyping, Ca2+ imaging, RNA-seq and protein processing assays were used to determine how loss of SERCA2 impacts beta cell function. To test key findings in human model systems, cadaveric islets were treated with diabetogenic stressors and prohormone convertase expression patterns were characterised. RESULTS βS2KO mice exhibited age-dependent glucose intolerance and increased plasma and pancreatic levels of proinsulin, while endoplasmic reticulum (ER) Ca2+ levels and glucose-stimulated Ca2+ synchronicity were reduced in βS2KO islets. Islets isolated from βS2KO mice and SERCA2-deficient INS-1 cells showed decreased expression of the active forms of the proinsulin processing enzymes PC1/3 and PC2. Additionally, immunofluorescence staining revealed mis-location and abnormal accumulation of proinsulin and proPC2 in the intermediate region between the ER and the Golgi (i.e. the ERGIC) and in the cis-Golgi in beta cells of βS2KO mice. Treatment of islets from human donors without diabetes with high glucose and palmitate concentrations led to reduced expression of the active forms of the proinsulin processing enzymes, thus phenocopying the findings observed in βS2KO islets and SERCA2-deficient INS-1 cells. Similar findings were observed in wild-type mouse islets treated with brefeldin A, a compound that perturbs ER-to-Golgi trafficking. CONCLUSIONS/INTERPRETATION Taken together, these data highlight an important link between ER Ca2+ homeostasis and proinsulin processing in beta cells. Our findings suggest a model whereby chronic ER Ca2+ depletion due to SERCA2 deficiency impairs the spatial regulation of prohormone trafficking, processing and maturation within the secretory pathway. DATA AVAILABILITY RNA-seq data have been deposited in the Gene Expression Omnibus (GEO; accession no.: GSE207498).
Collapse
Affiliation(s)
- Hitoshi Iida
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuyoshi Kono
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Chih-Chun Lee
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Preethi Krishnan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew C Arvin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Staci A Weaver
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Timothy S Jarvela
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Renato C S Branco
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Madeline R McLaughlin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Robert N Bone
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
17
|
Batdorf HM, Lawes LDL, Richardson JT, Burk DH, Dupuy SD, Karlstad MD, Noland RC, Burke SJ, Collier JJ. NOD mice have distinct metabolic and immunologic profiles when compared with genetically similar MHC-matched ICR mice. Am J Physiol Endocrinol Metab 2023; 325:E336-E345. [PMID: 37610410 PMCID: PMC10642984 DOI: 10.1152/ajpendo.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Nonobese diabetic (NOD) mice are the most commonly used rodent model to study mechanisms relevant to the autoimmunity and immunology of type 1 diabetes. Although many different strains of mice have been used as controls for studies comparing nondiabetic lines to the NOD strain, we hypothesized that the parental strain that gave rise to the NOD line might be one of the best options. Therefore, we compared female ICR and NOD mice, which are matched at key major histocompatibility complex (MHC) loci, to understand their metabolic and immunologic similarities and differences. Several novel observations emerged: 1) NOD mice have greater circulating proinsulin when compared with ICR mice. 2) NOD mice display CD3+ and IBA1+ cell infiltration into and near pancreatic islets before hyperglycemia. 3) NOD mice show increased expression of the Il1b and Cxcl11 genes in islets when compared with islets from age-matched ICR mice. 4) NOD mice have a greater abundance of STAT1 and ICAM-1 protein in islets when compared with ICR mice. These data show that ICR mice, which are genetically similar to NOD mice, do not retain the same immunologic outcomes. Thus, ICR mice are an excellent choice as a genetically similar and MHC-matched control for NOD mice in studies designed to understand mechanisms relevant to autoimmune-mediated diabetes onset as well as novel therapeutic interventions.NEW & NOTEWORTHY Nonobese diabetic (NOD) mice have more proinsulin in circulation and STAT1 protein in islets compared with the major histocompatibility complex (MHC)-matched ICR line. NOD mice also display greater expression of cytokines and chemokines in pancreatic islets consistent with immune cell infiltration before hyperglycemia when compared with age-matched ICR mice. Thus, ICR mice represent an excellent control for autoimmunity and inflammation studies using the NOD line of mice.
Collapse
Affiliation(s)
- Heidi M Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Luz de Luna Lawes
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Jeremy T Richardson
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - David H Burk
- Cell Biology and Bioimaging Core Facility, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Samuel D Dupuy
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, United States
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, United States
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
18
|
Atkinson MA, Mirmira RG. The pathogenic "symphony" in type 1 diabetes: A disorder of the immune system, β cells, and exocrine pancreas. Cell Metab 2023; 35:1500-1518. [PMID: 37478842 PMCID: PMC10529265 DOI: 10.1016/j.cmet.2023.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Type 1 diabetes (T1D) is widely considered to result from the autoimmune destruction of insulin-producing β cells. This concept has been a central tenet for decades of attempts seeking to decipher the disorder's pathogenesis and prevent/reverse the disease. Recently, this and many other disease-related notions have come under increasing question, particularly given knowledge gained from analyses of human T1D pancreas. Perhaps most crucial are findings suggesting that a collective of cellular constituents-immune, endocrine, and exocrine in origin-mechanistically coalesce to facilitate T1D. This review considers these emerging concepts, from basic science to clinical research, and identifies several key remaining knowledge voids.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Raghavendra G Mirmira
- Departments of Medicine and Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Mateus Gonçalves L, Fahd Qadir MM, Boulina M, Makhmutova M, Pereira E, Almaça J. Pericyte dysfunction and impaired vasomotion are hallmarks of islets during the pathogenesis of type 1 diabetes. Cell Rep 2023; 42:112913. [PMID: 37531253 PMCID: PMC10529889 DOI: 10.1016/j.celrep.2023.112913] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Pancreatic islets are endocrine organs that depend on their microvasculature to function. Along with endothelial cells, pericytes comprise the islet microvascular network. These mural cells are crucial for microvascular stability and function, but it is not known if/how they are affected during the development of type 1 diabetes (T1D). Here, we investigate islet pericyte density, phenotype, and function using living pancreas slices from donors without diabetes, donors with a single T1D-associated autoantibody (GADA+), and recent onset T1D cases. Our data show that islet pericyte and capillary responses to vasoactive stimuli are impaired early on in T1D. Microvascular dysfunction is associated with a switch in the phenotype of islet pericytes toward myofibroblasts. Using publicly available RNA sequencing (RNA-seq) data, we further found that transcriptional alterations related to endothelin-1 signaling and vascular and extracellular matrix (ECM) remodeling are hallmarks of single autoantibody (Aab)+ donor pancreata. Our data show that microvascular dysfunction is present at early stages of islet autoimmunity.
Collapse
Affiliation(s)
- Luciana Mateus Gonçalves
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mirza Muhammad Fahd Qadir
- Section of Endocrinology and Metabolism, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA; Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, USA
| | - Maria Boulina
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Madina Makhmutova
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Elizabeth Pereira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA; Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
20
|
Eizirik DL, Szymczak F, Mallone R. Why does the immune system destroy pancreatic β-cells but not α-cells in type 1 diabetes? Nat Rev Endocrinol 2023; 19:425-434. [PMID: 37072614 DOI: 10.1038/s41574-023-00826-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/20/2023]
Abstract
A perplexing feature of type 1 diabetes (T1D) is that the immune system destroys pancreatic β-cells but not neighbouring α-cells, even though both β-cells and α-cells are dysfunctional. Dysfunction, however, progresses to death only for β-cells. Recent findings indicate important differences between these two cell types. First, expression of BCL2L1, a key antiapoptotic gene, is higher in α-cells than in β-cells. Second, endoplasmic reticulum (ER) stress-related genes are differentially expressed, with higher expression levels of pro-apoptotic CHOP in β-cells than in α-cells and higher expression levels of HSPA5 (which encodes the protective chaperone BiP) in α-cells than in β-cells. Third, expression of viral recognition and innate immune response genes is higher in α-cells than in β-cells, contributing to the enhanced resistance of α-cells to coxsackievirus infection. Fourth, expression of the immune-inhibitory HLA-E molecule is higher in α-cells than in β-cells. Of note, α-cells are less immunogenic than β-cells, and the CD8+ T cells invading the islets in T1D are reactive to pre-proinsulin but not to glucagon. We suggest that this finding is a result of the enhanced capacity of the α-cell to endure viral infections and ER stress, which enables them to better survive early stressors that can cause cell death and consequently amplify antigen presentation to the immune system. Moreover, the processing of the pre-proglucagon precursor in enteroendocrine cells might favour immune tolerance towards this potential self-antigen compared to pre-proinsulin.
Collapse
Affiliation(s)
- Decio L Eizirik
- Université Libre de Bruxelles (ULB) Center for Diabetes Research and Welbio, Medical Faculty, Brussels, Belgium.
| | - Florian Szymczak
- Université Libre de Bruxelles (ULB) Center for Diabetes Research and Welbio, Medical Faculty, Brussels, Belgium
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
21
|
Mameli C, Triolo TM, Chiarelli F, Rewers M, Zuccotti G, Simmons KM. Lessons and Gaps in the Prediction and Prevention of Type 1 Diabetes. Pharmacol Res 2023; 193:106792. [PMID: 37201589 DOI: 10.1016/j.phrs.2023.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Type 1 diabetes (T1D) is a serious chronic autoimmune condition. Even though the root cause of T1D development has yet to be determined, enough is known about the natural history of T1D pathogenesis to allow study of interventions that may delay or even prevent the onset of hyperglycemia and clinical T1D. Primary prevention aims to prevent the onset of beta cell autoimmunity in asymptomatic people at high genetic risk for T1D. Secondary prevention strategies aim to preserve functional beta cells once autoimmunity is present, and tertiary prevention aims to initiate and extend partial remission of beta cell destruction after the clinical onset of T1D. The approval of teplizumab in the United States to delay the onset of clinical T1D marks an impressive milestone in diabetes care. This treatment opens the door to a paradigm shift in T1D care. People with T1D risk need to be identified early by measuring T1D related islet autoantibodies. Identifying people with T1D before they have symptoms will facilitate better understanding of pre-symptomatic T1D progression and T1D prevention strategies that may be effective.
Collapse
Affiliation(s)
- Chiara Mameli
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| | - Taylor M Triolo
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| | | | - Marian Rewers
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, V. Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Kimber M Simmons
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
22
|
Anindya R, Rutter GA, Meur G. New-onset type 1 diabetes and severe acute respiratory syndrome coronavirus 2 infection. Immunol Cell Biol 2023; 101:191-203. [PMID: 36529987 PMCID: PMC9877852 DOI: 10.1111/imcb.12615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes (T1D) is a condition characterized by an absolute deficiency of insulin. Loss of insulin-producing pancreatic islet β cells is one of the many causes of T1D. Viral infections have long been associated with new-onset T1D and the balance between virulence and host immunity determines whether the viral infection would lead to T1D. Herein, we detail the dynamic interaction of pancreatic β cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the host immune system with respect to new-onset T1D. Importantly, β cells express the crucial entry receptors and multiple studies confirmed that β cells are infected by SARS-CoV-2. Innate immune system effectors, such as natural killer cells, can eliminate such infected β cells. Although CD4+ CD25+ FoxP3+ regulatory T (TREG ) cells provide immune tolerance to prevent the destruction of the islet β-cell population by autoantigen-specific CD8+ T cells, it can be speculated that SARS-CoV-2 infection may compromise self-tolerance by depleting TREG -cell numbers or diminishing TREG -cell functions by repressing Forkhead box P3 (FoxP3) expression. However, the expansion of β cells by self-duplication, and regeneration from progenitor cells, could effectively replace lost β cells. Appearance of islet autoantibodies following SARS-CoV-2 infection was reported in a few cases, which could imply a breakdown of immune tolerance in the pancreatic islets. However, many of the cases with newly diagnosed autoimmune response following SARS-CoV-2 infection also presented with significantly high HbA1c (glycated hemoglobin) levels that indicated progression of an already set diabetes, rather than new-onset T1D. Here we review the potential underlying mechanisms behind loss of functional β-cell mass as a result of SARS-CoV-2 infection that can trigger new-onset T1D.
Collapse
Affiliation(s)
- Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore.,Centre of Research of Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Gargi Meur
- ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| |
Collapse
|
23
|
Jansen TJP, Brom M, Boss M, Buitinga M, Tack CJ, van Meijel LA, de Galan BE, Gotthardt M. Importance of beta cell mass for glycaemic control in people with type 1 diabetes. Diabetologia 2023; 66:367-375. [PMID: 36394644 PMCID: PMC9669532 DOI: 10.1007/s00125-022-05830-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022]
Abstract
AIMS/HYPOTHESIS The role of beta cell mass in the balance of glucose control and hypoglycaemic burden in people with type 1 diabetes is unclear. We applied positron emission tomography (PET) imaging with radiolabelled exendin to compare beta cell mass among people with type 1 diabetes and either low glucose variability (LGV) or high glucose variability (HGV). METHODS All participants with either LGV (n=9) or HGV (n=7) underwent a mixed-meal tolerance test to determine beta cell function and wore a blinded continuous glucose monitor for a week. After an i.v. injection with [68Ga]Ga-NODAGA-exendin-4, PET images were acquired for the quantification of pancreatic uptake of radiolabelled exendin. The mean standardised uptake value (SUVmean) of the pancreas was used to determine the amount of beta cell mass. RESULTS Participants with LGV had lower HbA1c (46.0 mmol/mol [44.5-52.5] [6.4% (6.3-7)] vs 80 mmol/mol [69.0-110] [9.5% (8.5-12.2)], p=0.001) and higher time in range (TIR) (75.6% [73.5-90.3] vs 38.7% [25.1-48.5], p=0.002) than those with HGV. The SUVmean of the pancreas was higher for the LGV than for the HGV group (5.1 [3.6-5.6] vs 2.9 [2.1-3.4], p=0.008). The AUCC-peptide:AUCglucose ratio was numerically, but not statistically, higher in the LGV compared with the HGV group (2.7×10-2 [6.2×10-4-5.3×10-2] vs 9.3×10-4 [4.7×10-4-5.2×10-3], p=0.21). SUVmean correlated with the AUCC-peptide:AUCglucose ratio (Pearson r=0.64, p=0.01), as well as with the TIR (r=0.64, p=0.01) and the SD of interstitial glucose levels (r=-0.66, p=0.007). CONCLUSION/INTERPRETATION Our data show higher beta cell mass in people with type 1 diabetes and LGV than in those with HGV, independent of beta cell function.
Collapse
Affiliation(s)
- Theodorus J P Jansen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maarten Brom
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marti Boss
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Mijke Buitinga
- Nutrition and Movement Sciences, Maastricht University, Maastricht, the Netherlands
- Radiology and Nuclear Medicine, Maastricht UMC+, Maastricht, the Netherlands
| | - Cees J Tack
- Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lian A van Meijel
- Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Internal Medicine, Maxima Medical Center, Veldhoven, the Netherlands
| | - Bastiaan E de Galan
- Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Internal Medicine, Maastricht UMC+, Maastricht, the Netherlands
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
24
|
Brusco N, Sebastiani G, Di Giuseppe G, Licata G, Grieco GE, Fignani D, Nigi L, Formichi C, Aiello E, Auddino S, Quero G, Cefalo CMA, Cinti F, Mari A, Ferraro PM, Pontecorvi A, Alfieri S, Giaccari A, Dotta F, Mezza T. Intra-islet insulin synthesis defects are associated with endoplasmic reticulum stress and loss of beta cell identity in human diabetes. Diabetologia 2023; 66:354-366. [PMID: 36280617 PMCID: PMC9807540 DOI: 10.1007/s00125-022-05814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS Endoplasmic reticulum (ER) stress and beta cell dedifferentiation both play leading roles in impaired insulin secretion in overt type 2 diabetes. Whether and how these factors are related in the natural history of the disease remains, however, unclear. METHODS In this study, we analysed pancreas biopsies from a cohort of metabolically characterised living donors to identify defects in in situ insulin synthesis and intra-islet expression of ER stress and beta cell phenotype markers. RESULTS We provide evidence that in situ altered insulin processing is closely connected to in vivo worsening of beta cell function. Further, activation of ER stress genes reflects the alteration of insulin processing in situ. Using a combination of 17 different markers, we characterised individual pancreatic islets from normal glucose tolerant, impaired glucose tolerant and type 2 diabetic participants and reconstructed disease progression. CONCLUSIONS/INTERPRETATION Our study suggests that increased beta cell workload is accompanied by a progressive increase in ER stress with defects in insulin synthesis and loss of beta cell identity.
Collapse
Affiliation(s)
- Noemi Brusco
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Guido Sebastiani
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Gianfranco Di Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giada Licata
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Giuseppina E Grieco
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Daniela Fignani
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Laura Nigi
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Caterina Formichi
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Elena Aiello
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Stefano Auddino
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Giuseppe Quero
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- Pancreatic surgery unit, Pancreatic Advanced Research Center (CRMPG), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Chiara M A Cefalo
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Pietro M Ferraro
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Sergio Alfieri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- Pancreatic surgery unit, Pancreatic Advanced Research Center (CRMPG), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Francesco Dotta
- Diabetes and Metabolic Disease Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy.
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
- Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| |
Collapse
|
25
|
E96V Mutation in the Kdelr3 Gene Is Associated with Type 2 Diabetes Susceptibility in Obese NZO Mice. Int J Mol Sci 2023; 24:ijms24010845. [PMID: 36614300 PMCID: PMC9820861 DOI: 10.3390/ijms24010845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Type 2 diabetes (T2D) represents a multifactorial metabolic disease with a strong genetic predisposition. Despite elaborate efforts in identifying the genetic variants determining individual susceptibility towards T2D, the majority of genetic factors driving disease development remain poorly understood. With the aim to identify novel T2D risk genes we previously generated an N2 outcross population using the two inbred mouse strains New Zealand obese (NZO) and C3HeB/FeJ (C3H). A linkage study performed in this population led to the identification of the novel T2D-associated quantitative trait locus (QTL) Nbg15 (NZO blood glucose on chromosome 15, Logarithm of odds (LOD) 6.6). In this study we used a combined approach of positional cloning, gene expression analyses and in silico predictions of DNA polymorphism on gene/protein function to dissect the genetic variants linking Nbg15 to the development of T2D. Moreover, we have generated congenic strains that associated the distal sublocus of Nbg15 to mechanisms altering pancreatic beta cell function. In this sublocus, Cbx6, Fam135b and Kdelr3 were nominated as potential causative genes associated with the Nbg15 driven effects. Moreover, a putative mutation in the Kdelr3 gene from NZO was identified, negatively influencing adaptive responses associated with pancreatic beta cell death and induction of endoplasmic reticulum stress. Importantly, knockdown of Kdelr3 in cultured Min6 beta cells altered insulin granules maturation and pro-insulin levels, pointing towards a crucial role of this gene in islets function and T2D susceptibility.
Collapse
|
26
|
Teitelman G. Abnormal Expression of an Insulin Synthesizing Enzyme in Islets of Adult Autoantibody Positive Donors. J Histochem Cytochem 2022; 70:695-706. [PMID: 36341551 PMCID: PMC9660365 DOI: 10.1369/00221554221138368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
The observation that the two active forms of proprotein convertase 1/3 (PC1/3) were differentially expressed in beta cells of normal islets raised the possibility that this heterogeneity is lost during type 1 diabetes (T1D) progression. To test this hypothesis, the expression of the convertase was evaluated by confocal microscopy in sections of human pancreas of autoantibody positive (AA+) and T1D donors and compared with that of control. Islets of T1D pancreas were comprised of beta cells expressing either low or high PC1/3 levels and all islets of a pancreatic section contained only one beta cell type. Pancreata of AA+ donors contained either of these two classes of islets intermixed with normal islets comprised of beta cells with heterogeneous PC1/3 expression. This alteration affected the expression of proinsulin and insulin, which in most AA+ and T1D donors were lower than in controls. The present results indicate that the heterogeneity of PC1/3 expression is lost in all beta cells in a subset islets of AA+ donors and in all islets of T1D donors. These findings suggest that the heterogeneity of PC1/3 expression is a biomarker of human beta cell health and that its loss coincides with the initial stages of T1D.
Collapse
Affiliation(s)
- Gladys Teitelman
- Department of Cell Biology, SUNY Downstate Health
Sciences University, Brooklyn, NY
| |
Collapse
|
27
|
Yang ML, Connolly SE, Gee RJ, Lam TT, Kanyo J, Peng J, Guyer P, Syed F, Tse HM, Clarke SG, Clarke CF, James EA, Speake C, Evans-Molina C, Arvan P, Herold KC, Wen L, Mamula MJ. Carbonyl Posttranslational Modification Associated With Early-Onset Type 1 Diabetes Autoimmunity. Diabetes 2022; 71:1979-1993. [PMID: 35730902 PMCID: PMC9450849 DOI: 10.2337/db21-0989] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022]
Abstract
Inflammation and oxidative stress in pancreatic islets amplify the appearance of various posttranslational modifications to self-proteins. In this study, we identified a select group of carbonylated islet proteins arising before the onset of hyperglycemia in NOD mice. Of interest, we identified carbonyl modification of the prolyl-4-hydroxylase β subunit (P4Hb) that is responsible for proinsulin folding and trafficking as an autoantigen in both human and murine type 1 diabetes. We found that carbonylated P4Hb is amplified in stressed islets coincident with decreased glucose-stimulated insulin secretion and altered proinsulin-to-insulin ratios. Autoantibodies against P4Hb were detected in prediabetic NOD mice and in early human type 1 diabetes prior to the onset of anti-insulin autoimmunity. Moreover, we identify autoreactive CD4+ T-cell responses toward carbonyl-P4Hb epitopes in the circulation of patients with type 1 diabetes. Our studies provide mechanistic insight into the pathways of proinsulin metabolism and in creating autoantigenic forms of insulin in type 1 diabetes.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Sean E. Connolly
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Renelle J. Gee
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| | - TuKiet T. Lam
- Mass Spectrometry & Proteomics Resource, W.M. Keck Foundation Biotechnology Resource Laboratory, New Haven
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Jean Kanyo
- Mass Spectrometry & Proteomics Resource, W.M. Keck Foundation Biotechnology Resource Laboratory, New Haven
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Farooq Syed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Hubert M. Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA
| | - Eddie A. James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
| | - Peter Arvan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Kevan C. Herold
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT
- Department of Immunobiology, Yale University, New Haven, CT
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT
| |
Collapse
|
28
|
Zhang X, Luo S, Wang M, Huang Q, Fang W, Li J, Liu T, Zhang Y, Deng Z, Liu CL, Guan S, Ayala JE, Flavell RA, Kulkarni RN, Libby P, Guo J, Liu Z, Shi GP. IL18 signaling causes islet β cell development and insulin secretion via different receptors on acinar and β cells. Dev Cell 2022; 57:1496-1511.e6. [DOI: 10.1016/j.devcel.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/31/2021] [Accepted: 05/16/2022] [Indexed: 12/13/2022]
|
29
|
Nwosu BU. Partial Clinical Remission of Type 1 Diabetes: The Need for an Integrated Functional Definition Based on Insulin-Dose Adjusted A1c and Insulin Sensitivity Score. Front Endocrinol (Lausanne) 2022; 13:884219. [PMID: 35592786 PMCID: PMC9110823 DOI: 10.3389/fendo.2022.884219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Despite advances in the characterization of partial clinical remission (PR) of type 1 diabetes, an accurate definition of PR remains problematic. Two recent studies in children with new-onset T1D demonstrated serious limitations of the present gold standard definition of PR, a stimulated C-peptide (SCP) concentration of >300 pmol/L. The first study employed the concept of insulin sensitivity score (ISS) to show that 55% of subjects with new-onset T1D and a detectable SCP level of >300 pmol/L had low insulin sensitivity (IS) and thus might not be in remission when assessed by insulin-dose adjusted A1c (IDAA1c), an acceptable clinical marker of PR. The second study, a randomized controlled trial of vitamin D (ergocalciferol) administration in children and adolescents with new-onset T1D, demonstrated no significant difference in SCP between the ergocalciferol and placebo groups, but showed a significant blunting of the temporal trend in both A1c and IDAA1c in the ergocalciferol group. These two recent studies indicate the poor specificity and sensitivity of SCP to adequately characterize PR and thus call for a re-examination of current approaches to the definition of PR. They demonstrate the limited sensitivity of SCP, a static biochemical test, to detect the complex physiological changes that occur during PR such as changes in insulin sensitivity, insulin requirements, body weight, and physical activity. These shortcomings call for a broader definition of PR using a combination of functional markers such as IDAA1c and ISS to provide a valid assessment of PR that reaches beyond the static changes in SCP alone.
Collapse
Affiliation(s)
- Benjamin Udoka Nwosu
- Division of Endocrinology, Department of Pediatrics, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| |
Collapse
|
30
|
Rodríguez-Castelán J, Zepeda-Pérez D, Rojas-Juárez R, Aceves C, Castelán F, Cuevas-Romero E. Effects of hypothyroidism on the female pancreas involve the regulation of estrogen receptors. Steroids 2022; 181:108996. [PMID: 35245530 DOI: 10.1016/j.steroids.2022.108996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the impact of short-time hypothyroidism on the expression of aromatase, estrogen receptors (ERα, β), and GPR30 in the pancreas of female rabbits. The formation of new islets and the expression of insulin, GLUT4, and lactate dehydrogenase (LDH) were also analyzed. This purpose is based on actions that thyroid hormones and estrogens have on β-cells differentiation, acinar cell function, and insulin secretion. Twelve Chinchilla-breed adult virgin female rabbits were divided into control (n = 6) and hypothyroid (n = 6; methimazole 10 mg/kg for 30 days) groups. In the complete pancreas, expressions of aromatase and estrogen receptors, as well as proinsulin, GLUT4, and LDH were determined by western blot. Characteristics of islets were measured in slices of the pancreas with immunohistochemistry for insulin. Islet and acinar cells express aromatase, ERα, ERβ, and GPR30. Hypothyroidism increased the expression of ERα and diminished that for aromatase, ERβ, and GPR30 in the pancreas. It also promoted a high number of extra small islets (new islets) and increased the expression of proinsulin and GLUT4 in the pancreas. Our results show that actions of thyroid hormones and estrogens on β-cells neogenesis, acinar cell function, and synthesis and secretion of insulin are linked. Thus, the effects of hypothyroidism on the pancreas could include summatory actions of thyroid hormones plus estrogens. Our findings indicate the importance of monitoring estrogen levels and actions on the pancreas of hypothyroid women, particularly when serum estrogen concentrations are affected such as menopausal, pregnant, and those with contraceptive use.
Collapse
Affiliation(s)
- Julia Rodríguez-Castelán
- Autonomous University of Tlaxcala, Tlaxcala, Tlaxcala, Mexico; Department of Cellular and Molecular Neurobiology, Institute of Neurobiology, Autonomous Nacional University of Mexico, Juriquilla, Querétaro, Mexico
| | | | | | - Carmen Aceves
- Department of Cellular and Molecular Neurobiology, Institute of Neurobiology, Autonomous Nacional University of Mexico, Juriquilla, Querétaro, Mexico
| | - Francisco Castelán
- Department of Cellular and Physiology, Institute of Biomedical Research, Autonomous Nacional University of Mexico, Mexico City, Mexico; Center Tlaxcala of Behavior Biology, Autonomous University of Tlaxcala, Tlaxcala, Tlaxcala, Mexico
| | - Estela Cuevas-Romero
- Center Tlaxcala of Behavior Biology, Autonomous University of Tlaxcala, Tlaxcala, Tlaxcala, Mexico.
| |
Collapse
|
31
|
Buschard K. The etiology and pathogenesis of type 1 diabetes - A personal, non-systematic review of possible causes, and interventions. Front Endocrinol (Lausanne) 2022; 13:876470. [PMID: 36093076 PMCID: PMC9452747 DOI: 10.3389/fendo.2022.876470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
In this review after a lifelong research career, my personal opinion on the development of type 1 diabetes (T1D) from its very start to clinical manifestation will be described. T1D is a disease of an increased intestinal permeability and a reduced pancreas volume. I am convinced that virus might be the initiator and that this virus could persist on strategically significant locations. Furthermore, intake of gluten is important both in foetal life and at later ages. Disturbances in sphingolipid metabolism may also be of crucial importance. During certain stages of T1D, T cells take over resulting in the ultimate destruction of beta cells, which manifests T1D as an autoimmune disease. Several preventive and early treatment strategies are mentioned. All together this review has more new theories than usually, and it might also be more speculative than ordinarily. But without new ideas and theories advancement is difficult, even though everything might not hold true during the continuous discovery of the etiology and pathogenesis of T1D.
Collapse
|
32
|
Sahin GS, Lee H, Engin F. An accomplice more than a mere victim: The impact of β-cell ER stress on type 1 diabetes pathogenesis. Mol Metab 2021; 54:101365. [PMID: 34728341 PMCID: PMC8606542 DOI: 10.1016/j.molmet.2021.101365] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Pancreatic β-cells are the insulin factory of an organism with a mission to regulate glucose homeostasis in the body. Due to their high secretory activity, β-cells rely on a functional and intact endoplasmic reticulum (ER). Perturbations to ER homeostasis and unmitigated stress lead to β-cell dysfunction and death. Type 1 diabetes (T1D) is a chronic inflammatory disease caused by the autoimmune-mediated destruction of β-cells. Although autoimmunity is an essential component of T1D pathogenesis, accumulating evidence suggests an important role of β-cell ER stress and aberrant unfolded protein response (UPR) in disease initiation and progression. SCOPE OF REVIEW In this article, we introduce ER stress and the UPR, review β-cell ER stress in various mouse models, evaluate its involvement in inflammation, and discuss the effects of ER stress on β-cell plasticity and demise, and islet autoimmunity in T1D. We also highlight the relationship of ER stress with other stress response pathways and provide insight into ongoing clinical studies targeting ER stress and the UPR for the prevention or treatment of T1D. MAJOR CONCLUSIONS Evidence from ex vivo studies, in vivo mouse models, and tissue samples from patients suggest that β-cell ER stress and a defective UPR contribute to T1D pathogenesis. Thus, restoration of β-cell ER homeostasis at various stages of disease presents a plausible therapeutic strategy for T1D. Identifying the specific functions and regulation of each UPR sensor in β-cells and uncovering the crosstalk between stressed β-cells and immune cells during T1D progression would provide a better understanding of the molecular mechanisms of disease process, and may reveal novel targets for development of effective therapies for T1D.
Collapse
Affiliation(s)
- Gulcan Semra Sahin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Hugo Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA; Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA; Department of Cell & Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
33
|
How benign autoimmunity becomes detrimental in type 1 diabetes. Proc Natl Acad Sci U S A 2021; 118:2116508118. [PMID: 34697240 DOI: 10.1073/pnas.2116508118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
|
34
|
Kahn SE, Chen YC, Esser N, Taylor AJ, van Raalte DH, Zraika S, Verchere CB. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocr Rev 2021; 42:528-583. [PMID: 34180979 PMCID: PMC9115372 DOI: 10.1210/endrev/bnab021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 02/08/2023]
Abstract
The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet β cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the β cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of β-cell secretory function that themselves could be considered biomarkers.
Collapse
Affiliation(s)
- Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Yi-Chun Chen
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - Austin J Taylor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Daniël H van Raalte
- Department of Internal Medicine, Amsterdam University Medical Center (UMC), Vrije Universiteit (VU) University Medical Center, 1007 MB Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam University Medical Center (UMC), Academic Medical Center, 1007 MB Amsterdam, The Netherlands
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, 98108 WA, USA
| | - C Bruce Verchere
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V5Z 4H4, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| |
Collapse
|
35
|
Altman MK, Schaub CM, Dadi PK, Dickerson MT, Zaborska KE, Nakhe AY, Graff SM, Galletta TJ, Amarnath G, Thorson AS, Gu G, Jacobson DA. TRPM7 is a crucial regulator of pancreatic endocrine development and high-fat-diet-induced β-cell proliferation. Development 2021; 148:dev194928. [PMID: 34345920 PMCID: PMC8406533 DOI: 10.1242/dev.194928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/20/2021] [Indexed: 12/31/2022]
Abstract
The melastatin subfamily of the transient receptor potential channels (TRPM) are regulators of pancreatic β-cell function. TRPM7 is the most abundant islet TRPM channel; however, the role of TRPM7 in β-cell function has not been determined. Here, we used various spatiotemporal transgenic mouse models to investigate how TRPM7 knockout influences pancreatic endocrine development, proliferation and function. Ablation of TRPM7 within pancreatic progenitors reduced pancreatic size, and α-cell and β-cell mass. This resulted in modestly impaired glucose tolerance. However, TRPM7 ablation following endocrine specification or in adult mice did not impact endocrine expansion or glucose tolerance. As TRPM7 regulates cell proliferation, we assessed how TRPM7 influences β-cell hyperplasia under insulin-resistant conditions. β-Cell proliferation induced by high-fat diet was significantly decreased in TRPM7-deficient β-cells. The endocrine roles of TRPM7 may be influenced by cation flux through the channel, and indeed we found that TRPM7 ablation altered β-cell Mg2+ and reduced the magnitude of elevation in β-cell Mg2+ during proliferation. Together, these findings revealed that TRPM7 controls pancreatic development and β-cell proliferation, which is likely due to regulation of Mg2+ homeostasis.
Collapse
Affiliation(s)
- Molly K. Altman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Charles M. Schaub
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Prasanna K. Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Matthew T. Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Karolina E. Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Arya Y. Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Sarah M. Graff
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Thomas J. Galletta
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Gautami Amarnath
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
- Molecular Neurophysiology, Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Ariel S. Thorson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Guoqiang Gu
- Vanderbilt Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| |
Collapse
|
36
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Rodriguez-Calvo T, Chen YC, Verchere CB, Haataja L, Arvan P, Leete P, Richardson SJ, Morgan NG, Qian WJ, Pugliese A, Atkinson M, Evans-Molina C, Sims EK. Altered β-Cell Prohormone Processing and Secretion in Type 1 Diabetes. Diabetes 2021; 70:1038-1050. [PMID: 33947721 PMCID: PMC8173804 DOI: 10.2337/dbi20-0034] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Analysis of data from clinical cohorts, and more recently from human pancreatic tissue, indicates that reduced prohormone processing is an early and persistent finding in type 1 diabetes. In this article, we review the current state of knowledge regarding alterations in islet prohormone expression and processing in type 1 diabetes and consider the clinical impact of these findings. Lingering questions, including pathologic etiologies and consequences of altered prohormone expression and secretion in type 1 diabetes, and the natural history of circulating prohormone production in health and disease, are considered. Finally, key next steps required to move forward in this area are outlined, including longitudinal testing of relevant clinical populations, studies that probe the genetics of altered prohormone processing, the need for combined functional and histologic testing of human pancreatic tissues, continued interrogation of the intersection between prohormone processing and autoimmunity, and optimal approaches for analysis. Successful resolution of these questions may offer the potential to use altered prohormone processing as a biomarker to inform therapeutic strategies aimed at personalized intervention during the natural history of type 1 diabetes and as a pathogenic anchor for identification of potential disease-specific endotypes.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Yi-Chun Chen
- Department of Surgery, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, Canada
| | - C Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Centre for Molecular Medicine and Therapeutics, and BC Children's Hospital Research Institute, Vancouver, Canada
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI
| | - Pia Leete
- Exeter Centre of Excellence for Diabetes, Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Sarah J Richardson
- Exeter Centre of Excellence for Diabetes, Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Noel G Morgan
- Exeter Centre of Excellence for Diabetes, Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Mark Atkinson
- Departments of Pathology and Pediatrics, Diabetes Institute, University of Florida, Gainesville, FL
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Departments of Cellular and Integrative Physiology, Medicine, and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Emily K Sims
- Center for Diabetes and Metabolic Diseases, Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
38
|
Abstract
As part of the centennial celebration of insulin's discovery, this review summarizes the current understanding of the genetics, pathogenesis, treatment, and outcomes in type 1 diabetes (T1D). T1D results from an autoimmune response that leads to destruction of the β cells in the pancreatic islet and requires lifelong insulin therapy. While much has been learned about T1D, it is now clear that there is considerable heterogeneity in T1D with regard to genetics, pathology, response to immune-based therapies, clinical course, and susceptibility to diabetes-related complications. This Review highlights knowledge gaps and opportunities to improve the understanding of T1D pathogenesis and outlines emerging therapies to treat or prevent T1D and reduce the burden of T1D.
Collapse
|
39
|
Espes D, Carlsson PO, Selvaraju RK, Rosestedt M, Cheung P, Ahlström H, Korsgren O, Eriksson O. Longitudinal Assessment of 11C-5-Hydroxytryptophan Uptake in Pancreas After Debut of Type 1 Diabetes. Diabetes 2021; 70:966-975. [PMID: 33479059 DOI: 10.2337/db20-0776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022]
Abstract
The longitudinal alterations of the pancreatic β-cell and islet mass in the progression of type 1 diabetes (T1D) are still poorly understood. The objective of this study was to repeatedly assess the endocrine volume and the morphology of the pancreas for up to 24 months after T1D diagnosis (n = 16), by 11C-5-hydroxytryptophan (11C-5-HTP) positron emission tomography (PET) and MRI. Study participants were examined four times by PET/MRI: at recruitment and then after 6, 12, and 24 months. Clinical examinations and assessment of β-cell function by a mixed-meal tolerance test and fasting blood samples were performed in connection with the imaging examination. Pancreas volume has a tendency to decrease from 50.2 ± 10.3 mL at T1D debut to 42.2 ± 14.6 mL after 24 months (P < 0.098). Pancreas uptake of 11C-5-HTP (e.g., the volume of the endocrine pancreas) did not decrease from T1D diagnosis (0.23 ± 0.10 % of injected dose) to 24-month follow-up, 0.21 ± 0.14% of injected dose, and exhibited low interindividual changes. Pancreas perfusion was unchanged from diagnosis to 24-month follow-up. The pancreas uptake of 11C-5-HTP correlated with the long-term metabolic control as estimated by HbA1c (P < 0.05). Our findings argue against a major destruction of β-cell or islet mass in the 2-year period after diagnosis of T1D.
Collapse
Affiliation(s)
- Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ram Kumar Selvaraju
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Maria Rosestedt
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, Mölndal, Sweden
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Montaser H, Patel KA, Balboa D, Ibrahim H, Lithovius V, Näätänen A, Chandra V, Demir K, Acar S, Ben-Omran T, Colclough K, Locke JM, Wakeling M, Lindahl M, Hattersley AT, Saarimäki-Vire J, Otonkoski T. Loss of MANF Causes Childhood-Onset Syndromic Diabetes Due to Increased Endoplasmic Reticulum Stress. Diabetes 2021; 70:1006-1018. [PMID: 33500254 PMCID: PMC7610619 DOI: 10.2337/db20-1174] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident protein that plays a crucial role in attenuating ER stress responses. Although MANF is indispensable for the survival and function of mouse β-cells, its precise role in human β-cell development and function is unknown. In this study, we show that lack of MANF in humans results in diabetes due to increased ER stress, leading to impaired β-cell function. We identified two patients from different families with childhood diabetes and a neurodevelopmental disorder associated with homozygous loss-of-function mutations in the MANF gene. To study the role of MANF in human β-cell development and function, we knocked out the MANF gene in human embryonic stem cells and differentiated them into pancreatic endocrine cells. Loss of MANF induced mild ER stress and impaired insulin-processing capacity of β-cells in vitro. Upon implantation to immunocompromised mice, the MANF knockout grafts presented elevated ER stress and functional failure, particularly in recipients with diabetes. By describing a new form of monogenic neurodevelopmental diabetes syndrome caused by disturbed ER function, we highlight the importance of adequate ER stress regulation for proper human β-cell function and demonstrate the crucial role of MANF in this process.
Collapse
Affiliation(s)
- Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kashyap A Patel
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, U.K.
| | - Diego Balboa
- Bioinformatics and Genomics Program, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Näätänen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Korcan Demir
- Department of Pediatric Endocrinology, Dokuz Eylül University, Izmir, Turkey
| | - Sezer Acar
- Department of Pediatric Endocrinology, Dokuz Eylül University, Izmir, Turkey
| | - Tawfeg Ben-Omran
- Section of Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
- Department of Pediatrics, Weill Cornell Medical College, Doha, Qatar
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Kevin Colclough
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, U.K
| | - Jonathan M Locke
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, U.K
| | - Matthew Wakeling
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, U.K
| | - Maria Lindahl
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, U.K
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Carré A, Mallone R. Making Insulin and Staying Out of Autoimmune Trouble: The Beta-Cell Conundrum. Front Immunol 2021; 12:639682. [PMID: 33854508 PMCID: PMC8039383 DOI: 10.3389/fimmu.2021.639682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/12/2021] [Indexed: 12/28/2022] Open
Abstract
Autoimmune type 1 diabetes (T1D) results from the intricate crosstalk of various immune cell types. CD8+ T cells dominate the pro-inflammatory milieu of islet infiltration (insulitis), and are considered as key effectors of beta-cell destruction, through the recognition of MHC Class I-peptide complexes. The pathways generating MHC Class I-restricted antigens in beta cells are poorly documented. Given their specialized insulin secretory function, the associated granule processing and degradation pathways, basal endoplasmic reticulum stress and susceptibility to additional stressors, alternative antigen processing and presentation (APP) pathways are likely to play a significant role in the generation of the beta-cell immunopeptidome. As direct evidence is missing, we here intersect the specificities of beta-cell function and the literature about APP in other cellular models to generate some hypotheses on APPs relevant to beta cells. We further elaborate on the potential role of these pathways in T1D pathogenesis, based on the current knowledge of antigens presented by beta cells. A better understanding of these pathways may pinpoint novel mechanisms amenable to therapeutic targeting to modulate the immunogenicity of beta cells.
Collapse
Affiliation(s)
- Alexia Carré
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
42
|
Smeets S, De Paep DL, Stangé G, Verhaeghen K, Van der Auwera B, Keymeulen B, Weets I, Ling Z, In't Veld P, Gorus F. Insulitis in the pancreas of non-diabetic organ donors under age 25 years with multiple circulating autoantibodies against islet cell antigens. Virchows Arch 2021; 479:295-304. [PMID: 33594586 PMCID: PMC8364522 DOI: 10.1007/s00428-021-03055-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/16/2022]
Abstract
Autoantibodies against islet cell antigens are routinely used to identify subjects at increased risk of symptomatic type 1 diabetes, but their relation to the intra-islet pathogenetic process that leads to positivity for these markers is poorly understood. We screened 556 non-diabetic organ donors (3 months to 24 years) for five different autoantibodies and found positivity in 27 subjects, 25 single- and two double autoantibody-positive donors. Histopathological screening of pancreatic tissue samples showed lesion characteristic for recent-onset type 1 diabetes in the two organ donors with a high-risk profile, due to their positivity for multiple autoantibodies and HLA-inferred risk. Inflammatory infiltrates (insulitis) were found in a small fraction of islets (<5%) and consisted predominantly of CD3+CD8+ T-cells. Islets with insulitis were found in close proximity to islets devoid of insulin-positivity; such pseudo-atrophic islets were present in multiple small foci scattered throughout the pancreatic tissue or were found to be distributed with a lobular pattern. Relative beta cell area in both single and multiple autoantibody-positive donors was comparable to that in autoantibody-negative controls. In conclusion, in organ donors under age 25 years, insulitis and pseudo-atrophic islets were restricted to multiple autoantibody-positive individuals allegedly at high risk of developing symptomatic type 1 diabetes, in line with reports in older age groups. These observations may give further insight into the early pathogenetic events that may culminate in clinically overt disease.
Collapse
Affiliation(s)
- Silke Smeets
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Diedert Luc De Paep
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Beta Cell Bank, UZ Brussel, Brussels, Belgium.,Department of Surgery, UZ Brussel, Brussels, Belgium
| | - Geert Stangé
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Bart Van der Auwera
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Bart Keymeulen
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ilse Weets
- Clinical Biology, UZ Brussel, Brussels, Belgium
| | - Zhidong Ling
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Beta Cell Bank, UZ Brussel, Brussels, Belgium
| | - Peter In't Veld
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Frans Gorus
- Diabetes Research Center (DRC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
43
|
Liu M, Huang Y, Xu X, Li X, Alam M, Arunagiri A, Haataja L, Ding L, Wang S, Itkin-Ansari P, Kaufman RJ, Tsai B, Qi L, Arvan P. Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. J Clin Invest 2021; 131:142240. [PMID: 33463547 PMCID: PMC7810482 DOI: 10.1172/jci142240] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Both basal and glucose-stimulated insulin release occur primarily by insulin secretory granule exocytosis from pancreatic β cells, and both are needed to maintain normoglycemia. Loss of insulin-secreting β cells, accompanied by abnormal glucose tolerance, may involve simple exhaustion of insulin reserves (which, by immunostaining, appears as a loss of β cell identity), or β cell dedifferentiation, or β cell death. While various sensing and signaling defects can result in diminished insulin secretion, somewhat less attention has been paid to diabetes risk caused by insufficiency in the biosynthetic generation and maintenance of the total insulin granule storage pool. This Review offers an overview of insulin biosynthesis, beginning with the preproinsulin mRNA (translation and translocation into the ER), proinsulin folding and export from the ER, and delivery via the Golgi complex to secretory granules for conversion to insulin and ultimate hormone storage. All of these steps are needed for generation and maintenance of the total insulin granule pool, and defects in any of these steps may, weakly or strongly, perturb glycemic control. The foregoing considerations have obvious potential relevance to the pathogenesis of type 2 diabetes and some forms of monogenic diabetes; conceivably, several of these concepts might also have implications for β cell failure in type 1 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yumeng Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xiaoxi Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Maroof Alam
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | | | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, and
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
44
|
Azoury ME, Tarayrah M, Afonso G, Pais A, Colli ML, Maillard C, Lavaud C, Alexandre-Heymann L, Gonzalez-Duque S, Verdier Y, Vinh J, Pinto S, Buus S, Dubois-Laforgue D, Larger E, Beressi JP, Bruno G, Eizirik DL, You S, Mallone R. Peptides Derived From Insulin Granule Proteins Are Targeted by CD8 + T Cells Across MHC Class I Restrictions in Humans and NOD Mice. Diabetes 2020; 69:2678-2690. [PMID: 32928873 DOI: 10.2337/db20-0013] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022]
Abstract
The antigenic peptides processed by β-cells and presented through surface HLA class I molecules are poorly characterized. Each HLA variant (e.g., the most common being HLA-A2 and HLA-A3) carries some peptide-binding specificity. Hence, features that, despite these specificities, remain shared across variants may reveal factors favoring β-cell immunogenicity. Building on our previous description of the HLA-A2/A3 peptidome of β-cells, we analyzed the HLA-A3-restricted peptides targeted by circulating CD8+ T cells. Several peptides were recognized by CD8+ T cells within a narrow frequency (1-50/106), which was similar in donors with and without type 1 diabetes and harbored variable effector/memory fractions. These epitopes could be classified as conventional peptides or neoepitopes, generated either via peptide cis-splicing or mRNA splicing (e.g., secretogranin-5 [SCG5]-009). As reported for HLA-A2-restricted peptides, several epitopes originated from β-cell granule proteins (e.g., SCG3, SCG5, and urocortin-3). Similarly, H-2Kd-restricted CD8+ T cells recognizing the murine orthologs of SCG5, urocortin-3, and proconvertase-2 infiltrated the islets of NOD mice and transferred diabetes into NOD/scid recipients. The finding of granule proteins targeted in both humans and NOD mice supports their disease relevance and identifies the insulin granule as a rich source of epitopes, possibly reflecting its impaired processing in type 1 diabetes.
Collapse
Affiliation(s)
| | - Mahmoud Tarayrah
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Georgia Afonso
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Aurore Pais
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Maikel L Colli
- Université Libre de Bruxelles Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Claire Maillard
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Cassandra Lavaud
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Laure Alexandre-Heymann
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires de Paris Centre-Université de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, Paris, France
| | - Sergio Gonzalez-Duque
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
- École Supérieure de Physique et de Chimie Industrielles Paris, Université Paris Sciences et Lettres, Spectrométrie de Masse Biologique et Protéomique, CNRS USR3149, Paris, France
| | - Yann Verdier
- École Supérieure de Physique et de Chimie Industrielles Paris, Université Paris Sciences et Lettres, Spectrométrie de Masse Biologique et Protéomique, CNRS USR3149, Paris, France
| | - Joelle Vinh
- École Supérieure de Physique et de Chimie Industrielles Paris, Université Paris Sciences et Lettres, Spectrométrie de Masse Biologique et Protéomique, CNRS USR3149, Paris, France
| | - Sheena Pinto
- Division of Developmental Immunology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Soren Buus
- Laboratory of Experimental Immunology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Danièle Dubois-Laforgue
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires de Paris Centre-Université de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, Paris, France
| | - Etienne Larger
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires de Paris Centre-Université de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, Paris, France
| | - Jean-Paul Beressi
- Service de Diabétologie, Centre Hospitalier de Versailles André Mignot, Le Chesnay, France
| | - Graziella Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Decio L Eizirik
- Université Libre de Bruxelles Center for Diabetes Research and Welbio, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Sylvaine You
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires de Paris Centre-Université de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, Paris, France
| |
Collapse
|
45
|
Mallone R, Eizirik DL. Presumption of innocence for beta cells: why are they vulnerable autoimmune targets in type 1 diabetes? Diabetologia 2020; 63:1999-2006. [PMID: 32894310 DOI: 10.1007/s00125-020-05176-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
It is increasingly appreciated that the pathogenic mechanisms of type 1 diabetes involve both the autoimmune aggressors and their beta cell targets, which engage in a conflicting dialogue within and possibly outside the pancreas. Indeed, autoimmune CD8+ T cells, which are the final mediators of beta cell destruction, circulate at similar frequencies in type 1 diabetic and healthy individuals. Hence a universal state of 'benign' islet autoimmunity exists, and we hypothesise that its progression to type 1 diabetes may at least partially rely on a higher vulnerability of beta cells, which play a key, active role in disease development and/or amplification. We posit that this autoimmune vulnerability is rooted in some features of beta cell biology: the stress imposed by the high rate of production of insulin and other granule proteins, their dense vascularisation and the secretion of their products directly into the bloodstream. Gene variants that may predispose individuals to this vulnerability have been identified, e.g. MDA5, TYK2, PTPN2. They interact with environmental cues, such as viral infections, that may drive this genetic potential towards exacerbated local inflammation and progressive beta cell loss. On top of this, beta cells set up compensatory responses, such as the unfolded protein response, that become deleterious in the long term. The relative contribution of immune and beta cell drivers may vary and phenotypic subtypes (endotypes) are likely to exist. This dual view argues for the use of circulating biomarkers of both autoimmunity and beta cell stress for disease staging, and for the implementation of both immunomodulatory and beta cell-protective therapeutic strategies. Graphical abstract.
Collapse
Affiliation(s)
- Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, G.H. Cochin-Port Royal, Cassini building, 123 boulevard de Port Royal, 75014, Paris, France.
- Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires de Paris Centre-Université de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, 75014, Paris, France.
| | - Decio L Eizirik
- ULB Center for Diabetes Research and WELBIO, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| |
Collapse
|
46
|
Bender C, Rodriguez-Calvo T, Amirian N, Coppieters KT, von Herrath MG. The healthy exocrine pancreas contains preproinsulin-specific CD8 T cells that attack islets in type 1 diabetes. SCIENCE ADVANCES 2020; 6:6/42/eabc5586. [PMID: 33067232 PMCID: PMC7567597 DOI: 10.1126/sciadv.abc5586] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/03/2020] [Indexed: 05/03/2023]
Abstract
Preproinsulin (PPI) is presumably a crucial islet autoantigen found in patients with type 1 diabetes (T1D) but is also recognized by CD8+ T cells from healthy individuals. We quantified PPI-specific CD8+ T cells within different areas of the human pancreas from nondiabetic controls, autoantibody-positive donors, and donors with T1D to investigate their role in diabetes development. This spatial cellular quantitation revealed unusually high frequencies of autoreactive CD8+ T cells supporting the hypothesis that PPI is indeed a key autoantigen. To our surprise, PPI-specific CD8+ T cells were already abundantly present in the nondiabetic pancreas, thus questioning the dogma that T1D is caused by defective thymic deletion or systemic immune dysregulation. During T1D development, these cells accumulated in and around islets, indicating that an islet-specific trigger such as up-regulation of major histocompatibility complex class I might be essential to unmask beta cells to the immune system.
Collapse
Affiliation(s)
- Christine Bender
- Center for Type 1 Diabetes Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Teresa Rodriguez-Calvo
- Center for Type 1 Diabetes Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- The Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Diabetes Research, Munich-Neuherberg, Germany
| | - Natalie Amirian
- Center for Type 1 Diabetes Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ken T Coppieters
- Global Research Project Management, Novo Nordisk, Måløv, Denmark
| | - Matthias G von Herrath
- Center for Type 1 Diabetes Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
- The Novo Nordisk Research Center Seattle Inc., Seattle, WA, USA
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Emerging data have suggested that β-cell dysfunction may exacerbate the development and progression of type 1 diabetes (T1D). In this review, we highlight clinical and preclinical studies suggesting a role for β-cell dysfunction during the evolution of T1D and suggest agents that may promote β-cell health in T1D. RECENT FINDINGS Metabolic abnormalities exist years before development of hyperglycemia and exhibit a reproducible pattern reflecting progressive deterioration of β-cell function and increases in β-cell stress and death. Preclinical studies indicate that T1D may be prevented by modification of pathways impacting intrinsic β-cell stress and antigen presentation. Recent findings suggest that differences in metabolic phenotypes and β-cell stress may reflect differing endotypes of T1D. Multiple pathways representing potential drug targets have been identified, but most remain to be tested in human populations with preclinical disease. SUMMARY This cumulative body of work shows clear evidence that β-cell stress, dysfunction, and death are harbingers of impending T1D and likely contribute to progression of disease and insulin deficiency. Treatment with agents targeting β-cell health could augment interventions with immunomodulatory therapies but will need to be tested in intervention studies with endpoints carefully designed to capture changes in β-cell function and health.
Collapse
Affiliation(s)
- Emily K. Sims
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and the Department of Medicine, The University of Chicago, Chicago, IL
| | - Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Department of Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
- Department of Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
48
|
Abadpour S, Tyrberg B, Schive SW, Huldt CW, Gennemark P, Ryberg E, Rydén-Bergsten T, Smith DM, Korsgren O, Skrtic S, Scholz H, Winzell MS. Inhibition of the prostaglandin D 2-GPR44/DP2 axis improves human islet survival and function. Diabetologia 2020; 63:1355-1367. [PMID: 32350565 PMCID: PMC7286861 DOI: 10.1007/s00125-020-05138-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Inflammatory signals and increased prostaglandin synthesis play a role during the development of diabetes. The prostaglandin D2 (PGD2) receptor, GPR44/DP2, is highly expressed in human islets and activation of the pathway results in impaired insulin secretion. The role of GPR44 activation on islet function and survival rate during chronic hyperglycaemic conditions is not known. In this study, we investigate GPR44 inhibition by using a selective GPR44 antagonist (AZ8154) in human islets both in vitro and in vivo in diabetic mice transplanted with human islets. METHODS Human islets were exposed to PGD2 or proinflammatory cytokines in vitro to investigate the effect of GPR44 inhibition on islet survival rate. In addition, the molecular mechanisms of GPR44 inhibition were investigated in human islets exposed to high concentrations of glucose (HG) and to IL-1β. For the in vivo part of the study, human islets were transplanted under the kidney capsule of immunodeficient diabetic mice and treated with 6, 60 or 100 mg/kg per day of a GPR44 antagonist starting from the transplantation day until day 4 (short-term study) or day 17 (long-term study) post transplantation. IVGTT was performed on mice at day 10 and day 15 post transplantation. After termination of the study, metabolic variables, circulating human proinflammatory cytokines, and hepatocyte growth factor (HGF) were analysed in the grafted human islets. RESULTS PGD2 or proinflammatory cytokines induced apoptosis in human islets whereas GPR44 inhibition reversed this effect. GPR44 inhibition antagonised the reduction in glucose-stimulated insulin secretion induced by HG and IL-1β in human islets. This was accompanied by activation of the Akt-glycogen synthase kinase 3β signalling pathway together with phosphorylation and inactivation of forkhead box O-1and upregulation of pancreatic and duodenal homeobox-1 and HGF. Administration of the GPR44 antagonist for up to 17 days to diabetic mice transplanted with a marginal number of human islets resulted in reduced fasting blood glucose and lower glucose excursions during IVGTT. Improved glucose regulation was supported by increased human C-peptide levels compared with the vehicle group at day 4 and throughout the treatment period. GPR44 inhibition reduced plasma levels of TNF-α and growth-regulated oncogene-α/chemokine (C-X-C motif) ligand 1 and increased the levels of HGF in human islets. CONCLUSIONS/INTERPRETATION Inhibition of GPR44 in human islets has the potential to improve islet function and survival rate under inflammatory and hyperglycaemic stress. This may have implications for better survival rate of islets following transplantation.
Collapse
Affiliation(s)
- Shadab Abadpour
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Sognsvannsveien 20, 0027, Oslo, Norway
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Björn Tyrberg
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden
| | - Simen W Schive
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Sognsvannsveien 20, 0027, Oslo, Norway
| | - Charlotte Wennberg Huldt
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden
| | - Peter Gennemark
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden
- Department of Biomedical Engineering, University of Linköping, Linköping, Sweden
| | - Erik Ryberg
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden
| | - Tina Rydén-Bergsten
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden
| | - David M Smith
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden
- Hit Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, University of Uppsala, Uppsala, Sweden
| | - Stanko Skrtic
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden
- Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanne Scholz
- Department of Transplant Medicine and Institute for Surgical Research, Oslo University Hospital, Sognsvannsveien 20, 0027, Oslo, Norway.
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Maria Sörhede Winzell
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Peppredsleden 1, 431 83 Mölndal, Gothenburg, Sweden.
| |
Collapse
|
49
|
Cause or effect? A review of clinical data demonstrating beta cell dysfunction prior to the clinical onset of type 1 diabetes. Mol Metab 2020; 27S:S129-S138. [PMID: 31500824 PMCID: PMC6768572 DOI: 10.1016/j.molmet.2019.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Limited successes of conventional approaches to type 1 diabetes (T1D) prevention and treatment have highlighted the need for improved understanding of risk factors contributing to or hastening progression to clinical diagnosis. Scope of review This review summarizes beta cell function metabolic phenotyping data from clinical studies conducted in at-risk individuals before T1D onset and healthy controls. Data are drawn from studies comparing at-risk individuals who progress to T1D to at-risk individuals who do not progress to T1D, as well as from studies comparing at-risk individuals to controls without a T1D family history. Major conclusions Rapid loss of beta cell insulin secretion occurs in the months immediately preceding clinical onset. However, evidence of beta cell dysfunction is present even years earlier. Comparisons to controls without a family history suggest that many individuals in families impacted by T1D have evidence of beta cell dysfunction, even individuals who are unlikely to develop clinical disease. These findings may mean that underlying metabolic beta cell dysfunction contributes to T1D development and may explain some of the heterogeneity observed in the disease.
Collapse
|
50
|
Leete P, Oram RA, McDonald TJ, Shields BM, Ziller C, Hattersley AT, Richardson SJ, Morgan NG. Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis. Diabetologia 2020; 63:1258-1267. [PMID: 32172310 PMCID: PMC7228905 DOI: 10.1007/s00125-020-05115-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS It is unclear whether type 1 diabetes is a single disease or if endotypes exist. Our aim was to use a unique collection of pancreas samples recovered soon after disease onset to resolve this issue. METHODS Immunohistological analysis was used to determine the distribution of proinsulin and insulin in the islets of pancreas samples recovered soon after type 1 diabetes onset (<2 years) from young people diagnosed at age <7 years, 7-12 years and ≥13 years. The patterns were correlated with the insulitis profiles in the inflamed islets of the same groups of individuals. C-peptide levels and the proinsulin:C-peptide ratio were measured in the circulation of a cohort of living patients with longer duration of disease but who were diagnosed in these same age ranges. RESULTS Distinct patterns of proinsulin localisation were seen in the islets of people with recent-onset type 1 diabetes, which differed markedly between children diagnosed at <7 years and those diagnosed at ≥13 years. Proinsulin processing was aberrant in most residual insulin-containing islets of the younger group but this was much less evident in the group ≥13 years (p < 0.0001). Among all individuals (including children in the middle [7-12 years] range) aberrant proinsulin processing correlated with the assigned immune cell profiles defined by analysis of the lymphocyte composition of islet infiltrates. C-peptide levels were much lower in individuals diagnosed at <7 years than in those diagnosed at ≥13 years (median <3 pmol/l, IQR <3 to <3 vs 34.5 pmol/l, IQR <3-151; p < 0.0001), while the median proinsulin:C-peptide ratio was increased in those with age of onset <7 years compared with people diagnosed aged ≥13 years (0.18, IQR 0.10-0.31) vs 0.01, IQR 0.009-0.10 pmol/l; p < 0.0001). CONCLUSIONS/INTERPRETATION Among those with type 1 diabetes diagnosed under the age of 30 years, there are histologically distinct endotypes that correlate with age at diagnosis. Recognition of such differences should inform the design of future immunotherapeutic interventions designed to arrest disease progression.
Collapse
Affiliation(s)
- Pia Leete
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK.
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Timothy J McDonald
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Beverley M Shields
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Clemens Ziller
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|