1
|
Malicki S, Czarna A, Żyła E, Pucelik B, Gałan W, Chruścicka B, Kamińska M, Sochaj-Gregorczyk A, Magiera-Mularz K, Wang J, Winiarski M, Benedyk-Machaczka M, Kozieł J, Dubin G, Mydel P. Development of selective ssDNA micro-probe for PD1 detection as a novel strategy for cancer imaging. Sci Rep 2024; 14:28652. [PMID: 39562585 PMCID: PMC11576874 DOI: 10.1038/s41598-024-74891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
Programmed death receptor 1, PD1, modulates the function of immune cells by providing inhibitory signals and constitutes the marker of immune exhaustion. Monitoring the level of PD1 promises a useful diagnostic approach in autoimmune diseases and cancer. Here we describe the development of an ssDNA aptamer-based molecular probe capable of specific recognition of human PD1 receptor. The aptamer was selected using SELEX, its sequence was further optimized, and the affinity and specificity were determined in biochemical assays. The aptamer was converted into a fluorescent probe and its potential in molecular imaging was demonstrated in a culture of human cells overexpressing PD1 and murine pancreatic organoids / immune cells mixed co-culture model. We conclude that the provided aptamers are suitable probes for imaging of PD1 expressing immune cells even in complex cellular models and may find future utility as diagnostic tools.
Collapse
Affiliation(s)
- Stanisław Malicki
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland.
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
| | - Anna Czarna
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
| | - Edyta Żyła
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Barbara Pucelik
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
- 5Łukasiewicz Research Network, Krakow Institute of Technology, ul. Zakopiańska 73, Kraków, 30-418, Poland
| | - Wojciech Gałan
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Barbara Chruścicka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Marta Kamińska
- Broegelmann Research Laboratory, University of Bergen, Haukeland universitetssykehus Laboratoriebygget, Bergen, 5009, Norway
| | - Alicja Sochaj-Gregorczyk
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Katarzyna Magiera-Mularz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Krakow, 30-387, Poland
- Laboratory of protein NMR, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30- 387, Poland
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, People's Republic of China
| | - Marek Winiarski
- 2nd Department of General Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, 31-008, Poland
| | - Małgorzata Benedyk-Machaczka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Joanna Kozieł
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland
| | - Grzegorz Dubin
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow, 30-387, Poland.
| | - Piotr Mydel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow, 30-387, Poland.
- Broegelmann Research Laboratory, University of Bergen, Haukeland universitetssykehus Laboratoriebygget, Bergen, 5009, Norway.
| |
Collapse
|
2
|
Malik MMUD, Alqahtani MM, Hadadi I, Kanbayti I, Alawaji Z, Aloufi BA. Molecular Imaging Biomarkers for Early Cancer Detection: A Systematic Review of Emerging Technologies and Clinical Applications. Diagnostics (Basel) 2024; 14:2459. [PMID: 39518426 PMCID: PMC11545511 DOI: 10.3390/diagnostics14212459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Early cancer detection is crucial for improving patient outcomes. Molecular imaging biomarkers offer the potential for non-invasive, early-stage cancer diagnosis. OBJECTIVES To evaluate the effectiveness and accuracy of molecular imaging biomarkers for early cancer detection across various imaging modalities and cancer types. METHODS A comprehensive search of PubMed/MEDLINE, Embase, Web of Science, Cochrane Library, and Scopus was performed, covering the period from January 2010 to December 2023. Eligibility criteria included original research articles published in English on molecular imaging biomarkers for early cancer detection in humans. The risk of bias for included studies was evaluated using the QUADAS-2 tool. The findings were synthesized through narrative synthesis, with quantitative analysis conducted where applicable. RESULTS In total, 50 studies were included. Positron emission tomography (PET)-based biomarkers showed the highest sensitivity (mean: 89.5%, range: 82-96%) and specificity (mean: 91.2%, range: 85-100%). Novel tracers such as [68Ga]-PSMA for prostate cancer and [18F]-FES for breast cancer demonstrated promising outcomes. Optical imaging techniques showed high specificity in intraoperative settings. CONCLUSIONS Molecular imaging biomarkers show significant potential for improving early cancer detection. Integration into clinical practice could lead to earlier interventions and improved outcomes. Further research is needed to address standardization and cost-effectiveness.
Collapse
Affiliation(s)
- Maajid Mohi Ud Din Malik
- Dr. D.Y. Patil School of Allied Health Sciences, Dr. D.Y. Patil Vidyapeeth, (Deemed to be University) Sant Tukaram Nagar, Pune 411018, MH, India;
| | - Mansour M. Alqahtani
- Department of Radiological Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Ibrahim Hadadi
- Department of Radiological Sciences, College of Applied Medical Sciences, King Khalid University, Asir, Abha 62529, Saudi Arabia
| | - Ibrahem Kanbayti
- Radiologic Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Zeyad Alawaji
- Department of Radiologic Technology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Bader A. Aloufi
- Department of Diagnostic Radiology, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia;
| |
Collapse
|
3
|
Cao XC, Mao XL, Lu SS, Zhu W, Huang W, Yi H, Yuan L, Zhou JH, Xiao ZQ. A PD-L1-Targeted Probe Cy5.5-A11 for In Vivo Imaging of Multiple Tumors. ACS OMEGA 2024; 9:43826-43833. [PMID: 39494025 PMCID: PMC11525735 DOI: 10.1021/acsomega.4c06761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
PD-L1 is an immune checkpoint molecule mediating cancer immune escape, and its expression level in the tumor has been used as a biomarker to predict response to immune checkpoint inhibitor (ICI) therapy. Our previous study reveals that an 11 amino acid-long ANXA1-derived peptide (named A11) binds and degrades the PD-L1 protein in multiple cancers and is a potential peptide for cancer diagnosis and treatment. Near-infrared fluorescence (NIF) optical imaging of tumors offers a noninvasive method for detecting cancer and monitoring therapeutic responses. In this study, an NIF dye Cy5.5 was conjugated with A11 peptide to develop a novel PD-L1-targeted probe for molecular imaging of tumors and monitor the dynamic changes in PD-L1 expression in tumors. In vitro imaging studies showed that intense fluorescence was observed in triple-negative breast cancer MDA-MB-231, nonsmall cell lung cancer H460, and melanoma A375 cells incubated with Cy5.5-A11, and the cellular uptake of Cy5.5-A11 was efficiently inhibited by coincubation with unlabeled A11 or knockdown of cellular PD-L1 by shRNA. In vivo imaging studies showed accumulation of Cy5.5-A11 in the MDA-MB-231, H460, and A375 xenografts with good contrast from 0.5 to 24 h after intravenous injection, indicating that Cy5.5-A11 possesses the strong ability for in vivo tumor imaging. Moreover, the fluorescent signal of A11-Cy5.5 in the xenografts was successfully blocked by coinjection of unlabeled A11 peptide or knockdown of cellular PD-L1 by shRNA, indicating the specificity of Cy5.5-A11 targeting PD-L1 in tumor imaging. Our data demonstrate that Cy5.5-A11 is a novel tool for tumor imaging of PD-L1, which has the potential for detecting cancer and predicting ICI therapeutic responses.
Collapse
Affiliation(s)
- Xiao-Cheng Cao
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xue-Li Mao
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shan-Shan Lu
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wei Zhu
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Wei Huang
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hong Yi
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Li Yuan
- Department
of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jian-Hua Zhou
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhi-Qiang Xiao
- Department
of Pathology, Xiangya Hospital, Central
South University, Changsha 410008, China
- Research
Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha 410008, China
- The
Higher Educational Key Laboratory for Cancer Proteomics and Translational
Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
- National
Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
4
|
Jung KH, Kim M, Jung HJ, Koo HJ, Kim JL, Lee H, Lee KH. PET imaging of colon cancer CD73 expression using cysteine site-specific 89Zr-labeled anti-CD73 antibody. Sci Rep 2024; 14:17994. [PMID: 39097625 PMCID: PMC11297922 DOI: 10.1038/s41598-024-68987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
CD73 is a cell-surface ectoenzyme that hydrolyzes the conversion of extracellular adenosine monophosphate to adenosine, which in turn can promote resistance to immune checkpoint blockade therapy. Immune response may therefore be improved by targeting tumor CD73, and this possibility underlines the need to non-invasively assess tumor CD73 level. In this study, we developed a cysteine site-specific 89Zr-labeled anti-CD73 (89Zr-CD73) IgG immuno-PET technique that can image tumor CD73 expression in living bodies. Anti-CD73 IgG was reduced with tris(2-carboxyethyl)phosphine, underwent sulfohydryl moiety-specific conjugation with deferoxamine-maleimide, and was radiolabeled with 89Zr. CT26 mouse colon cancer cells, CT26/CD73 cells engineered to constitutively overexpress CD73, and 4T1.2 mouse breast cancer cells underwent cell binding assays and western blotting. Balb/c nude mice bearing tumors underwent 89Zr-CD73 IgG PET imaging and biodistribution studies. 89Zr-CD73 IgG showed 20-fold higher binding to overexpressing CT26/CD73 cells compared to low-expressing CT26 cells, and moderate expressing 4T1.2 cells showed uptake that was 38.9 ± 1.51% of CT26/CD73 cells. Uptake was dramatically suppressed by excess unlabeled antibody. CD73 content proportionately increased in CT26 and CT26/CD73 cell mixtures was associated with linear increases in 89Zr-CD73 IgG uptake. 89Zr-CD73 IgG PET/CT displayed clear accumulation in CT26/CD73 tumors with greater uptake compared to CT26 tumors (3.13 ± 1.70%ID/g vs. 1.27 ± 0.31%ID/g at 8 days; P = 0.04). Specificity was further supported by low CT26/CD73 tumor-to-blood ratio of 89Zr-isotype-IgG compared to 89Zr-CD73 IgG (0.48 ± 0.08 vs. 2.68 ± 0.52 at 4 days and 0.53 ± 0.07 vs. 4.81 ± 1.02 at 8 days; both P < 0.001). Immunoblotting and immunohistochemistry confirmed strong CD73 expression in CT26/CD73 tumors and low expression in CT26 tumors. 4T1.2 tumor mice also showed clear 89Zr-CD73 IgG accumulation at 8 days (3.75 ± 0.70%ID/g) with high tumor-to-blood ratio compared to 89Zr-isotype-IgG (4.91 ± 1.74 vs. 1.20 ± 0.28; P < 0.005). 89Zr-CD73 IgG specifically targeted CD73 on high expressing cancer cells in vitro and tumors in vivo. Thus, 89Zr-CD73 IgG immuno-PET may be useful for the non-invasive monitoring of CD73 expression in tumors of living subjects.
Collapse
Affiliation(s)
- Kyung-Ho Jung
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mina Kim
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Jin Jung
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Jung Koo
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung-Lim Kim
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyunjong Lee
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea
| | - Kyung-Han Lee
- Department of Nuclear Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Wang C, Hezam K, Fu E, Pan K, Liu Y, Li Z. In vivo tracking of mesenchymal stem cell dynamics and therapeutics in LPS-induced acute lung injury models. Exp Cell Res 2024; 437:114013. [PMID: 38555014 DOI: 10.1016/j.yexcr.2024.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Mesenchymal stem cells (MSCs) have been widely used to treat various inflammatory and immune-related diseases in preclinical and clinical settings. Intravital microscopy (IVM) is considered the gold standard for investigating pathophysiological conditions in living animals. However, the potential for real-time monitoring of MSCs in the pulmonary microenvironment remains underexplored. In this study, we first constructed a lung window and captured changes in the lung at the cellular level under both inflammatory and noninflammatory conditions with a microscope. We further investigated the dynamics and effects of MSCs under two different conditions. Meanwhile, we assessed the alterations in the adhesive capacity of vascular endothelial cells in vitro to investigate the underlying mechanisms of MSC retention in an inflammatory environment. This study emphasizes the importance of the "lung window" for live imaging of the cellular behavior of MSCs by vein injection. Moreover, our results revealed that the upregulation of vascular cell adhesion molecule 1 (VCAM1) in endothelial cells post-inflammatory injury could enhance MSC retention in the lung, further ameliorating acute lung injury. In summary, intravital microscopy imaging provides a practical method to investigate the therapeutic effects of MSCs in acute lung injury.
Collapse
Affiliation(s)
- Chen Wang
- Nankai University School of Medicine, Tianjin 300071, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300052, China; The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin 300071, China; Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou 450016, China
| | - Kamal Hezam
- Nankai University School of Medicine, Tianjin 300071, China
| | - Enze Fu
- Nankai University School of Medicine, Tianjin 300071, China
| | - Kai Pan
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Yue Liu
- Nankai University School of Medicine, Tianjin 300071, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin 300071, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300052, China; The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, College of Life Sciences, Tianjin 300071, China; Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou 450016, China.
| |
Collapse
|
6
|
Hu X, Lv G, Hua D, Zhang N, Liu Q, Qin S, Zhang L, Xi H, Qiu L, Lin J. Preparation and Bioevaluation of 18F-Labeled Small-Molecular Radiotracers via Sulfur(VI) Fluoride Exchange Chemistry for Imaging of Programmed Cell Death Protein Ligand 1 Expression in Tumors. Mol Pharm 2023; 20:4228-4235. [PMID: 37409670 DOI: 10.1021/acs.molpharmaceut.3c00355] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Nowadays, one of the most effective methods of tumor immunotherapy is blocking programmed cell death protein 1/programmed cell death protein ligand 1 (PD-1/PD-L1) immune checkpoints. However, there is still a significant challenge in selecting patients to benefit from immune checkpoint therapies. Positron emission tomography (PET), a noninvasive molecular imaging technique, offers a new approach to accurately detect PD-L1 expression and allows for a better prediction of response to PD-1/PD-L1 target immunotherapy. Here, we designed and synthesized a novel group of aryl fluorosulfate-containing small-molecule compounds (LGSu-1, LGSu-2, LGSu-3, and LGSu-4) based on the phenoxymethyl-biphenyl scaffold. After screening by the time-resolved fluorescence resonance energy transfer (TR-FRET) assay, the most potent compound LGSu-1 (half maximal inhibitory concentration (IC50): 15.53 nM) and the low-affinity compound LGSu-2 (IC50: 189.70 nM) as a control were selected for 18F-radiolabeling by sulfur(VI) fluoride exchange chemistry (SuFEx) to use for PET imaging. [18F]LGSu-1 and [18F]LGSu-2 were prepared by a one-step radiofluorination reaction in over 85% radioconversion and nearly 30% radiochemical yield. In B16-F10 melanoma cell assays, [18F]LGSu-1 (5.00 ± 0.06%AD) showed higher cellular uptake than [18F]LGSu-2 (2.55 ± 0.04%AD), in which cell uptake could be significantly blocked by the nonradioactivity LGSu-1. In vivo experiments, micro-PET imaging of B16-F10 tumor-bearing mice and radiographic autoradiography of tumor sections showed that [18F]LGSu-1 was more effectively accumulated in the tumor due to the higher binding affinity with PD-L1. The above experimental results confirmed the potential of the small-molecule probe LGSu-1 as a targeting PD-L1 imaging tracer in tumor tissues.
Collapse
Affiliation(s)
- Xin Hu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Gaochao Lv
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Di Hua
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Nan Zhang
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Shuai Qin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Lixia Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hongjie Xi
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jianguo Lin
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
7
|
Weng D, Guo R, Zhu Z, Gao Y, An R, Zhou X. Peptide-based PET imaging agent of tumor TIGIT expression. EJNMMI Res 2023; 13:38. [PMID: 37129788 PMCID: PMC10154443 DOI: 10.1186/s13550-023-00982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Accumulating studies have demonstrated that elevated TIGIT expression in tumor microenvironment correlates with better therapeutic response to TIGIT-based immunotherapy in pre-clinical studies. Therefore, a non-invasive method to detect tumor TIGIT expression is crucial to predict the therapeutic effect. METHODS In this study, a peptide-based PET imaging agent, 68Ga-DOTA-DTBP-3, was developed to non-invasively detect TIGIT expression by micro-PET in tumor-bearing BALB/c mice. DTBP-3, a D-peptide comprising of 12 amino acids, was radiolabeled with 68Ga through a DOTA chelator. In vitro studies were performed to evaluate the affinity of 68Ga-DOTA-DTBP-3 to TIGIT and its stability in fetal bovine serum. In vivo studies were assessed by micro-PET, biodistribution, and immunohistochemistry on tumor-bearing BALB/c mice. RESULTS The in vitro studies showed the equilibrium dissociation constant of 68Ga-DOTA-DTBP-3 for TIGIT was 84.21 nM and its radiochemistry purity was 89.24 ± 1.82% in FBS at 4 h in room temperature. The results of micro-PET, biodistribution and immunohistochemistry studies indicated that 68Ga-DOTA-DTBP-3 could be specifically targeted in 4T1 tumor-bearing mice, with a highest uptake at 0.5 h. CONCLUSION 68Ga-DOTA-DTBP-3 holds potential for non-invasively detect tumor TIGIT expression and for timely assessment of the therapeutic effect of immune checkpoint blockade.
Collapse
Affiliation(s)
- Dinghu Weng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Rong Guo
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Yu Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430000, Hubei, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), SunYat-Sen University, Shenzhen, 518107, Guangdong, China
| |
Collapse
|
8
|
Filippi L, Brechbiel MW. Immunotherapy for Cancer: Something Old, Something New. Cancer Biother Radiopharm 2023; 38:209-210. [PMID: 36809052 DOI: 10.1089/cbr.2022.29014.editorial] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
9
|
Dercle L, Sun S, Seban RD, Mekki A, Sun R, Tselikas L, Hans S, Bernard-Tessier A, Mihoubi Bouvier F, Aide N, Vercellino L, Rivas A, Girard A, Mokrane FZ, Manson G, Houot R, Lopci E, Yeh R, Ammari S, Schwartz LH. Emerging and Evolving Concepts in Cancer Immunotherapy Imaging. Radiology 2023; 306:32-46. [PMID: 36472538 DOI: 10.1148/radiol.210518] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Criteria based on measurements of lesion diameter at CT have guided treatment with historical therapies due to the strong association between tumor size and survival. Clinical experience with immune checkpoint modulators shows that editing immune system function can be effective in various solid tumors. Equally, novel immune-related phenomena accompany this novel therapeutic paradigm. These effects of immunotherapy challenge the association of tumor size with response or progression and include risks and adverse events that present new demands for imaging to guide treatment decisions. Emerging and evolving approaches to immunotherapy highlight further key issues for imaging evaluation, such as dissociated response following local administration of immune checkpoint modulators, pseudoprogression due to immune infiltration in the tumor environment, and premature death due to hyperprogression. Research that may offer tools for radiologists to meet these challenges is reviewed. Different modalities are discussed, including immuno-PET, as well as new applications of CT, MRI, and fluorodeoxyglucose PET, such as radiomics and imaging of hematopoietic tissues or anthropometric characteristics. Multilevel integration of imaging and other biomarkers may improve clinical guidance for immunotherapies and provide theranostic opportunities.
Collapse
Affiliation(s)
- Laurent Dercle
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Shawn Sun
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Romain-David Seban
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Ahmed Mekki
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Roger Sun
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Lambros Tselikas
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Sophie Hans
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Alice Bernard-Tessier
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Fadila Mihoubi Bouvier
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Nicolas Aide
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Laetitia Vercellino
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Alexia Rivas
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Antoine Girard
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Fatima-Zohra Mokrane
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Guillaume Manson
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Roch Houot
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Egesta Lopci
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Randy Yeh
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Samy Ammari
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Lawrence H Schwartz
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| |
Collapse
|
10
|
Nguyen A, Kumar S, Kulkarni AA. Nanotheranostic Strategies for Cancer Immunotherapy. SMALL METHODS 2022; 6:e2200718. [PMID: 36382571 PMCID: PMC11056828 DOI: 10.1002/smtd.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Despite advancements in cancer immunotherapy, heterogeneity in tumor response impose barriers to successful treatments and accurate prognosis. Effective therapy and early outcome detection are critical as toxicity profiles following immunotherapies can severely affect patients' quality of life. Existing imaging techniques, including positron emission tomography, computed tomography, magnetic resonance imaging, or multiplexed imaging, are often used in clinics yet suffer from limitations in the early assessment of immune response. Conventional strategies to validate immune response mainly rely on the Response Evaluation Criteria in Solid Tumors (RECIST) and the modified iRECIST for immuno-oncology drug trials. However, accurate monitoring of immunotherapy efficacy is challenging since the response does not always follow conventional RECIST criteria due to delayed and variable kinetics in immunotherapy responses. Engineered nanomaterials for immunotherapy applications have significantly contributed to overcoming these challenges by improving drug delivery and dynamic imaging techniques. This review summarizes challenges in recent immune-modulation approaches and traditional imaging tools, followed by emerging developments in three-in-one nanoimmunotheranostic systems co-opting nanotechnology, immunotherapy, and imaging. In addition, a comprehensive overview of imaging modalities in recent cancer immunotherapy research and a brief outlook on how nanotheranostic platforms can potentially advance to clinical translations for the field of immuno-oncology is presented.
Collapse
Affiliation(s)
- Anh Nguyen
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
11
|
Wang L, Luo S, Wang Z, Huang Y, Luo Y, Xie X. Comprehensive Analysis Reveals PTK6 as a Prognostic Biomarker Involved in the Immunosuppressive Microenvironment in Breast Cancer. J Immunol Res 2022; 2022:5160705. [PMID: 36405012 PMCID: PMC9668476 DOI: 10.1155/2022/5160705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2023] Open
Abstract
The significant mortality rate that is currently experienced by female breast cancer (BC) patients highlights the importance of locating potent and dependable biomarkers in BC patients. Over the past few years, a number of studies have demonstrated that PTK6 was dysregulated in a variety of cancers. However, its expression and the clinical importance it may have in patients with BC have not been explored. Based on datasets from the TCGA database and GTEx database, we studied the expressions and functions of PTK6 across 33 different kinds of cancer. In this study, we investigated the differential expression of PTK6 in tumor tissue compared to nontumor tissue as well as in various stages of cancer. ROC assays were used to conduct an investigation into the diagnostic potential of PTK6 in BC. After that, the Kaplan-Meier method, univariate analysis, and multivariate analysis were carried out in order to investigate the PTK6 gene's potential prognostic significance in patients with BC. ssGSEA was utilized in order to conduct an investigation of the immune infiltration. In this study, we discovered that the expressions of PTK6 were significantly raised in the majority of different types of malignancies, including BC. The diagnostic value of PTK6 expression was validated by ROC tests, demonstrating an AUC greater than 0.7. A positive PR, ER, and HER2 status was found to be related with high expression levels of PTK6. According to the results of a survival analysis, patients who had a high level of PTK6 expression had a shorter overall survival time than those who had a low level of PTK6 expression. Besides, we observed that PTK6 expressions were positively correlated with the abundance of NK CD56bright cells and Th17 cells and negatively correlated with that of Th1 cells, macrophages, B cells, T cells, aDC, DC, cytotoxic cells, Tem, TFH, NK CD56dim cells, Treg, and Tgd. In conclusion, PTK6 expression was found to be linked with the clinical phenotype of BC, and as a result, this finding may have consequences for the diagnosis, prognosis, and treatment of individuals with BC.
Collapse
Affiliation(s)
- Lili Wang
- Department of Breast Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Shuimei Luo
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Ziming Wang
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Yiqiang Huang
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Yang Luo
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xianhe Xie
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
12
|
Panjwani D, Mishra D, Patel S, Patel V, Dharamsi A, Patel A. A Perspective on EGFR and Proteasome-based Targeted Therapy for Cancer. Curr Drug Targets 2022; 23:1406-1417. [PMID: 36089785 DOI: 10.2174/1389450123666220908095121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cancer is known to be the most leading cause of death worldwide. It is understood that the sources causing cancer mainly include the activity of endogenous oncogenes, nonviral compounds and the fundamental portion of these oncogenes; the tyrosine kinase activity and proteasome activity are the main biomarkers responsible for cell proliferation. These biomarkers can be used as main targets and are believed to be the 'prime switches' for the signal communication activity to regulate cell death and cell cycle. Thus, signal transduction inhibitors (ligandreceptor tyrosine kinase inhibitors) and proteasome inhibitors can be used as a therapeutic modality to block the action of signaling between the cells as well as protein breakdown in order to induce cell apoptosis. AIMS This article highlights the key points and provides an overview of the recent patents on EGFR and proteosome-based inhibitors having therapeutic efficacy. This review focuses on the patents related to therapeutic agents, their preparation process and the final outcome. OBJECTIVE The main objective of this study is to facilitate the advancement and current perspectives in the treatment of cancer. CONCLUSION There are numerous strategies discussed in these patents to improve the pharmacokinetics and pharmacodynamics of EGFR and proteasome inhibitors. Further, the resistance to targeted therapy after long-term treatment can be overcome by using various excipients that can be used as a strategy to carry the drug. However, there is a need and scope for improving targeted therapeutics for cancer treatment with better fundamentals and characteristics. The widespread research on cancer therapy can create the path for future advancements in therapy with more prominent outcomes.
Collapse
Affiliation(s)
- Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Deepak Mishra
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat-391760, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Viral Patel
- Department of Civil and Petroleum Engineering, University of Alberta, Edmonten, Canada
| | - Abhay Dharamsi
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Asha Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| |
Collapse
|
13
|
Prognostic Value of UBE2T and Its Correlation with Immune Infiltrates in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:5244820. [PMID: 36245987 PMCID: PMC9553516 DOI: 10.1155/2022/5244820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/13/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
Non-small cell lung cancer has a subtype with a high morbidity and mortality rate called lung adenocarcinoma (LUAD). It is critical to locate reliable prognostic biomarkers for LUAD at this time. Ubiquitin-conjugating enzyme E2T (UBE2T) has been found in numerous malignancies; however, its expression level and potential functions in LUAD are not completely understood at this time. A differentially expressed gene (DEG) screening method was used to identify genes that were expressed differently in 516 samples from LUAD and 59 samples from TCGA datasets. Clinicopathological markers were correlated with UBE2T expression. Using the Kaplan–Meier plotter database, UBE2T was evaluated for its prognostic value in the context of LUAD. In order to examine the importance of independent prognostic factors, both univariable and multivariable Cox regression models were applied. TIMER and CIBERSORT were utilized in order to investigate the connection that exists between UBE2T expression and tumor-infiltrating immune cells. This study collected 578 DEGs in total, as follows: 171 genes were significantly increased, while 408 genes were significantly decreased. We identified 9 survival-related DEGs in LUAD, including ASF1B, CA9, CCNB2, CCNE1, RRM2, SAPCD2, TCN1, TPX2, and UBE2T. Our attention focused on UBE2T, which was highly expressed in LUAD. A correlation was also found between high UBE2T expression and gender, age, advanced clinical stage, and decreased overall survival. In addition, multivariate analysis demonstrated UBE2T expression to be a significant independent diagnostic factor for patients suffering from LUAD. UBE2T was positively correlated with resting T cell CD4+ memory, myeloid dendritic cell resting, mast cell activated, macrophage M2, and B cell plasma, whereas it was negatively correlated with resting T cell CD4+ memory, MDC resting, MDC activated, macrophage M2, and B cell plasma. Overall, high expression levels of UBE2T correlated with poor overall survival in patients with LUAD, and UBE2T was an independent predictor involved in immune infiltration of LUAD. These findings offer fresh perspectives that contribute to our comprehension of the evolution of LUAD.
Collapse
|
14
|
Monitoring of Current Cancer Therapy by Positron Emission Tomography and Possible Role of Radiomics Assessment. Int J Mol Sci 2022; 23:ijms23169394. [PMID: 36012657 PMCID: PMC9409366 DOI: 10.3390/ijms23169394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/31/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Evaluation of cancer therapy with imaging is crucial as a surrogate marker of effectiveness and survival. The unique response patterns to therapy with immune-checkpoint inhibitors have facilitated the revision of response evaluation criteria using FDG-PET, because the immune response recalls reactive cells such as activated T-cells and macrophages, which show increased glucose metabolism and apparent progression on morphological imaging. Cellular metabolism and function are critical determinants of the viability of active cells in the tumor microenvironment, which would be novel targets of therapies, such as tumor immunity, metabolism, and genetic mutation. Considering tumor heterogeneity and variation in therapy response specific to the mechanisms of therapy, appropriate response evaluation is required. Radiomics approaches, which combine objective image features with a machine learning algorithm as well as pathologic and genetic data, have remarkably progressed over the past decade, and PET radiomics has increased quality and reliability based on the prosperous publications and standardization initiatives. PET and multimodal imaging will play a definitive role in personalized therapeutic strategies by the precise monitoring in future cancer therapy.
Collapse
|
15
|
Glucose–Thymidine Ratio as a Metabolism Index Using 18F-FDG and 18F-FLT PET Uptake as a Potential Imaging Biomarker for Evaluating Immune Checkpoint Inhibitor Therapy. Int J Mol Sci 2022; 23:ijms23169273. [PMID: 36012530 PMCID: PMC9409370 DOI: 10.3390/ijms23169273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are widely used in cancer immunotherapy, requiring effective methods for response monitoring. This study evaluated changes in 18F-2-fluoro-2-deoxy-D-glucose (FDG) and 18F-fluorothymidine (FLT) uptake by tumors following ICI treatment as potential imaging biomarkers in mice. Tumor uptakes of 18F-FDG and 18F-FLT were measured and compared between the ICI treatment and control groups. A combined imaging index of glucose–thymidine uptake ratio (GTR) was defined and compared between groups. In the ICI treatment group, tumor growth was effectively inhibited, and higher proportions of immune cells were observed. In the early phase, 18F-FDG uptake was higher in the treatment group, whereas 18F-FLT uptake was not different. There was no difference in 18F-FDG uptake between the two groups in the late phase. However, 18F-FLT uptake of the control group was markedly increased compared with the ICI treatment group. GTR was consistently higher in the ICI treatment group in the early and late phases. After ICI treatment, changes in tumor cell proliferation were observed with 18F-FLT, whereas 18F-FDG showed altered metabolism in both tumor and immune cells. A combination of 18F-FLT and 18F-FDG PET, such as GTR, is expected to serve as a potentially effective imaging biomarker for monitoring ICI treatment.
Collapse
|
16
|
Liu H, Hu M, Deng J, Zhao Y, Peng D, Feng Y, Wang L, Chen Y, Qiu L. A Novel Small Cyclic Peptide-Based 68Ga-Radiotracer for Positron Emission Tomography Imaging of PD-L1 Expression in Tumors. Mol Pharm 2022; 19:138-147. [PMID: 34910492 DOI: 10.1021/acs.molpharmaceut.1c00694] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the tumor microenvironment, programmed death protein 1 and programmed death protein ligand 1 (PD-L1) signaling pathways help tumors escape the immune system. We designed a gallium-68 (68Ga)-labeled small-molecule peptide-targeting PD-L1 and used positron emission tomography/computed tomography (PET/CT) to detect and dynamically monitor the expression level of PD-L1 in tumors. S-Cyclo(ETSK)-SF-NH2 (SETSKSF) is a cyclic peptide inhibitor comprising seven amino-acid residues. We connected it with the chelating agent DOTA, labeled DOTA-SETSKSF, with the short half-life nuclide Ga-68, and measured the stability of 68Ga-2,2',2″-(10-(2-((S)-1-((3S,6S,9S,18S)-18-((S)-1-((S)-1-amino-1-oxo-3-henylpropan-2-ylamino)-3-hydroxy-1-oxopropan-2-ylcarbamoyl)-6-((R)-1-hydroxyethyl)-3-(hydroxymethyl)-2,5,8,12-tetraoxo-1,4,7,13-tetraazacyclooctadecan-9-ylamino)-3-ydroxy-1-oxopropan-2-ylamino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (68Ga-DOTA-SETSKSF) in normal saline (NS), phosphate-buffered saline (PBS), and fetal bovine serum (FBS) in vitro. We conducted the 68Ga-DOTA-SETSKSF affinity test, cell-specific uptake experiments, time-combined experiments, western blotting, and laser confocal experiments to confirm the expression and localization of PD-L1 at the cell level and determine the uptake. Biodistribution and imaging experiments were performed using the H1975, B16F10, and A549 tumor models. 68Ga-DOTA-SETSKSF was successfully synthesized, and the radiochemical purity was >99% after purification. The in vitro stability of 68Ga-DOTA-SETSKSF was >95% in NS, PBS, and FBS at 37 °C after 4 h of incubation. Cell-binding experiments confirmed that 68Ga-DOTA-SETSKSF exhibited high uptake in H1975 tumors with high PD-L1 expression and low uptake in A549 tumors with low PD-L1 expression. The clear half-life (T1/2) of 68Ga-DOTA-SETSKSF from the blood was 14.48 ± 3.26 min. The percentages of the injected dose per gram of tissue (%ID/g) for H1975 and A549 tumors were 5.29 ± 0.21 and 0.89 ± 0.10 at 1 h after injection, respectively. The H1975 tumor-to-muscle and tumor-to-blood ratios were 41.79 ± 5.81 and 4.75 ± 0.19 at 4 h, respectively. Apart from the H1975 tumor, the kidney and the bladder showed high accumulation because 68Ga-DOTA-SETSKSF was excreted through the urinary system. PET/CT images showed high accumulation of 68Ga-DOTA-SETSKSF in H1975 tumors and low uptake in A549 tumors, which was consistent with the results of biodistribution experiments. 68Ga-DOTA-SETSKSF is convenient to prepare, has high stability, can be used to monitor the expression of PD-L1, and has an extremely high clinical application value.
Collapse
Affiliation(s)
- Hanxiang Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| | - Mei Hu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Jia Deng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| | - Yan Zhao
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Dengsai Peng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Li Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| | - Lin Qiu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
17
|
Wei J, Oh DY, Evans MJ. Preparation of Radiolabeled Antibodies for Nuclear Medicine Applications in Immuno-Oncology. Methods Mol Biol 2022; 2393:829-839. [PMID: 34837214 DOI: 10.1007/978-1-0716-1803-5_44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The mixed patient responses to antibodies targeting immune checkpoint proteins (e.g., CTLA-4, PD-1, PD-L1) have generated tremendous interest in discovering biomarkers that predict which patients will best respond to these treatments. To complement molecular biomarkers obtained from biopsies, the nuclear medicine community has begun developing radiopharmaceuticals that may provide a more holistic assessment of the biological character of all disease sites in patients. On the leading edge of clinical translation are a spectrum of radiolabeled antibodies targeting immune checkpoint proteins or T cell-specific antigens. The adoption of these reagents requires development of efficient and versatile methods for antibody bioconjugation and radiochemistry. We report herein protocols for the preparation of an anti-PD-L1 IgG1 (termed C4) labeled with zirconium-89. The approach is time and cost economical, high yielding, and adaptable to numerous antibody clones and platforms of interest to the immune-oncology community. Included also are representative methods for characterizing the pharmacology of the antibody post bioconjugation, and conducting an in vivo assessment of radiotracer biodistribution in tumor bearing mouse models.
Collapse
Affiliation(s)
- Junnian Wei
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - David Y Oh
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Klinkhammer BM, Lammers T, Mottaghy FM, Kiessling F, Floege J, Boor P. Non-invasive molecular imaging of kidney diseases. Nat Rev Nephrol 2021; 17:688-703. [PMID: 34188207 PMCID: PMC7612034 DOI: 10.1038/s41581-021-00440-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
In nephrology, differential diagnosis or assessment of disease activity largely relies on the analysis of glomerular filtration rate, urinary sediment, proteinuria and tissue obtained through invasive kidney biopsies. However, currently available non-invasive functional parameters, and most serum and urine biomarkers, cannot capture intrarenal molecular disease processes specifically. Moreover, although histopathological analyses of kidney biopsy samples enable the visualization of pathological morphological and molecular alterations, they only provide information about a small part of the kidney and do not allow longitudinal monitoring. These limitations not only hinder understanding of the dynamics of specific disease processes in the kidney, but also limit the targeting of treatments to active phases of disease and the development of novel targeted therapies. Molecular imaging enables non-invasive and quantitative assessment of physiological or pathological processes by combining imaging technologies with specific molecular probes. Here, we discuss current preclinical and clinical molecular imaging approaches in nephrology. Non-invasive visualization of the kidneys through molecular imaging can be used to detect and longitudinally monitor disease activity and can therefore provide companion diagnostics to guide clinical trials, as well as the safe and effective use of drugs.
Collapse
Affiliation(s)
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
- Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
- Department of Targeted Therapeutics, University of Twente, Enschede, Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen, Germany
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jürgen Floege
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
- Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
19
|
Ghai A, Fettig N, Fontana F, DiPersio J, Rettig M, Neal JO, Achilefu S, Shoghi KI, Shokeen M. In vivo quantitative assessment of therapeutic response to bortezomib therapy in disseminated animal models of multiple myeloma with [ 18F]FDG and [ 64Cu]Cu-LLP2A PET. EJNMMI Res 2021; 11:97. [PMID: 34586539 PMCID: PMC8481408 DOI: 10.1186/s13550-021-00840-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background Multiple myeloma (MM) is a disease of cancerous plasma cells in the bone marrow. Imaging-based timely determination of therapeutic response is critical for improving outcomes in MM patients. Very late antigen-4 (VLA4, CD49d/CD29) is overexpressed in MM cells. Here, we evaluated [18F]FDG and VLA4 targeted [64Cu]Cu-LLP2A for quantitative PET imaging in disseminated MM models of variable VLA4 expression, following bortezomib therapy. Methods In vitro and ex vivo VLA4 expression was evaluated by flow cytometry. Human MM cells, MM.1S-CG and U266-CG (C: luciferase and G: green fluorescent protein), were injected intravenously in NOD-SCID gamma mice. Tumor progression was monitored by bioluminescence imaging (BLI). Treatment group received bortezomib (1 mg/kg, twice/week) intraperitoneally. All cohorts (treated, untreated and no tumor) were longitudinally imaged with [18F]FDG (7.4–8.0 MBq) and [64Cu]Cu-LLP2A (2–3 MBq; Molar Activity: 44.14 ± 1.40 MBq/nmol) PET, respectively. Results Flow cytometry confirmed high expression of CD49d in U266 cells (> 99%) and moderate expression in MM.1S cells (~ 52%). BLI showed decrease in total body flux in treated mice. In MM.1S-CG untreated versus treated mice, [64Cu]Cu-LLP2A localized with a significantly higher SUVmean in spine (0.58 versus 0.31, p < 0.01) and femur (0.72 versus 0.39, p < 0.05) at week 4 post-tumor inoculation. There was a four-fold higher uptake of [64Cu]Cu-LLP2A (SUVmean) in untreated U266-CG mice compared to treated mice at 3 weeks post-treatment. Compared to [64Cu]Cu-LLP2A, [18F]FDG PET detected treatment-related changes at later time points. Conclusion [64Cu]Cu-LLP2A is a promising tracer for timely in vivo assessment of therapeutic response in disseminated models of MM. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00840-4.
Collapse
Affiliation(s)
- Anchal Ghai
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Avenue, 2nd floor, St. Louis, MO, 63110, USA
| | - Nikki Fettig
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Avenue, 2nd floor, St. Louis, MO, 63110, USA
| | - Francesca Fontana
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John DiPersio
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mike Rettig
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie O Neal
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel Achilefu
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Avenue, 2nd floor, St. Louis, MO, 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Kooresh I Shoghi
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Avenue, 2nd floor, St. Louis, MO, 63110, USA
| | - Monica Shokeen
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Avenue, 2nd floor, St. Louis, MO, 63110, USA. .,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
20
|
Abstract
PURPOSE Cancer immunotherapy has shown huge potential in the fight against cancer, but only a small proportion of patients respond successfully to treatment. Non-invasive methods to stratify responders from non-responders are critically important as immune therapies are often associated with immune-related side effects. Currently, conventional clinical imaging modalities do not provide a useful measure of immune therapy efficacy. Sensitive imaging biomarkers that provide information about the tumoural microenvironment may provide useful insights allowing for improved patient management. PROCEDURES We have assessed the ability of a number of radiopharmaceuticals to non-invasively measure different aspects of the tumour microenvironment and correlated tumour uptake to immune therapy response in a syngeneic model of colon cancer, CT26-WT. Four radiopharmaceuticals, [18F]FDG (a glucose analogue), [18F]FEPPA (a marker for macrophage activation), [18F]FB-IL2 (a marker for CD25+ cells) and [68Ga] Ga-mNOTA-GZP (a marker for granzyme B, the serine protease downstream effector of cytotoxic T cells), were assessed as potential biomarkers to help stratify response to PD-1 monotherapy or combined anti-PD1 and CLTA4 therapy in vivo correlating tumour uptake with changes in tumour-associated immune cell populations. RESULTS [18F]FDG, [18F]FEPPA and [18F]FB-IL2 (a marker for CD25+ cells) showed limited ability to determine therapy response and showed little correlation to tumour-associated immune cell changes. However, [68Ga] Ga-mNOTA-GZP showed good predictive ability and correlated well with changes in tumour-associated T cells, especially CD8+ T cells. CONCLUSIONS [68Ga]Ga-mNOTA-GZP uptake correlates well with changes in CD8+ T cell populations supporting continued development of granzyme B-based imaging agents for stratification of response to immunotherapy. Early assessment of immunotherapy efficacy with [68Ga]Ga-mNOTA-GZP may allow for the reduction of unnecessary side effects while significantly improving patient management.
Collapse
|
21
|
Qiu L, Tan H, Lin Q, Si Z, Mao W, Wang T, Fu Z, Cheng D, Shi H. A Pretargeted Imaging Strategy for Immune Checkpoint Ligand PD-L1 Expression in Tumor Based on Bioorthogonal Diels-Alder Click Chemistry. Mol Imaging Biol 2021; 22:842-853. [PMID: 31741201 DOI: 10.1007/s11307-019-01441-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The use of antibodies as tracers requires labeling with isotopes with long half-lives due to their slow pharmacokinetics, which creates prohibitively high radiation dose to non-target organs. Pretargeted methodology could avoid the high radiation exposure due to the slow pharmacokinetics of antibodies. In this investigation, we reported the development of a novel pretargeted single photon emission computed tomography (SPECT) imaging strategy (atezolizumab-TCO/[99mTc]HYNIC-PEG11-Tz) for evaluating immune checkpoint ligand PD-L1 expression in tumor based on bioorthogonal Diels-Alder click chemistry. PROCEDURES The radioligand [99mTc]HYNIC-PEG11-Tz was achieved by the synthesis of a 6-hydrazinonicotinc acid (HYNIC) modified 1,2,4,5-tetrazine (Tz) and subsequently radiolabeled with technetium-99m (Tc-99m). The stability of [99mTc]HYNIC-PEG11-Tz was evaluated in vitro, and its blood pharmacokinetic test was performed in vivo. Atezolizumab was modified with trans-cyclooctene (TCO). The [99mTc]HYNIC-PEG11-Tz and atezolizumab-TCO interaction was tested in vitro. Pretargeted H1975 cell immunoreactivity binding and saturation binding assays were evaluated. Pretargeted biodistribution and SPECT imaging experiments were performed in H1975 and A549 tumor-bearing modal mice to evaluate the PD-L1 expression level. RESULTS [99mTc]HYNIC-PEG11-Tz was successfully radiosynthesized with a specific activity of 9.25 MBq/μg and a radiochemical purity above 95 % as confirmed by reversed-phase HPLC (RP-HPLC). [99mTc]HYNIC-PEG11-Tz showed favorable stability in NS, PBS, and FBS and rapid blood clearance in mice. The atezolizumab was modified with TCO-NHS ester to produce a conjugate with an average 6.4 TCO moieties as confirmed by liquid chromatograph-mass spectrometer (LC-MS). Size exclusion HPLC revealed almost complete reaction between atezolizumab-TCO and [99mTc]HYNIC-PEG11-Tz in vitro, with the 1:1 Tz-to-mAb reaction providing a conversion yield of 88.65 ± 1.22 %. Pretargeted cell immunoreactivity binding and saturation binding assays showed high affinity to H1975 cells. After allowing 48 h for accumulation of atezolizumab-TCO in H1975 tumor, pretargeted in vivo biodistribution revealed high uptake of the radiotracer in the tumor with a tumor-to-muscle ratio of 27.51 and tumor-to-blood ratio of 1.91. Pretargeted SPECT imaging delineated the H1975 tumor clearly. Pretargeted biodistribution and SPECT imaging in control groups demonstrated a significantly reduced tracer accumulation in the A549 tumor. CONCLUSIONS We have developed a HYNIC-modified Tz derivative, and the HYNIC-PEG11-Tz was labeled with Tc-99m with a high specific activity and radiochemical purity. [99mTc]HYNIC-PEG11-Tz reacted rapidly and almost completely towards atezolizumab-TCO in vitro with the 1:1 Tz-to-mAb reaction. SPECT imaging using the pretargeted strategy (atezolizumab-TCO/[99mTc]HYNIC-PEG11-Tz) demonstrated high-contrast images for high PD-L1 expression H1975 tumor and a low background accumulation of the probe. The pretargeted imaging strategy is a powerful tool for evaluating PD-L1 expression in xenograft mice tumor models and a potential candidate for translational clinical application.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
22
|
Qin S, Yu Y, Guan H, Yang Y, Sun F, Sun Y, Zhu J, Xing L, Yu J, Sun X. A preclinical study: correlation between PD-L1 PET imaging and the prediction of therapy efficacy of MC38 tumor with 68Ga-labeled PD-L1 targeted nanobody. Aging (Albany NY) 2021; 13:13006-13022. [PMID: 33910164 PMCID: PMC8148448 DOI: 10.18632/aging.202981] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Although immunotherapy has achieved great clinical success in clinical outcomes, especially the anti-PD-1 or anti-PD-L1 antibodies, not all patients respond to anti-PD-1 immunotherapy. It is urgently required for a clinical diagnosis to develop non-invasive imaging meditated strategy for assessing the expression level of PD-L1 in tumors. In this work, a 68Ga-labeled single-domain antibody tracer, 68Ga-NOTA-Nb109, was designed for specific and noninvasive imaging of PD-L1 expression in an MC38 tumor-bearing mouse model. Comprehensive studies including Positron Emission Tomography (PET), biodistribution, blocking studies, immunohistochemistry, and immunotherapy, have been performed in differences PD-L1 expression tumor-bearing models. These results revealed that 68Ga-NOTA-Nb109 specifically accumulated in the MC38-hPD-L1 tumor. The content of this nanobody in MC38 hPD-L1 tumor and MC38 Mixed tumor was 8.2 ± 1.3, 7.3 ± 1.2, 3.7 ± 1.5, 2.3 ± 1.2%ID/g and 7.5 ± 1.4, 3.6 ± 1.7, 1.7 ± 0.6, 1.2 ± 0.5%ID/g at 0.5, 1, 1.5, 2 hours post-injection, respectively. 68Ga-NOTA-Nb109 has the potential to further noninvasive PET imaging and therapy effectiveness assessments based on the PD-L1 status in tumors. To explore the possible synergistic effects of immunotherapy combined with chemotherapy, MC38 xenografts with different sensitivity to PD-L1 blockade were established. In addition, we found that PD-1 blockade also had efficacy on the PD-L1 knockout tumors. RT-PCR and immunofluorescence analysis were used to detect the expression of PD-L1. It was observed that both mouse and human PD-L1 expressed among three types of MC38 tumors. These results suggest that PD-L1 on tumor cells affect the efficacy, but it on host myeloid cells might be essential for checkpoint blockade. Moreover, anti–PD-1 treatment activates tumor-reactive CD103+ CD39+ CD8+T cells (TILs) in tumor microenvironment.
Collapse
Affiliation(s)
- Songbing Qin
- Tianjin Medical University, Tianjin 300070, P.R. China.,Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou 215006, P.R. China
| | - Yang Yu
- School of Graduate Studies, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 271099, P.R. China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250017, P.R. China
| | - Hui Guan
- Department of Radiation Oncology, The Fourth People's Hospital of Jinan, Jinan 250031, P.R. China
| | - Yanling Yang
- School of Pharmacy, Yantai University, Yantai 264003, P.R. China.,Smart Nuclide Biotech, Suzhou 215123, P.R. China
| | - Fenghao Sun
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, P.R. China
| | - Yan Sun
- Smart Nuclide Biotech, Suzhou 215123, P.R. China
| | - Jiaxing Zhu
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou 215006, P.R. China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250017, P.R. China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250017, P.R. China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250017, P.R. China
| |
Collapse
|
23
|
Shaffer T, Natarajan A, Gambhir SS. PET Imaging of TIGIT Expression on Tumor-Infiltrating Lymphocytes. Clin Cancer Res 2021; 27:1932-1940. [PMID: 33408249 DOI: 10.1158/1078-0432.ccr-20-2725] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/11/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Therapeutic checkpoint inhibitors on tumor-infiltrating lymphocytes (TIL) are being increasingly utilized in the clinic. The T-cell immunoreceptor with Ig and ITIM domains (TIGIT) is an inhibitory receptor expressed on T and natural killer cells. The TIGIT signaling pathway is an alternative target for checkpoint blockade to current PD-1/CTLA-4 strategies. Elevated TIGIT expression in the tumor microenvironment correlates with better therapeutic responses to anti-TIGIT therapies in preclinical models. Therefore, quantifying TIGIT expression in tumors is necessary for determining whether a patient may respond to anti-TIGIT therapy. PET imaging of TIGIT expression on TILs can therefore aid diagnosis and in monitoring therapeutic responses. EXPERIMENTAL DESIGN Antibody-based TIGIT imaging radiotracers were developed with the PET radionuclides copper-64 (64Cu) and zirconium-89 (89Zr). In vitro characterization of the imaging probes was followed by in vivo evaluation in both xenografts and syngeneic tumor models in mouse. RESULTS Two anti-TIGIT probes were developed and exhibited immunoreactivity of >72%, serum stability of >95%, and specificity for TIGIT with both mouse TIGIT-expressing HeLa cells and ex vivo-activated primary splenocytes. In vivo, the 89Zr-labeled probe demonstrated superior contrast than the 64Cu probe due to 89Zr's longer half-life matching the TIGIT antibody's pharmacokinetics. The 89Zr probe was used to quantify TIGIT expression on TILs in B16 melanoma in immunocompetent mice and confirmed by ex vivo flow cytometry. CONCLUSIONS This study develops and validates novel TIGIT-specific 64Cu and 89Zr PET probes for quantifying TIGIT expression on TILs for diagnosis of patient selection for anti-TIGIT therapies.
Collapse
Affiliation(s)
- Travis Shaffer
- Department of Radiology, Stanford University, Stanford, California. .,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Arutselvan Natarajan
- Department of Radiology, Stanford University, Stanford, California. .,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Canary Center for Early Cancer Detection, Stanford University, Stanford, California
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Canary Center for Early Cancer Detection, Stanford University, Stanford, California.,Department of Bioengineering, Stanford University, Stanford, California.,Stanford Bio-X Program, Stanford University, Stanford, California
| |
Collapse
|
24
|
Khan A, Dias F, Neekhra S, Singh B, Srivastava R. Designing and Immunomodulating Multiresponsive Nanomaterial for Cancer Theranostics. Front Chem 2021; 8:631351. [PMID: 33585406 PMCID: PMC7878384 DOI: 10.3389/fchem.2020.631351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer has been widely investigated yet limited in its manifestation. Cancer treatment holds innovative and futuristic strategies considering high disease heterogeneity. Chemotherapy, radiotherapy and surgery are the most explored pillars; however optimal therapeutic window and patient compliance recruit constraints. Recently evolved immunotherapy demonstrates a vital role of the host immune system to prevent metastasis recurrence, still undesirable clinical response and autoimmune adverse effects remain unresolved. Overcoming these challenges, tunable biomaterials could effectively control the co-delivery of anticancer drugs and immunomodulators. Current status demands a potentially new approach for minimally invasive, synergistic, and combinatorial nano-biomaterial assisted targeted immune-based treatment including therapeutics, diagnosis and imaging. This review discusses the latest findings of engineering biomaterial with immunomodulating properties and implementing novel developments in designing versatile nanosystems for cancer theranostics. We explore the functionalization of nanoparticle for delivering antitumor therapeutic and diagnostic agents promoting immune response. Through understanding the efficacy of delivery system, we have enlightened the applicability of nanomaterials as immunomodulatory nanomedicine further advancing to preclinical and clinical trials. Future and present ongoing improvements in engineering biomaterial could result in generating better insight to deal with cancer through easily accessible immunological interventions.
Collapse
Affiliation(s)
- Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Faith Dias
- Department of Chemical Engineering, Thadomal Shahani Engineering College, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
25
|
Investigation of a new oxazolidine derivative in human resistance acute leukemia cells: deciphering its mechanism of action by label-free proteomic. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1153-1166. [PMID: 33475759 DOI: 10.1007/s00210-020-02024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
The present study aimed to evaluate the mechanism of action of the antineoplastic activity of an oxazolidine derivative, LPSF/NB-3 (5-(4-cloro-benzilideno)-3-etil-2-tioxo-oxazolidin-4-ona). Cytotoxicity assays were performed in peripheral blood mononuclear cells (PBMCs) and resistant acute leukemia cell line (HL-60/MX1) by the MTT method. LPSF/NB-3 exhibited cytotoxicity in HL-60/MX1, but it was not toxic to healthy cells in the highest dose tested (100 μM). The protein extract of HL-60/MX1 cells treated with LPSF/NB-3 was subjected to proteomic analysis using two-dimensional chromatography coupled to mass spectrometry. We could identify a total of 2652 proteins, in which 633 were statistically modulated. Within the group of protein considered for the quantitative analysis with the established criteria, 262 were differentially expressed, 146 with increased expression and 116 with decreased expression in the sample treated with LPSF/NB-3 compared to the control. The following differentially expressed pathways were found: involving regulation of the cytoskeleton, DNA damage, and transduce cellular signals. Networks that were highlighted are related to the immune system. The ELISA technique was used to assess the immunomodulatory potential of LPSF/NB-3 in PBMCs. We observed significant decrease of IFNγ (p < 0.01) and dose-response pattern of the cytokines IL-6, IL-17A, IL-22, and IL-10. Therefore, results suggest that LPSF/NB-3 appears to modulate important pathways, including cell cycle and immune system regulatory pathways.
Collapse
|
26
|
Nisar S, Bhat AA, Hashem S, Yadav SK, Rizwan A, Singh M, Bagga P, Macha MA, Frenneaux MP, Reddy R, Haris M. Non-invasive biomarkers for monitoring the immunotherapeutic response to cancer. J Transl Med 2020; 18:471. [PMID: 33298096 PMCID: PMC7727217 DOI: 10.1186/s12967-020-02656-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022] Open
Abstract
Immunotherapy is an efficient way to cure cancer by modulating the patient’s immune response. However, the immunotherapy response is heterogeneous and varies between individual patients and cancer subtypes, reinforcing the need for early benefit predictors. Evaluating the infiltration of immune cells in the tumor and changes in cell-intrinsic tumor characteristics provide potential response markers to treatment. However, this approach requires invasive sampling and may not be suitable for real-time monitoring of treatment response. The recent emergence of quantitative imaging biomarkers provides promising opportunities. In vivo imaging technologies that interrogate T cell responses, metabolic activities, and immune microenvironment could offer a powerful tool to monitor the cancer response to immunotherapy. Advances in imaging techniques to identify tumors' immunological characteristics can help stratify patients who are more likely to respond to immunotherapy. This review discusses the metabolic events that occur during T cell activation and differentiation, anti-cancer immunotherapy-induced T cell responses, focusing on non-invasive imaging techniques to monitor T cell metabolism in the search for novel biomarkers of response to cancer immunotherapy.
Collapse
Affiliation(s)
- Sabah Nisar
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz A Bhat
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sheema Hashem
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Santosh K Yadav
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Arshi Rizwan
- Department of Nephrology, AIIMS, New Delhi, India
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Puneet Bagga
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | | | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Mohammad Haris
- Functional and Molecular Imaging Laboratory, Cancer Research Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
27
|
Tremblay ML, O’Brien-Moran Z, Rioux JA, Nuschke A, Davis C, Kast WM, Weir G, Stanford M, Brewer KD. Quantitative MRI cell tracking of immune cell recruitment to tumors and draining lymph nodes in response to anti-PD-1 and a DPX-based immunotherapy. Oncoimmunology 2020; 9:1851539. [PMID: 33299663 PMCID: PMC7714509 DOI: 10.1080/2162402x.2020.1851539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 11/01/2022] Open
Abstract
DPX is a unique T cell activating formulation that generates robust immune responses (both clinically and preclinically) which can be tailored to various cancers via the use of tumor-specific antigens and adjuvants. While DPX-based immunotherapies may act complementary with checkpoint inhibitors, combination therapy is not always easily predictable based on individual therapeutic responses. Optimizing these combinations can be improved by understanding the mechanism of action underlying the individual therapies. Magnetic Resonance Imaging (MRI) allows tracking of cells labeled with superparamagnetic iron oxide (SPIO), which can yield valuable information about the localization of crucial immune cell subsets. In this work, we evaluated the use of a multi-echo, single point MRI pulse sequence, TurboSPI, for tracking and quantifying cytotoxic T lymphocytes (CTLs) and myeloid lineage cells (MLCs). In a subcutaneous cervical cancer model (C3) we compared untreated mice to mice treated with either a single therapy (anti-PD-1 or DPX-R9F) or a combination of both therapies. We were able to detect, using TurboSPI, significant increases in CTL recruitment dynamics in response to combination therapy. We also observed differences in MLC recruitment to therapy-draining (DPX-R9F) lymph nodes in response to treatment with DPX-R9F (alone or in combination with anti-PD-1). We demonstrated that the therapies presented herein induced time-varying changes in cell recruitment. This work establishes that these quantitative molecular MRI techniques can be expanded to study a number of cancer and immunotherapy combinations to improve our understanding of longitudinal immunological changes and mechanisms of action.
Collapse
Affiliation(s)
- Marie-Laurence Tremblay
- Biomedical Translational Imaging Centre (BIOTIC, IWK Health Centre, Halifax, NS, Canada
- Dalhousie University, Halifax, NS, Canada
- IMV Inc, Halifax, NS, Canada
| | - Zoe O’Brien-Moran
- Biomedical Translational Imaging Centre (BIOTIC, IWK Health Centre, Halifax, NS, Canada
- Department of Physics, Dalhousie University, Halifax, NS, Canada
| | - James A. Rioux
- Biomedical Translational Imaging Centre (BIOTIC, IWK Health Centre, Halifax, NS, Canada
- Department of Physics, Dalhousie University, Halifax, NS, Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | - Andrea Nuschke
- Biomedical Translational Imaging Centre (BIOTIC, IWK Health Centre, Halifax, NS, Canada
| | - Christa Davis
- Biomedical Translational Imaging Centre (BIOTIC, IWK Health Centre, Halifax, NS, Canada
| | - W. Martin Kast
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Marianne Stanford
- Dalhousie University, Halifax, NS, Canada
- IMV Inc, Halifax, NS, Canada
| | - Kimberly D. Brewer
- Biomedical Translational Imaging Centre (BIOTIC, IWK Health Centre, Halifax, NS, Canada
- Dalhousie University, Halifax, NS, Canada
- Department of Physics, Dalhousie University, Halifax, NS, Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
28
|
Development of [ 89Zr]DFO-elotuzumab for immunoPET imaging of CS1 in multiple myeloma. Eur J Nucl Med Mol Imaging 2020; 48:1302-1311. [PMID: 33179150 DOI: 10.1007/s00259-020-05097-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Multiple myeloma (MM) is a bone marrow malignancy that remains mostly incurable. Elotuzumab is an FDA-approved therapeutic monoclonal antibody targeted to the cell surface glycoprotein CS1, which is overexpressed in MM cells. Identifying patients who will respond to CS1-targeted treatments such as elotuzumab requires the development of a companion diagnostic to assess the presence of CS1. Here, we evaluated [89Zr]DFO-elotuzumab as a novel PET tracer for imaging CS1 expression in preclinical MM models. METHODS Conjugation of desferrioxamine-p-benzyl-isothiocyanate (DFO-Bz-NCS) to elotuzumab enabled zirconium-89 radiolabeling. MM.1S-CG cells were intravenously injected in NOD SCID gamma (NSG) mice. Small animal PET imaging with [89Zr]DFO-elotuzumab (1.11 MBq/mouse, 7 days post-injection), [89Zr]DFO-IgG (1.11 MBq/mouse, 7 days post-injection), and [18F]FDG (7-8 MBq, 1 h post-injection) was performed. Additionally, biodistribution of [89Zr]DFO-elotuzumab post-imaging at 7 days was also done. In vivo specificity of [89Zr]DFO-elotuzumab was further evaluated with a blocking study and ex vivo autoradiography. RESULTS [89Zr]DFO-elotuzumab was produced with high specific activity (56 ± 0.75 MBq/nmol), radiochemical purity (99% ± 0.5), and yield (93.3% ± 1.5). Dissociation constant of 40.4 nM and receptor density of 126 fmol/mg was determined in MM.1S-CG cells. Compared to [89Zr]DFO-IgG, [89Zr]DFO-elotuzumab localized with a significantly higher standard uptake value in tumor-bearing bone tissue (8.59 versus 4.77). Blocking with unlabeled elotuzumab significantly reduced (P < 0.05) uptake of [89Zr]DFO-elotuzumab in the bones. Importantly, while [18F]FDG demonstrated similar uptake in the bone and muscle, [89Zr]DFO-elotuzumab showed > 3-fold enhanced uptake in bones. CONCLUSION These data demonstrate the feasibility of [89Zr]DFO-elotuzumab as a companion diagnostic for CS1-targeted therapies.
Collapse
|
29
|
Positron Emission Tomography for Response Evaluation in Microenvironment-Targeted Anti-Cancer Therapy. Biomedicines 2020; 8:biomedicines8090371. [PMID: 32972006 PMCID: PMC7556039 DOI: 10.3390/biomedicines8090371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Therapeutic response is evaluated using the diameter of tumors and quantitative parameters of 2-[18F] fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET). Tumor response to molecular-targeted drugs and immune checkpoint inhibitors is different from conventional chemotherapy in terms of temporal metabolic alteration and morphological change after the therapy. Cancer stem cells, immunologically competent cells, and metabolism of cancer are considered targets of novel therapy. Accumulation of FDG reflects the glucose metabolism of cancer cells as well as immune cells in the tumor microenvironment, which differs among patients according to the individual immune function; however, FDG-PET could evaluate the viability of the tumor as a whole. On the other hand, specific imaging and cell tracking of cancer cell or immunological cell subsets does not elucidate tumor response in a complexed interaction in the tumor microenvironment. Considering tumor heterogeneity and individual variation in therapeutic response, a radiomics approach with quantitative features of multimodal images and deep learning algorithm with reference to pathologic and genetic data has the potential to improve response assessment for emerging cancer therapy.
Collapse
|
30
|
Savic LJ, Doemel LA, Schobert IT, Montgomery RR, Joshi N, Walsh JJ, Santana J, Pekurovsky V, Zhang X, Lin M, Adam L, Boustani A, Duncan J, Leng L, Bucala RJ, Goldberg SN, Hyder F, Coman D, Chapiro J. Molecular MRI of the Immuno-Metabolic Interplay in a Rabbit Liver Tumor Model: A Biomarker for Resistance Mechanisms in Tumor-targeted Therapy? Radiology 2020; 296:575-583. [PMID: 32633675 PMCID: PMC7434651 DOI: 10.1148/radiol.2020200373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 02/05/2023]
Abstract
Background The immuno-metabolic interplay has gained interest for determining and targeting immunosuppressive tumor micro-environments that remain a barrier to current immuno-oncologic therapies in hepatocellular carcinoma. Purpose To develop molecular MRI tools to reveal resistance mechanisms to immuno-oncologic therapies caused by the immuno-metabolic interplay in a translational liver cancer model. Materials and Methods A total of 21 VX2 liver tumor-bearing New Zealand white rabbits were used between October 2018 and February 2020. Rabbits were divided into three groups. Group A (n = 3) underwent intra-arterial infusion of gadolinium 160 (160Gd)-labeled anti-human leukocyte antigen-DR isotope (HLA-DR) antibodies to detect antigen-presenting immune cells. Group B (n = 3) received rhodamine-conjugated superparamagnetic iron oxide nanoparticles (SPIONs) intravenously to detect macrophages. These six rabbits underwent 3-T MRI, including T1- and T2-weighted imaging, before and 24 hours after contrast material administration. Group C (n = 15) underwent extracellular pH mapping with use of MR spectroscopy. Of those 15 rabbits, six underwent conventional transarterial chemoembolization (TACE), four underwent conventional TACE with extracellular pH-buffering bicarbonate, and five served as untreated controls. MRI signal intensity distribution was validated by using immunohistochemistry staining of HLA-DR and CD11b, Prussian blue iron staining, fluorescence microscopy of rhodamine, and imaging mass cytometry (IMC) of gadolinium. Statistical analysis included Mann-Whitney U and Kruskal-Wallis tests. Results T1-weighted MRI with 160Gd-labeled antibodies revealed localized peritumoral ring enhancement, which corresponded to gadolinium distribution detected with IMC. T2-weighted MRI with SPIONs showed curvilinear signal intensity representing selective peritumoral deposition in macrophages. Extracellular pH-specific MR spectroscopy of untreated liver tumors showed acidosis (mean extracellular pH, 6.78 ± 0.09) compared with liver parenchyma (mean extracellular pH, 7.18 ± 0.03) (P = .008) and peritumoral immune cell exclusion. Normalization of tumor extracellular pH (mean, 6.96 ± 0.05; P = .02) using bicarbonate during TACE increased peri- and intratumoral immune cell infiltration (P = .002). Conclusion MRI in a rabbit liver tumor model was used to visualize resistance mechanisms mediated by the immuno-metabolic interplay that inform susceptibility and response to immuno-oncologic therapies, providing a therapeutic strategy to restore immune permissiveness in liver cancer. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Lynn Jeanette Savic
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Luzie A. Doemel
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Isabel Theresa Schobert
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Ruth Rebecca Montgomery
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Nikhil Joshi
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - John James Walsh
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Jessica Santana
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Vasily Pekurovsky
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Xuchen Zhang
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - MingDe Lin
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Lucas Adam
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Annemarie Boustani
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - James Duncan
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Lin Leng
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Richard John Bucala
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - S. Nahum Goldberg
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Fahmeed Hyder
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Daniel Coman
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| | - Julius Chapiro
- From the Department of Radiology and Biomedical Imaging (L.J.S., L.A.D., I.T.S., J.J.W., J.S., M.D.L., L.A., A.B., J.D., F.H., D.C., J.C.), Department of Internal Medicine, Section of Rheumatology (R.R.M., L.L., R.J.B.), Department of Immunobiology (N.J.), and Department of Pathology (V.P., X.Z.), Yale University School of Medicine, 300 Cedar St, New Haven, CT 06520; Institute of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany (L.J.S., L.A.D., I.T.S., L.A.); Visage Imaging, San Diego, Calif (M.D.L.); Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Conn (J.D.); and Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel (S.N.G.)
| |
Collapse
|
31
|
Wei J, Wang YH, Lee CY, Truillet C, Oh DY, Xu Y, Ruggero D, Flavell RR, VanBrocklin HF, Seo Y, Craik CS, Fong L, Wang CI, Evans MJ. An Analysis of Isoclonal Antibody Formats Suggests a Role for Measuring PD-L1 with Low Molecular Weight PET Radiotracers. Mol Imaging Biol 2020; 22:1553-1561. [PMID: 32813112 DOI: 10.1007/s11307-020-01527-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE The swell of new and diverse radiotracers to predict or monitor tumor response to cancer immunotherapies invites the opportunity for comparative studies to identify optimal platforms. To probe the significance of antibody format on image quality for PD-L1 imaging, we developed and studied the biodistribution of a library of antibodies based on the anti-PD-L1 IgG1 clone C4. PROCEDURE A C4 minibody and scFv were cloned, expressed, and characterized. The antibodies were functionalized with desferrioxamine and radiolabeled with Zr-89 to enable a rigorous comparison with prior data collected using 89Zr-labeled C4 IgG1. The biodistribution of the radiotracers was evaluated in C57Bl6/J or nu/nu mice bearing B16F10 or H1975 tumors, respectively, which are models that represent high and low tumor autonomous PD-L1 expression. RESULTS The tumor uptake of the 89Zr-C4 minibody was higher than 89Zr-C4 scFv and equivalent to previous data collected using 89Zr-C4 IgG1. However, the peak tumors to normal tissue ratios were generally higher for 89Zr-C4 scFv compared with 89Zr-C4 minibody and 89Zr-IgG1. Moreover, an exploratory study showed that the rapid clearance of 89Zr-C4 scFv enabled detection of endogenous PD-L1 on a genetically engineered and orthotopic model of hepatocellular carcinoma. CONCLUSION In summary, these data support the use of low molecular weight constructs for PD-L1 imaging, especially for tumor types that manifest in abdominal organs that are obstructed by the clearance of high molecular weight radioligands.
Collapse
Affiliation(s)
- Junnian Wei
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Yung-Hua Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Chia Yin Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove Immunos #03-06, Biopolis, Singapore, 138648, Singapore
| | - Charles Truillet
- Imagerie Moleculaire In Vivo, INSERM, CEA, Univ. Paris Sud, CNRS, Universite Paris Saclay, CEA-Service Hospitalier Frederic Joliot, 94100, Orsay, France
| | - David Y Oh
- Department of Medicine, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Yichen Xu
- Department of Urology, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA.,Department of Urology, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Charles S Craik
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA.,Department of Pharmaceutical Chemistry, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Lawrence Fong
- Department of Medicine, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove Immunos #03-06, Biopolis, Singapore, 138648, Singapore
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA. .,Department of Pharmaceutical Chemistry, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA.
| |
Collapse
|
32
|
Wang X, Wang F, Han J, Yang Z, Zhu H, Yang G. Construction and Preclinical Evaluation of a 124/131I-Labeled Radiotracer for the Detection of Mesothelin-Overexpressing Cancer. Mol Pharm 2020; 17:1875-1883. [PMID: 32356995 DOI: 10.1021/acs.molpharmaceut.9b01281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mesothelin is a molecular biomarker of many types of solid cancers, which may represent a highly promising new target in the development of cancer-targeted diagnostic agents. A human anti-mesothelin antibody with a low molecular weight, ET210sc, was applied; this antibody has potent affinity and can penetrate tissue quickly and stably without causing immunoreactions. We developed a new 124/131I-labeled radiotracer of ET210sc. The 124/131I-labeled ET210sc radiotracer showed excellent radiochemical quality (with over 99% radiolabeling yield, 0.07 GBq/μmol specific activity) and remarkable stability in phosphate-buffered saline (>95% at 3 days). The radiotracer retained its potent affinity (dissociation constant, Kd = 0.101 nM). The radiotracer specifically bound to mesothelin-positive cells in vitro. Interestingly, the radiotracer exhibited significant positive-to-negative tumor uptake ratios (1.5:1) 3 days postinjection. The estimated absorbed doses of each organ (e.g., 0.704 mGy/MBq for the rectum; 0.341 mGy/MBq for the spleen) met the medical safety standards for further clinical applications. Our findings provide an initial proof of concept for the potential use of 124/131I-labeled ET210sc radiotracers to detect mesothelin-overexpressing cancer. 124I-ET210sc is proposed to be an ideal imaging agent for further clinical applications.
Collapse
Affiliation(s)
- Xudong Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jintao Han
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Galli F, Aguilera JV, Palermo B, Markovic SN, Nisticò P, Signore A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J Exp Clin Cancer Res 2020; 39:89. [PMID: 32423420 PMCID: PMC7236372 DOI: 10.1186/s13046-020-01586-y] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor-infiltrating immune cells play a key role against cancer. However, malignant cells are able to evade the immune response and establish a very complex balance in which different immune subtypes may drive tumor progression, metastatization and resistance to therapy. New immunotherapeutic approaches aim at restoring the natural balance and increase immune response against cancer by different mechanisms. The complexity of these interactions and the heterogeneity of immune cell subpopulations are a real challenge when trying to develop new immunotherapeutics and evaluate or predict their efficacy in vivo. To this purpose, molecular imaging can offer non-invasive diagnostic tools like radiopharmaceuticals, contrast agents or fluorescent dyes. These agents can be useful for preclinical and clinical purposes and can overcome [18F]FDG limitations in discriminating between true-progression and pseudo-progression. This review provides a comprehensive overview of immune cells involved in microenvironment, available immunotherapies and imaging agents to highlight the importance of new therapeutic biomarkers and their in vivo evaluation to improve the management of cancer patients.
Collapse
Affiliation(s)
- Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, S. Andrea University Hospital, Roma, Italy.
| | - Jesus Vera Aguilera
- Department of oncology and Department of Immunology, Mayo Clinic, (MN), Rochester, USA
| | - Belinda Palermo
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Svetomir N Markovic
- Department of oncology and Department of Immunology, Mayo Clinic, (MN), Rochester, USA
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, "Sapienza" University of Rome, S. Andrea University Hospital, Roma, Italy
| |
Collapse
|
34
|
Li M, Ehlerding EB, Jiang D, Barnhart TE, Chen W, Cao T, Engle JW, Cai W. In vivo characterization of PD-L1 expression in breast cancer by immuno-PET with 89Zr-labeled avelumab. Am J Transl Res 2020; 12:1862-1872. [PMID: 32509182 PMCID: PMC7270013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Programmed death protein 1 and programmed death-ligand 1 (PD-1/PD-L1) have been widely studied as one of the most critical immune check-point pairs in the cancer microenvironment. In breast cancer (BrCa), the expression of PD-L1 is regarded as a determinant biomarker for patient stratification and prediction of inhibition response. Quantitative positron emission tomography (PET) imaging of PD-L1 expression in tumors using a therapeutic antibody in the clinic seems to be a promising approach that can complement conventional histopathological methods and overcome several issues, such as the tumor heterogeneities, sampling representativeness and clear differentiation of positive and negative results. In this study, we synthesized and evaluated 89Zr-labeled avelumab (Ave) for the in vivo characterization of PD-L1 expression in BrCa. Confocal imaging of BrCa cells and flow cytometry were employed to evaluate PD-L1 expression in MDA-MB-231 cells. The intact human monoclonal antibody targeting PD-L1, i.e., Ave, was conjugated to p-SCN-Deferoxamine (Df) and labeled with 89Zr. After intravenous injection of 89Zr-Df-avelumab (89Zr-Df-Ave), PET imaging of MDA-MB-231 tumor-bearing mice, with or without blocking, was performed. High PD-L1 expression of MDA-MB-231 cells was confirmed by in vitro immuno-fluorescent staining and flow cytometry. PET imaging indicated the peak uptake of 89Zr-Df-Ave in the tumor (6.4±1.0 %ID/g), spleen (10.2±0.7 %ID/g) and lymph nodes (6.9±1.0 %ID/g) at 48 h after injection (n=4). Blocking study using unlabeled Ave could reduce the tracer uptake in these tissues (5.2±1.0 %ID/g in the tumor, 4.9±0.5 %ID/g in the spleen and 5.8±1.1 %ID/g in lymph nodes at 48 h, n=4), which demonstrated the specificity of 89Zr-Df-Ave. Biodistribution study and immuno-fluorescent staining were consistent with the quantitative data from PET imaging. Herein, we offer the evidence supporting the value of immuno-PET imaging using 89Zr-Df-Ave for non-invasive characterization of PD-L1 expression in BrCa and the applicability of this tracer in BrCa for treatment evaluation after immunotherapy.
Collapse
Affiliation(s)
- Miao Li
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University277 West Yanta Road, Xi’an 710061, Shaanxi, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Emily B Ehlerding
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Dawei Jiang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Todd E Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Weiyu Chen
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Tianye Cao
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| |
Collapse
|
35
|
Sudo H, Tsuji AB, Sugyo A, Kurosawa G, Kurosawa Y, Alexander D, Tsuda H, Saga T, Higashi T. Radiolabeled Human Monoclonal Antibody 067-213 has the Potential for Noninvasive Quantification of CD73 Expression. Int J Mol Sci 2020; 21:E2304. [PMID: 32225110 PMCID: PMC7177856 DOI: 10.3390/ijms21072304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND CD73 is an ectonucleotidase regulating extracellular adenosine concentration and plays an important role in adenosine-mediated immunosuppressive pathways. The efficacy of CD73-targeted therapy depends on the expression levels of CD73; therefore, monitoring CD73 status in cancer patients would provide helpful information for selection of patients who would benefit from CD73-targeted therapy. Here, we evaluated the ability of 111In-labeled antibody 067-213, which has high affinity for human CD73, to act as a noninvasive imaging probe. METHODS Cell binding and competitive inhibition assays for 111In-labeled 067-213 were conducted using MIAPaCa-2 (high CD73 expression) and A431 (low CD73 expression) cells. For in vivo assessments, biodistribution and SPECT/CT studies were conducted in MIAPaCa-2 and A431 tumor-bearing mice. To estimate the absorbed dose in humans, biodistribution and SPECT/CT studies were conducted in healthy rats. RESULTS 111In-labeled 067-213 bound to MIAPaCa-2 and A431 cells in a CD73-dependent manner and the affinity loss after 111In-labeling was limited. Biodistribution and SPECT/CT studies with 111In-labeled 067-213 in mice showed high uptake in MIAPaCa-2 tumors and lower uptake in A431 tumors. In rats, the probe did not show high uptake in normal organs, including endogenously CD73-expressing organs. The estimated absorbed doses in humans were reasonably low. CONCLUSIONS 111In-labeled 067-213 showed CD73-expression-dependent tumor uptake and low uptake in normal organs and tissues. Radiolabeled 067-213 holds promise as an imaging probe for noninvasive evaluation of CD73 expression levels in patients. Our data encourage further clinical studies to clarify a role for CD73 monitoring in patients receiving CD73-targeted immune therapy.
Collapse
Affiliation(s)
- Hitomi Sudo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Inage, Chiba 263-8555, Japan; (H.S.); (A.S.)
| | - Atsushi B. Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Inage, Chiba 263-8555, Japan; (H.S.); (A.S.)
| | - Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Inage, Chiba 263-8555, Japan; (H.S.); (A.S.)
| | - Gene Kurosawa
- International Center for Cell and Gene Therapy, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan;
| | - Yoshikazu Kurosawa
- Department of Innovation Center for Advanced Medicine, Research Promotion Support Center, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan;
| | - David Alexander
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-dohri, Mizuho-ku, Nagoya 466-8603, Japan; (D.A.); (H.T.)
| | - Hiroyuki Tsuda
- Nanotoxicology Project, Nagoya City University, 3-1 Tanabe-dohri, Mizuho-ku, Nagoya 466-8603, Japan; (D.A.); (H.T.)
| | - Tsuneo Saga
- Department of Advanced Medical Imaging Research, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), Inage, Chiba 263-8555, Japan; (H.S.); (A.S.)
| |
Collapse
|
36
|
Lin AJ, Dehdashti F, Grigsby PW. Molecular Imaging for Radiotherapy Planning and Response Assessment for Cervical Cancer. Semin Nucl Med 2019; 49:493-500. [DOI: 10.1053/j.semnuclmed.2019.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Li J, Van Valkenburgh J, Hong X, Conti PS, Zhang X, Chen K. Small molecules as theranostic agents in cancer immunology. Theranostics 2019; 9:7849-7871. [PMID: 31695804 PMCID: PMC6831453 DOI: 10.7150/thno.37218] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022] Open
Abstract
With further research into the molecular mechanisms and roles linking immune suppression and restraint of (pre)malignancies, immunotherapies have revolutionized clinical strategies in the treatment of cancer. However, nearly 70% of patients who received immune checkpoint therapeutics showed no response. Complementary and/or synergistic effects may occur when extracellular checkpoint antibody blockades combine with small molecules targeting intracellular signal pathways up/downstream of immune checkpoints or regulating the innate and adaptive immune response. After radiolabeling with radionuclides, small molecules can also be used for estimating treatment efficacy of immune checkpoint blockades. This review not only highlights some significant intracellular pathways and immune-related targets such as the kynurenine pathway, purinergic signaling, the kinase signaling axis, chemokines, etc., but also summarizes some attractive and potentially immunosuppression-related small molecule agents, which may be synergistic with extracellular immune checkpoint blockade. In addition, opportunities for small molecule-based theranostics in cancer immunology will be discussed.
Collapse
Affiliation(s)
- Jindian Li
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Juno Van Valkenburgh
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| | - Xingfang Hong
- Laboratory of Pathogen Biology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Peter S. Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, USA
| |
Collapse
|
38
|
Levi J, Lam T, Goth SR, Yaghoubi S, Bates J, Ren G, Jivan S, Huynh TL, Blecha JE, Khattri R, Schmidt KF, Jennings D, VanBrocklin H. Imaging of Activated T Cells as an Early Predictor of Immune Response to Anti-PD-1 Therapy. Cancer Res 2019; 79:3455-3465. [PMID: 31064845 DOI: 10.1158/0008-5472.can-19-0267] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/12/2019] [Accepted: 05/01/2019] [Indexed: 12/29/2022]
Abstract
Compelling evidence points to immune cell infiltration as a critical component of successful immunotherapy. However, there are currently no clinically available, noninvasive methods capable of evaluating immune contexture prior to or during immunotherapy. In this study, we evaluate a T-cell-specific PET agent, [18F]F-AraG, as an imaging biomarker predictive of response to checkpoint inhibitor therapy. We determined the specificity of the tracer for activated T cells in vitro and in a virally induced model of rhabdomyosarcoma. Of all immune cells tested, activated human CD8+ effector cells showed the highest accumulation of [18F]F-AraG. Isolation of lymphocytes from the rhabdomyosarcoma tumors showed that more than 80% of the intratumoral signal came from accumulation of [18F]F-AraG in immune cells, primarily CD8+ and CD4+. Longitudinal monitoring of MC38 tumor-bearing mice undergoing anti-PD-1 treatment revealed differences in signal between PD-1 and isotype antibody-treated mice early into treatment. The differences in [18F]F-AraG signal were also apparent between responders and nonresponders to anti-PD-1 therapy. Importantly, we found that the signal in the tumor-draining lymph nodes provides key information about response to anti-PD-1 therapy. Overall, [18F]F-AraG has potential to serve as a much needed immunomonitoring clinical tool for timely evaluation of immunotherapy. SIGNIFICANCE: These findings reveal differences in T-cell activation between responders and nonresponders early into anti-PD-1 treatment, which may impact many facets of immuno-oncology, including patient selection, management, and development of novel combinatorial approaches.
Collapse
Affiliation(s)
- Jelena Levi
- CellSight Technologies Incorporated, San Francisco, California.
| | - Tina Lam
- CellSight Technologies Incorporated, San Francisco, California
| | - Samuel R Goth
- CellSight Technologies Incorporated, San Francisco, California
| | | | - Jennifer Bates
- CellSight Technologies Incorporated, San Francisco, California
| | - Gang Ren
- CellSight Technologies Incorporated, San Francisco, California
| | - Salma Jivan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | | | | | | | - Henry VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| |
Collapse
|
39
|
Ehlerding EB, Lee HJ, Barnhart TE, Jiang D, Kang L, McNeel DG, Engle JW, Cai W. Noninvasive Imaging and Quantification of Radiotherapy-Induced PD-L1 Upregulation with 89Zr-Df-Atezolizumab. Bioconjug Chem 2019; 30:1434-1441. [PMID: 30973703 DOI: 10.1021/acs.bioconjchem.9b00178] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immune checkpoint expression is highly dynamic, and combination treatments including radiotherapy can particularly modulate this expression. PET imaging using 89Zr-Df-atezolizumab can provide insight into the levels of PD-L1 variation following radiotherapy treatments. In vitro screening was used to monitor PD-L1 expression by lung cancer cells following radiotherapy. Mice bearing PD-L1+ (H460) or PD-L1- (A549) tumors were subjected to various external beam radiotherapy regimens and then imaged using 89Zr-Df-atezolizumab PET. ROI analysis and ex vivo biodistribution studies were employed to quantify tracer accumulations. H460 cells were found to have PD-L1 expression at baseline, and this expression increased following daily radiotherapy of 5 fractions of 2 Gy. PD-L1 expression could not be induced on A549 cells, regardless of radiotherapy regimen. The increase in PD-L1 expression in H460 tumors following fractionated radiotherapy could be imaged in vivo using 89Zr-Df-atezolizumab, with statistically significant higher tracer accumulation noted in fractionated H460 tumors over that in all other H460 or A549 groups after 72 h postinjection of the tracer. Significant accumulation of the tracer was also noted in other PD-L1+ organs, including the spleen and lymph nodes. Ex vivo staining of tumor tissues verified that tumor cells as well as tumor-infiltrating immune cells were responsible for increased PD-L1 expression after radiotherapy in tumor tissues. Overall, PD-L1 expression can be modulated with radiotherapy interventions, and 89Zr-Df-atezolizumab is able to noninvasively monitor these changes in preclinical models.
Collapse
Affiliation(s)
- Emily B Ehlerding
- Medical Physics Department , University of Wisconsin-Madison , 1111 Highland Avenue , Madison , Wisconsin 53705 , United States
| | - Hye Jin Lee
- Pharmaceutical Sciences Department , University of Wisconsin-Madison , 777 Highland Avenue , Madison , Wisconsin 53705 , United States
| | - Todd E Barnhart
- Medical Physics Department , University of Wisconsin-Madison , 1111 Highland Avenue , Madison , Wisconsin 53705 , United States
| | | | | | - Douglas G McNeel
- Department of Medicine , University of Wisconsin-Madison , 1685 Highland Avenue , Madison , Wisconsin 53705 , United States
| | - Jonathan W Engle
- Medical Physics Department , University of Wisconsin-Madison , 1111 Highland Avenue , Madison , Wisconsin 53705 , United States
| | - Weibo Cai
- Medical Physics Department , University of Wisconsin-Madison , 1111 Highland Avenue , Madison , Wisconsin 53705 , United States.,Pharmaceutical Sciences Department , University of Wisconsin-Madison , 777 Highland Avenue , Madison , Wisconsin 53705 , United States
| |
Collapse
|
40
|
Wissler HL, Ehlerding EB, Lyu Z, Zhao Y, Zhang S, Eshraghi A, Buuh ZY, McGuth JC, Guan Y, Engle JW, Bartlett SJ, Voelz VA, Cai W, Wang RE. Site-Specific Immuno-PET Tracer to Image PD-L1. Mol Pharm 2019; 16:2028-2036. [PMID: 30875232 DOI: 10.1021/acs.molpharmaceut.9b00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rapid ascension of immune checkpoint blockade treatments has placed an emphasis on the need for viable, robust, and noninvasive imaging methods for immune checkpoint proteins, which could be of diagnostic value. Immunoconjugate-based positron emission tomography (immuno-PET) allows for sensitive and quantitative imaging of target levels and has promising potential for the noninvasive evaluation of immune checkpoint proteins. However, the advancement of immuno-PET is currently limited by available imaging tools, which heavily rely on full-length IgGs with Fc-mediated effects and are heterogeneous mixtures upon random conjugation with chelators for imaging. Herein, we have developed a site-specific αPD-L1 Fab conjugate with the chelator 1,4,7-triazacyclononane- N, N', N″-triacetic acid (NOTA), enabling radiolabeling for PET imaging, using the amber suppression-mediated genetic incorporation of unnatural amino acid (UAA), p-azidophenylalanine. This Fab conjugate is homogeneous and demonstrated tight binding toward the PD-L1 antigen in vitro. The radiolabeled version, 64Cu-NOTA-αPD-L1, has been employed in PET imaging to allow for effective visualization and mapping of the biodistribution of PD-L1 in two normal mouse models, including the capturing of different PD-L1 expression levels in the spleens of the different mouse types. Follow-up in vivo blocking studies and ex vivo fluorescent staining further validated specific tissue uptakes of the imaging agent. This approach illustrates the utility of UAA-based site-specific Fab conjugation as a general strategy for making sensitive PET imaging probes, which could facilitate the elucidation of the roles of a wide variety of immune checkpoint proteins in immunotherapy.
Collapse
Affiliation(s)
- Haley L Wissler
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Emily B Ehlerding
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Zhigang Lyu
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Yue Zhao
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Si Zhang
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Anisa Eshraghi
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Zakey Yusuf Buuh
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Jeffrey C McGuth
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Yifu Guan
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Sarah J Bartlett
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Vincent A Voelz
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Rongsheng E Wang
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
41
|
Lee HJ, Ehlerding EB, Cai W. Antibody-Based Tracers for PET/SPECT Imaging of Chronic Inflammatory Diseases. Chembiochem 2019; 20:422-436. [PMID: 30240550 PMCID: PMC6377337 DOI: 10.1002/cbic.201800429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/18/2022]
Abstract
Chronic inflammatory diseases are often progressive, resulting not only in physical damage to patients but also social and economic burdens, making early diagnosis of them critical. Nuclear medicine techniques can enhance the detection of inflammation by providing functional as well as anatomical information when combined with other modalities such as magnetic resonance imaging, computed tomography or ultrasonography. Although small molecules and peptides were mainly used for the treatment and imaging of chronic inflammatory diseases in the past, antibodies and their fragments have also been emerging for chronic inflammatory diseases as they show high specificity to their targets and can have various biological half-lives depending on how they are engineered. In addition, imaging with antibodies or their fragments can visualize the in vivo biodistribution of the probes or help monitor therapeutic responses, thereby providing physicians with a greater understanding of drug behavior in vivo and another means of monitoring their patients. In this review, we introduce various targets and radiolabeled antibody-based probes for the molecular imaging of chronic inflammatory diseases in preclinical and clinical studies. Targets can be classified into three different categories: 1) cell-adhesion molecules, 2) surface markers on immune cells, and 3) cytokines or enzymes. The limitations and future directions of using radiolabeled antibodies for imaging inflammatory diseases are also discussed.
Collapse
Affiliation(s)
- Hye Jin Lee
- Pharmaceutical Sciences Department, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Emily B. Ehlerding
- Medical Physics Department, University of Wisconsin – Madison, Madison WI 53705, USA
| | - Weibo Cai
- Pharmaceutical Sciences Department, University of Wisconsin – Madison, Madison WI 53705, USA
- Medical Physics Department, University of Wisconsin – Madison, Madison WI 53705, USA
- Department of Radiology and Carbone Cancer Center, University of Wisconsin – Madison, Madison WI 53705, USA
| |
Collapse
|
42
|
Zhang M, Jiang H, Zhang R, Jiang H, Xu H, Pan W, Gao X, Sun Z. Near-infrared fluorescence-labeled anti-PD-L1-mAb for tumor imaging in human colorectal cancer xenografted mice. J Cell Biochem 2019; 120:10239-10247. [PMID: 30609118 PMCID: PMC6590288 DOI: 10.1002/jcb.28308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/28/2018] [Indexed: 12/23/2022]
Abstract
The expression of programmed death ligand‐1 (PD‐L1) in tumor has been used as a biomarker to predict the anti‐PD‐L1 immunotherapy response. To develop a noninvasive imaging technique to monitor the dynamic changes in PD‐L1 expression in colorectal cancer (CRC), we labeled an anti‐PD‐L1 monoclonal antibody with near‐infrared (NIR) dye and tested the ability of the NIR‐PD‐L1‐mAb probe to monitor the PD‐L1 expression in CRC‐xenografted mice by performing optical imaging. Consistent with the expression levels of PD‐L1 protein in three CRC cell lines in vitro by flow cytometry and Western blot analyses, our in vivo imaging showed the highest fluorescence signal of the xenografted tumors in mice bearing SW620 CRC cells, followed by tumors derived from SW480 and HCT8 cell lines. We detected the highest fluorescent intensity of the tumor at 120 hours after injection of NIR‐PD‐L1‐mAb. The highest fluorescence intensity was seen in the tumor, followed by the spleen and the liver in SW620 xenografted mice. In SW480 and HCT8 xenografted mice, however, the highest fluorescent signals were detected in the spleen, followed by the liver and the tumor. Our findings indicate that SW620 cells express a higher level of PD‐L1, and the NIR‐PD‐L1‐mAb binding to PD‐L1 on the surface of CRC cells was specific. The technique was safe and could provide valuable information on PD‐L1 expression of the tumor for development of a therapeutic strategy of personized targeted immunotherapies as well as treatment response of patients with CRC.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Hao Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hailong Xu
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Pan
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaolin Gao
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Zhongqi Sun
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
43
|
Nishino M, Hatabu H, Hodi FS. Imaging of Cancer Immunotherapy: Current Approaches and Future Directions. Radiology 2019; 290:9-22. [PMID: 30457485 PMCID: PMC6312436 DOI: 10.1148/radiol.2018181349] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
Abstract
Cancer immunotherapy using immune-checkpoint inhibitors has emerged as an effective treatment option for a variety of advanced cancers in the past decade. Because of the distinct mechanisms of immunotherapy that activate the host immunity to treat cancers, unconventional immune-related phenomena are encountered in terms of tumor response and progression, as well as drug toxicity. Imaging plays an important role in objectively characterizing immune-related tumor responses and progression and in detecting and monitoring immune-related adverse events. Moreover, emerging data suggest a promise for molecular imaging that can visualize the specific target molecules involved in immune-checkpoint pathways. In this article, the background and current status of cancer immunotherapy are summarized, and the current methods for imaging evaluations of immune-related responses and toxicities are reviewed along with their limitations and pitfalls. Emerging approaches with molecular imaging are also discussed as a future direction to address unmet needs.
Collapse
Affiliation(s)
- Mizuki Nishino
- From the Departments of Radiology (M.N., H.H.), Medical Oncology (F.S.H.), and Medicine (F.S.H.), Brigham and Women’s Hospital and Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215
| | - Hiroto Hatabu
- From the Departments of Radiology (M.N., H.H.), Medical Oncology (F.S.H.), and Medicine (F.S.H.), Brigham and Women’s Hospital and Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215
| | - F. Stephen Hodi
- From the Departments of Radiology (M.N., H.H.), Medical Oncology (F.S.H.), and Medicine (F.S.H.), Brigham and Women’s Hospital and Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215
| |
Collapse
|
44
|
Ehlerding EB, Lee HJ, Jiang D, Ferreira CA, Zahm CD, Huang P, Engle JW, McNeel DG, Cai W. Antibody and fragment-based PET imaging of CTLA-4+ T-cells in humanized mouse models. Am J Cancer Res 2019; 9:53-63. [PMID: 30755811 PMCID: PMC6356917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023] Open
Abstract
Imaging of immunotherapy targets using positron emission tomography (PET) can allow for noninvasive monitoring of their dynamic expression and may allow for patient stratification in the future. Therefore, two tracers targeting CTLA-4, one a full antibody and the other a F(ab')2 fragment, were radiolabeled with 64Cu and validated in humanized mouse models. Ipilimumab was digested to develop ipilimumab-F(ab')2, and both the intact antibody and the fragment were conjugated with NOTA to chelate 64Cu for PET. The tracers were administered to both control NBSGW mice and humanized mice (PBL mice, engrafted with human peripheral blood lymphocytes), and PET was conducted out to 48 h post-injection. PET region-of-interest analysis, ex vivo biodistribution studies, and tissue staining were used to confirm that the tracers specifically accumulated in CTLA-4+ tissues. Following injection of tracers (n = 3-5 per group), specific uptake was noted in the salivary gland tissues of the humanized mice. This uptake, a result of graft-versus-host disease onset, was proven to be due to human T-cells through staining of the tissues for human CD3 and CTLA-4. 64Cu-NOTA-ipilimumab demonstrated the highest absolute uptake in the salivary glands of PBL mice, peaking at 7.00 ± 2.19 %ID/g. In contrast, 64Cu-NOTA-ipilimumab-F(ab')2 uptake was 2.40 ± 0.86 %ID/g at the same time point. However, the F(ab')2 agent cleared from circulation more quickly than the intact antibody, providing higher salivary gland-to-blood ratios, which reached 1.78 ± 0.72 at 48 h post-injection, compared to 64Cu-NOTA-ipilimumab at 1.19 ± 0.49. Uptake of the tracers in the salivary glands of control mice, and the nonspecific tracer in the PBL mice, was lower at all time points as well. PET imaging with both 64Cu-NOTA-ipilimumab and 64Cu-NOTA-ipilimumab-F(ab')2 was able to localize CTLA-4+ tissues. These tracers may thus help elucidate the mechanisms of response to CTLA-4-targeted checkpoint immunotherapy treatments.
Collapse
Affiliation(s)
- Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-MadisonMadison, WI 53705, USA
| | - Hye Jin Lee
- Pharmaceutical Sciences Department, University of Wisconsin-MadisonMadison, WI 53705, USA
| | - Dawei Jiang
- Department of Radiology, University of Wisconsin-MadisonMadison, WI 53705, USA
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen UniversityShenzhen 518060, China
| | - Carolina A Ferreira
- Department of Biomedical Engineering, University of Wisconsin-MadisonMadison, WI 53705, USA
| | - Christopher D Zahm
- Carbone Cancer Center, University of Wisconsin-MadisonMadison, WI 53705, USA
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen UniversityShenzhen 518060, China
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-MadisonMadison, WI 53705, USA
| | - Douglas G McNeel
- Carbone Cancer Center, University of Wisconsin-MadisonMadison, WI 53705, USA
- Department of Medicine, University of Wisconsin-MadisonMadison, WI 53705, USA
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin-MadisonMadison, WI 53705, USA
- Pharmaceutical Sciences Department, University of Wisconsin-MadisonMadison, WI 53705, USA
- Department of Radiology, University of Wisconsin-MadisonMadison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-MadisonMadison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin-MadisonMadison, WI 53705, USA
| |
Collapse
|
45
|
Schillaci O, Scimeca M, Trivigno D, Chiaravalloti A, Facchetti S, Anemona L, Bonfiglio R, Santeusanio G, Tancredi V, Bonanno E, Urbano N, Mauriello A. Prostate cancer and inflammation: A new molecular imaging challenge in the era of personalized medicine. Nucl Med Biol 2019; 68-69:66-79. [PMID: 30770226 DOI: 10.1016/j.nucmedbio.2019.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
The relationship between cancer and inflammation is one of the most important fields for both clinical and translational research. Despite numerous studies reported interesting and solid data about the prognostic value of the presence of inflammatory infiltrate in cancers, the biological role of inflammation in prostate cancer development is not yet fully clarified. The characterization of molecular pathways that connect altered inflammatory response and prostate cancer progression can provide the scientific rationale for the identification of new prognostic and predictive biomarkers. Specifically, the detection of infiltrating immune cells or related-cytokines by histology and/or by molecular imaging techniques could profoundly change the management of prostate cancer patients. In this context, the anatomic pathology and imaging diagnostic teamwork can provide a valuable support for the validation of new targets for diagnosis and therapy of prostate cancer lesions associated to the inflammatory infiltrate. The aim of this review is to summarize the current literature about the role of molecular imaging technique and anatomic pathology in the study of the mutual interaction occurring between prostate cancer and inflammation. Specifically, we reported the more recent advances in molecular imaging and histological methods for the early detection of prostate lesions associated to the inflammatory infiltrate.
Collapse
Affiliation(s)
- Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Simone Facchetti
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Lucia Anemona
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Giuseppe Santeusanio
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Virginia Tancredi
- University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy; Department of Systems Medicine, School of Sport and Exercise Sciences, University of Rome "Tor Vergata", Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Nicoletta Urbano
- Nuclear Medicine, Policlinico "Tor Vergata", Viale Oxford 81, 00133 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine and Surgery, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| |
Collapse
|
46
|
Predicting PD-1/PD-L1 status in bladder cancer with 18F-FDG PET? Eur J Nucl Med Mol Imaging 2018; 46:791-793. [PMID: 30536016 DOI: 10.1007/s00259-018-4224-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
|
47
|
Du Y, Jin Y, Sun W, Fang J, Zheng J, Tian J. Advances in molecular imaging of immune checkpoint targets in malignancies: current and future prospect. Eur Radiol 2018; 29:4294-4302. [PMID: 30506221 PMCID: PMC6610275 DOI: 10.1007/s00330-018-5814-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022]
Abstract
Objectives This review describes the current status and progress of immune checkpoint targets for imaging of malignancies. Immune checkpoint blockade holds great potential for cancer treatment, and clinical implementation into routine is very rapidly progressing. Therefore, it is an urgent need to become familiar with the vocabulary of immunotherapy and with the evaluation of immune checkpoint and related treatments through noninvasive molecular imaging. Currently, immune target-associated imaging mainly includes PET, SPECT, optical imaging, and MRI. Each imaging method has its own inherent strengths and weaknesses in reflecting tumor morphology and physiology. PD-1, PD-L1, CTLA-4, and LAG-3 are the most commonly considered targets. In this review, the current status and progress of molecular imaging of immune checkpoint targets are discussed. Conclusion Molecular imaging is likely to become a major tool for monitoring immunotherapy. It can help in selecting patients who are suitable for immunotherapy, and also monitor the tumor response. Key Points • Immune checkpoint blockade holds great promise for the treatment of different malignant tumors. • Molecular imaging can identify the expression of immune checkpoint targets in the tumor microenvironment at the molecular and cellular levels, and therefore helps selecting potential responders, suitable for specific immunotherapy. • Molecular imaging can also monitor immunotherapeutic effects, and therefore participates in the evaluation of tumor response to treatment.
Collapse
Affiliation(s)
- Yang Du
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing, 100190, China.,Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Yinhua Jin
- Department of Radiology, Ningbo No.2 Hospital, Xibei Street 41#, Haishu Dist., Ningbo, 315010, Zhejiang, China
| | - Wei Sun
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing, 100190, China.,Department of Radiology, Ningbo No.2 Hospital, Xibei Street 41#, Haishu Dist., Ningbo, 315010, Zhejiang, China
| | - Junjie Fang
- Department of Radiology, Ningbo No.2 Hospital, Xibei Street 41#, Haishu Dist., Ningbo, 315010, Zhejiang, China
| | - Jianjun Zheng
- Department of Radiology, Ningbo No.2 Hospital, Xibei Street 41#, Haishu Dist., Ningbo, 315010, Zhejiang, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Beijing, 100190, China. .,Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100080, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.
| |
Collapse
|
48
|
|
49
|
Moroz A, Lee CY, Wang YH, Hsiao JC, Sevillano N, Truillet C, Craik CS, Fong L, Wang CI, Evans MJ. A Preclinical Assessment of 89Zr-atezolizumab Identifies a Requirement for Carrier Added Formulations Not Observed with 89Zr-C4. Bioconjug Chem 2018; 29:3476-3482. [PMID: 30227708 DOI: 10.1021/acs.bioconjchem.8b00632] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The swell of experimental imaging technologies to noninvasively measure immune checkpoint protein expression presents the opportunity for rigorous comparative studies toward identifying a gold standard. 89Zr-atezolizumab is currently in man, and early data show tumor targeting but also abundant uptake in several normal tissues. Therefore, we conducted a reverse translational study both to understand if tumor to normal tissue ratios for 89Zr-atezolizumab could be improved and to make direct comparisons to 89Zr-C4, a radiotracer that we showed can detect a large dynamic range of tumor-associated PD-L1 expression. PET/CT and biodistribution studies in tumor bearing immunocompetent and nu/nu mice revealed that high specific activity 89Zr-atezolizumab (∼2 μCi/μg) binds to PD-L1 on tumors but also results in very high uptake in many normal mouse tissues, as expected. Unexpectedly, 89Zr-atezolizumab uptake was generally higher in normal mouse tissues compared to 89Zr-C4 and lower in H1975, a tumor model with modest PD-L1 expression. Also unexpectedly, reducing the specific activity at least 15-fold suppressed 89Zr-atezo uptake in normal mouse tissues but increased tumor uptake to levels observed with high specific activity 89Zr-C4. In summary, these data reveal that low specific activity 89Zr-atezo may be necessary for accurately measuring PD-L1 in the tumor microenvironment, assuming a threshold can be identified that preferentially suppresses binding in normal tissues without reducing binding to tumors with abundant expression. Alternatively, high specific activity approaches like 89Zr-C4 PET may be simpler to implement clinically to measure the broad dynamic range of PD-L1 expression known to manifest among tumors.
Collapse
Affiliation(s)
- Anna Moroz
- Skolkovo Institute of Science and Technology , Skolkovo Innovation Center, 3 Nobel Street , Moscow 143026 , Russia.,Department of Radiology and Biomedical Imaging , University of California, San Francisco , 505 Parnassus Avenue , San Francisco , California 94143 , United States
| | - Chia-Yin Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR) , 8A Biomedical Grove Immunos No. 03-06 , Biopolis, 138648 , Singapore
| | - Yung-Hua Wang
- Department of Radiology and Biomedical Imaging , University of California, San Francisco , 505 Parnassus Avenue , San Francisco , California 94143 , United States
| | - Jeffrey C Hsiao
- Department of Radiology and Biomedical Imaging , University of California, San Francisco , 505 Parnassus Avenue , San Francisco , California 94143 , United States
| | - Natalia Sevillano
- Department of Pharmaceutical Chemistry , University of California, San Francisco , 505 Parnassus Avenue , San Francisco , California 94143 , United States
| | - Charles Truillet
- Imagerie Moleculaire In Vivo, INSERM, CEA, Université Paris Sud, CNRS, Université Paris Saclay, CEA-Service Hospitalier Frederic Joliot , Orsay 94100 , France
| | - Charles S Craik
- Department of Pharmaceutical Chemistry , University of California, San Francisco , 505 Parnassus Avenue , San Francisco , California 94143 , United States
| | | | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR) , 8A Biomedical Grove Immunos No. 03-06 , Biopolis, 138648 , Singapore
| | - Michael J Evans
- Department of Radiology and Biomedical Imaging , University of California, San Francisco , 505 Parnassus Avenue , San Francisco , California 94143 , United States.,Department of Pharmaceutical Chemistry , University of California, San Francisco , 505 Parnassus Avenue , San Francisco , California 94143 , United States
| |
Collapse
|
50
|
Preliminary application of 125I–nivolumab to detect PD-1 expression in colon cancer via SPECT. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6124-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|