1
|
Brüssow H, Figuerola J. The Spread of the Mosquito-Transmitted West Nile Virus in North America and Europe. Microb Biotechnol 2025; 18:e70120. [PMID: 40035176 PMCID: PMC11877000 DOI: 10.1111/1751-7915.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/05/2025] Open
Abstract
West Nile virus (WNV) disease, a mosquito-transmitted Flavivirus infection, represents a substantial public health research interest. This virus was unknown in the Western hemisphere until it was introduced in 1999 into an immunologically naïve population. WNV caused an epizootic and epidemic in New York City. The infection then swept over North America, causing mass mortality in birds and cumulatively 60,000 human cases, half of whom were hospitalised, mostly with neurological symptoms. The virus closely resembled a goose virus isolated in Israel in 1998. Mosquitoes of the genus Culex were identified as the insect viral vectors. WNV can infect more than 300 bird species, but in the US, the American robin (Turdus migratorius) represented the ecologically most important bird viral reservoir. Mosquito-to-mosquito viral transmission might amplify the viral spread, and iatrogenic WNV transmission was also observed, leading to the screening of blood products. Compared with African WNV isolates, the New York WNV isolate NY99 showed a mutation in the nonstructural protein NS3 that increased its virulence in birds and was also observed in WNV outbreaks from Romania in 1996 and from Russia in 1999. During its spread across the US, NY99 acquired a mutation in the envelope gene E that favoured viral infection in the insect vector. Europe reported 1200 annual WNV cases in 2024, with a focus in Mediterranean countries, but a northward spread of the infection to Germany and The Netherlands was also noted. Global warming is likely to affect the geographical distribution of vector-borne infections such that people living in temperate climate areas might be increasingly exposed to these infections. Therefore, research on temperature effects on WNV transmission by Culex mosquitoes has become a recent focus of research. Pertinent climate aspects of WNV infections are retraced in the present review.
Collapse
Affiliation(s)
- Harald Brüssow
- Department of Biosystems, Laboratory of Gene TechnologyKU LeuvenLeuvenBelgium
| | - Jordi Figuerola
- Department of Global Change and ConservationEstación Biológica de Doñana‐CSICSevillaSpain
- CIBER Epidemiología y Salud PublicaMadridSpain
| |
Collapse
|
2
|
Foss L, Feiszli T, Kramer VL, Reisen WK, Padgett K. Epidemic versus endemic West Nile virus dead bird surveillance in California: Changes in sensitivity and focus. PLoS One 2023; 18:e0284039. [PMID: 37023091 PMCID: PMC10079120 DOI: 10.1371/journal.pone.0284039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Since 2003, the California West Nile virus (WNV) dead bird surveillance program (DBSP) has monitored publicly reported dead birds for WNV surveillance and response. In the current paper, we compared DBSP data from early epidemic years (2004-2006) with recent endemic years (2018-2020), with a focus on specimen collection criteria, county report incidence, bird species selection, WNV prevalence in dead birds, and utility of the DBSP as an early environmental indicator of WNV. Although fewer agencies collected dead birds in recent years, most vector control agencies with consistent WNV activity continued to use dead birds as a surveillance tool, with streamlined operations enhancing efficiency. The number of dead bird reports was approximately ten times greater during 2004-2006 compared to 2018-2020, with reports from the Central Valley and portions of Southern California decreasing substantially in recent years; reports from the San Francisco Bay Area decreased less dramatically. Seven of ten counties with high numbers of dead bird reports were also high human WNV case burden areas. Dead corvid, sparrow, and quail reports decreased the most compared to other bird species reports. West Nile virus positive dead birds were the most frequent first indicators of WNV activity by county in 2004-2006, followed by positive mosquitoes; in contrast, during 2018-2020 mosquitoes were the most frequent first indicators followed by dead birds, and initial environmental WNV detections occurred later in the season during 2018-2020. Evidence for WNV impacts on avian populations and susceptibility are discussed. Although patterns of dead bird reports and WNV prevalence in tested dead birds have changed, dead birds have endured as a useful element within our multi-faceted WNV surveillance program.
Collapse
Affiliation(s)
- Leslie Foss
- Vector-Borne Disease Section, California Department of Public Health, Richmond, California, United States of America
| | - Tina Feiszli
- Vector-Borne Disease Section, California Department of Public Health, Richmond, California, United States of America
| | - Vicki L. Kramer
- Vector-Borne Disease Section, California Department of Public Health, Sacramento, California, United States of America
| | - William K. Reisen
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Kerry Padgett
- Vector-Borne Disease Section, California Department of Public Health, Richmond, California, United States of America
| |
Collapse
|
3
|
Mencattelli G, Iapaolo F, Monaco F, Fusco G, de Martinis C, Portanti O, Di Gennaro A, Curini V, Polci A, Berjaoui S, Di Felice E, Rosà R, Rizzoli A, Savini G. West Nile Virus Lineage 1 in Italy: Newly Introduced or a Re-Occurrence of a Previously Circulating Strain? Viruses 2021; 14:v14010064. [PMID: 35062268 PMCID: PMC8780300 DOI: 10.3390/v14010064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
In Italy, West Nile virus (WNV) appeared for the first time in the Tuscany region in 1998. After 10 years of absence, it re-appeared in the areas surrounding the Po River delta, affecting eight provinces in three regions. Thereafter, WNV epidemics caused by genetically divergent isolates have been documented every year in the country. Since 2018, only WNV Lineage 2 has been reported in the Italian territory. In October 2020, WNV Lineage 1 (WNV-L1) re-emerged in Italy, in the Campania region. This is the first occurrence of WNV-L1 detection in the Italian territory since 2017. WNV was detected in the internal organs of a goshawk (Accipiter gentilis) and a kestrel (Falco tinnunculus). The RNA extracted in the goshawk tissue samples was sequenced, and a Bayesian phylogenetic analysis was performed by a maximum-likelihood tree. Genome analysis, conducted on the goshawk WNV complete genome sequence, indicates that the strain belongs to the WNV-L1 Western-Mediterranean (WMed) cluster. Moreover, a close phylogenetic similarity is observed between the goshawk strain, the 2008-2011 group of Italian sequences, and European strains belonging to the Wmed cluster. Our results evidence the possibility of both a new re-introduction or unnoticed silent circulation in Italy, and the strong importance of keeping the WNV surveillance system in the Italian territory active.
Collapse
Affiliation(s)
- Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
- Center Agriculture Food Environment, University of Trento, 38098 Trento, Italy;
- Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- Correspondence:
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Napoli, Italy; (G.F.); (C.d.M.)
| | - Claudio de Martinis
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Napoli, Italy; (G.F.); (C.d.M.)
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Elisabetta Di Felice
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Roberto Rosà
- Center Agriculture Food Environment, University of Trento, 38098 Trento, Italy;
| | | | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| |
Collapse
|
4
|
Ronca SE, Ruff JC, Murray KO. A 20-year historical review of West Nile virus since its initial emergence in North America: Has West Nile virus become a neglected tropical disease? PLoS Negl Trop Dis 2021; 15:e0009190. [PMID: 33956816 PMCID: PMC8101735 DOI: 10.1371/journal.pntd.0009190] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
After the unexpected arrival of West Nile virus (WNV) in the United States in 1999, the mosquito-borne virus quickly spread throughout North America. Over the past 20 years, WNV has become endemic, with sporadic epizootics. Concerns about the economic impact of infection in horses lead to the licensure of an equine vaccine as early as 2005, but few advances regarding human vaccines or treatments have since been made. There is a high level of virus transmission in hot/humid, subtropical climates, and high morbidity that may disproportionately affect vulnerable populations including the homeless, elderly, and those with underlying health conditions. Although WNV continues to cause significant morbidity and mortality at great cost, funding and research have declined in recent years. These factors, combined with neglect by policy makers and amenability of control measures, indicate that WNV has become a neglected tropical disease.
Collapse
Affiliation(s)
- Shannon E. Ronca
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeanne C. Ruff
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Kristy O. Murray
- Department of Pediatrics, Section of Pediatric Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Kernbach ME, Martin LB, Unnasch TR, Hall RJ, Jiang RHY, Francis CD. Light pollution affects West Nile virus exposure risk across Florida. Proc Biol Sci 2021; 288:20210253. [PMID: 33757351 PMCID: PMC8059973 DOI: 10.1098/rspb.2021.0253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Emerging infectious diseases (EIDs) present global health threats, and their emergences are often linked to anthropogenic change. Artificial light at night (ALAN) is one form of anthropogenic change that spans beyond urban boundaries and may be relevant to EIDs through its influence on the behaviour and physiology of hosts and/or vectors. Although West Nile virus (WNV) emergence has been described as peri-urban, we hypothesized that exposure risk could also be influenced by ALAN in particular, which is testable by comparing the effects of ALAN on prevalence while controlling for other aspects of urbanization. By modelling WNV exposure among sentinel chickens in Florida, we found strong support for a nonlinear relationship between ALAN and WNV exposure risk in chickens with peak WNV risk occurring at low ALAN levels. Although our goal was not to discern how ALAN affected WNV relative to other factors, effects of ALAN on WNV exposure were stronger than other known drivers of risk (i.e. impervious surface, human population density). Ambient temperature in the month prior to sampling, but no other considered variables, strongly influenced WNV risk. These results indicate that ALAN may contribute to spatio-temporal changes in WNV risk, justifying future investigations of ALAN on other vector-borne parasites.
Collapse
Affiliation(s)
- Meredith E. Kernbach
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612, USA
| | - Lynn B. Martin
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612, USA
| | - Thomas R. Unnasch
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612, USA
| | - Richard J. Hall
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Dr., Athens, GA 30602, USA
| | - Rays H. Y. Jiang
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Tampa, FL 33612, USA
| | - Clinton D. Francis
- Department of Biological Sciences, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA
| |
Collapse
|
6
|
Pathogenicity of West Nile Virus Lineage 1 to German Poultry. Vaccines (Basel) 2020; 8:vaccines8030507. [PMID: 32899581 PMCID: PMC7563189 DOI: 10.3390/vaccines8030507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus that originates from Africa and at present causes neurological disease in birds, horses, and humans all around the globe. As West Nile fever is an important zoonosis, the role of free-ranging domestic poultry as a source of infection for humans should be evaluated. This study examined the pathogenicity of an Italian WNV lineage 1 strain for domestic poultry (chickens, ducks, and geese) held in Germany. All three species were subcutaneously injected with WNV, and the most susceptible species was also inoculated via mosquito bite. All species developed various degrees of viremia, viral shedding (oropharyngeal and cloacal), virus accumulation, and pathomorphological lesions. Geese were most susceptible, displaying the highest viremia levels. The tested waterfowl, geese, and especially ducks proved to be ideal sentinel species for WNV due to their high antibody levels and relatively low blood viral loads. None of the three poultry species can function as a reservoir/amplifying host for WNV, as their viremia levels most likely do not suffice to infect feeding mosquitoes. Due to the recent appearance of WNV in Germany, future pathogenicity studies should also include local virus strains.
Collapse
|
7
|
Karki S, Brown WM, Uelmen J, Ruiz MO, Smith RL. The drivers of West Nile virus human illness in the Chicago, Illinois, USA area: Fine scale dynamic effects of weather, mosquito infection, social, and biological conditions. PLoS One 2020; 15:e0227160. [PMID: 32437363 PMCID: PMC7241786 DOI: 10.1371/journal.pone.0227160] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/09/2020] [Indexed: 11/19/2022] Open
Abstract
West Nile virus (WNV) has consistently been reported to be associated with human cases of illness in the region near Chicago, Illinois. However, the number of reported cases of human illness varies across years, with intermittent outbreaks. Several dynamic factors, including temperature, rainfall, and infection status of vector mosquito populations, are responsible for much of these observed variations. However, local landscape structure and human demographic characteristics also play a key role. The geographic and temporal scales used to analyze such complex data affect the observed associations. Here, we used spatial and statistical modeling approaches to investigate the factors that drive the outcome of WNV human illness on fine temporal and spatial scales. Our approach included multi-level modeling of long-term weekly data from 2005 to 2016, with weekly measures of mosquito infection, human illness and weather combined with more stable landscape and demographic factors on the geographical scale of 1000m hexagons. We found that hot weather conditions, warm winters, and higher MIR in earlier weeks increased the probability of an area of having a WNV human case. Higher population and the proportion of urban light intensity in an area also increased the probability of observing a WNV human case. A higher proportion of open water sources, percentage of grass land, deciduous forests, and housing built post 1990 decreased the probability of having a WNV case. Additionally, we found that cumulative positive mosquito pools up to 31 weeks can strongly predict the total annual human WNV cases in the Chicago region. This study helped us to improve our understanding of the fine-scale drivers of spatiotemporal variability of human WNV cases.
Collapse
Affiliation(s)
- Surendra Karki
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - William M. Brown
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - John Uelmen
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - Marilyn O’Hara Ruiz
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
| | - Rebecca Lee Smith
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
8
|
Maharaj PD, Langevin SA, Bolling BG, Andrade CC, Engle XA, Ramey WN, Bosco-Lauth A, Bowen RA, Sanders TA, Huang CYH, Reisen WK, Brault AC. N-linked glycosylation of the West Nile virus envelope protein is not a requisite for avian virulence or vector competence. PLoS Negl Trop Dis 2019; 13:e0007473. [PMID: 31306420 PMCID: PMC6658116 DOI: 10.1371/journal.pntd.0007473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/25/2019] [Accepted: 05/17/2019] [Indexed: 01/27/2023] Open
Abstract
The N-linked glycosylation motif at amino acid position 154-156 of the envelope (E) protein of West Nile virus (WNV) is linked to enhanced murine neuroinvasiveness, avian pathogenicity and vector competence. Naturally occurring isolates with altered E protein glycosylation patterns have been observed in WNV isolates; however, the specific effects of these polymorphisms on avian host pathogenesis and vector competence have not been investigated before. In the present study, amino acid polymorphisms, NYT, NYP, NYF, SYP, SYS, KYS and deletion (A'DEL), were reverse engineered into a parental WNV (NYS) cDNA infectious clone to generate WNV glycosylation mutant viruses. These WNV glycosylation mutant viruses were characterized for in vitro growth, pH-sensitivity, temperature-sensitivity and host competence in American crows (AMCR), house sparrows (HOSP) and Culex quinquefasciatus. The NYS and NYT glycosylated viruses showed higher viral replication, and lower pH and temperature sensitivity than NYP, NYF, SYP, SYS, KYS and A'DEL viruses in vitro. Interestingly, in vivo results demonstrated asymmetric effects in avian and mosquito competence that were independent of the E-protein glycosylation status. In AMCRs and HOSPs, all viruses showed comparable viremias with the exception of NYP and KYS viruses that showed attenuated phenotypes. Only NYP showed reduced vector competence in both Cx. quinquefasciatus and Cx. tarsalis. Glycosylated NYT exhibited similar avian virulence properties as NYS, but resulted in higher mosquito oral infectivity than glycosylated NYS and nonglycosylated, NYP, NYF, SYP and KYS mutants. These data demonstrated that amino acid polymorphisms at E154/156 dictate differential avian host and vector competence phenotypes independent of E-protein glycosylation status.
Collapse
Affiliation(s)
- Payal D. Maharaj
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Stanley A. Langevin
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Bethany G. Bolling
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Christy C. Andrade
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Xavier A. Engle
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - Wanichaya N. Ramey
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Angela Bosco-Lauth
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Todd A. Sanders
- U.S. Fish and Wildlife Service, Vancouver, WA, United States of America
| | - Claire Y.-H. Huang
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
| | - William K. Reisen
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Aaron C. Brault
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States of America
- Center for Vector-borne Disease Research and Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| |
Collapse
|
9
|
Hepp CM. Towards Translational Epidemiology: Next-Generation Sequencing and Phylogeography as Epidemiological Mainstays. mSystems 2019; 4:e00119-19. [PMID: 31186309 PMCID: PMC6584875 DOI: 10.1128/msystems.00119-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/24/2019] [Indexed: 11/20/2022] Open
Abstract
Next-generation sequencing, coupled with the development of user-friendly software, has achieved a level of accessibility that is revolutionizing the way we approach epidemiological investigations. We can sequence pathogen genomes and conduct phylogenetic analyses to assess transmission, identify from which country or city a pathogen originated, or which contaminated potluck item resulted in widespread foodborne illness. However, until recently, these types of studies have been rarities, limited to specific investigations usually conducted over the short term. Given the feasibility and realized public health benefits of ascertaining pathogen relationships, federal, state, and county agencies are building their sequencing capacities, either through acquisition of equipment or collaborative activities. In this perspective, I detail research projects that our group collaborates on with county and state public health agencies, where the objective is to identify pathogen source locations with the longer-term goal of implementing proactive interventions.
Collapse
Affiliation(s)
- Crystal M Hepp
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, USA
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
10
|
Bisanzio D, McMillan JR, Barreto JG, Blitvich BJ, Mead DG, O'Connor J, Kitron U. Evidence for West Nile virus spillover into the squirrel population in Atlanta, Georgia. Vector Borne Zoonotic Dis 2017; 15:303-10. [PMID: 25988439 DOI: 10.1089/vbz.2014.1734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In the United States, spillover of West Nile virus (WNV) into wild mammal populations has been reported since the introduction of the virus into the New World in 1999. Eastern gray squirrels (Sciurus carolinensis) exhibit a high seroprevalence for WNV in urban settings where high virus circulation and human spillover have been reported. In Atlanta, Georgia, human cases of WNV are uncommon despite high infection rates in birds and mosquitoes. In this study, we evaluated WNV exposure of eastern gray squirrels in a WNV hot spot in Atlanta. MATERIALS AND METHODS Gray squirrels were live-trapped in Grant Park, Atlanta, during July-October, 2012, and a census was conducted to estimate squirrel density in the study site. Sera from trapped animals were tested for circulating virus-by-virus isolation in cell culture and for WNV-specific antibodies by enzyme-linked immunosorbent assay and plaque reduction neutralization test. Mosquitoes were collected at the same location and tested for virus isolation. RESULTS Among the 69 collected squirrels, 25 (36.2%) tested positive for WNV antibodies, although none were viremic. Seroprevalence was lower in juveniles (18.8%) than in adults (37.5%), but this difference was not statistically significant. Gender and squirrel density had no effect on seroprevalence. Seasonality of squirrel seroprevalence and of mosquito infection were significantly associated, both peaking in August. No difference in squirrel exposure was detected across the collection sites. CONCLUSIONS We report a high degree of WNV exposure in squirrels in Grant Park that was correlated with seasonality of mosquito infection. The detection of antibodies in juveniles suggests that circulation of WNV in the surveyed population is ongoing. Eastern gray squirrels may be suitable indicators for virus amplification and for risk of human spillover on a local scale in urban settings.
Collapse
Affiliation(s)
- Donal Bisanzio
- 1Department of Environmental Sciences, Emory University, Atlanta, Georgia
| | - Joseph R McMillan
- 1Department of Environmental Sciences, Emory University, Atlanta, Georgia
| | - Josafá Gonçalves Barreto
- 2Laboratório de Dermato-Imunologia UEPA/UFPA/Marcello Candia, Marituba, Pará, Brasil.,3Universidade Federal do Pará, Campus Castanhal, Pará, Brasil
| | - Bradley J Blitvich
- 4Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Daniel G Mead
- 5University of Georgia, College of Veterinary Medicine, Southeastern Cooperative Wildlife Disease Study, Athens, Georgia
| | - Josh O'Connor
- 6Fire Management Division, US Fish and Wildlife Service, Atlanta, Georgia
| | - Uriel Kitron
- 1Department of Environmental Sciences, Emory University, Atlanta, Georgia
| |
Collapse
|
11
|
Chugh PE, Damania BA, Dittmer DP. Toll-like receptor-3 is dispensable for the innate microRNA response to West Nile virus (WNV). PLoS One 2014; 9:e104770. [PMID: 25127040 PMCID: PMC4134228 DOI: 10.1371/journal.pone.0104770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 07/16/2014] [Indexed: 12/28/2022] Open
Abstract
The innate immune response to West Nile virus (WNV) infection involves recognition through toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), leading to establishment of an antiviral state. MiRNAs (miRNAs) have been shown to be reliable biomarkers of TLR activation. Here, we sought to evaluate the contribution of TLR3 and miRNAs to the host response to WNV infection. We first analyzed HEK293-NULL and HEK293-TLR3 cells for changes in the innate immune response to infection. The presence of TLR3 did not seem to affect WNV load, infectivity or phosphorylation of IRF3. Analysis of experimentally validated NFκB-responsive genes revealed a WNV-induced signature largely independent of TLR3. Since miRNAs are involved in viral pathogenesis and the innate response to infection, we sought to identify changes in miRNA expression upon infection in the presence or absence of TLR3. MiRNA profiling revealed 70 miRNAs induced following WNV infection in a TLR3-independent manner. Further analysis of predicted gene targets of WNV signature miRNAs revealed genes highly associated with pathways regulating cell death, viral pathogenesis and immune cell trafficking.
Collapse
Affiliation(s)
- Pauline E. Chugh
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Blossom A. Damania
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
12
|
Kilpatrick AM, Pape WJ. Predicting human West Nile virus infections with mosquito surveillance data. Am J Epidemiol 2013; 178:829-35. [PMID: 23825164 DOI: 10.1093/aje/kwt046] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
West Nile virus (WNV) has become established across the Americas with recent heightened activity causing significant human illness. Surveillance methods to predict the risk of human infection are urgently needed to initiate timely preventative measures and justify the expense of implementing costly or unpopular control measures, such as aerial spraying or curfews. We quantified the links between mosquito surveillance data and the spatiotemporal patterns of 3,827 human WNV cases reported over 5 years in Colorado from 2003 to 2007. Mosquito data were strongly predictive of variation in the number of human WNV infections several weeks in advance in both a spatiotemporal statewide analysis and temporal variation within counties with substantial numbers of human cases. We outline several ways to further improve the predictive power of these data and we quantify the loss of information if no funds are available for testing mosquitoes for WNV. These results demonstrate that mosquito surveillance provides a valuable public health tool for assessing the risk of human arboviral infections, allocating limited public health resources, and justifying emergency control actions.
Collapse
Affiliation(s)
- A Marm Kilpatrick
- Department of Ecology and Evolutionary Biology, 1156 High Street, University of California-Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
13
|
Scotch M, Baarson B, Beard R, Lauder R, Varman A, Halden RU. Examining the differences in format and characteristics of zoonotic virus surveillance data on state agency websites. J Med Internet Res 2013; 15:e90. [PMID: 23628771 PMCID: PMC3650930 DOI: 10.2196/jmir.2487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/25/2013] [Accepted: 04/12/2013] [Indexed: 11/30/2022] Open
Abstract
Background Zoonotic viruses are infectious organisms transmittable between animals and humans. Agencies of public health, agriculture, and wildlife conduct surveillance of zoonotic viruses and often report data on their websites. However, the format and characteristics of these data are not known. Objective To describe and compare the format and characteristics of statistics of zoonotic viruses on state public health, agriculture, and wildlife agency websites. Methods For each state, we considered the websites of that state’s public health, agriculture, and wildlife agency. For each website, we noted the presence of any statistics for zoonotic viruses from 2000-2012. We analyzed the data using numerous categories including type of statistic, temporal and geographic level of detail, and format. We prioritized our analysis within each category based on assumptions of individuals’ preferences for extracting and analyzing data from websites. Thus, if two types of data (such as city and state-level) were present for a given virus in a given year, we counted the one with higher priority (city). External links from agency sites to other websites were not considered. Results From 2000-2012, state health departments had the most extensive virus data, followed by agriculture, and then wildlife. We focused on the seven viruses that were common across the three agencies. These included rabies, West Nile virus, eastern equine encephalitis, St. Louis encephalitis, western equine encephalitis, influenza, and dengue fever. Simple numerical totals were most often used to report the data (89% for public health, 81% for agriculture, and 82% for wildlife), and proportions were not different (chi-square P=.15). Public health data were most often presented yearly (66%), while agriculture and wildlife agencies often described cases as they occurred (Fisher’s Exact test P<.001). Regarding format, public health agencies had more downloadable PDF files (68%), while agriculture (61%) and wildlife agencies (46%) presented data directly in the text of the HTML webpage (Fisher’s Exact test P<.001). Demographics and other information including age, gender, and host were limited. Finally, a Fisher’s Exact test showed no association between geography data and agency type (P=.08). However, it was noted that agriculture department data was often at the county level (63%), while public health was mixed between county (38%) and state (35%). Conclusions This study focused on the format and characteristics of statistics of zoonotic viruses on websites of state public health, wildlife, and agriculture agencies in the context of population health surveillance. Data on zoonotic viruses varied across agencies presenting challenges for researchers needing to integrate animal and human data from different websites.
Collapse
Affiliation(s)
- Matthew Scotch
- Center for Environmental Security, Biodesign Institute and Security and Defense Systems Initiative, Arizona State University, Tempe, AZ 85287-5904, United States.
| | | | | | | | | | | |
Collapse
|
14
|
Danabalan R, Ponsonby DJ, Lintoni YM. A critical assessment of available molecular identification tools for determining the status of Culex pipiens s.l. in the United Kingdom. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2012; 28:68-74. [PMID: 23401945 DOI: 10.2987/8756-971x-28.0.68] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Until the relatively recent application of molecular identification tools, identification of Culex pipiens f. pipiens and Cx. pipiens f. molestus relied on expressed ecological characteristics, including autogeny, host preference and stenogamy. Herein we test two DNA assays, one based on the microsatellite locus CQ11 and the other on species-diagnostic nucleotide bases in the mtDNA cytochrome oxidase I, on 322 wild-caught Cx. pipiens s.l. collected in above ground habitats from 6 counties across southern England and Wales. Of the 322 Culex pipiens s.l. screened using the CQ11 assay, 205 were identified as Cx. pipiens f. pipiens, 95 as Cx. pipiens f. molestus and 22 were determined as hybrids. Neither above ground Cx. pipiens f. molestus, nor hybrids have previously been reported in UK. However, comparison of COI barcodes (658bp) from 30 individuals from the above defined grouping indicated that inadvertent inclusion of specimens of Cx. torrentium resulted in the expected product sizes purportedly diagnostic for Cx. pipiens f. molestus, Cx. pipiens f. pipiens and hybrids in the CQ11 assay. COI sequences showed Cx. torrentium was misidentified as Cx. pipiens s.l. in more than 50% of cases and that all above ground Cx. pipiens s.l. collected in this study were in fact Cx. pipiens f. pipiens. Thus in regions of the Palearctic where Cx. torrentium and Cx. pipiens s.l. are sympatric, we showed that the CQ11 assay produces misleading results and should not be used.
Collapse
|
15
|
Ghosh D, Guha R. Using a neural network for mining interpretable relationships of West Nile risk factors. Soc Sci Med 2010; 72:418-29. [PMID: 20950908 DOI: 10.1016/j.socscimed.2010.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 07/21/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022]
Abstract
The West Nile Virus (WNV) is an infectious disease spreading rapidly throughout the United States, causing illness among thousands of birds, animals, and humans. Yet, we only have a rudimentary understanding of how the mosquito-borne virus operates in complex avian-human environmental systems. The four broad categories of risk factors underlying WNV incidences are: environmental (temperature, precipitation, wetlands), socioeconomic (housing age), built-environment (catch basins, ditches), and existing mosquito abatement policies. This research first built a model incorporating the non-linear relationship between WNV incidences and hypothesized risk factors and second, identified important factor(s) whose management would result in effective disease prevention and containment. The research was conducted in the Metropolitan area of Minnesota, which had experienced significant WNV outbreaks from 2002. Computational neural network (CNN) modeling was used to understand the occurrence of WNV infected dead birds because of their ability to capture complex relationships with higher accuracy than linear models. Further a detailed interpretation technique, based on weights and biases of the network, provided a means for extracting relationships between risk factors and disease occurrence. Five risk factors: proximity to bogs, lakes, temperature, housing age, and developed medium density land cover class, were selected by the model. The detailed interpretation indicated that temperature, age of houses, and developed medium density land cover were positively related, and distance to bogs and lakes were negatively related to the incidence of WNV. This paper provides both applied and methodological contributions to the field of health geography. The relationships between the risk factors and disease occurrence could contribute to vector control strategies such as targeted insecticide spraying near bogs and lakes, mosquito control treatments for older houses, and extensive mapping, inspection, and treatments of catch basins. The proposed interpretation technique expanded the role of CNN models in health sciences as both predictive and explanatory tools.
Collapse
Affiliation(s)
- Debarchana Ghosh
- Kent State University, Geography, 413 McGilvery Hall, Department of Geography Kent State, Kent, OH 44242, United States.
| | | |
Collapse
|
16
|
Sejvar JJ, Lindsey NP, Campbell GL. Primary causes of death in reported cases of fatal West Nile Fever, United States, 2002-2006. Vector Borne Zoonotic Dis 2010; 11:161-4. [PMID: 20687860 DOI: 10.1089/vbz.2009.0086] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Morbidity and mortality associated with human West Nile virus (WNV) infection is generally attributable to severe neurologic disease; most illness with WNV, however, is characterized by febrile illness. Although generally considered to be a benign, self-limited syndrome, some cases of West Nile Fever (WNF) have been reported as resulting in fatal outcome. We reviewed cause-of-death information for 35 cases of WNF reported as fatal to the Centers for Disease Control and Prevention between 2002 and 2006, to determine underlying primary causes of death and identify groups at highest risk for fatal WNF. Fifteen were determined to be misclassified neuroinvasive disease cases; one death was medically unrelated to WNV infection. Among the remaining 23 cases, the median age was 78 years (range: 54-92), and 78% were >70 years old; the median age for all 13,482 reported cases of WNF during this time period was 47 years (range: 1 month-97 years). Cardiac (8 cases, 35%) and pulmonary complications (6 cases, 25%) were the most common primary causes of death. Underlying medical conditions among fatal WNF cases included cardiovascular disease (13; 76%), hypertension (8; 47%), and diabetes mellitus (6; 35%). Our study suggests that in some individuals, especially persons of advanced age and those with underlying medical conditions, WNF may precipitate death. The elderly are at increased risk of death from both West Nile neuroinvasive disease and WNF, which emphasizes the importance of primary prevention of WNV infection and close monitoring for cardiac and pulmonary complications in elderly patients hospitalized for WNV disease.
Collapse
Affiliation(s)
- James J Sejvar
- Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vectorborne, and Enteric Diseases (NCZVED), Centers for Disease Control and Prevention (CDC), Fort Collins, Colorado, USA.
| | | | | |
Collapse
|
17
|
Veksler A, Eidson M, Zurbenko I. Assessment of methods for prediction of human West Nile virus (WNV) disease from WNV-infected dead birds. Emerg Themes Epidemiol 2009; 6:4. [PMID: 19500367 PMCID: PMC2701944 DOI: 10.1186/1742-7622-6-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 06/05/2009] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND West Nile virus (WNV) is currently the leading cause of arboviral-associated encephalitis in the U.S., and can lead to long-term neurologic sequelae. Improvements in dead bird specimen processing time, including the availability of rapid field laboratory tests, allows reassessment of the effectiveness of using WNV-positive birds in forecasting human WNV disease. METHODS Using New York State integrated WNV surveillance data from transmissions seasons in 2001-2003, this study determined which factors associated with WNV-positive dead birds are most closely associated with human disease. The study also addressed the 'delay' period between the distribution of the dead bird variable and the distribution of the human cases. In the last step, the study assessed the relative risk of contracting WNV disease for people who lived in counties with a 'signal' value of the predictor variable versus people who lived in counties with no 'signal' value of the predictor variable. RESULTS The variable based on WNV-positive dead birds [(Positive/Tested)*(Population/Area)] was identified as the optimum variable for predicting WNV human disease at a county level. The delay period between distribution of the variable and human cases was determined to be approximately two weeks. For all 3 years combined, the risk of becoming a WNV case for people who lived in 'exposed' counties (those with levels of the positive dead bird variable above the signal value) was about 2 times higher than the risk for people who lived in 'unexposed' counties, but risk varied by year. CONCLUSION This analysis develops a new variable based on WNV-positive dead birds, [(Positive/Tested)*(Population/Area)] to be assessed in future real-time studies for forecasting the number of human cases in a county. A delay period of approximately two weeks between increases in this variable and the human case onset was identified. Several threshold 'signal' values were assessed and found effective at indicating human case risk, although specific thresholds are likely to vary by region and surveillance system differences.
Collapse
Affiliation(s)
- Anna Veksler
- School of Public Health, University at Albany, One University Place, Rensselaer, New York 12144, USA
| | - Millicent Eidson
- School of Public Health, University at Albany, One University Place, Rensselaer, New York 12144, USA
- Zoonoses Program, New York State Department of Health, 621 Corning Tower, Empire State Plaza, Albany, New York 12237, USA
| | - Igor Zurbenko
- School of Public Health, University at Albany, One University Place, Rensselaer, New York 12144, USA
| |
Collapse
|
18
|
Koo QY, Khan AM, Jung KO, Ramdas S, Miotto O, Tan TW, Brusic V, Salmon J, August JT. Conservation and variability of West Nile virus proteins. PLoS One 2009; 4:e5352. [PMID: 19401763 PMCID: PMC2670515 DOI: 10.1371/journal.pone.0005352] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/10/2009] [Indexed: 12/02/2022] Open
Abstract
West Nile virus (WNV) has emerged globally as an increasingly important pathogen for humans and domestic animals. Studies of the evolutionary diversity of the virus over its known history will help to elucidate conserved sites, and characterize their correspondence to other pathogens and their relevance to the immune system. We describe a large-scale analysis of the entire WNV proteome, aimed at identifying and characterizing evolutionarily conserved amino acid sequences. This study, which used 2,746 WNV protein sequences collected from the NCBI GenPept database, focused on analysis of peptides of length 9 amino acids or more, which are immunologically relevant as potential T-cell epitopes. Entropy-based analysis of the diversity of WNV sequences, revealed the presence of numerous evolutionarily stable nonamer positions across the proteome (entropy value of ≤1). The representation (frequency) of nonamers variant to the predominant peptide at these stable positions was, generally, low (≤10% of the WNV sequences analyzed). Eighty-eight fragments of length 9–29 amino acids, representing ∼34% of the WNV polyprotein length, were identified to be identical and evolutionarily stable in all analyzed WNV sequences. Of the 88 completely conserved sequences, 67 are also present in other flaviviruses, and several have been associated with the functional and structural properties of viral proteins. Immunoinformatic analysis revealed that the majority (78/88) of conserved sequences are potentially immunogenic, while 44 contained experimentally confirmed human T-cell epitopes. This study identified a comprehensive catalogue of completely conserved WNV sequences, many of which are shared by other flaviviruses, and majority are potential epitopes. The complete conservation of these immunologically relevant sequences through the entire recorded WNV history suggests they will be valuable as components of peptide-specific vaccines or other therapeutic applications, for sequence-specific diagnosis of a wide-range of Flavivivirus infections, and for studies of homologous sequences among other flaviviruses.
Collapse
Affiliation(s)
- Qi Ying Koo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Asif M. Khan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Keun-Ok Jung
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shweta Ramdas
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olivo Miotto
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- MRC Centre for Genomics and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tin Wee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vladimir Brusic
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jerome Salmon
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - J. Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
19
|
Scotch M, Odofin L, Rabinowitz P. Linkages between animal and human health sentinel data. BMC Vet Res 2009; 5:15. [PMID: 19389228 PMCID: PMC2679002 DOI: 10.1186/1746-6148-5-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 04/23/2009] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION In order to identify priorities for building integrated surveillance systems that effectively model and predict human risk of zoonotic diseases, there is a need for improved understanding of the practical options for linking surveillance data of animals and humans. We conducted an analysis of the literature and characterized the linkage between animal and human health data. We discuss the findings in relation to zoonotic surveillance and the linkage of human and animal data. METHODS The Canary Database, an online bibliographic database of animal-sentinel studies was searched and articles were classified according to four linkage categories. RESULTS 465 studies were identified and assigned to linkage categories involving: descriptive, analytic, molecular, or no human outcomes of human and animal health. Descriptive linkage was the most common, whereby both animal and human health outcomes were presented, but without quantitative linkage between the two. Rarely, analytic linkage was utilized in which animal data was used to quantitatively predict human risk. The other two categories included molecular linkage, and no human outcomes, which present health outcomes in animals but not humans. DISCUSSION We found limited use of animal data to quantitatively predict human risk and listed the methods from the literature that performed analytic linkage. The lack of analytic linkage in the literature might not be solely related to technological barriers including access to electronic database, statistical software packages, and Geographical Information System (GIS). Rather, the problem might be from a lack of understanding by researchers of the importance of animal data as a 'sentinel' for human health. Researchers performing zoonotic surveillance should be aware of the value of animal-sentinel approaches for predicting human risk and consider analytic methods for linking animal and human data. Qualitative work needs to be done in order to examine researchers' decisions in linkage strategies between animal and human data.
Collapse
Affiliation(s)
- Matthew Scotch
- Yale Center for Medical Informatics, Yale School of Medicine, Yale University, New Haven, CT USA
| | - Lynda Odofin
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT USA
| | - Peter Rabinowitz
- Yale Occupational and Environmental Medicine Program, Yale School of Medicine, Yale University, New Haven, CT USA
| |
Collapse
|
20
|
Brien JD, Uhrlaub JL, Nikolich-Zugich J. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:8568-75. [PMID: 19050276 PMCID: PMC3504655 DOI: 10.4049/jimmunol.181.12.8568] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
CD4 T cells have been shown to be necessary for the prevention of encephalitis during West Nile virus (WNV) infection. However, the mechanisms used by Ag-specific CD4 T cells to protect mice from WNV encephalitis remain incompletely understood. Contrary to the belief that CD4 T cells are protective because they merely maintain the CD8 T cell response and improve Ab production, in this study we provide evidence for the direct antiviral activity of CD4 T cells that functions to protect the host from WNV encephalitis. In adoptive transfers, naive CD4 T cells protected a significant number of lethally infected RAG(-/-) mice, demonstrating the protective effect of CD4 T cells independent of B cells and CD8 T cells. To shed light on the mechanism of this protection, we defined the peptide specificities of the CD4 T cells responding to WNV infection in C57BL/6 (H-2(b)) mice, and used these peptides to characterize the in vivo function of antiviral CD4 T cells. WNV-specific CD4 T cells produced IFN-gamma and IL-2, but also showed potential for in vivo and ex vivo cytotoxicity. Furthermore, peptide vaccination using CD4 epitopes conferred protection against lethal WNV infection in immunocompetent mice. These results demonstrate the role of direct effector function of Ag-specific CD4 T cells in preventing severe WNV disease.
Collapse
Affiliation(s)
- James D. Brien
- Vaccine and Gene Therapy Institute, Department of Molecular Microbiology and Immunology and The Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006
| | - Jennifer L. Uhrlaub
- Vaccine and Gene Therapy Institute, Department of Molecular Microbiology and Immunology and The Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85718, USA
| | - Janko Nikolich-Zugich
- Vaccine and Gene Therapy Institute, Department of Molecular Microbiology and Immunology and The Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85718, USA
| |
Collapse
|
21
|
Carney RM, Husted S, Jean C, Glaser C, Kramer V. Efficacy of aerial spraying of mosquito adulticide in reducing incidence of West Nile Virus, California, 2005. Emerg Infect Dis 2008; 14:747-54. [PMID: 18439356 PMCID: PMC2600250 DOI: 10.3201/eid1405.071347] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One-sentence summary for table of contents: Aerial spraying reduced incidence of human infection. Epidemic transmission of West Nile virus (WNV) in Sacramento County, California, in 2005 prompted aerial application of pyrethrin, a mosquito adulticide, over a large urban area. Statistical analyses of geographic information system datasets indicated that adulticiding reduced the number of human WNV cases within 2 treated areas compared with the untreated area of the county. When we adjusted for maximum incubation period of the virus from infection to onset of symptoms, no new cases were reported in either of the treated areas after adulticiding; 18 new cases were reported in the untreated area of Sacramento County during this time. Results indicated that the odds of infection after spraying were ≈6× higher in the untreated area than in treated areas, and that the treatments successfully disrupted the WNV transmission cycle. Our results provide direct evidence that aerial mosquito adulticiding is effective in reducing human illness and potential death from WNV infection.
Collapse
Affiliation(s)
- Ryan M Carney
- California Department of Public Health, Richmond, California, USA.
| | | | | | | | | |
Collapse
|
22
|
Shelite TR, Rogers CM, Litzner BR, Johnson RR, Schneegurt MA. West Nile virus antibodies in permanent resident and overwintering migrant birds in south-central Kansas. Vector Borne Zoonotic Dis 2008; 8:321-9. [PMID: 18471059 PMCID: PMC2978050 DOI: 10.1089/vbz.2007.0176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED We conducted serological studies, using epitope-blocking ELISAs directed at West Nile virus (WNV) and flavivirus antibodies, of wild birds in south-central Kansas, the first for this state, in the winters of 2003-04 through 2005-06. Overwintering migratory species (primarily the American tree sparrow and dark-eyed junco) consistently showed significantly lower seropositivity than permanent residents (primarily the northern cardinal). The cardinal showed annual variation in seropositivity between winters. Of 35 birds that were serial sampled within a single winter, one cardinal may have seroconverted between late December and mid-February, providing a preliminary suggestion of continued enzootic transmission, chronic infection, or bird-bird transfer as overwintering mechanisms. Breeding population size of the cardinal did not change after the introduction of WNV to Kansas. Of eighteen birds that were serial sampled between winters, none seroconverted. Among overwintering migrants, the Harris' Sparrow showed the highest seropositivity, possibly related to its migration route through the central Great Plains, an area of recent high WNV activity. The finding that permanent resident birds exhibit higher seropositivity than migrant birds suggests that resident birds contribute to the initiation of annual infection cycles,although this conclusion is speculative in the absence of data on viral titers and the length of viremia. KEYWORDS West Nile Virus-flavivirus-birds-epitope-blocking ELISA-winter.
Collapse
Affiliation(s)
- Thomas R. Shelite
- Department of Biological Sciences, Wichita State University, Wichita, Kansas
| | | | - Brandon R. Litzner
- Department of Biological Sciences, Wichita State University, Wichita, Kansas
| | - R. Roy Johnson
- Johnson and Haight Environmental Consultants, Tucson, Arizona
| | - Mark A. Schneegurt
- Department of Biological Sciences, Wichita State University, Wichita, Kansas
| |
Collapse
|
23
|
Strong AC, Kondratieff BC, Doyle MS, Black WC. Resistance to permethrin in Culex tarsalis in northeastern Colorado. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2008; 24:281-288. [PMID: 18666537 DOI: 10.2987/5593.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Resistance to permethrin and the activity of metabolic enzymes were monitored in field-collected Culex tarsalis from northeastern Colorado during 2005 and 2006 and compared with a lab strain from Bakersfield, CA. Collections were made from 13 different sites within and outside of the mosquito abatement area. Resistance levels by year and early vs. late season were examined and median lethal time values and 95% confidence intervals were compared with the lab strain. Mosquitoes collected in 2005 were more resistant to permethrin than either the lab strain or mosquitoes collected in 2006. Glutathione S-transferase levels recorded in 2005 were 9-12x higher than either the lab strain or 2006 mosquitoes; activity of mixed-function oxidases was also greater. Both mechanisms may play a role in permethrin resistance or reflect nontarget exposure to other pesticides in Cx. tarsalis in northeastern Colorado.
Collapse
Affiliation(s)
- Adam C Strong
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
24
|
Brien JD, Uhrlaub JL, Nikolich-Zugich J. Protective capacity and epitope specificity of CD8(+) T cells responding to lethal West Nile virus infection. Eur J Immunol 2007; 37:1855-63. [PMID: 17559175 DOI: 10.1002/eji.200737196] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
West Nile virus (WNV) is a small, positive-strand RNA virus belonging to the Flaviviridae genus, which causes lethal encephalitis in a subset of infected birds and mammals. In humans, WNV exhibits pronounced age-related morbidity and mortality, but the basis of this effect is unclear, and the molecular and cellular parameters of the host-WNV infection are just beginning to be elucidated. Indeed, numerous mechanisms were implicated in protection in vivo against WNV (IFN-I and IFN-gamma, antibody, C', CD8 and CD4 T cells), but the individual importance of each one of these remains unclear. Here, we show that transfer of highly enriched naïve CD8(+ )T cells protects the majority of alymphoid mice against lethal WNV infection. To substantiate and expand this finding, we defined the peptide specificity of the CD8 response in H-2b mice and used a panel of identified peptides to map one dominant (NS4b (2248-2256)) and several subdominant epitopes. The hierarchy of these epitopes was stably maintained in the memory responses. Most importantly, CTL lines directed against these peptides conferred protection against lethal WNV infection in direct proportion to the epitope immunodominance. These results provide a springboard for future characterization of T cell responses against WNV and demonstrate, for the first time, that CD8 T cells can single-handedly protect from this disease.
Collapse
Affiliation(s)
- James D Brien
- Vaccine and Gene Therapy Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | | | | |
Collapse
|
25
|
Sensitivity and specificity of monoclonal and polyclonal immunohistochemical staining for West Nile virus in various organs from American crows (Corvus brachyrhynchos). BMC Infect Dis 2007; 7:49. [PMID: 17537263 PMCID: PMC1892560 DOI: 10.1186/1471-2334-7-49] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 05/30/2007] [Indexed: 12/03/2022] Open
Abstract
Background Based on results of earlier studies, brain, heart and kidney are most commonly used for West Nile virus (WNV) detection in avian species. Both monoclonal and polyclonal antibodies have been used for the immunohistochemical diagnosis of WNV in these species. Thus far, no studies have been performed to compare the sensitivity and specificity of monoclonal and polyclonal antibodies in detecting WNV in American crows (Corvus brachyrhynchos). Our objectives were to determine 1) the comparative sensitivities of monoclonal and polyclonal antibodies for immunohistochemical (IHC) diagnosis of WNV infection in free-ranging American crows, 2) which organ(s) is/are most suitable for IHC-based diagnosis of WNV, and 3) how real-time RT-PCR on RNA extracted from formalin-fixed paraffin-embedded tissues compared to IHC for the diagnosis of WNV infection. Methods Various combinations, depending on tissue availability, of sections of heart, kidney, brain, liver, lung, spleen, and small intestine from 85 free-ranging American crows were stained using a rabbit-polyclonal anti-WNV antibody as well as a monoclonal antibody directed against an epitope on Domain III of the E protein of WNV. The staining intensity and the extent of staining were determined for each organ using both antibodies. Real-time RT-PCR on formalin-fixed paraffin-embedded tissues from all 85 crows was performed. Results Forty-three crows were IHC-positive in at least one of the examined organs with the polyclonal antibody, and of these, only 31 were positive when IHC was performed with the monoclonal antibody. Real-time RT-PCR amplified WNV-specific sequences from tissue extracts of the same 43 crows that were IHC-positive using the polyclonal antibody. All other 42 crows tested negative for WNV with real-time PCR and IHC staining. Both antibodies had a test specificity of 100% when compared to PCR results. The test sensitivity of monoclonal antibody-based IHC staining was only 72%, compared to 100% when using the polyclonal antibody. Conclusion The most sensitive, readily identified, positively staining organs for IHC are the kidney, liver, lung, spleen, and small intestine. Real-time RT-PCR and IHC staining using a polyclonal antibody on sections of these tissues are highly sensitive diagnostic tests for the detection of WNV in formalin-fixed tissues of American crows.
Collapse
|
26
|
Roberts RS, Foppa IM. Prediction of equine risk of West Nile virus infection based on dead bird surveillance. Vector Borne Zoonotic Dis 2007; 6:1-6. [PMID: 16584321 DOI: 10.1089/vbz.2006.6.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Since the introduction of West Nile Virus (WNV) to the United States in 1999, the efficacy of dead bird surveillance for the prediction of human and veterinary WNV infection has been an issue of debate. We utilized South Carolina's Department of Health and Environmental Control surveillance data from 2003 to determine whether dead bird surveillance accurately predicts equine WNV infection on a county level. We adjusted for human population density as a potential confounder of an association between WNV-positive dead bird counts and mammalian WNV risk. We found a strong positive association between avian risk of WNV death and subsequent equine mortality due to WNV in South Carolina even after adjusting for human population density. Sensitivity of dead bird surveillance as a predictor of future equine WNV risk was far superior to mosquito surveillance (95% vs. 9.5%, respectively). A Poisson regression model of the equine WNV rate as a function of WNV-positive dead bird rate, adjusting for population density and taking into account effect modification by population density shows a good fit with the data. Unlike most previous studies, we control for potential confounding of the dead, WNVpositive bird-equine WNV infection association by human population density. Yet, the positive association between dead bird surveillance and equine WNV risk remains strong and statistically significant, indicating that dead bird surveillance remains a valuable tool of WNV surveillance.
Collapse
Affiliation(s)
- Rhonda Sue Roberts
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
27
|
Gu W, Lampman R, Krasavin N, Berry R, Novak R. Spatio-temporal analyses of West Nile virus transmission in Culex mosquitoes in northern Illinois, USA, 2004. Vector Borne Zoonotic Dis 2007; 6:91-8. [PMID: 16584331 DOI: 10.1089/vbz.2006.6.91] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After a severe outbreak of West Nile virus (WNV) in Cook County, Illinois, in 2002, detections of WNV in mosquitoes were frequent across the state in the following years despite small numbers of human cases. We conducted a spatio-temporal analysis of Culex (subgenus Culex) mosquitoes collected in 2004 in three mosquito abatement districts (MAD) in Cook County by calculating monthly estimates of mosquito density, prevalence of infected mosquitoes, and exposure intensity, which in turn is a product of mosquito density and infection rates. Mosquito infections were detected early at three sites in late May and were widely detected throughout the three MADs in the summer with infection rates as high as 13 per 1000 in August. Exposure intensities were higher at sites adjacent to the Des Plaines River, especially in August and September. The aggregated pattern of WNV transmission along the river might be related to the existence of substantial forest preserves and wetlands that might produce ecological conditions favorable for mosquito proliferation and interactions between mosquitoes and birds.
Collapse
Affiliation(s)
- Weidong Gu
- Illinois Natural History Survey, Champaign, Illinois 61820, USA.
| | | | | | | | | |
Collapse
|
28
|
Beroll H, Berke O, Wilson J, Barker IK. Investigating the spatial risk distribution of West Nile virus disease in birds and humans in southern Ontario from 2002 to 2005. Popul Health Metr 2007; 5:3. [PMID: 17472753 PMCID: PMC1871569 DOI: 10.1186/1478-7954-5-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 05/01/2007] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The West Nile virus (WNv) became a veterinary public health concern in southern Ontario in 2001 and has continued to threaten public health. Wild bird mortality has been shown to be an indicator for tracking the geographic distribution of the WNv. The purpose of this study was to investigate the latent risk distribution of WNv disease among dead birds and humans in southern Ontario and to compare the spatial risk patterns for the period 2002-2005. The relationship between the mortality fraction in birds and incidence rate in humans was also investigated. METHODS Choropleth maps were created to investigate the spatial variation in bird and human WNv risk for the public health units of southern Ontario. The data were smoothed by empirical Bayesian estimation before being mapped. Isopleth risk maps for both the bird and human data were created to identify high risk areas and to investigate the potential relationship between the WNv mortality fraction in birds and incidence rates in humans. This was carried out by the geostatistical prediction method of kriging. A Poisson regression analysis was used to model regional human WNv case counts as a function of the spatial coordinates in the east and north direction and the regional bird mortality fractions. The presence of disease clustering and the location of disease clusters were investigated by the spatial scan test. RESULTS The isopleth risk maps exhibited high risk areas that were relatively constant from year to year. There was an overlap in the bird and human high risk areas, which occurred in the central-west and south-west areas of southern Ontario. The annual WNv cause-specific mortality fractions in birds for 2002 to 2005 were 31.9, 22.0, 19.2 and 25.2 positive birds per 100 birds tested, respectively. The annual human WNv incidence rates for 2002 to 2005 were 2.21, 0.76, 0.13 and 2.10 human cases per 100,000 population, respectively. The relative risk of human WNv disease was 0.72 times lower for a public health unit that was 100 km north of another public health unit. The relative risk of human WNv disease increased by the factor 1.44 with every 10 positive birds per 100 tested. The scan statistic detected disease cluster in the bird and human data. The human clusters were not significant, when the analysis was conditioned on the bird data. CONCLUSION The study indicates a significant relationship between the spatial pattern of WNv risk in humans and birds.
Collapse
Affiliation(s)
- Heidi Beroll
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Olaf Berke
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Department of Biometry, Epidemiology and Information Processing, School of Veterinary Medicine Hannover, Hannover, Germany
| | - Jeffrey Wilson
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Foodborne, Waterborne and Zoonotic Infections Division, Public Health Agency of Canada, Guelph and Ottawa, Ontario, Canada
| | - Ian K Barker
- Canadian Cooperative Wildlife Health Centre, Ontario/Nunavut Region, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
29
|
Reisen WK, Brault AC, Martinez VM, Fang Y, Simmons K, Garcia S, Omi-Olsen E, Lane RS. Ability of transstadially infected Ixodes pacificus (Acari: Ixodidae) to transmit West Nile virus to song sparrows or western fence lizards. JOURNAL OF MEDICAL ENTOMOLOGY 2007; 44:320-7. [PMID: 17427704 DOI: 10.1603/0022-2585(2007)44[320:aotiip]2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The hypothesis that Ixodes pacificus Cooley & Kohls (Acari: Ixodidae) may serve as a reservoir and vector of West Nile virus (family Flaviviridae, genus Flavivirus, WNV) in California was tested by determining the ability of this tick species to become infected with the NY99 strain of WNV while feeding on viremic song sparrows, to maintain the infection transstadially, and then to transmit WNV to recipient naive song sparrows and western fence lizards during the nymphal stage. The percentage of ticks testing positive by reverse transcription-polymerase chain reaction (RT-PCR) decreased from 77% of 35 larvae at day 6 after ticks were transferred to donor song sparrows (day of detachment) to 23% of 35 nymphs at 59 d postinfestation (approximately 19 d after molting to the nymphal stage). However, the percentage of ticks positive by RT-PCR from which infectious virus was recovered by Vero cell assay decreased from 59% on day 6 to 12% on day 59, even though there was no statistically significant decrease in the quantity of RNA within positive ticks. Attempts to improve the sensitivity of plaque assays by blind passage through C6/36 cell cultures were unsuccessful. These data indicated that ticks maintained viral RNA but not necessarily infectious virus over time. Nymphs from larvae that fed on song sparrows with peak viremias ranging from 7.2 to 8.5 log10 plaque-forming units (PFU) per ml were used in transmission attempts. From one to seven RNA-positive nymphal ticks engorged and detached from each of four recipient song sparrows or western fence lizards. Blood samples from sparrows and lizards remained negative, indicating that transmission did not occur. An additional four lizards inoculated with 1,500 PFU of WNV developed moderate viremias, ranging from 4.2 to 5.6 log10 PFU/ml. Our data and data from previous studies collectively indicated that ixodid ticks were not able to experimentally transmit WNV and therefore most likely would not be important vectors in WNV transmission cycles.
Collapse
Affiliation(s)
- W K Reisen
- Center for Vectorborne Diseases and Department of Pathology, Immunology, and Microbiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wong S, Lau S, Woo P, Yuen K. Bats as a continuing source of emerging infections in humans. Rev Med Virol 2007; 17:67-91. [PMID: 17042030 PMCID: PMC7169091 DOI: 10.1002/rmv.520] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 08/08/2006] [Accepted: 08/29/2006] [Indexed: 12/25/2022]
Abstract
Amongst the 60 viral species reported to be associated with bats, 59 are RNA viruses, which are potentially important in the generation of emerging and re-emerging infections in humans. The prime examples of these are the lyssaviruses and Henipavirus. The transmission of Nipah, Hendra and perhaps SARS coronavirus and Ebola virus to humans may involve intermediate amplification hosts such as pigs, horses, civets and primates, respectively. Understanding of the natural reservoir or introductory host, the amplifying host, the epidemic centre and at-risk human populations are crucial in the control of emerging zoonosis. The association between the bat coronaviruses and certain lyssaviruses with particular bat species implies co-evolution between specific viruses and bat hosts. Cross-infection between the huge number of bat species may generate new viruses which are able to jump the trans-mammalian species barrier more efficiently. The currently known viruses that have been found in bats are reviewed and the risks of transmission to humans are highlighted. Certain families of bats including the Pteropodidae, Molossidae, Phyllostomidae, and Vespertilionidae are most frequently associated with known human pathogens. A systematic survey of bats is warranted to better understand the ecology of these viruses.
Collapse
Affiliation(s)
- Samson Wong
- Department of Microbiology, Research Centre of Infection and Immunology, The University of Hong Kong, 4/F University Pathology Building, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong
| | - Susanna Lau
- Department of Microbiology, Research Centre of Infection and Immunology, The University of Hong Kong, 4/F University Pathology Building, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong
| | - Patrick Woo
- Department of Microbiology, Research Centre of Infection and Immunology, The University of Hong Kong, 4/F University Pathology Building, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong
| | - Kwok‐Yung Yuen
- Department of Microbiology, Research Centre of Infection and Immunology, The University of Hong Kong, 4/F University Pathology Building, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong
| |
Collapse
|
31
|
van der Poel WHM, Lina PHC, Kramps JA. Public health awareness of emerging zoonotic viruses of bats: a European perspective. Vector Borne Zoonotic Dis 2007; 6:315-24. [PMID: 17187565 DOI: 10.1089/vbz.2006.6.315] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bats classified in the order Chiroptera are the most abundant and widely distributed non-human mammalian species in the world. Several bat species are reservoir hosts of zoonotic viruses and therefore can be a public health hazard. Lyssaviruses of different genotypes have emerged from bats in America (Genotype 1 rabies virus; RABV), Europe (European bat lyssavirus; EBLV), and Australia (Australian bat lyssavirus; ABLV), whereas Nipah virus is the most important recent zoonosis of bat origin in Asia. Furthermore, some insectivorous bat species may be important reservoirs of SARS coronavirus, whereas Ebola virus has been detected in some megachiropteran fruit bats. Thus far, European bat lyssavirus (EBLV) is the only zoonotic virus that has been detected in bats in Europe. New zoonotic viruses may emerge from bat reservoirs and known ones may spread to a wider geographical range. To assess future threats posed by zoonotic viruses of bats, there is a need for accurate knowledge of the factors underlying disease emergence, for an effective surveillance programme, and for a rapid response system. In Europe, primary efforts should be focussed on the implementation of effective passive and active surveillance systems for EBLVs in the Serotine bat, Eptesicus serotinus, and Myotis species (i.e., M. daubentonii and M. dasycneme). Apart from that, detection methods for zoonotic viruses that may emerge from bats should be implemented. Analyses of data from surveillance studies can shed more light on the dynamics of bat viruses, (i.e., population persistence of viruses in bats). Subsequently, studies will have to be performed to assess the public health hazards of such viruses (i.e., infectivity and risk of infection to people). With the knowledge generated from this kind of research, a rapid response system can be set up to enhance public health awareness of emerging zoonotic viruses of bats.
Collapse
Affiliation(s)
- Wim H M van der Poel
- Animal Sciences Group, Wageningen University Research, Lelystad, The Netherlands.
| | | | | |
Collapse
|
32
|
Richards SL, Mores CN, Lord CC, Tabachnick WJ. Impact of extrinsic incubation temperature and virus exposure on vector competence of Culex pipiens quinquefasciatus Say (Diptera: Culicidae) for West Nile virus. Vector Borne Zoonotic Dis 2007; 7:629-36. [PMID: 18021028 PMCID: PMC2724990 DOI: 10.1089/vbz.2007.0101] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Culex pipiens quinquefasciatus Say mosquitoes from a laboratory colony were exposed to artificial blood meals containing West Nile virus (WNV) and held at incubation temperatures approximating average daily temperatures that occur during Florida arboviral periods. Mosquitoes fed blood meals containing 6.2 logs plaque-forming units (pfu) WNV/mL and held at 25 degrees C, 28 degrees C, or 30 degrees C for 13 days exhibited significantly different rates of infection (30%, 52%, 93%) and dissemination (33%, 22%, 81%) across temperatures. In a separate experiment, Cx. p. quinquefasciatus mosquitoes were provided artificial blood meals with graded doses of WNV from 3.7 to 5.8 logs pfu/mL and maintained at 28 degrees C for 13 days. Rates of infection increased as a function of virus dose, but neither body titers nor dissemination rates were significantly different for mosquitoes that were infected by ingesting different amounts of WNV. Our findings indicate that efficiency of WNV infection and dissemination, and thereby transmission, in Cx. p. quinquefasciatus populations similar to our tested colony may also be diminished when fed blood meals containing less than 5.8 logs pfu WNV/mL and when environmental temperature falls below 30 degrees C. The relationship between the infection rate and dissemination rate changed at different temperatures. This relationship is likely complex and dependent on diverse interactions between factors such as incubation temperature and viremia, which should also be assessed for field populations.
Collapse
Affiliation(s)
- Stephanie L Richards
- University of Florida, Institute of Food and Agricultural Sciences, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida 32962, USA.
| | | | | | | |
Collapse
|
33
|
Rappole JH, Compton BW, Leimgruber P, Robertson J, King DI, Renner SC. Modeling movement of West Nile virus in the Western hemisphere. Vector Borne Zoonotic Dis 2006; 6:128-39. [PMID: 16796510 DOI: 10.1089/vbz.2006.6.128] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We modeled West Nile virus (WNV) movement rates and patterns based on a migratory bird agent (the Swainson's Thrush) and a resident bird agent (the House Sparrow), and compared the results of these models with actual movement data to investigate the likelihood that the pattern of WNV outbreaks observed in the New World was consistent with migrant bird-mediated spread, as reported from the Old World. We found that, contrary to Old World patterns, WNV activity in the Western Hemisphere does not seem consistent with movement by infected migrant birds. Instead WNV spread appears best explained by a non-directional movement, perhaps that of dispersing resident birds.
Collapse
Affiliation(s)
- John H Rappole
- Conservation and Research Center, Smithsonian National Zoological Park, Front Royal, Virginia 22630, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Many of the emerging infectious diseases, including those caused by bioterrorist agents, are zoonoses. Since zoonoses can infect both animals and humans, the medical and veterinary communities should work closely together in clinical, public health, and research settings. In the clinical setting, input from both professions would improve assessments of the risk-benefit ratios of pet ownership, particularly for pet owners who are immunocompromised. In public health, human and animal disease surveillance systems are important in tracking and controlling zoonoses such as avian influenza virus, West Nile virus, and foodborne pathogens. Comparative medicine is the study of disease processes across species, including humans. Physician and veterinarian comparative medicine research teams should be promoted and encouraged to study zoonotic agent-host interactions. These efforts would increase our understanding of how zoonoses expand their host range and would, ultimately, improve prevention and control strategies.
Collapse
Affiliation(s)
- Laura H Kahn
- Princeton University, Princeton, New Jersey 08542, USA.
| |
Collapse
|
35
|
Eidson M, Schmit K, Hagiwara Y, Anand M, Backenson PB, Gotham I, Kramer L. Dead crow density and West Nile virus monitoring, New York. Emerg Infect Dis 2006; 11:1370-5. [PMID: 16229764 PMCID: PMC3310601 DOI: 10.3201/eid1109.040712] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Persons in counties with high dead crow densities had elevated risk for disease. New York State used the health commerce system to monitor the number of West Nile virus (WNV) human disease cases and the density of dead crows. In each year from 2001 to 2003 and for the 3 years combined, persons living in New York counties (excluding New York City) with elevated weekly dead crow densities (above a threshold value of 0.1 dead crows per square mile) had higher risk (2.0–8.6 times) for disease caused by WNV within the next 2 weeks than residents of counties reporting fewer dead crows per square mile. This type of index can offer a real-time, relatively inexpensive window into viral activity in time for prevention and control. Changes in reporting, bird populations, and immunity may require that thresholds other than 0.1 be used in later years or in other areas.
Collapse
|
36
|
Godsey MS, Nasci R, Savage HM, Aspen S, King R, Powers AM, Burkhalter K, Colton L, Charnetzky D, Lasater S, Taylor V, Palmisano CT. West Nile virus-infected mosquitoes, Louisiana, 2002. Emerg Infect Dis 2006; 11:1399-404. [PMID: 16229769 PMCID: PMC3310600 DOI: 10.3201/eid1109.040443] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Culex quinquefasciatus was identified as probable vector. Human cases of West Nile virus (WNV) disease appeared in St. Tammany and Tangipahoa Parishes in southeastern Louisiana in June 2002. Cases peaked during July, then rapidly declined. We conducted mosquito collections from August 3 to August 15 at residences of patients with confirmed and suspected WNV disease to estimate species composition, relative abundance, and WNV infection rates. A total of 31,215 mosquitoes representing 25 species were collected by using primarily gravid traps and CO2-baited light traps. Mosquitoes containing WNV RNA were obtained from 5 of 11 confirmed case sites and from 1 of 3 sites with non-WNV disease. WNV RNA was detected in 9 mosquito pools, including 7 Culex quinquefasciatus, 1 Cx. salinarius, and 1 Coquillettidia perturbans. Mosquito infection rates among sites ranged from 0.8/1,000 to 10.9/1,000. Results suggest that Cx. quinquefasciatus was the primary epizootic/epidemic vector, with other species possibly playing a secondary role.
Collapse
Affiliation(s)
- Marvin S Godsey
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado 80522, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Scheidler LC, Dunphy-Daly MM, White BJ, Andrew DR, Mans NZ, Garvin MC. Survey of Aedes triseriatus (Diptera: Culicidae) for Lacrosse encephalitis virus and West Nile virus in Lorain County, Ohio. JOURNAL OF MEDICAL ENTOMOLOGY 2006; 43:589-93. [PMID: 16739420 DOI: 10.1603/0022-2585(2006)43[589:soatdc]2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
From June through September 2003, we conducted a survey of female Aedes triseriatus (Say) for infection with La Crosse encephalitis virus (family Bunyaviridae, genus Orthobunyavirus, LACV) and West Nile virus (family Flaviviridae, genus Flavivirus, WNV) at three locations in Lorain County, Ohio. To determine infection rate and seasonal variation of both viruses in the Ae. triseriatus population, Ae. triseriatus were collected weekly by using gravid traps and CO2-baited CDC light traps and tested for virus by using reverse transcriptase polymerase chain reaction. In total, 170 pools comprised of 2,143 females were tested for LACV, of which seven were positive; the maximum likelihood estimate of infection rate combined throughout the season was 3.22/1,000. None of 170 pools comprised of 2,158 females tested for WNV were positive. LACV-positive pools were detected between late July and early September.
Collapse
|
38
|
Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 2006; 4:e82. [PMID: 16494532 PMCID: PMC1382011 DOI: 10.1371/journal.pbio.0040082] [Citation(s) in RCA: 365] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Accepted: 01/18/2006] [Indexed: 11/24/2022] Open
Abstract
West Nile virus (WNV) has caused repeated large-scale human epidemics in North America since it was first detected in 1999 and is now the dominant vector-borne disease in this continent. Understanding the factors that determine the intensity of the spillover of this zoonotic pathogen from birds to humans (via mosquitoes) is a prerequisite for predicting and preventing human epidemics. We integrated mosquito feeding behavior with data on the population dynamics and WNV epidemiology of mosquitoes, birds, and humans. We show that Culex pipiens, the dominant enzootic (bird-to-bird) and bridge (bird-to-human) vector of WNV in urbanized areas in the northeast and north-central United States, shifted its feeding preferences from birds to humans by 7-fold during late summer and early fall, coinciding with the dispersal of its preferred host (American robins, Turdus migratorius) and the rise in human WNV infections. We also show that feeding shifts in Cx. tarsalis amplify human WNV epidemics in Colorado and California and occur during periods of robin dispersal and migration. Our results provide a direct explanation for the timing and intensity of human WNV epidemics. Shifts in feeding from competent avian hosts early in an epidemic to incompetent humans after mosquito infection prevalences are high result in synergistic effects that greatly amplify the number of human infections of this and other pathogens. Our results underscore the dramatic effects of vector behavior in driving the transmission of zoonotic pathogens to humans.
Collapse
Affiliation(s)
- A Marm Kilpatrick
- The Consortium for Conservation Medicine, New York, New York, United States of America.
| | | | | | | | | |
Collapse
|
39
|
Razumov IA, Kazachinskaia EI, Ternovoi VA, Protopopova EV, Galkina IV, Gromashevskii VL, Prilipov AG, Kachko AV, Ivanova AV, L'vov DK, Loktev VB. Neutralizing monoclonal antibodies against Russian strain of the West Nile virus. Viral Immunol 2005; 18:558-68. [PMID: 16212535 DOI: 10.1089/vim.2005.18.558] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have developed a panel of 16 hybridomas secreting neutralizing monoclonal antibodies (Nt- MAbs) to Russian isolate (LEIV-Vlg99-27889-human) of the West Nile virus (WNV). Most of the Nt-Mabs were either IgG1 or IgG3 subtypes. Nine of the 16 neutralizing MAbs detected WNV protein E in Western blot. According to their Nt-activities, Western blot results and cross-reactivity, the MAbs were divided into four groups. Monoclonal antibodies from group I were able to neutralize WNV strains Vlg99-27889, Vlg00-27924, Hp-94, A-1640, A-72, Tur-2914, and Eg101. The Nt-activity of MAbs from groups II-IV towards these WNV strains was variable. Recombinant fragments E(1-180), E(1-321), and E(260-466) of protein E were used for preliminary mapping of domains recognized by Nt-MAbs. Only five Nt-MAbs were able to react with the recombinant polypeptides. The MAbs 9E2, 7G9, 11G3, and 7E6 from group Ia recognized Nt-epitope(s) between amino acids 321 and 466 of protein E and Nt-MAb 4F11 (group III) reacted with residues 1-180. This demonstrates that two discrete regions of protein E are involved in neutralization of WNV. Our data on immunochemical, biological activities of Nt-MAbs and mapping of Nt-epitopes using recombinant polypeptides suggest at least 13 different Nt-epitopes for WNV.
Collapse
Affiliation(s)
- Ivan A Razumov
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology "Vector," Novosibirsk Region, Koltsovo 630559, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dietrich G, Montenieri JA, Panella NA, Langevin S, Lasater SE, Klenk K, Kile JC, Komar N. Serologic Evidence of West Nile Virus Infection in Free-Ranging Mammals, Slidell, Louisiana, 2002. Vector Borne Zoonotic Dis 2005; 5:288-92. [PMID: 16187899 DOI: 10.1089/vbz.2005.5.288] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
After an outbreak of West Nile virus (WNV) infections in Slidell, Louisiana, in 2002, we detected neutralizing antibodies to WNV in 13 of 120 mammals, representing five of six species sampled. Seroprevalence was measured in opossum, Didelphis virginiana (75%, n = 8), raccoons, Procyon lotor (60%, n = 5), black rats, Rattus rattus (6%, n = 36), hispid cotton rats, Sigmodon hispidus (4%, n = 24), and eastern gray squirrels, Sciurus carolinensis (2%, n = 43).
Collapse
Affiliation(s)
- Gabrielle Dietrich
- Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado 80522, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ohajuruka OA, Berry RL, Grimes S, Farkas S. West Nile Virus Detection in Kidney, Cloacal, and Nasopharyngeal Specimens. Emerg Infect Dis 2005; 11:1437-9. [PMID: 16229775 PMCID: PMC3310617 DOI: 10.3201/eid1209.050016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We compared kidney tissue samples and cloacal and nasopharyngeal swab samples from field-collected dead crows and blue jays for West Nile virus surveillance. Compared to tissue samples, 35% more swab samples were false negative. Swab samples were usually positive only when the corresponding tissue sample was strongly positive.
Collapse
|
42
|
Godsey MS, Blackmore MS, Panella NA, Burkhalter K, Gottfried K, Halsey LA, Rutledge R, Langevin SA, Gates R, Lamonte KM, Lambert A, Lanciotti RS, Blackmore CGM, Loyless T, Stark L, Oliveri R, Conti L, Komar N. West Nile virus epizootiology in the southeastern United States, 2001. Vector Borne Zoonotic Dis 2005; 5:82-9. [PMID: 15815153 DOI: 10.1089/vbz.2005.5.82] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated mosquito and bird involvement in West Nile virus (WNV) transmission in July 2001 in Jefferson County, FL, and Lowndes County, GA. We detected 16 WNV-infected pools from Culex quinquefasciatus, Cx. salinarius, Cx. nigripalpus, and Culiseta melanura. In Florida, 11% of 353 bird sera neutralized WNV. Antibody prevalence was greatest in northern cardinal (Cardinalis cardinalis, 75%), northern mockingbird (Mimus polyglottus, 50%), common ground-dove (Columbina passerina, 25%), common grackle (Quiscalus quiscula, 15%), domestic chicken (Gallus gallus, 16%), and house sparrow (Passer domesticus, 11%). Antibody-positive birds were detected in nine of 11 locations, among which prevalence in chickens ranged from 0% to 100%. Seropositive chickens were detected in Georgia as well. The primary transmission cycle of WNV in the southeastern United States apparently involves Culex mosquitoes and passerine birds. Chickens are frequently infected and may serve as effective sentinels in this region.
Collapse
Affiliation(s)
- Marvin S Godsey
- Centers for Disease Control and Prevention, Fort Collins, Colorado 80522, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Farajollahi A, Gates R, Crans W, Komar N. Serologic Evidence of West Nile Virus and St. Louis Encephalitis Virus Infections in White-Tailed Deer (Odocoileus virginianus) from New Jersey, 2001. Vector Borne Zoonotic Dis 2004; 4:379-83. [PMID: 15671740 DOI: 10.1089/vbz.2004.4.379] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Serum samples from 689 hunter-killed white-tailed deer (Odocoileus virginianus) collected during the 2001 fall hunting season in New Jersey were tested for neutralizing antibodies to West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) by plaque-reduction neutralization tests. WNV-neutralizing antibodies were detected in six (0.9%) of the samples, and SLEV-neutralizing antibodies were found in 11 (1.6%) of the samples. We provide the first report of WNV infection in white-tailed deer.
Collapse
Affiliation(s)
- Ary Farajollahi
- Department of Entomology, Rutgers University, New Brunswick, New Jersey 08901-8536, USA.
| | | | | | | |
Collapse
|
44
|
Abstract
"Emerging infections" have been defined as infections that have newly appeared, that have appeared previously but are expanding in incidence and geographic range, or that threaten to increase in the near future. This article focuses on nine emerging viral infectious agents. These viruses illustrate how such agents emerge: by encroaching on previously unvisited habitats (eg, hantaviruses), by air travel (eg, SARS), and by accidental importation (eg, monkeypox). Additionally, the example of SARS demonstrates not only how quickly emerging viral infections can spread but also how quickly they can be identified and contained with motivated cooperation.
Collapse
Affiliation(s)
- John R Su
- Departments of Pathology and Preventive Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA.
| |
Collapse
|
45
|
Abstract
We evaluated cloacal swab, vascular pulp of flight feather, and kidney and spleen pool samples from carcasses of members of the family Corvidae as sources of West Nile virus (WNV). The cloacal swab, kidney and spleen pool, and feather pulp, respectively, were the source of WNV in 38%, 43%, and 77% of the carcasses.
Collapse
Affiliation(s)
- Douglas E Docherty
- Department of the Interior, U.S. Geological Survery, National Wildlife Health Center, Madison, Wisconsin 53711, USA.
| | | | | | | |
Collapse
|
46
|
O'Leary DR, Marfin AA, Montgomery SP, Kipp AM, Lehman JA, Biggerstaff BJ, Elko VL, Collins PD, Jones JE, Campbell GL. The epidemic of West Nile virus in the United States, 2002. Vector Borne Zoonotic Dis 2004; 4:61-70. [PMID: 15018774 DOI: 10.1089/153036604773083004] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Since 1999, health officials have documented the spread of West Nile virus across the eastern and southern states and into the central United States. In 2002, a large, multi-state, epidemic of neuroinvasive West Nile illness occurred. Using standardized guidelines, health departments conducted surveillance for West Nile virus illness in humans, and West Nile virus infection and illness in non-human species. Illnesses were reported to the Centers for Disease Control and Prevention (CDC) through the ArboNET system. In 2002, 39 states and the District of Columbia reported 4,156 human West Nile virus illness cases. Of these, 2,942 (71%) were neuroinvasive illnesses (i.e., meningitis, encephalitis, or meningoencephalitis) with onset dates from May 19 through December 14; 1,157 (28%) were uncomplicated West Nile fever cases, and 47 (1%) were clinically unspecified. Over 80% of neuroinvasive illnesses occurred in the central United States. Among meningitis cases, median age was 46 years (range, 3 months to 91 years), and the fatality-to-case ratio was 2%; for encephalitis cases (with or without meningitis), median age was 64 years (range, 1 month to 99 years) and the fatality-to-case ratio was 12%. Neuroinvasive illness incidence and mortality, respectively, were significantly associated with advanced age (p = 0.02; p = 0.01) and being male (p < 0.001; p = 0.002). In 89% of counties reporting neuroinvasive human illnesses, West Nile virus infections were first noted in non-human species, but no human illnesses were reported from 77% of counties in which non-human infections were detected. In 2002, West Nile virus caused the largest recognized epidemic of neuroinvasive arboviral illness in the Western Hemisphere and the largest epidemic of neuroinvasive West Nile virus ever recorded. It is unknown why males appeared to have higher risk of severe illness and death, but possibilities include higher prevalence of co-morbid conditions or behavioral factors leading to increased infection rates. Several observations, including major, multi-state West Nile virus epidemics in 2002 and 2003, suggest that major epidemics may annually reoccur in the United States. Non-human surveillance can warn of early West Nile virus activity and needs continued emphasis, along with control of Culex mosquitoes.
Collapse
Affiliation(s)
- Daniel R O'Leary
- Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, U.S. Public Health Service, Department of Health and Human Services, Fort Collins, Colorado, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ruiz MO, Tedesco C, McTighe TJ, Austin C, Kitron U. Environmental and social determinants of human risk during a West Nile virus outbreak in the greater Chicago area, 2002. Int J Health Geogr 2004; 3:8. [PMID: 15099399 PMCID: PMC420251 DOI: 10.1186/1476-072x-3-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 04/20/2004] [Indexed: 11/30/2022] Open
Abstract
Background The outbreak of West Nile Virus (WNV) in and around Chicago in 2002 included over 680 cases of human illness caused by the virus within this region. The notable clustering of the cases in two well-defined areas suggests the existence of specific environmental and social factors that increase the risk for WNV infection and/or illness in these locations. This investigation sought to create an empirically based model to account for these factors and to assess their importance in explaining the possible processes that may have led to this pattern. Results The cluster pattern of high incidence of cases was statistically significant. The risk factors that were found to be important included the presence of vegetation, age, income, and race of the human population, distance to a WNV positive dead bird specimen, age of housing, mosquito abatement and geological factors. The effect of different mosquito abatement efforts was particularly notable. About 53 percent of the variation of the location of WNV clusters was explained by these factors. Conclusion The models developed indicate that differential mosquito abatement efforts are especially important risk factors, even when controlling for key environmental factors. Human population characteristics play a role in risk that is measurable in this ecological study but would require further research to associate causality with risk. The analysis of spatial clusters of case incidence indicates that this approach provides more insight into the focal nature of differential risk factors that tend to be associated with WNV than an analysis of all individual cases.
Collapse
Affiliation(s)
- Marilyn O Ruiz
- Department of Veterinary Pathobiology, University of Illinois, 2001 South Lincoln Ave, Urbana, IL, USA
| | - Carmen Tedesco
- Department of Geography, University of Illinois, 607 S. Matthews Ave, Urbana, IL, USA
| | - Thomas J McTighe
- Department of Veterinary Pathobiology, University of Illinois, 2001 South Lincoln Ave, Urbana, IL, USA
| | - Connie Austin
- Illinois Department of Public Health, 535 W. Jefferson St, Springfield, IL, USA
| | - Uriel Kitron
- Department of Veterinary Pathobiology, University of Illinois, 2001 South Lincoln Ave, Urbana, IL, USA
| |
Collapse
|
48
|
Julian KG, Mullins JA, Olin A, Peters H, Nix WA, Oberste MS, Lovchik JC, Bergmann A, Brechner RJ, Myers RA, Marfin AA, Campbell GL. Aseptic meningitis epidemic during a West Nile virus avian epizootic. Emerg Infect Dis 2003; 9:1082-8. [PMID: 14519244 PMCID: PMC3016784 DOI: 10.3201/eid0909.030068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
While enteroviruses have been the most commonly identified cause of aseptic meningitis in the United States, the role of the emerging, neurotropic West Nile virus (WNV) is not clear. In summer 2001, an aseptic meningitis epidemic occurring in an area of a WNV epizootic in Baltimore, Maryland, was investigated to determine the relative contributions of WNV and enteroviruses. A total of 113 aseptic meningitis cases with onsets from June 1 to September 30, 2001, were identified at six hospitals. WNV immunoglobulin M tests were negative for 69 patients with available specimens; however, 43 (61%) of 70 patients tested enterovirus-positive by viral culture or polymerase chain reaction. Most (76%) of the serotyped enteroviruses were echoviruses 13 and 18. Enteroviruses, including previously rarely detected echoviruses, likely caused most aseptic meningitis cases in this epidemic. No WNV meningitis cases were identified. Even in areas of WNV epizootics, enteroviruses continue to be important causative agents of aseptic meningitis.
Collapse
Affiliation(s)
- Kathleen G Julian
- Centers for Disease Control and Prevention, Fort Collins, Colorado, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ulloa A, Langevin SA, Mendez-Sanchez JD, Arredondo-Jimenez JI, Raetz JL, Powers AM, Villarreal-Treviño C, Gubler DJ, Komar N. Serologic survey of domestic animals for zoonotic arbovirus infections in the Lacandón Forest region of Chiapas, Mexico. Vector Borne Zoonotic Dis 2003; 3:3-9. [PMID: 12804375 DOI: 10.1089/153036603765627406] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A serologic survey in domestic animals (birds and mammals) was conducted in four communities located in the Lacandón Forest region of northeastern Chiapas, Mexico, during June 29 to July 1, 2001, with the objective to identify zoonotic arboviruses circulating in this area. We collected 202 serum samples from healthy domestic chickens, geese, ducks, turkeys, horses and cattle. The samples were tested by plaque-reduction neutralization test for antibodies to selected mosquito-borne flaviviruses (family Flaviviridae), including St. Louis encephalitis (SLE), Rocio (ROC), Ilheus (ILH), Bussuquara (BSQ), and West Nile (WN) viruses, and selected alphaviruses (family Togaviridae), including Western equine encephalitis (WEE), Eastern equine encephalomyelitis (EEE), and Venezuelan equine encephalitis (VEE) viruses. Neutralizing antibodies to SLE virus were detected in two (8%) of 26 turkeys, 15 (23%) of 66 cattle, and three (60%) of five horses. Antibodies to VEE virus were detected in 29 (45%) of 65 cattle. Because some of these animals were as young as 2 months old, we demonstrated recent activity of these two viruses. Sub-typing of the VEE antibody responses indicated that the etiologic agents of these infections belonged to the IE variety of VEE, which has been reported from other regions of Chiapas. WN virus-neutralizing antibodies were detected in a single cattle specimen (PRNT(90) = 1:80) that also circulated SLE virus-neutralizing antibodies (PRNT(90) = 1:20), suggesting that WN virus may have been introduced into the region. We also detected weak neutralizing activity to BSQ virus in four cattle and a chicken specimen, suggesting the presence of this or a closely related virus in Mexico. There was no evidence for transmission of the other viruses (ROC, ILH, EEE, WEE) in the study area.
Collapse
Affiliation(s)
- Armando Ulloa
- Centro de Investigación de Paludismo, Tapachula, Chiapas, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Julian KG, Eidson M, Kipp AM, Weiss E, Petersen LR, Miller JR, Hinten SR, Marfin AA. Early season crow mortality as a sentinel for West Nile virus disease in humans, northeastern United States. Vector Borne Zoonotic Dis 2003; 2:145-55. [PMID: 12737544 DOI: 10.1089/15303660260613710] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The 1999 New York epidemic of human West Nile virus (WN) encephalitis and meningitis was preceded by a crow die-off also caused by WN infection. As one component of the subsequently developed national surveillance system, crow mortality data were collected to detect WN activity before humans might become infected. However, predicting areas at risk for human WN disease likely requires assessment of multiple factors, including the intensity and timing of crow epizootics. To identify early season measures of WN activity in crows associated with subsequent WN disease in humans, county-level crow mortality data from seven northeastern states were analyzed. A predictive model was developed based on analysis of 2000 surveillance data and then assessed for 2001. To characterize the intensity of early season WN activity in crows, 15 variables were constructed from surveillance data of 52 counties that tested at least four crows during the early season (defined as June 17-July 28, 2000). County values for each variable were dichotomized at the 75th percentile into "high" and "low" activity. Multivariate analysis indicated that "high" early season activity of two variables-density of reported dead crow sightings (reported dead crows/area) and [(WN-infected crows/tested crows) x (human population)]--were associated with report of at least one human WN disease case (for each variable: adjusted odds ratio, 6.9; 95% confidence interval, 1.2-40.6). An assessment of this model using 2001 surveillance data from 61 counties yielded similar findings. With emphasis on early season WN activity, crow surveillance may allow timely targeting of interventions to protect the public health.
Collapse
Affiliation(s)
- Kathleen G Julian
- Centers for Disease Control and Prevention, Fort Collins, Colorado 80522, USA.
| | | | | | | | | | | | | | | |
Collapse
|