1
|
Chen C, Liu X, Zhu S, Wang Y, Ma Y, Hu Z, Wu Y, Jiang L. Circ-0069561 as a novel diagnostic biomarker for progression of diabetic kidney disease. Ren Fail 2025; 47:2490200. [PMID: 40260530 PMCID: PMC12016256 DOI: 10.1080/0886022x.2025.2490200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are non-coding RNAs that are key regulators of the initiation and progression of various human diseases. However, the role of circRNAs in diabetic kidney disease (DKD) remains unknown. METHODS Whole high-throughput RNA sequencing (RNA-seq) was performed on kidney tissues from clinical DKD patients and controls. Circ-0069561 with significantly up-regulated expression level was selected by real-time PCR (RT-PCR) analysis. RT-PCR and fluorescent in situ hybridization (FISH) further validated the expression and subcellular localization of circ-0069561 in type 2 diabetic mice and DKD patients. The clinical significance of circ-0069561 in DKD was evaluated. The circRNA-miRNA-ferroptosis associated mRNA network was constructed. The biological function of circ-0069561 in mouse podocyte clone 5 (MPC5) was analyzed. RESULTS The top 10 up-regulated circular RNAs were selected by RT-PCR validation, and the results demonstrated a significant elevation in the expression level of circ-0069561. The RT-PCR and FISH results demonstrated that the expression of circ-0069561 was elevated in renal tissues of type 2 diabetic mice and DKD patients, with a predominant localization in glomerulus. The ROC curves showed that circ-0069561 had a good diagnostic value in massive proteinuria (area under the curve = 0.889). Kaplan-Meier analysis showed that high expression of circ-0069561 was associated with an increased risk of primary endpoints. The circRNA-miRNA-mRNA network indicated that ferroptosis might be involved in the pathogenesis of DKD. In vitro experiments demonstrated that circ-0069561 aggravated glucose-induced podocyte damage and ferroptosis. CONCLUSION Circ-0069561 has the potential to be an ideal biomarker and therapeutic target for DKD progression.
Collapse
Affiliation(s)
- Chaoyi Chen
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinran Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sai Zhu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yukai Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Ma
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziyun Hu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Center for Scientific Research, Anhui Medical University, Hefei, China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Zhang M, Wu J, Wang Y, Wu Y, Wan X, Jiang M, Bo Q, Chen J, Sun X. circSIRT2/miR-542-3p/VASH1 axis regulates endothelial-to-mesenchymal transition (EndMT) in subretinal fibrosis in age-related macular degeneration models. Aging Cell 2025; 24:e14443. [PMID: 39744871 PMCID: PMC11984685 DOI: 10.1111/acel.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 04/12/2025] Open
Abstract
Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of severe visual impairment and irreversible vision loss around the world. Subretinal fibrosis (SRF) contributes to the incomplete response to anti-vascular endothelial growth factor (VEGF) treatment and is one of the main reasons for long-term poor visual outcomes in nAMD. Reducing SRF is urgently needed in the anti-VEGF era. The role of non-coding RNAs has been implicated in CNV; however, their roles in SRF have not been elucidated yet. Herein, we comprehensively investigated circular RNA (circRNA) profiles in the laser-induced mouse SRF model and the transforming growth factor-β (TGF-β) induced human umbilical vein endothelial cell (HUVEC) fibrosis model. A novel circRNA, circSIRT2, was identified, and its function in SRF and endothelial-to-mesenchymal transition (EndMT) regulation was investigated. circSIRT2 was consistently upregulated in fibrotic models in vivo and in vitro. circSIRT2 overexpression downregulated the fibrotic markers and inhibited the proliferation and migration of endothelial cells in vitro. circSIRT2 overexpression in vivo also reduced SRF area in mice. Mechanistically, circSIRT2 functioned by sponging miR-542-3p, which further upregulated the expression of vasohibin-1 (VASH1) and reduced SRF lesion development. Vitreous delivery of miR-542-3p and VASH1 in the mouse SRF model also confirmed the pro-fibrotic function of miR-542-3p and anti-fibrotic function of VASH1, respectively. In conclusion, circSIRT2 inhibited SRF by binding miR-542-3p, which stimulated the VASH1 expression and subsequently suppressed EndMT. The circSIRT2/miR-542-3p/VASH1 axis may serve as a promising therapeutic target for SRF in nAMD.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Jiali Wu
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Yimin Wang
- Department of Ophthalmology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yidong Wu
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Mei Jiang
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Qiyu Bo
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Jieqiong Chen
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
- Shanghai Key Laboratory of Fundus DiseasesShanghaiChina
- Shanghai Engineering Center for Visual Science and PhotomedicineShanghaiChina
| |
Collapse
|
3
|
Chen W, Wang Y, Xie W, Wang J, Ji X, Feng C, Zhang X. Static magnetic fields alleviate diabetic nephropathy by reducing renal cell inflammation and promoting M2 macrophage polarization. FASEB J 2025; 39:e70424. [PMID: 40013926 DOI: 10.1096/fj.202500061r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
Diabetic nephropathy (DN) is one of the most severe diabetic complications, which can easily progress into irreversible and detrimental end-stage renal disease if not properly controlled. However, the effective prevention of DN progression has always remained a huge challenge. Moderate intensity static magnetic fields (SMFs), which have the advantages of non-invasive and high penetration, have shown beneficial effects in reducing blood glucose in type 2 diabetes mice in recent years. In this study, by using both db/db severe diabetic mice and high-fat diet and streptozotocin-induced moderate diabetic mice, we found that SMFs have significant effects on reducing DN compared to blood glucose control. Further analyzing the db/db mice with severe diabetes, we found that kidney inflammation, vascular abnormalities, and fibrosis were all greatly reduced. Moreover, SMFs can promote macrophages polarized into M2. In vitro cellular experiments also demonstrate the positive effects of SMFs in reducing kidney cell inflammation, as well as increasing M2 macrophage polarization by promoting F-actin assembly. Therefore, our results show that moderate intensity SMFs have great potential to be developed as a new physical modality to be used in the treatment of DN, and possibly other types of chronic kidney diseases.
Collapse
Affiliation(s)
- Weili Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Ying Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Wenjing Xie
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Junjun Wang
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xin Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
- High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Liu J, Wang Y, Zheng M, Du J, Maarouf M, Chen JL. Roles of circRNAs in viral pathogenesis. Front Cell Infect Microbiol 2025; 15:1564258. [PMID: 40182764 PMCID: PMC11966423 DOI: 10.3389/fcimb.2025.1564258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs with a covalently closed circular structure, lacking 5'-caps or 3'-poly(A) tails. They are relatively conserved, highly stable, and often exhibit tissue- or cell-specific production in eukaryotic cells. Based on the advances in sequencing technologies and bioinformatics, multiple reports have suggested that viruses and other microorganisms may encode circRNA-like molecules, providing new insights into the physiological and pathological roles of circRNAs. The innate immune system functions as the body's primary defense mechanism against viral infections. It detects pathogen-associated molecular patterns (PAMPs) and activates signaling pathways to suppress viral replication and limit their spread. CircRNAs are involved in regulation of the host innate immune signaling pathways and play essential roles in viral pathogenesis. It has been shown that circRNAs can regulate gene expression by acting as miRNA sponges or protein sponges, or encoding small proteins in specific cases. For example, previous studies have revealed that circRNAs participate in the host antiviral immune response through the competitive endogenous RNA (ceRNA) network by acting as miRNA sponges. This review highlights research progress in the regulation and functions of host- and virus-encoded circRNAs in host-virus interactions, as well as their potential as diagnostic biomarkers and therapeutic targets in clinical applications.
Collapse
Affiliation(s)
- Jiayin Liu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiming Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meichun Zheng
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayuan Du
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed Maarouf
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Shi Z, Liu J, Qin J, Liang X, Ou X, Zhang T, Yan X, Hu Q, Huang W, Hu K. Astilbin Alleviates Radiation-Induced Pulmonary Fibrosis via circPRKCE Targeting the TGF-β/Smad7 Pathway to Inhibit Epithelial-Mesenchymal Transition. Biomedicines 2025; 13:689. [PMID: 40149664 PMCID: PMC11939908 DOI: 10.3390/biomedicines13030689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Purpose: This study aimed to clarify the protective effect of astilbin (AST) on radiation-induced pulmonary fibrosis (RIPF) and explore its underlying molecular mechanism, focusing on non-coding RNAs. Methods: Mouse lung epithelial cells (MLE-12 and TC-1) and C57BL/6J mice were used to establish in vitro radiation injury models and in vivo RIPF models, respectively. Cell viability, apoptosis, the epithelial-to-mesenchymal transition (EMT), and fibrosis-related markers were assessed using cell-counting kit-8 assays, Western blotting, immunohistochemistry, and histological staining. High-throughput sequencing identified differentially expressed circRNAs. The mechanistic studies included RNA-FISH, a dual-luciferase reporter assay, an RNA immunoprecipitation (RIP) assay, and loss-of-function experiments. Results: AST significantly alleviated radiation-induced apoptosis and EMT in vitro, as well as RIPF in vivo. AST treatment reduced collagen deposition, fibrosis-related protein expression, and EMT marker changes. High-throughput sequencing revealed that AST upregulated circPRKCE, a non-coding RNA that functions through a ceRNA mechanism by binding to miR-15b-5p, thereby promoting Smad7 expression and suppressing the TGF-β/Smad7 pathway. Knockdown of circPRKCE abolished AST's protective effects, confirming its pivotal role in mediating AST's anti-fibrotic activity. Conclusions: This study demonstrates that Astilbin alleviates radiation-induced pulmonary fibrosis via circPRKCE targeting the TGF-β/Smad7 pathway to inhibit EMT, suggesting AST as a potential therapeutic agent for managing this severe complication of radiotherapy.
Collapse
Affiliation(s)
- Zhiling Shi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, China
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Jing Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, China
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Jing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
| | - Xian Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
| | - Xue Ou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
| | - Tingting Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
| | - Xueting Yan
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
| | - Qianxin Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
| | - Weimei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, China
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| | - Kai Hu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; (Z.S.); (J.L.); (J.Q.); (X.L.); (X.O.); (T.Z.); (X.Y.); (Q.H.)
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning 530021, China
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
6
|
Deng S, Huang L, Shao Y, Xie Y, Yuan S, Tang L. CircMRP4 orchestrates podocytes injury via the miR-499-5p/RRAGB/mTORC1 axis in diabetic kidney disease. Cell Signal 2025; 127:111611. [PMID: 39842531 DOI: 10.1016/j.cellsig.2025.111611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
Diabetic kidney disease2 (DKD) is a chronic complication of diabetes characterized by kidney damage due to persistent hyperglycemia. A growing number of evidence indicated that circular RNAs3 (circRNAs) play a crucial role in diabetes and associated complications. However, the function and mechanism of circRNAs in DKD remain unclear. Herein, we investigated the expression profiles of circRNAs in DKD mice compared to non-diabetic mice using RNA-seq analysis. A novel circRNA, circMRP4, derived from the circularization of Multidrug resistance-associated protein 44 (MRP4) was identified. The expression of circMRP4 was significantly increased in both kidney tissues of DKD and mouse podocytes exposed to high glucose5 (HG). In addition, knockdown of circMRP4 alleviated podocytes apoptosis and inflammation induced by HG, while circMRP4 overexpression resulted in the opposite impact. Dual-luciferase reporter, RNA immunoprecipitation and RNA pull-down assay demonstrated that circMRP4 could directly target miR-499-5p which was closely associated with podocytes apoptosis and inflammation. Furthermore, circMRP4 was found to act as a sponge for miR-499-5p, leading to the upregulation of its target RRAGB, thereby activating the mTORC1/P70S6K signaling. In summary, our findings suggested that circMRP4 mediated podocytes apoptosis and inflammation in DKD by modulating the miR-499-5p/RRAGB/mTORC1/P70S6K axis, highlighting circMRP4 as a potential therapeutic target for DKD.
Collapse
Affiliation(s)
- Shujun Deng
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China
| | - Lingzhi Huang
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China
| | - Yawen Shao
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China
| | - Yongsheng Xie
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China
| | - Siming Yuan
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China.
| | - Liqin Tang
- Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China.
| |
Collapse
|
7
|
Zheng T, Yang R, Li X, Dai Z, Xiang H. Integrative transcriptome analysis reveals Serpine2 promotes glomerular mesangial cell proliferation and extracellular matrix accumulation via activating ERK1/2 signalling pathway in diabetic nephropathy. Diabetes Obes Metab 2025; 27:750-766. [PMID: 39557806 DOI: 10.1111/dom.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the main causes of end-stage renal disease (ESRD), but its mechanism has not been clearly studied. We utilized integrative transcriptome analysis to explore the pathogenesis of DN. METHODS We conducted an analysis by combining bulk dataset and single-cell transcriptome dataset. Through this approach, we identified that Serpine2 may regulate the 'collagen-containing extracellular matrix' pathway involved in DN. Subsequently, we established DN animal and cell models using db/db mice and mesangial cells (MCs) to validate the role of Serpine2 in DN. In the animal model, we detected the expression level of Serpine2 in DN using western blotting (WB) and immunofluorescence (IF) assays. To further clarify the molecular mechanism of Serpine2 in DN, we knocked down Serpine2 and observed its effects on MCs proliferation and extracellular matrix (ECM) accumulation. RESULTS Our single-cell analysis of DN models highlighted a pivotal role for MCs in the disease's initiation. Next, through Cytoscape analysis of differentially expressed genes (DEGs) in MCs, we identified the following 10 hub genes: Acta2, Angpt2, Ccn1, Col4a1, Col4a2, Col8a1, Kdr, Thbs1, Tpm4 and Serpine2. Subsequently, we identified that Serpine2 and Kdr were also significantly DEGs in the bulk analysis of glomeruli. Additionally, our integrated gene set enrichment analysis of bulk dataset and single-cell RNA dataset revealed that the 'collagen-containing extracellular matrix' was a key pathway in DN progression. Serpine2 was one of the crucial genes involved in regulating this pathway. Therefore, we speculated that the regulation of the 'collagen-containing extracellular matrix' pathway by Serpine2 was an important mechanism. Importantly, WB and IF staining confirmed that Serpine2 expression was upregulated in the MCs of diabetic mice. Knockdown of Serpine2 in cultured MCs alleviated high-glucose-induced excessive MCs proliferation and ECM accumulation. Finally, we found that ERK agonist Ro 67-7476 eliminated the effect of Serpine2 siRNA. CONCLUSIONS In summary, Serpine2 regulates MCs proliferation and ECM synthesis through activation of the ERK1/2 pathway, which is an important pathogenesis mechanism of DN. These findings offer fresh perspectives on the mechanisms of glomerulosclerosis in DN pathogenesis and may provide new targets for treating DN.
Collapse
Affiliation(s)
- Ting Zheng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ruhao Yang
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Li
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongyu Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Jia Y, Gu Y, Wang L, Jiang N, Yu X, Tian H. Critical analysis of hot topics in diabetic nephropathy related experimental research: A bibliometric analysis from 2018 to 2024. J Tissue Viability 2025; 34:100854. [PMID: 39764975 DOI: 10.1016/j.jtv.2025.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe complication of diabetes mellitus and a leading cause of end-stage renal disease worldwide. Understanding trends in experimental research on DN is crucial for advancing knowledge and clinical management. OBJECTIVE This study aimed to explore current trends in DN related experimental research, utilizing CiteSpace, VOSviewer, and Bibliometrix to identify key contributors, influential countries, and noteworthy topics. The objective was to provide valuable insights for healthcare professionals and researchers in the field. METHODS Relevant publications from the Web of Science Core Collection Science Citation Index Expanded were retrieved for the period between 2018 and 2024. CiteSpace, VOSviewer, and Bibliometrix were employed for data analysis, including identifying top authors, institutions, countries, keywords, co-cited authors, journals, references, and research trends. RESULTS A total of 1501 relevant articles were included in the study. DN related experimental research exhibited an upward trend, reaching its peak in 2023. Key contributors such as Kretzler Matthias, Li Ping, and Rossing Peter emerged. China, the United States and Japan have the most publications. Keyword analysis revealed "activated protein kinase" as the most central keyword, while "diabetic nephropathy" had the highest citation rate. Recent focus shifted towards keywords like "Traditional Chinese Medicine" and "molecular docking." CONCLUSION This bibliometric analysis provides insights into trends in experimental research on DN from 2018 to 2024. Notable contributors and influential countries were identified, emphasizing global collaboration. Key topics demonstrate diverse approaches and emerging trends, supporting informed decision-making and innovation in combatting DN and enhancing patient outcomes.
Collapse
Affiliation(s)
- Youduo Jia
- Nephrology Department, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, China
| | - Yunfei Gu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijun Wang
- Nephrology and Rheumatology Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Jiang
- Hemodialysis Department, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, China
| | - Xiumei Yu
- Nephrology Department, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, China.
| | - Hu Tian
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
9
|
Ni Y, Zhang H, Xian Q, Qin W, Su H, Wang L, Li J. RfxCas13d-mediated inhibition of Circ1647 alleviates renal fibrosis via PI3K/AKT signaling pathway. Ren Fail 2024; 46:2331612. [PMID: 38527916 PMCID: PMC10964833 DOI: 10.1080/0886022x.2024.2331612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Circular RNAs (CircRNAs) have been shown to be involved in the development of chronic kidney disease (CKD). This study aimed to investigate the role of Circ1647 in renal fibrosis, which is a hallmark of CKD. METHODS In this study, we established a unilateral ureteral obstruction (UUO) model and delivered Circ1647 RfxCas13d knockdown plasmid into renal parenchymal cells via retrograde injection through the ureter followed by electroporation. After that, the pathological changes were determined by Hematoxylin and Eosin. Meanwhile, Immunohistochemistry, qRT-PCR and Western blot were conducted to assess the degree of fibrosis. In addition, overexpressing of Circ1647 in renal tubular epithelial cells (TCMK1) was performed to investigate the underlying mechanisms of Circ1647. RESULTS Our results displayed that electroporation-mediated knockdown of Circ1647 by RfxCas13d knockdown plasmid significantly inhibited renal fibrosis in UUO mice as evidenced by reduced expression of fibronectin and α-SMA (alpha-smooth muscle actin). Conversely, overexpression of Circ1647 in TCMK1 cells promoted the fibrosis. In terms of mechanism, Circ1647 may mediate the PI3K/AKT Signaling Pathway as demonstrated by the balance of the phosphorylation of PI3K and AKT in vivo and the aggravated phosphorylation of PI3K and AKT in vitro. These observations were corroborated by the effects of the PI3K inhibitor LY294002, which mitigated fibrosis post Circ1647 overexpression. CONCLUSION Our study suggests that Circ1647 plays a significant role in renal fibrosis by mediating the PI3K/AKT signaling pathway. RfxCas13d-mediated inhibition of Circ1647 may serve as a therapeutic target for renal fibrosis in CKD.
Collapse
Affiliation(s)
- Yufang Ni
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongmin Zhang
- Department of Nephrology, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Qianwen Xian
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenjie Qin
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongwei Su
- Department of Urology, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianchun Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
10
|
Cheng KY, Wang SW, Lan T, Mao ZJ, Xu YY, Shen Q, Zeng XX. CircRNA-mediated regulation of cardiovascular disease. Front Cardiovasc Med 2024; 11:1411621. [PMID: 39660120 PMCID: PMC11628502 DOI: 10.3389/fcvm.2024.1411621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) encompass a range of disorders affecting the heart and blood vessels, such as coronary heart disease, cerebrovascular disease (e.g., stroke), peripheral arterial disease, congenital heart anomalies, deep vein thrombosis, and pulmonary embolism. CVDs are often referred to as the leading cause of mortality worldwide. Recent advancements in deep sequencing have unveiled a plethora of noncoding RNA transcripts, including circular RNAs (circRNAs), which play pivotal roles in the regulation of CVDs. A decade of research has differentiated various circRNAs by their vasculoprotective or deleterious functions, revealing potential therapeutic targets. This review provides an overview of circRNAs and a comprehensive examination of CVDs, the regulatory circRNAs within the vasculature, and the burgeoning research domain dedicated to these noncoding RNAs.
Collapse
Affiliation(s)
- Ke-yun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Si-wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Tian Lan
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhu-jun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - You-yao Xu
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Department of Cardiovascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xi-xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Department of Cardiovascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
11
|
Qin J, Chen Y, Zhao X, Yu J. circCUL3 drives malignant progression of cervical cancer by activating autophagy through sponge miR-223-3p upregulation of ATG7. Gene 2024; 925:148572. [PMID: 38759738 DOI: 10.1016/j.gene.2024.148572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Circular RNA (circRNA) has emerged as a pivotal regulatory factor in cancer biology, yet its exact role in cervical cancer remains incompletely understood. In this study, we investigated the functional role of circCUL3 in cervical cancer and explored its potential as a therapeutic target. Functional gain and loss experiments were conducted in Hela and Siha cell lines to elucidate the biological functions of circCUL3 in cervical cancer. The results revealed that circCUL3 overexpression significantly enhanced cell viability, migration, and invasion while suppressing apoptosis, while circCUL3 knockout displayed the opposite effects. Mechanistically, we identified hsa-miR-223-3p as a target of circCUL3, with its expression being negatively regulated by circCUL3. Furthermore, we discovered that circCUL3 could sequester miR-223-3p, leading to the upregulation of ATG7 expression, and this was linked to the regulation of autophagy in cervical cancer cells. In vivo validation using a xenograft mouse model further supported our in vitro findings. Notably, we found that chloroquine (CQ), an autophagy inhibitor, restored miR-223-3p expression and counteracted the oncogenic effect of circCUL3 overexpression. In conclusion, circCUL3 potentially contributes to the malignant progression of cervical cancer by acting as a sponge for miR-223-3p, resulting in the upregulation of ATG7 and the activation of autophagy.
Collapse
Affiliation(s)
- Jiahui Qin
- Department of Gynecology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China.
| | - Yan Chen
- Department of Gynecology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| | - Xia Zhao
- Department of Gynecology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| | - Jingmin Yu
- Department of Gynecology, Hangzhou Third People's Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Lin CC, Law BF, Hettick JM. Circular RNA hsa_circ_0008726 Targets the hsa-miR-206-3p/KLF4 Axis to Modulate 4,4'-Methylene Diphenyl Diisocyanate-Glutathione Conjugate-Induced Chemokine Transcription in Macrophages. Cells 2024; 13:1725. [PMID: 39451243 PMCID: PMC11505732 DOI: 10.3390/cells13201725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Exposure to 4,4'-methylene diphenyl diisocyanate (MDI) in the workplace may lead to the development of occupational asthma (OA). However, the specific mechanism(s) by which MDI induces OA are poorly understood. Previous reports have demonstrated that MDI and MDI-glutathione (GSH) conjugate exposure downregulates endogenous human/murine (hsa/mmu)-microRNA(miR)-206-3p, resulting in the activation of mmu/hsa-miR-206-3p-regulated signaling pathways in macrophages. Circular RNAs (circRNAs) regulate many important biological processes by targeting endogenous miRs; however, whether MDI/MDI-GSH exposure may influence circRNA expressions is unknown. Several circRNAs have been identified that regulate hsa-miR-206-3p. We hypothesize that MDI-GSH conjugate exposure induces endogenous circRNA(s) to regulate hsa-miR-206-3p in macrophages. The expression of candidate hsa-miR-206-3p-binding circRNAs was determined from MDI-GSH conjugate-treated differentiated THP-1 macrophages using RT-qPCR. MDI-GSH exposures induced hsa_circ_0008726 and its host gene transcript DNAJB6, whereas other circRNA(s) examined were either not detected or unchanged. RNA-induced silencing complex-immunoprecipitation (RISC-IP) experiments confirm that hsa-miR-206-3p can bind to hsa_circ_0008726. The expressions of endogenous hsa-miR-206-3p, hsa-miR-206-3p-regulated KLF4, and KLF4-activated M2 macrophage-associated markers and chemokines were up-/down-regulated by transfection of hsa_circ_0008726 siRNAs or hsa_circ_0008726 overexpression plasmid in macrophages, respectively. These results suggest MDI-GSH exposure downregulates hsa-miR-206-3p via induction of endogenous hsa_circ_0008726/DNAJB6, resulting in the upregulation of hsa-miR-206-3p-mediated regulations in macrophages.
Collapse
Affiliation(s)
- Chen-Chung Lin
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; (B.F.L.); (J.M.H.)
| | | | | |
Collapse
|
13
|
Zhou Y, Jian N, Jiang C, Wang J. m 6A modification in non-coding RNAs: Mechanisms and potential therapeutic implications in fibrosis. Biomed Pharmacother 2024; 179:117331. [PMID: 39191030 DOI: 10.1016/j.biopha.2024.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
N6-methyladenosine (m6A) is one of the most prevalent and reversible forms of RNA methylation, with increasing evidence indicating its critical role in numerous physiological and pathological processes. m6A catalyzes messenger RNA(mRNA) as well as regulatory non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs, and circular RNAs. This modification modulates ncRNA fate and cell functions in various bioprocesses, including ncRNA splicing, maturity, export, and stability. Key m6A regulators, including writers, erasers, and readers, have been reported to modify the ncRNAs involved in fibrogenesis. NcRNAs affect fibrosis progression by targeting m6A regulators. The interactions between m6A and ncRNAs can influence multiple cellular life activities. In this review, we discuss the impact of the interaction between m6A modifications and ncRNAs on the pathological mechanisms of fibrosis, revealing the possibility of these interactions as diagnostic markers and therapeutic targets in fibrosis.
Collapse
Affiliation(s)
- Yutong Zhou
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ni Jian
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410078, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha 410078, China.
| |
Collapse
|
14
|
Hejazian SM, Rahbar Saadat Y, Hosseiniyan Khatibi SM, Farnood F, Farzamikia N, Hejazian SS, Batoumchi S, Shoja MM, Zununi Vahed S, Ardalan M. Circular RNAs as novel biomarkers in glomerular diseases. Arch Physiol Biochem 2024; 130:568-580. [PMID: 37194131 DOI: 10.1080/13813455.2023.2212328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Circular RNAs (circRNAs) regulate gene expression and biological procedures by controlling target genes or downstream pathways by sponging their related miRNA (s). Three types of circRNAs have been identified; exonic circRNAs (ecircRNAs), intronic RNAs (ciRNAs), and exon-intron circRNAs (ElciRNAs). It is clarified that altered levels of circRNAs have dynamic pathological and physiological functions in kidney diseases. Evidence suggests that circRNAs can be considered novel diagnostic biomarkers and therapeutic targets for renal diseases. Glomerulonephritis (GN) is a general term used to refer to a wide range of glomerular diseases. GN is an important cause of chronic kidney diseases. Here, we review the biogenesis of circRNAs, and their molecular and physiological functions in the kidney. Moreover, the dysregulated expression of circRNAs and their biological functions are discussed in primary and secondary glomerulonephritis. Moreover, diagnostic and therapeutic values of circRNAs in distinguishing or treating different types of GN are highlighted.
Collapse
Affiliation(s)
| | | | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Farzamikia
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Sina Hejazian
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Batoumchi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali M Shoja
- College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | | | | |
Collapse
|
15
|
Bao Z, Yu X, Zhang L. The circ_0003928/miR-31-5p/MAPK6 cascade affects high glucose-induced inflammatory response, fibrosis and oxidative stress in HK-2 cells. Transpl Immunol 2024; 86:102078. [PMID: 38964515 DOI: 10.1016/j.trim.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe diabetic complication disorder. Circular RNAs (circRNAs) actively participate in DN pathogenesis. In this report, we sought to define a new mechanism of circ_0003928 in regulating high glucose (HG)-induced HK-2 cells. METHODS To construct a DN cell model, we treated HK-2 cells with HG. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, respectively. The inflammatory cytokines were quantified by ELISA. Protein analysis was performed by immunoblotting, and mRNA expression was detected by quantitative PCR. The circ_0003928/miR-31-5p and miR-31-5p/MAPK6 relationships were validated by RNA pull-down and luciferase assays. RESULTS HG promoted HK-2 cell apoptosis, fibrosis and oxidative stress. Circ_0003928 and MAPK6 levels were enhanced and miR-31-5p level was decreased in HK-2 cells after HG treatment. Circ_0003928 disruption promoted cell growth and inhibited apoptosis, inflammatory response, fibrosis and oxidative stress in HG-induced HK-2 cells. Circ_0003928 targeted miR-31-5p, and MAPK6 was a target of miR-31-5p. Circ_0003928 regulated MAPK6 expression through miR-31-5p. The functions of circ_0003928 disruption in HG-induced HK-2 cells were reversed by miR-31-5p downregulation or MAPK6 upregulation. CONCLUSION Circ_0003928 exerts regulatory impacts on HG-induced apoptosis, inflammation, fibrosis and oxidative stress in human HK-2 cells by the miR-31-5p/MAPK6 axis.
Collapse
Affiliation(s)
- Zheng Bao
- Department of Nephrology, Hanchuan People's Hospital, Hanchuan City 431600, Hubei, China
| | - Xia Yu
- Department of Nephrology, Hanchuan People's Hospital, Hanchuan City 431600, Hubei, China
| | - Lixia Zhang
- Department of Nephrology, Hanchuan People's Hospital, Hanchuan City 431600, Hubei, China.
| |
Collapse
|
16
|
Guo M, He F, Zhang C. Molecular Therapeutics for Diabetic Kidney Disease: An Update. Int J Mol Sci 2024; 25:10051. [PMID: 39337537 PMCID: PMC11431964 DOI: 10.3390/ijms251810051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes mellitus (DM). With the increasing prevalence of DM worldwide, the incidence of DKD remains high. If DKD is not well controlled, it can develop into chronic kidney disease or end-stage renal disease (ESRD), which places considerable economic pressure on society. Traditional therapies, including glycemic control, blood pressure control, blood lipid control, the use of renin-angiotensin system blockers and novel drugs, such as sodium-glucose cotransporter 2 inhibitors, mineralocorticoid receptor inhibitors and glucagon-like peptide-1 receptor agonists, have been used in DKD patients. Although the above treatment strategies can delay the progression of DKD, most DKD patients still ultimately progress to ESRD. Therefore, new and multimodal treatment methods need to be explored. In recent years, researchers have continuously developed new treatment methods and targets to delay the progression of DKD, including miRNA therapy, stem cell therapy, gene therapy, gut microbiota-targeted therapy and lifestyle intervention. These new molecular therapy methods constitute opportunities to better understand and treat DKD. In this review, we summarize the progress of molecular therapeutics for DKD, leading to new treatment strategies.
Collapse
Affiliation(s)
| | - Fangfang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
17
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education)The First Department of Thoracic SurgeryPeking University Cancer Hospital and InstitutePeking University School of OncologyBeijingChina
| | - Jin Zhang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Yuchen Yang
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Zhuofeng Liu
- Department of Traditional Chinese MedicineThe Third Affiliated Hospital of Xi'an Medical UniversityXi'anChina
| | - Sijia Sun
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Rui Li
- Department of EpidemiologySchool of Public HealthAir Force Medical UniversityXi'anChina
| | - Hui Zhu
- Department of AnatomyMedical College of Yan'an UniversityYan'anChina
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Tian Li
- School of Basic MedicineFourth Military Medical UniversityXi'anChina
| | - Jin Zheng
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
| | - Jie Li
- Department of EndocrineXijing 986 HospitalAir Force Medical UniversityXi'anChina
| | - Litian Ma
- Department of Thoracic SurgeryTangdu HospitalAir Force Medical UniversityXi'anChina
- Department of Traditional Chinese MedicineTangdu HospitalAir Force Medical UniversityXi'anChina
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi ProvinceXi'anChina
- Department of GastroenterologyTangdu HospitalAir Force Medical UniversityXi'anChina
- School of MedicineNorthwest UniversityXi'anChina
| |
Collapse
|
18
|
Zhu X, Meng X, Du X, Zhao C, Ma X, Wen Y, Zhang S, Hou B, Cai W, Du B, Han Z, Xu F, Qiu L, Sun H. Vaccarin suppresses diabetic nephropathy through inhibiting the EGFR/ERK1/2 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1860-1874. [PMID: 39205643 PMCID: PMC11972988 DOI: 10.3724/abbs.2024141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/30/2024] [Indexed: 09/04/2024] Open
Abstract
Diabetic nephropathy (DN) is recognized as one of the primary causes of chronic kidney disease and end-stage renal disease. Vaccarin (VAC) confers favorable effects on cardiovascular and metabolic diseases, including type 2 diabetes mellitus (T2DM). Nonetheless, the potential role and mechanism of VAC in the etiology of DN have yet to be completely elucidated. In this study, a classical mouse model of T2DM is experimentally induced via a high-fat diet (HFD)/streptozocin (STZ) regimen. Renal histological changes are assessed via H&E staining. Masson staining and immunohistochemistry (IHC) are employed to assess renal fibrosis. RT-PCR is utilized to quantify the mRNA levels of renal fibrosis, oxidative stress and inflammation markers. The levels of malondialdehyde (MDA) and reactive oxygen species (ROS), as well as the content of glutathione peroxidase (GSH-Px), are measured. The protein expressions of collagen I, TGF-β1, α-SMA, E-cadherin, Nrf2, catalase, SOD3, SOD2, SOD1, p-ERK, p-EGFR (Y845), p-EGFR (Y1173), p-NFκB P65, t-ERK, t-EGFR and t-NFκB P65 are detected by western blot analysis. Our results reveal that VAC has a beneficial effect on DN mice by improving renal function and mitigating histological damage. This is achieved through its inhibition of renal fibrosis, inflammatory cytokine overproduction, and ROS generation. Moreover, VAC treatment effectively suppresses the process of epithelial-mesenchymal transition (EMT), a crucial characteristic of renal fibrosis, in high glucose (HG)-induced HK-2 cells. Network pharmacology analysis and molecular docking identify epidermal growth factor receptor (EGFR) as a potential target for VAC. Amino acid site mutations reveal that Lys-879, Ile-918, and Ala-920 of EGFR may mediate the direct binding of VAC to EGFR. In support of these findings, VAC reduces the phosphorylation levels of both EGFR and its downstream mediator, extracellular signal-regulated kinase 1/2 (ERK1/2), in diabetic kidneys and HG-treated HK-2 cells. Notably, blocking either EGFR or ERK1/2 yields renal benefits similar to those observed with VAC treatment. Therefore, this study reveals that VAC attenuates renal damage via inactivation of the EGFR/ERK1/2 signaling axis in T2DM patients.
Collapse
Affiliation(s)
- Xuexue Zhu
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Xinyu Meng
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Xinyao Du
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Chenyang Zhao
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Xinyu Ma
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Yuanyuan Wen
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Shijie Zhang
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Bao Hou
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Weiwei Cai
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Bin Du
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Zhijun Han
- Department of Clinical Research CenterJiangnan University Medical CenterWuxi214001China
| | - Fei Xu
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Liying Qiu
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Haijian Sun
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
19
|
Staruschenko A, Alexander RT, Caplan MJ, Ilatovskaya DV. Calcium signalling and transport in the kidney. Nat Rev Nephrol 2024; 20:541-555. [PMID: 38641658 PMCID: PMC12036682 DOI: 10.1038/s41581-024-00835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
The kidney plays a pivotal role in regulating calcium levels within the body. Approximately 98% of the filtered calcium is reabsorbed in the nephron, and this process is tightly controlled to maintain calcium homeostasis, which is required to facilitate optimal bone mineralization, preserve serum calcium levels within a narrow range, and support intracellular signalling mechanisms. The maintenance of these functions is attributed to a delicate balance achieved by various calcium channels, transporters, and calcium-binding proteins in renal cells. Perturbation of this balance due to deficiency or dysfunction of calcium channels and calcium-binding proteins can lead to severe complications. For example, polycystic kidney disease is linked to aberrant calcium transport and signalling. Furthermore, dysregulation of calcium levels can promote the formation of kidney stones. This Review provides an updated description of the key aspects of calcium handling in the kidney, focusing on the function of various calcium channels and the physiological stimuli that control these channels or are communicated through them. A discussion of the role of calcium as an intracellular second messenger and the pathophysiology of renal calcium dysregulation, as well as a summary of gaps in knowledge and future prospects, are also included.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA.
- James A. Haley Veterans Hospital, Tampa, FL, USA.
| | - R Todd Alexander
- Department of Paediatrics, University of Alberta, Edmonton, AB, Canada
- Women's and Children's Health Institute, Edmonton, AB, Canada
| | - Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
20
|
Wei Q, Li J, Li X, Xiang J, Zhang Y, Yin H, Cui C. CircRAB11A act as miR-24-5p sponge promotes proliferation and resists apoptosis of chicken granulosa cell via EGFR/ERK1/2 and RAB11A/ PI3K/AKT pathways. Poult Sci 2024; 103:103841. [PMID: 38806000 PMCID: PMC11154702 DOI: 10.1016/j.psj.2024.103841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs that have been implicated in mediating granulosa cell (GC) proliferation and apoptosis. CircRAB11A was found to have a significantly higher expression in normal follicles compared to atrophic follicles. In this study, we determined that the knockdown of circRAB11A resulted in the inhibition of proliferation and promotion of apoptosis in GCs of chicken. Moreover, circRAB11A was found to act as a sponge for miR-24-5p, both member RAS oncogene family (RAB11A) and epidermal growth factor receptor (EGFR) were revealed to be targets of miR-24-5p through a dual-luciferase reporter assay. RAB11A or EGFR promoted proliferation and suppressed apoptosis in GCs through the phosphatidylinositol-kinase (PI3K)/AKT or extracellular signal-regulated kinase (ERK)1/2 pathway. These findings suggest that circRAB11A may function as a competing endogenous RNA (ceRNA) by targeting the miR-24-5p/RAB11A and miR-24-5p/EGFR axes and activating the ERK1/2 and PI3K/AKT pathways, offering a potential avenue for exploring the mechanism of follicle development.
Collapse
Affiliation(s)
- Qinyao Wei
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Juan Li
- Institute of Animal Science, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan 611130, China
| | - Xinyan Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jialin Xiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yao Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huadong Yin
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Can Cui
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
21
|
Liu X, Jiang L, Zeng H, Gao L, Guo S, Chen C, Liu X, Zhang M, Ma L, Li Y, Qi X, Wu Y. Circ-0000953 deficiency exacerbates podocyte injury and autophagy disorder by targeting Mir665-3p-Atg4b in diabetic nephropathy. Autophagy 2024; 20:1072-1097. [PMID: 38050963 PMCID: PMC11135827 DOI: 10.1080/15548627.2023.2286128] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Circular RNAs (circRNAs) are special non-coding RNA (ncRNA) molecules that play a significant role in many diseases. However, the biogenesis and regulation of circRNAs in diabetic nephropathy (DN) are largely unknown. Here, we investigated the expression profile of circRNAs in kidney of DN mice through circular RNA sequencing (circRNA-seq). The renal biopsy samples of patients with DN had low circ -0,000,953 expression, which was significantly associated with renal function. Furthermore, loss-of-function and gain-of-function experiments were carried out to prove the role of circ -0,000,953 in DN. Podocyte conditional knockin (cKI) or systemic overexpression of circ -0,000,953 alleviated albuminuria and restored macroautophagy/autophagy in kidney of diabetic mice. However, circ -0,000,953 knockdown exacerbated albuminuria and podocyte injury. Mechanistically, we found circ -0,000,953 directly binds to Mir665-3p-Atg4b to perform its function. Silencing of Mir665-3p or overexpression of Atg4b recovered podocyte autophagy both in vitro and in vivo. To examine the cause of circ -0,000,953 downregulation in DN, bioinformatics prediction found that circ -0,000,953 sequence has a high possibility of containing an m6A methylation site. Additionally, METTL3 was proved to regulate the expression and methylation level of circ -0,000,953 through YTHDF2 (YTH N6-methyladenosine RNA binding protein 2). In conclusion, this study revealed that circ -0,000,953 regulates podocyte autophagy by targeting Mir665-3p-Atg4b in DN. Therefore, circ -0,000,953 is a potential biomarker for prevention and cure of DN.Abbreviation: CCL2/MCP-1: C-C motif chemokine ligand 2; ceRNA: competing endogenous RNA; circRNA: circular RNA; cKI: conditional knockin; cKO: conditional knockout; CRE: creatinine; DM: diabetes mellitus; DN: diabetic nephropathy; ESRD: end-stage renal disease; HG: high glucose; IF: immunofluorescence; MAP1LC3/LC3B: microtubule-associated protein 1 light chain 3 beta; MPC5: mouse podocyte clone 5; MTECs: mouse tubular epithelial cells; MTOR: mechanistic target of rapamycin kinase; NC: normal control; ncRNA: non-coding RNA; NPHS1: nephrosis 1, nephrin; NPHS2: nephrosis 2, podocin; PAS: periodic acid-Schiff; RELA/p65: v-rel reticuloendotheliosis viral oncogene homolog A (avian); SDs: slit diaphragm proteins; Seq: sequencing; STZ: streptozotocin; SV40: SV40-MES13-cells, mouse mesangial cell line; T1D: type 1 diabetes mellitus; T2D: type 2 diabetes mellitus; TEM: transmission electron microscopy; TNF/TNF-α: tumor necrosis factor; VECs: vascular endothelial cells; WT1: WT1 transcription factor; YTHDF2: YTH N6-methyladenosine RNA binding protein 2.
Collapse
Affiliation(s)
- Xueqi Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Ling Jiang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Hanxu Zeng
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Li Gao
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Shanshan Guo
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Chaoyi Chen
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Xinran Liu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Mengya Zhang
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Lijuan Ma
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Yuanyuan Li
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Xiangming Qi
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Yonggui Wu
- Department of Nephropathy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
- Center for Scientific Research, Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
22
|
Drula R, Braicu C, Neagoe IB. Current advances in circular RNA detection and investigation methods: Are we running in circles? WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1850. [PMID: 38702943 DOI: 10.1002/wrna.1850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 05/06/2024]
Abstract
Circular RNAs (circRNAs), characterized by their closed-loop structure, have emerged as significant transcriptomic regulators, with roles spanning from microRNA sponging to modulation of gene expression and potential peptide coding. The discovery and functional analysis of circRNAs have been propelled by advancements in both experimental and bioinformatics tools, yet the field grapples with challenges related to their detection, isoform diversity, and accurate quantification. This review navigates through the evolution of circRNA research methodologies, from early detection techniques to current state-of-the-art approaches that offer comprehensive insights into circRNA biology. We examine the limitations of existing methods, particularly the difficulty in differentiating circRNA isoforms and distinguishing circRNAs from their linear counterparts. A critical evaluation of various bioinformatics tools and novel experimental strategies is presented, emphasizing the need for integrated approaches to enhance our understanding and interpretation of circRNA functions. Our insights underscore the dynamic and rapidly advancing nature of circRNA research, highlighting the ongoing development of analytical frameworks designed to address the complexity of circRNAs and facilitate the assessment of their clinical utility. As such, this comprehensive overview aims to catalyze further advancements in circRNA study, fostering a deeper understanding of their roles in cellular processes and potential implications in disease. This article is categorized under: RNA Methods > RNA Nanotechnology RNA Methods > RNA Analyses in Cells RNA Methods > RNA Analyses In Vitro and In Silico.
Collapse
Affiliation(s)
- Rareș Drula
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana-Berindan Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Liu J, Liu R, Wang H, Zhang Z, Wang J, Wei F. CircPRKD3/miR-6783-3p responds to mechanical force to facilitate the osteogenesis of stretched periodontal ligament stem cells. J Orthop Surg Res 2024; 19:257. [PMID: 38649946 PMCID: PMC11036753 DOI: 10.1186/s13018-024-04727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The mechanotransduction mechanisms by which cells regulate tissue remodeling are not fully deciphered. Circular RNAs (circRNAs) are crucial to various physiological processes, including cell cycle, differentiation, and polarization. However, the effects of mechanical force on circRNAs and the role of circRNAs in the mechanobiology of differentiation and remodeling in stretched periodontal ligament stem cells (PDLSCs) remain unclear. This article aims to explore the osteogenic function of mechanically sensitive circular RNA protein kinase D3 (circPRKD3) and elucidate its underlying mechanotransduction mechanism. MATERIALS AND METHODS PDLSCs were elongated with 8% stretch at 0.5 Hz for 24 h using the Flexcell® FX-6000™ Tension System. CircPRKD3 was knockdown or overexpressed with lentiviral constructs or plasmids. The downstream molecules of circPRKD3 were predicted by bioinformatics analysis. The osteogenic effect of related molecules was evaluated by quantitative real-time PCR (qRT-PCR) and western blot. RESULTS Mechanical force enhanced the osteogenesis of PDLSCs and increased the expression of circPRKD3. Knockdown of circPRKD3 hindered PDLSCs from osteogenesis under mechanical force, while overexpression of circPRKD3 promoted the early osteogenesis process of PDLSCs. With bioinformatics analysis and multiple software predictions, we identified hsa-miR-6783-3p could act as the sponge of circPRKD3 to indirectly regulate osteogenic differentiation of mechanically stimulated PDLSCs. CONCLUSIONS Our results first suggested that both circPRKD3 and hsa-miR-6783-3p could enhance osteogenesis of stretched PDLSCs. Furthermore, hsa-miR-6783-3p could sponge circPRKD3 to indirectly regulate RUNX2 during the periodontal tissue remodeling process in orthodontic treatment.
Collapse
Affiliation(s)
- Jiani Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Rui Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Hong Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Jixiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong, 250012, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong, 250012, China.
| |
Collapse
|
24
|
Liu Y, Jiang H, Hu K, Zou H, Zhang W, Liu J, Jian X. CircPRMT5 promotes progression of osteosarcoma by recruiting CNBP to regulate the translation and stability of CDK6 mRNA. PLoS One 2024; 19:e0298947. [PMID: 38626179 PMCID: PMC11020494 DOI: 10.1371/journal.pone.0298947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 02/01/2024] [Indexed: 04/18/2024] Open
Abstract
Research has demonstrated that circular RNAs (circRNAs) exert critical functions in the occurrence and progression of numerous malignant tumors. CircPRMT5 was recently reported to be involved in the pathogenesis of cancers. However, the potential role of circPRMT5 in osteosarcoma needs further investigation. In present study, our results suggested that circPRMT5 was highly upregulated in osteosarcoma cells and mainly localizes in the cytoplasm. CircPRMT5 promoted the proliferation, migration and invasion capacities of osteosarcoma cells, and suppressed cell apoptosis. Knockdown of circPRMT5 exerted the opposite effects. Mechanically, circPRMT5 promoted the binding of CNBP to CDK6 mRNA, which enhanced the stability of CDK6 mRNA and facilitated its translation, thereby promoting the progression of osteosarcoma. Knockdown of CDK6 reversed the promoting effect of circPRMT5 on osteosarcoma cells. These findings suggest that circPRMT5 promotes osteosarcoma cell malignant activity by recruiting CNBP to regulate the translation and stability of CDK6 mRNA. Thus, circPRMT5 may represent a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yunlu Liu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hongyan Jiang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Keli Hu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Hui Zou
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Weiguo Zhang
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jiangtao Liu
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xiaofei Jian
- Department of Orthopedics, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| |
Collapse
|
25
|
Tang C, Zhuang H, Wang W, Wang Q, Ma X, Wang B, Zhang Z, Jiang J, Xie Z, Tan W, Yang L, Liu S, Hua Y, Xiao Y, Ding B, Chen Y, Shang C. CircNUP54 promotes hepatocellular carcinoma progression via facilitating HuR cytoplasmic export and stabilizing BIRC3 mRNA. Cell Death Dis 2024; 15:191. [PMID: 38443362 PMCID: PMC10914787 DOI: 10.1038/s41419-024-06570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Circular RNAs (circRNAs) have been implicated in tumorigenesis and progression of various cancers. However, the underlying mechanisms of circRNAs in hepatocellular carcinoma (HCC) have not been fully elucidated. Herein, a new oncogenic circRNA, hsa_circ_0070039 (circNUP54), was identified to be significantly upregulated in HCC through circRNA sequencing. As verified in 68 HCC samples, circNUP54 overexpression was correlated with aggressive cancerous behaviors and poor outcomes. Moreover, the function experiments showed that knockdown of circNUP54 inhibited the malignant progression of HCC in vitro and in vivo, whereas overexpression of circNUP54 had the opposite role. Mechanistic investigations carried out by RNA pull-down, RNA immunoprecipitation, and immunofluorescence revealed that circNUP54 interacted with the RNA-binding protein Hu-antigen R (HuR) and promoted its cytoplasmic export. The cytoplasmic accumulation of HuR stabilized the downstream BIRC3 mRNA through its binding to the 3' UTR region. Consequently, the encoded protein of BIRC3, cellular inhibitor of apoptosis 2 (cIAP2), proceeded to activate the NF-κB signal pathway and ultimately contributed to HCC progression. In addition, depletion of BIRC3 rescued the pro-tumorigenic effect of circNUP54 on HCC cells. Overall, this study demonstrated that circNUP54 facilitates HCC progression via regulating the HuR/BIRC3/NF-κB axis, which may serve as a promising therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Chenwei Tang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Wentao Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Qingbin Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Xiaowu Ma
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Bingkun Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Ziyu Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Jiahao Jiang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Zhiqin Xie
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou City, Hunan Province, 412007, China
| | - Wenliang Tan
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou City, Hunan Province, 412007, China
| | - Lei Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Songyao Liu
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Yonglin Hua
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Yuxin Xiao
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China
| | - Baoshan Ding
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yajin Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China.
| | - Changzhen Shang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
26
|
Xiang Y, Sun M, Wu Y, Hu Y. MiR-205-5p-Mediated MAGI1 Inhibition Attenuates the Injury Induced by Diabetic Nephropathy. Pharmacology 2024; 109:98-109. [PMID: 38325349 DOI: 10.1159/000535670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 12/04/2023] [Indexed: 02/09/2024]
Abstract
INTRODUCTION Membrane-associated guanylate kinase with an inverted domain structure-1 (MAGI1) is dysregulated in diabetes; however, its role in diabetic nephropathy (DN) remains unclear. In this study, we determined the function and associated mechanisms of MAGI1 in DN. METHODS Serum samples from 28 patients with DN and 28 normal volunteers were collected. High-glucose (HG)-treated human renal mesangial cells (HRMCs) and streptozotocin-treated rats were used as cell and animal models of DN, respectively. MAGI1 mRNA expression was measured by quantitative reverse transcription polymerase chain reaction. An 5-Ethynyl-2'-deoxyuridine assay was used to assess cell proliferation, whereas Western blot analysis was performed to quantitate the levels of markers associated with proliferation, the extracellular matrix (ECM), and inflammation. These included collagens I, collagen IV, cyclin D1, AKT, phosphorylated-AKT (p-AKT), PI3K, and phosphorylated-PI3K (p-PI3K). The predicted binding of miR-205-5p with the MAGI1 3'UTR was verified using a luciferase assay. RESULTS MAGI1 expression was increased in serum samples from DN patients and in HRMCs treated with HG. MAGI1 knockdown attenuated excessive proliferation, ECM accumulation, and inflammation in HG-induced HRMCs as well as injury to DN rats. MiR-205-5p potentially interacted with the 3'UTR of MAGI1 and binding was verified using a dual-luciferase reporter assay. Moreover, miR-205-5p repression offset the inhibitory influence of MAGI1 knockdown on proliferation, collagen deposition, and inflammation in HG-treated HRMCs. CONCLUSION MAGI1 contributes to injury caused by DN. Furthermore, miR-205-5p binds to MAGI1 and suppresses MAGI1 function. These findings suggest that miR-205-5p-mediates MAGI1 inhibition, which represents a potential treatment for DN.
Collapse
Affiliation(s)
- Yuanbing Xiang
- Nephropathy Rheumatology Department, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Min Sun
- Nephropathy Rheumatology Department, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Yuxi Wu
- Nephropathy Rheumatology Department, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Yao Hu
- Nephropathy Rheumatology Department, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| |
Collapse
|
27
|
You Q, Liang F, Wu G, Cao F, Liu J, He Z, Wang C, Zhu L, Chen X, Yang Y. The Landscape of Biomimetic Nanovesicles in Brain Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306583. [PMID: 37713652 DOI: 10.1002/adma.202306583] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Brain diseases, such as brain tumors, neurodegenerative diseases, cerebrovascular diseases, and brain injuries, are caused by various pathophysiological changes, which pose a serious health threat. Brain disorders are often difficult to treat due to the presence of the blood-brain barrier (BBB). Biomimetic nanovesicles (BNVs), including endogenous extracellular vesicles (EVs) derived from various cells and artificial nanovesicles, possess the ability to penetrate the BBB and thus can be utilized for drug delivery to the brain. BNVs, especially endogenous EVs, are widely distributed in body fluids and usually carry various disease-related signal molecules such as proteins, RNA, and DNA, and may also be analyzed to understand the etiology and pathogenesis of brain diseases. This review covers the exhaustive classification and characterization of BNVs and pathophysiological roles involved in various brain diseases, and emphatically focuses on nanotechnology-integrated BNVs for brain disease theranostics, including various diagnosis strategies and precise therapeutic regulations (e.g., immunity regulation, disordered protein clearance, anti-neuroinflammation, neuroregeneration, angiogenesis, and the gut-brain axis regulation). The remaining challenges and future perspectives regarding the nanotechnology-integrated BNVs for the diagnosis and treatment of brain diseases are also discussed and outlined.
Collapse
Affiliation(s)
- Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Fuming Liang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing, 400016, China
| | - Gege Wu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jingyi Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaohui He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, 1 Friendship Road, Chongqing, 400016, China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
28
|
Ding T, Zeng L, Xia Y, Zhang B, Cui D. miR-135a Mediates Mitochondrial Oxidative Respiratory Function through SIRT1 to Regulate Atrial Fibrosis. Cardiology 2024; 149:286-296. [PMID: 38228115 DOI: 10.1159/000536059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION This study aimed to explore the function of miR-135a in the progress of atrial fibrosis and the mechanism of miR-135a/SIRT1 (sirtuin 1) in human cardiac fibroblasts and mouse cardiac fibroblasts (MCFs) mediating the regulation of atrial fibrosis by mitochondrial oxidative respiration function. METHODS Using Ang II (angiotensin II) to induce fibrosis in HCFs (human corneal fibroblasts) and MCF (Michigan Cancer Foundation, MCF) cells in vitro, the miRNA-seq results of previous studies were validated. Proliferative and invasive ability of HCFs and MCFs was detected by Cell Counting Kit-8 assay (CCK-8) and scratch experiment after overexpressing miR-135a in HCFs and MCF cells. Protein and mRNA expression was tested using Western blot and qPCR. The target of miR-135a was verified as SIRT1 by a luciferase reporter assay and the activities of the mitochondrial respiratory enzyme complexes I, II, III, and IV were determined colorimetrically. The activities of malondialdehyde, reactive oxygen species, and superoxide dismutase in cells were detected with enzyme-linked immunosorbent assay (ELISA). RESULTS miR-135a expression was elevated in HCFs and MCFs cells in the Ang II group than control group. Overexpression of miR-135a could promote the proliferation, migration, oxidative stress, as well as fibrosis of cardiac fibroblasts and suppresses mitochondrial activity. In addition, we found SIRT1 was a target gene of miR-135a. What is more, the findings showed miR-135a promoted fibrosis in HCFs and MCFs cells acting through regulation of SIRT1. CONCLUSIONS miR-135a mediates mitochondrial oxidative respiratory function through SIRT1 to regulate atrial fibrosis.
Collapse
Affiliation(s)
- Tianhang Ding
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Liyan Zeng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Ying Xia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Baojun Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Dongji Cui
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
29
|
Liu C, Cong Y, Chen L, Lv F, Cheng L, Song Y, Xing Y. Hsa_circ_0001583 fuels bladder cancer metastasis by promoting staphylococcal nuclease and tudor domain containing 1-mediated MicroRNA decay. Neoplasia 2024; 47:100963. [PMID: 38176295 PMCID: PMC10805949 DOI: 10.1016/j.neo.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Muscle-invasive and metastatic bladder cancer indicates extra worse prognosis. Accumulating evidence roots for the prominent role of circular RNAs(circRNAs) in bladder cancer, while the mechanisms linking circRNAs and bladder cancer metastasis remain limitedly investigated. Here, we identified a significantly upregulated circRNA candidate, hsa_circ_0001583, from online datasets. Validated by qRT-PCR, PCR, sanger sequencing, actinomycin D and RNase R digestion experiments, hsa_circ_0001583 was proved to be a genuine circular RNA with higher expression levels in bladder cancer tissue. Through gain and loss of function experiments, hsa_circ_0001583 exhibited potent migration and invasion powers both in vitro and in vivo. The staphylococcal nuclease and Tudor domain containing 1 (SND1) was identified as an authentic binding partner for hsa_circ_0001583 through RNA pulldown and RIP experiments. Elevated levels of hsa_circ_0001583 could bind more to SND1 and protect the latter from degradation. Rescue experiments demonstrated that such interaction-induced increased in SND1 levels in bladder cancer cells enabled the protein to pump its endonuclease activity, leading to the degradation of tumor-suppressing MicroRNAs (miRNAs) including miR-126-3p, the suppressor of Disintegrin And Metalloproteinase Domain-Containing Protein 9 (ADAM9), ultimately driving cells into a highly migrative and invasive state. In summary, our study is the first to highlight the upregulation of hsa_circ_0001583 in bladder cancer and its role in downregulating miR-126-3p by binding to and stabilizing the SND1 protein, thereby promoting bladder cancer cell migration and invasion. This study adds hsa_circ_0001583 to the pool of bladder cancer metastasis biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yukun Cong
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Liang Chen
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Fang Lv
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lulin Cheng
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yarong Song
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yifei Xing
- Department of Urology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
30
|
Du Y, Feng Y, Cai Y, Tian C. CircLARP1B promotes pyroptosis of high glucose-induced renal mesangial cells by regulating the miR-578/TLR4 axis. Int Urol Nephrol 2024; 56:283-293. [PMID: 37341906 DOI: 10.1007/s11255-023-03672-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a main cause of end-stage renal disease with high mortality. Circular RNAs (circRNAs) are associated with the pathogenesis of DN. This study aimed to explore the role of circLARP1B in DN. METHODS The levels of circLARP1B, miR-578, TLR4 in DN and high glucose (HG)-treated cells using quantitative real-time PCR. Their relationship was analyzed using dual-luciferase reporter assay. The biological behaviors were assessed by MTT assay, EDU assay, flow cytometry, ELISA, and western blot. RESULTS The results indicated that circLARP1B and TLR4 were highly expressed, and miR-578 was low expressed in patients with DN and HG-induced cells. Knockdown of circLARP1B promoted the proliferation and cell cycle, and inhibited pyroptosis and inflammation of HG-induced cells. CircLARP1B is a sponge of miR-578, which targets TLR4. Rescue experiments showed that inhibition of miR-578 reversed the effects of circLARP1B knockdown, while TLR4 reversed the effects of miR-578. CONCLUSION CircLARP1B/miR-578/TLR4 axis suppressed the proliferation, blocked cell cycle at the G0-G1 phase, promoted pyroptosis, and inflammatory factor release of renal mesangial cells induced by HG. The findings suggested that circLARP1B may be a target for the treatment of DN.
Collapse
Affiliation(s)
- Yan Du
- Department of Nephrology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yu Feng
- Department of Clinical Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yu Cai
- Department of General Surgery, The First Affiliated Hospital of Xi'an Medical University, No. 48, Fenghao West Road, Lianhu District, Xi'an, 710077, Shaanxi, China.
| | - Chang Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China.
| |
Collapse
|
31
|
Shu H, Zhang Z, Liu J, Chen P, Yang C, Wu Y, Wu D, Cao Y, Chu Y, Li L. Circular RNAs: An emerging precise weapon for diabetic nephropathy diagnosis and therapy. Biomed Pharmacother 2023; 168:115818. [PMID: 37939612 DOI: 10.1016/j.biopha.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent chronic microvascular complication associated with diabetes mellitus and represents a major cause of chronic kidney disease and renal failure. Current treatment strategies for DN primarily focus on symptom alleviation, lacking effective approaches to halt or reverse DN progression. Circular RNA (circRNA), characterized by a closed-loop structure, has emerged as a novel non-coding RNA regulator of gene expression, attributed to its conservation, stability, specificity, and multifunctionality. Dysregulation of circRNA expression is closely associated with DN progression, whereby circRNA impacts kidney cell injury by modulating cell cycle, differentiation, cell death, as well as influencing the release of inflammatory factors and stromal fibronectin expression. Consequently, circRNA is considered a predictive biomarker and a potential therapeutic target for DN. This review provides an overview of the latest research progress in the classification, functions, monitoring methods, and databases related to circRNA. The paper focuses on elucidating the impact and underlying mechanisms of circRNA on kidney cells under diabetic conditions, aiming to offer novel insights into the prevention, diagnosis, and treatment of DN.
Collapse
Affiliation(s)
- Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Cao
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
32
|
Li Z, Ren Y, Lv Z, Li M, Li Y, Fan X, Xiong Y, Qian L. Decrypting the circular RNAs does a favor for us: Understanding, diagnosing and treating diabetes mellitus and its complications. Biomed Pharmacother 2023; 168:115744. [PMID: 37862970 DOI: 10.1016/j.biopha.2023.115744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Circular RNAs (circRNAs), a novel type of single-stranded noncoding RNAs with a covalently closed loop structure, are generated in a circular conformation via non-canonical splicing or back-splicing events. Functionally, circRNAs have been elucidated to soak up microRNAs (miRNAs) and RNA binding proteins (RBPs), serve as protein scaffolds, maintain mRNA stability, and regulate gene transcription and translation. Notably, circRNAs are strongly implicated in the regulation of β-cell functions, insulin resistance, adipocyte functions, inflammation as well as oxidative stress via acting as miRNA sponges and RBP sponges. Basic and clinical studies have demonstrated that aberrant alterations of circRNAs expressions are strongly associated with the initiation and progression of diabetes mellitus (DM) and its complications. Here in this review, we present a summary of the biogenesis, transportation, degradation and functions of circRNAs, and highlight the recent findings on circRNAs and their action mechanisms in DM and its complications. Overall, this review should contribute greatly to our understanding of circRNAs in DM pathogenesis, offering insights into the further perspectives of circRNAs for DM diagnosis and therapy.
Collapse
Affiliation(s)
- Zi Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Ziwei Lv
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China
| | - Man Li
- Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Yujia Li
- Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, PR China.
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China; Department of Endocrinology, Xi' an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
33
|
Liu R, Zhou Y, Cao Y. CircRNA and ferroptosis in human disease: Insights for new treatments. Animal Model Exp Med 2023; 6:508-517. [PMID: 38093404 PMCID: PMC10757220 DOI: 10.1002/ame2.12365] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/19/2023] [Indexed: 12/31/2023] Open
Abstract
Circular RNA (circRNA), classified as a type of non-coding RNA, has gained significant attention in the field of biology due to its distinctive ring structure and functional properties. Recent research has provided evidence that specific circRNAs have the ability to modulate disease progression through diverse mechanisms, one of which is by regulating cellular ferroptosis. Ferroptosis is a form of regulated cell death that is driven by iron dependency and lipid peroxidation, and extensive investigations have revealed a relationship between ferroptosis and disease development. In addition to evidence that both circRNAs and ferroptosis exert critical roles in disease progression, circRNAs have also been shown to actively mediate the process of ferroptosis. The relationship between circRNAs and ferroptosis therefore influences disease progression and offers novel targets for disease treatment. By directly or indirectly modulating the expression of circRNAs that regulate the expression of ferroptosis-related proteins, it may be possible to impact disease progression by promoting or inhibiting ferroptosis. Current research indicates such approaches may hold significant value in a wide variety of common diseases across physiological systems. This review comprehensively summarizes the findings of recent studies investigating the roles of circRNAs in the regulation of ferroptosis in various diseases.
Collapse
Affiliation(s)
- Ruoyu Liu
- Department of Clinical LaboratoryChina‐Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yun Zhou
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| | - Yongtong Cao
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| |
Collapse
|
34
|
Zhuang L, Jin G, Qiong W, Ge X, Pei X. Circular RNA COL1A2 Mediates High Glucose-Induced Oxidative Stress and Pyroptosis by Regulating MiR-424-5p/SGK1 in Diabetic Nephropathy. Appl Biochem Biotechnol 2023; 195:7652-7667. [PMID: 37079269 PMCID: PMC10754763 DOI: 10.1007/s12010-023-04501-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
Diabetic nephropathy (DN) represents a major diabetes-related complication, which could undermine renal function. CircCOL1A2 has been previously reported to show abnormal expression during DN. However, its functional role in the progression of DN, as well as the potential molecular mechanisms, remains unclear. The present work examined the expression of circCOL1A2 in the plasma of DN patients, and employed high glucose (HG)-challenged HK-2 cells as the in vitro cell model of hyperglycemia (HG)-induced DN. CircCOL1A2 was silenced using siRNA in HK-2 cells to clarify the functional engagement of circCOL1A2 in HG-induced DN. We examined the roles of circCOL1A2 in regulating oxidative stress by measuring reactive oxygen species (ROS), lipid peroxidation, and superoxide dismutase (SOD) levels. Besides, the effects of circCOL1A2 silencing on pyroptosis were investigated by RT-qPCR, western blot (WB), and ELISA assays. StarBase (version 2.0) was used to identify the downstream effector of circCOL1A2, and their interactions were further verified through dual-luciferase reporter analysis, RNA pull-down assays, and RNA immunoprecipitation (RIP) assay. CircCOL1A2 was highly expressed in DN patients and HG-induced HK-2 cells. Knocking down circCOL1A2 alleviated oxidative stress and pyroptosis upon HG treatment. In addition, we demonstrated that circCOL1A2 knockdown could promote miR-424-5p expression while inhibiting Serum/Glucocorticoid Regulated Kinase 1 (SGK1) level. Furthermore, miR-424-5p inhibitor or SGK1 overexpression impaired the effects of circCOL1A2 knockdown on HG-induced oxidative stress and pyroptosis. Hence, our results demonstrated that the circCOL1A2 mediates HG-exposed pyroptosis and oxidative stress through modulating miR-424-5p/SGK1 axis in diabetic nephropathy, indicating that silencing circCOL1A2 is a potential intervention strategy for DN management.
Collapse
Affiliation(s)
- Langen Zhuang
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China.
| | - Guoxi Jin
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| | - Wang Qiong
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| | - Xiaoxu Ge
- Department of Endocrinology, Tongren Hospital Affiliated to Jiaotong University, Shanghai, 200000, China
| | - Xiaoyan Pei
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233004, Anhui, China
| |
Collapse
|
35
|
Mohammed EM. Circular RNA in Multiple Sclerosis: Pathogenicity and Potential Biomarker Development: A Systematic Review. Epigenet Insights 2023; 16:25168657231213195. [PMID: 38033465 PMCID: PMC10687999 DOI: 10.1177/25168657231213195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder of the CNS that affects millions of people worldwide. The causes of the disease remain unknown despite extensive efforts to understand it. CircRNAs are a unique class of endogenous non-coding RNA that are abundant, stable, conserved, and specifically expressed molecules, making them a promising biomarker of diseases. This review investigates the role of circRNA in MS pathogenicity and their potential as a biomarker through a comprehensive literature search conducted in 8 scientific databases. The studies found that there are differentially expressed circRNAs in MS patients compared to healthy controls (HC), and this difference is even more pronounced in different MS subtypes. Enrichment of circRNAs in linkage disequilibrium (LD) blocks that harbor MS-associated SNPs suggests that these SNPs manipulate the levels of circRNAs in the surrounding area, contributing to disease pathogenicity. While circRNA shows promise as an indicator or biomarker for MS disease pathology, further research is needed to fully explore its potential and impact on human biology.
Collapse
Affiliation(s)
- Eiman M Mohammed
- Kuwait Cancer Control Centre, Medical Laboratory Department, Molecular Genetics Laboratory, Ministry of Health, Shuwaikh, Kuwait
| |
Collapse
|
36
|
Madè A, Bibi A, Garcia-Manteiga JM, Tascini AS, Piella SN, Tikhomirov R, Voellenkle C, Gaetano C, Leszek P, Castelvecchio S, Menicanti L, Martelli F, Greco S. circRNA-miRNA-mRNA Deregulated Network in Ischemic Heart Failure Patients. Cells 2023; 12:2578. [PMID: 37947656 PMCID: PMC10648415 DOI: 10.3390/cells12212578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Noncoding RNAs (ncRNAs), which include circular RNAs (circRNAs) and microRNAs (miRNAs), regulate the development of cardiovascular diseases (CVD). Notably, circRNAs can interact with miRNAs, influencing their specific mRNA targets' levels and shaping a competing endogenous RNAs (ceRNA) network. However, these interactions and their respective functions remain largely unexplored in ischemic heart failure (IHF). This study is aimed at identifying circRNA-centered ceRNA networks in non-end-stage IHF. Approximately 662 circRNA-miRNA-mRNA interactions were identified in the heart by combining state-of-the-art bioinformatics tools with experimental data. Importantly, KEGG terms of the enriched mRNA indicated CVD-related signaling pathways. A specific network centered on circBPTF was validated experimentally. The levels of let-7a-5p, miR-18a-3p, miR-146b-5p, and miR-196b-5p were enriched in circBPTF pull-down experiments, and circBPTF silencing inhibited the expression of HDAC9 and LRRC17, which are targets of miR-196b-5p. Furthermore, as suggested by the enriched pathway terms of the circBPTF ceRNA network, circBPTF inhibition elicited endothelial cell cycle arrest. circBPTF expression increased in endothelial cells exposed to hypoxia, and its upregulation was confirmed in cardiac samples of 36 end-stage IHF patients compared to healthy controls. In conclusion, circRNAs act as miRNA sponges, regulating the functions of multiple mRNA targets, thus providing a novel vision of HF pathogenesis and laying the theoretical foundation for further experimental studies.
Collapse
Affiliation(s)
- Alisia Madè
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
- Department of Biosciences, University of Milan, 20122 Milan, Italy
| | - Jose Manuel Garcia-Manteiga
- Center for Omics Sciences COSR, BioInformatics Laboratory, San Raffaele Scientific Institute, 20132 Milan, Italy; (J.M.G.-M.); (A.S.T.)
| | - Anna Sofia Tascini
- Center for Omics Sciences COSR, BioInformatics Laboratory, San Raffaele Scientific Institute, 20132 Milan, Italy; (J.M.G.-M.); (A.S.T.)
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Santiago Nicolas Piella
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Roman Tikhomirov
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Serenella Castelvecchio
- Department of Adult Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.C.); (L.M.)
| | - Lorenzo Menicanti
- Department of Adult Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (S.C.); (L.M.)
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy; (A.M.); (A.B.); (S.N.P.); (R.T.); (C.V.); (S.G.)
| |
Collapse
|
37
|
Shi Y, Tian Y, Wu Y, Zhao Y. CircTNPO1 promotes the tumorigenesis of osteosarcoma by sequestering miR-578 to upregulate WNT5A expression. Cell Signal 2023; 111:110858. [PMID: 37633479 DOI: 10.1016/j.cellsig.2023.110858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
As a type of non-coding RNAs, circular RNAs (circRNAs) have the ability to bind to miRNAs and regulate gene expression. Recent studies have shown that circRNAs are involved in certain pathological events. However, the expression and functional role of circTNPO1 in osteosarcoma (OS) are not yet clear. To investigate circRNAs that are differentially expressed in OS tissues and cells, circRNA microarray analysis combined with qRT-PCR was performed. The in-vitro and in-vivo functions of circTNPO1 were studied by knocking it down or overexpressing it. The binding and regulatory relationships between circTNPO1, miR-578, and WNT5A were evaluated using dual luciferase assays, RNA pull-down and rescue assays, as well as RNA immunoprecipitation (RIP). Furthermore, functional experiments were conducted to uncover the regulatory effect of the circTNPO1/miR-578/WNT5A pathway on OS progression. Cytoplasm was identified as the primary location of circTNPO1, which exhibited higher expression in OS tissues and cells compared to the corresponding controls. The overexpression of circTNPO1 was found to enhance malignant phenotypes in vitro and increase oncogenicity in vivo. Moreover, circTNPO1 was observed to sequester miR-578 in OS cells, resulting in the upregulation of WNT5A and promoting carcinoma progression. These findings indicate that circTNPO1 can contribute to the progression of OS through the miR-578/WNT5A axis. Therefore, targeting the circTNPO1/miR-578/WNT5A axis could be a promising therapeutic strategy for OS.
Collapse
Affiliation(s)
- Yubo Shi
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunyun Tian
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanqing Wu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yingchun Zhao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
38
|
Zhao Z, Yan Q, Fang L, Li G, Liu Y, Li J, Pan S, Zhou S, Duan J, Liu D, Liu Z. Identification of urinary extracellular vesicles differentially expressed RNAs in diabetic nephropathy via whole-transcriptome integrated analysis. Comput Biol Med 2023; 166:107480. [PMID: 37738894 DOI: 10.1016/j.compbiomed.2023.107480] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common systemic microvascular complication of diabetes and a leading cause of chronic kidney disease worldwide. Urinary extracellular vesicles (uEVs), which are natural nanoscale vesicles that protect RNA from degradation, have the potential to serve as an invasive diagnostic biomarker for DN. METHODS We enrolled 24 participants, including twelve with renal biopsy-proven T2DN and twelve with T2DM, and isolated uEVs using ultracentrifugation. We performed microarrays for mRNAs, lncRNAs, and circRNAs in parallel, and Next-Generation Sequencing for miRNAs. Differentially expressed RNAs (DE-RNAs) were subjected to CIBERSORTx, ssGSEA analysis, GO enrichment, PPI network analysis, and construction of the lncRNA/circRNA-miRNA-mRNA regulatory network. Candidate genes and potential biomarker RNAs were validated using databases and machine learning models. RESULTS A total of 1684 mRNAs, 126 lncRNAs, 123 circRNAs and 66 miRNAs were found in uEVs in T2DN samples compared with T2DM. CIBERSORTx revealed the involvement of uEVs in immune activity and ssGSEA explored possible cell or tissue sources of uEVs. A ceRNA co-expression and regulation relationship network was constructed. Candidate genes MYO1C and SP100 mRNA were confirmed to be expressed in the kidney using Nephroseq database, scRNA-seq dataset, and Human Protein Atlas database. We further selected 2 circRNAs, 2 miRNAs, and 2 lncRNAs from WGCNAs and ceRNAs and demonstrated their efficacy as potential diagnostic biomarkers for T2DN using machine learning algorithms. CONCLUSIONS This study reported, for the first time, the whole-transcriptome genetic resources found in urine extracellular vesicles of T2DN patients. The results provide additional support for the possible interactions, and regulators between RNAs from uEVs themselves and as potential biomarkers in DN.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Qianqian Yan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Fang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Guangpu Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yong Liu
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Jia Li
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Shaokang Pan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Sijie Zhou
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Jiayu Duan
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China.
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China; Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, PR China.
| |
Collapse
|
39
|
Zhang W, Zhang L, Dong Q, Wang X, Li Z, Wang Q. Hsa_circ_0003928 regulates the progression of diabetic nephropathy through miR-136-5p/PAQR3 axis. J Endocrinol Invest 2023; 46:2103-2114. [PMID: 37017919 DOI: 10.1007/s40618-023-02061-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/06/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the complications of diabetes and has a high mortality, but its specific pathogenesis is not clear. In recent years, researches on the mechanism of circRNAs in DN have been proved a lot, whereas the functional mechanism of circ_0003928 in DN remains open and it must be investigated to value its important role in DN prevention. METHODS HK-2 cells were treated with high glucose (HG), normal glucose (NG) or Mannitol. Cell counting kit-8 (CCK8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were performed to detect cell proliferation. Enzyme-linked immunosorbent assay (ELISA) was applied to analyze malondialdehyde (MDA) and superoxide dismutase 1 (SOD) levels. Flow cytometry and western blot were preformed to measure cell apoptosis. Real-time quantitative PCR (RT-qPCR) was used to test the levels of circ_0003928, miR-136-5p and progestin and adipoQ receptor family member 3 (PAQR3) mRNA. Western blot was executed to detect Bcl2 associated X (Bax), B cell leukemia/lymphoma 2 (Bcl2), smooth muscle (αSMA), apolipoprotein (C-IV) and PAQR3 levels. Luciferase reporter assay and RNA pull-down assay were used to analyze the target relationship between miR-136-5p and circ_0003928 or PAQR3. RESULTS Circ_0003928 and PAQR3 expression were up-regulated, whereas miR-136-5p was decreased in DN serum and HG-induced HK-2 cells. Circ_0003928 knockdown promoted cell proliferation, and inhibit cell apoptosis, oxidative stress, and fibrosis in HK-2 cells under HG condition. MiR-136-5p silencing overturned the protective effects of si-circ_0003928 on HG-induced HK-2 cells. MiR-136-5p was targeted by circ_0003928 and directly targeted PAQR3. Overexpression of PAQR3 counteracted the inhibitory functions of circ_0003928 knockdown or miR-136-5p overexpression on HG-induced HK-2 cell injury. CONCLUSION Circ_0003928 acted as a sponge of miR-136-5p to up-regulating PAQR3 expression, and then regulate the proliferation, oxidative stress, fibrosis and apoptosis in HG-induced HK-2 cells.
Collapse
Affiliation(s)
- W Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - L Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Q Dong
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - X Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Z Li
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China
| | - Q Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People's Hospital, No. 256 Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
40
|
Lin Z, Lv D, Liao X, Peng R, Liu H, Wu T, Wu K, Sun Y, Zhang Z. CircUBXN7 promotes macrophage infiltration and renal fibrosis associated with the IGF2BP2-dependent SP1 mRNA stability in diabetic kidney disease. Front Immunol 2023; 14:1226962. [PMID: 37744330 PMCID: PMC10516575 DOI: 10.3389/fimmu.2023.1226962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/20/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Inflammatory cell infiltration is a novel hallmark of diabetic kidney disease (DKD), in part, by activated macrophages. Macrophage-to-tubular epithelial cell communication may play an important role in renal fibrosis. Circular RNAs (circRNAs) have been reported in the pathogenesis of various human diseases involving macrophages activation, including DKD. However, the exact mechanism of circRNAs in macrophage infiltration and renal fibrosis of DKD remains obscure. Methods In our study, a novel circRNA circUBXN7 was identified in DKD patients using microarray. The function of circUBXN7 in vitro and in vivo was investigated by qRT-PCR, western blot, and immunofluorescence. Finally, a dual-luciferase reporter assay, ChIP, RNA pull-down, RNA immunoprecipitation and rescue experiments were performed to investigate the mechanism of circUBXN7. Results We demonstrated that the expression of circUBXN7 was significantly upregulated in the plasma of DKD patients and correlated with renal function, which might serve as an independent biomarker for DKD patients. According to investigations, ectopic expression of circUBXN7 promoted macrophage activation, EMT and fibrosis in vitro, and increased macrophage infiltration, EMT, fibrosis and proteinuria in vivo. Mechanistically, circUBXN7 was transcriptionally upregulated by transcription factor SP1 and could reciprocally promote SP1 mRNA stability and activation via directly binding to the m6A-reader IGF2BP2 in DKD. Conclusion CircUBXN7 is highly expressed in DKD patients may provide the potential biomarker and therapeutic target for DKD.
Collapse
Affiliation(s)
- Ziyue Lin
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Dan Lv
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Xiaohui Liao
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Handeng Liu
- Center of Teaching and Learning, Chongqing Medical University, Chongqing, China
| | - Tianhui Wu
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Keqian Wu
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Zheng Y, Huang Q, Zhang Y, Geng L, Wang W, Zhang H, He X, Li Q. Multimodal roles of transient receptor potential channel activation in inducing pathological tissue scarification. Front Immunol 2023; 14:1237992. [PMID: 37705977 PMCID: PMC10497121 DOI: 10.3389/fimmu.2023.1237992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Transient receptor potential (TRP) channels are a class of transmembrane proteins that can sense a variety of physical/chemical stimuli, participate in the pathological processes of various diseases and have attracted increasing attention from researchers. Recent studies have shown that some TRP channels are involved in the development of pathological scarification (PS) and directly participate in PS fibrosis and re-epithelialization or indirectly activate immune cells to release cytokines and neuropeptides, which is subdivided into immune inflammation, fibrosis, pruritus and mechanical forces increased. This review elaborates on the characteristics of TRP channels, the mechanism of PS and how TRP channels mediate the development of PS, summarizes the important role of TRP channels in the different pathogenesis of PS and proposes that therapeutic strategies targeting TRP will be important for the prevention and treatment of PS. TRP channels are expected to become new targets for PS, which will make further breakthroughs and provide potential pharmacological targets and directions for the in-depth study of PS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang He
- Department of Dermatology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiannan Li
- Department of Dermatology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
42
|
Wang Q, Zhu Y, Dong Q, Zhang L, Zhang W. A Novel Circ_Arf3/miR-452-5p/Mbnl1 Axis Regulates Proliferation and Expression of Fibrosis-Related Proteins of Mouse Mesangial Cells Under High Glucose. Diabetes Metab Syndr Obes 2023; 16:2105-2116. [PMID: 37457110 PMCID: PMC10349572 DOI: 10.2147/dmso.s400530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/31/2023] [Indexed: 07/18/2023] Open
Abstract
Background Diabetic nephropathy (DN) is a serious microvascular complication of diabetes that may lead to chronic renal failure and end-stage renal disease. Circular RNAs (circRNAs) play important roles in DN progression. However, the action of circRNA ADP ribosylation factor 3 (circ_Arf3) in high glucose (HG)-induced change is still unclear. Methods Mouse mesangial cells (MCs) were treated with 30 mM HG as a DN cell model in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to examine the expression levels of circ_Arf3, microRNA (miR)-452-5p and muscleblind like splicing regulator 1 (Mbnl1). The proliferation of HG-treated MCs was assessed using 5 Ethynyl 2' deoxyuridine (EdU) and cell counting kit-8 (CCK-8) assays, and the levels of proliferation and fibrosis-related proteins and Mbnl1 were detected by Western blot. Dual-luciferase reporter and RNA pull-down assays were utilized to determine the relationship between miR-452-5p and circ_Arf3 or Mbnl1. Results Our results discovered that circ_Arf3 and Mbnl1 were lowly expressed in HG-treated MCs, while miR-452-5p expression was up-regulated. Moreover, circ_Arf3 was mainly located in the cytoplasm and had a ring-like stable structure. Functional assays demonstrated that overexpression of circ_Arf3 prevented cell proliferation and fibrous formation in HG-treated MCs. Circ_Arf3 could sponge miR-452-5p, and the effect of circ_Arf3 overexpression was reversed by enhanced expression of miR-452-5p. Mbnl1 was a direct target of miR-452-5p. Knockdown of Mbnl1 abolished the suppressive effects of miR-452-5p inhibitor on proliferation and fibrosis-related protein expression in HG-treated MCs. Moreover, circ_Arf3 regulated Mbnl1 through miR-452-5p. Conclusion Overexpression of circ_Arf3 prevents cell proliferation and fibrous formation in HG-treated MCs by regulating the expression of Mbnl1 via miR-452-5p.
Collapse
Affiliation(s)
- Qiong Wang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| | - Yanting Zhu
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| | - Qianlan Dong
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| | - Linping Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| | - Wei Zhang
- Kidney Disease and Dialysis Center, Shaanxi Provincial People’s Hospital, Xi’an City, Shaanxi, People’s Republic of China
| |
Collapse
|
43
|
Gao X, Yu Y, Wang H, Liu G, Sun X, Wang Z, Jiang X. Emerging roles of circ_NRIP1 in tumor development and cancer therapy (Review). Oncol Lett 2023; 26:321. [PMID: 37332333 PMCID: PMC10272956 DOI: 10.3892/ol.2023.13907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Circular RNA (circRNA) is a class of endogenous non-coding RNA, a type of single-stranded covalently closed RNA molecule formed by alternative splicing of exons or introns. Previous studies have demonstrated that circRNA participates in modulating biological processes such as cell proliferation, differentiation and apoptosis, and plays key roles in tumor occurrence and development. CircRNA nuclear receptor interacting protein 1 (circ_NRIP1), a form of circRNA, is abnormally expressed in certain human tumor types. It is present at a higher abundance compared with cognate linear transcripts and can regulate malignant biological behaviors such as tumor proliferation, invasion and migration, revealing a currently unexplored frontier in cancer progression. The present review presents a pattern of circ_NRIP1 expression in various malignant tumor types and highlights its significance in cancer development, in addition to its potential as a disease indicator or future therapeutic agent.
Collapse
Affiliation(s)
- Xin Gao
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yongbo Yu
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Haicun Wang
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Guanglin Liu
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xinyu Sun
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhidong Wang
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xingming Jiang
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
44
|
Liu Z, Liu J, Wang W, An X, Luo L, Yu D, Sun W. Epigenetic modification in diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1133970. [PMID: 37455912 PMCID: PMC10348754 DOI: 10.3389/fendo.2023.1133970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common microangiopathy in diabetic patients and the main cause of death in diabetic patients. The main manifestations of DKD are proteinuria and decreased renal filtration capacity. The glomerular filtration rate and urinary albumin level are two of the most important hallmarks of the progression of DKD. The classical treatment of DKD is controlling blood glucose and blood pressure. However, the commonly used clinical therapeutic strategies and the existing biomarkers only partially slow the progression of DKD and roughly predict disease progression. Therefore, novel therapeutic methods, targets and biomarkers are urgently needed to meet clinical requirements. In recent years, increasing attention has been given to the role of epigenetic modification in the pathogenesis of DKD. Epigenetic variation mainly includes DNA methylation, histone modification and changes in the noncoding RNA expression profile, which are deeply involved in DKD-related inflammation, oxidative stress, hemodynamics, and the activation of abnormal signaling pathways. Since DKD is reversible at certain disease stages, it is valuable to identify abnormal epigenetic modifications as early diagnosis and treatment targets to prevent the progression of end-stage renal disease (ESRD). Because the current understanding of the epigenetic mechanism of DKD is not comprehensive, the purpose of this review is to summarize the role of epigenetic modification in the occurrence and development of DKD and evaluate the value of epigenetic therapies in DKD.
Collapse
Affiliation(s)
- Zhe Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Jiahui Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Wanning Wang
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
45
|
Liu S, Fu S, Jin Y, Geng R, Li Y, Zhang Y, Liu J, Guo W. Tartary buckwheat flavonoids alleviates high-fat diet induced kidney fibrosis in mice by inhibiting MAPK and TGF-β1/Smad signaling pathway. Chem Biol Interact 2023; 379:110533. [PMID: 37150497 DOI: 10.1016/j.cbi.2023.110533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Tartary buckwheat flavonoids (TBF) are active components extracted from Tartary buckwheat, which have abundant biological effects. According to this study, we investigated the effect of TBF on high-fat diet (HFD)-induced kidney fibrosis and its related mechanisms. In vivo, we established an HFD-induced kidney fibrosis model in mice and administered TBF. The results showed that TBF was able to alleviate kidney injury and inflammatory response. Subsequently, the mRNA levels between the HFD group and the TBF + HFD group were detected using RNA-seq assay. According to the gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results, the differential genes were enriched in lipid metabolism and mitogen-activated protein kinases(MAPK) signaling pathways. We examined the protein expression of lipid metabolism-related pathways and the level of lipid metabolism. The results showed that TBF significantly activated the adenosine monophosphate activated protein kinase/acetyl-CoA carboxylase (AMPK/ACC) pathway and effectively reduced kidney total cholesterol (TC), triglyceride (TG) and low-density lipoproteinc cholesterol (LDL-C) levels and increased high-density lipoprotein cholesterol (HDL-C) levels in mice. TBF also inhibited transforming growth factor-β1/Smad (TGF-β1/Smad) and MAPK signaling pathways, thus slowing down the kidney fibrosis process. In vitro, using palmitic acid (PA) to stimulate TCMK-1 cells, the in vivo results similarly demonstrated that TBF could alleviate kidney fibrosis in HFD mice by inhibiting TGF1/Smad signaling pathway and MAPK signaling pathway.
Collapse
Affiliation(s)
- Shu Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuhang Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ruiqi Geng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yuhang Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yufei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Chongqing Research Institute, Jilin University, 401120, Chongqing, China.
| |
Collapse
|
46
|
Zhu Z, Li X, Cao X, Qin H, Yue D, Liu D, Tan G, Xuan X, Zhu H. Extracellular Matrix and Protein Phosphorylation Dysregulation Related to Diabetes-Induced Erectile Dysfunction. Andrologia 2023. [DOI: 10.1155/2023/5488279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Diabetes can cause erectile dysfunction (ED) in more than half of male patients. However, the mechanisms underlying diabetes-induced erectile dysfunction (DED) remain unknown. This study is aimed at systematically analyzing the cellular and molecular mechanisms leading to DED using bioinformatic analysis and providing molecular targets for predicting and treating DED. In total, we identified 800 DEGs in the DED samples compared with those in the control group. The 407 upregulated DEGs were mainly enriched in glucose and lipid metabolism-related pathways, and the 393 downregulated DEGs were primarily enriched in tissue development and structure. Dysregulated extracellular matrix genes (especially collagen and elastin) may be closely related to damage to the erectile function of the corpus cavernosum. Sixteen hub genes and 24 modules were detected with hub genes and MCODE analysis. The consensus sequence AAA (G/C) AAA was observed at the promoter sites of most genes that were enriched in the “posttranslational protein phosphorylation” pathway. These genes had abundant phosphorylation sites. Furthermore, 20 TFs targeting DEGs were identified using ChEA3 tool. In conclusion, our research comprehensively and systematically describes the molecular characteristics of DED and suggests that dysregulated extracellular matrix genes and protein phosphorylation may play critical roles in DED. Therefore, they may be potential markers for diagnosing and treating DED.
Collapse
Affiliation(s)
- Zhiguo Zhu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jining, Shandong, China
- Department of Andrology, The Seventh Affiliated Hospital Sun Yet-sen University, Shenzhen, Guangdong, China
| | - Xiaoli Li
- Department of Outpatient Office & Outpatient Operating Room, The Seventh Affiliated Hospital Sun Yet-sen University, Shenzhen, Guangdong, China
| | - Xiande Cao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Huisheng Qin
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Dong Yue
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Deqian Liu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Guigeng Tan
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Xujun Xuan
- Department of Andrology, The Seventh Affiliated Hospital Sun Yet-sen University, Shenzhen, Guangdong, China
| | - Haizhou Zhu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
47
|
Zeng Y, Wang A, Lv W, Wang Q, Jiang S, Pan X, Wang F, Yang H, Bolund L, Lin C, Han P, Luo Y. Recent development of urinary biomarkers for bladder cancer diagnosis and monitoring. CLINICAL AND TRANSLATIONAL DISCOVERY 2023; 3. [DOI: 10.1002/ctd2.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/11/2023] [Indexed: 01/04/2025]
Abstract
AbstractUrine‐based liquid biopsy has emerged as a non‐invasive and effective tool for early screening and diagnosis of bladder cancer. This review provides a comprehensive overview of the current urine‐based biomarkers and methods for the detection and monitoring of bladder cancer. We focus on biomarkers including tumour DNAs, proteins, microbiome, tumour RNAs, long non‐coding RNAs, transfer RNA‐derived fragments, messenger RNAs, microRNAs, circular RNAs, exosomes and extrachromosomal circular DNA.
Collapse
Affiliation(s)
- Yuchen Zeng
- College of Life Sciences Tianjin University Tianjin China
- IBMC‐BGI Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang China
| | - Anqi Wang
- Department of Biological Sciences Xi'an Jiaotong‐Liverpool University Suzhou China
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
| | - Wei Lv
- College of Life Sciences University of Chinese Academy of Science Beijing China
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Qingqing Wang
- College of Life Sciences University of Chinese Academy of Science Beijing China
| | - Shiqi Jiang
- College of Life Sciences Tianjin University Tianjin China
- Intelligent Diagnosis Center Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou Zhejiang China
| | - Xiaoguang Pan
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
| | - Fei Wang
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Huanming Yang
- IBMC‐BGI Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang China
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Chunhua Lin
- Department of Urology The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
| | - Yonglun Luo
- IBMC‐BGI Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang China
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
- Department of Biomedicine Aarhus University Aarhus Denmark
| |
Collapse
|
48
|
Xie F, Shen J, Han Z, Luo W, Liao L, He J. circSPECC1 Promotes Proliferation and Migration of LNCaP Prostate Cancer Cells by Affecting Their Epithelial-Mesenchymal Transition. J Immunol Res 2023; 2023:6956038. [PMID: 37020791 PMCID: PMC10070022 DOI: 10.1155/2023/6956038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 03/29/2023] Open
Abstract
Objective. To determine the effects of circSPECC1 (hsa_circ_0000745) on the proliferation and migration of LNCaP prostate cancer cells and to explore the potential molecular mechanism. Methods. Stable circSPECC1 shRNA-expressing and circSPECC1-overexpressing LNCaP cell lines were constructed, and relative gene expression levels were determined by RT-PCR. MTT and clonogenic assays were used to assess proliferative ability while a scratch test was used to analyze cell migration. Western blotting was used to determine protein expression levels. The effects of circSPECC1 on the proliferation of LNCaP prostate cancer cells were observed in vivo. Results. circSPECC1 was found to be derived from the SPECC1 (sperm antigen with calponin homology and coiled-coil domains 1) parent gene and to form a loop. Overexpression of circSPECC1 promoted the proliferation and migration of the LNCaP cells, whereas decreased expression of circSPECC1 inhibited these properties. Overexpression of circSPECC1 promoted the expression of MMP-2, MMP-9, VEGF, vimentin, and N-cad but downregulated the expression of E-cad. Decreased expression of circSPECC1 inhibited the expression of MMP-2, MMP-9, VEGF, vimentin, and N-cad but increased the expression of E-cad. Conclusion. circSPECC1 promotes cell proliferation and migration by affecting the epithelial-mesenchymal transition of LNCaP prostate cancer cells.
Collapse
|
49
|
Li X, Ma TK, Wang M, Zhang XD, Liu TY, Liu Y, Huang ZH, Zhu YH, Zhang S, Yin L, Xu YY, Ding H, Liu C, Shi H, Fan QL. YY1-induced upregulation of LncRNA-ARAP1-AS2 and ARAP1 promotes diabetic kidney fibrosis via aberrant glycolysis associated with EGFR/PKM2/HIF-1α pathway. Front Pharmacol 2023; 14:1069348. [PMID: 36874012 PMCID: PMC9974832 DOI: 10.3389/fphar.2023.1069348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Objectives: Dimeric pyruvate kinase (PK) M2 (PKM2) plays an important role in promoting the accumulation of hypoxia-inducible factor (HIF)-1α, mediating aberrant glycolysis and inducing fibrosis in diabetic kidney disease (DKD). The aim of this work was to dissect a novel regulatory mechanism of Yin and Yang 1 (YY1) on lncRNA-ARAP1-AS2/ARAP1 to regulate EGFR/PKM2/HIF-1α pathway and glycolysis in DKD. Materials and methods: We used adeno-associated virus (AAV)-ARAP1 shRNA to knocked down ARAP1 in diabetic mice and overexpressed or knocked down YY1, ARAP1-AS2 and ARAP1 expression in human glomerular mesangial cells. Gene levels were assessed by Western blotting, RT-qPCR, immunofluorescence staining and immunohistochemistry. Molecular interactions were determined by RNA pull-down, co-immunoprecipitation, ubiquitination assay and dual-luciferase reporter analysis. Results: YY1, ARAP1-AS2, ARAP1, HIF-1α, glycolysis and fibrosis genes expressions were upregulated and ARAP1 knockdown could inhibit dimeric PKM2 expression and partly restore tetrameric PKM2 formation, while downregulate HIF-1α accumulation and aberrant glycolysis and fibrosis in in-vivo and in-vitro DKD models. ARAP1 knockdown attenuates renal injury and renal dysfunction in diabetic mice. ARAP1 maintains EGFR overactivation in-vivo and in-vitro DKD models. Mechanistically, YY1 transcriptionally upregulates ARAP1-AS2 and indirectly regulates ARAP1 and subsequently promotes EGFR activation, HIF-1α accumulation and aberrant glycolysis and fibrosis. Conclusion: Our results first highlight the role of the novel regulatory mechanism of YY1 on ARAP1-AS2 and ARAP1 in promoting aberrant glycolysis and fibrosis by EGFR/PKM2/HIF-1α pathway in DKD and provide potential therapeutic strategies for DKD treatments.
Collapse
Affiliation(s)
- Xin Li
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Tian-Kui Ma
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Min Wang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Xiao-Dan Zhang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Tian-Yan Liu
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Yue Liu
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Zhao-Hui Huang
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Yong-Hong Zhu
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
| | - Shuang Zhang
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Li Yin
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Yan-Yan Xu
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Hong Ding
- Department of Nephrology, Fourth Hospital of China Medical University, Shenyang, China
| | - Cong Liu
- Department of General Surgery, First Hospital of Harbin Medical University, Harbin, China
| | - Hang Shi
- Department of Intensive Care Unit, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiu-Ling Fan
- Department of Nephrology, First Hospital of China Medical University, Shenyang, China
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Li Q, Meng X, Hua Q. Circ ASAP2 decreased inflammation and ferroptosis in diabetic nephropathy through SOX2/SLC7A11 by miR-770-5p. Acta Diabetol 2023; 60:29-42. [PMID: 36153434 DOI: 10.1007/s00592-022-01961-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023]
Abstract
AIMS Diabetes nephropathy (DN) is one of the major complications in diabetes. With the improvement of people's living standards in China in recent years, the incidence of diabetes has become the main cause of end-stage renal disease. However, how and whether circ ASAP2 could mediate DN remain poorly understood. This study aimed to determine the function and its biological mechanism of circ ASAP2 on inflammation and ferroptosis of DN. METHODS C57BL/6 mice were fed with a high-fat diet and injected with streptozotocin. Human renal glomerular endothelial cells stimulated with 20 mmol/L D-glucose. RESULTS In mice model DN, circular ASAP2 expression level was down-regulated, and miR-770-5p expression level was up-regulated. Moreover, the inhibition of ASAP2 aggravated diabetic nephropathy in mice model. The inhibition of ASAP2 promoted inflammation and oxidative stress to aggravate renal injury in mice model. Circular ASAP2 was reducing inflammation and oxidative stress in vitro model. The inhibition of ASAP2 promoted ferroptosis in model of DN. CASAP2 suppressed miR-770-5p in DN. Additionally, miR-770-5p aggravated diabetic nephropathy in mice model. MiR-770-5p promoted inflammation and oxidative stress to aggravate renal injury in mice model. MiR-770-5p was increasing inflammation and oxidative stress in vitro model. Circular ASAP2 induced SLC7A11 expression in model of DN through SOX2 by miR-770-5p. CONCLUSIONS These results suggest that circ ASAP2 decreased inflammation and ferroptosis in DN through SOX2/SLC7A11 by miR-770-5p, which might serve as a target for improving the role of ferroptosis in DN.
Collapse
Affiliation(s)
- Qin Li
- Department of Endocrinology, Yijishan Hospital of Wannan Medical College, No.2 Zheshanxi Road, Wuhu, 241001, Anhui, China
| | - Xiangjian Meng
- Department of Endocrinology, Yijishan Hospital of Wannan Medical College, No.2 Zheshanxi Road, Wuhu, 241001, Anhui, China.
| | - Qiang Hua
- Department of Endocrinology, Yijishan Hospital of Wannan Medical College, No.2 Zheshanxi Road, Wuhu, 241001, Anhui, China.
| |
Collapse
|