1
|
Agbehadzi RK, Kumi G, Adjei-Mensah B, Hamidu JA, Tona K. Impact of late-stage hypoxic stimulation and layer breeder age on embryonic development, hatching and chick quality. Poult Sci 2025; 104:104691. [PMID: 39731869 PMCID: PMC11748728 DOI: 10.1016/j.psj.2024.104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
The present study examined the effects of breeder age and oxygen (O₂) concentrations during the late chorioallantoic membrane (CAM) growth stage on embryo development, hatching dynamics, chick quality, bone mineralization and hatchability. A total of 1200 eggs from 33- and 50-week-old ISA layer breeders, weighing 53.85 g and 60.42 g on average respectively, were incubated at 37.7°C and 56 % relative humidity. From embryonic day (ED) 13 to 15, experimental eggs were exposed to hypoxia (15 % or 17 % O₂ for 1 hr/day) while the control was at 21 % O₂. Results showed significant interactions (p = 0.040) between breeder age and oxygen level, with embryos exposed to 15 % and 17 % O₂ exhibiting slower growth by ED 17. However, embryo weight at internal pipping (IP) was unaffected (p > 0.05). At hatch, chick weights were higher in hypoxic groups due to increased yolk sac retention (p = 0.024), while yolk-free weights were influenced only by breeder age (p < 0.001). Hypoxia at 15 % O₂ reduced chick length, toe length, and tibia parameters (p < 0.05), likely due to impaired calcium and phosphorus absorption. Embryos exposed to 15 % O2 had longer internal and external pipping events, delaying hatch time. Embryonic mortality was highest (p < 0.001) at 15 % O₂, contributing to the reduced hatch of fertile eggs. This research demonstrates that controlled hypoxic conditions can slow embryonic development, conserve yolk nutrients, improve organ maturation and chick weight across breeder ages.
Collapse
Affiliation(s)
- R K Agbehadzi
- Laboratory of Regional Center of Excellence for Poultry Science, University of Lomé, 01 BP 1515, Lomé, Togo.
| | - G Kumi
- Laboratory of Regional Center of Excellence for Poultry Science, University of Lomé, 01 BP 1515, Lomé, Togo
| | - B Adjei-Mensah
- Department of Animal Science, University of Ghana, P.O. Box LG 25, Legon, Ghana
| | - J A Hamidu
- Laboratory of Regional Center of Excellence for Poultry Science, University of Lomé, 01 BP 1515, Lomé, Togo; Department of Animal Science, Kwame Nkrumah University of Science and Technology, PMB, University Post Office, Kumasi, Ghana
| | - K Tona
- Laboratory of Regional Center of Excellence for Poultry Science, University of Lomé, 01 BP 1515, Lomé, Togo
| |
Collapse
|
2
|
Anthney A, Do ADT, Alrubaye AAK. Bacterial chondronecrosis with osteomyelitis lameness in broiler chickens and its implications for welfare, meat safety, and quality: a review. Front Physiol 2024; 15:1452318. [PMID: 39268189 PMCID: PMC11390708 DOI: 10.3389/fphys.2024.1452318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
The exponential increase in global population continues to present an ongoing challenge for livestock producers worldwide to consistently provide a safe, high-quality, and affordable source of protein for consumers. In the last 50 years, the poultry industry has spearheaded this effort thanks to focused genetic and genomic selection for feed-efficient, high-yielding broilers. However, such intense selection for productive traits, along with conventional industry farming practices, has also presented the industry with a myriad of serious issues that negatively impacted animal health, welfare, and productivity-such as woody breast and virulent diseases commonly associated with poultry farming. Bacterial chondronecrosis with osteomyelitis (BCO) lameness is one such issue, having rapidly become a key issue affecting the poultry industry with serious impacts on broiler welfare, meat quality, production, food safety, and economic losses since its discovery in 1972. This review focuses on hallmark clinical symptoms, diagnosis, etiology, and impact of BCO lameness on key issues facing the poultry industry.
Collapse
Affiliation(s)
- Amanda Anthney
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Anh Dang Trieu Do
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Adnan A K Alrubaye
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
3
|
Sahin E, Ipcak HH, Orhan C, Denli M, Erten F, Ozercan IH, Balci TA, Sahin K. Impact of the arginine silicate inositol complex on bone metabolism in broiler chickens with tibial dyschondroplasia caused by manganese deficiency. Br Poult Sci 2024; 65:455-464. [PMID: 38598261 DOI: 10.1080/00071668.2024.2332724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
1. Tibial dyschondroplasia (TD) is a skeletal disorder in broilers that has financial implications, necessitating dietary modifications to reduce the prevalence of this disease. This study explored how arginine silicate inositol complex (ASI) supplementation affected tibial growth plate (TGP) and overall bone health in broilers with manganese (Mn) deficiency-induced TD.2. A total of 240 broiler chicks were divided into four groups, each consisting of 60 birds (15 replicates of four broilers each) as follows: i) Control, with 60 mg Mn per kg of diet; ii) ASI, with 60 mg Mn and 1 g ASI per kg of diet; iii) TD, with 22 mg Mn per kg of diet, and iv) TD+ASI, with 22 mg Mn and 1 g ASI per kg of diet.3. It was found that ASI supplementation increased tibial bone length in Mn-deficient TD broilers (p = 0.007). There was no Mn x ASI interaction for other bone morphometry variables (p > 0.05). However, both tibial bone mineral content and density were affected by Mn and ASI (p < 0.05). With ASI supplementation, serum bone-specific alkaline phosphatase and osteocalcin levels were elevated in the TD+ASI group compared to the TD group (p < 0.001). In the TD group, osteoprotegerin (OPG) levels in the TGP decreased compared to the control groups (p < 0.001).4. In contrast, ASI supplementation in the TD broilers counteracted the decrease in OPG compared to TD broilers without ASI supplementation (p < 0.001). The Mn level and ASI supplementation significantly influenced the OPG/receptor activator of the nuclear factor-κB ligand ratio (p < 0.001).5. In conclusion, the results demonstrated that inclusion of ASI in broiler diets could enhance bone formation variables by controlling OPG levels in the TGP, potentially serving as an effective method to decrease the occurrence of TD.
Collapse
Affiliation(s)
- E Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingöl University, Elazig, Turkey
| | - H H Ipcak
- Department of Animal Science, Faculty of Agriculture, Dicle University, Diyarbakır, Turkey
| | - C Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - M Denli
- Department of Animal Science, Faculty of Agriculture, Dicle University, Diyarbakır, Turkey
| | - F Erten
- Department of Veterinary Medicine, Pertek Sakine Genc Vocational School, Munzur University, Tunceli, Turkey
| | - I H Ozercan
- Department of Pathology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - T A Balci
- Department of Nuclear Medicine, School of Medicine, Firat University, Elazig, Turkey
| | - K Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
4
|
Nawaz S, Kulyar MFEA, Mo Q, Yao W, Iqbal M, Li J. Homeostatic Regulation of Pro-Angiogenic and Anti-Angiogenic Proteins via Hedgehog, Notch Grid, and Ephrin Signaling in Tibial Dyschondroplasia. Animals (Basel) 2023; 13:3750. [PMID: 38136788 PMCID: PMC10740744 DOI: 10.3390/ani13243750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white "cartilaginous wedge" with impaired endochondral ossification and chondrocyte proliferation at the proximal end of a tibial bone in rapidly growing poultry birds. Developing vascular structures are dynamic with cartilage growth and are regulated through homeostatic balance among pro and anti-angiogenic proteins and cytokines. Pro-angiogenic factors involves a wide spectrum of multifactorial mitogens, such as vascular endothelial growth factors (VEGF), platelet-derived growth factors (PDGF), basic fibroblast growth factor (bFGF), placental growth factors, transforming growth factor-β (TGF-β), and TNF-α. Considering their regulatory role via the sonic hedgehog, notch-gridlock, and ephrin-B2/EphB4 pathways and inhibition through anti-angiogenic proteins like angiostatin, endostatin, decoy receptors, vasoinhibin, thrombospondin, PEX, and troponin, their possible role in persisting inflammatory conditions like TD was studied in the current literature review. Balanced apoptosis and angiogenesis are vital for physiological bone growth. Any homeostatic imbalance among apoptotic, angiogenetic, pro-angiogenic, or anti-angiogenic proteins ultimately leads to pathological bone conditions like TD and osteoarthritis. The current review might substantiate solid grounds for developing innovative therapeutics for diseases governed by the disproportion of angiogenesis and anti-angiogenesis proteins.
Collapse
Affiliation(s)
- Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| |
Collapse
|
5
|
Sun Q, Wu S, Liu K, Li Y, Mehmood K, Nazar M, Hu L, Pan J, Tang Z, Liao J, Zhang H. miR-181b-1-3p affects the proliferation and differentiation of chondrocytes in TD broilers through the WIF1/Wnt/β-catenin pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105649. [PMID: 38072524 DOI: 10.1016/j.pestbp.2023.105649] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023]
Abstract
Thiram is a plant fungicide, its excessive use has exceeded the required environmental standards. It causes tibial dyschondroplasia (TD) in broilers which is a common metabolic disease that affects the growth plate of tibia bone. It has been studied that many microRNAs (miRNAs) are involved in the differentiation of chondrocytes however, their specific roles and mechanisms have not been fully investigated. The selected features of tibial chondrocytes of broilers were studied in this experiment which included the expression of miR-181b-1-3p and the genes related to WIF1/Wnt/β-catenin pathway in chondrocytes through qRT-PCR, western blot and immunofluorescence. The correlation between miR-181b-1-3p and WIF1 was determined by dual luciferase reporter gene assay whereas, the role of miR-181b-1-3p and WIF1/Wnt/β-catenin in chondrocyte differentiation was determined by mimics and inhibitor transfection experiments. Results revealed that thiram exposure resulted in decreased expression of miR-181b-1-3p and increased expression of WIF1 in chondrocytes. A negative correlation was also observed between miR-181b-1-3p and WIF1. After overexpression of miR-181b-1-3p, the expression of ACAN, β-catenin and Col2a1 increased but the expression of GSK-3β decreased. It was observed that inhibition of WIF1 increased the expression of ALP, β-catenin, Col2a1 and ACAN but decreased the expression of GSK-3β. It is concluded that miR-181b-1-3p can reverse the inhibitory effect of thiram on cartilage proliferation and differentiation by inhibiting WIF1 expression and activating Wnt/β-catenin signaling pathway. This study provides a new molecular target for the early diagnosis and possible treatment of TD in broilers.
Collapse
Affiliation(s)
- Qiuyu Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shouyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kai Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Mudassar Nazar
- University of Agriculture Faisalabad, Sub-Campus Burewala, 61010, Pakistan
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Yang B, Li X, Badran AMM, Abdel-Moneim AME. Effects of dietary incorporation of Radix rehmanniae praeparata polysaccharide on growth performance, digestive physiology, blood metabolites, meat quality, and tibia characteristics in broiler chickens. Poult Sci 2023; 102:103150. [PMID: 37871491 PMCID: PMC10618489 DOI: 10.1016/j.psj.2023.103150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
Radix rehmanniae preparata polysaccharide (RRPP) is recognized as the primary bioactive compound in Radix rehmanniae preparata and has been extensively utilized in traditional Chinese medicine and functional food due to its diverse biological activities. However, this study has yet to explore the application of RRPP as a feed additive in broilers. This study investigated the effects of dietary RRPP on growth performance, meat quality, and physiological responses of broiler chickens. Two hundred eighty-eight 1-day-old Cobb 500 male broilers were randomly assigned to the 4 experimental groups with 6 replications and 12 birds/replicate. The 4 groups were fed the basal diet supplemented with 4 concentrations of RRPP (0, 300, 600, and 900 mg/kg, respectively). All RRPP levels did not affect the growth performance of broilers during the starter period (1-21 d), while during the grower (22-35 d) and overall (1-35 d) periods, body weight gain, feed conversion ratio, and European production efficiency index were linearly improved (P < 0.05) by incorporating RRPP at 600 and 900 mg/kg. Carcass characteristics, relative weight and length of intestinal segments, and meat quality and tibia criteria were not affected by dietary incorporation of RRPP. Dietary RRPP led to a linear increase (P < 0.05) in serum alkaline phosphatase, potassium, calcium and sulfhydryl levels, while reducing concentrations of hydrogen peroxide, LDL, triglycerides and total cholesterol. The addition of RRPP decreased (P < 0.05) the pH of the ileum and cecum at 21 and 35 d of age while not changing in the remaining intestinal segments. Dietary RRPP at 600 and 900 mg/kg linearly and quadratically (P < 0.05) increased the tibia ash content in chicken at 21 and 35 d of age. In conclusion, dietary supplementation of RRPP improved broiler chicken's growth, gut physiology, and tibia ash content, particularly at 600 and 900 mg/kg.
Collapse
Affiliation(s)
- Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China; Longyan University & Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan 364012, China
| | - Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, China.
| | - Aml M M Badran
- Poultry Breeding Department, Agricultural Research Center, Animal Production Research Institute, Egypt
| | | |
Collapse
|
7
|
Liu KL, He YF, Xu BW, Lin LX, Chen P, Iqbal MK, Mehmood K, Huang SC. Leg disorders in broiler chickens: a review of current knowledge. Anim Biotechnol 2023; 34:5124-5138. [PMID: 37850850 DOI: 10.1080/10495398.2023.2270000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Ensuring improved leg health is an important prerequisite for broilers to achieve optimal production performance and welfare status. Broiler leg disease is characterized by leg muscle weakness, leg bone deformation, joint cysts, arthritis, femoral head necrosis, and other symptoms that result in lameness or paralysis. These conditions significantly affect movement, feeding and broiler growth performance. Nowadays, the high incidence of leg abnormalities in broiler chickens has become an important issue that hampers the development of broiler farming. Therefore, it is imperative to prevent leg diseases and improve the health of broiler legs. This review mainly discusses the current prevalence of broiler leg diseases and describes the risk factors, diagnosis, and prevention of leg diseases to provide a scientific basis for addressing broiler leg health problems.
Collapse
Affiliation(s)
- Kai-Li Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Yan-Feng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Bo-Wen Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Lu-Xi Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| | - Muhammad Kashif Iqbal
- Institute of Continuing Education and Extension, Cholistan University of Veterinary and Animal Sciences Bahawalpur, Bahawalpur, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P. R. China
| |
Collapse
|
8
|
Yao W, Kulyar MFEA, Ding Y, Du H, Hong J, Loon KS, Nawaz S, Li J. The Effect of miR-140-5p with HDAC4 towards Growth and Differentiation Signaling of Chondrocytes in Thiram-Induced Tibial Dyschondroplasia. Int J Mol Sci 2023; 24:10975. [PMID: 37446153 DOI: 10.3390/ijms241310975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
There is evidence to suggest that microRNA-140-5p (miR-140), which acts as a suppressor, is often elevated and has a role in various malignancies. Nevertheless, neither the function nor the mechanisms in chondrocytes linked with bone disorders, e.g., tibial dyschondroplasia (TD), have been satisfactorily established. The purpose of this study was to look into the role of microRNA-140-5p (miR-140) and its interaction with HDAC4 in chondrocytes, as well as the implications for tibial dyschondroplasia (TD), with a particular focus on the relationship between low miR-140 expression and poor pathologic characteristics, as well as its physiological effects on chondrocyte growth, differentiation, and chondrodysplasia. In this investigation, we discovered that TD had a reduced expression level of the miR-140. There was a correlation between low miR-140 expression, poor pathologic characteristics, and the short overall survival of chondrocytes. Our findings show an aberrant reduction in miR-140 expression, and HDAC4 overexpression caused disengagement in resting and proliferation zones. This further resulted in uncontrolled cell proliferation, differentiation, and chondrodysplasia. Mechanistically, HDAC4 inhibited the downstream transcription factors MEF2C and Runx2 and interacted with Col-Ⅱ, Col-X, and COMP. However, miR-140 binding to the 3'-UTR of HDAC4 resulted in the growth and differentiation of chondrocytes. Moreover, the expression of HDAC4 through LMK-235 was significantly decreased, and the expression was significantly increased under ITSA-1, referring to a positive feedback circuit of miR-140 and HDAC4 for endochondral bone ossification. Furthermore, as a prospective treatment, the flavonoids of Rhizoma drynariae (TFRD) therapy increased the expression of miR-140. Compared to the TD group, TFRD treatment increased the expression of growth-promoting and chondrocyte differentiation markers, implying that TFRD can promote chondrocyte proliferation and differentiation in the tibial growth plate. Hence, directing this circuit may represent a promising target for chondrocyte-related bone disorders and all associated pathological bone conditions.
Collapse
Affiliation(s)
- Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Du
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajia Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kyein San Loon
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Sharma MK, Regmi P, Applegate T, Chai L, Kim WK. Osteoimmunology: A Link between Gastrointestinal Diseases and Skeletal Health in Chickens. Animals (Basel) 2023; 13:1816. [PMID: 37889704 PMCID: PMC10251908 DOI: 10.3390/ani13111816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 09/29/2023] Open
Abstract
Bone serves as a multifunctional organ in avian species, giving structural integrity to the body, aiding locomotion and flight, regulating mineral homeostasis, and supplementing calcium for eggshell formation. Furthermore, immune cells originate and reside in the bone marrow, sharing a milieu with bone cells, indicating a potential interaction in functions. In avian species, the prevalence of gastrointestinal diseases can alter the growth and the immune response, which costs a great fortune to the poultry industry. Previous studies have shown that coccidiosis and necrotic enteritis can dramatically reduce bone quality as well. However, possible mechanisms on how bone quality is influenced by these disease conditions have not yet been completely understood, other than the reduced feed intake. On the other hand, several mediators of the immune response, such as chemokines and cytokines, play a vital role in the differentiation and activation of osteoclasts responsible for bone resorption and osteoblasts for bone formation. In the case of Eimeria spp./Clostridium perfringens coinfection, these mediators are upregulated. One possible mechanism for accelerated bone loss after gastrointestinal illnesses might be immune-mediated osteoclastogenesis via cytokines-RANKL-mediated pathways. This review article thus focuses on osteoimmunological pathways and the interaction between host immune responses and bone biology in gastrointestinal diseases like coccidiosis and necrotic enteritis affecting skeletal health.
Collapse
Affiliation(s)
| | | | | | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (M.K.S.); (P.R.); (T.A.); (L.C.)
| |
Collapse
|
10
|
Saeedi S, Hassanabadi A, Zaeemi M. Effects of cold stress on growth performance, carcass traits and tibia attributes in broiler chickens with thiram-induced dyschondroplasia. J Anim Physiol Anim Nutr (Berl) 2023; 107:659-670. [PMID: 35638581 DOI: 10.1111/jpn.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/20/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
The objective of this study was to investigate the effect of cold stress (CS) on growth performance and tibia attributes in broiler chickens with thiram-induced dyschondroplasia (TD). Four hundred 10-day-old male broilers were randomly allocated into four groups including, NT0: normal temperature (NT) without thiram; NT50: NT + thiram; CS0: CS without thiram; and CS50: CS + thiram in a completely randomised. The birds in CS groups were placed at a constant temperature of 15 ± 1°C during 11-20 days. Thiram (50 mg/kg) was added to the diet during 11-14 days to induce TD. Results showed that main effects of CS and thiram significantly decreased body weight and daily weight gain during 11-42 days (p < 0.05). Feed intake in the thiram50 group was significantly lower than the group thiram0 during 25-42 days (p < 0.05). Feed conversion ratio in CS birds was significantly more than NT group during 25-42 days (p < 0.05). On day 16, tibia width (TW) and TW to tibia length (TL) ratio were significantly higher in CS chicks compared to the NT group. TW was significantly higher in thiram50 group than thiram0 group (p < 0.05). On day 19, TL in CS chicks was significantly shorter than NT (p < 0.05). On day 23, growth plate width (GPW) in thiram50 group was significantly higher than thiram0 birds. In general, thiram increased tibial GPW and CS decreased TD severity as well as decreased growth performance in broilers.
Collapse
Affiliation(s)
- Sadaf Saeedi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Hassanabadi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdieh Zaeemi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
11
|
Lee J, Tompkins Y, Kim DH, Kim WK, Lee K. Increased sizes and improved qualities of tibia bones by myostatin mutation in Japanese quail. Front Physiol 2023; 13:1085935. [PMID: 36685194 PMCID: PMC9846741 DOI: 10.3389/fphys.2022.1085935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Production of large amounts of meat within a short growth period from modern broilers provides a huge economic benefit to the poultry industry. However, poor bone qualities of broilers caused by rapid growth are considered as one of the problems in the modern broilers industry. After discovery and investigation of myostatin (MSTN) as an anti-myogenic factor to increase muscle mass by targeted knockout in various animal models, additional positive effects of MSTN mutation on bone qualities have been reported in MSTN knockout mice. Although the same beneficial effects on muscle gain by MSTN mutation have been confirmed in MSTN mutant quail and chickens, bone qualities of the MSTN mutant birds have not been investigated, yet. In this study, tibia bones were collected from MSTN mutant and wild-type (WT) quail at 4 months of age and analyzed by Micro-Computed Tomography scanning to compare size and strength of tibia bone and quality parameters in diaphysis and metaphysis regions. Length, width, cortical thickness, and bone breaking strength of tibia bones in the MSTN mutant group were significantly increased compared to those of the WT group, indicating positive effects of MSTN mutation on tibia bone sizes and strength. Furthermore, bone mineral contents and bone volume of whole diaphysis, diaphyseal cortical bone, whole metaphysis, and metaphyseal trabecular and cortical bones were significantly increased in the MSTN mutant group compared to the WT group, indicating increased mineralization in the overall tibia bone by MSTN mutation. Especially, higher bone mineral density (BMD) of whole diaphysis, higher total surface of whole metaphysis, and higher BMD, trabecular thickness, and total volume of metaphyseal trabecular bones in the MSTN mutant group compared to the WT group suggested improvements in bone qualities and structural soundness of both diaphysis and metaphysis regions with significant changes in trabecular bones by MSTN mutation. Taken together, MSTN can be considered as a potential target to not only increase meat yield, but also to improve bone qualities that can reduce the incidence of leg bone problems for the broiler industry.
Collapse
Affiliation(s)
- Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Yuguo Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States,*Correspondence: Woo Kyun Kim, ; Kichoon Lee,
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States,*Correspondence: Woo Kyun Kim, ; Kichoon Lee,
| |
Collapse
|
12
|
Gut microbiome dysregulation drives bone damage in broiler tibial dyschondroplasia by disrupting glucose homeostasis. NPJ Biofilms Microbiomes 2023; 9:1. [PMID: 36596826 PMCID: PMC9810666 DOI: 10.1038/s41522-022-00360-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023] Open
Abstract
Tibial dyschondroplasia (TD) with multiple incentives is a metabolic skeletal disease that occurs in fast-growing broilers. Perturbations in the gut microbiota (GM) have been shown to affect bone homoeostasis, but the mechanisms by which GM modulates bone metabolism in TD broilers remain unknown. Here, using a broiler model of TD, we noted elevated blood glucose (GLU) levels in TD broilers, accompanied by alterations in the pancreatic structure and secretory function and damaged intestinal barrier function. Importantly, faecal microbiota transplantation (FMT) of gut microbes from normal donors rehabilitated the GM and decreased the elevated GLU levels in TD broilers. A high GLU level is a predisposing factor to bone disease, suggesting that GM dysbiosis-mediated hyperglycaemia might be involved in bone regulation. 16S rRNA gene sequencing and short-chain fatty acid analysis revealed that the significantly increased level of the metabolite butyric acid derived from the genera Blautia and Coprococcus regulated GLU levels in TD broilers by binding to GPR109A in the pancreas. Tibial studies showed reduced expression of vascular regulatory factors (including PI3K, AKT and VEFGA) based on transcriptomics analysis and reduced vascular distribution, contributing to nonvascularization of cartilage in the proximal tibial growth plate of TD broilers with elevated GLU levels. Additionally, treatment with the total flavonoids from Rhizoma drynariae further validated the improvement in bone homoeostasis in TD broilers by regulating GLU levels through the regulation of GM to subsequently improve intestinal and pancreatic function. These findings clarify the critical role of GM-mediated changes in GLU levels via the gut-pancreas axis in bone homoeostasis in TD chickens.
Collapse
|
13
|
Zhang Y, Ding Y, Mo Q, Kulyar MFEA, He Y, Yao W, Quan C, Gong S, Li F, Fu Y, Iqbal M, Xiao Y, Li J. Sodium butyrate ameliorates thiram-induced tibial dyschondroplasia and gut microbial dysbiosis in broiler chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114134. [PMID: 36183428 DOI: 10.1016/j.ecoenv.2022.114134] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Thiram is a dithiocarbamate pesticide widely used in agriculture as a fungicide for storing grains to prevent fungal diseases. However, its residues have threatened the safety of human beings and the stability of the ecosystem by causing different disease conditions, e.g., tibial dyschondroplasia (TD), which results in a substantial economic loss for the poultry industry. So, the research on TD has a great concern for the industry and the overall GDP of a country. In current study, we investigated whether different concentrations (300, 500, and 700 mg/kg) of sodium butyrate alleviated TD induced under acute thiram exposure by regulating osteogenic gene expression, promoting chondrocyte differentiation, and altering the gut microbial community. According to the findings, sodium butyrate restored clinical symptoms in broilers, improved growth performance, bone density, angiogenesis, and chondrocyte morphology and arrangement. It could activate the signal transduction of the Wnt/β-catenin pathway, regulate the expression of GSK-3β and β-catenin, and further promote the production of osteogenic transcription factors Runx2 and OPN for restoration of lameness. In addition, the 16S rRNA sequencing revealed a significantly different community composition among the groups. The TD group increased the abundance of the harmful bacteria Proteobacteria, Subdoligranulum, and Erysipelatoclostridium. The sodium butyrate enriched many beneficial bacteria, such as Bacteroidetes, Verrucomicrobia, Faecalibacterium, Barnesiella, Rikenella, and Butyricicoccus, etc., especially at the concentration of 500 mg/kg. The mentioned concentration significantly limited the intestinal disorders under thiram exposure, and restored bone metabolism.
Collapse
Affiliation(s)
- Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuanyuan He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chuxian Quan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Feiran Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuhang Fu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet 860000, PR China.
| |
Collapse
|
14
|
Zhang C, Xu T, Lin L, Shaukat A, Tong X, Yue K, Cao Q, Zhang C, Liu F, Huang S. Morinda officinalis Polysaccharides Ameliorates Bone Growth by Attenuating Oxidative Stress and Regulating the Gut Microbiota in Thiram-Induced Tibial Dyschondroplasia Chickens. Metabolites 2022; 12:958. [PMID: 36295860 PMCID: PMC9609565 DOI: 10.3390/metabo12100958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Tibial dyschondroplasia (TD) occurs in chickens and other fast-growing birds, affecting their cartilage growth and leading to reduced meat quality in broilers. Morinda officinalis polysaccharide (MOP) is one of the chief active components of Morinda officinalis, which promotes bone formation, inhibiting bone loss and having anti-oxidant and anti-inflammatory properties. A total of 120 AA chickens were randomly divided into the CON group (basal diet), TD group (100 mg/kg thiram + basal diet), and MOP group (100 mg/kg thiram + basal diet + water with 500 mg/kg MOP). The experiment lasted 21 days. The results showed that MOP could alleviates broiler lameness caused by TD, restore the morphological structure of tibial growth plate (TGP), increase tibial weight (p < 0.05), balance the disorder of calcium and phosphorus metabolism, and promote bone formation by increasing the expression of BMP-2, Smad4, and Runx2 genes In addition, MOP supplementation stimulated the secretion of plasma antioxidant enzymes (T-SOD and GSH-Px) by regulating the expression of SOD and GPX-1 genes, thereby enhancing the antioxidant capacity of TD broilers. Interestingly, we observed MOP can also improve gut microbiota by increasing the beneficial bacteria count and decreasing the harmful bacteria count. These findings indicated that MOP can regulate bone formation through the BMP/Smads signaling pathway, attenuating oxidative stress and regulating the gut microbiota of TD broilers, so as to achieve the effect of treating TD. This suggests that MOP might be a potential novel drug in the treatment of TD in chickens.
Collapse
Affiliation(s)
- Chaodong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Tingting Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Luxi Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Xishuai Tong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ke Yue
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Qinqin Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Cai Zhang
- Laboratory of Environment and Livestock Products, Henan University of Science and Technology, Luoyang 471023, China
| | - Fang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Shucheng Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
15
|
Kulyar MFEA, Yao W, Mo Q, Ding Y, Zhang Y, Gao J, Li K, Pan H, Nawaz S, Shahzad M, Mehmood K, Iqbal M, Akhtar M, Bhutta ZA, Waqas M, Li J, Qi D. Regulatory Role of Apoptotic and Inflammasome Related Proteins and Their Possible Functional Aspect in Thiram Associated Tibial Dyschondroplasia of Poultry. Animals (Basel) 2022; 12:ani12162028. [PMID: 36009620 PMCID: PMC9404426 DOI: 10.3390/ani12162028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tibial dyschondroplasia debilities apoptotic and inflammasomal conditions that can further destroy chondrocytes. Inflammasomes are specialized protein complexes that process pro-inflammatory cytokines, e.g., interleukin-1β (IL-1β) and IL-18. Moreover, there is mounting evidence that many of the signaling molecules that govern programmed cell death also affect inflammasome activation in a cell-intrinsic way. During the last decade, apoptotic functions have been described for signaling molecules involving inflammatory responses and cell death pathways. Considering these exceptional developments in the knowledge of processes, this review gives a glimpse of the significance of these two pathways and their connected proteins in tibial dyschondroplasia. The current review deeply elaborates on the elevated level of signaling mediators of mitochondrial-mediated apoptosis and the inflammasome. Although investigating these pathways’ mechanisms has made significant progress, this review identifies areas where more study is especially required. It might lead to developing innovative therapeutics for tibial dyschondroplasia and other associated bone disorders, e.g., osteoporosis and osteoarthritis, where apoptosis and inflammasome are the significant pathways.
Collapse
Affiliation(s)
- Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jindong Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huachun Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shahzad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Akhtar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeeshan Ahmad Bhutta
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Muhammad Waqas
- Faculty of Veterinary & Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
- Correspondence: (J.L.); (D.Q.)
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (J.L.); (D.Q.)
| |
Collapse
|
16
|
Xu T, Zheng J, Jin W, Li L, Lin L, Shaukat A, Zhang C, Cao Q, Ashraf M, Huang S. Total Flavonoids of Rhizoma Drynariae Ameliorate Bone Growth in Experimentally Induced Tibial Dyschondroplasia in Chickens via Regulation of OPG/RANKL Axis. Front Pharmacol 2022; 13:881057. [PMID: 35694251 PMCID: PMC9178197 DOI: 10.3389/fphar.2022.881057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022] Open
Abstract
Background:Rhizoma Drynariae, traditional Chinese herb, is widely used to treat and prevent bone disorders. However, experimental evidence on the use of Rhizoma Drynariae extract, total flavonoids of Rhizoma Drynariae (TFRD) to treat tibial dyschondroplasia (TD) in chickens and its underlying mechanisms have not been investigated. Purpose: To evaluate the therapeutic effect of TFRD on leg disease caused by TD and elucidate its mechanisms in modulating the bone status. Methods: Thiram-induced chicken TD model has been established. The tibia status was evaluated by analyzing tibia-related parameters including tibial weight, tibial length and its growth plate width and by performing histopathological examination. The expression of tibial bone development-related genes and proteins was confirmed by western blotting and qRT-PCR. Results: The results showed that administration of TFRD mitigated lameness, increased body weight, recuperated growth plate width in broilers affected by TD and the increase of tibia weight and tibia length is significantly positively correlated with body weight. Compared with the TD group broilers, 500 mg/kg TFRD evidently reduced the damage width of the growth plate and improved its blood vessel distribution by elevating the gene expression levels of BMP-2 and Runx2 and OPG/RANKL ratio. Furthermore, correlation analysis found that the damage width of the growth plate was negatively correlated with the expression levels of BMP-2 and OPG. Conclusion: The present study revealed that TFRD could promote the bone growth via upregulating OPG/RANKL ratio, suggesting that TFRD might be a potential novel drug in the treatment of TD in chickens.
Collapse
Affiliation(s)
- Tingting Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingjing Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - WeiXing Jin
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Lu Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Luxi Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Chaodong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qinqin Cao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Muhammad Ashraf
- Livestock and Dairy Development Department, Pishin, Pakistan
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Shucheng Huang,
| |
Collapse
|
17
|
Huang S, Zhang C, Xu T, Shaukat A, He Y, Chen P, Lin L, Yue K, Cao Q, Tong X. Integrated Fecal Microbiome and Metabolomics Reveals a Novel Potential Biomarker for Predicting Tibial Dyschondroplasia in Chickens. Front Physiol 2022; 13:887207. [PMID: 35634144 PMCID: PMC9133743 DOI: 10.3389/fphys.2022.887207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Tibial dyschondroplasia (TD) is a metabolic tibial-tarsal disorder occurring in fast-growing poultry, and its diagnosis is mainly based on an invasive method. Here, we profiled the fecal gut microbiome and metabolome of broilers with and without TD to identify potential non-invasive and non-stress biomarkers of TD. First, TD broilers with the most pronounced clinical signs during the experiment were screened and faecal samples were collected for integrated microbiome and metabolomics analysis. Moreover, the diagnostic potential of identified biomarkers was further validated throughout the experiment. It was noted that the microbial and metabolic signatures of TD broilers differed from those of normal broilers. TD broilers were characterized by enriched bacterial OTUs of the genus Klebsiella, and depleted genera [Ruminococcus], Dorea, Ruminococcus, Oscillospira, Ochrobactrum, and Sediminibacterium. In addition, a total of 189 fecal differential metabolites were identified, mainly enriched in the purine, vitamin and amino acid metabolism, which were closely associated with differential microbiota and tibia-related indicators. Furthermore, three fecal metabolites were screened, including 4-hydroxybenzaldehyde, which distinguished TD from normal broilers with extremely high specificity and was superior to serum bone markers. These results indicated that gut microbiota equilibrium might influence the pathogenesis of TD by modulating host metabolism, and the identified fecal metabolite 4-hydroxybenzaldehyde might be a potential and non-invasive biomarker for predicting TD in chickens.
Collapse
Affiliation(s)
- Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Shucheng Huang,
| | - Chaodong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Tingting Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, China
| | - Yanfeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Luxi Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ke Yue
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qinqin Cao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xishuai Tong
- Institutes of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Liu F, Kong A, Fu P, Cao QQ, Tao KS, Liu DY, Wang XB, Tong ZX, Rehman MU, Huang SC. Lactobacillus rhamnosus JYLR-005 Prevents Thiram-Induced Tibial Dyschondroplasia by Enhancing Bone-Related Growth Performance in Chickens. Probiotics Antimicrob Proteins 2021; 13:19-31. [PMID: 32504282 DOI: 10.1007/s12602-020-09670-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tibial dyschondroplasia (TD) is a leg disorder caused by the abnormal development of the tibia in fast-growing poultry. Lactobacillus rhamnosus (L. rhamnosus) strains have been reported to have effects on increasing bone growth and improving osteoporosis in animals. However, whether L. rhamnosus JYLR-005 can improve bone growth in TD chickens remains unclear. In this study, we noted that L. rhamnosus JYLR-005 could not reduce the suppression of the production performance of TD broilers (p > 0.05) but had a slight protective effect on the broiler survival rate (χ2 = 5.571, p = 0.062). However, for thiram-induced TD broiler chickens, L. rhamnosus JYLR-005 could promote tibia growth by increasing tibia-related parameters, including the tibia weight (day 11, p = 0.040), tibia length (day 15, p = 0.013), and tibia mean diameter (day 15, p = 0.035). Moreover, L. rhamnosus JYLR-005 supplementation improved the normal growth and development of the tibial growth plate by maintaining the morphological structure of the chondrocytes and restored the balance of calcium and phosphorus. Taken together, these findings provide a proof of principle that L. rhamnosus JYLR-005 may represent a therapeutic strategy to treat leg disease in chickens.
Collapse
Affiliation(s)
- Fang Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Anan Kong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Pengfei Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Qin-Qin Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Kun-Sheng Tao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Di-Yi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Xue-Bing Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Zong-Xi Tong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China
| | - Mujeeb Ur Rehman
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Shu-Cheng Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, 95# Wenhua Road, Jinshui District, Zhengzhou, 450002, Henan, People's Republic of China.
| |
Collapse
|
19
|
Faustin Evaris E, Sarmiento-Franco L, Sandoval-Castro CA. Meat and bone quality of slow-growing male chickens raised with outdoor access in tropical climate. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Differences in Tibia Shape in Organically Reared Chicken Lines Measured by Means of Geometric Morphometrics. Animals (Basel) 2021; 11:ani11010101. [PMID: 33419135 PMCID: PMC7825553 DOI: 10.3390/ani11010101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Organic poultry production should use only genetic lines and animals resistant to disease and well adapted to live outdoor, according to principles, rules, and requirements of organic farming systems. When broiler’s walking performance is reduced animals are not suitable for outdoor rearing. There is a straightforward relationship between bone health and growth rate in broilers. Body and breast weight play an important role in leg disorders. During the last decades, genetic selection has led to high producing broilers over the time. Unfortunately, fast growth may negatively influence correct leg development, reducing walking performance, and raising welfare issues. Leg abnormalities could represent a criterion for the choice of genetic lines suitable for organic production. A method for their early detection was developed in this study by means of Geometric Morphometrics (GM) that represents a tool for bone shape analysis and its correlation with walking capability. A valuable information emerged from the present study in relation to broiler intrinsic adaptability to organic production. Abstract In the present study, the conformation of the tibia of seven genetic lines of broilers was analyzed by Geometric Morphometrics and correlated to carcass weight and walking ability. The used chicken genetic lines were classified as fast, medium, or slow growing and ranked for their walking ability. Six chicken types were reared in an organic farm and slaughtered at 81 days of age while one slow-growing and highly walking line (Naked Neck) was reared in a commercial farm and used as external reference for moving activity and growth speed. A mixed landmarks and semi-landmarks model was applied to the study of tibia shape. Results of this study showed that: (i) body weight gain was positively correlated to the curvature of the antero-posterior axis of the tibia; (ii) the shape of the tibia and the active walking behavior were significantly correlated; (iii) walking and not-walking genetic lines could be discriminated in relation to the overall shape of the tibia; (iv) a prevalence of static behavior was correlated to a more pronounced curvature of the antero-posterior axis of the tibia. Results of this study revealed that the walking genetic types have a more functional and natural tibia conformation. This easy morphologic method for evaluating tibia shape could help to characterize the adaptability of genotypes to organic and outdoor rearing.
Collapse
|
21
|
Kong A, Zhang C, Cao Y, Cao Q, Liu F, Yang Y, Tong Z, Rehman MU, Wang X, Huang S. The fungicide thiram perturbs gut microbiota community and causes lipid metabolism disorder in chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111400. [PMID: 33010593 DOI: 10.1016/j.ecoenv.2020.111400] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/30/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Fungicide thiram, a representative dithiocarbamate pesticide can cause potential health hazards to humans and animal health due to the residues in various agricultural products. However, the effects of thiram on lipid metabolism by perturbing gut microbiota of chickens are not clear. Our study was aimed to explore the protective of polysaccharide extracted from Morinda officinalis (MOP) on acute thiram-exposed chickens, and to analyze the association between alteration of gut microbiota and lipid metabolism. Three hundred chicks are fed with a normal diet, thiram-treated diet (100 mg/kg), and a thiram-treated diet supplemented with 250, 500, or 1000 mg/kg MOP was used in this study, respectively. The results showed that thiram exposure prominently elevated liver index, changed liver function by histopathological examination and serum biochemistry diagnoses, and increased blood lipid parameters. Meanwhile, the expression level of some key genes in hepatic lipid metabolism dysregulated significantly in the thiram-exposed chickens. Furthermore, 16S rRNA gene sequencing indicated that thiram exposure can significantly alter the richness, diversity, and composition of the broiler fecal microbiota, and the relative abundance of Firmicutes and Proteobacteria was also affected at the phylum level. In addition, some microbial populations including Lactobacillus, Ruminococcus, Oscillospira, Blautia, and Butyricicoccus significantly decreased at the genus level, whereas the Klebsiella was opposite. Correlation analysis further revealed a significant association between microorganisms and lipid metabolism-related parameters. Optimistically, 500 mg/kg MOP can alleviate the damage of thiram in the gut and liver. Together, these data suggest that thiram exposure causes the imbalance of the gut microbiota and hepatic lipid metabolism disorder in chickens.
Collapse
Affiliation(s)
- Anan Kong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Cai Zhang
- Laboratory of Environment and Livestock Products, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Yabing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Qinqin Cao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Fang Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yurong Yang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zongxi Tong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Mujeeb Ur Rehman
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Xuebing Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Shucheng Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
22
|
Yao W, Zhang H, Fakhar-E-Alam Kulyar M, Ding Y, Waqas M, Mehmood K, Iqbal M, Du H, Jiang X, Li J. Effect of total flavonoids of Rhizoma Drynariae in thiram induced cytotoxicity of chondrocyte via BMP-2/Runx2 and IHH/PTHrP expressions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111194. [PMID: 32866894 DOI: 10.1016/j.ecoenv.2020.111194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Tibial Dyschondroplasia (TD) is a prevailing skeletal disorder that mainly affects rapidly growing avian species. It results in reduced bone strength, lameness and an increase risk of fragility fractures. Total flavonoids of Rhizoma drynariae (TFRD) have been used as an effective treatment of different bone diseases in humans. The current in vitro study was conducted to explore the therapeutic effect of TFRD on thiram-induced cytotoxicity in avian growth plate cells via bone morphogenetic protein-2/runt related transcription factor-2 (BMP-2/Runx2) and Indian hedgehog/Parathyroid hormone-related peptide (IHH/PTHrP) expressions. Chondrocytes were isolated, cultured and refined from chicken's tibial growth plates in a special medium. Then chondrocytes were treated with sublethal thiram having less concentration (2.5 μg/mL) to induce cytotoxicity of chondrocyte, and then treated with providential doses (100 μg/mL) of TFRD. Thiram caused distorted morphology of chondrocytes, nuclei appeared disintegration or lysed along with decreased expressions of BMP-2/Runx2 and IHH/PTHrP. TFRD administration not only enhanced the viability of chondrocytes by itself, but also well restored the damage caused by thiram on growth plate chondrocytes by significantly up-regulating the expressions of BMP-2/Runx2 and IHH/PTHrP. Therefore, this study provides a novel insight into the further treatment of TD and other skeletal ailments and lays the foundation for prevention and treatment.
Collapse
Affiliation(s)
- Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hui Zhang
- South China Agricultural University College of Veterinary Medicine Guangzhou, 510000, PR China
| | | | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Muhammad Waqas
- Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch, 12350, Azad Jammu & Kashmir, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Haitao Du
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, PR China.
| |
Collapse
|
23
|
Huang SC, Cao QQ, Cao YB, Yang YR, Xu TT, Yue K, Liu F, Tong ZX, Wang XB. Morinda officinalis polysaccharides improve meat quality by reducing oxidative damage in chickens suffering from tibial dyschondroplasia. Food Chem 2020; 344:128688. [PMID: 33246686 DOI: 10.1016/j.foodchem.2020.128688] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Tibial dyschondroplasia (TD) is the common leg disease in commercial broilers. However, the effects of TD on meat quality and the protective of Morinda officinalis polysaccharide (MOP) are largely unknown. Three hundred broiler chicks (one-day-old) were equally allocated into control (CON), TD and MOP-treated groups for 15 days. The results indicated that TD influenced morphology and meat quality-related parameters of the breast muscle, and changed the activity and mRNA expression of antioxidant enzymes in plasma and breast muscles. Moreover, metabolomics profiling of breast muscle revealed that the main altered metabolites 4-guanidinobutyric acid and chenodeoxycholic acid, which are related to meat quality and oxidative stress. Additionally, 500 mg/L MOP effectively restored the content of meat metabolites and oxidative damage. These findings suggest that oxidative damage caused by TD may affect meat quality in broilers by changing the content of breast muscle metabolites and that MOP supplementation has a restorative effect.
Collapse
Affiliation(s)
- Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China.
| | - Qin-Qin Cao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Ya-Bing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yu-Rong Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Ting-Ting Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Ke Yue
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Fang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zong-Xi Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xue-Bing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
24
|
Affiliation(s)
- Hilal Çapar Akyüz
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Esin Ebru Onbaşılar
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
25
|
Waqas M, Qamar H, Zhang J, Yao W, Li A, Wang Y, Iqbal M, Mehmood K, Jiang X, Li J. Puerarin enhance vascular proliferation and halt apoptosis in thiram-induced avian tibial dyschondroplasia by regulating HIF-1α, TIMP-3 and BCL-2 expressions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110126. [PMID: 31918251 DOI: 10.1016/j.ecoenv.2019.110126] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Tetramethyl thiuram disulfide (thiram) is a dithiocarbamate pesticide used for crop protection and storage. But, it's widespread utilization is associated with deleterious growth plate cartilage disorder in broilers termed as avian tibial dyschondroplasia (TD). TD results in non-mineralized and less vascularized proximal tibial growth plate cartilage causing lameness and poor growth performance. This study investigated the therapeutic potential of puerarin against thiram toxicity in TD affected chickens. One-day-old broiler chickens (n = 240) were alienated into three equal groups i.e. control, TD and puerarin (n = 80) and were offered standard feed. Additionally, TD and puerarin groups were offered thiram at 50 mg/kg of feed from 4 to 7 days for TD induction followed by puerarin therapy at 120 mg/kg to puerarin group only from 8 to 18 days for TD treatment. Thiram feeding to TD and puerarin group chickens caused lameness, mortality, and increased the aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA) levels and growth plate (GP) size and upregulated HIF-1α expression. Besides, the production parameters, alkaline phosphatase (ALP), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels and the expressions of TIMP-3 and BCL-2 were decreased (p < 0.05). Puerarin alleviated lameness, enhanced angiogenesis and growth performance and serum and antioxidant enzymes, decreased apoptosis and recuperated GP width by significantly downregulating HIF-1α and upregulating the TIMP-3 and BCL-2 mRNA and protein expressions in puerarin group chickens (p < 0.05). In conclusion, the toxic effects associated with thiram can be mitigated using puerarin.
Collapse
Affiliation(s)
- Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; Faculty of Veterinary & Animal Sciences, University of the Poonch, Rawalakot, District Poonch, 12350, Azad Jammu & Kashmir, Pakistan
| | - Hammad Qamar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jialu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Aoyun Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- University College of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Xiong Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Animal Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
26
|
Cao QQ, Kong AA, Tao KS, Zheng SH, Tong C, Wang XB, Tong ZX, Rehman MU, Huang SC. Characterization of growth performance, meat quality and serum biochemical parameters in chickens suffering from tibial dyschondroplasia. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Huang SC, Li L, Rehman MU, Gao JD, Zhang LH, Tong XL, Waqas M, Li JK. Tibial growth plate vascularization is inhibited by the dithiocarbamate pesticide thiram in chickens: potential relationship to peripheral platelet counts alteration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36322-36332. [PMID: 31713825 DOI: 10.1007/s11356-019-06664-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The widespread use of thiram has raised concerns for health and its toxic effects, but the underlying toxicity mechanism on platelets and bones is poorly defined. Here, we found a significant increase in the number of platelets in chickens with the thiram intake, due to the increased expression of thrombopoietin mRNA in the dysfunction liver. Furthermore, the decreased vascular distribution and cell death of chondrocytes in the tibial growth plates (TGPs) were observed, resulting in bone growth inhibition, which is associated with the abnormal activation of platelets leading to the extraordinary decrease of vascular endothelial growth factor A (VEGFA) and angiopoietin-1 protein were released and their corresponding receptors VEGFR2 and Tie-2 expressions were also reduced in the TGPs. Taken together, these findings revealed that thiram has an adverse effect on bones and platelets, which may have a high risk of thrombosis and osteoarthritis.
Collapse
Affiliation(s)
- Shu-Cheng Huang
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Nyingchi, 860000, Tibet, China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mujeeb Ur Rehman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Dong Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Hong Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-le Tong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Waqas
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Kui Li
- College of Animals Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Nyingchi, 860000, Tibet, China.
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|