1
|
Carstens PS, Brendel H, Villar-Ballesteros ML, Mittag J, Hengst C, Brunssen C, Birdir C, Taylor PD, Poston L, Morawietz H. Characterization of human placental fetal vessels in gestational diabetes mellitus. Pflugers Arch 2025; 477:67-79. [PMID: 39384641 PMCID: PMC11711144 DOI: 10.1007/s00424-024-03028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Gestational diabetes mellitus is one of the most common complications during pregnancy. Its prevalence is rapidly increasing worldwide. Gestational diabetes mellitus is leading to an elevated risk for the development of endothelial dysfunction and cardiovascular diseases both in the mother and the child in later life. The underlying pathophysiological mechanisms are not well-understood. Therefore, we aimed to characterize the endothelial function in fetal placental vessels from mothers with gestational diabetes mellitus. In this study, we distinguished between insulin-treated and diet-controlled gestational diabetes mothers and compared them to a normoglycemic control group. The clinical data confirmed pre-conceptional overweight as a risk factor in women with insulin-treated gestational diabetes mellitus. The insulin-treated gestational diabetes group was also characterized by a recent family history of diabetes compared to mothers of the control or diet-controlled gestational diabetes group. Analyses of blood serum from umbilical cords suggested a reduced fetal insulin metabolism in the insulin-treated gestational diabetes group. Vascular function analysis in fetal placental vessels revealed an altered substance P-induced vasorelaxation in vessels from patients with insulin-dependent gestational diabetes. Inhibition of nitric oxide synthase affected only fetal vessel segments from the control group or diet-controlled gestational diabetes group, but not from insulin-dependent gestational diabetes. Finally, we found a significantly decreased substance P receptor (TACR1) mRNA expression in fetal vessel segments from patients with insulin-treated gestational diabetes. In conclusion, we provide evidence that different pathophysiological mechanisms might be responsible for the development of insulin-treated versus diet-controlled gestational diabetes. Only in fetal vessels from patients with insulin-treated gestational diabetes were we able to detect an endothelial dysfunction and a reduced fetal insulin conversion. This provides novel insights into the pathophysiology of the subtypes of gestational diabetes.
Collapse
Affiliation(s)
- Philine S Carstens
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Heike Brendel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - M Leyre Villar-Ballesteros
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
- Department of Women & Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| | - Jennifer Mittag
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Clara Hengst
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| | - Cahit Birdir
- Department of Obstetrics and Gynecology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Center for Feto/Neonatal Health, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Paul D Taylor
- Department of Women & Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| | - Lucilla Poston
- Department of Women & Children's Health, School of Life Course & Population Sciences, King's College London, London, UK
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Aldroubi BG, Najjar JA, Youssef TS, Rizk CE, Abuamreh BA, Aramouni K, Ghadieh HE, Najjar SM. Cell-specific regulation of insulin action and hepatic fibrosis by CEACAM1. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4:34. [PMID: 39640841 PMCID: PMC11619085 DOI: 10.20517/mtod.2024.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has reached an epidemic rise worldwide. The disease is a constellation of a broad range of metabolic and histopathologic abnormalities. It begins with hepatic steatosis and progresses to metabolic dysfunction-associated steatohepatitis (MASH), including hepatic fibrosis, apoptosis, and cell injury. Despite ample research effort, the pathogenesis of the disease has not been fully delineated. Whereas insulin resistance is implicated in the early stages of the disease, its role in hepatic fibrosis remains controversial. We have focused our studies on the role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in hepatocytes and endothelial cells in the metabolic and histopathological dysregulation in MASH. Patients with MASH exhibit lower hepatic CEACAM1 with a progressive decline in hepatocytes and endothelial cells as the fibrosis stage advances. In mice, conditional deletion of CEACAM1 in hepatocytes impairs insulin clearance to cause hyperinsulinemia-driven insulin resistance with steatohepatitis and hepatic fibrosis even when mice are fed a regular chow diet. In contrast, its conditional deletion in endothelial cells causes inflammation-driven hepatic fibrosis without adversely affecting metabolism (mice remain insulin-sensitive and do not develop hepatic steatosis). Thus, this review provides in vivo evidence that supports or discards the role of insulin resistance in liver injury and hepatic fibrosis.
Collapse
Affiliation(s)
- Basel G. Aldroubi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John A. Najjar
- Department of Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Tya S. Youssef
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al-Koura PO box 100 Tripoli, Kalhat, Lebanon
| | - Carl E. Rizk
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al-Koura PO box 100 Tripoli, Kalhat, Lebanon
| | - Basil A.M. Abuamreh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Karl Aramouni
- Department of Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Al-Koura PO box 100 Tripoli, Kalhat, Lebanon
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 43614, USA
| |
Collapse
|
3
|
Jiang L, Lai J, Xu X, Lu Y, Gu K, Chen S, Xu L, Liu K. Reduced insulin clearance in paediatric metabolic (dysfunction)-associated fatty liver disease and its dual role in beta-cell offload and diabetes risk. Diabetes Obes Metab 2024; 26:5390-5398. [PMID: 39192529 DOI: 10.1111/dom.15902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
AIM Diminished hepatic insulin clearance (HIC) is observed in obese adults and is presumed to be mediated by fatty liver. However, few reports have examined HIC in Chinese children with metabolic (dysfunction)-associated fatty liver disease (MAFLD). This study aimed to investigate the correlation between HIC, insulin sensitivity and β-cell function in obese Chinese children with MAFLD. METHODS In total, 204 obese children (74 MAFLD) aged 4-17 years were enrolled into this study. HIC, insulin sensitivity and β-cell function were calculated using the oral glucose tolerance test (1.75 g/kg body weight). Correlation analyses between the HIC and clinical variables were performed using Pearson's product-moment correlation coefficients. HIC and glucose homeostasis were assessed in a high-fat diet mouse model, and liver samples were collected for molecular analysis. RESULTS Obese children with MAFLD exhibited significantly lower HIC (AUCC-peptide/insulin ratio, p = 0.0019), higher insulin resistance (homeostatic model assessment of insulin resistance, p = 0.002), and increased compensatory β-cell function (homeostatic model assessment-β, p = 0.046) than obese children without liver involvement. Notably, HIC was negatively correlated with insulin sensitivity (r = -0.5035, p < 0.0001) and β-cell function (r = -0.4576, p < 0.0001). However, pancreatic β-cell dysfunction (p = 0.046) was accompanied by future reduced HIC (p = 0.034) in children with MAFLD in prediabetes. In a high-fat diet mouse model, MAFLD mice showed a 50% reduction in insulin-degrading enzyme expression, consistent with the observed decrease in HIC. CONCLUSIONS A lower HIC may offload pancreatic β-cells at an early stage. However, obese children with MAFLD are at risk of developing diabetes, and preventive efforts should be prioritized.
Collapse
Affiliation(s)
- Li Jiang
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Jinxin Lai
- Department of Medical Laboratory, Wuxi Eighth People's Hospital, Wuxi, China
| | - Xu Xu
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Yang Lu
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Kefeng Gu
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Sha Chen
- Department of Obstetrics and Gynecology, Affiliated Women's Hospital of Jiangnan University (Wuxi Maternity and Child Health Care Hospital), Wuxi, China
| | - Lulian Xu
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Kerong Liu
- Department of Pediatric Endocrinology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| |
Collapse
|
4
|
Duangjan C, Arpawong TE, Spatola BN, Curran SP. Hepatic WDR23 proteostasis mediates insulin homeostasis by regulating insulin-degrading enzyme capacity. GeroScience 2024; 46:4461-4478. [PMID: 38767782 PMCID: PMC11336002 DOI: 10.1007/s11357-024-01196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024] Open
Abstract
Maintaining insulin homeostasis is critical for cellular and organismal metabolism. In the liver, insulin is degraded by the activity of the insulin-degrading enzyme (IDE). Here, we establish a hepatic regulatory axis for IDE through WDR23-proteostasis. Wdr23KO mice have increased IDE expression, reduced circulating insulin, and defective insulin responses. Genetically engineered human cell models lacking WDR23 also increase IDE expression and display dysregulated phosphorylation of insulin signaling cascade proteins, IRS-1, AKT2, MAPK, FoxO, and mTOR, similar to cells treated with insulin, which can be mitigated by chemical inhibition of IDE. Mechanistically, the cytoprotective transcription factor NRF2, a direct target of WDR23-Cul4 proteostasis, mediates the enhanced transcriptional expression of IDE when WDR23 is ablated. Moreover, an analysis of human genetic variation in WDR23 across a large naturally aging human cohort in the US Health and Retirement Study reveals a significant association of WDR23 with altered hemoglobin A1C (HbA1c) levels in older adults, supporting the use of WDR23 as a new molecular determinant of metabolic health in humans.
Collapse
Affiliation(s)
- Chatrawee Duangjan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Thalida Em Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Brett N Spatola
- Dornsife College of Letters, Arts, and Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
5
|
Janssen JAMJL. Overnutrition, Hyperinsulinemia and Ectopic Fat: It Is Time for A Paradigm Shift in the Management of Type 2 Diabetes. Int J Mol Sci 2024; 25:5488. [PMID: 38791525 PMCID: PMC11121669 DOI: 10.3390/ijms25105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The worldwide incidence of prediabetes/type 2 has continued to rise the last 40 years. In the same period, the mean daily energy intake has increased, and the quality of food has significantly changed. The chronic exposure of pancreatic β-cells to calorie excess (excessive energy intake) and food additives may increase pancreatic insulin secretion, decrease insulin pulses and/or reduce hepatic insulin clearance, thereby causing chronic hyperinsulinemia and peripheral insulin resistance. Chronic calorie excess and hyperinsulinemia may promote lipogenesis, inhibit lipolysis and increase lipid storage in adipocytes. In addition, calorie excess and hyperinsulinemia can induce insulin resistance and contribute to progressive and excessive ectopic fat accumulation in the liver and pancreas by the conversion of excess calories into fat. The personal fat threshold hypothesis proposes that in susceptible individuals, excessive ectopic fat accumulation may eventually lead to hepatic insulin receptor resistance, the loss of pancreatic insulin secretion, hyperglycemia and the development of frank type 2 diabetes. Thus, type 2 diabetes seems (partly) to be caused by hyperinsulinemia-induced excess ectopic fat accumulation in the liver and pancreas. Increasing evidence further shows that interventions (hypocaloric diet and/or bariatric surgery), which remove ectopic fat in the liver and pancreas by introducing a negative energy balance, can normalize insulin secretion and glucose tolerance and induce the sustained biochemical remission of type 2 diabetes. This pathophysiological insight may have major implications and may cause a paradigm shift in the management of type 2 diabetes: avoiding/reducing ectopic fat accumulation in the liver and pancreas may both be essential to prevent and cure type 2 diabetes.
Collapse
Affiliation(s)
- Joseph A M J L Janssen
- Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
6
|
Okura T, Nakamura R, Kitao S, Ito Y, Anno M, Matsumoto K, Shoji K, Matsuzawa K, Izawa S, Okura H, Ueta E, Kato M, Imamura T, Taniguchi SI, Yamamoto K. Fasting hepatic insulin clearance reflects postprandial hepatic insulin clearance: a brief report. Diabetol Metab Syndr 2023; 15:261. [PMID: 38115089 PMCID: PMC10731793 DOI: 10.1186/s13098-023-01241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Hepatic insulin clearance (HIC) is an important pathophysiology of type 2 diabetes mellitus (T2DM). HIC was reported to decrease in patients with type 2 diabetes and metabolic syndrome. HIC is originally calculated by post-load insulin and C-peptide from the oral glucose tolerance test (OGTT). However, OGTT or meal tolerance tests are a burden for patients, and OGTT is not suitable for overt diabetes due to the risk of hyperglycemia. If we can calculate the HIC from the fasting state, it is preferable. We hypothesized that fasting HIC correlates with postprandial HIC in both participants with T2DM and without diabetes. We investigated whether fasting HIC correlates with postprandial HIC in overt T2DM and nondiabetes subjects (non-DM) evaluated by using glucose clamp and meal load. METHODS We performed a meal tolerance test and hyperinsulinemic-euglycemic clamp in 70 subjects, 31 patients with T2DM and 39 non-DM subjects. We calculated the postprandial C-peptide AUC-to-insulin AUC ratio as the postprandial HIC and the fasting C-peptide-to-insulin ratio as the fasting HIC. We also calculated whole-body insulin clearance from the glucose clamp test. RESULTS The fasting HIC significantly correlated with postprandial HIC in T2DM (r_S = 0.82, P < 0.001). Nondiabetes subjects also showed a significant correlation between fasting and postprandial HIC (r_S = 0.71, P < 0.001). Fasting HIC in T2DM was correlated with BMI, HbA1c, gamma-glutamyl transpeptidase, HOMA-IR, HOMA-beta, M/I, and whole-body insulin clearance. Fasting HIC in nondiabetes subjects was correlated with HOMA-IR and HOMA-beta. CONCLUSIONS These results suggest that fasting HIC is strongly correlated with postprandial HIC in both overt T2DM and non-DM patients, as evaluated by the meal test and glucose clamp method. Fasting HIC could be a convenient marker of HIC.
Collapse
Affiliation(s)
- Tsuyoshi Okura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan.
| | - Risa Nakamura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Sonoko Kitao
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Yuichi Ito
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Mari Anno
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Kazuhisa Matsumoto
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Kyoko Shoji
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Kazuhiko Matsuzawa
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Shoichiro Izawa
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Hiroko Okura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Etsuko Ueta
- School of Health Science, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Masahiko Kato
- School of Health Science, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Takeshi Imamura
- Division of Molecular Pharmacology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Shin-Ichi Taniguchi
- Department of Community-based Family Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
7
|
Harrison SA, Dubourg J, Knott M, Colca J. Hyperinsulinemia, an overlooked clue and potential way forward in metabolic dysfunction-associated steatotic liver disease. Hepatology 2023:01515467-990000000-00671. [PMID: 38051957 DOI: 10.1097/hep.0000000000000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease is closely associated with other features of the metabolic syndrome such as type 2 diabetes. The progression of the disease may lead to liver fibrosis, which is the main predictor of major adverse liver outcomes. Insulin resistance plays a major role in the pathogenesis of the disease. A component of fasting hyperinsulinemia is a failure of the liver to adjust the peripheral level of insulin due to reduced clearance. The associated fasting hyperinsulinemia has been independently associated as a predictor of major adverse liver outcomes and major adverse cardiovascular events. In this review, we discuss the potential mechanism and entanglement between liver fibrosis and hyperinsulinemia, and we hypothesize that the measure of fasting insulin could become a hepatic functional test within the armamentarium of noninvasive tests for the assessment of Metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
| | - Julie Dubourg
- Medical Science, Summit Clinical Research, San Antonio, Texas, USA
| | - Maddie Knott
- Clinical Research, Pinnacle Clinical Research, San Antonio, Texas, USA
| | - Jerry Colca
- Research and Development, Cirius Therapeutics, Kalamazoo, Michigan, USA
| |
Collapse
|
8
|
Franceschi R, Fintini D, Ravà L, Mariani M, Aureli A, Inzaghi E, Pedicelli S, Deodati A, Bizzarri C, Cappa M, Cianfarani S, Manco M. Insulin Clearance at the Pubertal Transition in Youth with Obesity and Steatosis Liver Disease. Int J Mol Sci 2023; 24:14963. [PMID: 37834412 PMCID: PMC10573227 DOI: 10.3390/ijms241914963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
No data are available on insulin clearance (ClI) trends during the pubertal transition. The aim of this study was to investigate in 973 youths with obesity whether ClI in fasting and post-oral glucose challenge (OGTT) conditions varies at the pubertal transition in relation to the severity of obesity and the presence of steatosis liver disease (SLD). The severity of obesity was graded according to the Centers for Disease Control. SLD was graded as absent, mild and severe based on alanine amino transferase levels. ClI was defined as the molar ratio of fasting C-peptide to insulin and of the areas under the insulin to glucose curves during an OGTT. In total, 35% of participants were prepubertal, 72.6% had obesity class II, and 52.6% had mild SLD. Fasting ClI (nmol/pmol × 10-2) was significantly lower in pubertal [0.11 (0.08-0.14)] than in prepubertal individuals [0.12 (0.09-0.16)] and higher in class III [0.15 (0.11-0.16)] than in class I obesity [0.11 (0.09-0.14)]. OGTT ClI was higher in boys [0.08 (0.06-0.10)] than in girls [0.07 (0.06-0.09)]; in prepubertal [0.08 (0.06-0.11)] than in pubertal individuals [0.07 (0.05-0.09)]; in class III [0.14 (0.08-0.17)] than in class I obesity [0.07 (0.05-0.10)]; and in severe SLD [0.09 (0.04-0.14)] than in no steatosis [0.06 (0.04-0.17)]. It was lower in participants with prediabetes [0.06 (0.04-0.07)]. OGTT ClI was lower in youths with obesity at puberty along with insulin sensitivity and greater secretion. The findings suggest that the initial increase in ClI in youth with severe obesity and SLD is likely to compensate for hyperinsulinemia and its subsequent decrease at the onset of prediabetes and other metabolic abnormalities.
Collapse
Affiliation(s)
- Roberto Franceschi
- Pediatric Department, S. Chiara Hospital of Trento, APSS, 38121 Trento, Italy;
| | - Danilo Fintini
- Diabetes and Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00168 Rome, Italy; (D.F.); (M.M.); (A.A.); (E.I.); (S.P.); (A.D.); (C.B.); or (S.C.)
| | - Lucilla Ravà
- Clinical Epidemiology, Bambino Gesù Children’s Hospital, IRCCS, 00168 Rome, Italy
| | - Michela Mariani
- Diabetes and Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00168 Rome, Italy; (D.F.); (M.M.); (A.A.); (E.I.); (S.P.); (A.D.); (C.B.); or (S.C.)
| | - Alessia Aureli
- Diabetes and Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00168 Rome, Italy; (D.F.); (M.M.); (A.A.); (E.I.); (S.P.); (A.D.); (C.B.); or (S.C.)
| | - Elena Inzaghi
- Diabetes and Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00168 Rome, Italy; (D.F.); (M.M.); (A.A.); (E.I.); (S.P.); (A.D.); (C.B.); or (S.C.)
| | - Stefania Pedicelli
- Diabetes and Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00168 Rome, Italy; (D.F.); (M.M.); (A.A.); (E.I.); (S.P.); (A.D.); (C.B.); or (S.C.)
| | - Annalisa Deodati
- Diabetes and Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00168 Rome, Italy; (D.F.); (M.M.); (A.A.); (E.I.); (S.P.); (A.D.); (C.B.); or (S.C.)
| | - Carla Bizzarri
- Diabetes and Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00168 Rome, Italy; (D.F.); (M.M.); (A.A.); (E.I.); (S.P.); (A.D.); (C.B.); or (S.C.)
| | - Marco Cappa
- Research Unit, Innovative Therapies for Endocrinopathies, Scientific Directorate, Bambino Gesù Children’s Hospital, IRCCS, 00168 Rome, Italy;
| | - Stefano Cianfarani
- Diabetes and Growth Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, 00168 Rome, Italy; (D.F.); (M.M.); (A.A.); (E.I.); (S.P.); (A.D.); (C.B.); or (S.C.)
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, 00168 Rome, Italy
- Department of Women’s and Children’s Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Melania Manco
- Research Unit of Predictive and Preventive Medicine, Bambino Gesù Children’s Hospital, 00146 Rome, Italy
| |
Collapse
|
9
|
Zhong YT, Shen Q, Yang YT, Zhang RB, Zhao LC, Li W. Trilobatin ameliorates HFD/STZ-induced glycolipid metabolism disorders through AMPK-mediated pathways. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
10
|
Shah A, Prasad M, Mark V, Holst JJ, Laferrère B. Glucagon-like peptide-1 effect on β-cell function varies according to diabetes remission status after Roux-en-Y gastric bypass. Diabetes Obes Metab 2022; 24:2081-2089. [PMID: 35676799 PMCID: PMC9595602 DOI: 10.1111/dom.14793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
AIMS The contribution of endogenous glucagon-like peptide (GLP)-1 to β-cell function after Roux-en-Y gastric bypass surgery (RYGB) is well established in normoglycaemic individuals, but not in those with postoperative hyperglycaemia. We, therefore, studied the effect of GLP-1 on β-cell function in individuals with varying degrees of type 2 diabetes mellitus (T2D) control after RYGB. MATERIALS AND METHODS Glucose, insulin secretion rates, β-cell glucose sensitivity and glucagon were measured during an oral glucose tolerance test before (saline only) and at 3, 12 and 24 months after RYGB with and without infusion of the GLP-1 receptor blocker exendin9-39 (EX9). The cohort was retrospectively classified based on T2D remission (REM) status at the latest study time point: REM (n = 5), persistent T2D (n = 8), or impaired glucose tolerance (n = 16). RESULTS EX9 blunted the increase in β-cell glucose sensitivity at 3 months (-44.1%, p < .001) and 12 months (-43.3%, p < .001), but not at 24 months (-12.4%, p = .243). EX9 enhanced postprandial glucagon concentrations by 62.0% at 3 months (p = .008), 46.5% at 12 months (p = .055), and 30.4% at 24 months (p = .017). EX9 counterintuitively decreased glucose concentrations at 3 months in the entire cohort (p < .001) but had no effect on glycaemia at 12 and 24 months in persistent T2D and impaired glucose tolerance; it minimally worsened glycaemia in REM at 12 months. CONCLUSIONS GLP-1 blockade reversed the improvement in β-cell function observed after RYGB, but this effect varied temporally and by REM status. GLP-1 blockade transiently and minimally worsened glycaemia only in REM, and lowered postprandial glucose values at 3 months, regardless of REM status.
Collapse
Affiliation(s)
- Ankit Shah
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Malini Prasad
- New York Obesity Nutrition Research Center, Division of Endocrinology. Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Victoria Mark
- New York Obesity Nutrition Research Center, Division of Endocrinology. Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blandine Laferrère
- Division of Endocrinology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
11
|
Tricò D, Galderisi A, Van Name MA, Caprio S, Samuels S, Li Z, Galuppo BT, Savoye M, Mari A, Feldstein AE, Santoro N. A low n-6 to n-3 polyunsaturated fatty acid ratio diet improves hyperinsulinaemia by restoring insulin clearance in obese youth. Diabetes Obes Metab 2022; 24:1267-1276. [PMID: 35297549 PMCID: PMC9177628 DOI: 10.1111/dom.14695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Abstract
AIM To examine the determinants and metabolic impact of the reduction in fasting and postload insulin levels after a low n-6 to n-3 polyunsaturated fatty acid (PUFA) ratio diet in obese youth. MATERIALS AND METHODS Insulin secretion and clearance were assessed by measuring and modelling plasma insulin and C-peptide in 17 obese youth who underwent a nine-point, 180-minute oral glucose tolerance test (OGTT) before and after a 12-week, eucaloric low n-6:n-3 polyunsaturated fatty acid (PUFA) ratio diet. Hepatic fat content was assessed by repeated abdominal magnetic resonance imaging. RESULTS Insulin clearance at fasting and during the OGTT was significantly increased after the diet, while body weight, glucose levels, absolute and glucose-dependent insulin secretion, and model-derived variables of β-cell function were not affected. Dietary-induced changes in insulin clearance positively correlated with changes in whole-body insulin sensitivity and β-cell glucose sensitivity, but not with changes in hepatic fat. Subjects with greater increases in insulin clearance showed a worse metabolic profile at enrolment, characterized by impaired insulin clearance, β-cell glucose sensitivity, and glucose tolerance, and benefitted the most from the diet, achieving greater improvements in glucose-stimulated hyperinsulinaemia, insulin resistance, and β-cell function. CONCLUSIONS We showed that a 12-week low n-6:n-3 PUFA ratio diet improves hyperinsulinaemia by increasing fasting and postload insulin clearance in obese youth, independently of weight loss, glucose concentrations, and insulin secretion.
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Surgical, Medical and Molecular Pathology and Critical Care MedicineUniversity of PisaPisa
| | | | - Michelle A. Van Name
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Sonia Caprio
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Stephanie Samuels
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Zhongyao Li
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Brittany T. Galuppo
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Mary Savoye
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
| | - Andrea Mari
- Institute of Neuroscience, National Research CouncilPaduaItaly
| | - Ariel E. Feldstein
- Department of PediatricsUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Nicola Santoro
- Department of PediatricsYale University School of MedicineNew HavenConnecticutUSA
- Department of Medicine and Health Sciences, “V.Tiberio” University of MoliseCampobassoItaly
| |
Collapse
|
12
|
da Silva Schreiber C, Rafacho A, Silverio R, Betti R, Lerário AC, Lotenberg AMP, Rahmann K, de Oliveira CP, Wajchenberg BL, da Luz PL. The effects of macronutrients composition on hormones and substrates during a meal tolerance test in drugnaive and sitagliptin-treated individuals with type 2 diabetes: a randomized crossover study. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:312-323. [PMID: 35551683 PMCID: PMC9832851 DOI: 10.20945/2359-3997000000478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022]
Abstract
Objective To evaluate the effect of sitagliptin treatment in early type 2 diabetes mellitus (T2DM) and the impact of different macronutrient compositions on hormones and substrates during meal tolerance tests (MTT). Methods Half of the drug-naive patients with T2DM were randomly assigned for treatment with 100 mg of sitagliptin, q.d., or placebo for 4 weeks and then submitted to 3 consecutive MTT intercalated every 48 h. The MTTs differed in terms of macronutrient composition, with 70% of total energy from carbohydrates, proteins, or lipids. After 4 weeks of washout, a crossover treatment design was repeated. Both patients and researchers were blinded, and a repeated-measures ANOVA was employed for statistical analysis. Results Sitagliptin treatment reduced but did not normalize fasting and post-meal glucose values in the three MTTs, with lowered area-under-glucose-curve values varying from 7% to 15%. The sitagliptin treatment also improved the insulinogenic index (+86%) and the insulin/glucose (+25%), glucagon-like peptide-1/glucose (+46%) incremental area under the curves. Patients with early T2DM maintained the lowest glucose excursion after a protein- or lipid-rich meal without any major change in insulin, C-peptide, glucagon, or NEFA levels. Conclusion We conclude that sitagliptin treatment is tolerable and contributes to better control of glucose homeostasis in early T2DM, irrespective of macronutrient composition. The blood glucose excursion during meal ingestion is minimal in protein- or fat-rich meals, which can be a positive ally for the management of T2DM. Clinical trial no: NCT00881543.
Collapse
Affiliation(s)
- Cristina da Silva Schreiber
- Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brasil,
- Present address: CSS is now at Endocrinology and Metabology Section, University Hospital professor Polydoro Ernani de São Thiago, UFSC, Florianópolis, Brazil. R.B. is now at Obesity and Diabetes Center Oswaldo Cruz Hospital Sao Paulo, São Paulo, Brazil. ACL is now at Clinic Hospital of the University of Sao Paulo Medical School, USP, São Paulo, Brazil
| | - Alex Rafacho
- Laboratório de Investigação em Doenças Crônicas (LIDoC), Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brasil,
| | - Renata Silverio
- Laboratório de Investigação em Doenças Crônicas (LIDoC), Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brasil
| | - Roberto Betti
- Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brasil
- Present address: CSS is now at Endocrinology and Metabology Section, University Hospital professor Polydoro Ernani de São Thiago, UFSC, Florianópolis, Brazil. R.B. is now at Obesity and Diabetes Center Oswaldo Cruz Hospital Sao Paulo, São Paulo, Brazil. ACL is now at Clinic Hospital of the University of Sao Paulo Medical School, USP, São Paulo, Brazil
| | - Antonio Carlos Lerário
- Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brasil
- Present address: CSS is now at Endocrinology and Metabology Section, University Hospital professor Polydoro Ernani de São Thiago, UFSC, Florianópolis, Brazil. R.B. is now at Obesity and Diabetes Center Oswaldo Cruz Hospital Sao Paulo, São Paulo, Brazil. ACL is now at Clinic Hospital of the University of Sao Paulo Medical School, USP, São Paulo, Brazil
| | - Ana Maria Pita Lotenberg
- Laboratório de Lipídios (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brasil
| | - Klara Rahmann
- Laboratório de Lipídios (LIM10), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brasil
| | - Carolina Piras de Oliveira
- Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brasil
| | - Bernardo Léo Wajchenberg
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brasil
- In memmoriam
| | - Protásio Lemos da Luz
- Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brasil
| |
Collapse
|
13
|
St Pierre CL, Macias-Velasco JF, Wayhart JP, Yin L, Semenkovich CF, Lawson HA. Genetic, epigenetic, and environmental mechanisms govern allele-specific gene expression. Genome Res 2022; 32:1042-1057. [PMID: 35501130 PMCID: PMC9248887 DOI: 10.1101/gr.276193.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
Allele-specific expression (ASE) is a phenomenon in which one allele is preferentially expressed over the other. Genetic and epigenetic factors cause ASE by altering the final composition of a gene's product, leading to expression imbalances that can have functional consequences on phenotypes. Environmental signals also impact allele-specific expression, but how they contribute to this cross talk remains understudied. Here, we explored how genotype, parent-of-origin, tissue, sex, and dietary fat simultaneously influence ASE biases. Male and female mice from a F1 reciprocal cross of the LG/J and SM/J strains were fed a high or low fat diet. We harnessed strain-specific variants to distinguish between two ASE classes: parent-of-origin-dependent (unequal expression based on parental origin) and sequence-dependent (unequal expression based on nucleotide identity). We present a comprehensive map of ASE patterns in 2853 genes across three tissues and nine environmental contexts. We found that both ASE classes are highly dependent on tissue and environmental context. They vary across metabolically relevant tissues, between males and females, and in response to dietary fat. We also found 45 genes with inconsistent ASE biases that switched direction across tissues and/or environments. Finally, we integrated ASE and QTL data from published intercrosses of the LG/J and SM/J strains. Our ASE genes are often enriched in QTLs for metabolic and musculoskeletal traits, highlighting how this orthogonal approach can prioritize candidate genes. Together, our results provide novel insights into how genetic, epigenetic, and environmental mechanisms govern allele-specific expression, which is an essential step toward deciphering the genotype-to-phenotype map.
Collapse
Affiliation(s)
| | | | | | - Li Yin
- Washington University in Saint Louis
| | | | | |
Collapse
|
14
|
Okura T, Fujioka Y, Nakamura R, Kitao S, Ito Y, Anno M, Matsumoto K, Shoji K, Matsuzawa K, Izawa S, Okura H, Ueta E, Kato M, Imamura T, Taniguchi SI, Yamamoto K. The sodium-glucose cotransporter 2 inhibitor ipragliflozin improves liver function and insulin resistance in Japanese patients with type 2 diabetes. Sci Rep 2022; 12:1896. [PMID: 35115614 PMCID: PMC8814145 DOI: 10.1038/s41598-022-05704-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitor (SGLT2i) treatment is a therapeutic approach for type 2 diabetes mellitus (T2DM). Some reports have shown that SGLT2i treatment improves insulin resistance; however, few studies have evaluated insulin resistance by the glucose clamp method. Hepatic insulin clearance (HIC) is a new pathophysiological mechanism of T2DM. The effect of SGLT2i treatment on hepatic insulin clearance and insulin resistance is not well known. We investigated the effect of SGLT2i treatment on insulin resistance, insulin secretion, incretin levels, body composition, and hepatic insulin clearance. We conducted a meal tolerance test (MTT) and a hyperinsulinemic-euglycemic clamp test in 9 T2DM patients. Ipragliflozin (50 mg/day) was administered, and the MTT and clamp test were performed after 4 months. We calculated HIC as the postprandial C-peptide AUC-to-insulin AUC ratio. We also measured GLP-1, GIP, and glucagon levels during the MTT. Body weight and HbA1c were decreased, although not significantly, after 4 months of treatment. Postprandial glucose, fasting insulin and postprandial insulin were significantly decreased. Insulin resistance with the glucose clamp was not changed, but the HOMA-IR and insulin sensitivity indices were significantly improved. Incretin and glucagon levels were not changed. Hepatic insulin clearance was significantly increased, but whole-body insulin clearance was not changed. The FIB-4 index and fatty liver index were significantly reduced. The HOMA-beta and insulinogenic indices were not changed, but the C-peptide index was significantly increased. Although the number of patients was small, these results suggested that SGLT2i treatment improved liver function, decreased hepatic insulin resistance, and increased hepatic insulin clearance, despite the small weight reduction.
Collapse
Affiliation(s)
- Tsuyoshi Okura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan.
| | - Yohei Fujioka
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Risa Nakamura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Sonoko Kitao
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Yuichi Ito
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Mari Anno
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Kazuhisa Matsumoto
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Kyoko Shoji
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Kazuhiko Matsuzawa
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Shoichiro Izawa
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Hiroko Okura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Etsuko Ueta
- School of Health Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Masahiko Kato
- School of Health Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Takeshi Imamura
- Division of Molecular Pharmacology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Shin-Ichi Taniguchi
- Department of Regional Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
15
|
Fu Z, Wu Q, Guo W, Gu J, Zheng X, Gong Y, Lu C, Ye J, Ye X, Jiang W, Hu M, Yu B, Fu Q, Liu X, Bai J, Li JZ, Yang T, Zhou H. Impaired Insulin Clearance as the Initial Regulator of Obesity-Associated Hyperinsulinemia: Novel Insight Into the Underlying Mechanism Based on Serum Bile Acid Profiles. Diabetes Care 2022; 45:425-435. [PMID: 34880066 DOI: 10.2337/dc21-1023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To investigate the roles of insulin clearance and insulin secretion in the development of hyperinsulinemia in obese subjects and to reveal the association between insulin clearance and bile acids (BAs). RESEARCH DESIGN AND METHODS In cohort 1, insulin secretion, sensitivity, and endogenous insulin clearance were evaluated with an oral glucose tolerance test in 460 recruited participants. In cohort 2, 81 participants underwent an intravenous glucose tolerance test and a hyperinsulinemic-euglycemic clamp to assess insulin secretion, endogenous and exogenous insulin clearance, and insulin sensitivity. Based on insulin resistance levels ranging from mild to severe, obese participants without diabetes were further divided into 10 quantiles in cohort 1 and into tertiles in cohort 2. Forty serum BAs were measured in cohort 2 to examine the association between BAs and insulin clearance. RESULTS All obese participants had impaired insulin clearance, and it worsened with additional insulin resistance in obese subjects without diabetes. However, insulin secretion was unchanged from quantile 1 to 3 in cohort 1, and no difference was found in cohort 2. After adjustments for all confounding factors, serum-conjugated BAs, especially glycodeoxycholic acid (GDCA; β = -0.335, P = 0.004) and taurodeoxycholic acid (TDCA; β = -0.333, P = 0.003), were negatively correlated with insulin clearance. The ratio of unconjugated to conjugated BAs (β = 0.335, P = 0.002) was positively correlated with insulin clearance. CONCLUSIONS Hyperinsulinemia in obese subjects might be primarily induced by decreased insulin clearance rather than increased insulin secretion. Changes in circulating conjugated BAs, especially GDCA and TDCA, might play an important role in regulating insulin clearance.
Collapse
Affiliation(s)
- Zhenzhen Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinyi Wu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Guo
- Department of Health Promotion Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyu Gu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuqin Zheng
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingyun Gong
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenyan Lu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingya Ye
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Ye
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanzi Jiang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Moran Hu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Baowen Yu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Liu
- Beijing Academy of Artificial Intelligence, Beijing, China.,College of Future Technology, Peking University, Beijing, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic Disease, Department of Biochemistry and Molecular Biology, The Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Abe T, Matsubayashi Y, Muragishi S, Yoshida A, Suganami H, Furusawa K, Fujihara K, Tanaka S, Kaku K, Sone H. Dipeptidyl peptidase-4 inhibitor, anagliptin, alters hepatic insulin clearance in relation to the glycemic status in Japanese individuals with type 2 diabetes. J Diabetes Investig 2021; 12:1805-1815. [PMID: 33751849 PMCID: PMC8504901 DOI: 10.1111/jdi.13543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS/INTRODUCTION This study investigated the impact of the dipeptidyl peptidase-4 inhibitor, anagliptin, on hepatic insulin clearance (HIC) in Japanese type 2 diabetes patients and explored its relationship to glycemic status. MATERIALS AND METHODS Data on 765 participants in anagliptin phase 2 and 3 studies were analyzed. Adjusted changes in variables during 12 weeks of anagliptin therapy were compared with a placebo. HIC was calculated as the ratio, C-peptide area under the curve 0-120 min to insulin area under the curve 0-120 min, after a meal tolerance test. To explore the effects of baseline HIC levels on variables, participants receiving anagliptin were divided according to quartiles of baseline HIC. Furthermore, multivariate analysis investigated the association between baseline HIC levels and glycemic status. RESULTS Anagliptin significantly reduced glycosylated hemoglobin levels (P < 0.001 vs placebo) and HIC levels (P < 0.01). Longer duration of diabetes, lower body mass index, higher glycosylated hemoglobin and lower insulin secretion capacity were observed with increases in baseline HIC levels. Improvements in glycosylated hemoglobin, glycoalbumin and 1,5-anhydroglucitol levels were greater in the relatively higher HIC group (baseline HIC levels ≥median) than in the lower HIC group ( CONCLUSIONS Anagliptin affected HIC levels according to HIC baseline levels. Higher baseline HIC values might result in improved hyperglycemia through reduced HIC.
Collapse
Affiliation(s)
- Takahiro Abe
- Department of Hematology, Endocrinology and MetabolismNiigata University Faculty of MedicineNiigataJapan
| | - Yasuhiro Matsubayashi
- Department of Hematology, Endocrinology and MetabolismNiigata University Faculty of MedicineNiigataJapan
| | | | - Akihiro Yoshida
- Department of Hematology, Endocrinology and MetabolismNiigata University Faculty of MedicineNiigataJapan
- Kowa Co., Ltd.TokyoJapan
| | | | | | - Kazuya Fujihara
- Department of Hematology, Endocrinology and MetabolismNiigata University Faculty of MedicineNiigataJapan
| | - Shiro Tanaka
- Department of Clinical BiostatisticsGraduate School of Medicine Kyoto UniversityKyotoJapan
| | | | - Hirohito Sone
- Department of Hematology, Endocrinology and MetabolismNiigata University Faculty of MedicineNiigataJapan
| |
Collapse
|
17
|
Nickel NP, Galura GM, Zuckerman MJ, Hakim MN, Alkhateeb H, Mukherjee D, Austin ED, Heresi GA. Liver abnormalities in pulmonary arterial hypertension. Pulm Circ 2021; 11:20458940211054304. [PMID: 34707859 PMCID: PMC8544777 DOI: 10.1177/20458940211054304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a cardiopulmonary disease with high mortality. In recent years, it has been recognized that PAH is a multi-organ system disease, involving the systemic circulation, kidneys, skeletal muscles, and the central nervous system, among others. Right heart failure produces congestive hepatopathy, a disease state that has direct consequences on liver biochemistry, histology, and systemic glucose and lipid metabolism. This article aims to summarize the consequences of congestive hepatopathy with an emphasis on liver biochemistry, histology, and PAH-targeted therapy. Furthermore, PAH-specific changes in glucose and lipid metabolism will be discussed.
Collapse
Affiliation(s)
- Nils P. Nickel
- Division of Pulmonary and Critical Care Medicine, Texas Tech
University Health Sciences Center, El Paso, TX, USA
| | - Gian M. Galura
- Division of Gastroenterology, Texas Tech University Health
Sciences Center, El Paso, TX, USA
| | - Marc J. Zuckerman
- Division of Gastroenterology, Texas Tech University Health
Sciences Center, El Paso, TX, USA
| | - M. Nawar Hakim
- Department of Pathology, Texas Tech University Health Sciences
Center, El Paso, TX, USA
| | - Haider Alkhateeb
- Division of Cardiovascular Medicine, Texas Tech University
Health Sciences Center, El Paso, TX, USA
| | - Debabrata Mukherjee
- Division of Cardiovascular Medicine, Texas Tech University
Health Sciences Center, El Paso, TX, USA
| | - Eric D. Austin
- Division of Pediatric Pulmonary Medicine, Vanderbilt University,
Nashville, TN, USA
| | - Gustavo A. Heresi
- Division of Pulmonary and Critical Care Medicine, Cleveland
Clinic, OH, USA
| |
Collapse
|
18
|
Short-Term SGLT2 Inhibitor Administration Does Not Alter Systemic Insulin Clearance in Type 2 Diabetes. Biomedicines 2021; 9:biomedicines9091154. [PMID: 34572340 PMCID: PMC8472728 DOI: 10.3390/biomedicines9091154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Decreased insulin clearance could be a relatively upstream abnormality in obesity, metabolic syndrome, and nonalcoholic fatty liver disease. Previous studies have shown that sodium-glucose cotransporter 2 inhibitor (SGLT2i) increases insulin–C-peptide ratio, a marker of insulin clearance, and improves metabolic parameters. We evaluated the effects of the SGLT2i tofogliflozin on metabolic clearance rate of insulin (MCRI) with a hyperinsulinemic euglycemic clamp study, the gold standard for measuring systemic insulin clearance. Methods: Study participants were 12 Japanese men with type 2 diabetes. We evaluated MCRI and tissue-specific insulin sensitivity with a hyperinsulinemic euglycemic clamp (insulin infusion rate, 40 mU/m2·min) before and immediately after a single dose (n = 12) and 8 weeks (n = 9) of tofogliflozin. We also measured ectopic fat in muscle and liver and the abdominal fat area using 1H-magnetic resonance spectroscopy and magnetic resonance imaging, respectively, before and after 8 weeks of tofogliflozin. Results: MCRI did not change after a single dose of tofogliflozin (594.7 ± 67.7 mL/min·m2 and 608.3 ± 90.9 mL/min·m2, p = 0.61) or after 8 weeks (582.5 ± 67.3 mL/min·m2 and 602.3 ± 67.0 mL/min·m2, p = 0.41). The 8-week treatment significantly improved glycated hemoglobin and decreased body weight (1.7%) and the subcutaneous fat area (6.4%), whereas insulin sensitivity and ectopic fat in muscle and liver did not change significantly. Conclusions: MCRI did not change after a single dose or 8 weeks of tofogliflozin. Increased MCRI does not precede a decrease in body fat or improved glycemic control.
Collapse
|
19
|
Bizzotto R, Tricò D, Natali A, Gastaldelli A, Muscelli E, De Fronzo RA, Arslanian S, Ferrannini E, Mari A. New Insights on the Interactions Between Insulin Clearance and the Main Glucose Homeostasis Mechanisms. Diabetes Care 2021; 44:2115-2123. [PMID: 34362813 DOI: 10.2337/dc21-0545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Endogenous insulin clearance (EIC) is physiologically reduced at increasing insulin secretion rate (ISR). Computing EIC at the prevailing ISR does not distinguish the effects of hypersecretion from those of other mechanisms of glucose homeostasis. We aimed to measure EIC in standardized ISR conditions (i.e., at fixed ISR levels) and to analyze its associations with relevant physiologic factors. RESEARCH DESIGN AND METHODS We estimated standardized EIC (EICISR) by mathematical modeling in nine different studies with insulin and glucose infusions (N = 2,067). EICISR association with various traits was analyzed by stepwise multivariable regression in studies with both euglycemic clamp and oral glucose tolerance test (OGTT) (N = 1,410). We also tested whether oral glucose ingestion, as opposed to intravenous infusion, has an independent effect on EIC (N = 1,555). RESULTS Insulin sensitivity (as M/I from the euglycemic clamp) is the strongest determinant of EICISR, approximately four times more influential than insulin resistance-related hypersecretion. EICISR independently associates positively with M/I, fasting and mean OGTT glucose or type 2 diabetes, and β-cell glucose sensitivity and negatively with African American or Hispanic race, female sex, and female age. With oral glucose ingestion, an ISR-independent ∼10% EIC reduction is necessary to explain the observed insulin concentration profiles. CONCLUSIONS Based on EICISR, we posit the existence of two adaptive processes involving insulin clearance: the first reduces EICISR with insulin resistance (not with higher BMI per se) and is more relevant than the concomitant hypersecretion; the second reduces EICISR with β-cell dysfunction. These processes are dysregulated in type 2 diabetes. Finally, oral glucose ingestion per se reduces insulin clearance.
Collapse
Affiliation(s)
| | - Domenico Tricò
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Elza Muscelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ralph A De Fronzo
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Silva Arslanian
- Center for Pediatric Research in Obesity and Metabolism, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA
| | | | | |
Collapse
|
20
|
Lamprinou A, Willmann C, Machann J, Schick F, Eckstein SS, Dalla Man C, Visentin R, Birkenfeld AL, Peter A, Stefan N, Häring HU, Fritsche A, Heni M, Wagner R. Determinants of hepatic insulin clearance - Results from a Mendelian Randomization study. Metabolism 2021; 119:154776. [PMID: 33862045 DOI: 10.1016/j.metabol.2021.154776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
AIMS/HYPOTHESIS Besides insulin resistance, type 2 diabetes associates with decreased hepatic insulin clearance (HIC). We now tested for causal relationship of HIC to liver fat accumulation or features of the metabolic syndrome. METHODS HIC was derived from oral glucose tolerance tests with the "Oral C-peptide and Insulin Minimal Models" (n = 3311). Liver fat was quantified by magnetic resonance spectroscopy (n = 1211). Mendelian Randomization was performed using established single nucleotide polymorphisms (SNPs; 115 for liver fat, 155 alanine-aminotransferase, 37 insulin sensitivity, 37 insulin secretion, 72 fasting insulin, 5285 BMI, 163 visceral fat, 270 waist circumference, 442 triglycerides, 620 HDL-Cholesterol, 193 C-reactive protein, 53 lipodystrophy-like phenotypes). RESULTS HIC associated inversely with liver fat (p < 0.003) and insulin sensitivity (p < 0.0001). Both liver fat and HIC were independently associated with insulin sensitivity (p < 0.0001). Neither liver fat nor alanine-aminotransferase were causally linked to HIC, as indicated by Mendelian Randomization (Nliver fat = 1054, NHIC = 2254; Nalanineaminotranferase = 1985, NHIC = 2251). BMI-related SNPs were causally associated with HIC (NBMI = 2772, NHIC = 2259, p < 0.001) but not waist circumference-SNPs (NSNPs-waist circumference = 2751, NHIC = 2280). Genetically determined insulin sensitivity was not causally related to HIC (Ninsulin sensitivity = 2752, NHIC = 2286). C-reactive protein and HDL were causally associated with HIC, with higher C-reactive protein and lower HDL leading to higher HIC (NC-reactive protein = 2660, NHIC = 2240; NHDL = 2694, NHIC = 2275). CONCLUSIONS This Mendelian Randomization analysis does not support a causal link between hepatic steatosis and HIC. Other components of the metabolic syndrome seem to compensate peripheral hyperinsulinemia by increasing hepatic insulin extraction.
Collapse
Affiliation(s)
- Apostolia Lamprinou
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Caroline Willmann
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jürgen Machann
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Fritz Schick
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sabine S Eckstein
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Chiara Dalla Man
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Roberto Visentin
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Peter
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital of Tübingen, Tübingen, Germany
| | - Norbert Stefan
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Fritsche
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Heni
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Robert Wagner
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University Hospital of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen (IDM), Tübingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
21
|
Shah MH, Piaggi P, Looker HC, Paddock E, Krakoff J, Chang DC. Lower insulin clearance is associated with increased risk of type 2 diabetes in Native Americans. Diabetologia 2021; 64:914-922. [PMID: 33404681 DOI: 10.1007/s00125-020-05348-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Impaired insulin clearance is implicated in the pathogenesis of type 2 diabetes, but prospective evidence remains limited. Therefore, we sought to identify factors associated with the metabolic clearance rate of insulin (MCRI) and to investigate whether lower MCRI is associated with increased risk of incident type 2 diabetes. METHODS From a longitudinal cohort, 570 adult Native Americans without diabetes living in the Southwestern United States were characterised at baseline and 448 participants were monitored over a median follow-up period of 7.9 years with 146 (32%) incident cases of diabetes identified (fasting plasma glucose ≥7.0 mmol/l, 2 h plasma glucose [2-h PG] ≥11.1 mmol/l, or clinical diagnosis). At baseline, participants underwent dual-energy x-ray absorptiometry or hydrodensitometry to assess body composition, a 75 g OGTT, an IVGTT to assess acute insulin response (AIR), and a hyperinsulinaemic-euglycaemic clamp to assess MCRI and insulin action (M). RESULTS In adjusted linear models, MCRI was inversely associated with body fat percentage (r = -0.35), fasting plasma insulin (r = -0.55) and AIR (r = -0.22), and positively associated with M (r = 0.17; all p < 0.0001). In multivariable Cox proportional hazard models, lower MCRI was associated with an increased risk of diabetes after adjustment for age, sex, heritage, body fat percentage, AIR, M, fasting plasma glucose, 2-h PG, and fasting plasma insulin (HR per one-SD difference in MCRI: 0.77; 95% CI 0.61, 0.98; p = 0.03). CONCLUSIONS/INTERPRETATION Lower MCRI is associated with an unfavourable metabolic phenotype and is associated with incident type 2 diabetes independent of established risk factors. CLINICAL TRIAL REGISTRATION NUMBERS ClinicalTrials.gov NCT00339482; NCT00340132.
Collapse
Affiliation(s)
- Mujtaba H Shah
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Helen C Looker
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Ethan Paddock
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Douglas C Chang
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA.
| |
Collapse
|
22
|
Dai H, Fu Q, Chen H, Zhang M, Sun M, Gu Y, Zhou N, Yang T. A novel numerical model of combination levels of C-peptide and insulin in coronary artery disease risk prediction. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:2675-2687. [PMID: 33892566 DOI: 10.3934/mbe.2021136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Insulin resistance is a major risk factor for coronary artery disease (CAD). The C-peptide-to-insulin ratio (C/I) is associated with hepatic insulin clearance and insulin resistance. The current study was designed to establish a novel C/I index (CPIRI) model and provide early risk assessment of CAD. METHODS A total of 865 adults diagnosed with new-onset diabetes mellitus (DM) within one year and 54 healthy controls (HC) were recruited to develop a CPIRI model. The CPIRI model was established with fasting C/I as the independent variable and homeostasis model assessment of insulin resistance (HOMA-IR) as the dependent variable. Associations between the CPIRI model and the severity of CAD events were also assessed in 45 hyperglycemic patients with CAD documented via coronary arteriography (CAG) and whom underwent stress echocardiography (SE) and exercise electrocardiography test (EET). RESULTS Fasting C-peptide/insulin and HOMA-IR were hyperbolically correlated in DM patients and HC, and log(C/I) and log(HOMA-IR) were linearly and negatively correlated. The respective correlational coefficients were -0.83 (p < 0.001) and -0.76 (p < 0.001). The equations CPIRI(DM) = 670/(C/I)2.24 + 0.25 and CPIRI(HC) = 670/(C/I)2.24 - 1 (F = 1904.39, p < 0.001) were obtained. Patients with insulin resistance exhibited severe coronary artery impairment and myocardial ischemia. In CAD patients there was no significant correlation between insulin resistance and the number of vessels involved. CONCLUSIONS CPIRI can be used to effectively evaluate insulin resistance, and the combination of CPIRI and non-invasive cardiovascular examination is of great clinical value in the assessment of CAD.
Collapse
Affiliation(s)
- Hao Dai
- Department of Endocrinology and Metabolism, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Qi Fu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Heng Chen
- Department of Endocrinology and Metabolism, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Mei Zhang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Min Sun
- Department of Endocrinology and Metabolism, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Yong Gu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Ningtian Zhou
- Department of Cardiology, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
23
|
Leissring MA, González-Casimiro CM, Merino B, Suire CN, Perdomo G. Targeting Insulin-Degrading Enzyme in Insulin Clearance. Int J Mol Sci 2021; 22:ijms22052235. [PMID: 33668109 PMCID: PMC7956289 DOI: 10.3390/ijms22052235] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic insulin clearance, a physiological process that in response to nutritional cues clears ~50–80% of circulating insulin, is emerging as an important factor in our understanding of the pathogenesis of type 2 diabetes mellitus (T2DM). Insulin-degrading enzyme (IDE) is a highly conserved Zn2+-metalloprotease that degrades insulin and several other intermediate-size peptides. Both, insulin clearance and IDE activity are reduced in diabetic patients, albeit the cause-effect relationship in humans remains unproven. Because historically IDE has been proposed as the main enzyme involved in insulin degradation, efforts in the development of IDE inhibitors as therapeutics in diabetic patients has attracted attention during the last decades. In this review, we retrace the path from Mirsky’s seminal discovery of IDE to the present, highlighting the pros and cons of the development of IDE inhibitors as a pharmacological approach to treating diabetic patients.
Collapse
Affiliation(s)
- Malcolm A. Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA 92697-4545, USA
- Correspondence: (M.A.L.); (G.P.); Tel.: +1-904-254-3050 (M.A.L.); +34-983-184-805 (G.P.)
| | - Carlos M. González-Casimiro
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
| | - Beatriz Merino
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
| | - Caitlin N. Suire
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300, USA;
| | - Germán Perdomo
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
- Correspondence: (M.A.L.); (G.P.); Tel.: +1-904-254-3050 (M.A.L.); +34-983-184-805 (G.P.)
| |
Collapse
|
24
|
Matsubayashi Y, Yoshida A, Suganami H, Osawa T, Furukawa K, Suzuki H, Fujihara K, Tanaka S, Kaku K, Sone H. Association of increased hepatic insulin clearance and change in serum triglycerides or β-hydroxybutyrate concentration via the sodium/glucose-cotransporter 2 inhibitor tofogliflozin. Diabetes Obes Metab 2020; 22:947-956. [PMID: 31984623 PMCID: PMC7318197 DOI: 10.1111/dom.13980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 12/25/2022]
Abstract
AIMS Obesity and hepatic fat accumulation diminish hepatic insulin clearance, which can cause hyperinsulinaemia. Sodium/glucose-cotransporter 2 inhibitors (SGLT2-is) improve insulin resistance and hyperinsulinaemia by weight loss via increased urinary glucose excretion in type 2 diabetes. However, there are few reports of the influence of SGLT2-is on hepatic insulin clearance. We examined the impact of an SGLT2-i on hepatic insulin clearance and explored the clinical influence associated with changes in hepatic insulin clearance via an SGLT2-i and the mechanism of the effects of SGLT2-i. MATERIALS AND METHODS Data were analysed from 419 patients with type 2 diabetes controlled by diet and exercise. Patients received a placebo or the SGLT2-i tofogliflozin (TOFO) (placebo: n = 56; TOFO: n = 363) orally once daily for ≥24 weeks. Hepatic insulin clearance was calculated from the ratio of areas under the curve (AUC) of C-peptide and insulin levels derived from oral meal tolerance test data (C-peptide AUC0-120 min /insulin AUC0-120 min : HICCIR ). The correlation of HICCIR via the SGLT2-i with other clinical variables was analysed using multivariate analysis. RESULTS HICCIR was significantly increased via TOFO at week 24. Furthermore, with TOFO insulin and triglyceride (TG) levels were significantly reduced (P < 0.001) and β-hydroxybutyrate (BHB) was significantly elevated (P < 0.001). Changes in HICCIR were significantly correlated with changes in TG and BHB via TOFO. CONCLUSIONS Increased HICCIR was significantly associated with reduced TG via TOFO and contributed to the greater increase in BHB compared with placebo in addition to the correction of hyperinsulinaemia.
Collapse
Affiliation(s)
- Yasuhiro Matsubayashi
- Department of Hematology, Endocrinology and Metabolism, Faculty of MedicineNiigata UniversityNiigataJapan
| | - Akihiro Yoshida
- Department of Hematology, Endocrinology and Metabolism, Faculty of MedicineNiigata UniversityNiigataJapan
- Kowa Company, LtdTokyoJapan
| | | | - Taeko Osawa
- Department of Hematology, Endocrinology and Metabolism, Faculty of MedicineNiigata UniversityNiigataJapan
| | - Kazuo Furukawa
- Department of Hematology, Endocrinology and Metabolism, Faculty of MedicineNiigata UniversityNiigataJapan
| | - Hiroshi Suzuki
- Department of Hematology, Endocrinology and Metabolism, Faculty of MedicineNiigata UniversityNiigataJapan
| | - Kazuya Fujihara
- Department of Hematology, Endocrinology and Metabolism, Faculty of MedicineNiigata UniversityNiigataJapan
| | - Shiro Tanaka
- Department of Clinical Biostatistics, Graduate School of MedicineKyoto UniversityJapan
| | | | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Faculty of MedicineNiigata UniversityNiigataJapan
| |
Collapse
|
25
|
Okura T, Fujioka Y, Nakamura R, Anno M, Ito Y, Kitao S, Matsumoto K, Shoji K, Sumi K, Matsuzawa K, Izawa S, Okura H, Ueta E, Noma H, Kato M, Imamura T, Taniguchi SI, Yamamoto K. Hepatic insulin clearance is increased in patients with high HbA1c type 2 diabetes: a preliminary report. BMJ Open Diabetes Res Care 2020; 8:8/1/e001149. [PMID: 32354719 PMCID: PMC7213752 DOI: 10.1136/bmjdrc-2019-001149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/16/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Hepatic insulin clearance (HIC) is an important pathophysiology of type 2 diabetes. HIC was reported to decrease in patients with type 2 diabetes and metabolic syndrome. However, hyperglycemia was suggested to enhance HIC, and it is not known whether poorly controlled diabetes increases HIC in patients with type 2 diabetes. We investigated whether HIC was increased in patients with poorly controlled diabetes, and whether HIC was associated with insulin resistance and incretins. RESEARCH DESIGN AND METHODS We performed a meal tolerance test and the hyperinsulinemic-euglycemic clamp in 21 patients with type 2 diabetes. We calculated the postprandial C-peptide area under the curve (AUC)-to-insulin AUC ratio as the HIC; measured fasting and postprandial glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and glucagon levels and analyzed serum adiponectin and zinc transporter-8 (ZnT8) gene polymorphism. RESULTS The HIC significantly correlated with glycated hemoglobin (HbA1c) (r_S=0.58, p<0.01). In patients with high HIC above the median of 6.5, the mean HbA1c was significantly higher compared with low HIC below the median. Homeostatic model assessment (HOMA)-beta (r_S=-0.77, p<0.01) and HOMA-IR (r_S=-0.66, p<0.005) were correlated with HIC. The M/I value in the clamp study was correlated with HIC. GLP-1-AUC and GIP-AUC were not correlated with HIC. Glucagon-AUC was negatively correlated with HIC, but there were no significant differences between the high and low HIC groups. Adiponectin was positively correlated with HIC. The ZnT8 gene polymorphism did not affect HIC. CONCLUSIONS These results suggest that HIC was increased in patients with high HbA1c type 2 diabetes, low insulin secretion, low insulin resistance and high adiponectin conditions.
Collapse
Affiliation(s)
- Tsuyoshi Okura
- Division of Endocrinology and Metabolism, Tottori University, Tottori, Japan
| | - Yohei Fujioka
- Division of Endocrinology and Metabolism, Tottori University, Tottori, Japan
| | - Risa Nakamura
- Division of Endocrinology and Metabolism, Tottori University, Tottori, Japan
| | - Mari Anno
- Division of Endocrinology and Metabolism, Tottori University, Tottori, Japan
| | - Yuichi Ito
- Division of Endocrinology and Metabolism, Tottori University, Tottori, Japan
| | - Sonoko Kitao
- Division of Endocrinology and Metabolism, Tottori University, Tottori, Japan
| | - Kazuhisa Matsumoto
- Division of Endocrinology and Metabolism, Tottori University, Tottori, Japan
| | - Kyoko Shoji
- Division of Endocrinology and Metabolism, Tottori University, Tottori, Japan
| | - Keisuke Sumi
- Division of Endocrinology and Metabolism, Tottori University, Tottori, Japan
| | - Kazuhiko Matsuzawa
- Division of Endocrinology and Metabolism, Tottori University, Tottori, Japan
| | - Shoichiro Izawa
- Division of Endocrinology and Metabolism, Tottori University, Tottori, Japan
| | - Hiroko Okura
- Division of Endocrinology and Metabolism, Tottori University, Tottori, Japan
| | - Etsuko Ueta
- School of Health Science, Tottori University, Tottori, Japan
| | - Hisashi Noma
- Institute of Statistical Mathematics, Minato-ku, Tokyo, Japan
| | - Masahiko Kato
- School of Health Science Major in Clinical Laboratory Science, Tottori University, Tottori, Japan
| | - Takeshi Imamura
- Division of Molecular Pharmacology, Tottori University, Tottori, Japan
| | | | - Kazuhiro Yamamoto
- Division of Endocrinology and Metabolism, Tottori University, Tottori, Japan
| |
Collapse
|
26
|
Keyhani-Nejad F, Barbosa Yanez RL, Kemper M, Schueler R, Pivovarova-Ramich O, Rudovich N, Pfeiffer AFH. Endogenously released GIP reduces and GLP-1 increases hepatic insulin extraction. Peptides 2020; 125:170231. [PMID: 31870938 DOI: 10.1016/j.peptides.2019.170231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 01/01/2023]
Abstract
GIP was proposed to play a key role in the development of non- alcoholic fatty liver disease (NAFLD) in response to sugar intake. Isomaltulose, is a 1,6-linked glucose-fructose dimer which improves glucose homeostasis and prevents NAFLD compared to 1,2-linked sucrose by reducing glucose-dependent insulinotropic peptide (GIP) in mice. We compared effects of sucrose vs. isomaltulose on GIP and glucagon-like peptide-1 (GLP-1) secretion, hepatic insulin clearance (HIC) and insulin sensitivity in normal (NGT), impaired glucose tolerant (IGT) and Type 2 diabetes mellitus (T2DM) participants. A randomized crossover study was performed in 15 NGT, 10 IGT and 10 T2DM subjects. In comparison to sucrose, peak glucose concentrations were reduced by 2.3, 2.1 and 2.5 mmol/l (all p < 0.05) and insulin levels were 88% (p < 0.01, NGT), 32% (p < 0.05, IGT) and 55% (T2DM) lower after the isomaltulose load. Postprandial GIPiAUC concentrations were decreased (56%, p < 0.01 in NGT; 42%, p < 0.05 in IGT and 40%,p < 0.001 in T2DM) whereas GLP-1iAUC was 77%, 85% and 85% higher compared to sucrose (p < 0.01), respectively. This resulted in ∼35 - 50% improved insulin sensitivity and reduced insulinogenic index after isomaltulose, which correlated closely with improved HIC, respectively (r = 0.62, r=-0.70; p < 0.001). HIC was inversely related to GIP (r=-0.44, p < 0.001) and positively related to GLP-1 levels (r = 0.40, p = 0.001). CONCLUSION: Endogenously released GIP correlated with reduced, and GLP-1 with increased hepatic insulin extraction. Increased peripheral insulin levels may contribute to insulin resistance and obesity. We propose that the unfavorable effects of high glycemic index Western diets are related to increased GIP-release and reduced HIC.
Collapse
Affiliation(s)
- Farnaz Keyhani-Nejad
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Berlin, Germany
| | - Renate Luisa Barbosa Yanez
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Berlin, Germany; German Center for Diabetes Research, Partner Potsdam, Berlin, Germany
| | - Margrit Kemper
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Berlin, Germany; German Center for Diabetes Research, Partner Potsdam, Berlin, Germany
| | - Rita Schueler
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany
| | - Olga Pivovarova-Ramich
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Berlin, Germany; German Center for Diabetes Research, Partner Potsdam, Berlin, Germany; Reseach Group Molecular Nutritional Medicine, Dept. of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Natalia Rudovich
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Berlin, Germany; German Center for Diabetes Research, Partner Potsdam, Berlin, Germany; Division of Endocrinology and Diabetes, Department of Internal Medicine, Spital Bülach, 8180, Bülach, Switzerland
| | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition, Nuthetal, Germany; Department for Endocrinology, Diabetes and Nutrition, Charité - University of Medicine, Berlin, Germany; German Center for Diabetes Research, Partner Potsdam, Berlin, Germany.
| |
Collapse
|
27
|
Rega-Kaun G, Kaun C, Jaegersberger G, Prager M, Hackl M, Demyanets S, Wojta J, Hohensinner PJ. Roux-en-Y-Bariatric Surgery Reduces Markers of Metabolic Syndrome in Morbidly Obese Patients. Obes Surg 2019; 30:391-400. [DOI: 10.1007/s11695-019-04190-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Background
Obesity is closely linked to increased markers of metabolic syndrome and development of diabetes. Roux-en-Y bariatric surgery reduces hyperinsulinemia and improves insulin sensitivity and hence benefits morbidly obese patients.
Aim
To determine changes in markers of metabolic syndrome, pancreatic function, and hepatic insulin sensitivity in patients before and 1 year after undergoing Roux-en-Y gastric bypass surgery.
Methods
We enrolled 43 consecutive patients in a single center. Markers for metabolic syndrome included proinsulin, insulin, C-peptide, liver enzymes, and serum levels of selected microRNAs hsa-miR-122, hsa-miR-130, hsa-miR-132, and hsa-miR-375.
Results
After surgery, all patients showed a significant 37% drop of body mass index (p < 0.001). Furthermore, proinsulin (59% reduction, p < 0.001), insulin (76% reduction, p < 0.001), and C-peptide (56% reduction, p < 0.001) were all reduced 1 year after surgery. Using the hepatic insulin clearance score, we determined a significant increase in hepatic insulin clearance after surgery (76% increase, p < 0.001). Especially diabetic patients showed a marked 2.1-fold increase after surgery. Hepatic enzymes ALT (35% reduction, p = 0.002) and γGT (48% reduction, p < 0.001) were significantly reduced in all patients with similar improvement in diabetic and non-diabetic patients. miRNAs hsa-miR-122, hsa-miR-130, and hsa-miR-132 were all significantly reduced whereas hsa-miR-375 was increased after gastric bypass surgery (p < 0.001 for all miRNAs).
Conclusion
Both liver and pancreatic stress parameters were reduced significantly 1 year after Roux-en-Y gastric bypass surgery suggesting an overall amelioration of the metabolic syndrome in all patients regardless of previous health status.
Collapse
|
28
|
Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther-Sørensen M, Suppli MP, Janah L, Gromada J, Vilstrup H, Knop FK, Holst JJ. The Liver-α-Cell Axis and Type 2 Diabetes. Endocr Rev 2019; 40:1353-1366. [PMID: 30920583 DOI: 10.1210/er.2018-00251] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
Both type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD) strongly associate with increasing body mass index, and together these metabolic diseases affect millions of individuals. In patients with T2D, increased secretion of glucagon (hyperglucagonemia) contributes to diabetic hyperglycemia as proven by the significant lowering of fasting plasma glucose levels following glucagon receptor antagonist administration. Emerging data now indicate that the elevated plasma concentrations of glucagon may also be associated with hepatic steatosis and not necessarily with the presence or absence of T2D. Thus, fatty liver disease, most often secondary to overeating, may result in impaired amino acid turnover, leading to increased plasma concentrations of certain glucagonotropic amino acids (e.g., alanine). This, in turn, causes increased glucagon secretion that may help to restore amino acid turnover and ureagenesis, but it may eventually also lead to increased hepatic glucose production, a hallmark of T2D. Early experimental findings support the hypothesis that hepatic steatosis impairs glucagon's actions on amino acid turnover and ureagenesis. Hepatic steatosis also impairs hepatic insulin sensitivity and clearance that, together with hyperglycemia and hyperaminoacidemia, lead to peripheral hyperinsulinemia; systemic hyperinsulinemia may itself contribute to worsen peripheral insulin resistance. Additionally, obesity is accompanied by an impaired incretin effect, causing meal-related glucose intolerance. Lipid-induced impairment of hepatic sensitivity, not only to insulin but potentially also to glucagon, resulting in both hyperinsulinemia and hyperglucagonemia, may therefore contribute to the development of T2D at least in a subset of individuals with NAFLD.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malte P Suppli
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Lee DW, Lee SH, Choi N, Sung JH. Construction of pancreas–muscle–liver microphysiological system (MPS) for reproducing glucose metabolism. Biotechnol Bioeng 2019; 116:3433-3445. [DOI: 10.1002/bit.27151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Dong Wook Lee
- Department of Chemical EngineeringHongik UniversitySeoul Republic of Korea
| | - Seung Hwan Lee
- Department of Bionano EngineeringHanyang UniversityAnsan Republic of Korea
- Nanosensor Research InstituteHanyang UniversityAnsan Republic of Korea
- Department of BionanotechnologyHanyang UniversityAnsan Republic of Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical EngineeringHongik UniversitySeoul Republic of Korea
| |
Collapse
|
30
|
Najjar SM, Perdomo G. Hepatic Insulin Clearance: Mechanism and Physiology. Physiology (Bethesda) 2019; 34:198-215. [PMID: 30968756 DOI: 10.1152/physiol.00048.2018] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Upon its secretion from pancreatic β-cells, insulin reaches the liver through the portal circulation to exert its action and eventually undergo clearance in the hepatocytes. In addition to insulin secretion, hepatic insulin clearance regulates the homeostatic level of insulin that is required to reach peripheral insulin target tissues to elicit proper insulin action. Receptor-mediated insulin uptake followed by its degradation constitutes the basic mechanism of insulin clearance. Upon its phosphorylation by the insulin receptor tyrosine kinase, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) takes part in the insulin-insulin receptor complex to increase the rate of its endocytosis and targeting to the degradation pathways. This review summarizes how this process is regulated and how it is associated with insulin-degrading enzyme in the liver. It also discusses the physiological implications of impaired hepatic insulin clearance: Whereas reduced insulin clearance cooperates with increased insulin secretion to compensate for insulin resistance, it can also cause hepatic insulin resistance. Because chronic hyperinsulinemia stimulates hepatic de novo lipogenesis, impaired insulin clearance also causes hepatic steatosis. Thus impaired insulin clearance can underlie the link between hepatic insulin resistance and hepatic steatosis. Delineating these regulatory pathways should lead to building more effective therapeutic strategies against metabolic syndrome.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences, Ohio University , Athens, Ohio.,Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio
| | - Germán Perdomo
- Departamento de Ciencias de la Salud, Universidad de Burgos , Burgos , Spain
| |
Collapse
|
31
|
Meneses MJ, Borges DO, Dias TR, Martins FO, Oliveira PF, Macedo MP, Alves MG. Knockout of insulin-degrading enzyme leads to mice testicular morphological changes and impaired sperm quality. Mol Cell Endocrinol 2019; 486:11-17. [PMID: 30807788 DOI: 10.1016/j.mce.2019.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/30/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
Abstract
Insulin-degrading enzyme (IDE) is a zinc metalloprotease responsible for degrading and inactivating several bioactive peptides, including insulin. Individuals without this enzyme or with a loss-of-function mutation in the gene that codifies it, present hyperinsulinemia. In addition, impairment of IDE-mediated insulin clearance is associated with the development of metabolic diseases, namely prediabetes. Although insulin regulates male fertility, the role of IDE on male reproductive function remains unknown. We proposed to study the influence of IDE in the reproductive potential of males. As insulin mediates key events for the normal occurrence of spermatogenesis, we hypothesized that IDE functioning might be linked with sperm quality. We used C57BL/6N mice that were divided in three groups according to its genotype: wild type (WT), heterozygous and knockout (KO) male mice for Ide. Spermatozoa were collected from the cauda of epididymis and sperm parameters were evaluated. Testicular tissue morphology was assessed through hematoxylin and eosin stain. Mitochondrial complex protein levels and lipid peroxidation were also evaluated in the testicular tissue. Our results show that KO mice present a 50% decrease in testes weight compared to WT mice as well as a decrease in seminiferous tubules diameter. Moreover, KO mice present impaired sperm quality, namely a decrease in both sperm viability and morphology. These results provide evidence that IDE plays an important role in determining the reproductive potential of males.
Collapse
Affiliation(s)
- Maria João Meneses
- CEDOC - Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; ProRegeM PhD Programme, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Diego O Borges
- CEDOC - Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Tânia R Dias
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Fátima O Martins
- CEDOC - Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; I3S - Instituto de Investigação e Inovação Em Saúde, University of Porto, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, Portugal
| | - M Paula Macedo
- CEDOC - Centro de Estudos de Doenças Crónicas, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Portuguese Diabetes Association, Education and Research Center (APDP-ERC), Lisbon, Portugal; Department of Medical Sciences, University of Aveiro, Portugal.
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.
| |
Collapse
|
32
|
Shah A, Holter MM, Rimawi F, Mark V, Dutia R, McGinty J, Levin B, Laferrère B. Insulin Clearance After Oral and Intravenous Glucose Following Gastric Bypass and Gastric Banding Weight Loss. Diabetes Care 2019; 42:311-317. [PMID: 30523032 PMCID: PMC6341286 DOI: 10.2337/dc18-1036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Hepatic insulin clearance is a significant regulator of glucose homestasis. We hypothesized that the improvement in insulin clearance rates (ICRs) under fasting conditions and in response to oral and intravenous (IV) glucose would improve similarly after Roux-en-Y gastric bypass (RYGB) and adjustable gastric banding (AGB) as a function of weight loss; the difference in ICR after oral and IV glucose stimulation will be enhanced after RYGB compared with AGB, an effect mediated by glucagon-like peptide 1 (GLP-1). RESEARCH DESIGN AND METHODS In study 1, the ICR was calculated under fasting condition (F-ICR), after oral glucose (O-ICR), and after an isoglycemic IV glucose clamp (IV-ICR) in individuals from an established cohort with type 2 diabetes mellitus (T2DM) before, after 10% matched weight loss, and 1 year after either RYGB (n = 22) or AGB (n = 12). In study 2, O-ICR was studied in a separate cohort of individuals with T2DM (n = 22), before and 3 months after RYGB, with and without exendin(9-39) infusion. RESULTS In study 1, age, BMI, T2DM duration and control, and ICR did not differ between RYGB and AGB preintervention. Weight loss at 1 year was two times greater after RYGB than after AGB (31.6 ± 5.9% vs. 16.6 ± 9.8%; P < 0.05). RYGB and AGB both significantly increased F-ICR, O-ICR, and IV-ICR at 1 year. ICR was inversely associated with insulinemia. The difference between IV-ICR and O-ICR was significantly greater after RYGB versus AGB. GLP-1 antagonism with exendin(9-39) led to an increase in O-ICR in subjects post-RYGB. CONCLUSIONS Weight loss increased ICR, an effect more pronounced after RYGB compared with AGB. Our data support a potential role for endogenous GLP-1 in the control of postprandial ICR after RYGB.
Collapse
Affiliation(s)
- Ankit Shah
- Divison of Endocrinology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | - Marlena M Holter
- New York Obesity Nutrition Research Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | - Fatima Rimawi
- New York Obesity Nutrition Research Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | - Victoria Mark
- New York Obesity Nutrition Research Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | - Roxanne Dutia
- New York Obesity Nutrition Research Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | - James McGinty
- Bariatric Divsion, Department of Surgery, Mount Sinai St. Luke's, New York, NY
| | - Bruce Levin
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Blandine Laferrère
- Divison of Endocrinology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY .,New York Obesity Nutrition Research Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| |
Collapse
|
33
|
Semnani-Azad Z, Johnston LW, Lee C, Retnakaran R, Connelly PW, Harris SB, Zinman B, Hanley AJ. Determinants of longitudinal change in insulin clearance: the Prospective Metabolism and Islet Cell Evaluation cohort. BMJ Open Diabetes Res Care 2019; 7:e000825. [PMID: 31803485 PMCID: PMC6887510 DOI: 10.1136/bmjdrc-2019-000825] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/03/2019] [Accepted: 10/28/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE To evaluate multiple determinants of the longitudinal change in insulin clearance (IC) in subjects at high risk for type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS Adults (n=492) at risk for T2D in the Prospective Metabolism and Islet Cell Evaluation cohort, a longitudinal observational cohort, had four visits over 9 years. Values from oral glucose tolerance tests collected at each assessment were used to calculate the ratios of both fasting C peptide-to-insulin (ICFASTING) and areas under the curve of C peptide-to-insulin (ICAUC). Generalized estimating equations (GEE) evaluated multiple determinants of longitudinal changes in IC. RESULTS IC declined by 20% over the 9-year follow-up period (p<0.05). Primary GEE results indicated that non-European ethnicity, as well as increases in baseline measures of waist circumference, white cell count, and alanine aminotransferase, was associated with declines in ICFASTING and ICAUC over time (all p<0.05). There were no significant associations of IC with sex, age, physical activity, smoking, or family history of T2D. Both baseline and longitudinal IC were associated with incident dysglycemia. CONCLUSIONS Our findings suggest that non-European ethnicity and components of the metabolic syndrome, including central obesity, non-alcoholic fatty liver disease, and subclinical inflammation, may be related to longitudinal declines in IC.
Collapse
Affiliation(s)
- Zhila Semnani-Azad
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Luke W Johnston
- Department of Public Health, Aarhus Universitet, Aarhus, Denmark
| | - Christine Lee
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ravi Retnakaran
- Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Philip W Connelly
- Keenan Research Centre for Biomedical Science, St Michael’s Hospital, Toronto, Ontario, Canada
| | - Stewart B Harris
- Centre for Studies in Family Medicine, Western University, London, Ontario, Canada
| | - Bernard Zinman
- Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anthony J Hanley
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, University of Toronto, Toronto, Ontario, Canada
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Galderisi A, Giannini C, Weiss R, Kim G, Shabanova V, Santoro N, Pierpont B, Savoye M, Caprio S. Trajectories of changes in glucose tolerance in a multiethnic cohort of obese youths: an observational prospective analysis. THE LANCET. CHILD & ADOLESCENT HEALTH 2018; 2:726-735. [PMID: 30236381 PMCID: PMC6190831 DOI: 10.1016/s2352-4642(18)30235-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/01/2018] [Accepted: 07/07/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Type 2 diabetes is preceded by a prediabetic stage of impaired glucose tolerance that affects 10-23% of youth and is expected to double over the next decade. The natural history of impaired glucose tolerance and the determinants of β-cell dynamic response have never been investigated longitudinally in young people. We aimed to investigate the clinical and metabolic determinants of longitudinal glucose tolerance changes and β-cell function in a multiethnic cohort of obese youth. METHODS We followed up prospectively a multiethnic cohort of overweight and obese (body-mass index >85th percentile) adolescents with baseline normal glucose tolerance (plasma glucose <140 mg/dL) or impaired glucose tolerance (plasma glucose 140-199 mg/dL) at the Yale Pediatric Obesity Clinic (CT, USA). All participants underwent a 3-h oral glucose tolerance test at baseline and after 2 years to estimate insulin secretion (oral disposition index) in the context of body insulin sensitivity. As part of standard care at the clinic, all participants received dietary advice and underwent dietary assessment every 5-6 months. No structured lifestyle or pharmacological intervention was administered. FINDINGS Between January, 2010, and December, 2016, 526 adolescents (mean age 12·7 years, range 10·6-14·2) were enrolled to our study. At baseline, 364 had normal and 162 had impaired glucose tolerance. Median follow-up was 2·9 years (IQR 2·7-3·1). 105 (65%) of 162 with impaired glucose tolerance at baseline reverted to normal glucose tolerance at follow-up, 44 (27%) had persistent impaired glucose tolerance, and 13 (8%) progressed to type 2 diabetes. A feature of reversion to normal glucose tolerance was a roughly four-fold increase in the oral disposition index (from median 0·94 [IQR 0·68-1·35] at baseline to 3·90 [2·58-6·08] at follow-up; p<0·0001) and a significantly higher oral disposition index at follow-up compared with participants who maintained normal glucose tolerance across the study period (median 3·90 [IQR 2·58-6·08] vs 1·59 [1·12-2·23]; p<0·0001). By contrast, a decrease in insulin secretion was seen in participants who had persistent impaired glucose tolerance (median 1·31 [IQR 1·01-1·85]; p<0·0001) or who progressed to type 2 diabetes (0·20 [0·12-0·58]; p<0·0001), compared with participants who maintained normal glucose tolerance across the study period. Non-Hispanic white ethnic origin conferred five times the odds of reversion to normal glucose tolerance compared with non-Hispanic black ethnic origin (OR 5·06, 95% CI 1·86-13·76; p=0·001), with a two times greater annual increase in the oral disposition index (β 2·32, 95% CI 0·05-4·60; p=0·045). INTERPRETATION Impaired glucose tolerance is highly reversible in obese adolescents. Ethnic origin is the main clinical modifier of the dynamic β-cell response to prediabetic hyperglycaemia and, thus, determines the reversibility of impaired glucose tolerance, or its persistence. Therapeutic interventions for impaired glucose tolerance should target the specific mechanisms underpinning glucose tolerance changes in high-risk ethnic groups. FUNDING National Institutes of Health (National Institute of Child Health and Human Development, National Center for Research Resources, and National Institute of Diabetes and Digestive and Kidney Diseases), American Diabetes Association, International Society for Pediatric and Adolescent Diabetes, Robert Leet Patterson and Clara Guthrie Patterson Trust, European Society for Pediatric Endocrinology, American Heart Association, and the Allen Foundation.
Collapse
Affiliation(s)
- Alfonso Galderisi
- Department of Pediatrics, Division of Pediatric Endocrinology, Yale University School of Medicine, New Haven, CT, USA; Department of Women and Children's Health, University of Padova, Padua, Italy
| | - Cosimo Giannini
- Department of Pediatrics, Ospedale "SS Annunziata", Chieti, Italy
| | - Ram Weiss
- Department of Pediatrics, Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Grace Kim
- Seattle Children's Hospital, Seattle, WA, USA
| | - Veronika Shabanova
- Department of Pediatrics, Division of Pediatric Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Nicola Santoro
- Department of Pediatrics, Division of Pediatric Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Bridget Pierpont
- Department of Pediatrics, Division of Pediatric Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Mary Savoye
- Department of Pediatrics, Division of Pediatric Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Sonia Caprio
- Department of Pediatrics, Division of Pediatric Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
35
|
Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiol Rev 2018; 98:2133-2223. [PMID: 30067154 PMCID: PMC6170977 DOI: 10.1152/physrev.00063.2017] [Citation(s) in RCA: 1697] [Impact Index Per Article: 242.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/15/2022] Open
Abstract
The 1921 discovery of insulin was a Big Bang from which a vast and expanding universe of research into insulin action and resistance has issued. In the intervening century, some discoveries have matured, coalescing into solid and fertile ground for clinical application; others remain incompletely investigated and scientifically controversial. Here, we attempt to synthesize this work to guide further mechanistic investigation and to inform the development of novel therapies for type 2 diabetes (T2D). The rational development of such therapies necessitates detailed knowledge of one of the key pathophysiological processes involved in T2D: insulin resistance. Understanding insulin resistance, in turn, requires knowledge of normal insulin action. In this review, both the physiology of insulin action and the pathophysiology of insulin resistance are described, focusing on three key insulin target tissues: skeletal muscle, liver, and white adipose tissue. We aim to develop an integrated physiological perspective, placing the intricate signaling effectors that carry out the cell-autonomous response to insulin in the context of the tissue-specific functions that generate the coordinated organismal response. First, in section II, the effectors and effects of direct, cell-autonomous insulin action in muscle, liver, and white adipose tissue are reviewed, beginning at the insulin receptor and working downstream. Section III considers the critical and underappreciated role of tissue crosstalk in whole body insulin action, especially the essential interaction between adipose lipolysis and hepatic gluconeogenesis. The pathophysiology of insulin resistance is then described in section IV. Special attention is given to which signaling pathways and functions become insulin resistant in the setting of chronic overnutrition, and an alternative explanation for the phenomenon of ‟selective hepatic insulin resistanceˮ is presented. Sections V, VI, and VII critically examine the evidence for and against several putative mediators of insulin resistance. Section V reviews work linking the bioactive lipids diacylglycerol, ceramide, and acylcarnitine to insulin resistance; section VI considers the impact of nutrient stresses in the endoplasmic reticulum and mitochondria on insulin resistance; and section VII discusses non-cell autonomous factors proposed to induce insulin resistance, including inflammatory mediators, branched-chain amino acids, adipokines, and hepatokines. Finally, in section VIII, we propose an integrated model of insulin resistance that links these mediators to final common pathways of metabolite-driven gluconeogenesis and ectopic lipid accumulation.
Collapse
Affiliation(s)
- Max C Petersen
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Howard Hughes Medical Institute, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
36
|
Fiorentino TV, Sesti F, Succurro E, Pedace E, Andreozzi F, Sciacqua A, Hribal ML, Perticone F, Sesti G. Higher serum levels of uric acid are associated with a reduced insulin clearance in non-diabetic individuals. Acta Diabetol 2018; 55:835-842. [PMID: 29774469 DOI: 10.1007/s00592-018-1153-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/01/2018] [Indexed: 11/25/2022]
Abstract
AIMS Decreased insulin clearance has been reported to be associated with insulin resistance-related disorders and incident type 2 diabetes. The aim of this study was to evaluate whether higher levels of uric acid (UA), a known risk factor of type 2 diabetes, are associated with a reduced insulin clearance. METHODS 440 non-diabetic individuals were stratified in tertiles according to serum UA levels. Insulin clearance and skeletal muscle insulin sensitivity were assessed by euglycemic hyperinsulinemic clamp. Hepatic insulin resistance was estimated by the liver IR index. RESULTS Subjects with higher levels of UA displayed an unfavorable metabolic phenotype with a worse lipid profile, increased levels of 2-h post-load glucose levels, fasting, and 2-h post-load insulin levels, hsCRP, liver IR index, and lower levels of eGFR and skeletal muscle insulin sensitivity, in comparison to individuals with lower UA levels. Moreover, subjects with higher UA concentrations exhibited decreased levels of insulin clearance even after adjustment for age, gender, BMI, eGFR, and skeletal muscle insulin sensitivity. In a multivariate regression analysis model including several confounding factors, UA concentration was an independent predictor of insulin clearance (β = - 0.145; P = 0.03). However, when liver IR index was included in the model, the independent association between UA levels and insulin clearance was not retained. Accordingly, in a mediation analysis, liver IR index was a mediator of the negative effects of UA levels on insulin clearance (t = - 2.55, P = 0.01). CONCLUSIONS Higher serum levels of UA may affect insulin clearance by impairing hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Elisabetta Pedace
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|
37
|
Honsek C, Kabisch S, Kemper M, Gerbracht C, Arafat AM, Birkenfeld AL, Dambeck U, Osterhoff MA, Weickert MO, Pfeiffer AFH. Fibre supplementation for the prevention of type 2 diabetes and improvement of glucose metabolism: the randomised controlled Optimal Fibre Trial (OptiFiT). Diabetologia 2018; 61:1295-1305. [PMID: 29492637 DOI: 10.1007/s00125-018-4582-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/17/2018] [Indexed: 10/17/2022]
Abstract
AIMS/HYPOTHESIS Insoluble cereal fibres have been shown in large prospective cohort studies to be highly effective in preventing type 2 diabetes, but there is a lack of interventional data. Our 2 year randomised double-blind prospective intervention study compared the effect of an insoluble oat fibre extract with that of placebo on glucose metabolism and incidence of diabetes. METHODS A total of 180 participants with impaired glucose tolerance underwent a modified version of the 1 year lifestyle training programme PREvention of DIAbetes Self-management (PREDIAS) and were randomised to receive a fibre supplement (n = 89; 7.5 g of insoluble fibre per serving) or placebo (n = 91; 0.8 g of insoluble fibre per serving) twice daily for 2 years. Eligible participants were men and women, were at least 18 years old and did not report corticosteroid or other intensive anti-inflammatory treatment, fibre intolerance or any of the following disorders: overt diabetes, chronic or malignant disease, or severe cardiopulmonary, endocrine, psychiatric, gastrointestinal, autoimmune or eating disorder. Participants were recruited at two clinical wards in Berlin and Nuthetal. The allocation was blinded to participants and study caregivers (physicians, dietitians, study nurses). Randomisation was conducted by non-clinical staff, providing neutrally numbered supplement tins. Both supplements were similar in their visual, olfactory and gustatory appearance. Intention-to-treat analysis was applied to all individuals. RESULTS After 1 year, 2 h OGTT levels decreased significantly in both groups but without a significant difference between the groups (fibre -0.78 ± 1.88 mmol/l [p ≤ 0.001] vs placebo -0.46 ± 1.80 mmol/l [p = 0.020]; total difference 0.32 ± 0.29 mmol/l; not significant). The 2 year incidence of diabetes was 9/89 (fibre group) compared with 16/91 (placebo group; difference not significant). As secondary outcomes, the change in HbA1c level was significantly different between the two groups (-0.2 ± 4.6 mmol/mol [-0.0 ± 0.0%; not significant] vs +1.2 ± 5.2 mmol/mol [+0.1 ± 0.0%; not significant]; total difference 1.4 ± 0.7 mmol/mol [0.1 + 0.0%]); p = 0.018); insulin sensitivity and hepatic insulin clearance increased in both groups. After 2 years, improved insulin sensitivity was still present in both groups, although the effect size had diminished. Separate analysis of the sexes revealed a significantly greater reduction in 2 h glucose levels for women in the fibre group (-0.88 ± 1.59 mmol/l [p ≤ 0.001] vs -0.22 ± 1.52 mmol/l [p = 0.311]; total difference 0.67 ± 0.31 mmol/l; p = 0.015). Levels of fasting glucose, adipokines and inflammatory markers remained unchanged in the two groups. Significantly increased fibre intake was restricted to the fibre group, despite dietary counselling for both groups. No severe side effects occurred. CONCLUSIONS/INTERPRETATION We cannot currently provide strong evidence for a beneficial effect of insoluble cereal fibre on glycaemic metabolism, although further studies may support minor effects of fibre supplementation in reducing glucose levels, insulin resistance and the incidence of type 2 diabetes. TRIAL REGISTRATION clinicaltrials.gov NCT01681173 Funding: German Diabetes Foundation (grant no. 232/11/08).
Collapse
Affiliation(s)
- Caroline Honsek
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Stefan Kabisch
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Margrit Kemper
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christiana Gerbracht
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Ayman M Arafat
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Section of Metabolic Vascular Medicine, Medical Clinic III and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Dresden, Germany
- Studienzentrum für Metabolisch-Vaskuläre Medizin, Gesellschaft für Wissens- und Technologietransfer TU Dresden (GWT-TUD), Dresden, Germany
| | - Ulrike Dambeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Martin A Osterhoff
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, The ARDEN NET Centre, European Neuroendocrine Tumor Society Center of Excellence (ENETS CoE), University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK.
- Centre of Applied Biological and Exercise Sciences (ABES), Faculty of Health and Life Sciences, Coventry University, Coventry, UK.
- Translational and Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Andreas F H Pfeiffer
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany
| |
Collapse
|
38
|
Okura T, Nakamura R, Fujioka Y, Kawamoto-Kitao S, Ito Y, Matsumoto K, Shoji K, Sumi K, Matsuzawa K, Izawa S, Ueta E, Kato M, Imamura T, Taniguchi SI, Yamamoto K. CPR-IR is an insulin resistance index that is minimally affected by hepatic insulin clearance-A preliminary research. PLoS One 2018; 13:e0197663. [PMID: 29791512 PMCID: PMC5965889 DOI: 10.1371/journal.pone.0197663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/07/2018] [Indexed: 01/23/2023] Open
Abstract
Background Increased hepatic insulin clearance (HIC) is important in the pathophysiology of type 2 diabetes mellitus (T2DM). The aim of this study is to analyze an effective insulin resistance (IR) index that is minimally affected by HIC. Methods Our study involved 20 participants with T2DM and 21 healthy participants without diabetes (Non-DM). Participants underwent a meal tolerance test from which plasma glucose, insulin and serum C-peptide immunoreactivity (CPR) were measured, and HOMA-IR and HIC were calculated. Participants then underwent a hyperinsulinemic-euglycemic clamp from which the glucose disposal rate (GDR) was measured. Results The index CPR-IR = 20/(fasting CPR × fasting plasma glucose) was correlated more strongly with GDR, than was HOMA-IR, and CPR-IR could be used to estimate GDR. In T2DM participants with HIC below the median, HOMA-IR and CPR-IR were equally well correlated with GDR. In T2DM with high HIC, CPR-IR correlated with GDR while HOMA-IR did not. In Non-DM, CPR-IR and HOMA-IR were equally well correlated with GDR regardless of HIC. The mean HIC value in T2DM was significantly higher than that of Non-DM. Conclusions CPR-IR could be a simple and effective index of insulin resistance for patients with type 2 diabetes that is minimally affected by HIC.
Collapse
Affiliation(s)
- Tsuyoshi Okura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
- * E-mail:
| | - Risa Nakamura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Yohei Fujioka
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Sonoko Kawamoto-Kitao
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Yuichi Ito
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Kazuhisa Matsumoto
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Kyoko Shoji
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Keisuke Sumi
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Kazuhiko Matsuzawa
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Shoichiro Izawa
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Etsuko Ueta
- School of Health Science, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Masahiko Kato
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Takeshi Imamura
- Division of Molecular Pharmacology, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Shin-ichi Taniguchi
- Department of Regional Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Department of Molecular Medicine and Therapeutics, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| |
Collapse
|
39
|
Matsubayashi Y, Yoshida A, Suganami H, Ishiguro H, Yamamoto M, Fujihara K, Kodama S, Tanaka S, Kaku K, Sone H. Role of fatty liver in the association between obesity and reduced hepatic insulin clearance. DIABETES & METABOLISM 2017; 44:135-142. [PMID: 29395810 DOI: 10.1016/j.diabet.2017.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/13/2017] [Accepted: 12/03/2017] [Indexed: 01/29/2023]
Abstract
AIM Hepatic insulin clearance (HIC) is important in regulating plasma insulin levels. Diminished HIC causes inappropriate hyperinsulinaemia, and both obesity and fatty liver (FL), which are known to decrease HIC, can be found either together in the same patient or on their own. The mechanism by which obesity reduces HIC is presumed to be mediated by FL. However, few reports have examined the role of FL in the relationship between obesity and HIC in type 2 diabetes (T2D) patients. Therefore, our study investigated the association of HIC with clinical factors, including insulin sensitivity indices, focusing on the presence or absence of FL and obesity in T2D patients. METHOD Baseline data from 419 patients with T2D (279 men, 140 women; mean age: 57.6 years; body mass index: 25.5kg/m2) controlled by diet and exercise were analyzed. HIC was calculated from the ratio of fasting c-peptide to fasting insulin levels (HICCIR). Correlation analyses between HICCIR and clinical variables were performed using Pearson's product-moment correlation coefficients and single regression analysis in all participants and in those with obesity and FL either alone or in combination. RESULTS HICCIR was significantly correlated with whole-body insulin sensitivity indices and influenced by FL, but only in the FL group was obesity independently influenced HIC level. HICCIR decreased in those with both FL and obesity compared with those with only one such complication. CONCLUSION HICCIR may be used to evaluate whole-body insulin sensitivity in T2D. Also, compared with obesity, the influence of FL strongly contributed to a reduced HIC. TRIAL REGISTRATION NUMBER These trials were registered by the Japan Pharmaceutical Information Centre clinical trials information (JapicCTI) as 101349 and 101351.
Collapse
Affiliation(s)
- Y Matsubayashi
- Department of hematology, endocrinology and metabolism, faculty of medicine, Niigata university, Niigata, Japan
| | - A Yoshida
- Department of hematology, endocrinology and metabolism, faculty of medicine, Niigata university, Niigata, Japan; Medical information and product advancement department, Kowa Pharmaceutical Co. Ltd, Tokyo, Japan
| | - H Suganami
- Clinical data science department, Kowa Co. Ltd, 3-4-10 Nihonbashi-Honcho, Chuo-ku, 103-0023 TokyoJapan
| | - H Ishiguro
- Department of hematology, endocrinology and metabolism, faculty of medicine, Niigata university, Niigata, Japan
| | - M Yamamoto
- Department of hematology, endocrinology and metabolism, faculty of medicine, Niigata university, Niigata, Japan
| | - K Fujihara
- Department of hematology, endocrinology and metabolism, faculty of medicine, Niigata university, Niigata, Japan
| | - S Kodama
- Department of hematology, endocrinology and metabolism, faculty of medicine, Niigata university, Niigata, Japan
| | - S Tanaka
- Department of clinical biostatistics, Graduate School of Medicine, Kyoto university
| | - K Kaku
- Kawasaki Medical School, Yoshida-konoe-cho, Sakyo-ku, 606-8501 KyotoOkayama, Japan
| | - H Sone
- Department of hematology, endocrinology and metabolism, faculty of medicine, Niigata university, Niigata, Japan.
| |
Collapse
|
40
|
Ghadieh HE, Muturi HT, Russo L, Marino CC, Ghanem SS, Khuder SS, Hanna JC, Jash S, Puri V, Heinrich G, Gatto-Weis C, Lee KY, Najjar SM. Exenatide induces carcinoembryonic antigen-related cell adhesion molecule 1 expression to prevent hepatic steatosis. Hepatol Commun 2017; 2:35-47. [PMID: 29404511 PMCID: PMC5776867 DOI: 10.1002/hep4.1117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
Exenatide, a glucagon-like peptide-1 receptor agonist, induces insulin secretion. Its role in insulin clearance has not been adequately examined. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance to maintain insulin sensitivity. Feeding C57BL/6J mice a high-fat diet down-regulates hepatic Ceacam1 transcription to cause hyperinsulinemia, insulin resistance, and hepatic steatosis, as in Ceacam1 null mice (Cc1-/- ). Thus, we tested whether exenatide regulates Ceacam1 expression in high-fat diet-fed mice and whether this contributes to its insulin sensitizing effect. Exenatide (100 nM) induced the transcriptional activity of wild-type Ceacam1 promoter but not the constructs harboring block mutations of peroxisome proliferator-activated receptor response element and retinoid X receptor alpha, individually or collectively, in HepG2 human hepatoma cells. Chromatin immunoprecipitation analysis demonstrated binding of peroxisome proliferator-activated receptor gamma to Ceacam1 promoter in response to rosiglitazone and exenatide. Consistently, exenatide induced Ceacam1 messenger RNA expression within 12 hours in the absence but not in the presence of the glucagon-like peptide-1 receptor antagonist exendin 9-39. Exenatide (20 ng/g body weight once daily intraperitoneal injection in the last 30 days of feeding) restored hepatic Ceacam1 expression and insulin clearance to curb diet-induced metabolic abnormalities and steatohepatitis in wild-type but not Cc1-/- mice fed a high-fat diet for 2 months. Conclusion: Exenatide promotes insulin clearance in parallel with insulin secretion to prevent chronic hyperinsulinemia and the resulting hepatic steatosis, and this contributes to its insulin sensitizing effect. Our data further highlight the relevance of physiologic insulin metabolism in maintaining insulin sensitivity and normal lipid metabolism. (Hepatology Communications 2018;2:35-47).
Collapse
Affiliation(s)
- Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Christopher C Marino
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Saja S Khuder
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Julie C Hanna
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Sukanta Jash
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH.,Diabetes Institute, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH.,Diabetes Institute, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Cara Gatto-Weis
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH.,Department of Pathology, College of Medicine and Life Sciences University of Toledo Toledo OH
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences University of Toledo Toledo OH.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Ohio University Athens OH.,Diabetes Institute, Heritage College of Osteopathic Medicine Ohio University Athens OH
| |
Collapse
|
41
|
Vettorazzi JF, Kurauti MA, Soares GM, Borck PC, Ferreira SM, Branco RCS, Michelone LDSL, Boschero AC, Junior JMC, Carneiro EM. Bile acid TUDCA improves insulin clearance by increasing the expression of insulin-degrading enzyme in the liver of obese mice. Sci Rep 2017; 7:14876. [PMID: 29093479 PMCID: PMC5665899 DOI: 10.1038/s41598-017-13974-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023] Open
Abstract
Disruption of insulin secretion and clearance both contribute to obesity-induced hyperinsulinemia, though reduced insulin clearance seems to be the main factor. The liver is the major site for insulin degradation, a process mainly coordinated by the insulin-degrading enzyme (IDE). The beneficial effects of taurine conjugated bile acid (TUDCA) on insulin secretion as well as insulin sensitivity have been recently described. However, the possible role of TUDCA in insulin clearance had not yet been explored. Here, we demonstrated that 15 days treatment with TUDCA reestablished plasma insulin to physiological concentrations in high fat diet (HFD) mice, a phenomenon associated with increased insulin clearance and liver IDE expression. TUDCA also increased IDE expression in human hepatic cell line HepG2. This effect was not observed in the presence of an inhibitor of the hepatic membrane bile acid receptor, S1PR2, nor when its downstream proteins were inhibited, including IR, PI3K and Akt. These results indicate that treatment with TUDCA may be helpful to counteract obesity-induced hyperinsulinemia through increasing insulin clearance, likely through enhanced liver IDE expression in a mechanism dependent on S1PR2-Insulin pathway activation.
Collapse
Affiliation(s)
- Jean Franciesco Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Mirian Ayumi Kurauti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Gabriela Moreira Soares
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Patricia Cristine Borck
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Sandra Mara Ferreira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Renato Chaves Souto Branco
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Luciana de Souza Lima Michelone
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Antonio Carlos Boschero
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Jose Maria Costa Junior
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil.
| |
Collapse
|
42
|
Francis S, Chandran SP, Nesheera KK, Jacob J. Fasting Insulin is Better Partitioned according to Family History of Type 2 Diabetes Mellitus than Post Glucose Load Insulin of Oral Glucose Tolerance Test in Young Adults. J Clin Diagn Res 2017; 11:BC13-BC16. [PMID: 28658751 DOI: 10.7860/jcdr/2017/27684.9910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/18/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Hyperinsulinemia is contributed by insulin resistance, hepatic insulin uptake, insulin secretion and rate of insulin degradation. Family history of type 2 diabetes mellitus has been reported to cause hyperinsulinemia. AIM Correlation of fasting insulin with post glucose load Oral Glucose Tolerance Test (OGTT) insulin in young adults and their partitioning according to family history of type 2 diabetes. MATERIALS AND METHODS In this observational cross-sectional study, clinical evaluation and biochemical assays of insulin and diabetes related parameters, and secondary clinical influences on type 2 diabetes in volunteers were done for inclusion as participants (n=90) or their exclusion. Cut off levels of quantitative biochemical variables were fixed such that they included the effects of insulin resistance, but excluded other secondary clinical influences. Distribution was analysed by Shapiro-Wilk test; equality of variances by Levene's test; Log10 transformations for conversion of groups to Gaussian distribution and for equality of variances in the groups compared. When the groups compared had Gaussian distribution and there was equality of variance, parametric methods were used. Otherwise, non parametric methods were used. RESULTS Fasting insulin was correlating significantly with 30, 60 and 120 minute OGTT insulin showing that hyperinsulinemia in the fasting state was related to hyperinsulinemia in the post glucose load states. When fasting and post glucose load OGTT insulin were partitioned into those without and with family history of type 2 diabetes, maximum difference was seen in fasting insulin (p<0.001), followed by 120 (p=0.001) and 60 (p= 0.002) minute OGTT insulin. The 30 minute insulin could not be partitioned (p=0.574). CONCLUSION Fasting, 60 and 120 minute OGTT insulin can be partitioned according to family history of type 2 diabetes, demonstrating stratification and heterogeneity in the insulin sample. Of these, fasting insulin was better partitioned and could be used for baseline reference interval calculations.
Collapse
Affiliation(s)
- Saritha Francis
- Senior Research Fellow, Department of Biochemistry, Amala Cancer Research Centre, Thrissur, Kerala, India
| | | | - K K Nesheera
- Senior Research Fellow, Department of Biochemistry, Amala Cancer Research Centre, Thrissur, Kerala, India
| | - Jose Jacob
- Professor and HOD, Department of Biochemistry, Amala Institute of Medical Sciences, Amala Cancer Research Centre, Thrissur, Kerala, India
| |
Collapse
|
43
|
Kaga H, Tamura Y, Takeno K, Kakehi S, Funayama T, Furukawa Y, Nishitani-Yokoyama M, Shimada K, Daida H, Aoki S, Giacca A, Kanazawa A, Kawamori R, Watada H. Correlates of insulin clearance in apparently healthy non-obese Japanese men. Sci Rep 2017; 7:1462. [PMID: 28469173 PMCID: PMC5431197 DOI: 10.1038/s41598-017-01469-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/30/2017] [Indexed: 01/13/2023] Open
Abstract
Hyperinsulinemia observed in obese subject is caused at least in part by low metabolic clearance rate of insulin (MCRI). However, the determinants of MCRI in non-obese subjects are not fully understood. To investigate the correlates of MCRI in healthy non-obese men (BMI <25 kg/m2), we studied 49 non-obese Japanese men free of cardiometabolic risk factors. Using a 2-step hyperinsulinemic euglycemic clamp, we evaluated MCRI and insulin sensitivity. We also calculated the rate of glucose disappearance (Rd) during the clamp and muscle insulin sensitivity was defined as Rd/steady state serum insulin (SSSI) at the second step. Based on the median value of MCRI, the subjects were divided into the low- and high-MCRI groups. Subjects of the low-MCRI group had significant impairment of muscle insulin sensitivity, although Rd levels were comparable between the two groups, probably due to elevated SSSI in the low-MCRI group. Subjects of the low-MCRI group had higher total body fat content and lower VO2peak and showed no deterioration of cardiometabolic risk factors. Our results suggest that low MCRI may be early change to maintain glucose uptake and metabolic status in the face of slight impairment of muscle insulin sensitivity caused by increased adiposity and lower fitness level.
Collapse
Affiliation(s)
- Hideyoshi Kaga
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Kageumi Takeno
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Kakehi
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Funayama
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasuhiko Furukawa
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Kazunori Shimada
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Cardiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Cardiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Adria Giacca
- Departments of Physiology and Medicine, Institute of Medical Science and Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Akio Kanazawa
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
Natali A, Baldi S, Bonnet F, Petrie J, Trifirò S, Tricò D, Mari A. Plasma HDL-cholesterol and triglycerides, but not LDL-cholesterol, are associated with insulin secretion in non-diabetic subjects. Metabolism 2017; 69:33-42. [PMID: 28285650 DOI: 10.1016/j.metabol.2017.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/15/2016] [Accepted: 01/03/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Experimental data support the notion that lipoproteins might directly affect beta cell function, however clinical data are sparse and inconsistent. We aimed at verifying whether, independently of major confounders, serum lipids are associated with alterations in insulin secretion or clearance non-diabetic subjects. METHODS Cross sectional and observational prospective (3.5yrs), multicentre study in which 1016 non-diabetic volunteers aged 30-60yrs. and with a wide range of BMI (20.0-39.9kg/m2) were recruited in a setting of University hospital ambulatory care (RISC study). MAIN OUTCOME MEASURES baseline fasting lipids, fasting and OGTT-induced insulin secretion and clearance (measured by glucose and C-peptide modeling), peripheral insulin sensitivity (by the euglycemic clamp). Lipids and OGTT were repeated in 980 subjects after 3.5years. RESULTS LDL-cholesterol did not show independent associations with fasting or stimulated insulin secretion or clearance. After accounting for potential confounders, HDL-cholesterol displayed negative and triglycerides positive independent associations with fasting and OGTT insulin secretion; neither with insulin clearance. Low HDL-cholesterol and high triglycerides were associated with an increase in glucose-dependent and a decrease in non-glucose-dependent insulin secretion. Over 3.5years both an HDL-cholesterol decline and a triglycerides rise were associated with an increase in fasting insulin secretion independent of changes in body weight or plasma glucose. CONCLUSIONS LDL-cholesterol does not seem to influence any major determinant of insulin bioavailability while low HDL-cholesterol and high triglycerides might contribute to sustain the abnormalities in insulin secretion that characterize the pre-diabetic state.
Collapse
Affiliation(s)
- Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | - Simona Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Fabrice Bonnet
- Service Endocrinologie-Diabétologie, Centre Hospitalo-Universitaire (CHU), University Rennes 1, Rennes, France
| | - John Petrie
- Institute of Cardiovascular and Medical Sciences BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Silvia Trifirò
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Andrea Mari
- CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
45
|
Kessler K, Hornemann S, Petzke KJ, Kemper M, Kramer A, Pfeiffer AFH, Pivovarova O, Rudovich N. The effect of diurnal distribution of carbohydrates and fat on glycaemic control in humans: a randomized controlled trial. Sci Rep 2017; 7:44170. [PMID: 28272464 PMCID: PMC5341154 DOI: 10.1038/srep44170] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 02/02/2017] [Indexed: 12/17/2022] Open
Abstract
Diurnal carbohydrate and fat distribution modulates glycaemic control in rodents. In humans, the optimal timing of both macronutrients and its effects on glycaemic control after prolonged consumption are not studied in detail. In this cross-over trial, 29 non-obese men were randomized to two four-week diets: (1) carbohydrate-rich meals until 13.30 and fat-rich meals between 16.30 and 22.00 (HC/HF) versus (2) inverse sequence of meals (HF/HC). After each trial period two meal tolerance tests were performed, at 09.00 and 15.40, respectively, according to the previous intervention. On the HF/HC diet, whole-day glucose level was increased by 7.9% (p = 0.026) in subjects with impaired fasting glucose and/or impaired glucose tolerance (IFG/IGT, n = 11), and GLP-1 by 10.2% (p = 0.041) in normal glucose-tolerant subjects (NGT, n = 18). Diet effects on fasting GLP-1 (p = 0.009) and PYY (p = 0.034) levels were observed in IFG/IGT, but not in NGT. Afternoon decline of glucose tolerance was more pronounced in IFG/IGT and associated with a stronger decrease of postprandial GLP-1 and PYY levels, but not with changes of cortisol rhythm. In conclusion, the HF/HC diet shows an unfavourable effect on glycaemic control in IFG/IGT, but not in NGT subjects. Consequently, large, carbohydrate-rich dinners should be avoided, primarily by subjects with impaired glucose metabolism.
Collapse
Affiliation(s)
- Katharina Kessler
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Dept. of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University of Medicine, 12203 Berlin, Germany
| | - Silke Hornemann
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Klaus J Petzke
- Research Group Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Margrit Kemper
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Dept. of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University of Medicine, 12203 Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Institute for Medical Immunology, Charité University of Medicine, 10117 Berlin, Germany
| | - Andreas F H Pfeiffer
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Dept. of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University of Medicine, 12203 Berlin, Germany
| | - Olga Pivovarova
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Dept. of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University of Medicine, 12203 Berlin, Germany
| | - Natalia Rudovich
- Dept. of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.,Dept. of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité University of Medicine, 12203 Berlin, Germany.,Division of Endocrinology and Diabetes, Department of Internal Medicine, Spital Bülach, 8180 Bülach, Switzerland
| |
Collapse
|
46
|
Heinrich G, Muturi HT, Rezaei K, Al-Share QY, DeAngelis AM, Bowman TA, Ghadieh HE, Ghanem SS, Zhang D, Garofalo RS, Yin L, Najjar SM. Reduced Hepatic Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Level in Obesity. Front Endocrinol (Lausanne) 2017; 8:54. [PMID: 28396653 PMCID: PMC5366977 DOI: 10.3389/fendo.2017.00054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
Impairment of insulin clearance is being increasingly recognized as a critical step in the development of insulin resistance and metabolic disease. The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Null deletion or liver-specific inactivation of Ceacam1 in mice causes a defect in insulin clearance, insulin resistance, steatohepatitis, and visceral obesity. Immunohistological analysis revealed reduction of hepatic CEACAM1 in obese subjects with fatty liver disease. Thus, we aimed to determine whether this occurs at the hepatocyte level in response to systemic extrahepatic factors and whether this holds across species. Northern and Western blot analyses demonstrate that CEACAM1 mRNA and protein levels are reduced in liver tissues of obese individuals compared to their lean age-matched counterparts. Furthermore, Western analysis reveals a comparable reduction of CEACAM1 protein in primary hepatocytes derived from the same obese subjects. Similar to humans, Ceacam1 mRNA level, assessed by quantitative RT-PCR analysis, is significantly reduced in the livers of obese Zucker (fa/fa, ZDF) and Koletsky (f/f) rats relative to their age-matched lean counterparts. These studies demonstrate that the reduction of hepatic CEACAM1 in obesity occurs at the level of hepatocytes and identify the reduction of hepatic CEACAM1 as a common denominator of obesity across multiple species.
Collapse
Affiliation(s)
- Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Khadijeh Rezaei
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qusai Y. Al-Share
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Anthony M. DeAngelis
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- *Correspondence: Sonia M. Najjar,
| |
Collapse
|
47
|
Heinrich G, Ghadieh HE, Ghanem SS, Muturi HT, Rezaei K, Al-Share QY, Bowman TA, Zhang D, Garofalo RS, Yin L, Najjar SM. Loss of Hepatic CEACAM1: A Unifying Mechanism Linking Insulin Resistance to Obesity and Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2017; 8:8. [PMID: 28184213 PMCID: PMC5266688 DOI: 10.3389/fendo.2017.00008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/10/2017] [Indexed: 12/25/2022] Open
Abstract
The pathogenesis of human non-alcoholic fatty liver disease (NAFLD) remains unclear, in particular in the context of its relationship to insulin resistance and visceral obesity. Work on the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in mice has resolved some of the related questions. CEACAM1 promotes insulin clearance by enhancing the rate of uptake of the insulin-receptor complex. It also mediates a negative acute effect of insulin on fatty acid synthase activity. This positions CEACAM1 to coordinate the regulation of insulin and lipid metabolism. Fed a regular chow diet, global null mutation of Ceacam1 manifest hyperinsulinemia, insulin resistance, obesity, and steatohepatitis. They also develop spontaneous chicken-wire fibrosis, characteristic of non-alcoholic steatohepatitis. Reduction of hepatic CEACAM1 expression plays a significant role in the pathogenesis of diet-induced metabolic abnormalities, as bolstered by the protective effect of hepatic CEACAM1 gain-of-function against the metabolic response to dietary fat. Together, this emphasizes that loss of hepatic CEACAM1 links NAFLD to insulin resistance and obesity.
Collapse
Affiliation(s)
- Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH, USA
| | - Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Khadijeh Rezaei
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qusai Y. Al-Share
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH, USA
- *Correspondence: Sonia M. Najjar,
| |
Collapse
|
48
|
Pivovarova O, Höhn A, Grune T, Pfeiffer AFH, Rudovich N. Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer's disease? Ann Med 2016; 48:614-624. [PMID: 27320287 DOI: 10.1080/07853890.2016.1197416] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a major enzyme responsible for insulin degradation. In addition to insulin, IDE degrades many targets including glucagon, atrial natriuretic peptide, and beta-amyloid peptide, regulates proteasomal degradation and other cell functions. IDE represents a pathophysiological link between type 2 diabetes (T2DM) and late onset Alzheimer's disease (AD). Potent and selective modulators of IDE activity are potential drugs for therapies of both diseases. Acute treatment with a novel IDE inhibitor was recently tested in a mouse study as a therapeutic approach for the treatment of T2DM. In contrast, effective IDE activators can be used for the AD treatment. However, because of the pleiotropic IDE action, the sustained treatment with systemic IDE modulators should be carefully tested in animal studies. Development of substrate-selective IDE modulators could overcome possible adverse effects of IDE modulators associated with multiplicity of IDE targets. KEY MESSAGES Insulin-degrading enzyme (IDE) represents a pathophysiological link between type 2 diabetes (T2DM) and Alzheimer's disease (AD). Selective modulators of IDE activity are potential drugs for both T2DM and AD treatment. Development of substrate-selective IDE modulators could overcome possible adverse effects of IDE modulators associated with multiplicity of IDE targets.
Collapse
Affiliation(s)
- Olga Pivovarova
- a Department of Clinical Nutrition , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany.,b Department of Endocrinology, Diabetes and Nutrition , Campus Benjamin Franklin, Charité University Medicine , Berlin , Germany.,c German Center for Diabetes Research (DZD) , München , Germany
| | - Annika Höhn
- c German Center for Diabetes Research (DZD) , München , Germany.,d Department of Molecular Toxicology , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany
| | - Tilman Grune
- c German Center for Diabetes Research (DZD) , München , Germany.,d Department of Molecular Toxicology , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany.,e German Center for Cardiovascular Research (DZHK) , Berlin , Germany
| | - Andreas F H Pfeiffer
- a Department of Clinical Nutrition , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany.,b Department of Endocrinology, Diabetes and Nutrition , Campus Benjamin Franklin, Charité University Medicine , Berlin , Germany.,c German Center for Diabetes Research (DZD) , München , Germany
| | - Natalia Rudovich
- a Department of Clinical Nutrition , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany.,b Department of Endocrinology, Diabetes and Nutrition , Campus Benjamin Franklin, Charité University Medicine , Berlin , Germany.,c German Center for Diabetes Research (DZD) , München , Germany
| |
Collapse
|
49
|
Ekholm E, Hansen L, Johnsson E, Iqbal N, Carlsson B, Chen H, Hirshberg B. COMBINED TREATMENT WITH SAXAGLIPTIN PLUS DAPAGLIFLOZIN REDUCES INSULIN LEVELS BY INCREASED INSULIN CLEARANCE AND IMPROVES β-CELL FUNCTION. Endocr Pract 2016; 23:258-265. [PMID: 27849380 DOI: 10.4158/ep161323.or] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To determine if reduction in serum insulin with dapagliflozin plus saxagliptin or dapagliflozin add-on to metformin contributed to increased insulin clearance and to assess the effects of these treatments on β-cell function. METHODS Patients (glycated hemoglobin, 8 to 12%; 64 to 108 mmol/mol) were randomized to 24-week, double-blind treatment with saxagliptin 5 mg/day plus dapagliflozin 10 mg/day (n = 179), saxagliptin 5 mg/day plus placebo (n = 176), or dapagliflozin 10 mg/day plus placebo (n = 179) added to metformin. C-peptide to insulin ratio was used as an index of insulin clearance during a meal tolerance test, and β-cell function was evaluated by Homeostasis Model Assessment 2. RESULTS At 24 weeks, compared with baseline, saxagliptin + dapagliflozin and saxagliptin + placebo increased mean (95% confidence interval [CI]) C-peptide area under the curve (AUC0-180 min) (40.2 [9.2 to 71.3] ng/mL and 95.4 [63.4 to 127.4] ng/mL, respectively); no change was noted with dapagliflozin + placebo (14.5 [-17.6 to 46.8] ng/mL). Insulin AUC was reduced from baseline with saxagliptin + dapagliflozin (-1,120.4 [-1,633.9 to -606.9] μU/mL) and dapagliflozin + placebo (-1,018.6 [-1550.5 to -486.8] μU/mL) but increased with saxagliptin + placebo (661.2 [131.1 to 1,191.3] μU/mL). C-peptide to insulin ratio did not change versus baseline with saxagliptin + placebo but increased after saxagliptin + dapagliflozin and dapagliflozin + placebo, largely due to decreased insulin AUC with dapagliflozin. All treatments improved β-cell function (mean change [95% CI] from baseline, saxagliptin+dapagliflozin: 20.6% [16.5% to 24.8%]; dapagliflozin + placebo: 17.0% [12.7% to 21.4%]; saxagliptin + placebo: 11.0% [6.6% to 15.5%]). CONCLUSION Increased C-peptide to insulin ratio with saxagliptin + dapagliflozin and dapagliflozin + placebo add-on to metformin compared with saxagliptin + placebo add-on to metformin suggests that dapagliflozin increases insulin clearance and may contribute to lower circulating insulin. All treatments improved β-cell function, with the greatest improvements with saxagliptin + dapagliflozin and dapagliflozin + placebo. ABBREVIATIONS A1c = glycated hemoglobin AUC0-180 min = area under the curve from 0 to 180 minutes HOMA-2β = homeostasis model assessment-2 β-cell function SGLT-2 = sodium-glucose cotransporter-2 T2D = type 2 diabetes.
Collapse
|
50
|
Pfeiffer AFH. Hepatogener Diabetes. DER DIABETOLOGE 2016; 12:468-472. [DOI: 10.1007/s11428-016-0141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|