1
|
Jo WK, Piche-Ovares M, Carranza L, Fischer C, Brünink S, Paul L, Morales A, Martinez F, Drexler JF. Venezuelan Equine Encephalitis Virus Infection in Nonhuman Primate, Guatemala, 2023. Emerg Infect Dis 2025; 31:397-400. [PMID: 39983680 PMCID: PMC11845163 DOI: 10.3201/eid3102.241484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025] Open
Abstract
We isolated Venezuelan equine encephalitis virus (VEEV) subtype IE phylogenetically related to Gulf Coast strains in a spider monkey (Ateles geoffroyi) released from a rescue center in Guatemala. Serologic testing of 118 monkeys indicated no additional VEEV infections. Infection of a primate warrants intensified surveillance of VEEV transmission cycles in North America.
Collapse
|
2
|
Carrera JP, Galué J, de Souza WM, Torres-Cosme R, Lezcano-Coba C, Cumbrera A, Vasilakis N, Tesh RB, Guzman H, Weaver SC, Vittor AY, Samudio R, Miguel Pascale J, Valderrama A, Cáceres Carrera L, Donnelly CA, Faria NR. Madariaga and Venezuelan equine encephalitis virus seroprevalence in rodent enzootic hosts in Eastern and Western Panama. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555226. [PMID: 37693579 PMCID: PMC10491141 DOI: 10.1101/2023.08.28.555226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
While rodents are primary reservoirs of Venezuelan equine encephalitis virus (VEEV), their role in Madariaga virus (MADV) transmission remains uncertain, particularly given their overlapping geographic distribution. This study explores the interplay of alphavirus prevalence, rodent diversity, and land use within Darien and Western Panama provinces. A total of three locations were selected for rodent sampling in Darien province: Los Pavitos, El Real de Santa Maria and Santa Librada. Two sites were selected in Western Panama province: El Cacao and Cirí Grande. We used plaque reduction neutralization tests to assess MADV and VEEV seroprevalences in 599 rodents of 16 species across five study sites. MADV seroprevalence was observed at higher rates in Los Pavitos (Darien province), 9.0%, 95% CI: 3.6-17.6, while VEEV seroprevalence was elevated in El Cacao (Western Panama province), 27.3%, 95% CI: 16.1-40.9, and El Real de Santa María (Darien province), 20.4%, 95% CI: 12.6-29.7. Species like Oryzomys coesi, 23.1%, 95% CI: 5.0-53.8, and Transandinomys bolivaris, 20.0%, 95% CI: 0.5-71.6 displayed higher MADV seroprevalences than other species, whereas Transandinomys bolivaris, 80.0%, 95% CI: 28.3-99.4, and Proechimys semispinosus, 27.3%, 95% CI: 17.0-39.6, exhibited higher VEEV seroprevalences. Our findings provide support to the notion that rodents are vertebrate reservoirs of MADV and reveal spatial variations in alphavirus seropositivity among rodent species, with different provinces exhibiting distinct rates for MADV and VEEV. Moreover, specific rodent species are linked to unique seroprevalence patterns for these viruses, suggesting that rodent diversity and environmental conditions might play a significant role in shaping alphavirus distribution.
Collapse
Affiliation(s)
- Jean-Paul Carrera
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford United Kingdom
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Carson Centre for Research in Environment and Emerging Infectious Diseases, La Peñita, Darien, Panama
| | - Josefrancisco Galué
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Carson Centre for Research in Environment and Emerging Infectious Diseases, La Peñita, Darien, Panama
| | - William M. de Souza
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Rolando Torres-Cosme
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Carlos Lezcano-Coba
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Viral Emerging Disease Dynamics Group, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Carson Centre for Research in Environment and Emerging Infectious Diseases, La Peñita, Darien, Panama
| | - Alberto Cumbrera
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Nikos Vasilakis
- Institute for Human infection and Immunity, University of Texas Medical Branch, Texas, USA
- Geographic System Information Unit, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Department of Pathology, University of Texas Medical Branch, Galveston Texas, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert B. Tesh
- Geographic System Information Unit, Gorgas Memorial Institute of Health Studies, Panama City, Panama
- Department of Pathology, University of Texas Medical Branch, Galveston Texas, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hilda Guzman
- Geographic System Information Unit, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human infection and Immunity, University of Texas Medical Branch, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston Texas, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Amy Y. Vittor
- Department of Medicine, Division of Infectious Disease and Global Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Juan Miguel Pascale
- Clinical Research Unit, Gorgas Memorial Institute of health Studies, Panama City, Panama
| | - Anayansi Valderrama
- Carson Centre for Research in Environment and Emerging Infectious Diseases, La Peñita, Darien, Panama
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Lorenzo Cáceres Carrera
- Department of Medical Entomology, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Christl A. Donnelly
- Pandemic Sciences Institute, University of Oxford, Oxford United Kingdom
- Department of Statistics, University of Oxford, Oxford United Kingdom
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, UK
| | - Nuno R. Faria
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, UK
| |
Collapse
|
3
|
Wang H, Liu S, Lv Y, Wei W. Codon usage bias of Venezuelan equine encephalitis virus and its host adaption. Virus Res 2023; 328:199081. [PMID: 36854361 DOI: 10.1016/j.virusres.2023.199081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/14/2022] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an emerging zoonotic virus in the alphavirus genus. It can be transmitted to humans due to spillover from equid-mosquito cycles. The symptoms caused by VEEV include fever, headache, myalgia, nausea, and vomiting. It can also cause encephalitis in severe cases. The evolutionary features of VEEV are largely unknown. In this study, we comprehensively analyzed the codon usage pattern of VEEV by computing a variety of indicators, such as effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), on 130 VEEV coding sequences retrieved from GenBank. The results showed that the codon usage bias of VEEV is relatively low. ENc-GC3s plot, neutrality plot, and CAI-ENc correlation analyses supported that translational selection plays an important role in shaping the codon usage pattern of VEEV whereas the mutation pressure has a minor influence. Analysis of RSCU values showed that most of the preferred codons in VEEV are C/G-ended. Analysis of dinucleotide composition found that all CG- and UA-containing codons are not preferentially used. Phylogenetic analysis showed that VEEV isolates can be clustered into three genera and evolutionary force affects the codon usage pattern. Furthermore, a correspondence analysis (COA) showed that aromaticity and hydrophobicity as well as geographical distribution also have certain effects on the codon usage variation of VEEV, suggesting the possible involvement of translational selection. Overall, the codon usage of VEEV is comparatively slight and translational selection might be the main factor that shapes the codon usage pattern of VEEV. This study will promote our understanding about the evolution of VEEV and its host adaption, and might provide some clues for preventing the cross-species transmission of VEEV.
Collapse
Affiliation(s)
- Hongju Wang
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shijie Liu
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Yao Lv
- School of Clinical Medicine, Henan University, Kaifeng, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
4
|
Lucas CJ, Morrison TE. Animal models of alphavirus infection and human disease. Adv Virus Res 2022; 113:25-88. [DOI: 10.1016/bs.aivir.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Zhou S, Liu B, Han Y, Wang Y, Chen L, Wu Z, Yang J. ZOVER: the database of zoonotic and vector-borne viruses. Nucleic Acids Res 2021; 50:D943-D949. [PMID: 34634795 PMCID: PMC8728136 DOI: 10.1093/nar/gkab862] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/03/2022] Open
Abstract
Emerging infectious diseases significantly threaten global public health and socioeconomic security. The majority of emerging infectious disease outbreaks are caused by zoonotic/vector-borne viruses. Bats and rodents are the two most important reservoir hosts of many zoonotic viruses that can cross species barriers to infect humans, whereas mosquitos and ticks are well-established major vectors of many arboviral diseases. Moreover, some emerging zoonotic diseases require a vector to spread or are intrinsically vector-borne and zoonotically transmitted. In this study, we present a newly upgraded database of zoonotic and vector-borne viruses designated ZOVER (http://www.mgc.ac.cn/ZOVER). It incorporates two previously released databases, DBatVir and DRodVir, for bat- and rodent-associated viruses, respectively, and further collects up-to-date knowledge on mosquito- and tick-associated viruses to establish a comprehensive online resource for zoonotic and vector-borne viruses. Additionally, it integrates a set of online visualization tools for convenient comparative analyses to facilitate the discovery of potential patterns of virome diversity and ecological characteristics between/within different viral hosts/vectors. The ZOVER database will be a valuable resource for virologists, zoologists and epidemiologists to better understand the diversity and dynamics of zoonotic and vector-borne viruses and conduct effective surveillance to monitor potential interspecies spillover for efficient prevention and control of future emerging zoonotic diseases.
Collapse
Affiliation(s)
- Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Yelin Han
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Yuyang Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Zhiqiang Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
6
|
Tirera S, de Thoisy B, Donato D, Bouchier C, Lacoste V, Franc A, Lavergne A. The Influence of Habitat on Viral Diversity in Neotropical Rodent Hosts. Viruses 2021; 13:v13091690. [PMID: 34578272 PMCID: PMC8472065 DOI: 10.3390/v13091690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
Rodents are important reservoirs of numerous viruses, some of which have significant impacts on public health. Ecosystem disturbances and decreased host species richness have been associated with the emergence of zoonotic diseases. In this study, we aimed at (a) characterizing the viral diversity in seven neotropical rodent species living in four types of habitats and (b) exploring how the extent of environmental disturbance influences this diversity. Through a metagenomic approach, we identified 77,767 viral sequences from spleen, kidney, and serum samples. These viral sequences were attributed to 27 viral families known to infect vertebrates, invertebrates, plants, and amoeba. Viral diversities were greater in pristine habitats compared with disturbed ones, and lowest in peri-urban areas. High viral richness was observed in savannah areas. Differences in these diversities were explained by rare viruses that were generally more frequent in pristine forest and savannah habitats. Moreover, changes in the ecology and behavior of rodent hosts, in a given habitat, such as modifications to the diet in disturbed vs. pristine forests, are major determinants of viral composition. Lastly, the phylogenetic relationships of four vertebrate-related viral families (Polyomaviridae, Flaviviridae, Togaviridae, and Phenuiviridae) highlighted the wide diversity of these viral families, and in some cases, a potential risk of transmission to humans. All these findings provide significant insights into the diversity of rodent viruses in Amazonia, and emphasize that habitats and the host’s dietary ecology may drive viral diversity. Linking viral richness and abundance to the ecology of their hosts and their responses to habitat disturbance could be the starting point for a better understanding of viral emergence and for future management of ecosystems.
Collapse
Affiliation(s)
- Sourakhata Tirera
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
| | - Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
| | - Damien Donato
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
| | | | - Vincent Lacoste
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
- Département de Virologie, Institut Pasteur, 75015 Paris, France
- Arbovirus & Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 3560, Laos
| | - Alain Franc
- UMR BIOGECO, INRAE, University Bordeaux, 33612 Cestas, France;
- Pleiade, EPC INRIA-INRAE-CNRS, University Bordeaux, 33405 Talence, France
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
- Correspondence:
| |
Collapse
|
7
|
Bozóki B, Mótyán JA, Hoffka G, Waugh DS, Tőzsér J. Specificity Studies of the Venezuelan Equine Encephalitis Virus Non-Structural Protein 2 Protease Using Recombinant Fluorescent Substrates. Int J Mol Sci 2020; 21:E7686. [PMID: 33081394 PMCID: PMC7593941 DOI: 10.3390/ijms21207686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
The non-structural protein 2 (nsP2) of alphavirus Venezuelan equine encephalitis virus (VEEV) is a cysteine protease that is responsible for processing of the viral non-structural polyprotein and is an important drug target owing to the clinical relevance of VEEV. In this study we designed two recombinant VEEV nsP2 constructs to study the effects of an N-terminal extension on the protease activity and to investigate the specificity of the elongated enzyme in vitro. The N-terminal extension was found to have no substantial effect on the protease activity. The amino acid preferences of the VEEV nsP2 protease were investigated on substrates representing wild-type and P5, P4, P2, P1, P1', and P2' variants of Semliki forest virus nsP1/nsP2 cleavage site, using a His6-MBP-mEYFP recombinant substrate-based protease assay which has been adapted for a 96-well plate-based format. The structural basis of enzyme specificity was also investigated in silico by analyzing a modeled structure of VEEV nsP2 complexed with oligopeptide substrate. To our knowledge, in vitro screening of P1' amino acid preferences of VEEV nsP2 protease remains undetermined to date, thus, our results may provide valuable information for studies and inhibitor design of different alphaviruses or other Group IV viruses.
Collapse
Affiliation(s)
- Beáta Bozóki
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
| | - Gyula Hoffka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - David S. Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA;
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (B.B.); (G.H.)
| |
Collapse
|
8
|
Azar SR, Campos RK, Bergren NA, Camargos VN, Rossi SL. Epidemic Alphaviruses: Ecology, Emergence and Outbreaks. Microorganisms 2020; 8:E1167. [PMID: 32752150 PMCID: PMC7464724 DOI: 10.3390/microorganisms8081167] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past century, the emergence/reemergence of arthropod-borne zoonotic agents has been a growing public health concern. In particular, agents from the genus Alphavirus pose a significant risk to both animal and human health. Human alphaviral disease presents with either arthritogenic or encephalitic manifestations and is associated with significant morbidity and/or mortality. Unfortunately, there are presently no vaccines or antiviral measures approved for human use. The present review examines the ecology, epidemiology, disease, past outbreaks, and potential to cause contemporary outbreaks for several alphavirus pathogens.
Collapse
Affiliation(s)
- Sasha R. Azar
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Rafael K. Campos
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | | | - Vidyleison N. Camargos
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Shannan L. Rossi
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
9
|
Viral Equine Encephalitis, a Growing Threat to the Horse Population in Europe? Viruses 2019; 12:v12010023. [PMID: 31878129 PMCID: PMC7019608 DOI: 10.3390/v12010023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Neurological disorders represent an important sanitary and economic threat for the equine industry worldwide. Among nervous diseases, viral encephalitis is of growing concern, due to the emergence of arboviruses and to the high contagiosity of herpesvirus-infected horses. The nature, severity and duration of the clinical signs could be different depending on the etiological agent and its virulence. However, definite diagnosis generally requires the implementation of combinations of direct and/or indirect screening assays in specialized laboratories. The equine practitioner, involved in a mission of prevention and surveillance, plays an important role in the clinical diagnosis of viral encephalitis. The general management of the horse is essentially supportive, focused on controlling pain and inflammation within the central nervous system, preventing injuries and providing supportive care. Despite its high medical relevance and economic impact in the equine industry, vaccines are not always available and there is no specific antiviral therapy. In this review, the major virological, clinical and epidemiological features of the main neuropathogenic viruses inducing encephalitis in equids in Europe, including rabies virus (Rhabdoviridae), Equid herpesviruses (Herpesviridae), Borna disease virus (Bornaviridae) and West Nile virus (Flaviviridae), as well as exotic viruses, will be presented.
Collapse
|
10
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán-Beck B, Kohnle L, Morgado J, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Venezuelan equine encephalitis. EFSA J 2017; 15:e04950. [PMID: 32625617 PMCID: PMC7010095 DOI: 10.2903/j.efsa.2017.4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Venezuelan equine encephalitis (VEE) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of VEE to be listed, Article 9 for the categorisation of VEE according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to VEE. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, it is inconclusive whether VEE is eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL because there was no full consensus on the criterion 5 A(v). Consequently, since it is inconclusive whether VEE can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL, the assessment on compliance of VEE with the criteria as in Sections 4 and 5 of Annex IV to the AHL, for the application of the disease prevention and control rules referred to in points (d) and (e) of Article 9(1), and which animal species can be considered to be listed for VEE according to Article 8(3) of the AHL is also inconclusive.
Collapse
|
11
|
Potential Sympatric Vectors and Mammalian Hosts of Venezuelan Equine Encephalitis Virus in Southern Mexico. J Wildl Dis 2017; 53:657-661. [PMID: 28384059 DOI: 10.7589/2016-11-249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arboviruses are important zoonotic agents with complex transmission cycles and are not well understood because they may involve many vectors and hosts. We studied sympatric wild mammals and hematophagous mosquitoes having the potential to act as hosts and vectors in two areas of southern Mexico. Mosquitoes, bats, and rodents were captured in Calakmul (Campeche) and Montes Azules (Chiapas), between November 2010 and August 2011. Spleen samples from 146 bats and 14 rodents were tested for molecular evidence of Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), western equine encephalitis virus (WEEV), and West Nile virus (WNV) using PCR protocols. Bat ( Artibeus lituratus , Carollia sowelli , Glossophaga soricina , and Sturnira parvidens) and rodent ( Sigmodon hispidus and Oryzomys alfaroi ) species were positive for VEEV. No individuals were positive for WNV, EEEV, or WEEV. A total of 1,298 mosquitoes were collected at the same sites, and five of the mosquito species collected were known VEEV vectors (Aedes fulvus, Mansonia indubitans, Psorophora ferox, Psorophora cilipes, and Psorophora confinnis). This survey simultaneously presents the first molecular evidence, to our knowledge, of VEEV in bats and rodents from southern Mexico and the identification of potential sympatric vectors. Studies investigating sympatric nonhuman hosts, vectors, and arboviruses must be expanded to determine arboviral dynamics in complex systems in which outbreaks of emerging and reemerging zoonoses are continuously occurring.
Collapse
|
12
|
Hu X, Compton JR, Leary DH, Olson MA, Lee MS, Cheung J, Ye W, Ferrer M, Southall N, Jadhav A, Morazzani EM, Glass PJ, Marugan J, Legler PM. Kinetic, Mutational, and Structural Studies of the Venezuelan Equine Encephalitis Virus Nonstructural Protein 2 Cysteine Protease. Biochemistry 2016; 55:3007-19. [PMID: 27030368 DOI: 10.1021/acs.biochem.5b00992] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.-) is essential for viral replication and is involved in the cytopathic effects (CPE) of the virus. The VEEV nsP2 protease is a member of MEROPS Clan CN and characteristically contains a papain-like protease linked to an S-adenosyl-l-methionine-dependent RNA methyltransferase (SAM MTase) domain. The protease contains an alternative active site motif, (475)NVCWAK(480), which differs from papain's (CGS(25)CWAFS), and the enzyme lacks a transition state-stabilizing residue homologous to Gln-19 in papain. To understand the roles of conserved residues in catalysis, we determined the structure of the free enzyme and the first structure of an inhibitor-bound alphaviral protease. The peptide-like E64d inhibitor was found to bind beneath a β-hairpin at the interface of the SAM MTase and protease domains. His-546 adopted a conformation that differed from that found in the free enzyme; one or both of the conformers may assist in leaving group departure of either the amine or Cys thiolate during the catalytic cycle. Interestingly, E64c (200 μM), the carboxylic acid form of the E64d ester, did not inhibit the nsP2 protease. To identify key residues involved in substrate binding, a number of mutants were analyzed. Mutation of the motif residue, N475A, led to a 24-fold reduction in kcat/Km, and the conformation of this residue did not change after inhibition. N475 forms a hydrogen bond with R662 in the SAM MTase domain, and the R662A and R662K mutations both led to 16-fold decreases in kcat/Km. N475 forms the base of the P1 binding site and likely orients the substrate for nucleophilic attack or plays a role in product release. An Asn homologous to N475 is similarly found in coronaviral papain-like proteases (PLpro) of the Severe Acute Respiratory Syndrome (SARS) virus and Middle East Respiratory Syndrome (MERS) virus. Mutation of another motif residue, K480A, led to a 9-fold decrease in kcat and kcat/Km. K480 likely enhances the nucleophilicity of the Cys. Consistent with our substrate-bound models, the SAM MTase domain K706A mutation increased Km 4.5-fold to 500 μM. Within the β-hairpin, the N545A mutation slightly but not significantly increased kcat and Km. The structures and identified active site residues may facilitate the discovery of protease inhibitors with antiviral activity.
Collapse
Affiliation(s)
- Xin Hu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Rockville, Maryland 20850, United States
| | | | - Dagmar H Leary
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory , Washington, D.C. 20375, United States
| | - Mark A Olson
- United States Army Medical Research Institute of Infectious Diseases , Frederick, Maryland 21702, United States
| | - Michael S Lee
- United States Army Medical Research Institute of Infectious Diseases , Frederick, Maryland 21702, United States
| | - Jonah Cheung
- New York Structural Biology Center , New York, New York 10027, United States
| | - Wenjuan Ye
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Rockville, Maryland 20850, United States
| | - Mark Ferrer
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Rockville, Maryland 20850, United States
| | - Noel Southall
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Rockville, Maryland 20850, United States
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Rockville, Maryland 20850, United States
| | - Elaine M Morazzani
- United States Army Medical Research Institute of Infectious Diseases , Frederick, Maryland 21702, United States
| | - Pamela J Glass
- United States Army Medical Research Institute of Infectious Diseases , Frederick, Maryland 21702, United States
| | - Juan Marugan
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Rockville, Maryland 20850, United States
| | - Patricia M Legler
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory , Washington, D.C. 20375, United States
| |
Collapse
|
13
|
Bermúdez J, Valero N, Mosquera J, Vargas R, Hernández-Fonseca JP, Quiroz Y, Godoy R. Role of angiotensin II in experimental Venezuelan equine encephalitis in rats. Arch Virol 2015; 160:2395-405. [PMID: 26156105 DOI: 10.1007/s00705-015-2521-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
Abstract
Venezuelan equine encephalitis (VEE) is a viral disease transmitted by mosquitoes. The inflammation induced by the VEE virus is associated with a high mortality rate in mice. Angiotensin II (Ang II), a pro-inflammatory molecule, is produced in the normal rat brain. There is no information about the role of this molecule in the inflammatory events occurring during VEE and the effect of inflammation on the mortality rate in VEE-virus-infected rats. This study was designed to determine the role of Ang II in VEE and to analyze the effect of inflammation on mortality in infected rats. Two groups of rats were studied: 1) Virus-infected animals and controls (n = 60) were treated with losartan (a blocker of the Ang II-AT1 receptor) or with pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB) or left untreated and analyzed for morbidity and mortality. 2) Animals treated using the same protocol (n = 30) were sacrificed at day 4 postinfection and analyzed by immunohistochemistry and histopathology and for cytokine production. Increased expression of Ang II, ICAM-1, ED-1 and cytokines (IL-1α, MCP-1, IL-6 and IL-10) in infected animals was observed. The main histopathology findings were dilated capillaries and capillaries with endothelial detachment. Losartan and PDTC reduced the expression of IL-1α, MCP-1, and IL-10, and the number of dilated capillaries and capillaries with endothelial detachment. Survival analysis showed that 100% mortality was reached earlier in infected rats treated with losartan (day 14) or PDTC (day 11) than in untreated animals (day 19). These findings suggest that Ang II plays a role in VEE and that brain inflammation is protective against viral infection.
Collapse
Affiliation(s)
- John Bermúdez
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Apartado Postal 23, Maracaibo, 4001, Zulia, Venezuela
| | - Nereida Valero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Apartado Postal 23, Maracaibo, 4001, Zulia, Venezuela.,Sociedad Venezolana de Microbiología, Caracas, Venezuela
| | - Jesús Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Apartado Postal 23, Maracaibo, 4001, Zulia, Venezuela.
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Apartado Postal 23, Maracaibo, 4001, Zulia, Venezuela
| | - Juan P Hernández-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Apartado Postal 23, Maracaibo, 4001, Zulia, Venezuela
| | - Yasmir Quiroz
- Centro de Investigaciones Biomédicas, Instituto Venezolano de Investigaciones Científicas (IVIC), Maracaibo, Venezuela
| | - Rosario Godoy
- Centro de Investigaciones Biológicas, Ciencia y Salud, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|
14
|
Arboviral bottlenecks and challenges to maintaining diversity and fitness during mosquito transmission. Viruses 2014; 6:3991-4004. [PMID: 25341663 PMCID: PMC4213574 DOI: 10.3390/v6103991] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 12/23/2022] Open
Abstract
The term arbovirus denotes viruses that are transmitted by arthropods, such as ticks, mosquitoes, and other biting arthropods. The infection of these vectors produces a certain set of evolutionary pressures on the virus; involving migration from the midgut, where the blood meal containing the virus is processed, to the salivary glands, in order to transmit the virus to the next host. During this process the virus is subject to numerous bottlenecks, stochastic events that significantly reduce the number of viral particles that are able to infect the next stage. This article reviews the latest research on the bottlenecks that occur in arboviruses and the way in which these affect the evolution and fitness of these viruses. In particular we focus on the latest research on three important arboviruses, West Nile virus, Venezuelan equine encephalitis virus and Chikungunya viruses and compare the differing effects of the mosquito bottlenecks on these viruses as well as other evolutionary pressures that affect their evolution and transmission.
Collapse
|
15
|
Taylor KG, Paessler S. Pathogenesis of Venezuelan equine encephalitis. Vet Microbiol 2013; 167:145-50. [PMID: 23968890 DOI: 10.1016/j.vetmic.2013.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/03/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
Abstract
Equine encephalids have high mortality rates and represent a significant zoonotic public health threat. Of these the most pathogenic viruses to equids are the alphaviruses in the family Togaviridae. The focus of this review Venezualen equine encephalitis virus (VEEV) has caused the most widespread and recent epidemic outbreaks of disease. Circulation in naturally occuring rodent-mosquito cycles, results in viral spread to both human and equine populations. However, equines develop a high titer viremia and can transmit the virus back to mosquito populations. As such, the early recognition and control of viral infection in equine populations is strongly associated with prevention of epidemic spread of the virus and limiting of disease incidence in human populations. This review will address identification and pathogenesis of VEEV in equids vaccination and treatment options, and current research for drug and vaccine development.
Collapse
Affiliation(s)
- Katherine G Taylor
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, United States.
| | | |
Collapse
|
16
|
Adams AP, Navarro-Lopez R, Ramirez-Aguilar FJ, Lopez-Gonzalez I, Leal G, Flores-Mayorga JM, Travassos da Rosa APA, Saxton-Shaw KD, Singh AJ, Borland EM, Powers AM, Tesh RB, Weaver SC, Estrada-Franco JG. Venezuelan equine encephalitis virus activity in the Gulf Coast region of Mexico, 2003-2010. PLoS Negl Trop Dis 2012; 6:e1875. [PMID: 23133685 PMCID: PMC3486887 DOI: 10.1371/journal.pntd.0001875] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 09/10/2012] [Indexed: 11/18/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) has been the causative agent for sporadic epidemics and equine epizootics throughout the Americas since the 1930s. In 1969, an outbreak of Venezuelan equine encephalitis (VEE) spread rapidly from Guatemala and through the Gulf Coast region of Mexico, reaching Texas in 1971. Since this outbreak, there have been very few studies to determine the northward extent of endemic VEEV in this region. This study reports the findings of serologic surveillance in the Gulf Coast region of Mexico from 2003–2010. Phylogenetic analysis was also performed on viral isolates from this region to determine whether there have been substantial genetic changes in VEEV since the 1960s. Based on the findings of this study, the Gulf Coast lineage of subtype IE VEEV continues to actively circulate in this region of Mexico and appears to be responsible for infection of humans and animals throughout this region, including the northern State of Tamaulipas, which borders Texas. Venezuelan equine encephalitis virus (VEEV) has been responsible for hundreds of thousands of human and equine cases of severe disease in the Americas. In 1969, an outbreak of Venezuelan equine encephalitis (VEE) spread rapidly from Guatemala and through the Gulf Coast region of Mexico, reaching Texas in 1971. Since this outbreak, there has been very little done to understand the ecology of VEEV in this region. Here, we present that the results of recent field studies that focus on confirming the continued existence of enzootic VEEV in the Gulf Coast region of Mexico. We performed serological analyses of sera collected between 2003 and 2010 from humans, cattle, horses, and dogs in various regions along the Gulf Coast of Mexico, and these data were complemented by wildcaught rodent serosurveys. Additionally, phylogenetic analyses were performed on VEEV isolates from this region to determine whether there have been substantial genetic changes in these viruses since the 1960s.
Collapse
Affiliation(s)
- A Paige Adams
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Thompson NN, Auguste AJ, Coombs D, Blitvich BJ, Carrington CVF, da Rosa APT, Wang E, Chadee DD, Drebot MA, Tesh RB, Weaver SC, Adesiyun AA. Serological evidence of flaviviruses and alphaviruses in livestock and wildlife in Trinidad. Vector Borne Zoonotic Dis 2012; 12:969-78. [PMID: 22989182 DOI: 10.1089/vbz.2012.0959] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seroprevalence rates of selected arboviruses in animal populations in Trinidad were determined using serum samples collected between 2006 and 2009 from horses (n=506), cattle (n=163), sheep (n=198), goats (n=82), pigs (n=184), birds (n=140), rodents (n=116), and other vertebrates (n=23). The sera were screened for antibodies to West Nile virus (WNV), St. Louis encephalitis virus (SLEV), Ilheus virus (ILHV), Bussuquara virus (BSQV), Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV), using hemagglutination inhibition assay (HIA) and epitope-blocking enzyme-linked immunosorbent assays (ELISA). Antibodies to SLEV were detected in a total of 49 (9.7%) horses, 8 (4.9%) cattle, 1 (1.2%) goat, 2 (1.4%) wild birds, and 3 (2.2%) wild rodents by both methods. In contrast, antibodies to EEEV, VEEV, and WNV were detected only in horses, at rates of 4.3%, 0.8%, and 17.2%, respectively, by ELISA, and IgM capture ELISA was WNV-positive in 3 (0.6%) of these sera. Among locally bred unvaccinated horses that had never left Trinidad, seroprevalence rates against WNV were 12.1% and 17.2% by ELISA and HIA, respectively. The presence of WNV- and SLEV-specific antibodies in a representative sample of horse sera that were both ELISA- and HIA-seropositive was confirmed by plaque reduction neutralization testing (PRNT). Antibodies to ILHV and BSQV were not detected in any of the serum samples tested (i.e., sera from horses, other livestock, and wild birds in the case of ILHV, and wild mammals in the case of BSQV). The data indicate the presence of WNV in Trinidad, and continuing low-level circulation of SLEV, EEEV, and VEEV.
Collapse
Affiliation(s)
- Nadin N Thompson
- School of Veterinary Medicine, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Weaver SC, Winegar R, Manger ID, Forrester NL. Alphaviruses: population genetics and determinants of emergence. Antiviral Res 2012; 94:242-57. [PMID: 22522323 DOI: 10.1016/j.antiviral.2012.04.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 04/05/2012] [Accepted: 04/07/2012] [Indexed: 12/28/2022]
Abstract
Alphaviruses are responsible for several medically important emerging diseases and are also significant veterinary pathogens. Due to the aerosol infectivity of some alphaviruses and their ability to cause severe, sometimes fatal neurologic diseases, they are also of biodefense importance. This review discusses the ecology, epidemiology and molecular virology of the alphaviruses, then focuses on three of the most important members of the genus: Venezuelan and eastern equine encephalitis and chikungunya viruses, with emphasis on their genetics and emergence mechanisms, and how current knowledge as well as gaps influence our ability to detect and determine the source of both natural outbreaks and potential use for bioterrorism. This article is one of a series in Antiviral Research on the genetic diversity of emerging viruses.
Collapse
Affiliation(s)
- Scott C Weaver
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | | | |
Collapse
|
19
|
Kenney JL, Adams AP, Gorchakov R, Leal G, Weaver SC. Genetic and anatomic determinants of enzootic Venezuelan equine encephalitis virus infection of Culex (Melanoconion) taeniopus. PLoS Negl Trop Dis 2012; 6:e1606. [PMID: 22509419 PMCID: PMC3317907 DOI: 10.1371/journal.pntd.0001606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 02/27/2012] [Indexed: 11/18/2022] Open
Abstract
Venezuelan equine encephalitis (VEE) is a re-emerging, mosquito-borne viral disease with the potential to cause fatal encephalitis in both humans and equids. Recently, detection of endemic VEE caused by enzootic strains has escalated in Mexico, Peru, Bolivia, Colombia and Ecuador, emphasizing the importance of understanding the enzootic transmission cycle of the etiologic agent, VEE virus (VEEV). The majority of work examining the viral determinants of vector infection has been performed in the epizootic mosquito vector, Aedes (Ochlerotatus) taeniorhynchus. Based on the fundamental differences between the epizootic and enzootic cycles, we hypothesized that the virus-vector interaction of the enzootic cycle is fundamentally different from that of the epizootic model. We therefore examined the determinants for VEEV IE infection in the enzootic vector, Culex (Melanoconion) taeniopus, and determined the number and susceptibility of midgut epithelial cells initially infected and their distribution compared to the epizootic virus-vector interaction. Using chimeric viruses, we demonstrated that the determinants of infection for the enzootic vector are different than those observed for the epizootic vector. Similarly, we showed that, unlike A. taeniorhynchus infection with subtype IC VEEV, C. taeniopus does not have a limited subpopulation of midgut cells susceptible to subtype IE VEEV. These findings support the hypothesis that the enzootic VEEV relationship with C. taeniopus differs from the epizootic virus-vector interaction in that the determinants appear to be found in both the nonstructural and structural regions, and initial midgut infection is not limited to a small population of susceptible cells. Venezuelan equine encephalitis virus (VEEV) is transmitted to humans and horses by mosquitoes in Mexico, Central and South America. These infections can lead to fatal encephalitis in humans as well as horses, donkeys and mules, and there are no licensed vaccines or treatments available for humans. VEEV circulates in two distinct transmission cycles (epizootic and enzootic), which are differentiated by the ecological niche that each virus inhabits. Epizootic strains, those that cause major outbreaks in humans and equids, have been studied extensively and have been used primarily to develop and test several vaccine candidates. In this study, we demonstrate some important differences in the roles of different viral genes between enzootic/endemic versus epizootic VEEV strains that affect mosquito infection as well as differences in the way that enzootic VEEV more efficiently infects the mosquito initially. Our findings have important implications for designing vaccines and for understanding the evolution of VEEV-mosquito interactions.
Collapse
Affiliation(s)
| | | | | | | | - Scott C. Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Wu-yang Z, Guo-dong L. Research on basis of reverse genetics system of a Sindbis-like virus XJ-160. Virol J 2011; 8:519. [PMID: 22082202 PMCID: PMC3245537 DOI: 10.1186/1743-422x-8-519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/14/2011] [Indexed: 02/07/2023] Open
Abstract
As a Sindbis-like virus (SINLV), XJ-160 virus was isolated from a pooled sample of Anopheles mosquitoes collected in Xinjiang, China, in 1990. Recombinant plasmid pBR-XJ160 is an infectious full-length cDNA clone of XJ-160 virus, from which rescued virus BR-XJ160 can be obtained by transcription in vitro and transfection. The BR-XJ160 virus raised in BHK-21 cells was indistinguishable from the XJ-160 virus in its biological properties, including its plaque morphology, growth kinetics and suckling mouse neurovirulence. On basis of pBR-XJ160, the effects of substitutions within nonstructural protein 1 (nsP1) or nsP2 on the infectivity and pathogenesis of Sindbis virus (SINV) have been investigated. We have also confirmed the essential role of E2 glycoprotein, especially the domain of 145-150 (amino acid) aa, in SINV infection through the interaction with cellular heparan sulfate (HS). In addition, we have developed XJ-160 virus-based vector system, including replicon vector, defective helper (DH) plasmids and the packaging cell lines (PCLs). Here we provide an update of main development in the field concerned with XJ-160 virus.
Collapse
Affiliation(s)
- Zhu Wu-yang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Viral Disease Control and Prevention, Beijing 100052, China.
| | | |
Collapse
|
21
|
Arrigo NC, Adams AP, Watts DM, Newman PC, Weaver SC. Cotton rats and house sparrows as hosts for North and South American strains of eastern equine encephalitis virus. Emerg Infect Dis 2010; 16:1373-80. [PMID: 20735920 PMCID: PMC3294987 DOI: 10.3201/eid1609.100459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
TOC summary: Wild rodents and wild birds can serve as amplification hosts. Eastern equine encephalitis virus (EEEV; family Togaviridae, genus Alphavirus) is an arbovirus that causes severe disease in humans in North America and in equids throughout the Americas. The enzootic transmission cycle of EEEV in North America involves passerine birds and the ornithophilic mosquito vector, Culiseta melanura, in freshwater swamp habitats. However, the ecology of EEEV in South America is not well understood. Culex (Melanoconion) spp. mosquitoes are considered the principal vectors in Central and South America; however, a primary vertebrate host for EEEV in South America has not yet been identified. Therefore, to further assess the reservoir host potential of wild rodents and wild birds, we compared the infection dynamics of North American and South American EEEV in cotton rats (Sigmodon hispidus) and house sparrows (Passer domesticus). Our findings suggested that each species has the potential to serve as amplification hosts for North and South America EEEVs.
Collapse
Affiliation(s)
- Nicole C Arrigo
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| | | | | | | | | |
Collapse
|
22
|
Deardorff ER, Weaver SC. Vector competence of Culex (Melanoconion) taeniopus for equine-virulent subtype IE strains of Venezuelan equine encephalitis virus. Am J Trop Med Hyg 2010; 82:1047-52. [PMID: 20519599 PMCID: PMC2877410 DOI: 10.4269/ajtmh.2010.09-0556] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 02/09/2010] [Indexed: 11/07/2022] Open
Abstract
The mosquito Culex (Melanoconion) taeniopus is a proven vector of enzootic Venezuelan equine encephalitis virus (VEEV) subtype IE in Central America. It has been shown to be highly susceptible to infection by this subtype, and conversely to be highly refractory to infection by other VEEV subtypes. During the 1990s in southern coastal Mexico, two VEE epizootics in horses were attributed to subtype IE VEEV. These outbreaks were associated with VEEV strains with an altered infection phenotype for the epizootic mosquito vector, Aedes (Ochlerotatus) taeniorhynchus. To determine the infectivity for the enzootic vector, Culex taeniopus, mosquitoes from a recently established colony were orally exposed to VEEV strains from the outbreak. The equine-virulent strains exhibited high infectivity and transmission potential comparable to a traditional enzootic subtype IE VEEV strain. Thus, subtype IE VEEV strains in Chiapas are able to efficiently infect enzootic and epizootic vectors and cause morbidity and mortality in horses.
Collapse
Affiliation(s)
- Eleanor R Deardorff
- Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| | | |
Collapse
|
23
|
Zhu W, Wang L, Yang Y, Jia J, Fu S, Feng Y, He Y, Li JP, Liang G. Interaction of E2 glycoprotein with heparan sulfate is crucial for cellular infection of Sindbis virus. PLoS One 2010; 5:e9656. [PMID: 20300181 PMCID: PMC2836379 DOI: 10.1371/journal.pone.0009656] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 02/15/2010] [Indexed: 12/23/2022] Open
Abstract
Cell culture-adapted strains of Sindbis virus (SINV) initially attach to cells by the ability to interact with heparan sulfate (HS) through selective mutation for positively charged amino acid (aa) scattered in E2 glycoprotein (W. B. Klimstra, K. D. Ryman, and R. E. Johnston, J. Virol. 72: 7357-7366, 1998). Here we have further confirmed that interaction of E2 protein with HS is crucial for cellular infection of SINV based on the reverse genetic system of XJ-160 virus, a Sindbis-like virus (SINLV). Both SINV YN87448 and SINLV XJ-160 displayed similar infectivity on BHK-21, Vero, or C6/36 cells, but XJ-160 failed to infect mouse embryonic fibroblast (MEF) cells. The molecular mechanisms underlying the selective infectivity of XJ-160 were approached by substituting the E1, E2, or both genes of XJ-160 with that of YN87448, and the chimeric virus was denominated as XJ-160/E1, XJ-160/E2, or XJ-160/E1E2, respectively. In contrast to the parental XJ-160, all chimeric viruses became infectious to wild-type MEF cells (MEF-wt). While MEF-Ext(-/-) cells, producing shortened HS chains, were resistant not only to XJ-160, but also to YN87448 as well as the chimeric viruses, indicating that the inability of XJ-160 to infect MEF-wt cells likely due to its incompetent discrimination of cellular HS. Treatment with heparin or HS-degrading enzyme resulted in a substantial decrease in plaque formation by YN87448, XJ-160/E2, and XJ-160/E1E2, but had marginal effect on XJ-160 and XJ-160/E1, suggesting that E2 glycoprotein from YN87448 plays a more important role than does E1 in mediating cellular HS-related cell infection. In addition, the peptide containing 145-150 aa from E2 gene of YN87448 specifically bound to heparin, while the corresponding peptide from the E2 gene of XJ-160 essentially showed no binding to heparin. As a new dataset, these results clearly confirm an essential role of E2 glycoprotein, especially the domain of 145-150 aa, in SINV cellular infection through the interaction with HS.
Collapse
Affiliation(s)
- Wuyang Zhu
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC) and State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Beijing, China
| | - Lihua Wang
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC) and State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Beijing, China
| | - Yiliang Yang
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC) and State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Beijing, China
| | - Juan Jia
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Shihong Fu
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC) and State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Beijing, China
| | - Yun Feng
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC) and State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Beijing, China
| | - Ying He
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC) and State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Beijing, China
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Guodong Liang
- Department of Viral Encephalitis, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (IVDC, China CDC) and State Key Laboratory for Infectious Disease Prevention and Control (SKLID), Beijing, China
- * E-mail:
| |
Collapse
|
24
|
Deardorff ER, Forrester NL, Travassos da Rosa AP, Estrada-Franco JG, Navarro-Lopez R, Tesh RB, Weaver SC. Experimental infections of Oryzomys couesi with sympatric arboviruses from Mexico. Am J Trop Med Hyg 2010; 82:350-3. [PMID: 20134016 DOI: 10.4269/ajtmh.2010.09-0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Coues rice rat (Oryzomys couesi), a species abundant throughout Central America, was evaluated experimentally for the ability to serve as an amplifying host for three arboviruses: Patois (Bunyaviridae, Orthobunyavirus), Nepuyo (Orthobunyavirus), and Venezuelan equine encephalitis virus subtype ID (Togaviridae, Alphavirus). These three viruses have similar ecologies and are known to co-circulate in nature. Animals from all three cohorts survived infection and developed viremia with no apparent signs of illness and long-lasting antibodies. Thus, O. couesi may play a role in the general maintenance of these viruses in nature.
Collapse
Affiliation(s)
- Eleanor R Deardorff
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|