1
|
Nielsen BF, Saad-Roy CM, Metcalf CJE, Viboud C, Grenfell BT. Eco-evolutionary dynamics of pathogen immune-escape: deriving a population-level phylodynamic curve. J R Soc Interface 2025; 22:20240675. [PMID: 40172571 PMCID: PMC11963905 DOI: 10.1098/rsif.2024.0675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/09/2024] [Accepted: 01/14/2025] [Indexed: 04/04/2025] Open
Abstract
The phylodynamic curve (Grenfell et al. 2004 Science 303, 327-332 (doi:10.1126/science.1090727)) conceptualizes how immunity shapes the rate of viral adaptation in a non-monotonic fashion, through its opposing effects on viral abundance and the strength of selection. However, concrete and quantitative model realizations of this influential concept are rare. Here, we present an analytic, stochastic framework in which a population-scale phylodynamic curve emerges dynamically, allowing us to address questions regarding the risk and timing of the emergence of viral immune escape variants. We explore how pathogen- and population-specific parameters such as strength of immunity, transmissibility, seasonality and antigenic constraints affect the emergence risk. For pathogens exhibiting pronounced seasonality, we find that the timing of likely immune-escape variant emergence depends on the level of case importation between regions. Motivated by the COVID-19 pandemic, we probe the likely effects of non-pharmaceutical interventions (NPIs), and the lifting thereof, on the risk of viral escape variant emergence. Looking ahead, the framework has the potential to become a useful tool for probing how natural immunity, as well as choices in vaccine design and distribution and the implementation of NPIs, affect the evolution of common viral pathogens.
Collapse
Affiliation(s)
| | - Chadi M. Saad-Roy
- Miller Institute for Basic Research in Science, University of California, Berkeley, CA, USA
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - C. Jessica E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Cécile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Bryan T. Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
2
|
Abbas W, Lee S, Kim S. Joint estimation of hand-foot-mouth disease model and prediction in korea using the ensemble kalman filter. PLoS Comput Biol 2025; 21:e1012996. [PMID: 40245103 PMCID: PMC12047828 DOI: 10.1371/journal.pcbi.1012996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 05/02/2025] [Accepted: 03/25/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND In Korea, Hand-foot-and-mouth disease (HFMD) is a recurring illness that presents significant public health challenges, primarily because of its unpredictable epidemic patterns. The accurate prediction of the spread of HFMD plays a vital role in the effective management of the disease. METHODS We have devised a dynamic model that accurately represents the transmission dynamics of HFMD. The model includes compartments for susceptible, exposed, inpatients, outpatients, recovered, and deceased individuals. By utilizing monthly inpatient and outpatient data, the ensemble Kalman filter (EnKF) method was employed to perform a joint estimation of model parameters and state variables. The calibration of model parameters involved using data from the months of January to May, while generating forecasts for the timeframe spanning from June to December. RESULTS The findings reveal a significant alignment between the model and the observed data, as evidenced by root-mean-square error (RMSE) values below 1000 for inpatients and below 10000 for outpatients starting in June. The correlation coefficients surpassed 0.9, except for the year 2015. The implications of our findings suggest a notable shift in transmission and recovery rates, starting in 2015. DISCUSSION The model successfully predicted the peak and magnitude of HFMD outbreaks occurring between June and December, closely matching the observed epidemic patterns. The model's efficacy in predicting epidemic trends and informing preventive strategies is reinforced by the insights gained from monthly variations in parameter estimates of HFMD transmission dynamics.
Collapse
Affiliation(s)
- Wasim Abbas
- Nonlinear Dynamics and Mathematical Application Center, Kyungpook National University, Daegu, Republic of Korea
| | - Sieun Lee
- Innovation Center for MathScience Research & Education, Pusan National University, Busan, Republic of Korea
| | - Sangil Kim
- Department of Mathematics, Pusan National University, Busan, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
3
|
Lao Q, Lin X, Teng S, Qi Z, Zhao X, Zhao S. Epidemiological characteristics of 5838 cases of enterovirus infection in children in Hangzhou from 2018 to 2023. Sci Rep 2025; 15:10167. [PMID: 40128330 PMCID: PMC11933370 DOI: 10.1038/s41598-025-94883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
This study retrospectively explored the characteristics of 5838 children with enterovirus infection in our hospital from 2018 to 2023. In addition, children with enterovirus (EV: EV typing was performed using RT-PCR) infection exhibiting clinical manifestations of viral encephalitis were investigated. Pharyngeal swabs or fecal samples from outpatients and inpatients from our hospital were collected from 2018 to 2023 and were subjected to EV nucleic acid detection using real-time fluorescence quantitative PCR. Furthermore, cerebrospinal fluid EV nucleic acid detection was performed for children with clinical manifestations of viral encephalitis. Descriptive epidemiological methods were used to analyze the age, sex, and etiology of EV infection cases. Statistical analyses were performed with SPSS 20.0. The statistical data were expressed as percentages, and the χ2 test was used for statistical analysis. A total of 9676 children were included in this study, and 5838 (60.33%) showed positive EV nucleic acid test results. These included 1909 cases of Coxsackievirus group A type 6 (CV-A6) (32.70%), 259 cases of Coxsackievirus group A type 16 (CV-A16) (4.44%), 252 cases of Coxsackievirus group A type 10 (CV-A10) (4.32%), and 34 cases of enterovirus type 71 (EV-A71) (0.58%). A total of 3384 other uncategorized EVs (57.97%) were found. The detection rates of EV-A71 and CV-A16 decreased year by year, while the detection rates of other EV nucleic acids increased year by year. Cerebrospinal fluid (CSF) EV nucleic acid detection was performed on 1520 children with positive EV nucleic acid throat swabs or stool samples showing clinical manifestations of viral encephalitis; a total of 140 positive cases (9.21%) were detected, including CV-A16 2.14% (3/140), CV-A10 1.43% (2/140), CV-A6 9.29% (13/140), EV-A71 0%(0/140), and other uncategorized EVs 87.14% (122/140). Among the 140 cerebrospinal fluid EV-positive children, 32 had typical hand-foot-mouth disease or herpetic angina, and 108 had only fever and upper respiratory tract infection. Real-time fluorescence quantitative PCR detection and virus typing can greatly improve the diagnosis rate of EV. Multi-sample EV nucleic acid detection and virus typing in children with viral encephalitis effectively improve the etiological diagnosis rate. Nonetheless, the development of multivalent vaccines remains the most economical and effective measure to prevent and control EV infection.
Collapse
Affiliation(s)
- Qun Lao
- Department of infectious disease, Hangzhou Children's Hospital, No.195 Wenhui Road, Hangzhou City, 310014, China
| | - Xianyao Lin
- Department of infectious disease, Hangzhou Children's Hospital, No.195 Wenhui Road, Hangzhou City, 310014, China.
| | - Shu Teng
- Department of infectious disease, Hangzhou Children's Hospital, No.195 Wenhui Road, Hangzhou City, 310014, China
| | - Zhenghong Qi
- Department of infectious disease, Hangzhou Children's Hospital, No.195 Wenhui Road, Hangzhou City, 310014, China
| | - Xinfeng Zhao
- Department of infectious disease, Hangzhou Children's Hospital, No.195 Wenhui Road, Hangzhou City, 310014, China
| | - Shiyong Zhao
- Department of infectious disease, Hangzhou Children's Hospital, No.195 Wenhui Road, Hangzhou City, 310014, China
| |
Collapse
|
4
|
Zhou H, Yao Y, Long Q, Deng C. Epidemiological characteristics and influencing factors of hand, foot and mouth disease reinfection cases in Jiulongpo District, Chongqing, China, 2009-2023. Front Public Health 2025; 13:1543450. [PMID: 40270726 PMCID: PMC12015758 DOI: 10.3389/fpubh.2025.1543450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
Objective To analyze the epidemiological characteristics of Hand, Foot and Mouth Disease (HFMD) reinfection and its influencing factors in Jiulongpo District from 2009 to 2023 to provide targeted prevention and control recommendations for key factors. Methods HFMD cases in Jiulongpo District of Chongqing were derived from the China Information System for Disease Control and Prevention from 2009 to 2023. Descriptive analysis was used to analyze the epidemiological characteristics of HFMD reinfection, spatial autocorrelation to analyze the regional clustering, and binary logistic regression to analyze the influencing factors. Results From 2009 to 2023, 4,764 HFMD reinfection cases involving 2,436 individuals were reported in Jiulongpo District, with a reinfection rate of 5.48%. The interval between the two infections ranged from 26 to 3,863 days, and 71.51% of patients were reinfected within 2 years. There was a bimodal distribution in time (April-July and October-November). In the population, the reinfection rate was 5.87% in males and 4.93% in females, 3.97% in scattered children and 7.89% in kindergarten children, 8.61% in children >3 years old, and 4.68% in children ≤3 years old. There was a spatial positive correlation of HFMD reinfection in Jiulongpo District, with hot spots concentrated in the rural area and cold spots in the urban area. The multifactorial logistic regression analysis showed that reinfection risk was higher in non-epidemic years, male, rural areas, >3 years old, and kindergarten children (p < 0.05). Conclusion Post-epidemic prevention and control measures should prioritize interventions to target reinfection, focusing on children in rural areas and kindergartens. Improve rural infrastructure and sanitation, raise disease awareness in kindergartens, train healthcare workers, and promote hygiene to reduce HFMD reinfection.
Collapse
Affiliation(s)
| | | | | | - Chunyan Deng
- Center for Disease Control and Prevention of Jiulongpo District, Chongqing, China
| |
Collapse
|
5
|
Beetler DJ, Giresi P, Di Florio DN, Fliess JJ, McCabe EJ, Watkins MM, Xu V, Auda ME, Bruno KA, Whelan ER, Kocsis SPC, Edenfield BH, Walker S, Macomb LP, Keegan KC, Jain A, Morales-Lara AC, Chekuri I, Hill AR, Farres H, Wolfram J, Behfar A, Stalboerger PG, Terzic A, Cooper L, Fairweather D. Therapeutic effects of platelet-derived extracellular vesicles on viral myocarditis correlate with biomolecular content. Front Immunol 2025; 15:1468969. [PMID: 39835120 PMCID: PMC11743460 DOI: 10.3389/fimmu.2024.1468969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Extracellular vesicles (EVs) can potently inhibit inflammation yet there is a lack of understanding about the impact of donor characteristics on the efficacy of EVs. The goal of this study was to determine whether the sex and age of donor platelet-derived EVs (PEV) affected their ability to inhibit viral myocarditis. Methods PEV, isolated from men and women of all ages, was compared to PEV obtained from women under 50 years of age, which we termed premenopausal PEV (pmPEV). Because of the protective effect of estrogen against myocardial inflammation, we hypothesized that pmPEV would be more effective than PEV at inhibiting myocarditis. We injected PEV, pmPEV, or vehicle control in a mouse model of viral myocarditis and examined histology, gene expression, protein profiles, and performed proteome and microRNA (miR) sequencing of EVs. Results We found that both PEV and pmPEV significantly inhibited myocarditis; however, PEV was more effective, which was confirmed by a greater reduction of inflammatory cells and proinflammatory and profibrotic markers determined using gene expression and immunohistochemistry. Proteome and miR sequencing of EVs revealed that PEV miRs specifically targeted antiviral, Toll-like receptor (TLR)4, and inflammasome pathways known to contribute to myocarditis while pmPEV contained general immunoregulatory miRs. Discussion These differences in EV content corresponded to the differing anti-inflammatory effects of the two types of EVs on viral myocarditis.
Collapse
Affiliation(s)
- Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Presley Giresi
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Jessica J. Fliess
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Elizabeth J. McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Molly M. Watkins
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Vivian Xu
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Matthew E. Auda
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, United States
| | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Stephen P. C. Kocsis
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | | | - Sierra A. Walker
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, United States
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Logan P. Macomb
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Kevin C. Keegan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Angita Jain
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | | | - Isha Chekuri
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Anneliese R. Hill
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Houssam Farres
- Department of Vascular Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Atta Behfar
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
| | - Paul G. Stalboerger
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
| | - Andre Terzic
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
6
|
Bishnoi A, Sharma A, Mehta H, Vinay K. Emerging and re-emerging viral exanthems among children: what a physician should know. Trans R Soc Trop Med Hyg 2025; 119:13-26. [PMID: 39540239 DOI: 10.1093/trstmh/trae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/16/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Viral exanthems can present with diverse morphologies of rash, including macular, maculopapular, papular, urticarial and vesicular, or sometimes a combination of these. There has been an increasing trend towards emerging and re-emerging viral exanthems in recent years, the cause of which is multifactorial, including changing environmental conditions and altered host-vector-agent interaction. The significant temperature variations brought on by climate change and ever-increasing international travel has modified the host-agent interactions, and many re-emerging viral illnesses are now presenting with atypical presentations, including an increased frequency of affliction across broader age groups and heightened manifestations often posing as 'great imitators' mimicking a myriad of other dermatoses. Although final diagnosis often relies on serological and molecular tests, certain cutaneous clues can help arrive at a probable clinical diagnosis and help the clinicians order specific and relevant investigations, especially in resource-poor settings where access to laboratory diagnostic tests is likely to be limited. In this review we explore the changing disease dynamics of common viral infections, especially in resource-poor settings, including coronavirus disease 2019, chikungunya, hand-foot-and-mouth disease and some newly emerging ones like mpox (previously referred to as monkeypox), and highlight recent developments in our understanding of the clinical variations seen in their presentations.
Collapse
Affiliation(s)
- Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Apoorva Sharma
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Hitaishi Mehta
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Keshavamurthy Vinay
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
7
|
Chen Z, Mao K, Chen Z, Feng R, Du W, Zhang H, Tu C. Isothermal nucleic acid amplification for monitoring hand-foot-and-mouth disease: current status and future implications. Mikrochim Acta 2024; 192:31. [PMID: 39720958 DOI: 10.1007/s00604-024-06899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
With the global prevalence of the hand-foot-and-mouth disease (HFMD) epidemic, the development of reliable point-of-care testing (POCT) is crucial for the timely identification and prevention of outbreaks. Isothermal nucleic acid amplification techniques (INAATs) have attracted much attention because of their high efficiency for rapid diagnosis. In this work, we systematically summarize the current status of INAATs for HFMD and discuss advantages and drawbacks of various INAATs for HFMD. The INAATs for HFMD detection mainly include loop-mediated isothermal amplification (LAMP), simultaneous amplification and testing (SAT), and recombinase polymerase amplification (RPA). Among them, LAMP has excelled in several diagnostic metrics and has made significant progress in the field of POCT. SAT has been effective in overcoming the problem of RNA degradation. RPA is suited for on-site testing due to its rapid amplification rate and low reaction temperature. In addition, this study explores the potential of INAATs in lateral flow strips (LFS) test and microfluidic devices for HFMD. LFS is typically used for qualitative analysis and supports multiple detection. Microfluidics can integrate necessary processes of sample pre-processing, amplification, and signal output, enabling high-throughput qualitative or quantitative detection and demonstrating the potential of monitoring HFMD. We hope the current work will provide insights into INAATs for monitoring HFMD and serve as a reference for the implementation of on-site EV detection for public health.
Collapse
Affiliation(s)
- Zhen Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Rida Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Chenglong Tu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China.
- Toxicity Testing Center, Guizhou Medical University, Guian New Region, 561113, China.
| |
Collapse
|
8
|
Li X, Zhou Q. Correlation analysis of serum inflammatory cytokine levels and immune markers in children with severe hand, foot and mouth disease. J Int Med Res 2024; 52:3000605241304636. [PMID: 39676416 DOI: 10.1177/03000605241304636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVE To identify the correlation between serum inflammatory cytokines and immune markers in children with severe hand, foot and mouth disease (HFMD). METHODS Paediatric patients with severe or mild HFMD from Linping Campus, the Second Affiliated Hospital of Zhejiang University, were included in this retrospective study. Data comprising demographic characteristics, clinical symptoms and signs, laboratory findings and other factors were collected. Serum interleukin (IL)-1, IL-6, IL-10, tumour necrosis factor (TNF)-α, and interferon (IFN)-γ levels were measured by enzyme-linked immunosorbent assay at 1, 3, and 5 days after admission. Risk factors were screened using multivariate logistic regression analysis. RESULTS A total of 200 patients with HFMD (120 severe and 80 mild cases) were included. Younger age and longer fever duration were associated with severe HFMD, as were increased white blood cell, neutrophil and platelet counts, blood glucose, immunoglobulin (Ig)M and IgG. IL-6 and IL-10 levels were higher in patients with severe versus mild HFMD on days 1, 3 and 5. TNF-α was higher in the severe group on day 3. Increased white blood cell and neutrophil counts, IL-6, IL-10, and IgG levels, age, fever duration, and blood glucose level were found to be risk factors associated with the occurrence of severe HFMD. CONCLUSIONS Inflammatory cytokines and immune indexes may be related to the occurrence of severe HFMD.
Collapse
Affiliation(s)
- Xiao Li
- Department of Dentistry, The First People's Hospital of Hangzhou, Linping District, Hangzhou, China
| | - Qian Zhou
- Emergency Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Ma W, Li X, Wang N, Wu J, Xiao Y, Hou S, Bi N, Gong L, Huang F. Impact of non-pharmacological interventions on incidence of hand, foot and mouth disease during the COVID-19 pandemic: a large population-based observational study. BMC Infect Dis 2024; 24:1353. [PMID: 39592994 PMCID: PMC11600608 DOI: 10.1186/s12879-024-10252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a highly prevalent and contagious disease, particularly in children under five years old. Its transmission route resembles that of COVID-19. During the COVID-19 pandemic, non-pharmaceutical interventions (NPIs) were implemented to curb viral spread, which may have concurrently reduced HFMD incidence. METHODS Utilizing HFMD surveillance data from the Anhui Provincial Center for Disease Control and Prevention (2015-2020) and varying levels of COVID-19 emergency measures, a Bayesian structural time series model predicted the counterfactual HFMD incidence and quantified the causal relationships with NPIs. RESULTS During the implementation of NPIs, the 915 cases observed between weeks 4 and 20 of 2020 reflected a 94.9% reduction from the expected cases number (915 vs. 17,790), avoiding approximately 16,875 cases. The relative reduction of male cases (95.2%) was similar to that of female cases (94.3%). Different age groups the number of cases decline roughly similar were 93.1%, 95.3%, 97.8%, 94.9%. CONCLUSION During the COVID-19 pandemic, NPIs implemented in response to COVID-19 effectively reduced HFMD incidence. NPIs should be promoted for future control of enteric infectious diseases such as HFMD.
Collapse
Affiliation(s)
- Wanwan Ma
- Anhui Provincial Center for Disease Control and Prevention, No. 12560, Fanhua Avenue, Jingkai District, Shushan District, Hefei, Anhui, 230601, China
| | - Xue Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Na Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China
| | - Jiabing Wu
- Anhui Provincial Center for Disease Control and Prevention, No. 12560, Fanhua Avenue, Jingkai District, Shushan District, Hefei, Anhui, 230601, China
| | - Yongkang Xiao
- Anhui Provincial Center for Disease Control and Prevention, No. 12560, Fanhua Avenue, Jingkai District, Shushan District, Hefei, Anhui, 230601, China
| | - Sai Hou
- Anhui Provincial Center for Disease Control and Prevention, No. 12560, Fanhua Avenue, Jingkai District, Shushan District, Hefei, Anhui, 230601, China
| | - Niannian Bi
- Anhui Provincial Center for Disease Control and Prevention, No. 12560, Fanhua Avenue, Jingkai District, Shushan District, Hefei, Anhui, 230601, China
| | - Lei Gong
- Anhui Provincial Center for Disease Control and Prevention, No. 12560, Fanhua Avenue, Jingkai District, Shushan District, Hefei, Anhui, 230601, China.
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, 230032, Anhui, China.
| |
Collapse
|
10
|
Cheng J, Zhou Y, Tang X, Lu J, Wang Y. Highly Sensitive and Specific Diagnosis of Enterovirus A71 by Reverse Transcription Multiple Cross-Displacement Amplification-Labeled Nanoparticles Biosensor. J Med Virol 2024; 96:e70059. [PMID: 39531247 DOI: 10.1002/jmv.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Enterovirus A71 (EVA71) is a leading causative agent of hand, foot, and mouth disease, posing a significant threat to the health of young children, particularly in the Asia-Pacific region. Currently, there is no specific antiviral drug for EVA71 infection; therefore, early and rapid diagnosis is critical for disease prevention and control. Here, we report the development of a simple, rapid, and sensitive detection method for EVA71 infection using reverse transcription-multiple cross displacement amplification (RT-MCDA) combined with nanoparticle-based lateral flow biosensors (LFB). In the RT-MCDA system, a set of 10 primers was designed to target the highly conserved region of the VP1 gene of EVA71 and amplify the genes in an isothermal amplification device. The RT-MCDA amplification reaction products could then be identified by visual detection reagent (VDR) and LFB without the need for specialized equipment. The results demonstrated that the optimal reaction condition for the EVA71-RT-MCDA assay was 65℃ for 40 min. The EVA71-RT-MCDA assay could detect as low as 40 copies of plasmid and 50 copies of pseudotyped virus in a reaction. No cross-reaction was found between EVA71 strains and non-EVA71 strains. For 125 clinical anal swab samples, with EVA71-RT-MCDA assay, 30 samples were positive, which was in consistent with the the conventional real-time quantitative reverse transcription polymerase chain reaction assays. The entire procedure, including a 15-min specimen processing step, a 40-min MCDA reaction, and result reporting within 2 min, was completed in less than 60 min. In conclusion, the EVA71-RT-MCDA-LFB assay targeting the VP1 gene is a rapid, highly sensitive, simple, and specific test that could be widely applied in point-of-care settings and basic medical facilities in rural areas.
Collapse
Affiliation(s)
- Jinzhi Cheng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Yuhong Zhou
- Department of Clinical laboratory, The First People's Hospital of Guiyang, Guiyang, China
| | - Xiaomin Tang
- Laboratory of Bacterial Infectious Disease of Experimental Center, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Jingrun Lu
- Department of Clinical laboratory, The First People's Hospital of Guiyang, Guiyang, China
| | - Yu Wang
- Department of Clinical laboratory, The First People's Hospital of Guiyang, Guiyang, China
| |
Collapse
|
11
|
Kamau E, Lambert B, Allen DJ, Celma C, Beard S, Harvala H, Simmonds P, Grassly NC, Pons-Salort M. Enterovirus A71 and coxsackievirus A6 circulation in England, UK, 2006-2017: A mathematical modelling study using cross-sectional seroprevalence data. PLoS Pathog 2024; 20:e1012703. [PMID: 39565769 PMCID: PMC11578500 DOI: 10.1371/journal.ppat.1012703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Enterovirus A71 (EV-A71) and coxsackievirus A6 (CVA6) primarily cause hand, foot and mouth disease and have emerged to cause potential fatal neurological and systemic manifestations. However, limited surveillance data collected through passive surveillance systems hampers characterization of their epidemiological dynamics. We fit a series of catalytic models to age-stratified seroprevalence data for EV-A71 and CVA6 collected in England at three time points (2006, 2011 and 2017) to estimate the force of infection (FOI) over time and assess possible changes in transmission. For both serotypes, model comparison does not support the occurrence of important changes in transmission over the study period, and we find that a declining risk of infection with age and / or seroreversion are needed to explain the seroprevalence data. Furthermore, we provide evidence that the increased number of reports of CVA6 during 2006-2017 is unlikely to be explained by changes in surveillance. Therefore, we hypothesize that the increased number of CVA6 cases observed since 2011 must be explained by increased virus pathogenicity. Further studies of seroprevalence data from other countries would allow to confirm this. Our results underscore the value of seroprevalence data to unravel changes in the circulation dynamics of pathogens with weak surveillance systems and large number of asymptomatic infections.
Collapse
Affiliation(s)
- Everlyn Kamau
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ben Lambert
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - David J. Allen
- Department of Comparative Biomedical Sciences, Section Infection and Immunity, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Cristina Celma
- Enteric Virus Unit, UK Health Security Agency, Colindale, London, United Kingdom
| | - Stuart Beard
- Enteric Virus Unit, UK Health Security Agency, Colindale, London, United Kingdom
| | - Heli Harvala
- Microbiology Services, NHS Blood Transfusion, London, United Kingdom
- Infection and Immunity, University College of London, London, United Kingdom
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas C. Grassly
- MRC Center for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| | - Margarita Pons-Salort
- MRC Center for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Baker RE, Yang W, Vecchi GA, Takahashi S. Increasing intensity of enterovirus outbreaks projected with climate change. Nat Commun 2024; 15:6466. [PMID: 39085256 PMCID: PMC11291881 DOI: 10.1038/s41467-024-50936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Pathogens of the enterovirus genus, including poliovirus and coxsackieviruses, typically circulate in the summer months suggesting a possible positive association between warmer weather and transmission. Here we evaluate the environmental and demographic drivers of enterovirus transmission, as well as the implications of climate change for future enterovirus circulation. We leverage pre-vaccination era data on polio in the US as well as data on two enterovirus A serotypes in China and Japan that are known to cause hand, foot, and mouth disease. Using mechanistic modeling and statistical approaches, we find that enterovirus transmission appears positively correlated with temperature although demographic factors, particularly the timing of school semesters, remain important. We use temperature projections from Coupled Model Intercomparison Project Phase 6 (CMIP6) to simulate future outbreaks under late 21st-century climate change for Chinese provinces. We find that outbreak size increases with climate change on average, though results differ across climate models depending on the degree of wintertime warming. In the worst-case scenario, we project peak outbreaks in some locations could increase by up to 40%.
Collapse
Affiliation(s)
- Rachel E Baker
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA.
- Institute at Brown for Environment and Society, Brown University, Providence, RI, USA.
| | - Wenchang Yang
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Gabriel A Vecchi
- Department of Geosciences, Princeton University, Princeton, NJ, USA
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Saki Takahashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
13
|
Xie Z, Khamrin P, Maneekarn N, Kumthip K. Epidemiology of Enterovirus Genotypes in Association with Human Diseases. Viruses 2024; 16:1165. [PMID: 39066327 PMCID: PMC11281466 DOI: 10.3390/v16071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Enteroviruses (EVs) are well-known causes of a wide range of infectious diseases in infants and young children, ranging from mild illnesses to severe conditions, depending on the virus genotypes and the host's immunity. Recent advances in molecular surveillance and genotyping tools have identified over 116 different human EV genotypes from various types of clinical samples. However, the current knowledge about most of these genotypes, except for those of well-known genotypes like EV-A71 and EV-D68, is still limited due to a lack of comprehensive EV surveillance systems. This limited information makes it difficult to understand the true burden of EV-related diseases globally. Furthermore, the specific EV genotype associated with diseases varies according to country, population group, and study period. The same genotype can exhibit different epidemiological features in different areas. By integrating the data from established EV surveillance systems in the USA, Europe, Japan, and China, in combination with other EV infection studies, we can elaborate a better understanding of the distribution of prevalent EV genotypes and the diseases associated with EV. This review analyzed the data from various EV surveillance databases and explored the EV seroprevalence and the association of specific EV genotypes with human diseases.
Collapse
Affiliation(s)
- Zhenfeng Xie
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Guangxi Colleges and Universities Key Laboratory of Basic Research and Transformation of Cancer Immunity and Infectious Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
14
|
Dai B, Chen Y, Han S, Chen S, Wang F, Feng H, Zhang X, Li W, Chen S, Yang H, Duan G, Li G, Jin Y. Epidemiology and etiology of hand, foot, and mouth disease in Zhengzhou, China, from 2009 to 2021. INFECTIOUS MEDICINE 2024; 3:100114. [PMID: 38974346 PMCID: PMC11225680 DOI: 10.1016/j.imj.2024.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a common childhood infectious disease caused by a variety of enteroviruses (EVs). To explore the epidemiological characteristics and etiology of HFMD in Zhengzhou, China, we conducted a systematic analysis of HFMD surveillance data from Zhengzhou Center for Disease Control and Prevention from January 2009 to December 2021 (https://wjw.zhengzhou.gov.cn/). METHODS Surveillance data were collected from Zhengzhou Center for Disease Control and Prevention from January 2009 to December 2021 (https://wjw.zhengzhou.gov.cn/). Cases were analyzed according to the time of onset, type of diagnosis, characteristics, viral serotype, and epidemiological trends. RESULTS We found that the primary causative agent responsible for the HFMD outbreaks in Zhengzhou was Enterovirus A71 (EVA-71) (48.56%) before 2014. After 2015, other EVs gradually became the dominant strains (57.68%). The data revealed that the HFMD epidemics in Zhengzhou displayed marked seasonality, with major peaks occurring from April to June, followed by secondary peaks from October to November, except in 2020. Both the severity and case-fatality ratio of HFMD decreased following the COVID-19 pandemic (severity ‰: 13.46 vs. 0.17; case-fatality ‰: 0.21 vs. 0, respectively). Most severe cases were observed in patients aged 1 year and below, accounting for 45.81%. CONCLUSIONS Overall, the incidence rate of HFMD decreased in Zhengzhou following the introduction of the EVA-71 vaccine in 2016. However, it is crucial to acknowledge that HFMD prevalence continues to exhibit a distinct seasonal pattern and periodicity, and the occurrence of other EV infections poses a new challenge for children's health.
Collapse
Affiliation(s)
- Bowen Dai
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Zhengzhou Center for Disease Control and Prevention, Zhengzhou 450007, China
| | - Yu Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shujie Han
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shouhang Chen
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou 450018, China
| | - Fang Wang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou 450018, China
| | - Huifen Feng
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaolong Zhang
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou 450002, China
| | - Wenlong Li
- Zhengzhou Center for Disease Control and Prevention, Zhengzhou 450007, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guowei Li
- Zhengzhou Center for Disease Control and Prevention, Zhengzhou 450007, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou 450018, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou 450002, China
| |
Collapse
|
15
|
Wei X, Wu J, Peng W, Chen X, Zhang L, Rong N, Yang H, Zhang G, Zhang G, Zhao B, Liu J. The Milk of Cows Immunized with Trivalent Inactivated Vaccines Provides Broad-Spectrum Passive Protection against Hand, Foot, and Mouth Disease in Neonatal Mice. Vaccines (Basel) 2024; 12:570. [PMID: 38932299 PMCID: PMC11209096 DOI: 10.3390/vaccines12060570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a contagious viral infection predominantly affecting infants and young children, caused by multiple enteroviruses, including Enterovirus 71 (EV71), Coxsackievirus A16 (CA16), Coxsackievirus A10 (CA10), and Coxsackievirus A6 (CA6). The high pathogenicity of HFMD has garnered significant attention. Currently, there is no specific treatment or broad-spectrum preventive measure available for HFMD, and existing monovalent vaccines have limited impact on the overall incidence or prevalence of the disease. Consequently, with the emergence of new viral strains driven by vaccine pressure, there is an urgent need to develop strategies for the rapid response and control of new outbreaks. In this study, we demonstrated the broad protective effect of maternal antibodies against three types of HFMD by immunizing mother mice with a trivalent inactivated vaccine targeting EV71, CA16, and CA10, using a neonatal mouse challenge model. Based on the feasibility of maternal antibodies as a form of passive immunization to prevent HFMD, we prepared a multivalent antiviral milk by immunizing dairy cows with the trivalent inactivated vaccine to target multiple HFMD viruses. In the neonatal mouse challenge model, this immunized milk exhibited extensive passive protection against oral infections caused by the three HFMD viruses. Compared to vaccines, this strategy may offer a rapid and broadly applicable approach to providing passive immunity for the prevention of HFMD, particularly in response to the swift emergence and spread of new variants.
Collapse
Affiliation(s)
- Xiaohui Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; (X.W.)
| | - Jing Wu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; (X.W.)
| | - Wanjun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; (X.W.)
| | - Xin Chen
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; (X.W.)
| | - Lihong Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; (X.W.)
| | - Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; (X.W.)
| | - Hekai Yang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; (X.W.)
| | - Gengxin Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; (X.W.)
| | - Gaoying Zhang
- Wuhan Servicebio Technology Co., Ltd., Wuhan 430079, China;
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; (X.W.)
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; (X.W.)
| |
Collapse
|
16
|
Xu X, Ma S, Liu Z, Yuan H, Wang Y, Chen M, Du M, Kan H, Wang Z, Chong X, Wen H. EV71 5'UTR interacts with 3D protein affecting replication through the AKT-mTOR pathway. Virol J 2024; 21:114. [PMID: 38778344 PMCID: PMC11110317 DOI: 10.1186/s12985-024-02385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND EV71 is one of the important pathogens of Hand-foot-and-mouth disease (HFMD), which causes serious neurological symptoms. Several studies have speculated that there will be interaction between 5'UTR and 3D protein. However, whether 5'UTR interacts with the 3D protein in regulating virus replication has not been clarified. METHODS Four 5'UTR mutation sites (nt88C/T, nt90-102-3C, nt157G/A and nt574T/A) and two 3D protein mutation sites (S37N and R142K) were mutated or co-mutated using virulent strains as templates. The replication of these mutant viruses and their effect on autophagy were determined. RESULTS 5'UTR single-point mutant strains, except for EGFP-EV71(nt90-102-3C), triggered replication attenuation. The replication ability of them was weaker than that of the parent strain the virulent strain SDLY107 which is the fatal strain that can cause severe neurological complications. While the replication level of the co-mutant strains showed different characteristics. 5 co-mutant strains with interaction were screened: EGFP-EV71(S37N-nt88C/T), EGFP-EV71(S37N-nt574T/A), EGFP-EV71(R142K-nt574T/A), EGFP-EV71(R142K-nt88C/T), and EGFP-EV71(R142K-nt157G/A). The results showed that the high replicative strains significantly promoted the accumulation of autophagosomes in host cells and hindered the degradation of autolysosomes. The low replicative strains had a low ability to regulate the autophagy of host cells. In addition, the high replicative strains also significantly inhibited the phosphorylation of AKT and mTOR. CONCLUSIONS EV71 5'UTR interacted with the 3D protein during virus replication. The co-mutation of S37N and nt88C/T, S37N and nt574T/ A, R142K and nt574T/A induced incomplete autophagy of host cells and promoted virus replication by inhibiting the autophagy pathway AKT-mTOR. The co-mutation of R142K and nt88C/T, and R142K and nt157G/A significantly reduced the inhibitory effect of EV71 on the AKT-mTOR pathway and reduced the replication ability of the virus.
Collapse
Affiliation(s)
- Xiaoying Xu
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Shao Ma
- Department of Breast Surgery, QiLu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Ziwei Liu
- Jinan Center For Disease Control And Prevention, Jinan, Shandong, 250014, China
| | - Haowen Yuan
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Yao Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Mengting Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Mengyu Du
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Haopeng Kan
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Zequn Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Xiaowen Chong
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China
| | - Hongling Wen
- School of Public Health, Cheeloo College of Medicine, Shandong University, No. 44 Wenhua West Road, Lixia District, Jinan, 250012, China.
| |
Collapse
|
17
|
Wang CR. Epidemic characteristics and changing trend of enterovirus infections in the context of prevention and control of COVID-19 epidemic. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:254-260. [DOI: 10.11569/wcjd.v32.i4.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
|
18
|
Chen L, Xing Y, Zhang Y, Xie J, Su B, Jiang J, Geng M, Ren X, Guo T, Yuan W, Ma Q, Chen M, Cui M, Liu J, Song Y, Wang L, Dong Y, Ma J. Long-term variations of urban-Rural disparities in infectious disease burden of over 8.44 million children, adolescents, and youth in China from 2013 to 2021: An observational study. PLoS Med 2024; 21:e1004374. [PMID: 38607981 PMCID: PMC11014433 DOI: 10.1371/journal.pmed.1004374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/08/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND An accelerated epidemiological transition, spurred by economic development and urbanization, has led to a rapid transformation of the disease spectrum. However, this transition has resulted in a divergent change in the burden of infectious diseases between urban and rural areas. The objective of our study was to evaluate the long-term urban-rural disparities in infectious diseases among children, adolescents, and youths in China, while also examining the specific diseases driving these disparities. METHODS AND FINDINGS This observational study examined data on 43 notifiable infectious diseases from 8,442,956 cases from individuals aged 4 to 24 years, with 4,487,043 cases in urban areas and 3,955,913 in rural areas. The data from 2013 to 2021 were obtained from China's Notifiable Infectious Disease Surveillance System. The 43 infectious diseases were categorized into 7 categories: vaccine-preventable, bacterial, gastrointestinal and enterovirus, sexually transmitted and bloodborne, vectorborne, zoonotic, and quarantinable diseases. The calculation of infectious disease incidence was stratified by urban and rural areas. We used the index of incidence rate ratio (IRR), calculated by dividing the urban incidence rate by the rural incidence rate for each disease category, to assess the urban-rural disparity. During the nine-year study period, most notifiable infectious diseases in both urban and rural areas exhibited either a decreased or stable pattern. However, a significant and progressively widening urban-rural disparity in notifiable infectious diseases was observed. Children, adolescents, and youths in urban areas experienced a higher average yearly incidence compared to their rural counterparts, with rates of 439 per 100,000 compared to 211 per 100,000, respectively (IRR: 2.078, 95% CI [2.075, 2.081]; p < 0.001). From 2013 to 2021, this disparity was primarily driven by higher incidences of pertussis (IRR: 1.782, 95% CI [1.705, 1.862]; p < 0.001) and seasonal influenza (IRR: 3.213, 95% CI [3.205, 3.220]; p < 0.001) among vaccine-preventable diseases, tuberculosis (IRR: 1.011, 95% CI [1.006, 1.015]; p < 0.001), and scarlet fever (IRR: 2.942, 95% CI [2.918, 2.966]; p < 0.001) among bacterial diseases, infectious diarrhea (IRR: 1.932, 95% CI [1.924, 1.939]; p < 0.001), and hand, foot, and mouth disease (IRR: 2.501, 95% CI [2.491, 2.510]; p < 0.001) among gastrointestinal and enterovirus diseases, dengue (IRR: 11.952, 95% CI [11.313, 12.628]; p < 0.001) among vectorborne diseases, and 4 sexually transmitted and bloodborne diseases (syphilis: IRR 1.743, 95% CI [1.731, 1.755], p < 0.001; gonorrhea: IRR 2.658, 95% CI [2.635, 2.682], p < 0.001; HIV/AIDS: IRR 2.269, 95% CI [2.239, 2.299], p < 0.001; hepatitis C: IRR 1.540, 95% CI [1.506, 1.575], p < 0.001), but was partially offset by lower incidences of most zoonotic and quarantinable diseases in urban areas (for example, brucellosis among zoonotic: IRR 0.516, 95% CI [0.498, 0.534], p < 0.001; hemorrhagic fever among quarantinable: IRR 0.930, 95% CI [0.881, 0.981], p = 0.008). Additionally, the overall urban-rural disparity was particularly pronounced in the middle (IRR: 1.704, 95% CI [1.699, 1.708]; p < 0.001) and northeastern regions (IRR: 1.713, 95% CI [1.700, 1.726]; p < 0.001) of China. A primary limitation of our study is that the incidence was calculated based on annual average population data without accounting for population mobility. CONCLUSIONS A significant urban-rural disparity in notifiable infectious diseases among children, adolescents, and youths was evident from our study. The burden in urban areas exceeded that in rural areas by more than 2-fold, and this gap appears to be widening, particularly influenced by tuberculosis, scarlet fever, infectious diarrhea, and typhus. These findings underscore the urgent need for interventions to mitigate infectious diseases and address the growing urban-rural disparity.
Collapse
Affiliation(s)
- Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Junqing Xie
- Centre for Statistics in Medicine, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/ Peking Union Medical College, Beijing, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Mengjie Geng
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiang Ren
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Mengjie Cui
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Liping Wang
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| |
Collapse
|
19
|
Jiang S, Han C, Ma Y, Ji J, Chen G, Guo Y. Temporal dynamic effects of meteorological factors and air quality on the physical health of the older adults in Shenzhen, China. Front Public Health 2024; 12:1289253. [PMID: 38510362 PMCID: PMC10951054 DOI: 10.3389/fpubh.2024.1289253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/02/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Meteorological and environmental factors can affect people's lives and health, which is crucial among the older adults. However, it is currently unclear how they specifically affect the physical condition of older adults people. Methods We collected and analyzed the basic physical examination indicators of 41 older adults people for two consecutive years (2021 and 2022), and correlated them with meteorological and environmental factors. Partial correlation was also conducted to exclude unrelated factors as well. Results We found that among the physical examination indicators of the older adults for two consecutive years, five indicators (HB, WBC, HbAlc, CB, LDL-C) showed significant differences across the population, and they had significantly different dynamic correlation patterns with six meteorological (air pressure, temperature, humidity, precipitation, wind speed, and sunshine duration) and seven air quality factors (NO2, SO2, PM10, O3-1h, O3-8h, CO, PM2.5). Discussion Our study has discovered for the first time the dynamic correlation between indicators in normal basic physical examinations and meteorological factors and air quality indicators, which will provide guidance for the future development of policies that care for the healthy life of the older adults.
Collapse
Affiliation(s)
- Shuai Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Chuanliang Han
- Department of Electrical Engineering, The City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yue Ma
- Department of Healthcare-Associated Infection Management, National Clinical Research Center for Infectious Diseases, Third People’s Hospital of Shenzhen and The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Guomin Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yinsheng Guo
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Chen Y, Nguyet LA, Nhan LNT, Qui PT, Nhu LNT, Hong NTT, Ny NTH, Anh NT, Thanh LK, Phuong HT, Vy NHT, Thanh NTL, Khanh TH, Hung NT, Viet DC, Nam NT, Chau NVV, van Doorn HR, Tan LV, Clapham H. Age-time-specific transmission of hand-foot-and-mouth disease enterovirus serotypes in Vietnam: A catalytic model with maternal immunity. Epidemics 2024; 46:100754. [PMID: 38428358 PMCID: PMC10945305 DOI: 10.1016/j.epidem.2024.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024] Open
Abstract
Hand, foot and mouth disease (HFMD) is highly prevalent in the Asia Pacific region, particularly in Vietnam. To develop effective interventions and efficient vaccination programs, we inferred the age-time-specific transmission patterns of HFMD serotypes enterovirus A71 (EV-A71), coxsackievirus A6 (CV-A6), coxsackievirus A10 (CV-A10), coxsackievirus A16 (CV-A16) in Ho Chi Minh City, Vietnam from a case data collected during 2013-2018 and a serological survey data collected in 2015 and 2017. We proposed a catalytic model framework with good adaptability to incorporate maternal immunity using various mathematical functions. Our results indicate the high-level transmission of CV-A6 and CV-A10 which is not obvious in the case data, due to the variation of disease severity across serotypes. Our results provide statistical evidence supporting the strong association between severe illness and CV-A6 and EV-A71 infections. The HFMD dynamic pattern presents a cyclical pattern with large outbreaks followed by a decline in subsequent years. Additionally, we identify the age group with highest risk of infection as 1-2 years and emphasise the risk of future outbreaks as over 50% of children aged 6-7 years were estimated to be susceptible to CV-A16 and EV-A71. Our study highlights the importance of multivalent vaccines and active surveillance for different serotypes, supports early vaccination prior to 1 year old, and points out the potential utility for vaccinating children older than 5 years old in Vietnam.
Collapse
Affiliation(s)
- Yining Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
| | - Lam Anh Nguyet
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | | | - Phan Tu Qui
- Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | | | | | - Nguyen Thi Han Ny
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Le Kim Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Huynh Thi Phuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Nguyen Ha Thao Vy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | | | | | | | - Do Chau Viet
- Children's Hospital 2, Ho Chi Minh City, Viet Nam
| | | | - Nguyen Van Vinh Chau
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| |
Collapse
|
21
|
Han S, Ji W, Duan G, Chen S, Yang H, Jin Y. Emerging concerns of blood-brain barrier dysfunction caused by neurotropic enteroviral infections. Virology 2024; 591:109989. [PMID: 38219371 DOI: 10.1016/j.virol.2024.109989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/11/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Enteroviruses (EVs), comprise a genus in the Picornaviridae family, which have been shown to be neurotropic and can cause various neurological disorders or long-term neurological condition, placing a huge burden on society and families. The blood-brain barrier (BBB) is a protective barrier that prevents dangerous substances from entering the central nervous system (CNS). Recently, numerous EVs have been demonstrated to have the ability to disrupt BBB, and further lead to severe neurological damage. However, the precise mechanisms of BBB disruption associated with these EVs remain largely unknown. In this Review, we focus on the molecular mechanisms of BBB dysfunction caused by EVs, emphasizing the invasiveness of enterovirus A71 (EVA71), which will provide a research direction for further treatment and prevention of CNS disorders.
Collapse
Affiliation(s)
- Shujie Han
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
22
|
Alakrash L, Barakeh M, AlQahtani WI, AlKanaan RK. Recurrent Hand, Foot, and Mouth Disease in a Saudi Girl. Cureus 2024; 16:e51813. [PMID: 38322079 PMCID: PMC10846910 DOI: 10.7759/cureus.51813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a viral illness that predominantly affects infants and children, causing blisters and sores on the hands, feet, and mouth. Recurrence is rare, but a case in a six-year-old girl in Saudi Arabia was reported. A six-year-old girl presented with a rash on her palms and soles, which was preceded by a mild sore throat and low-grade fever. She had been in contact with her two-year-old sister, who had similar symptoms but a different rash pattern. During clinical examination, multiple erythematous deep-seated vesicles and papules were noted on the patient's palms and soles, with no involvement of mucous membranes or nails. The diagnosis of hand, foot, and mouth disease (HFMD) was made based on the characteristic clinical presentation, and the rash resolved within seven days without treatment or complications. The patient had experienced a similar presentation six months ago, which was also diagnosed as HFMD, and the rash had resolved spontaneously within one week. In her second episode, the rash was less severe, with milder prodromal symptoms. In both episodes, the lesions were asymptomatic and had no mucosal involvement. The patient had experienced onychomadesis after her first episode, but no nail abnormalities were seen after her second episode. Although HFMD is rare to recur in children, outbreaks can lead to another episode. HFMD prevalence is underestimated in Saudi Arabia due to missed mild cases. Pediatricians and dermatologists should be aware of HFMD incidence and its complications, as early detection is vital in preventing outbreaks and transmission.
Collapse
Affiliation(s)
- Lamia Alakrash
- Department of Dermatology, King Fahad Medical City, Riaydh, SAU
| | - Maee Barakeh
- College of Medicine, King Saud University, Riyadh, SAU
| | - Wasan I AlQahtani
- College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, SAU
| | | |
Collapse
|
23
|
Liao Y, Jiang Q, Huo X, Yu L, Yang J, Zhao H, Li D, Xu X, Jiang G, Zhang C, Li C, Li Y, Zhang Y, Shao M, Liu B, Shen L, Fan S, Li Q. Preclinical safety evaluation of a bivalent inactivated EV71-CA16 vaccine in mice immunized intradermally. Hum Vaccin Immunother 2023; 19:2209472. [PMID: 37217189 PMCID: PMC10208166 DOI: 10.1080/21645515.2023.2209472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Hand, foot and mouth disease is a common acute viral infectious disease that poses a serious threat to the life and health of young children. With the development of an effective inactivated EV71 vaccine, CA16 has become the main pathogen causing HFMD. Effective and safe vaccines against this disease are urgently needed. In our previous study, a bivalent inactivated vaccine was shown to have good immunogenicity and to induce neutralizing antibodies in mice and monkeys. Repeated administration toxicity is a critical safety test in the preclinical evaluation of vaccines. In this study, BALB/c mice were used to evaluate the toxicity of the bivalent vaccine after multiple intradermal administrations. Clinical observation was performed daily, and body weight, food intake, hematological characteristics, serum biochemical parameters, antinuclear antibodies, CD4+/CD8a+ T-cell proportions, bone marrow smear results and pathology results were recorded. The results showed that there was no significant change at the injection site and no adverse reactions related to the vaccine. The bivalent inactivated EV71-CA16 vaccine exhibits good safety in mice, and these results provide a sufficient basis for further clinical trials.
Collapse
Affiliation(s)
- Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Qinfang Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Xinqian Huo
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Li Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Jinling Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Heng Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Dandan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Xingli Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Guorun Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Caixing Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Cong Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Yun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Mingxiang Shao
- Shandong Xinbo Pharmaceutical R&D Co. Ltd, Dezhou, Shandong, China
| | - Baofeng Liu
- Shandong Xinbo Pharmaceutical R&D Co. Ltd, Dezhou, Shandong, China
| | - Lianzhong Shen
- Shandong Xinbo Pharmaceutical R&D Co. Ltd, Dezhou, Shandong, China
| | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| |
Collapse
|
24
|
Ji W, Tao L, Li D, Zhu P, Wang Y, Zhang Y, Zhang L, Chen S, Yang H, Jin Y, Duan G. A mouse model and pathogenesis study for CVA19 first isolated from hand, foot, and mouth disease. Emerg Microbes Infect 2023; 12:2177084. [PMID: 36735880 PMCID: PMC9937014 DOI: 10.1080/22221751.2023.2177084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
ABSTRACTCoxsackievirus A19 (CVA19) is a member of Enterovirus (EV) C group in the Picornaviridae family. Recently, we reported a case of CVA19-infected hand, foot, and mouth disease (HFMD) for the first time. However, the current body of knowledge on the CVA19 infection, particularly the pathogenesis of encephalomyelitis and diarrhoea is still very limited, due to the lack of suitable animal models. Here, we successfully established a CVA19 mouse model via oral route based on 7-day-old ICR mice. Our results found the virus strain could directly infect the neurons, astrocytes of brain, and motor neurons of spinal cord causing neurological complications, such as acute flaccid paralysis. Importantly, viruses isolated from the spinal cords of infected mice caused severe illness in suckling mice, fulfilling Koch's postulates to some extent. CVA19 infection led to diarrhoea with typical pathological features of shortened intestinal villi, increased number of secretory cells and apoptotic intestinal cells, and inflammatory cell infiltration. Much higher concentrations of serum cytokines and more peripheral blood inflammatory cells in CVA19-infected mice indicated a systematic inflammatory response induced by CVA19 infection. Finally, we found ribavirin and CVA19 VP1 monoclonal antibody could not prevent the disease progression, but higher concentrations of antisera and interferon alpha 2 (IFN-α2) could provide protective effects against CVA19. In conclusion, this study shows that a natural mouse-adapted CVA19 strain leads to diarrhoea and encephalomyelitis in a mouse model via oral infection, which provides a useful tool for studying CVA19 pathogenesis and evaluating the efficacy of vaccines and antivirals.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Ling Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Liang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
25
|
Chen S, Chen Y, Ji W, Wang F, Zhang X, Jin Y, Liu Y. Emerging concerns of atypical hand foot and mouth disease caused by recombinant Coxsackievirus A6 variants in Henan, China. J Med Virol 2023; 95:e29316. [PMID: 38103032 DOI: 10.1002/jmv.29316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
An increasing number of studies have reported that atypical hand, foot, and mouth disease (HFMD) is becoming a new concern for children's health. At present, there is no official definition for atypical HFMD, but some studies have defined that it occurs at anatomic sites not listed in the definition of HFMD issued by the World Health Organization. Several pathogens have been reported to cause atypical HFMD, such as Coxsackievirus (CV)A6. As one of the most prevalent enteroviruses in the world, CVA6 seems to affect a wider range of children and causes more severe and prolonged illness than other enteroviruses. The early lesions of atypical HFMD are very similar to the clinical presentations of other diseases, such as eczema, which poses a challenge for clinicians aiming to identify and diagnose HFMD in a timely manner. Here, we report on six atypical HFMD patients caused by recombinant CVA6 variants, and the atypical manifestations include eczema coxsackium, large herpes, rice-like red papules and herpes, purpuric rash, and onychomadesis, as well as and large red herpes on scalp, perianal, testicles, shoulders and neck, and other atypical eruption sites, hoping to draw the attention of other pediatricians. This study will provide scientific guidance for timely diagnosis of HFMD to prevent serious complications.
Collapse
Affiliation(s)
- Shouhang Chen
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Chen
- Department of Epidemiology, Zhengzhou University, Zhengzhou, China
| | - Wangquan Ji
- Department of Epidemiology, Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaolong Zhang
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, Zhengzhou University, Zhengzhou, China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Zheng D, Shen L, Wen W, Ling F, Miao Z, Sun J, Lin H. The impact of EV71 vaccination program on hand, foot and mouth disease in Zhejiang Province, China: A negative control study. Infect Dis Model 2023; 8:1088-1096. [PMID: 37745754 PMCID: PMC10514095 DOI: 10.1016/j.idm.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/26/2023] Open
Abstract
Objective To estimate the potential causal impact of Enterovirus A71 (EV71) vaccination program on the reduction of EV71-infected hand, foot, and mouth disease (HFMD) in Zhejiang Province. Methods We utilized the longitudinal surveillance dataset of HFMD and EV71 vaccination in Zhejiang Province during 2010-2019. We estimated vaccine efficacy using a Bayesian structured time series (BSTS) model, and employed a negative control outcome (NCO) model to detect unmeasured confounding and reveal potential causal association. Results We estimated that 20,132 EV71 cases (95% CI: 16,733, 23,532) were prevented by vaccination program during 2017-2019, corresponding to a reduction of 29% (95% CI: 24%, 34%). The effectiveness of vaccination increased annually, with reductions of 11% (95% CI: 6%, 16%) in 2017 and 66% (95% CI: 61%, 71%) in 2019. Children under 5 years old obtained greater benefits compared to those over 5 years. Cities with higher vaccination coverage experienced a sharper EV71 reduction compared to those with lower coverage. The NCO model detected no confounding factors in the association between vaccination and EV71 cases reduction. Conclusions This study suggested a potential causal effect of the EV71 vaccination, highlighting the importance of achieving higher vaccine coverage to control the HFMD.
Collapse
Affiliation(s)
- Dashan Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lingzhi Shen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China
| | - Wanqi Wen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Feng Ling
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China
| | - Ziping Miao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China
| | - Jimin Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
27
|
Shrestha S, Malla B, Haramoto E. Monitoring hand foot and mouth disease using long-term wastewater surveillance in Japan: Quantitative PCR assay development and application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165926. [PMID: 37527711 DOI: 10.1016/j.scitotenv.2023.165926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is a highly contagious disease that primarily affects children under five years of age. It is mainly caused by serotypes of Enterovirus A (EVA): EVA71, Coxsackievirus A types 6 (CVA6), 10 (CVA10), and 16 (CVA16). Despite being highly prevalent in Japan and other countries in the Asia-Pacific region, few studies have investigated HFMD pathogens in wastewater. The present study aimed to develop a highly sensitive and broadly reactive quantitative polymerase chain reaction (qPCR) assay of dominant serotype CVA6, to revise previously developed CVA6, CVA10, and CVA16 assays, and to test these assays in wastewater samples from Yamanashi Prefecture, Japan. The new-CVA6 qPCR assay was developed with maximal nucleotide percent identity among CVA6 isolates from Japan. The new-CVA6 and revised assays were highly sensitive and had the ability to quantify respective positive controls at levels as low as 1 copy/μL. Among the 53 grab influent samples collected between March 2022 and March 2023, EVA71, CVA10, and CVA16 RNA were not detected in any samples, whereas the new-CVA6 assay could detect CVA6 RNA in 38 % (20/53) of samples. CVA6 RNA was detected at a significantly higher concentration in the summer season (3.3 ± 0.8 log10 copies/L; 79 % (11/14)) than in autumn (2.7 ± 0.6 log10 copies/L; 69 % (9/13)). The seasonal trend of CVA6 RNA detection in wastewater aligned with the trend of HFMD case reports in the catchment of the wastewater treatment plant. This is the first study to report the detection and seasonal trends of the EVA serotypes associated with HFMD in wastewater samples in Japan. It provides evidence that wastewater-based epidemiology is applicable even for diseases that are prevalent only in specific population groups.
Collapse
Affiliation(s)
- Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
28
|
Yang L, Liu T, Tian D, Zhao H, Xia Y, Wang J, Li T, Li Q, Qi L. Non-linear association between daily mean temperature and children's hand foot and mouth disease in Chongqing, China. Sci Rep 2023; 13:20355. [PMID: 37990138 PMCID: PMC10663521 DOI: 10.1038/s41598-023-47858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023] Open
Abstract
Chongqing was seriously affected by hand, foot, and mouth disease (HFMD), but the relationships between daily mean temperature and the incidence of HFMD remain unclear. This study used distributed lag nonlinear model to evaluate the effect of daily mean temperature on the incidence of HFMD in children aged < 5 years in Chongqing. Daily HFMD data from 2012 to 2019 in Chongqing were retrieved from the notifiable infectious disease surveillance system. A total of 413,476 HFMD cases aged < 5 years were reported in Chongqing from 2012 to 2019. The exposure-response curve of daily mean temperature and daily HFMD cases was wavy-shaped. The relative risks (RRs) increased as daily mean temperature below 5.66 °C or above 9.43 °C, with two peaks at 16.10 °C and 26.68 °C. The RRs reached the highest when the daily mean temperature at 26.68 °C on the current day (RR = 1.20, 95% CI 1.09-1.32), followed by the daily mean temperature at 16.10 °C at lag 5 days (RR = 1.07, 95% CI 1.05-1.08). The RRs for girls and daycare children were much higher than those for boys and scattered children, respectively. Taken together, daily mean temperature has strong effect on HFMD in children aged < 5 years old in Chongqing, particularly for girls and daycare children.
Collapse
Affiliation(s)
- Lin Yang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Tian Liu
- Jingzhou Center for Disease Control and Prevention, Hubei, 434000, China
| | - Dechao Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Han Zhao
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Yu Xia
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Ju Wang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Tingting Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China
| | - Qin Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China.
| | - Li Qi
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, 400042, China.
| |
Collapse
|
29
|
Cheong DHJ, Yogarajah T, Wong YH, Arbrandt G, Westman J, Chu JJH. CUR-N399, a PI4KB inhibitor, for the treatment of Enterovirus A71 infection. Antiviral Res 2023; 218:105713. [PMID: 37657668 DOI: 10.1016/j.antiviral.2023.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Over the years, the hand, foot and mouth disease (HFMD) has sparked epidemics across many countries which mainly affected young children. While symptoms are usually mild, severe complications may arise, and some even lead to death. Such concerns, coupled with the lack of approved vaccines and antivirals to date, create an urgency in the identification of safe therapeutics against HFMD. The disease is mainly transmitted by enteroviruses like enterovirus A71 (EV-A71). Essential for enterovirus replication is the host protein, PI4KB. In this study, we investigate the antiviral efficacy of a novel PI4KB inhibitor, CUR-N399. We found that CUR-N399 displayed broad-spectrum antiviral activity against picornaviruses in cell culture models. Using a suckling mouse model of lethal EV-A71 infection, CUR-N399 was found to be well-tolerated, promote survival and reduce viral titre in mice organs. Together, these support the discovery of CUR-N399 as an antiviral against EV-A71 and potentially other closely related viruses.
Collapse
Affiliation(s)
- Dorothy Hui Juan Cheong
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thinesshwary Yogarajah
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Hao Wong
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - Justin Jang Hann Chu
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
30
|
Chen L, Wang L, Xing Y, Xie J, Su B, Geng M, Ren X, Zhang Y, Liu J, Ma T, Chen M, Ma Q, Jiang J, Cui M, Guo T, Yuan W, Song Y, Dong Y, Ma J. Disparity in spectrum of infectious diseases between in-school and out-of-school children, adolescents, and youths in China: findings from a successive national surveillance from 2013 to 2021. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 38:100811. [PMID: 37790079 PMCID: PMC10544430 DOI: 10.1016/j.lanwpc.2023.100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/28/2023] [Accepted: 05/21/2023] [Indexed: 10/05/2023]
Abstract
Background An accelerated epidemiological transition, economic development and urbanization have brought rapid reductions but a potential disparity in infectious diseases burdens in-school and out-of-school children, adolescents, and youths in China. This paper assesses the disparity in spectrum of infectious diseases between two groups, and described disparity's variation by age, year and province, and determined the priority diseases. Methods A total of 7,912,274 new incident cases (6,159,021 in school and 1,753,253 out of school) aged 6-21 years across 43 notifiable infectious diseases have been collected based on China's Notifiable Infectious Disease Surveillance System from 2013 to 2021. All infectious diseases are categorized into seven categories: vaccine preventable, bacteria, gastrointestinal and enterovirus, sexually transmitted and bloodborne, vectorborne, zoonotic, and quarantinable diseases. We used the index of incidence rate ratio (IRR) of by specific disease, category, year, and age to assess the disparity between those out-of-school and in-school, and determine their separate priority diseases. Findings From 2013 to 2021, a small disparity of notifiable infectious diseases existed with higher average yearly incidence for out-of-school children, adolescents, and youth than that in-school (327.601 v.s. 319.677 per 100,000, IRR = 1.025, 95%CI: 1.023-1.027, standardized IRR = 1.169, 95%CI: 1.155-1.183), and it gradually narrowed by surveillance years with IRR from 1.351 in 2013 to 1.015 in 2021 due to large decreased disparity in compulsory education stage group. Such disparity was mainly driven by sexually transmitted and bloodborne diseases, bacteria diseases, vectorborne diseases, quarantinable diseases and zoonotic diseases. However, vaccine preventable diseases, gastrointestinal and enterovirus diseases showed higher incidence of infectious diseases for those in-school than that out-of-school, particularly for seasonal influenza, mumps and hand-foot-and-mouth disease. Meanwhile, such disparity is obvious in most of ages and in eastern and coastal regions of China, and the narrowing trend is attributed to six categories diseases, except for sexually transmitted and bloodborne diseases with gradually widened disparity between two groups with surveillance years with IRR from 22.939 in 2013 to 23.291 in 2021 due to large disparity for those who have completed compulsory education. Interpretation A huge achievement has been achieved in reducing the burden and disparity of infectious diseases between out-of-school and in-school children, adolescents, and youths in China, particularly for the compulsory education stage population. The priorities for the coming decades will be to extend successful strategies to a broad scope and promote education, particularly for the investment of social health resources and the improvement of personal health literacy in the non-compulsory education stage. This should involve extending the years of compulsory school, improving sex health education, strengthening monitoring, expanding immunization programs coverage and prioritizing the prevention and control of sexually transmitted diseases and tuberculosis among out-of-school population. Funding National Natural Science Foundation of China and Beijing Natural Science Foundation.
Collapse
Affiliation(s)
- Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Liping Wang
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yi Xing
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Junqing Xie
- Centre for Statistics in Medicine, NDORMS, University of Oxford, Oxford, UK
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Mengjie Geng
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiang Ren
- Division of Infectious Disease Control and Prevention, Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yi Zhang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Jieyu Liu
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Tao Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Manman Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Qi Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Jianuo Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Mengjie Cui
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Tongjun Guo
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Wen Yuan
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University; National Health Commission Key Laboratory of Reproductive Health, Beijing, 100191, China
| |
Collapse
|
31
|
Santangelo OE, Gianfredi V, Provenzano S, Cedrone F. Digital epidemiology and infodemiology of hand-foot-mouth disease (HFMD) in Italy. Disease trend assessment via Google and Wikipedia. ACTA BIO-MEDICA : ATENEI PARMENSIS 2023; 94:e2023107. [PMID: 37539609 PMCID: PMC10440772 DOI: 10.23750/abm.v94i4.14184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND AND AIM The study aimed to evaluate the epidemiological trend of hand, foot and mouth disease (HFMD) in Italy using data on Internet search volume. METHODS A cross-sectional study design was used. Data on Internet searches were obtained from Google Trends (GT) and Wikipedia. We used the following Italian search term: "Malattia mano-piede-bocca" (Hand-foot-mouth disease, in English). A monthly time-frame was extracted, partly overlapping, from July 2015 to December 2022. GT and Wikipedia were overlapped to perform a linear regression and correlation analyses. Statistical analyses were performed using the Spearman's rank correlation coefficient (rho). A linear regression analysis was performed considering Wikipedia and GT. RESULTS Search peaks for both Wikipedia and GT occurred in the months November-December during the autumn-winter season and in June during the spring-summer season, except for the period from June 2020 to June 2021, probably due to the restrictions of the COVID19 pandemic. A temporal correlation was observed between GT and Wikipedia search trends. CONCLUSIONS This is the first study in Italy that attempts to clarify the epidemiology of HFMD. Google search and Wikipedia can be valuable for public health surveillance; however, to date, digital epidemiology cannot replace the traditional surveillance system.
Collapse
Affiliation(s)
| | | | | | - Fabrizio Cedrone
- Hospital Management, Local Health Unit of Pescara, 65122 Pescara.
| |
Collapse
|
32
|
Song J, Zhao G, Li H, Yang Y, Yu Y, Hu Y, Li Y, Li J, Hu Y. Tandem mass tag (TMT) labeling-based quantitative proteomic analysis reveals the cellular protein characteristics of 16HBE cells infected with coxsackievirus A10 and the potential effect of HMGB1 on viral replication. Arch Virol 2023; 168:217. [PMID: 37524962 DOI: 10.1007/s00705-023-05821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 08/02/2023]
Abstract
Coxsackievirus A10 (CV-A10) is recognized as one of the most important pathogens associated with hand, foot, and mouth disease (HFMD) in young children under 5 years of age worldwide, and it can lead to fatal neurological complications. However, available commercial vaccines fail to protect against CV-A10. Therefore, there is an urgent need to study new protein targets of CV-A10 and develop novel vaccine-based therapeutic strategies. Advances in proteomics in recent years have enabled a comprehensive understanding of host pathogen interactions. Here, to study CV-A10-host interactions, a global quantitative proteomic analysis was conducted to investigate the molecular characteristics of host cell proteins and identify key host proteins involved in CV-A10 infection. Using tandem mass tagging (TMT)-based mass spectrometry, a total of 6615 host proteins were quantified, with 293 proteins being differentially regulated. To ensure the validity and reliability of the proteomics data, three randomly selected proteins were verified by Western blot analysis, and the results were consistent with the TMT results. Further functional analysis showed that the upregulated and downregulated proteins were associated with diverse biological activities and signaling pathways, such as metabolic processes, biosynthetic processes, the AMPK signaling pathway, the neurotrophin signaling pathway, the MAPK signaling pathway, and the GABAergic synaptic signaling. Moreover, subsequent bioinformatics analysis demonstrated that these differentially expressed proteins contained distinct domains, were localized in different subcellular components, and generated a complex network. Finally, high-mobility group box 1 (HMGB1) might be a key host factor involved in CV-A10 replication. In summary, our findings provide comprehensive insights into the proteomic profile during CV-A10 infection, deepen our understanding of the relationship between CV-A10 and host cells, and establish a proteomic signature for this viral infection. Moreover, the observed effect of HMGB1 on CV-A10 replication suggests that it might be a potential therapeutic target treatment of CV-A10 infection.
Collapse
Affiliation(s)
- Jie Song
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Guifang Zhao
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Hui Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yan Yang
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yue Yu
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yunguang Hu
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yadong Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jiang Li
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yajie Hu
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, China.
| |
Collapse
|
33
|
Liang Y, Chen J, Wang C, Yu B, Zhang Y, Liu Z. Investigating the mechanism of Echovirus 30 cell invasion. Front Microbiol 2023; 14:1174410. [PMID: 37485505 PMCID: PMC10359910 DOI: 10.3389/fmicb.2023.1174410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Viruses invade susceptible cells through a complex mechanism before injecting their genetic material into them. This causes direct damage to the host cell, as well as resulting in disease in the corresponding system. Echovirus type 30 (E30) is a member of the Enterovirus B group and has recently been reported to cause central nervous system (CNS) disorders, leading to viral encephalitis and viral meningitis in children. In this review, we aim to help in improving the understanding of the mechanisms of CNS diseases caused by E30 for the subsequent development of relevant drugs and vaccines.
Collapse
Affiliation(s)
- Yucai Liang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Junbing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Congcong Wang
- Department of Microbiology, Weifang Medical University, Weifang, China
| | - Bowen Yu
- Department of Immunology, Weifang Medical University, Weifang, China
| | - Yong Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, China
| |
Collapse
|
34
|
Sittikul P, Batty EM, Yodsawat P, Nuanpirom J, Kosoltanapiwat N, Sangket U, Chatchen S, Day NPJ, Thaipadungpanit J. Diversity of Human Enterovirus Co-Circulations in Five Kindergartens in Bangkok between July 2019 and January 2020. Viruses 2023; 15:1397. [PMID: 37376696 DOI: 10.3390/v15061397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Human enterovirus causes various clinical manifestations in the form of rashes, febrile illness, flu-like illness, uveitis, hand-foot-mouth disease (HFMD), herpangina, meningitis, and encephalitis. Enterovirus A71 and coxsackievirus are significant causes of epidemic HFMD worldwide, especially in children aged from birth to five years old. The enterovirus genotype variants causing HFMD epidemics have been reported increasingly worldwide in the last decade. We aim to use simple and robust molecular tools to investigate human enteroviruses circulating among kindergarten students at genotype and subgenotype levels. With the partial 5'-UTR sequencing analysis as a low-resolution preliminary grouping tool, ten enterovirus A71 (EV-A71) and coxsackievirus clusters were identified among 18 symptomatic cases and 14 asymptomatic cases in five kindergartens in Bangkok, Thailand, between July 2019 and January 2020. Two occurrences of a single clone causing an infection cluster were identified (EV-A71 C1-like subgenotype and coxsackievirus A6). Random amplification-based sequencing using MinION (Oxford Nanopore Technology) helped identify viral transmission between two closely related clones. Diverse genotypes co-circulating among children in kindergartens are reservoirs for new genotype variants emerging, which might be more virulent or better at immune escape. Surveillance of highly contagious enterovirus in communities is essential for disease notifications and controls.
Collapse
Affiliation(s)
- Pichamon Sittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Elizabeth M Batty
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Prasert Yodsawat
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Jiratchaya Nuanpirom
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Unitsa Sangket
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
- Center for Genomics and Bioinformatics Research, Faculty of Science Prince of Songkla University, Songkhla 90110, Thailand
| | - Supawat Chatchen
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7LG, UK
| | - Janjira Thaipadungpanit
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
35
|
Zhang N, Mou D, Li T, Chen Z, Ma C, Liang L, He Q. Integrated analysis reveals important differences in the gut and oropharyngeal microbiota between children with mild and severe hand, foot and mouth disease. Emerg Microbes Infect 2023; 12:2192819. [PMID: 36927539 PMCID: PMC10071984 DOI: 10.1080/22221751.2023.2192819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Little is known about alternation and difference in gut microbiota between patients with mild and severe hand, foot and mouth disease (HFMD). We investigated the differences in gut and oropharynx microbiotas between mild and severe HFMD in young children and changes in bacterial profiles as the disease progresses from acute to convalescent phase. Forty-two patients with confirmed HFMD were studied, among which thirty-two had severe HFMD and ten had mild HFMD. First rectal swabs were collected from all patients at an average of 2 days (acute phase) after the onset of symptoms, and second rectal swabs were collected from 8 severe patients at day 9 (convalescent phase) after the onset. Oropharyngeal swabs were obtained from 10 patients in the acute phase and 6 in the convalescent phase. 16S rRNA sequencing was performed for all 70 samples. Compared with mild HFMD, severe HFMD exhibited significantly decreased diversity and richness of gut microbiota. Gut microbiota bacterial profiles observed in the acute and convalescent phases resembled each other, but differed from those in mild cases. Additionally, 50% of patients with severe HFMD in the acute phase harbored a dominant pathobiontic bacterial genus. However, none of patients with mild HFMD had such bacteria. Similar bacterial compositions in oropharynx microbiota were detected between mild and severe cases. Our findings indicate that severe HFMD exhibits significantly impaired diversity of gut microbiota and frequent gut and oropharyngeal inflammation-inducing bacteria. However, the results should be interpreted with caution as the number of the subjects was limited.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Medical Microbiology, Capital Medical University. No. 10 Xi Tou Tiao, You'an Meng Wai, Feng Tai District, Beijing 100069, China (N.Z.: ; Z.C.: )
| | - Danlei Mou
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, No. 8 Xi TouTiao, You'an Men Wai, Feng Tai District, Beijing 100069, China (D.M.: ; T.L.: ; C.M.: ; L.L.: )
| | - Tongzeng Li
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, No. 8 Xi TouTiao, You'an Men Wai, Feng Tai District, Beijing 100069, China (D.M.: ; T.L.: ; C.M.: ; L.L.: )
| | - Zhiyun Chen
- Department of Medical Microbiology, Capital Medical University. No. 10 Xi Tou Tiao, You'an Meng Wai, Feng Tai District, Beijing 100069, China (N.Z.: ; Z.C.: )
| | - Chunhua Ma
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, No. 8 Xi TouTiao, You'an Men Wai, Feng Tai District, Beijing 100069, China (D.M.: ; T.L.: ; C.M.: ; L.L.: )
| | - Lianchun Liang
- Department of Infectious Disease, Beijing Youan Hospital, Capital Medical University, No. 8 Xi TouTiao, You'an Men Wai, Feng Tai District, Beijing 100069, China (D.M.: ; T.L.: ; C.M.: ; L.L.: )
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University. No. 10 Xi Tou Tiao, You'an Meng Wai, Feng Tai District, Beijing 100069, China (N.Z.: ; Z.C.: ).,Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Turku 20520, Finland (Q.H.: )
| |
Collapse
|
36
|
Associations between ambient air pollutants and childhood hand, foot, and mouth disease in Sichuan, China: a spatiotemporal study. Sci Rep 2023; 13:3993. [PMID: 36899026 PMCID: PMC10006415 DOI: 10.1038/s41598-023-31035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a major public health concern in the Asia-Pacific region. Previous studies have implied that ambient air pollution may affect the incidence of HFMD, but the results among different regions are inconsistent. We aimed to deepen the understanding of the associations between air pollutants and HFMD by conducting a multicity study. Daily data on childhood HFMD counts and meteorological and ambient air pollution (PM2.5, PM10, NO2, CO, O3, and SO2) concentrations in 21 cities in Sichuan Province from 2015 to 2017 were collected. A spatiotemporal Bayesian hierarchical model framework was established, and then a distributed lag nonlinear models (DLNMs) was constructed to reveal exposure-lag-response relationships between air pollutants and HFMD while controlling for spatiotemporal effects. Furthermore, given the differences in the levels and seasonal trends of air pollutants between the basin region and plateau region, we explored whether these associations varied between different areas (basin and plateau). The associations between air pollutants and HFMD were nonlinear, with different lag responses. Low NO2 concentrations and both low and high PM2.5 and PM10 concentrations were associated with a decreased risk of HFMD. No significant associations between CO, O3, and SO2 and HFMD were found. The associations between air pollutant concentrations and HFMD were different between the basin and plateau regions. Our study revealed associations between PM2.5, PM10, and NO2 concentrations and HFMD, deepening the understanding of the relationships between air pollutants and HFMD. These findings provide evidence to support the formulation of relevant prevention measures and the establishment of an early warning system.
Collapse
|
37
|
Factors related to the mortality risk of severe hand, foot, and mouth diseases (HFMD): a 5-year hospital-based survey in Guangxi, Southern China. BMC Infect Dis 2023; 23:144. [PMID: 36890462 PMCID: PMC9993373 DOI: 10.1186/s12879-023-08109-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND To understand the factors influencing clinical outcomes of severe hand, foot, and mouth diseases (HFMD), and to provide scientific evidence for reducing the mortality risk of severe HFMD. METHODS From 2014 to 2018, children diagnosed with severe HFMD cases in Guangxi, China, were enrolled in this hospital-based study. The epidemiological data obtained through face-to-face interviews with the parents and guardians. Univariate and multivariate logistics regression models were used to analyze the factors influencing the clinical outcomes of severe HFMD. The impact of the EV-A71 vaccination on inpatient mortality was analyzed by a comparison approach. RESULTS A total of 1565 severe HFMD cases were enrolled in this survey, including 1474 (94.19%) survival cases and 91 (5.81%) death cases. The multivariate logistic analysis demonstrated that HFMD history of playmates in the last three months, first visit to the village hospital, time from the first visit to admission less than two days, no correct diagnosis for HFMD at the first visit, and having no rash symptoms were the independent risk factors for severe HFMD cases (all p < 0.05). While EV-A71 vaccination was a protective factor (p < 0.05). The EV-A71 vaccination group versus the non-vaccination group showed 2.23% of death in the vaccination group and 7.24% of death in the non-vaccination group. The EV-A71 vaccination protected 70.80% of the death of severe HFMD cases, with an effective index of 4.79. CONCLUSIONS The mortality risk of severe HFMD in Guangxi was related to playmates had HFMD history in last 3 months, hospital grade, EV-A71 vaccination, patients visit hospital previously, and rash symptom. EV-A71 vaccination can significantly reduce mortality among severe HFMD. The findings are of great significance for the effective prevention and control of HFMD in Guangxi, southern China.
Collapse
|
38
|
Zhu P, Ji W, Li D, Li Z, Chen Y, Dai B, Han S, Chen S, Jin Y, Duan G. Current status of hand-foot-and-mouth disease. J Biomed Sci 2023; 30:15. [PMID: 36829162 PMCID: PMC9951172 DOI: 10.1186/s12929-023-00908-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Hand-foot-and-mouth disease (HFMD) is a viral illness commonly seen in young children under 5 years of age, characterized by typical manifestations such as oral herpes and rashes on the hands and feet. These symptoms typically resolve spontaneously within a few days without complications. Over the past two decades, our understanding of HFMD has greatly improved and it has received significant attention. A variety of research studies, including epidemiological, animal, and in vitro studies, suggest that the disease may be associated with potentially fatal neurological complications. These findings reveal clinical, epidemiological, pathological, and etiological characteristics that are quite different from initial understandings of the illness. It is important to note that HFMD has been linked to severe cardiopulmonary complications, as well as severe neurological sequelae that can be observed during follow-up. At present, there is no specific pharmaceutical intervention for HFMD. An inactivated Enterovirus A71 (EV-A71) vaccine that has been approved by the China Food and Drug Administration (CFDA) has been shown to provide a high level of protection against EV-A71-related HFMD. However, the simultaneous circulation of multiple pathogens and the evolution of the molecular epidemiology of infectious agents make interventions based solely on a single agent comparatively inadequate. Enteroviruses are highly contagious and have a predilection for the nervous system, particularly in child populations, which contributes to the ongoing outbreak. Given the substantial impact of HFMD around the world, this Review synthesizes the current knowledge of the virology, epidemiology, pathogenesis, therapy, sequelae, and vaccine development of HFMD to improve clinical practices and public health efforts.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Bowen Dai
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shujie Han
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
39
|
Zhao N, Guo X, Wang L, Zhou H, Gong L, Miao Z, Chen Y, Qin S, Yu Z, Liu S, Wang S. Changing spatiotemporal patterns for hepatitis of unspecified aetiology in China, 2004-2021: a population-based surveillance study. Front Public Health 2023; 11:1177965. [PMID: 37213628 PMCID: PMC10196104 DOI: 10.3389/fpubh.2023.1177965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/14/2023] [Indexed: 05/23/2023] Open
Abstract
Objectives As global efforts continue toward the target of eliminating viral hepatitis by 2030, the emergence of acute hepatitis of unspecified aetiology (HUA) remains a concern. This study assesses the overall trends and changes in spatiotemporal patterns in HUA in China from 2004 to 2021. Methods We extracted the incidence and mortality rates of HUA from the Public Health Data Center, the official website of the National Health Commission of the People's Republic of China, and the National Notifiable Infectious Disease Surveillance System from 2004 to 2021. We used R software, ArcGIS, Moran's statistical analysis, and joinpoint regression to examine the spatiotemporal patterns and annual percentage change in incidence and mortality of the HUA across China. Results From 2004 to 2021, a total of 707,559 cases of HUA have been diagnosed, including 636 deaths. The proportion of HUA in viral hepatitis gradually decreased from 7.55% in 2004 to 0.72% in 2021. The annual incidence of HUA decreased sharply from 6.6957 per 100,000 population in 2004 to 0.6302 per 100,000 population in 2021, with an average annual percentage change (APC) reduction of -13.1% (p < 0.001). The same result was seen in the mortality (APC, -22.14%, from 0.0089/100,000 in 2004 to 0.0002/100,000 in 2021, p < 0.001). All Chinese provinces saw a decline in incidence and mortality. Longitudinal analysis identified the age distribution in the incidence and mortality of HUA did not change and was highest in persons aged 15-59 years, accounting for 70% of all reported cases. During the COVID-19 pandemic, no significant increase was seen in pediatric HUA cases in China. Conclusion China is experiencing an unprecedented decline in HUA, with the lowest incidence and mortality for 18 years. However, it is still important to sensitively monitor the overall trends of HUA and further improve HUA public health policy and practice in China.
Collapse
Affiliation(s)
- Na Zhao
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province, China
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Guo
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lan Wang
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Hongming Zhou
- The School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui Province, China
| | - Lei Gong
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui Province, China
| | - Ziping Miao
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yijuan Chen
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Shuwen Qin
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Zhao Yu
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
- *Correspondence: Shelan Liu,
| | - Supen Wang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, China
- Supen Wang,
| |
Collapse
|
40
|
Luan G, Liu S, Zhang W, Zhai L, Zhang Y, Sun L, Yao H. Estimating the influence of high temperature on hand, foot, and mouth disease incidence in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1477-1484. [PMID: 35915310 DOI: 10.1007/s11356-022-22038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The burden of disease caused by ambient high temperature has become a public health concern, but the associations between high temperature and hand, foot, and mouth disease (HFMD) remain indistinct. We used distributed lag non-linear model (DLNM) to estimate the burden of disease attribute to high temperature, adjusting for long-term trend and weather confounders. Total 18,167,455 cases were reported in 31 Chinese provinces, the incidence of HFMD showed a gradually increasing trend from 2008 to 2017 in China. Minimum morbidity temperature (MMT) was mainly concentrated at 17 to 23 °C in ≤ 5 years old group, 18 to 25 °C in 6 ~ 10 years old group and 19 to 27 °C in > 10 years old group. The greatest relative risk (RR) in age group ≤ 5 years old was 2.06 (95% CI: 1.85 ~ 2.30) in Heilongjiang, and the lowest RR was 1.02 (95% CI: 1.00 ~ 1.05) in Guangdong; the greatest RR in age group 6 ~ 10 years old was 2.24 (95% CI: 1.72 ~ 2.91) in Guizhou, and the lowest RR was 1.01 (95% CI: 0.97 ~ 1.12) in Tianjin; the greatest RR in the age group > 10 years old was 2.53 (95% CI: 1.66 ~ 3.87) in Heilongjiang, and the lowest RR was 1.02 (95% CI: 0.71 ~ 1.46) in Henan. We found the positive association between high temperature and HFMD in China.
Collapse
Affiliation(s)
- Guijie Luan
- Office of Epidemiology, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing, 102206, China
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Shaonan Liu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Weiyan Zhang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Long Zhai
- Qingdao Center for Disease Control and Prevention, Qingdao, 266033, China
| | - Yingjie Zhang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Liang Sun
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Hongyan Yao
- Office of Epidemiology, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing, 102206, China.
| |
Collapse
|
41
|
Meng L, Zhou C, Xu Y, Liu F, Zhou C, Yao M, Li X. The lagged effect and attributable risk of apparent temperature on hand, foot, and mouth disease in Changsha, China: a distributed lag non-linear model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11504-11515. [PMID: 36094702 DOI: 10.1007/s11356-022-22875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is the leading Category C infectious disease affecting millions of children in China every year. In the context of global climate change, the understanding and quantification of the impact of weather factors on human health are particularly critical to the development and implementation of climate change adaptation and mitigation strategies. The aim of this study was to quantify the attributable burden of a combined bioclimatic indicator (apparent temperature) on HFMD and to identify temperature-specific sensitive populations. A total of 123,622 HFMD cases were included in the study. The non-linear relationship between apparent temperature and the incidence of HFMD was approximately M-shaped, with hot weather being more likely to be attributable than cold conditions, of which moderately hot accounting for the majority of cases (21,441, 17.34%). Taking the median apparent temperature (19.2 °C) as reference, the cold effect showed a short acute effect with the highest risk on the day of lag 0 (RR = 1.086, 95% CI: 1.024 ~ 1.152), whereas the hot effect lasted longer with the greatest risk at a lag of 7 days (RR = 1.081, 95% CI: 1.059 ~ 1.104). Subgroup analysis revealed that males, children under 3 years old, and scattered children tended to be more vulnerable to HFMD in hot weather, while females, those aged 3 ~ 5 years, and nursery children were sensitive to cold conditions. This study suggests that high temperatures have a greater impact on HFMD than low temperatures as well as lasting longer, of particular concern being moderately high temperatures rather than extreme temperatures. Early intervention takes on greater importance during cold days, while the duration of HFMD intervention must be longer during hot days.
Collapse
Affiliation(s)
- Lijun Meng
- Department of Epidemiology and Health Statistics, Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Chunliang Zhou
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, Hunan, China
| | - Yiqing Xu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, Hunan, China
| | - Fuqiang Liu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, Hunan, China
| | - Cui Zhou
- Department of Epidemiology and Health Statistics, Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Meng Yao
- Department of Epidemiology and Health Statistics, Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Xingli Li
- Department of Epidemiology and Health Statistics, Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
42
|
Molecular mechanism of antibody neutralization of coxsackievirus A16. Nat Commun 2022; 13:7854. [PMID: 36543790 PMCID: PMC9769477 DOI: 10.1038/s41467-022-35575-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Coxsackievirus A16 (CVA16) causes hand, foot and mouth disease in infants and young children. However, no vaccine or anti-viral agent is currently available for CVA16. Here, the functions and working mechanisms of two CVA16-specific neutralizing monoclonal antibodies (MAbs), 9B5 and 8C4, are comprehensively investigated. Both 9B5 and 8C4 display potent neutralization in vitro and prophylactic and therapeutic efficacy in a mouse model of CVA16 infection. Mechanistically, 9B5 exerts neutralization primarily through inhibiting CVA16 attachment to cell surface via blockade of CVA16 binding to its attachment receptor, heparan sulfate, whereas 8C4 functions mainly at the post-attachment stage of CVA16 entry by interfering with the interaction between CVA16 and its uncoating receptor SCARB2. Cryo-EM studies show that 9B5 and 8C4 target distinct epitopes located at the 5-fold and 3-fold protrusions of CVA16 capsids, respectively, and exhibit differential binding preference to three forms of naturally occurring CVA16 particles. Moreover, 9B5 and 8C4 are compatible in formulating an antibody cocktail which displays the ability to prevent virus escape seen with individual MAbs. Together, our work elucidates the functional and structural basis of CVA16 antibody-mediated neutralization and protection, providing important information for design and development of effective CVA16 vaccines and antibody therapies.
Collapse
|
43
|
Huang J, Ma Y, Lv Q, Liu Y, Zhang T, Yin F, Shui T. Interactive effects of meteorological factors and air pollutants on hand, foot, and mouth disease in Chengdu, China: a time-series study. BMJ Open 2022; 12:e067127. [PMID: 36450433 PMCID: PMC9716848 DOI: 10.1136/bmjopen-2022-067127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES Hand, foot, and mouth disease (HFMD) is a viral infectious disease that poses a substantial threat in the Asia-Pacific region. It is widely reported that meteorological factors are associated with HFMD. However, the relationships between air pollutants and HFMD are still controversial. In addition, the interactive effects between meteorological factors and air pollutants on HFMD remain unknown. To fill this research gap, we conducted a time-series study. DESIGN A time-series study. SETTING AND PARTICIPANTS Daily cases of HFMD as well as meteorological and air pollution data were collected in Chengdu from 2011 to 2017. A total of 184 610 HFMD cases under the age of 15 were included in our study. OUTCOME MEASURES Distributed lag nonlinear models were used to investigate the relationships between HFMD and environmental factors, including mean temperature, relative humidity, SO2, NO2, and PM10. Then, the relative excess risk due to interaction (RERI) and the proportion attributable to interaction were calculated to quantitatively evaluate the interactions between meteorological factors and air pollutants on HFMD. Bivariate response surface models were used to visually display the interactive effects. RESULTS The cumulative exposure-response curves of SO2 and NO2 were inverted 'V'-shaped and 'M'-shaped, respectively, and the risk of HFMD gradually decreased with increasing PM10 concentrations. We found that there were synergistic interactions between mean temperature and SO2, relative humidity and SO2, as well as relative humidity and PM10 on HFMD, with individual RERIs of 0.334 (95% CI 0.119 to 0.548), 0.428 (95% CI 0.214 to 0.642) and 0.501 (95% CI 0.262 to 0.741), respectively, indicating that the effects of SO2 and PM10 on HFMD were stronger under high temperature (>17.3°C) or high humidity (>80.0%) conditions. CONCLUSIONS There were interactive effects between meteorological factors and air pollutants on HFMD. Our findings could provide guidance for targeted and timely preventive and control measures for HFMD.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yue Ma
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Qiang Lv
- Department of Acute Infectious Disease Control and Prevention, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Yaqiong Liu
- Department of Acute Infectious Disease Control and Prevention, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Tao Zhang
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Fei Yin
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Tiejun Shui
- Department of Leprosy Control and Prevention, Yunnan Center for Disease Control and Prevention, Kunming, Yunnan, China
| |
Collapse
|
44
|
Li JF, Zhang CJ, Li YW, Li C, Zhang SC, Wang SS, Jiang Y, Luo XB, Liao XJ, Wu SX, Lin L. Coxsackievirus A6 was the most common enterovirus serotype causing hand, foot, and mouth disease in Shiyan City, central China. World J Clin Cases 2022; 10:11358-11370. [PMID: 36387823 PMCID: PMC9649535 DOI: 10.12998/wjcc.v10.i31.11358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/04/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) has become one of the most common infectious diseases in China. Before 2016, the primary causal serotypes were enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Following the introduction of EV-A71 vaccines in China since 2016, the situation could change. CV-A6 has recently replaced EV-A71 and CV-A16 in some areas of China. However, the epidemiological characteristics of central China remain unknown.
AIM To investigate the clinical symptoms and pathogen spectrum of HFMD in Shiyan City, central China, in recent years.
METHODS The epidemiological, clinical, and laboratory data from HFMD cases reported to the Shiyan Center for Disease Control and Prevention between January 2016 and December 2020 were analyzed. 196 throat swab specimens were collected from hospitalized HFMD patients between January 2018 and December 2020. To detect and genotype enteroviruses, real-time reverse transcription-polymerase chain reaction and sequencing of the 5'-untranslated region were used. In Shiyan, 168 laboratory-confirmed HFMD cases were studied using a logistic regression model to determine the effect of predominant enterovirus serotypes. Based on the logistic regression model, the least absolute shrinkage and selection operator model was used to analyze the correlation between CV-A6 infection and various clinical characteristics in HFMD patients in Shiyan.
RESULTS From 2016 to 2020, 35840 HFMD cases were reported in Shiyan. The number of cases decreased by 48.4% from 2016 to 2017. Approximately 1.58-fold increases were found in 2018 and 2019 when compared to the previous year, respectively. In 2020, a decrease of about 85.5% was reported when compared to 2019. The most common serotypes shifted from EV-A71 and CV-A16 (about 60%-80% in 2016 and 2018) to others (more than 80.0% in 2017, 2019, and 2020). EV-A71 lost its dominance in 2017 in Shiyan. Among 196 confirmed HFMD cases, 85.7% tested positive for enterovirus, with CV-A6 being the most common serotype (121/168, 72.0%). The positive rates for CV-A16 and CV-A10 were 4.8% and 3.0%, respectively. There was no EV-A71 discovered. Infection with CV-A6 was linked to fever, myocardial damage, increased creatine kinase MB isoenzyme, and lactate dehydrogenase levels.
CONCLUSION CV-A6 was the most common enterovirus serotype in Shiyan City, replacing EV-A71 and CV-A16 as the HFMD pathogen. Developing vaccines against CV-A6 or multiple pathogens, as well as rising CV-A6 surveillance, will help prevent HFMD in central China.
Collapse
Affiliation(s)
- Jing-Feng Li
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Chuan-Jie Zhang
- Department of Children Health Care, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430061, Hubei Province, China
| | - Ya-Wei Li
- Department of Health Services, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Chao Li
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Shi-Chao Zhang
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Sha-Sha Wang
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Yong Jiang
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Xin-Bing Luo
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Xing-Juan Liao
- Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, Hubei Province, China
| | - Shou-Xin Wu
- Department of Pharmaceuticals, Shanghai Biotecan Pharmaceuticals Co. Ltd., Shanghai 200000, China
- Zhangjiang Center for Translational Medicine, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 442000, China
| | - Ling Lin
- Department of Pharmaceuticals, Shanghai Biotecan Pharmaceuticals Co. Ltd., Shanghai 200000, China
- Zhangjiang Center for Translational Medicine, Shanghai Zhangjiang Institute of Medical Innovation, Shanghai 442000, China
| |
Collapse
|
45
|
Yang T, Wang Y, Yao L, Guo X, Hannah MN, Liu C, Rui J, Zhao Z, Huang J, Liu W, Deng B, Luo L, Li Z, Li P, Zhu Y, Liu X, Xu J, Yang M, Zhao Q, Su Y, Chen T. Application of logistic differential equation models for early warning of infectious diseases in Jilin Province. BMC Public Health 2022; 22:2019. [PMCID: PMC9636661 DOI: 10.1186/s12889-022-14407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
There is still a relatively serious disease burden of infectious diseases and the warning time for different infectious diseases before implementation of interventions is important. The logistic differential equation models can be used for predicting early warning of infectious diseases. The aim of this study is to compare the disease fitting effects of the logistic differential equation (LDE) model and the generalized logistic differential equation (GLDE) model for the first time using data on multiple infectious diseases in Jilin Province and to calculate the early warning signals for different types of infectious diseases using these two models in Jilin Province to solve the disease early warning schedule for Jilin Province throughout the year.
Methods
Collecting the incidence of 22 infectious diseases in Jilin Province, China. The LDE and GLDE models were used to calculate the recommended warning week (RWW), the epidemic acceleration week (EAW) and warning removed week (WRW) for acute infectious diseases with seasonality, respectively.
Results
Five diseases were selected for analysis based on screening principles: hemorrhagic fever with renal syndrome (HFRS), shigellosis, mumps, Hand, foot and mouth disease (HFMD), and scarlet fever. The GLDE model fitted the above diseases better (0.80 ≤ R2 ≤ 0.94, P < 0. 005) than the LDE model. The estimated warning durations (per year) of the LDE model for the above diseases were: weeks 12–23 and 40–50; weeks 20–36; weeks 15–24 and 43–52; weeks 26–34; and weeks 16–25 and 41–50. While the durations of early warning (per year) estimated by the GLDE model were: weeks 7–24 and 36–51; weeks 13–37; weeks 11–26 and 39–54; weeks 23–35; and weeks 12–26 and 40–50.
Conclusions
Compared to the LDE model, the GLDE model provides a better fit to the actual disease incidence data. The RWW appeared to be earlier when estimated with the GLDE model than the LDE model. In addition, the WRW estimated with the GLDE model were more lagged and had a longer warning time.
Collapse
|
46
|
Li M, Ma Y, Luo C, Lv Q, Liu Y, Zhang T, Yin F, Shui T. Modification effects of socioeconomic factors on associations between air pollutants and hand, foot, and mouth disease: A multicity time-series study based on heavily polluted areas in the basin area of Sichuan Province, China. PLoS Negl Trop Dis 2022; 16:e0010896. [PMID: 36413517 PMCID: PMC9681081 DOI: 10.1371/journal.pntd.0010896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Hand, foot, and mouth disease (HFMD) is a serious threat among children in China. Some studies have found that air pollution is associated with HFMD incidence, but the results showed heterogeneity. In this study, we aimed to explore the heterogeneity of associations between air pollutants and the number of HFMD cases and to identify significant socioeconomic effect modifiers. METHODS We collected daily surveillance data on HFMD cases in those aged less than 15 years, air pollution variables and meteorological variables from 2015 to 2017 in the basin area of Sichuan Province. We also collected socioeconomic indicator data. We conducted a two-stage multicity time-series analysis. In the first stage, we constructed a distributed lag nonlinear model (DLNM) to obtain cumulative exposure-response curves between each air pollutant and the numbers of HFMD cases for every city. In the second stage, we carried out a multivariable meta-regression to merge the estimations in the first stage and to identify significant socioeconomic effect modifiers. RESULTS We found that PM10, NO2 and O3 concentrations were associated with the number of HFMD cases. An inverted V-shaped association between PM10 and the number of HFMD cases was observed. The overall NO2-HFMD association was a hockey-stick shape. For the relationships of PM10, SO2, NO2, O3 and CO with HFMD counts, approximately 58.5%, 48.4%, 51.0%, 55.6% and 52.5% of the heterogeneity could be explained, respectively. The proportion of primary school students, population density, urbanization rate, number of licensed physicians and number of hospital beds explained part of the heterogeneity and modified the relationships. CONCLUSION Our study explored the heterogeneity of associations between air pollutants and HFMD counts. The proportion of primary school students, population density, urbanization rate, number of licensed physicians and number of hospital beds could modify the relationships. The results can serve as a reference for relevant public health decision making.
Collapse
Affiliation(s)
- Mengyao Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yue Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Caiying Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Qiang Lv
- Sichuan Center for Disease Control and Prevention, Chengdu, People’s Republic of China
| | - Yaqiong Liu
- Sichuan Center for Disease Control and Prevention, Chengdu, People’s Republic of China
| | - Tao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Fei Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Tiejun Shui
- Yunnan Center for Disease Control and Prevention, Kunming, People’s Republic of China
| |
Collapse
|
47
|
Niu Q, Liu J, Zhao Z, Onishi M, Kawaguchi A, Bandara A, Harada K, Aoyama T, Nagai-Tanima M. Explanation of hand, foot, and mouth disease cases in Japan using Google Trends before and during the COVID-19: infodemiology study. BMC Infect Dis 2022; 22:806. [PMID: 36309663 PMCID: PMC9617033 DOI: 10.1186/s12879-022-07790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background Coronavirus Disease 2019 (COVID-19) pandemic affects common diseases, but its impact on hand, foot, and mouth disease (HFMD) is unclear. Google Trends data is beneficial for approximate real-time statistics and because of ease in access, is expected to be used for infection explanation from an information-seeking behavior perspective. We aimed to explain HFMD cases before and during COVID-19 using Google Trends. Methods HFMD cases were obtained from the National Institute of Infectious Diseases, and Google search data from 2009 to 2021 in Japan were downloaded from Google Trends. Pearson correlation coefficients were calculated between HFMD cases and the search topic “HFMD” from 2009 to 2021. Japanese tweets containing “HFMD” were retrieved to select search terms for further analysis. Search terms with counts larger than 1000 and belonging to ranges of infection sources, susceptible sites, susceptible populations, symptoms, treatment, preventive measures, and identified diseases were retained. Cross-correlation analyses were conducted to detect lag changes between HFMD cases and search terms before and during the COVID-19 pandemic. Multiple linear regressions with backward elimination processing were used to identify the most significant terms for HFMD explanation. Results HFMD cases and Google search volume peaked around July in most years, excluding 2020 and 2021. The search topic “HFMD” presented strong correlations with HFMD cases, except in 2020 when the COVID-19 outbreak occurred. In addition, the differences in lags for 73 (72.3%) search terms were negative, which might indicate increasing public awareness of HFMD infections during the COVID-19 pandemic. The results of multiple linear regression demonstrated that significant search terms contained the same meanings but expanded informative search content during the COVID-19 pandemic. Conclusions The significant terms for the explanation of HFMD cases before and during COVID-19 were different. Awareness of HFMD infections in Japan may have improved during the COVID-19 pandemic. Continuous monitoring is important to promote public health and prevent resurgence. The public interest reflected in information-seeking behavior can be helpful for public health surveillance. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07790-9.
Collapse
|
48
|
Cui Y, Yang YN, Zheng RR, Xie MZ, Zhang WX, Chen LY, Du J, Yang Y, Xi L, Li H, Li HJ, Lu QB. Epidemiological characteristics of hand, foot, and mouth disease clusters during 2016-2020 in Beijing, China. J Med Virol 2022; 94:4934-4943. [PMID: 35655366 DOI: 10.1002/jmv.27906] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 12/19/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is an infectious disease that usually occurs in children under 5 years and is caused by a group of enteroviruses. This study aimed to investigate the epidemiological characteristics of HFMD clusters from 2016 to 2020 in Tongzhou, Beijing, and explored the genetic evolution of CV-A6. The HFMD case information came from the Information System of China Center for Disease Control and Prevention (CDC), as well as the clusters information verification and on-site investigation by Tongzhou CDC. ARIMA model was applied to forecast HFMD clusters in 2020. Totally 440 HFMD clusters were reported during 2016-2020. The large peak of the clusters occurred in April-July, followed by a smaller peak in October-November during 2016-2019. However, in 2020, the two peaks disappeared. The main site of HFMD clusters was childcare facilities (65.0%) and mostly occurred in urban areas (46.1%). The detection rate of CV-A6 was the highest (36.1%), and cases with CV-A6 infection had the highest proportion of fever. The phylogenetic analysis based on CV-A6 VP1 gene showed that the predominant strains mainly located in Group F during 2016-2017, while changed into Group A during 2018-2020. HFMD clusters presented seasonality, mainly located in childcare facilities and urban areas, and CV-A6 was the major causative agent. Targeted prevention and control measures should be taken to reduce HFMD clusters.
Collapse
Affiliation(s)
- Yan Cui
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Prevention and Control, Beijing, China
| | - Yan-Na Yang
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Prevention and Control, Beijing, China
| | - Ran-Ran Zheng
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Prevention and Control, Beijing, China
| | - Ming-Zhu Xie
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Wan-Xue Zhang
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Lin-Yi Chen
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Juan Du
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Yang Yang
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Center for Diseases Prevention and Control, Beijing, China
| | - Lu Xi
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Prevention and Control, Beijing, China
| | - Hua Li
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Prevention and Control, Beijing, China
| | - Hong-Jun Li
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Prevention and Control, Beijing, China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| |
Collapse
|
49
|
Le TTV, Do PC. Molecular docking study of various Enterovirus—A71 3C protease proteins and their potential inhibitors. Front Microbiol 2022; 13:987801. [PMID: 36246267 PMCID: PMC9563145 DOI: 10.3389/fmicb.2022.987801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common infection that primarily affects children in preschool and kindergarten; however, there is yet no vaccination or therapy available. Despite the fact that current research is only focused on numerous strains of Enterovirus—A71 (EV-A71) 3C protease (3Cpro), these investigations are entirely separate and unrelated. Antiviral agents must therefore be tested on several EV strains or mutations. In total, 21 previously reported inhibitors were evaluated for inhibitory effects on eight EV-A71 3Cpro, including wild-type and mutant proteins in this study, and another 29 powerful candidates with inhibitory effects on EV-A71 were investigated using the molecular docking approach. This method is to determine the broad-spectrum of the antiviral agents on a range of strains or mutants because the virus frequently has mutations. Even though Rupintrivir is reported to pass phase I clinical trial, 4-iminooxazolidin-2-one moiety (FIOMC) was shown to have a broader anti-3Cpro spectrum than Rupintrivir. Meanwhile, Hesperidin possessed a better 3Cpro inhibitory capability than FIOMC. Thus, it could be considered the most promising candidate for inhibiting various strains of EV-A71 3Cpro proteins in the newly anti-EV compounds group. Furthermore, the mutation at E71A has the most significant impact on the docking results of all ligands evaluated. Future in vitro experiments on Hesperidin’s ability to inhibit 3Cpro activity should be conducted to compare with FIOMC’s in vitro results and validate the current in silico work.
Collapse
Affiliation(s)
- Tran Thao Vy Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phuc-Chau Do
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- *Correspondence: Phuc-Chau Do,
| |
Collapse
|
50
|
Jan N, Jain V, Li Z, Sattar J, Tongkachok K. Post-COVID-19 investor psychology and individual investment decision: A moderating role of information availability. Front Psychol 2022; 13:846088. [PMID: 36248582 PMCID: PMC9555210 DOI: 10.3389/fpsyg.2022.846088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
This study aims to investigate the influence of psychological biases on the investment decision of Chinese individual investors after the pandemic of COVID-19 with a moderating role of information availability. A cross-sectional method with a quantitative research approach was employed to investigate the hypothesized relationships among variables. The snowball sampling technique was applied to collect the data through a survey questionnaire from individual investors investing in the Chinese stock market. Smart-PLS statistical software was used to analyze the data and for the estimation of hypotheses. Results indicated that overconfidence, representative bias, and anchoring bias have a significant and positive influence on investment decisions during the post-Covid-19 pandemic; however, the availability bias has insignificant and negative effects on the investment decision during the post-COVID-19 pandemic. Moreover, findings indicated that information availability has a significant moderating role in the relationship of psychological biases with the investment decision during the post-COVID-19 pandemic. This study contributes to the body of knowledge regarding behavior finance, psychological biases, and investment decision in emerging stock markets. The findings of the present study improve the understanding that how investors’ psychology affects their investment decisions.
Collapse
Affiliation(s)
- Naveed Jan
- Business School, Shandong Normal University, Jinan, China
- *Correspondence: Naveed Jan,
| | - Vipin Jain
- Department of Management and Technology, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Zeyun Li
- School of Humanity, University Sains Malaysia, George Town, Malaysia
| | - Javeria Sattar
- Lahore Business School, The University of Lahore, Lahore, Pakistan
| | - Korakod Tongkachok
- Department of Law, School of Law, Thaksin University, Songkhla, Thailand
| |
Collapse
|