1
|
Karani A, Ombok C, Situma S, Breiman R, Mureithi M, Jaoko W, Njenga MK, Ngere I. Low-Level Zoonotic Transmission of Clade C MERS-CoV in Africa: Insights from Scoping Review and Cohort Studies in Hospital and Community Settings. Viruses 2025; 17:125. [PMID: 39861917 PMCID: PMC11768526 DOI: 10.3390/v17010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Human outbreaks of Middle East respiratory syndrome coronavirus (MERS-CoV) are more common in Middle Eastern and Asian human populations, associated with clades A and B. In Africa, where clade C is dominant in camels, human cases are minimal. We reviewed 16 studies (n = 6198) published across seven African countries between 2012 and 2024 to assess human MERS-CoV cases. We also analyzed data from four cohort studies conducted in camel-keeping communities between 2018 and 2024 involving camel keepers, camel slaughterhouse workers, and hospital patients with acute respiratory illness (ARI). The analysis showed a pooled MERS-CoV prevalence of 2.4% (IQR: 0.6, 11.4) from 16 publications and 1.14% from 4 cohort studies (n = 2353). Symptomatic cases were rarely reported, with most individuals reporting camel contact, and only 12% had travel history to the Middle East. There was one travel-associated reported death, resulting in a mortality rate of 0.013%. The findings suggest a low camel-to-human transmission of clade C MERS-CoV in Africa. Ongoing research focuses on genomic comparisons between clade C and the more virulent clades A and B, alongside the surveillance of viral evolution. This study highlights the need for continuous monitoring but indicates that MERS-CoV clade C currently poses a minimal public health threat in Africa.
Collapse
Affiliation(s)
- Andrew Karani
- Global Health Program, Washington State University Global Health-Kenya, Nairobi 00200, Kenya; (A.K.); (C.O.); (S.S.); (M.K.N.)
- Department of Medical Microbiology, University of Nairobi, Nairobi 00200, Kenya; (M.M.); (W.J.)
| | - Cynthia Ombok
- Global Health Program, Washington State University Global Health-Kenya, Nairobi 00200, Kenya; (A.K.); (C.O.); (S.S.); (M.K.N.)
| | - Silvia Situma
- Global Health Program, Washington State University Global Health-Kenya, Nairobi 00200, Kenya; (A.K.); (C.O.); (S.S.); (M.K.N.)
- Department of Medical Microbiology, University of Nairobi, Nairobi 00200, Kenya; (M.M.); (W.J.)
| | - Robert Breiman
- Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA;
| | - Marianne Mureithi
- Department of Medical Microbiology, University of Nairobi, Nairobi 00200, Kenya; (M.M.); (W.J.)
| | - Walter Jaoko
- Department of Medical Microbiology, University of Nairobi, Nairobi 00200, Kenya; (M.M.); (W.J.)
| | - M. Kariuki Njenga
- Global Health Program, Washington State University Global Health-Kenya, Nairobi 00200, Kenya; (A.K.); (C.O.); (S.S.); (M.K.N.)
- Paul G Allen School of Global Health, Washington State University, Pullman, WA 98165, USA
| | - Isaac Ngere
- Global Health Program, Washington State University Global Health-Kenya, Nairobi 00200, Kenya; (A.K.); (C.O.); (S.S.); (M.K.N.)
- Paul G Allen School of Global Health, Washington State University, Pullman, WA 98165, USA
| |
Collapse
|
2
|
Zhou Z, Ali A, Walelign E, Demissie GF, El Masry I, Abayneh T, Getachew B, Krishnan P, Ng DY, Gardner E, Makonnen Y, Miguel E, Chevalier V, Chu DK, So RTY, Von Dobschuetz S, Mamo G, Poon LLM, Peiris M. Genetic diversity and molecular epidemiology of Middle East Respiratory Syndrome Coronavirus in dromedaries in Ethiopia, 2017-2020. Emerg Microbes Infect 2023; 12:e2164218. [PMID: 36620913 PMCID: PMC9888459 DOI: 10.1080/22221751.2022.2164218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is enzootic in dromedary camels and causes zoonotic infection and disease in humans. Although over 80% of the global population of infected dromedary camels are found in Africa, zoonotic disease had only been reported in the Arabia Peninsula and travel-associated disease has been reported elsewhere. In this study, genetic diversity and molecular epidemiology of MERS-CoV in dromedary camels in Ethiopia were investigated during 2017-2020. Of 1766 nasal swab samples collected, 61 (3.5%) were detected positive for MERS-CoV RNA. Of 484 turbinate swab samples collected, 10 (2.1%) were detected positive for MERS-CoV RNA. Twenty-five whole genome sequences were obtained from these MERS-CoV positive samples. Phylogenetically, these Ethiopian camel-originated MERS-CoV belonged to clade C2, clustering with other East African camel strains. Virus sequences from camel herds clustered geographically while in an abattoir, two distinct phylogenetic clusters of MERS-CoVs were observed in two sequential sampling collections, which indicates the greater genetic diversity of MERS-CoV in abattoirs. In contrast to clade A and B viruses from the Arabian Peninsula, clade C camel-originated MERS-CoV from Ethiopia had various nucleotide insertions and deletions in non-structural gene nsp3, accessory genes ORF3 and ORF5 and structural gene N. This study demonstrates the genetic instability of MERS-CoV in dromedaries in East Africa, which indicates that the virus is still actively adapting to its camel host. The impact of the observed nucleotide insertions and deletions on virus evolution, viral fitness, and zoonotic potential deserves further study.
Collapse
Affiliation(s)
- Ziqi Zhou
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Abraham Ali
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia,Department of Veterinary Microbiology, Immunology and Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Elias Walelign
- Food and Agriculture Organization, Emergency Centre for Transboundary Animal Diseases, Addis Ababa, Ethiopia
| | - Getnet F. Demissie
- College of Veterinary Medicine, Department of Veterinary Epidemiology, Microbiology and Public Health, Haramaya University, Haramaya, Ethiopia
| | - Ihab El Masry
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | | | - Pavithra Krishnan
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Daisy Y.M. Ng
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Emma Gardner
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Yilma Makonnen
- Food and Agriculture Organization, Subregional Office for Eastern Africa, Addis Ababa, Ethiopia
| | - Eve Miguel
- Animal, Santé, Territoires, Risques et Ecosystèmes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la Recherche Agronomique, Université de Montpellier, Montpellier, France,Maladies Infectieuses et Vecteurs: Ecologie Genetique, Evolution et Controle, L’Institut de Recherche pour le Developpment, CNRS, Montpellier, France
| | - Véronique Chevalier
- International Center of Research in Agriculture for Development (CIRAD), UMR ASTRE, Montpellier, France,CIRAD, UMR ASTRE, Antananarivo, Madagascar,Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Daniel K. Chu
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China,UK Health Security Agency, London, UK
| | - Ray T. Y. So
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | | | - Gezahegne Mamo
- Department of Veterinary Microbiology, Immunology and Public Health, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Leo L. M. Poon
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China, Malik Peiris
| |
Collapse
|
3
|
Tambe LAM, Mathobo P, Munzhedzi M, Bessong PO, Mavhandu-Ramarumo LG. Prevalence and Molecular Epidemiology of Human Coronaviruses in Africa Prior to the SARS-CoV-2 Outbreak: A Systematic Review. Viruses 2023; 15:2146. [PMID: 38005824 PMCID: PMC10675249 DOI: 10.3390/v15112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Coronaviruses, re-emerging in human populations, cause mild or severe acute respiratory diseases, and occasionally epidemics. This study systematically reviewed human coronavirus (HCoVs) infections in Africa prior to the SARS-CoV-2 outbreak. Forty studies on the prevalence or molecular epidemiology of HCoVs were available from 13/54 African countries (24%). The first published data on HCoV was from South Africa in 2008. Eight studies (20%) reported on HCoV molecular epidemiology. Endemic HCoV prevalence ranged from 0.0% to 18.2%. The prevalence of zoonotic MERS-CoV ranged from 0.0% to 83.5%. Two studies investigated SARS-CoV infection, for which a prevalence of 0.0% was reported. There was heterogeneity in the type of tests used in determining HCoV prevalence. Two studies reported that risk factors for HCoV include exposure to infected animals or humans. The quantity of virologic investigations on HCoV on the African continent was scant, and Africa was not prepared for SARS-CoV-2.
Collapse
Affiliation(s)
- Lisa Arrah Mbang Tambe
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Phindulo Mathobo
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Mukhethwa Munzhedzi
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Pascal Obong Bessong
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
- Centre for Global Health Equity, School of Medicine, 1400 University Ave, Charlottesville, VA 22903, USA
| | - Lufuno Grace Mavhandu-Ramarumo
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
| |
Collapse
|
4
|
Establishment of well-differentiated camelid airway cultures to study Middle East respiratory syndrome coronavirus. Sci Rep 2022; 12:10340. [PMID: 35725865 PMCID: PMC9208254 DOI: 10.1038/s41598-022-13777-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/27/2022] [Indexed: 11/08/2022] Open
Abstract
In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in Saudi Arabia and was mostly associated with severe respiratory illness in humans. Dromedary camels are the zoonotic reservoir for MERS-CoV. To investigate the biology of MERS-CoV in camelids, we developed a well-differentiated airway epithelial cell (AEC) culture model for Llama glama and Camelus bactrianus. Histological characterization revealed progressive epithelial cellular differentiation with well-resemblance to autologous ex vivo tissues. We demonstrate that MERS-CoV displays a divergent cell tropism and replication kinetics profile in both AEC models. Furthermore, we observed that in the camelid AEC models MERS-CoV replication can be inhibited by both type I and III interferons (IFNs). In conclusion, we successfully established camelid AEC cultures that recapitulate the in vivo airway epithelium and reflect MERS-CoV infection in vivo. In combination with human AEC cultures, this system allows detailed characterization of the molecular basis of MERS-CoV cross-species transmission in respiratory epithelium.
Collapse
|
5
|
Peiris M, Perlman S. Unresolved questions in the zoonotic transmission of MERS. Curr Opin Virol 2022; 52:258-264. [PMID: 34999369 PMCID: PMC8734234 DOI: 10.1016/j.coviro.2021.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023]
Abstract
The Middle East Respiratory Syndrome-coronavirus (MERS-CoV) is the second of three zoonotic coronaviruses to infect humans since 2002, causing severe pneumonia. Unlike SARS-CoV-1 and SARS-CoV-2, the causes of the severe acute respiratory syndrome and Covid-19, respectively, MERS-CoV is enzootic in dromedary camels, a domestic/companion animal present across Africa, the Middle East and Central or South Asia and is sporadically transmitted to humans. However, it does not transmit readily from human to human except in hospital and household settings. Human MERS disease is reported only from the Arabian Peninsula (and only since 2012 even though the virus was detected in camels from at least the early 1990's) and in travelers from this region. Remarkably, no zoonotic MERS disease has been detected in Africa or Asia, even in areas of high density of MERS-CoV infected dromedaries. Here, we review aspects of MERS biology and epidemiology that might contribute to this lack of correlation between sites of camel infection and human zoonotic disease. Since MERS-CoV or MERS-like CoV have pandemic potential, further investigations into this disparity is critical, to forestall pandemics caused by this virus.
Collapse
Affiliation(s)
- Malik Peiris
- HKU-Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, P.R. China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Pokfulam, Hong Kong Special Administrative Region, P.R. China.
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
6
|
Phenotypic and genetic characterization of MERS coronaviruses from Africa to understand their zoonotic potential. Proc Natl Acad Sci U S A 2021; 118:2103984118. [PMID: 34099577 PMCID: PMC8237650 DOI: 10.1073/pnas.2103984118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The absence of zoonotic MERS-CoV in Africa in spite of an abundance of MERS-CoV–infected dromedaries has remained an enigma. We demonstrate that geographically and genetically distinct viruses from Africa have low replication competence in the human lung, providing a possible explanation for the absence of severe MERS disease in Africa. The findings suggest that MERS-CoV now entrenched in the Arabian Peninsula has acquired increased pathogenic potential for humans. We demonstrate that the spike protein contributes to this phenotypic difference. If pathogenic clade B viruses from the Arabian Peninsula are introduced into Africa, they are likely to become dominant, as they have in the Arabian Peninsula, and to be associated with adverse health impacts in Africa and increased pandemic threat. Coronaviruses are pathogens of pandemic potential. Middle East respiratory syndrome coronavirus (MERS-CoV) causes a zoonotic respiratory disease of global public health concern, and dromedary camels are the only proven source of zoonotic infection. More than 70% of MERS-CoV–infected dromedaries are found in East, North, and West Africa, but zoonotic MERS disease is only reported from the Arabian Peninsula. We compared viral replication competence of clade A and B viruses from the Arabian Peninsula with genetically diverse clade C viruses found in East (Egypt, Kenya, and Ethiopia), North (Morocco), and West (Nigeria and Burkina Faso) Africa. Viruses from Africa had lower replication competence in ex vivo cultures of the human lung and in lungs of experimentally infected human-DPP4 (hDPP4) knockin mice. We used lentivirus pseudotypes expressing MERS-CoV spike from Saudi Arabian clade A prototype strain (EMC) or African clade C1.1 viruses and demonstrated that clade C1.1 spike was associated with reduced virus entry into the respiratory epithelial cell line Calu-3. Isogenic EMC viruses with spike protein from EMC or clade C1.1 generated by reverse genetics showed that the clade C1.1 spike was associated with reduced virus replication competence in Calu-3 cells in vitro, in ex vivo human bronchus, and in lungs of hDPP4 knockin mice in vivo. These findings may explain why zoonotic MERS disease has not been reported from Africa so far, despite exposure to and infection with MERS-CoV.
Collapse
|
7
|
Chu DKW, Perera RAPM, Ali A, Oladipo JO, Mamo G, So RTY, Zhou Z, Chor YY, Chan CK, Belay D, Tayachew A, Mengesha M, Regassa F, Lam NT, Poon LLM, Peiris M. Influenza A Virus Infections in Dromedary Camels, Nigeria and Ethiopia, 2015-2017. Emerg Infect Dis 2021; 26:173-176. [PMID: 31855544 PMCID: PMC6924894 DOI: 10.3201/eid2601.191165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We examined nasal swabs and serum samples acquired from dromedary camels in Nigeria and Ethiopia during 2015–2017 for evidence of influenza virus infection. We detected antibodies against influenza A(H1N1) and A(H3N2) viruses and isolated an influenza A(H1N1)pdm09–like virus from a camel in Nigeria. Influenza surveillance in dromedary camels is needed.
Collapse
|
8
|
Mok CKP, Zhu A, Zhao J, Lau EHY, Wang J, Chen Z, Zhuang Z, Wang Y, Alshukairi AN, Baharoon SA, Wang W, Tan W, Liang W, Oladipo JO, Perera RAPM, Kuranga SA, Peiris M, Zhao J. T-cell responses to MERS coronavirus infection in people with occupational exposure to dromedary camels in Nigeria: an observational cohort study. THE LANCET. INFECTIOUS DISEASES 2021; 21:385-395. [PMID: 33035474 PMCID: PMC7538089 DOI: 10.1016/s1473-3099(20)30599-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Middle East respiratory syndrome (MERS) remains of global public health concern. Dromedary camels are the source of zoonotic infection. Over 70% of MERS coronavirus (MERS-CoV)-infected dromedaries are found in Africa but no zoonotic disease has been reported in Africa. We aimed to understand whether individuals with exposure to dromedaries in Africa had been infected by MERS-CoV. METHODS Workers slaughtering dromedaries in an abattoir in Kano, Nigeria, were compared with abattoir workers without direct dromedary contact, non-abattoir workers from Kano, and controls from Guangzhou, China. Exposure to dromedaries was ascertained using a questionnaire. Serum and peripheral blood mononuclear cells (PBMCs) were tested for MERS-CoV specific neutralising antibody and T-cell responses. FINDINGS None of the participants from Nigeria or Guangdong were MERS-CoV seropositive. 18 (30%) of 61 abattoir workers with exposure to dromedaries, but none of 20 abattoir workers without exposure (p=0·0042), ten non-abattoir workers or 24 controls from Guangzhou (p=0·0002) had evidence of MERS-CoV-specific CD4+ or CD8+ T cells in PBMC. T-cell responses to other endemic human coronaviruses (229E, OC43, HKU-1, and NL-63) were observed in all groups with no association with dromedary exposure. Drinking both unpasteurised camel milk and camel urine was significantly and negatively associated with T-cell positivity (odds ratio 0·07, 95% CI 0·01-0·54). INTERPRETATION Zoonotic infection of dromedary-exposed individuals is taking place in Nigeria and suggests that the extent of MERS-CoV infections in Africa is underestimated. MERS-CoV could therefore adapt to human transmission in Africa rather than the Arabian Peninsula, where attention is currently focused. FUNDING The National Science and Technology Major Project, National Institutes of Health.
Collapse
Affiliation(s)
- Chris Ka Pun Mok
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; HKU-Pasteur Research Pole, The University of Hong Kong, Hong Kong Special Administrative Region, China; School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Nanshan Medicine Innovation Institute of Guangdong Province Guangzhou, Guangdong, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Eric H Y Lau
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Junxiang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Abeer N Alshukairi
- King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Salim A Baharoon
- King Saud bin Abdulaziz for Health Sciences University, Riyadh, Saudi Arabia
| | - Wenling Wang
- National Health Commission Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Wenjie Tan
- National Health Commission Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Weiwen Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jamiu O Oladipo
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ranawaka A P M Perera
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sulyman A Kuranga
- Department of Surgery, Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Malik Peiris
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; HKU-Pasteur Research Pole, The University of Hong Kong, Hong Kong Special Administrative Region, China; School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Okumus B. Norovirus and Coronavirus Risks in Food Service Settings: A Systematic Review for Future Research. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1888835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bendegul Okumus
- Food Service and Lodging Management Department, Rosen College of Hospitality Management, University of Central Florida, Orlando, FL USA
| |
Collapse
|
10
|
Alsharif KF, Alzahrani AB, Alharbi AO, Algregri TO, Almuafa BH, Alsulami MO, Alzahrani KJ, Almuqati MS, Abdel-Moneim AS. The prevalence of MERS-CoV among military personnel and their families: A single-center study. J Med Virol 2021; 93:2815-2819. [PMID: 33128396 DOI: 10.1002/jmv.26642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/09/2020] [Accepted: 10/26/2020] [Indexed: 11/09/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a Betacoronavirus that results in a severe fatal respiratory disease; however, it is also associated with mild inapparent infections. The western part of the Kingdom of Saudi Arabia (KSA) contains the holy places where millions of Muslims gathered from all over the world, all year round, with a high probability of mass disease transmission. The aim of this study was to estimate the prevalence of MERS-CoV among military personnel and their families during the period 2014-2019, in the western part of the KSA. A total of 35,203 sputum samples collected from patients with respiratory distress were screened for the presence of MERS-CoV using real-time reverse-transcription polymerase chain reaction in the examined patients. MERS-CoV infections were detected at a very low percentage in the examined patients. Only 42 of the examined subjects (0.12%) were found positive for MERS-CoV. Most infected cases (32/42) cases were detected in 2014, and the rest of the cases were reported in 2015-2019. The cases with fatal consequences (n = 20) were only detected in 2014. It was concluded that there is a very low prevalence of MERS-CoV infections among the military personnel and their families.
Collapse
Affiliation(s)
- Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Al-Taif, Saudi Arabia
| | | | | | | | | | | | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Al-Taif, Saudi Arabia
| | | | - Ahmed S Abdel-Moneim
- Department of Microbiology, College of Medicine, Taif University, Al-Taif, Saudi Arabia
| |
Collapse
|
11
|
Abbad A, Perera RA, Anga L, Faouzi A, Minh NNT, Malik SMMR, Iounes N, Maaroufi A, Van Kerkhove MD, Peiris M, Nourlil J. Middle East respiratory syndrome coronavirus (MERS-CoV) neutralising antibodies in a high-risk human population, Morocco, November 2017 to January 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 31796154 PMCID: PMC6891945 DOI: 10.2807/1560-7917.es.2019.24.48.1900244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BackgroundMiddle East respiratory syndrome coronavirus (MERS-CoV) remains a major concern for global public health. Dromedaries are the source of human zoonotic infection. MERS-CoV is enzootic among dromedaries on the Arabian Peninsula, the Middle East and in Africa. Over 70% of infected dromedaries are found in Africa. However, all known zoonotic cases of MERS have occurred in the Arabian Peninsula with none being reported in Africa.AimWe aimed to investigate serological evidence of MERS-CoV infection in humans living in camel-herding areas in Morocco to provide insights on whether zoonotic transmission is taking place.MethodsWe carried out a cross sectional seroprevalence study from November 2017 through January 2018. We adapted a generic World Health Organization MERS-CoV questionnaire and protocol to assess demographic and risk factors of infection among a presumed high-risk population. ELISA, MERS-CoV spike pseudoparticle neutralisation tests (ppNT) and plaque neutralisation tests (PRNT) were used to assess MERS-CoV seropositivity.ResultsSerum samples were collected from camel slaughterhouse workers (n = 137), camel herders (n = 156) and individuals of the general population without occupational contact with camels but living in camel herding areas (n = 186). MERS-CoV neutralising antibodies with ≥ 90% reduction of plaque numbers were detected in two (1.5%) slaughterhouse workers, none of the camel herders and one individual from the general population (0.5%).ConclusionsThis study provides evidence of zoonotic transmission of MERS-CoV in Morocco in people who have direct or indirect exposure to dromedary camels.
Collapse
Affiliation(s)
- Anass Abbad
- These authors contributed equally to this work.,Laboratoire d'Ecologie et d'Environnement, Faculté des Sciences Ben M'Sik, Université Hassan II, Casablanca, Morocco.,Medical Virology and BSL-3 Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ranawaka Apm Perera
- These authors contributed equally to this work.,School of Public Health, University of Hong-Kong, Hong Kong SAR, China
| | - Latifa Anga
- Medical Virology and BSL-3 Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Abdellah Faouzi
- Medical Virology and BSL-3 Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Nhu Nguyen Tran Minh
- Health Emergencies Programme, World Health Organization, Regional Office for the Eastern Mediterranean, Cairo, Egypt
| | - Sk Md Mamunur Rahman Malik
- Health Emergencies Programme, World Health Organization, Regional Office for the Eastern Mediterranean, Cairo, Egypt
| | - Nadia Iounes
- Laboratoire d'Ecologie et d'Environnement, Faculté des Sciences Ben M'Sik, Université Hassan II, Casablanca, Morocco
| | - Abderrahmane Maaroufi
- Medical Virology and BSL-3 Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | | | - Malik Peiris
- HKU-Pasteur Research Pole, University of Hong Kong, Hong Kong SAR, China.,School of Public Health, University of Hong-Kong, Hong Kong SAR, China
| | - Jalal Nourlil
- Medical Virology and BSL-3 Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
12
|
Grant R, Malik MR, Elkholy A, Van Kerkhove MD. A Review of Asymptomatic and Subclinical Middle East Respiratory Syndrome Coronavirus Infections. Epidemiol Rev 2020; 41:69-81. [PMID: 31781765 PMCID: PMC7108493 DOI: 10.1093/epirev/mxz009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/02/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
The epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) since 2012 has been largely characterized by recurrent zoonotic spillover from dromedary camels followed by limited human-to-human transmission, predominantly in health-care settings. The full extent of infection of MERS-CoV is not clear, nor is the extent and/or role of asymptomatic infections in transmission. We conducted a review of molecular and serological investigations through PubMed and EMBASE from September 2012 to November 15, 2018, to measure subclinical or asymptomatic MERS-CoV infection within and outside of health-care settings. We performed retrospective analysis of laboratory-confirmed MERS-CoV infections reported to the World Health Organization to November 27, 2018, to summarize what is known about asymptomatic infections identified through national surveillance systems. We identified 23 studies reporting evidence of MERS-CoV infection outside of health-care settings, mainly of camel workers, with seroprevalence ranges of 0%–67% depending on the study location. We identified 20 studies in health-care settings of health-care worker (HCW) and family contacts, of which 11 documented molecular evidence of MERS-CoV infection among asymptomatic contacts. Since 2012, 298 laboratory-confirmed cases were reported as asymptomatic to the World Health Organization, 164 of whom were HCWs. The potential to transmit MERS-CoV to others has been demonstrated in viral-shedding studies of asymptomatic MERS infections. Our results highlight the possibility for onward transmission of MERS-CoV from asymptomatic individuals. Screening of HCW contacts of patients with confirmed MERS-CoV is currently recommended, but systematic screening of non-HCW contacts outside of health-care facilities should be encouraged.
Collapse
Affiliation(s)
| | | | | | - Maria D Van Kerkhove
- Correspondence to Maria D. Van Kerkhove, PhD, Department of Infectious Hazards Management, Health Emergencies Program, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland (e-mail: )
| |
Collapse
|
13
|
Farag E, Sikkema RS, Mohamedani AA, de Bruin E, Munnink BBO, Chandler F, Kohl R, van der Linden A, Okba NM, Haagmans BL, van den Brand JM, Elhaj AM, Abakar AD, Nour BY, Mohamed AM, Alwaseela BE, Ahmed H, Alhajri MM, Koopmans M, Reusken C, Elrahman SHA. MERS-CoV in Camels but Not Camel Handlers, Sudan, 2015 and 2017. Emerg Infect Dis 2020; 25:2333-2335. [PMID: 31742534 PMCID: PMC6874263 DOI: 10.3201/eid2512.190882] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We tested samples collected from camels, camel workers, and other animals in Sudan and Qatar in 2015 and 2017 for evidence of Middle East respiratory syndrome coronavirus (MERS-CoV) infection. MERS-CoV antibodies were abundant in Sudan camels, but we found no evidence of MERS-CoV infection in camel workers, other livestock, or bats.
Collapse
|
14
|
Kiyong’a AN, Cook EAJ, Okba NMA, Kivali V, Reusken C, Haagmans BL, Fèvre EM. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Seropositive Camel Handlers in Kenya. Viruses 2020; 12:E396. [PMID: 32260186 PMCID: PMC7232417 DOI: 10.3390/v12040396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/05/2023] Open
Abstract
Middle East respiratory syndrome (MERS) is a respiratory disease caused by a zoonotic coronavirus (MERS-CoV). Camel handlers, including slaughterhouse workers and herders, are at risk of acquiring MERS-CoV infections. However, there is limited evidence of infections among camel handlers in Africa. The purpose of this study was to determine the presence of antibodies to MERS-CoV in high-risk groups in Kenya. Sera collected from 93 camel handlers, 58 slaughterhouse workers and 35 camel herders, were screened for MERS-CoV antibodies using ELISA and PRNT. We found four seropositive slaughterhouse workers by PRNT. Risk factors amongst the slaughterhouse workers included being the slaughterman (the person who cuts the throat of the camel) and drinking camel blood. Further research is required to understand the epidemiology of MERS-CoV in Africa in relation to occupational risk, with a need for additional studies on the transmission of MERS-CoV from dromedary camels to humans, seroprevalence and associated risk factors.
Collapse
Affiliation(s)
- Alice N. Kiyong’a
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709, Nairobi 00100, Kenya (E.A.J.C.); (V.K.)
| | - Elizabeth A. J. Cook
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709, Nairobi 00100, Kenya (E.A.J.C.); (V.K.)
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
| | - Nisreen M. A. Okba
- Viroscience Department, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (N.M.A.O.); (C.R.); (B.L.H.)
| | - Velma Kivali
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709, Nairobi 00100, Kenya (E.A.J.C.); (V.K.)
| | - Chantal Reusken
- Viroscience Department, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (N.M.A.O.); (C.R.); (B.L.H.)
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Bart L. Haagmans
- Viroscience Department, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (N.M.A.O.); (C.R.); (B.L.H.)
| | - Eric M. Fèvre
- International Livestock Research Institute, Old Naivasha Road, PO Box 30709, Nairobi 00100, Kenya (E.A.J.C.); (V.K.)
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
| |
Collapse
|
15
|
Degnah AA, Al-Amri SS, Hassan AM, Almasoud AS, Mousa M, Almahboub SA, Alhabbab RY, Mirza AA, Hindawi SI, Alharbi NK, Azhar EI, Hashem AM. Seroprevalence of MERS-CoV in healthy adults in western Saudi Arabia, 2011-2016. J Infect Public Health 2020; 13:697-703. [PMID: 32005618 PMCID: PMC7104088 DOI: 10.1016/j.jiph.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/04/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background The Middle East respiratory syndrome coronavirus (MERS-CoV) is a newly recognized zoonotic coronavirus. Current evidence confirms the role of dromedaries in primary human infections but does not explain the sporadic community cases. However, asymptomatic or subclinical cases could represent a possible source of infection in the community. Methods Archived human sera (7461) collected between 2011 and 2016 from healthy adult blood donors from 50 different nationalities in the western part of Saudi Arabia were obtained for MERS-CoV seroprevalence investigation. Samples were tested for MERS-CoV S1-specific antibodies (Abs) by ELISA and confirmed by testing for neutralizing Abs (nAbs) using both pseudotyped and live virus neutralization assays. Results Out of 7461 samples, 174 sera from individuals with 18 different nationalities were ELISA positive (2.3%, 95% CI 2.0–2.7). Presence of nAbs was confirmed in 17 samples (0.23%, 95% CI 0.1–0.4) of which one sample exhibited positivity in both neutralization assays. Confirmed seropositivity was identified in young (15–44 years) men and women from Saudi Arabia, Egypt, Yemen, Pakistan, Palestine, Sudan, and India without significant preference. Conclusions An increasing trend of MERS-CoV seroprevalence was observed in the general population in western Saudi Arabia, suggesting that asymptomatic or mild infections might exist and act as an unrecognized source of infection. Seropositivity of individuals from different nationalities underscores the potential MERS exportation outside of the Arabian Peninsula. Thus, enhanced and continuous surveillance is highly warranted.
Collapse
Affiliation(s)
- Afnan A Degnah
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sawsan S Al-Amri
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman S Almasoud
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Manar Mousa
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah A Almahboub
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Y Alhabbab
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A Mirza
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salwa I Hindawi
- Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naif Khalaf Alharbi
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia; King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
16
|
Ramshaw RE, Letourneau ID, Hong AY, Hon J, Morgan JD, Osborne JCP, Shirude S, Van Kerkhove MD, Hay SI, Pigott DM. A database of geopositioned Middle East Respiratory Syndrome Coronavirus occurrences. Sci Data 2019; 6:318. [PMID: 31836720 PMCID: PMC6911100 DOI: 10.1038/s41597-019-0330-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
As a World Health Organization Research and Development Blueprint priority pathogen, there is a need to better understand the geographic distribution of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and its potential to infect mammals and humans. This database documents cases of MERS-CoV globally, with specific attention paid to zoonotic transmission. An initial literature search was conducted in PubMed, Web of Science, and Scopus; after screening articles according to the inclusion/exclusion criteria, a total of 208 sources were selected for extraction and geo-positioning. Each MERS-CoV occurrence was assigned one of the following classifications based upon published contextual information: index, unspecified, secondary, mammal, environmental, or imported. In total, this database is comprised of 861 unique geo-positioned MERS-CoV occurrences. The purpose of this article is to share a collated MERS-CoV database and extraction protocol that can be utilized in future mapping efforts for both MERS-CoV and other infectious diseases. More broadly, it may also provide useful data for the development of targeted MERS-CoV surveillance, which would prove invaluable in preventing future zoonotic spillover. Measurement(s) | Middle East Respiratory Syndrome • geographic location | Technology Type(s) | digital curation | Factor Type(s) | geographic distribution of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) • year | Sample Characteristic - Organism | Middle East respiratory syndrome-related coronavirus | Sample Characteristic - Location | Earth (planet) |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11108801
Collapse
Affiliation(s)
- Rebecca E Ramshaw
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Ian D Letourneau
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Amy Y Hong
- Bloomberg School of Public Health, Johns Hopkins University, 615N Wolfe St, Baltimore, MD, 21205, United States
| | - Julia Hon
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Julia D Morgan
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Joshua C P Osborne
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Shreya Shirude
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Maria D Van Kerkhove
- Department of Infectious Hazards Management, Health Emergencies Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, Switzerland
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States.,Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - David M Pigott
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States. .,Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States.
| |
Collapse
|
17
|
Diversity of Dromedary Camel Coronavirus HKU23 in African Camels Revealed Multiple Recombination Events among Closely Related Betacoronaviruses of the Subgenus Embecovirus. J Virol 2019; 93:JVI.01236-19. [PMID: 31534035 PMCID: PMC6854494 DOI: 10.1128/jvi.01236-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023] Open
Abstract
Genetic recombination is often demonstrated in coronaviruses and can result in host range expansion or alteration in tissue tropism. Here, we showed interspecies events of recombination of an endemic dromedary camel coronavirus, HKU23, with other clade A betacoronaviruses. Our results supported the possibility that the zoonotic pathogen MERS-CoV, which also cocirculates in the same camel species, may have undergone similar recombination events facilitating its emergence or may do so in its future evolution. Genetic recombination has frequently been observed in coronaviruses. Here, we sequenced multiple complete genomes of dromedary camel coronavirus HKU23 (DcCoV-HKU23) from Nigeria, Morocco, and Ethiopia and identified several genomic positions indicative of cross-species virus recombination events among other betacoronaviruses of the subgenus Embecovirus (clade A beta-CoVs). Recombinant fragments of a rabbit coronavirus (RbCoV-HKU14) were identified at the hemagglutinin esterase gene position. Homolog fragments of a rodent CoV were also observed at 8.9-kDa open reading frame 4a at the 3′ end of the spike gene. The patterns of recombination differed geographically across the African region, highlighting a mosaic structure of DcCoV-HKU23 genomes circulating in dromedaries. Our results highlighted active recombination of coronaviruses circulating in dromedaries and are also relevant to the emergence and evolution of other betacoronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV). IMPORTANCE Genetic recombination is often demonstrated in coronaviruses and can result in host range expansion or alteration in tissue tropism. Here, we showed interspecies events of recombination of an endemic dromedary camel coronavirus, HKU23, with other clade A betacoronaviruses. Our results supported the possibility that the zoonotic pathogen MERS-CoV, which also cocirculates in the same camel species, may have undergone similar recombination events facilitating its emergence or may do so in its future evolution.
Collapse
|
18
|
Kleine-Weber H, Pöhlmann S, Hoffmann M. Spike proteins of novel MERS-coronavirus isolates from North- and West-African dromedary camels mediate robust viral entry into human target cells. Virology 2019; 535:261-265. [PMID: 31357164 PMCID: PMC7112047 DOI: 10.1016/j.virol.2019.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022]
Abstract
The highly pathogenic Middle East respiratory syndrome (MERS)-related coronavirus (CoV) is transmitted from dromedary camels, the natural reservoir, to humans. For at present unclear reasons, MERS cases have so far only been observed in the Arabian Peninsula, although MERS-CoV also circulates in African dromedary camels. A recent study showed that MERS-CoV found in North/West- (Morocco) and West-African (Burkina Faso and Nigeria) dromedary camels are genetically distinct from Arabian viruses and have reduced replicative capacity in human cells, potentially due to amino acid changes in one or more viral proteins. Here, we show that the spike (S) proteins of the prototypic Arabian MERS-CoV strain, human betacoronavirus 2c EMC/2012, and the above stated African MERS-CoV variants do not appreciably differ in expression, DPP4 binding and ability to drive entry into target cells. Thus, virus-host-interactions at the entry stage may not limit spread of North- and West-African MERS-CoV in human cells.
Collapse
Affiliation(s)
- Hannah Kleine-Weber
- Infection Biology Unit, Deutsches Primatenzentrum - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, Deutsches Primatenzentrum - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, University Göttingen, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany.
| | - Markus Hoffmann
- Infection Biology Unit, Deutsches Primatenzentrum - Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Dighe A, Jombart T, Van Kerkhove MD, Ferguson N. A systematic review of MERS-CoV seroprevalence and RNA prevalence in dromedary camels: Implications for animal vaccination. Epidemics 2019; 29:100350. [PMID: 31201040 PMCID: PMC6899506 DOI: 10.1016/j.epidem.2019.100350] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Most adult dromedaries in Africa and the Middle East have been infected with MERS-CoV. Seroprevalence increases with age, while active infection is more common in calves. Prevalence is higher at sites where different dromedary populations mix. Further study is needed to determine if prevalence of infection varies seasonally.
Human infection with Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is driven by recurring dromedary-to-human spill-over events, leading decision-makers to consider dromedary vaccination. Dromedary vaccine candidates in the development pipeline are showing hopeful results, but gaps in our understanding of the epidemiology of MERS-CoV in dromedaries must be addressed to design and evaluate potential vaccination strategies. We aim to bring together existing measures of MERS-CoV infection in dromedary camels to assess the distribution of infection, highlighting knowledge gaps and implications for animal vaccination. We systematically reviewed the published literature on MEDLINE, EMBASE and Web of Science that reported seroprevalence and/or prevalence of active MERS-CoV infection in dromedary camels from both cross-sectional and longitudinal studies. 60 studies met our eligibility criteria. Qualitative syntheses determined that MERS-CoV seroprevalence increased with age up to 80–100% in adult dromedaries supporting geographically widespread endemicity of MERS-CoV in dromedaries in both the Arabian Peninsula and countries exporting dromedaries from Africa. The high prevalence of active infection measured in juveniles and at sites where dromedary populations mix should guide further investigation – particularly of dromedary movement – and inform vaccination strategy design and evaluation through mathematical modelling.
Collapse
Affiliation(s)
- Amy Dighe
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom.
| | - Thibaut Jombart
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, WC1E 7HT, United Kingdom; UK Public Health Rapid Support Team, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom.
| | - Maria D Van Kerkhove
- Department of Global Infectious Hazards Management, Health Emergencies Program, World Health Organization, Avenue Appia 20, CH-1211, Geneva, Switzerland.
| | - Neil Ferguson
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, Medical School Building, St Mary's Hospital, Norfolk Place, London, W2 1PG, United Kingdom.
| |
Collapse
|
20
|
MERS: Progress on the global response, remaining challenges and the way forward. Antiviral Res 2018; 159:35-44. [PMID: 30236531 PMCID: PMC7113883 DOI: 10.1016/j.antiviral.2018.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/04/2018] [Indexed: 01/04/2023]
Abstract
This article summarizes progress in research on Middle East Respiratory Syndrome (MERS) since a FAO-OIE-WHO Global Technical Meeting held at WHO Headquarters in Geneva on 25-27 September 2017. The meeting reviewed the latest scientific findings and identified and prioritized the global activities necessary to prevent, manage and control the disease. Critical needs for research and technical guidance identified during the meeting have been used to update the WHO R&D MERS-CoV Roadmap for diagnostics, therapeutics and vaccines and a broader public health research agenda. Since the 2017 meeting, progress has been made on several key actions in animal populations, at the animal/human interface and in human populations. This report also summarizes the latest scientific studies on MERS since 2017, including data from more than 50 research studies examining the presence of MERS-CoV infection in dromedary camels.
Collapse
|