1
|
Zhong Y, Zhang M, Xu H, Yu X, Hu Y, Xu Y, Xiao X, Yang C. Bacillus licheniformis Alleviates Clostridium perfringens-Induced Intestinal Injury in Mice Model by Modulating Inflammation, Apoptosis, and Cecal Microbial-Metabolic Responses. Animals (Basel) 2025; 15:1409. [PMID: 40427288 PMCID: PMC12108289 DOI: 10.3390/ani15101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Bacillus licheniformis (B. licheniformis) is a probiotic known for its ability to enhance host resistance against pathogenic infections. This study aimed to evaluate the protective effects and underlying mechanisms of B. licheniformis in a mouse model challenged with Clostridium perfringens (C. perfringens). C57BL/6J mice were pretreated with B. licheniformis for 21 days before oral infection with C. perfringens. The probiotic administration significantly prevented infection-induced weight loss and immune organ enlargement. Serum cytokine analysis revealed that B. licheniformis increased anti-inflammatory IL-4 and IL-10 levels while reducing pro-inflammatory IL-1β, IL-6, and TNF-α levels. Histological analysis showed that B. licheniformis preserved intestinal morphology and inhibited epithelial cell apoptosis. Moreover, the probiotic mitigated the infection-induced decline in volatile fatty acid (VFA) production. 16S rRNA gene sequencing revealed that B. licheniformis reshaped the cecal microbiota, characterized by the increased abundance of Lachnospiraceae_NK4A136_group, Muribaculaceae, and Parabacteroides, and reduced abundance of Alistipes. Untargeted metabolomic profiling identified differential metabolites-including D-glucono-1,5-lactone, D-erythrose 4-phosphate, and D-sedoheptulose 7-phosphate-enriched in the pentose phosphate pathway, suggesting a regulatory role in redox homeostasis and host response. Collectively, these results indicate that B. licheniformis exerts protective effects against C. perfringens infection by modulating inflammation, apoptosis, microbial composition, and metabolic pathways. This work provides new insights into the application of B. licheniformis as a functional microbial feed additive in livestock disease prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (Y.Z.)
| |
Collapse
|
2
|
Szkopek D, Mendel M, Kinsner M, Ognik K, Szyryńska N, Lewczuk B, Kozłowski K, Kos I, Konieczka P. Cannabidiol and nano-selenium mediate intestinal barrier function by affecting mucosal microstructures, and gut-associated immunological and oxidative stress response in the gut of chickens infected with C. perfringens. Front Immunol 2025; 16:1529449. [PMID: 40356900 PMCID: PMC12066498 DOI: 10.3389/fimmu.2025.1529449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Nutritional additives with biological activity, such as cannabidiol (CBD) and nano-selenium (nano-Se), are viable to prevent bacterial diseases such as necrotic enteritis in chickens. The present study hypothesized that CBD and nano-Se mediate epigenetic and oxidative DNA changes in blood and intestinal epithelial cells and can affect intestinal development and functionality in broiler chickens at an early stage of infection with C. perfringens. This study revealed that both compounds, in combination under physiological or pathophysiological conditions, can act synergistically, improving the indices of histomorphometry of duodenum, jejunum, and ileum. Examination of the structures and ultrastructures of the gastrointestinal tract showed that CBD + nano-Se supplementation did not manifest adverse effects on the host gut indices. In contrast, epigenetic and oxidative markers of blood and gut structures indicated that these components balanced the immune system, mitigating the excessive inflammatory response caused by infection, which boosted the immune response of birds to challenge. There were also significant correlations between indicators of intestinal barrier function, such as diamine oxidase and lactic acid levels, and histomorphometry and markers of DNA integrity in the blood and intestine of chickens. In addition, it was shown that nano-Se increased hemoglobin concentration, which may be beneficial in the host's response to pathogen stimuli. These findings evidenced the health-promoting effect of cannabidiol and nano-selenium in C. perfringens-infected chickens and provided new insights into the mechanism of action of both nutritional additives.
Collapse
Affiliation(s)
- Dominika Szkopek
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Marta Mendel
- Division of Pharmacology and Toxicology, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Misza Kinsner
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bio-Economy, University of Life Sciences in Lublin, Lublin, Poland
| | - Natalia Szyryńska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Bogdan Lewczuk
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Krzysztof Kozłowski
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ivica Kos
- Department of Animal Science and Technology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Paweł Konieczka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
3
|
Muneeb M, Khan EU, Ali M, Suleman M, Shaheen MS, Zafar MS, Ahmad S. Effects of replacing antibiotics with probiotics and antimicrobial peptides on performance, gut health, carcass traits, meat quality, and welfare in broilers infected with Eimeria and Clostridium perfringens. Trop Anim Health Prod 2025; 57:184. [PMID: 40272630 DOI: 10.1007/s11250-025-04441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/11/2025] [Indexed: 05/23/2025]
Abstract
This study evaluated the effectiveness of antibiotic, probiotic, and antimicrobial peptide (AMP) supplements in mitigating adverse consequences of necrotic enteritis (NE) in broilers. In total, 720 one-day-old (Ross-308) male broiler chicks were randomly assigned to five distinct feeding regimens (each treatment consisting of six replicates of 24 birds) including: (1) negative control (NC), fed only basal diet; (2) positive control (PC); with C. perfringens challenge + basal diet; (3) CP-Ab: challenged + virginiamycin (Stafac® 500) at 200 g/ton, (4) CP-Pro: challenged + 200 g/ton B. subtilis PB6 (Clostat dry®) probiotic additive, and (5) CP-LS2: challenged and fed an antimicrobial peptide (LassoTide Plus®) at 200 g/ton. The NE challenge was induced by administering 10X coccidia vaccine on day 15 followed by inoculation with a pathogenic field strain of C. perfringens type G (1 × 108 CFU/ml/ bird; 1 ml) on days 19 and 20 through oral gavage. Feeding AMP and probiotic to the NE-affected broilers resulted in 23.93% and 19.70% respectively higher body weight gain and 76.59% and 70.27% lower mortality compared to the PC. Similarly, supplementation with AMP improved (P < 0.05) gut morphology, carcass yield (5.82%), meat water holding capacity (14.73%), and reduced cooking loss (10.01%), dripping loss (20.87%), and shear force (25%) as compared to the PC. Additionally, the excreta score, litter quality and welfare attributes were significantly ameliorated (P < 0.05) with AMP addition. In conclusion, the findings suggest that AMP outperformed both virginiamycin and probiotic, demonstrating its potential as a superior substitute for AGPs in broilers.
Collapse
Affiliation(s)
- Muhammad Muneeb
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ehsaan Ullah Khan
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mubashar Ali
- Department of Animal Nutrition, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Suleman
- Department of Pathology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Shabir Shaheen
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Shahbaz Zafar
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Sohail Ahmad
- Department of Poultry Production, Faculty of Animal Production and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
4
|
Panahi Moghaddam P, Ebrahimnezhad Y, Maheri-Sis N, Aghdam Shahryar H, Aghajanzadeh-Golshani A, Gorbani A. The effects of using a Rovabio ® Plus multi-enzyme on production and incubation performance, blood parameters and duodenum morphology of broiler breeders at age of 45 - 60 weeks. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2025; 16:245-252. [PMID: 40400732 PMCID: PMC12091265 DOI: 10.30466/vrf.2024.2033379.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/11/2024] [Indexed: 05/23/2025]
Abstract
The aim of this study was to investigate the effects of using a Rovabio® Plus multi-enzyme on production and reproductive performance, duodenum morphology and biochemical parameters in 45 - 60 weeks old broiler breeders. For this purpose, 260 broiler breeders of Ross 308 strain were used in a completely randomized design with four treatments and five replications (13 hens and one rooster in each replication). Experimental treatments included: 1) Positive control diet (diet with standard energy and phosphorus and without multi-enzyme), 2) Negative control diet (diet in terms of energy 5.00% and phosphorus 50.00% less than the positive control diet, 3) Negative control diet with 1.00 g kg-1 Rovabio® Plus multi-enzyme and 4) Positive control diet with 1.00 g kg-1 Rovabio® Plus multi-enzyme. The results showed that negative control diet caused a significant decrease in the egg production percentage, egg weight, egg mass, settable eggs, fertile eggs, hatchability and one grade chickens, increased the feed conversion ratio and embryonic losses. Addition of 1.00 g kg-1 of multi-enzyme to negative control diet made the above parameters similar to the positive control treatment, however, the positive control treatment supplemented with multi-enzyme had a better performance compared to other treatments. This research showed that dietary supplementation of Rovabio® Plus multi-enzyme in broiler breeders at the age of 45 - 60 weeks led to the improvement of productive performance and incubation in negative control diet.
Collapse
Affiliation(s)
| | - Yahya Ebrahimnezhad
- Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, Iran.
| | | | | | | | | |
Collapse
|
5
|
Jamil M, Khatoon A, Saleemi MK, Abbas RZ. Bacillus licheniformis as a protective agent in broiler chicken concurrently exposed to mycotoxins and necrotic enteritis: Toxicopathological and hematobiochemical perspectives. Microb Pathog 2025; 198:107108. [PMID: 39510360 DOI: 10.1016/j.micpath.2024.107108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Mycotoxins negatively impact intestinal cell viability, leading to the depletion of beneficial bacteria and rendering birds susceptible to intestinal infections such as necrotic enteritis (NE). Furthermore, they impair the effective digestion and absorption of nutrients. This study aimed to evaluate the effects of Bacillus licheniformis supplementation on broiler birds exposed to mycotoxins and subsequent necrotic enteritis infection. A total of 280 one-day-old broiler chicks were divided into eight groups and subjected to B. licheniformis supplementation (1 × 106 CFU/kg of feed) and mycotoxin exposure (aflatoxin and ochratoxin A, each at 150 ppb). Clostridium perfringens (3 × 1010 CFU/ml) was later administered to induce necrotic enteritis. This study evaluated body weight, feed intake, relative organ weights, hematological and serum biochemical parameters and performed histopathological examinations of liver, kidney and intestine. All the obtained data was statistically analyzed (P ≤ 0.05). The results demonstrated that B. licheniformis supplementation reduced the susceptibility to necrotic enteritis in broilers initially exposed to mycotoxins. Body weight and feed intake were significantly decreased in groups challenged with mycotoxins and necrotic enteritis, both individually and concurrently, compared to the control group. Relative weights of the liver, kidney and intestine were significantly higher in treatment groups. Hematological analysis revealed significantly lower erythrogram parameters (TEC, Hb, and PCV) in birds fed mycotoxin-contaminated feed, with or without necrotic enteritis. Hepatic and renal biomarkers were significantly elevated, and serum protein levels (total protein, albumin) were significantly lower. In contrast, birds supplemented with B. licheniformis and challenged with either mycotoxins or NE showed no significant differences in body weight, feed intake, erythrogram and leucogram compared to the control group. However, B. licheniformis did not mitigate these effects when supplemented in group with concurrent challenge of mycotoxins and NE, however, intensity of changes was reduced. In conclusion, B. licheniformis supplementation effectively alleviates the pathological changes induced by mycotoxins and necrotic enteritis when presented individually but is not sufficiently effective against the combined challenge of mycotoxins and necrotic enteritis.
Collapse
Affiliation(s)
- Maria Jamil
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture Faisalabad, 38040 Pakistan
| | - Aisha Khatoon
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture Faisalabad, 38040 Pakistan.
| | - Muhammad Kashif Saleemi
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture Faisalabad, 38040 Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture Faisalabad, 38040, Pakistan
| |
Collapse
|
6
|
Peng Y, Luo Y, Pan L, Hou Y, Qin L, Lan L, Ouyang K, Chen Y, Wei Z, Qin Y, Huang W. Immunogenicity analysis based on VP1 and VP2 proteins of bovine enterovirus. Virology 2024; 600:110260. [PMID: 39442312 DOI: 10.1016/j.virol.2024.110260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Bovine enterovirus (BEV) infection manifests as a spectrum of clinical signs affecting the respiratory, gastrointestinal, and reproductive systems in cattle. Outbreaks of this disease results in large economic losses to the bovine industry worldwide. Currently there are no efficacious vaccines and medicines to prevent BEV infection. In the present study, reverse transcription-polymerase chain reaction was used to amplify the VP1 and VP2 genes of BEV, enabling the synthesis of a chimeric recombinant protein which contained partial sequences from both proteins. Subsequently, the emulsified purified proteins with Freund's adjuvant were used for triple-fold immunization of 4-week-old Institute of Cancer Research (ICR) mice. The mice were subsequently subjected to a challenge assay which elicited an immune response that was characterized by elevated titers of BEV-specific neutralizing antibodies. Notably, the results showed that the purification of pET32a-VP1 and pET32a-VP2 proteins markedly curtailed virus excretion and mitigated the histopathological damage usually associated with BEV infections. These were observed in the small intestines, kidneys and brain in infected animals. It also alleviated clinical symptoms such as hypothermia and weight loss. In summary, this study offers a theoretical and practical basis for BEV vaccine development.
Collapse
Affiliation(s)
- Yuxin Peng
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Yuhang Luo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Liuna Pan
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Yue Hou
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Lishan Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Liuyi Lan
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
| |
Collapse
|
7
|
Ghimire S, Subedi K, Zhang X, Wu C. Efficacy of Bacillus subtilis probiotic in preventing necrotic enteritis in broilers: a systematic review and meta-analysis. Avian Pathol 2024; 53:451-466. [PMID: 38776185 DOI: 10.1080/03079457.2024.2359596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024]
Abstract
Probiotics can enhance broiler chicken health by improving intestinal microbiota, potentially replacing antibiotics. They protect against bacterial diseases like necrotic enteritis (NE) in poultry. Understanding their role is crucial for managing bacterial diseases, including NE. This study conducted a meta-analysis to assess the effects of Bacillus subtilis probiotic supplementation on feed conversion ratio (FCR), NE lesion score, and mortality. Additionally, a systematic review analysed gut microbiota changes in broilers challenged with Clostridium perfringens with or without the probiotic supplementation. Effect sizes from the studies were estimated in terms of standardized mean difference (SMD). Random effect models were fitted to estimate the pooled effect size and 95% confidence interval (CI) of the pooled effect size between the control [probiotic-free + C. perfringens] and the treatment [Bacillus subtilis supplemented + C. perfringens] groups. Overall variance was computed by heterogeneity (Q). The meta-analysis showed that Bacillus subtilis probiotic supplementation significantly improved FCR and reduced NE lesion score but had no effect on mortality rates. The estimated overall effects of probiotic supplementation on FCR, NE lesion score and mortality percentage in terms of SMD were -0.91 (CI = -1.34, -0.49; P < 0.001*); -0.67 (CI = -1.11, -0.22; P = 0.006*), and -0.32 (CI = -0.70, 0.06; P = 0.08), respectively. Heterogeneity analysis indicated significant variations across studies for FCR (Q = 69.66; P < 0.001*) and NE lesion score (Q = 42.35; P < 0.001*) while heterogeneity was not significant for mortality (Q = 2.72; P = 0.74). Bacillus subtilis probiotic supplementation enriched specific gut microbiota including Streptococcus, Butyricicoccus, Faecalibacterium, and Ruminococcus. These microbiotas were found to upregulate expression of various genes such as TJ proteins occluding, ZO-1, junctional adhesion 2 (JAM2), interferon gamma, IL12-β and transforming growth factor-β4. Moreover, downregulated mucin-2 expression was involved in restoring the intestinal physical barrier, reducing intestinal inflammation, and recovering the physiological functions of damaged intestines. These findings highlight the potential benefits of probiotic supplementation in poultry management, particularly in combating bacterial diseases and promoting intestinal health.
Collapse
Affiliation(s)
- Shweta Ghimire
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Keshab Subedi
- Christiana Care Health Systems, Institute for Research on Equity and Community Health (iREACH), Wilmington, DE, USA
| | - Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
8
|
Jin D, Tugiyanti E, Rimbawanto EA, Rosidi R, Widiyastuti T, Susanto A, Ismoyowati I. Effects of high-level dietary distillers dried grains with solubles supplemented with multienzymes on growth performance, nutrient utilization, intestinal morphology, and pellet quality in broiler chickens. Vet World 2024; 17:1943-1954. [PMID: 39328431 PMCID: PMC11422655 DOI: 10.14202/vetworld.2024.1943-1954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/29/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim With the increasing cost of bulk raw materials and advancements in the feed enzyme industry, corn distillers dried grains with solubles (DDGS) have shown more opportunities for use in broiler diets. Supplementation with multiple enzymes could mitigate anti-nutritional factors in DDGS, enhance nutrient digestibility, and thereby increase its utilization in broiler diets, leading to reduced feed costs. This study evaluated the effects of multienzyme supplementation on growth performance, nutrient utilization, intestinal morphology, and pellet quality in broiler chickens fed diets containing conventional levels of DDGS (C-DDGS) and higher levels of DDGS (H-DDGS). Materials and Methods A total of 800 1-day-old Cobb 500 chicks was assigned to four dietary treatments with eight replicates of 25 birds each: C-DDGS (5% DDGS in Starter and 10% in Grower), C-DDGS + Enzyme (C-DDGS diet supplemented with multienzyme), H-DDGS (10% and 20%) + Enzyme (H-DDGS diet supplemented with multienzyme, 10% DDGS in Starter and 20% in Grower), and H-DDGS (15% and 30%) + Enzyme. Results The C-DDGS + enzyme diet increased (p < 0.05) body weight gain (BWG), reduced the feed conversion ratio, enhanced (p < 0.05) digestibility of dry matter (DM), crude protein, and hemicellulose (HC), and improved (p < 0.05) intestinal villus height and villus: crypt ratio of broilers. The H-DDGS (10% and 20%) + enzyme diet exhibited no difference in (p > 0.05) growth performance, nutrient digestibility (except HC), and intestinal morphological parameters, whereas the H-DDGS (15% and 30%) + enzyme diet decreased (p < 0.05) feed intake and BWG and reduced (p < 0.05) energy and DM digestibility by impact (p < 0.05) intestinal morphology compared with the C-DDGS enzyme-free diet. The H-DDGS diet had lower (p < 0.05) pellet hardness and poorer durability than the C-DDGS diet. Conclusion Supplementing multienzyme in the C-DDGS (5% and 10%) diet improved growth performance from day 0 to 28 and diminished growth performance in the H-DDGS (15% and 30%) diet by influencing intestinal morphology and feed pellet quality in broiler chickens. In addition, when supplemented with multienzyme, the dietary DDGS level can be safely included at levels of 10% in 0-7 days and 20% in 8-28 days of age.
Collapse
Affiliation(s)
- Dingxing Jin
- Department of Animal Production, Faculty of Animal Science, Jenderal Soedirman University, Purwokerto, Indonesia
- New Hope Liuhe Indonesia Co., Ltd., Jakarta, Indonesia
| | - Elly Tugiyanti
- Department of Animal Production, Faculty of Animal Science, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Efka Aris Rimbawanto
- Department of Animal Production, Faculty of Animal Science, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Rosidi Rosidi
- Department of Animal Production, Faculty of Animal Science, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Titin Widiyastuti
- Department of Animal Production, Faculty of Animal Science, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Agus Susanto
- Department of Animal Production, Faculty of Animal Science, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Ismoyowati Ismoyowati
- Department of Animal Production, Faculty of Animal Science, Jenderal Soedirman University, Purwokerto, Indonesia
| |
Collapse
|
9
|
Li S, Zhang K, Bai S, Wang J, Zeng Q, Peng H, Lv H, Mu Y, Xuan Y, Li S, Ding X. Extract of Scutellaria baicalensis and Lonicerae flos improves growth performance, antioxidant capacity, and intestinal barrier of yellow-feather broiler chickens against Clostridium perfringens. Poult Sci 2024; 103:103718. [PMID: 38692178 PMCID: PMC11077025 DOI: 10.1016/j.psj.2024.103718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 03/31/2024] [Indexed: 05/03/2024] Open
Abstract
In this study, we aimed to investigate the effect of Scutellaria baicalensis and Lonicerae Flos (SL) extract on the growth performance and intestinal health of yellow-feather broilers following a Clostridium perfringens challenge. In total, 600 one-day-old yellow-feather broilers were divided into five treatments (6 replicate pens of 20 birds per treatment), including a control (Con) group fed a basal diet and the infected group (iCon) fed a basal diet and infected with Clostridium perfringens, the other 3 groups receiving different doses of SL (150, 300, and 450 mg/kg) and infected with Clostridium perfringens. The total experimental period was 80 d. When the birds were 24-days-old, a subclinical necrotizing enteritis model was induced by orally inoculating the birds with 11,000 oocysts of mixed Eimeria species on d 24, followed by C. perfringens (108 CFU/mL) from d 28 to 30. The birds were evaluated for parameters such as average weight gain (AWG), average daily feed intake (ADFI), mortality, feed conversion ration (FCR), intestinal lesion score, intestinal C. perfringens counts, and villus histomorphometry. Results indicated that C. perfringens infection led to reduced AWG and the levels of tight junction proteins, increased the FCR, ileum E. coli load, and intestinal permeability, causing damage to the intestinal mucosal barrier (P < 0.05). Compared with the infected group, supplementing 300 mg/kg of SL significantly increased AWG at 43 to 80 d, the ratio of villus height to crypt depth in the jejunum and ileum at 35 d, and the activity of superoxide dismutase (SOD) in serum. It also significantly reduced the FCR at 22 to 42 d, intestinal lesion score, and the amount of C. perfringens in the ileum (P < 0.05). Additionally, compared with the infected group, the addition of 300 mg/kg SL significantly increased mRNA levels of claudin-2, claudin-3, mucin-2, and toll-like receptor 2 (TLR-2) in the ileum of infected birds at 35 d of age. In conclusion, supplementation with SL extract could effectively mitigate the negative effects of C. perfringens challenge by improving intestinal barrier function and histomorphology, positively influencing the growth performance of challenged birds.
Collapse
Affiliation(s)
- Shi Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Huiyuan Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; Beijing Centre Biology Co. Ltd. Daxing District, Beijing 102218, China
| | - Yadong Mu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Yue Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Shanshan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
10
|
Xu Z, Feng X, Song Z, Li X, Li K, Li M, Wang X, Liu B, Sun C. Cell-Free Supernatant of Bacillus subtilis G2B9-Q Improves Intestinal Health and Modulates Immune Response to Promote Mouse Recovery in Clostridium perfringens Infection. Curr Microbiol 2024; 81:243. [PMID: 38935166 DOI: 10.1007/s00284-024-03669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/17/2024] [Indexed: 06/28/2024]
Abstract
Clostridium perfringens is one of the critical causative agents causing diarrhea in piglets, with significant economic losses to the pig industry. Under normal gut microbiota homeostasis and well-managed barns, diarrhea caused by C. perfringens could be controlled. Some reports show that probiotics, such as Bacillus subtilis, are beneficial in preventing necrotic enteritis (NE) in chickens, but few reports on piglets. Clostridium perfringens was found in the piglets' diarrhea with intestinal microbiota dysbiosis in our survey. Bacillus subtilis G2B9-Q, which was isolated from the feces of healthy pigs, was found to have anti-Clostridium activity after screening. Clostridium perfringens was used to challenge mice by intraperitoneal injection for modeling to evaluate the anti-infective activity of cell-free supernatant (CFS) of B. subtilis G2B9-Q and different concentrations of B. subtilis G2B9-Q by oral administration. The results showed that G2B9-Q can mitigate intestinal lesions caused by C. perfringens infection, reduce inflammatory reactions, and modulate intestinal microbiota. The CFS of G2B9-Q can alleviate the pathological damage of intestinal tissues caused by C. perfringens infection, reduce the concentration of TNF-α and IL-10 in the sera of mice, as well as the relative expression levels of alpha toxin (CPA), perfringolysin O (PFO) toxin, IL-10, IL-22, and TNF-α in the jejunum and colon tissues, and alleviate the changes in gut microbiota structure caused by C. perfringens infection, which showed better therapeutic effects and indicated that the metabolites of G2B9-Q are essential mediators for their beneficial effects. Therefore, the CFS of G2B9-Q could potentially replace antibiotics in treating C. perfringens infection.
Collapse
Affiliation(s)
- Zhiqiang Xu
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China
| | - Zhanyun Song
- Changchun Customs District, Changchun, Jilin, China
| | - Xiang Li
- Changchun Customs District, Changchun, Jilin, China
| | - Ke Li
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China
| | - Mengjiao Li
- Changchun Customs District, Changchun, Jilin, China
| | | | - Bo Liu
- Changchun Customs District, Changchun, Jilin, China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, Xi'an Street 5333#, Changchun, 130062, Jilin, China.
| |
Collapse
|
11
|
Zhao X, Pang J, Zhang W, Peng X, Yang Z, Bai G, Xia Y. Tryptophan metabolism and piglet diarrhea: Where we stand and the challenges ahead. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:123-133. [PMID: 38766516 PMCID: PMC11101943 DOI: 10.1016/j.aninu.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 05/22/2024]
Abstract
The intestinal architecture of piglets is vulnerable to disruption during weaning transition and leads to diarrhea, frequently accompanied by inflammation and metabolic disturbances (including amino acid metabolism). Tryptophan (Trp) plays an essential role in orchestrating intestinal immune tolerance through its metabolism via the kynurenine, 5-hydroxytryptamine, or indole pathways, which could be dictated by the gut microbiota either directly or indirectly. Emerging evidence suggests a strong association between piglet diarrhea and Trp metabolism. Here we aim to summarize the intricate balance of microbiota-host crosstalk by analyzing alterations in both the host and microbial pathways of Trp and discuss how Trp metabolism may affect piglet diarrhea. Overall, this review could provide valuable insights to explore effective strategies for managing piglet diarrhea and the related challenges.
Collapse
Affiliation(s)
- Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wanghong Zhang
- Yunnan Vocational College of Agriculture, Kunming 650211, China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhenguo Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Guangdong Bai
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Fonseca A, Kenney S, Van Syoc E, Bierly S, Dini-Andreote F, Silverman J, Boney J, Ganda E. Investigating antibiotic free feed additives for growth promotion in poultry: effects on performance and microbiota. Poult Sci 2024; 103:103604. [PMID: 38484563 PMCID: PMC10951610 DOI: 10.1016/j.psj.2024.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The poultry industry is evolving towards antibiotic-free production to meet market demands and decelerate the increasing spread of the antimicrobial resistance. The growing need for antibiotic free products has challenged producers to decrease or completely stop using antimicrobials as feed supplements in broiler diet to improve feed efficiency, growth rate, and intestinal health. Natural feed additives (e.g., probiotics and phytobiotics) are promising alternatives to substitute antimicrobial growth promoters. The goal of our study was to characterize the effects of a Probiotic and an Essential Oils blend on broilers' performance and perform a time-series analysis to describe their excreta microbiome. A total of 320 Cobb 500 (1-day-old) chicks were raised for 21 d in 32 randomly allocated cages. Treatments consisted of 4 experimental diets: a basal diet, and a basal diet mixed with an Antibiotic (bacitracin methylene disalicylate), an essential oils blend (oregano oil, rosemary, and red pepper), or a Probiotic (Bacillus subtilis). Body weight (on 1, 10, and 21d), and feed intake (10d and 21d) were recorded and feed conversion ratio was calculated. Droppings were collected daily (1-21d) to characterize broilers' excreta microbiota by targeted sequencing of the bacterial 16S rRNA gene. The Probiotic significantly improved feed conversion ratio for starter phase 1 to 10d (P = 0.03), grower phase 10 to 21d (P = 0.05), and total period 1 to 21d (P = 0.01) compared to the Antibiotic. Feed supplements did not affect alpha diversity but did impact microbial beta diversity (P < 0.01). Age also impacted microbiome turnover as differences in alpha and beta diversity were detected. Furthermore, when compared to the basal diet, the probiotic and antibiotic significantly impacted relative abundance of Bifidobacterium (log2 fold change -1.44, P = 0.03), Intestinimonas (log2 fold change 0.560, P < 0.01) and Ligilactobacillus (log2 fold change -1.600, P < 0.01). Overall, Probiotic supplementation but not essential oils supplementation positively impacted broilers' growth performance by directly causing directional shifts in broilers' excreta microbiota structure.
Collapse
Affiliation(s)
- Ana Fonseca
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Sophia Kenney
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Emily Van Syoc
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Stephanie Bierly
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Francisco Dini-Andreote
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Justin Silverman
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, USA; Department of Statistics, The Pennsylvania State University, University Park, PA, USA; Department of Medicine, The Pennsylvania State University, University Park, PA, USA; Institute for Computational and Data Science, The Pennsylvania State University, University Park, PA, USA
| | - John Boney
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| | - Erika Ganda
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
13
|
Chen P, Lv H, Du M, Liu W, Che C, Zhao J, Liu H. Bacillus subtilis HW2 enhances growth performance and alleviates gut injury via attenuation of endoplasmic reticulum stress and regulation of gut microbiota in broilers under necrotic enteritis challenge. Poult Sci 2024; 103:103661. [PMID: 38547540 PMCID: PMC11000119 DOI: 10.1016/j.psj.2024.103661] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
This study investigated the effects of Bacillus subtilis HW2 on the growth performance, immune response, endoplasmic reticulum (ER) stress, and intestinal health in broilers with necrotic enteritis. Three hundred 1-day-old male Cobb 500 broilers (33.88 ± 2.34 g) were randomly allocated to 5 groups including non-infected control (NC group), basal diet + necrotic enteritis challenge (NE group), basal diet + 1 × 106 CFU/g B. subtilis HW2 + necrotic enteritis challenge (L-Pro group), basal diet + 5 × 106 CFU/g B. subtilis HW2 + necrotic enteritis challenge (M-Pro group), and basal diet + 1 × 107 CFU/g B. subtilis HW2 + necrotic enteritis challenge (H-Pro group), with 6 replicates per group. All broilers except NC group were orally given with sporulated coccidian oocysts at day 14 and Clostridium perfringens from days 19 to 21. Results showed that L-Pro and M-Pro groups improved growth performance and intestinal morphology in necrotic enteritis-challenged broilers, and L-Pro, M-Pro, and H-Pro groups improved intestinal barrier function and immune response and decreased ER stress in necrotic enteritis-challenged broilers. Analysis of the gut microbiota revealed that L-Pro group increased the abundances of Alistipes, Coprobacter, Barnesiella, and Limosilactobacillus, decreased Erysipelatoclostridium abundance on day 42 in necrotic enteritis-challenged broilers. M-Pro group increased Turicibacter abundance on day 28 and the abundances of Alistipes, Barnesiella, and Limosilactobacillus on day 42 in necrotic enteritis-challenged broilers. H-Pro group decreased Romboutsia abundance on day 28 and unidentified_Clostridia abundance on day 42 in necrotic enteritis-challenged broilers. Analysis of short-chain fatty acids (SCFAs) revealed higher isobutyric acid and isovaleric acid levels in L-Pro and M-Pro groups than NE group. Correlation analysis revealed the correlations between the biochemical parameters and gut microbiota as well as SCFAs, especially Romboutsia, Barnesiella, Coprobacter, isobutyric acid, and isovaleric acid. Overall, our results indicated that B. subtilis HW2 supplementation could ameliorate necrotic enteritis infection-induced gut injury. The optimal dietary supplementation dosage of Bacillus subtilis HW2 was 5 × 106 CFU/g.
Collapse
Affiliation(s)
- Peng Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengmeng Du
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Weiyong Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chuanyan Che
- College of Animal Science and Technology, Anhui Science and Technology University, Fengyang, 233100, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
14
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
15
|
Gharib-Naseri K, Kheravii SK, Nguyen HT, Wu SB. Bromelain can reduce the negative effects of a subclinical necrotic enteritis in broiler chickens. Poult Sci 2024; 103:103560. [PMID: 38417336 PMCID: PMC10907841 DOI: 10.1016/j.psj.2024.103560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
This study was conducted to examine the efficacy of a bromelain-based supplementation coded ANR-pf on growth performance and intestinal lesion of broiler chickens under necrotic enteritis (NE) challenge. A total of 540 Ross 308 day-old male chicks were randomly allocated into 6 treatments of 6 replicates. The bromelain formulation was delivered to chickens through gavaging or in drinking water method twice, on d 8 and 13. Nonchallenged groups included 1) without or 2) with the specific bromelain formulation gavaged at 0.8 mL/kg. NE-challenged groups included 3) without the specific bromelain formulation; 4) gavaged with 0.4 mL/kg; 5) gavaged with 0.8 mL/kg and 6) supplemented with 0.8 mL/kg via drinking water. Birds were challenged with Eimeria spp. on d 9 and Clostridium perfringens (NE-18 strain) on d 14 and 15. On d 14 and 19, fresh faecal contents were collected for the determination of oocyst counts. Intestinal lesion scores were determined on d16. Performance and mortality were recorded throughout the entire experiment. Among challenged groups, birds received additive via drinking water had higher weight gain (WG) compared to the remaining groups (P < 0.001) in the grower phase and had lower FCR compared to 0.4 mL/kg inoculated group in the grower and finisher phases (P < 0.001). Bromelain supplementation via drinking water improved the WG of challenged birds, similar to that of the nonchallenged birds (P < 0.001), and lowered FCR compared to other challenged groups (P < 0.001). Nonchallenged birds and birds that received bromelain formulation in drinking water did not have lesions throughout the small intestine whereas challenged birds, either un-supplemented or supplemented with bromelain via inoculation route recorded similar lesion score levels in the jejunum. At d 19, birds received bromelain in drinking water had lower fecal oocyst numbers compared to challenged birds without additive (P < 0.001). In conclusion, bromelain administration via drinking water could ameliorate the negative impacts of NE-infection in broilers by improving performance, lowering the oocyst numbers and lesion scores.
Collapse
Affiliation(s)
- Kosar Gharib-Naseri
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Sarbast K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Hong Thi Nguyen
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia.
| |
Collapse
|
16
|
Rodrigues RA, Silva LAM, Brugnera HC, Pereira N, Casagrande MF, Makino LC, Bragança CRS, Schocken-Iturrino RP, Cardozo MV. Association of Bacillus subtilis and Bacillus amyloliquefaciens: minimizes the adverse effects of necrotic enteritis in the gastrointestinal tract and improves zootechnical performance in broiler chickens. Poult Sci 2024; 103:103394. [PMID: 38194830 PMCID: PMC10792630 DOI: 10.1016/j.psj.2023.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
This study aimed to evaluate the efficiency and capacity of the probiotic composed of Bacillus subtilis and Bacillus amyloliquefaciens, in improving the zootechnical performance of broiler chickens challenged with Eimeria spp. and Clostridium perfringens. The broilers were distributed in a completely randomized design in poultry isolators (12 birds each), resulting in 3 treatments: T1 (control, no challenge and no Bacillus in diet), T2 (challenged with Eimeria spp., followed by Clostridium perfringens infection and no Bacillus in the diet), and T3 (challenged with Eimeria spp., Clostridium perfringens and treated with Bacillus subtilis and Bacillus amyloliquefaciens). They were evaluated for a period of 29 d, divided into preinitial (1-7 d of age), initial (8-21 d), and growth (22-29 d) phases. Assessments of body weight, weight gain, feed consumption, and feed conversion were conducted, along with the classification of the scores and optical microscopy of the tract gastrointestinal. The animals challenged and treated with the probiotic containing Bacillus spp. showed improved indicators of zootechnical performance. Additionally, the animals challenged and treated (T3) had a better score for intestinal lesions compared to the other treatment groups. Therefore, the probiotic consisting of Bacillus subtilis and Bacillus amyloliquefaciens could be considered an effective option for disease prevention and improving the zootechnical performance of broiler chickens.
Collapse
Affiliation(s)
- Romário A Rodrigues
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil.
| | - Leandro A M Silva
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Heloisa C Brugnera
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Natália Pereira
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Mariana F Casagrande
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Lilian C Makino
- Department of Fisheries and Aquaculture Resources, School of Agricultural Sciences of Vale do Ribeira, São Paulo State University (UNESP), Registro, São Paulo, Brazil
| | - Caio R S Bragança
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, Minas Gerais State University, Passos, Minas Gerais, Brazil
| | - Rubén Pablo Schocken-Iturrino
- Department of Reproduction Pathology and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Marita V Cardozo
- Laboratory of Microorganism Physiology, Department of Biomedical Sciences and Health, Minas Gerais State University, Passos, Minas Gerais, Brazil
| |
Collapse
|
17
|
Lv H, Chen P, Wang Y, Xu L, Zhang K, Zhao J, Liu H. Chlorogenic acid protects against intestinal inflammation and injury by inactivating the mtDNA-cGAS-STING signaling pathway in broilers under necrotic enteritis challenge. Poult Sci 2024; 103:103274. [PMID: 38043405 PMCID: PMC10711517 DOI: 10.1016/j.psj.2023.103274] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
This study aimed to determine the effects of chlorogenic acid (CGA) on the growth performance, intestinal health, immune response, and mitochondrial DNA (mtDNA)-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in broilers under necrotic enteritis (NE) challenge. The 180 one-day-old male Cobb 500 broilers with similar body weight of 44.59 ± 1.39 g were randomly allocated into 3 groups. The groups were control diet (Control group), control diet + NE challenge (NE group), and control diet + 500 mg/kg CGA + NE challenge (NE + CGA group), with 6 replicates per treatment. All broilers except the Control group were given sporulated coccidian oocysts (d 14) and Clostridium perfringens (d 19-21) by oral gavage. Our findings showed that CGA improved the growth performance and intestinal morphology in broilers under NE challenge. CGA supplementation elevated the barrier function in broilers under NE challenge, which reflected in the decreased serum concentrations of D-lactate and diamine oxidase, and upregulated jejunal protein expression of occludin. CGA supplementation also improved the immune function, which reflected in the increased concentrations and gene expressions of anti-inflammatory factors, and decreased concentrations and gene expressions of proinflammatory factors. CGA supplementation further enhanced intestinal cell proliferation and differentiation, which manifested in the increased number of goblet cells and positive cells of proliferating cell nuclear antigen on d 28 and 42. Furthermore, CGA supplementation decreased the mtDNA (d 42) and mitochondrial reactive oxygen species levels (d 28 and 42), and increased the mitochondrial membrane potential (d 42) and mitochondrial complex I (d 28 and 42) or III (d 28) activity. Broilers challenged with NE had upregulated jejunal protein expressions of cGAS, phospho-TANK-binding kinase 1, and phospho-interferon regulatory factor 7 compared with the Control group, which were downregulated after CGA supplementation. In conclusion, dietary supplementation CGA could protect against intestinal inflammation and injury by reducing the leakage of mtDNA and inactivating the cGAS-STING signaling pathway in broilers under NE challenge.
Collapse
Affiliation(s)
- Huimin Lv
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng Chen
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lianbin Xu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
18
|
Goetz BM, Abeyta MA, Rodriguez-Jimenez S, Mayorga EJ, Opgenorth J, Jakes GM, Freestone AD, Moore CE, Dickson DJ, Hergenreder JE, Baumgard LH. Effects of Bacillus subtilis PB6 supplementation on production, metabolism, inflammatory biomarkers, and gastrointestinal tract permeability in transition dairy cows. J Dairy Sci 2023; 106:9793-9806. [PMID: 37641308 DOI: 10.3168/jds.2023-23562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/16/2023] [Indexed: 08/31/2023]
Abstract
Objectives were to evaluate the effects of Bacillus subtilis PB6 (BSP) on gastrointestinal tract permeability, metabolism, inflammation, and production parameters in periparturient Holstein cows. Multiparous cows (n = 48) were stratified by previous 305-d mature equivalent milk yield and parity and assigned to 1 of 2 top-dressed dietary treatments 21 d before expected calving through 63 DIM: (1) control (CON; 13 g/d calcium carbonate; n = 24) or (2) BSP (13 g/d BSP; CLOSTAT, Kemin Industries, Des Moines, IA; n = 24). Gastrointestinal tract permeability was evaluated in vivo using the oral paracellular marker chromium (Cr)-EDTA. Effects of treatment, time, and treatment × time were assessed using PROC MIXED of SAS version 9.4 (SAS Institute Inc.). Prepartum dry matter intake (DMI) was unaffected by treatment; however, BSP supplementation decreased postpartum DMI relative to CON (0.7 kg). Milk yield, energy-corrected milk (ECM), fat-corrected milk (FCM), and solids-corrected milk (SCM) increased in BSP cows compared with CON (1.6, 1.8, 1.6, and 1.5 kg, respectively). Decreased DMI and increased production collectively improved feed efficiency of milk yield, ECM, FCM, and SCM for BSP cows (6, 5, 5, and 5%, respectively). No treatment differences were observed for concentrations of milk fat, protein, total solids, somatic cell count, somatic cell score, body weight, or body condition score. Milk urea nitrogen concentrations decreased (5%), whereas milk protein and lactose yield increased (5 and 2%, respectively) with BSP supplementation. Prepartum fecal pH did not differ among treatments; conversely, postpartum fecal pH was increased with BSP supplementation (0.09 pH units). Prepartum fecal dry matter percentage, starch, acetic acid, propionic acid, butyric acid, and ethanol did not differ among treatments. Postpartum concentrations of the aforementioned fecal parameters were also unaffected by treatment, but fecal propionic acid concentration was decreased (24%) in BSP cows relative to CON. Circulating glucose, nonesterified fatty acids, l-lactate, and insulin were similar between treatments both pre- and postpartum. Prepartum β-hydroxybutyrate (BHB) did not differ between treatments, but postpartum BSP supplementation decreased (21%) circulating BHB relative to CON. Regardless of treatment, inflammatory markers (serum amyloid A and haptoglobin) peaked immediately following parturition and progressively decreased with time, but this pattern was not influenced by treatment. Postpartum lipopolysaccharide binding protein tended to be decreased on d 3 in BSP relative to CON cows (19%). Neither treatment nor time affected Cr-EDTA area under the curve. In summary, supplementing BSP had no detectable effects prepartum, but increased key postpartum production parameters. Bacillus subtilis PB6 consistently increased postpartum fecal pH and decreased fecal propionate concentrations but did not appear to have an effect on gastrointestinal tract permeability.
Collapse
Affiliation(s)
- B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - G M Jakes
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - C E Moore
- Kemin Industries Inc., Des Moines, IA 50317
| | | | | | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
19
|
Qin Q, Li Z, Zhang M, Dai Y, Li S, Wu H, Zhang Z, Chen P. Effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in heat-stressed quails. Poult Sci 2023; 102:102713. [PMID: 37540950 PMCID: PMC10407909 DOI: 10.1016/j.psj.2023.102713] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 08/06/2023] Open
Abstract
The purpose of this study was to investigate the effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota of heat-stressed quails. A total of 120 (30-day-old) male quails were randomly divided into 3 groups. Each group consisted of 4 replicates with 10 birds per replicate. The ambient temperature of the control group (group W) was 24°C ± 2°C. The heat stress group (group WH) and the heat stress + melittin group (group WHA2) were subjected to heat stress for 4 h from 12:00 to 16:00 every day, and the temperature was 36°C ± 2°C for 10 d. The results showed that compared with the group W, heat stress significantly decreased growth performance, serum and liver antioxidative function, immune function, intestinal villus height (VH) and villus height-to-crypt depth ratio (VH/CD), and cecal microbiota Chao and ACE index (P < 0.05). The crypt depth (CD) in the small intestine, and HSP70 and HSP90 mRNA levels in the heart, liver, spleen, and kidney were significantly increased (P < 0.05). Dietary melittin significantly increased growth performance, serum and liver antioxidative function, immune function, intestinal VH and VH/CD, and cecal microbiota Shannon index in heat-stressed quails (P < 0.05). Melittin significantly decreased small intestinal CD, and HSP70 and HSP90 mRNA levels in the viscera (P < 0.05). Furthermore, dietary melittin could have balanced the disorder of cecal microbiota caused by heat stress and increased the abundance and diversity of beneficial microbiota (e.g., Firmicutes were significantly increased). PICRUSt2 functional prediction revealed that most of the KEGG pathways with differential abundance caused by high temperature were related to metabolism, and melittin could have restored them close to normal levels. Spearman correlation analysis showed that the beneficial intestinal bacteria Anaerotruncus, Bacteroidales_S24-7_group_norank, Lachnospiraceae_unclassified, Shuttleworthia, and Ruminococcaceae_UCG-014 increased by melittin were positively correlated with average daily feed intake, the average daily gain, serum and liver superoxide dismutase, IgG, IgA, bursa of Fabricius index, and ileum VH and VH/CD. In sum, our results demonstrate for the first time that dietary melittin could improve the adverse effects of heat stress on antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in quails, consequently improving their production performance under heat stress.
Collapse
Affiliation(s)
- Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Min Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Yaqi Dai
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Shuohan Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Zifu Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Peirong Chen
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China.
| |
Collapse
|
20
|
Ningsih N, Respati AN, Astuti D, Triswanto T, Purnamayanti L, Yano AA, Putra RP, Jayanegara A, Ratriyanto A, Irawan A. Efficacy of Bacillus subtilis to replace in-feed antibiotics of broiler chickens under necrotic enteritis-challenged experiments: a systematic review and meta-analysis. Poult Sci 2023; 102:102923. [PMID: 37494807 PMCID: PMC10393822 DOI: 10.1016/j.psj.2023.102923] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023] Open
Abstract
Necrotic enteritis (NE) and coccidiosis are among the most prevalent infectious diseases in broiler chickens, contributing to large profitability losses. Bacillus subtilis is a promising direct-fed probiotic to counter various pathogens infection in broiler chickens. Here, we performed a meta-analysis to investigate the effects of B. subtilis on broiler chickens performance. A total of 28 studies were selected according to a PRISMA checklist. Random-effect model and mixed-effect model of meta-analysis were fitted to estimate the overall effects of B. subtilis (BS) treatment compared to either the control group (CON) or NE-infected group (NEinf) as a baseline. Hedges' g effect size and its variance were used as estimators of standardized mean difference (SMD) calculation where the results were presented at a 95% confidence interval (95% CI) of the SMD. Overall, NEinf broiler chickens depressed (P < 0.01) body weight (BW), average daily gain (ADG), and feed intake, and elevated (P < 0.01) feed conversion ratio (FCR). Treatment with BS improved ADG and final BW of NEinf with no difference (P = 0.15) between BS and antibiotics (AB), indicating that they had comparable efficacy to treat NE in broiler chickens. BS supplemented to uninfected CON (BSS) improved (P < 0.01) final BW, ADG, and FCR. Compared to CON, BS, and AB failed to recover the FCR but these treatments decreased (P < 0.01) FCR when compared to the NEinf group with similar efficacy (P = 0.97). As expected, NEinf birds had a higher mortality rate (P < 0.01) and higher lesion score (P < 0.01) compared to CON, and treatment using AB and BS successfully decreased (P < 0.01) the mortality rate and lesion score. Compared to BS, AB was more effective to lower (P = 0.01) mortality rate, but comparable (P = 0.65) to minimize lesion score. To conclude, B. subtilis could be an effective natural additive to replace in-feed antibiotics in broiler chickens challenged with C. perfringens. However, the efficacy to reduce mortality rate was better with antibiotics treatment.
Collapse
Affiliation(s)
- Niati Ningsih
- Department of Animal Science, Politeknik Negeri Jember, Jember 68101, Indonesia
| | - Adib Norma Respati
- Department of Animal Science, Politeknik Negeri Jember, Jember 68101, Indonesia
| | - Dian Astuti
- Agrotechnology Innovation Center, Universitas Gadjah Mada, Sleman 55573, Indonesia
| | - T Triswanto
- Department of Feed Technology, PT. Charoen Pokphand Indonesia, Jakarta Utara 14350, Indonesia
| | - Lailatul Purnamayanti
- Animal Husbandry Study Program, Politeknik Selaparang Lombok, West Nusa Tenggara 83653, Indonesia
| | | | - Reza Pratama Putra
- Animal Health Vocational Program, Jambi University, Muaro Jambi 36361, Indonesia
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | | | - Agung Irawan
- Universitas Sebelas Maret, Surakarta 57126, Indonesia; Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
21
|
Racines MP, Solis MN, Šefcová MA, Herich R, Larrea-Álvarez M, Revajová V. An Overview of the Use and Applications of Limosilactobacillus fermentum in Broiler Chickens. Microorganisms 2023; 11:1944. [PMID: 37630504 PMCID: PMC10459855 DOI: 10.3390/microorganisms11081944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The implementation of government regulations on antibiotic use, along with the public's concern for drug resistance, has strengthened interest in developing alternatives not only aimed at preserving animal production but also at reducing the effects of pathogenic infections. Probiotics, in particular, are considered microorganisms that induce health benefits in the host after consumption of adequate amounts; they have been established as a potential strategy for improving growth, especially by stimulating intestinal homeostasis. Probiotics are commonly associated with lactic acid bacteria, and Limosilactobacillus fermentum is a well-studied species recognized for its favorable characteristics, including adhesion to epithelial cells, production of antimicrobial compounds, and activation of receptors that prompt the transcription of immune-associated genes. Recently, this species has been used in animal production. Different studies have shown that the application of L. fermentum strains not only improves the intestinal ecosystem but also reduces the effects caused by potentially pathogenic microorganisms. These studies have also revealed key insights into the mechanisms behind the actions exerted by this probiotic. In this manuscript, we aim to provide a concise overview of the effects of L. fermentum administration on broiler chicken health and performance.
Collapse
Affiliation(s)
- Maria Paula Racines
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Maria Nicole Solis
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Miroslava Anna Šefcová
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Róbert Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 040 01 Košice, Slovakia;
| | - Marco Larrea-Álvarez
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Viera Revajová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 040 01 Košice, Slovakia;
| |
Collapse
|
22
|
Hashim M, Gonzalez-Sanchez D, Wealleans A, Abdelkader M, El-Safty SAR, Abdelhady ARY. Effects of Different Doses of Multienzyme Supplementation on Growth Performance, Duodenal pH and Morphology, and Carcass Traits in Broilers Fed Diets with an Increasing Reduction in Energy. Animals (Basel) 2023; 13:2378. [PMID: 37508155 PMCID: PMC10376475 DOI: 10.3390/ani13142378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
This study evaluated the effects of supplementing different doses of a multienzyme (KZP) consisting of carbohydrases and a protease on growth performance, duodenal pH and morphology, and carcass traits in broilers fed diets with increasing reductions in energy. One thousand two hundred one-day-old broiler chicks were allocated to five dietary treatments with eight replicates of 30 birds each: a positive control diet formulated to meet Arbor Acres' nutritional requirements (PC); a negative control diet reformulated to 80 kcal/kg less than the apparent metabolizable energy (AME) of the PC (NC1); a negative control diet reformulated to 120 kcal/kg less than the AME of the PC (NC2); an NC1 diet supplemented with 300 g/t of KZP (NC1 + KZP300); and an NC2 supplemented with 500 g/t of KZP (NC2 + KZP500). Growth performance was measured throughout the study. At 35 days, 10 birds per treatment were randomly selected and euthanized for a carcass trait evaluation, and samples of the duodenum were collected for morphological examination and pH level determination. The final average body weight and feed conversion ratio were better (p < 0.05) for the broilers in the NC1 + KZP300 group compared to those in NC1, NC2 and NC2 + KZP500 groups and were similar to those of the PC birds (p > 0.05). Birds from the NC1 + KZP500 group showed a better (p < 0.05) final body weight and feed efficiency compared to the NC1 and NC2 groups. The villus height was greater (p < 0.05) for the PC and NC1 + KZP300 groups compared to the rest of the treatments. The crypt depth was longer (p < 0.05) for the NC1 and NC2 groups compared to the NC1 + KZP300 group. The supplementation of KZP to both the NC1 and NC2 diets reduced (p < 0.05) the abdominal fat %. This study demonstrates that supplementing energy-reduced diets with KZP improved performance in broiler chickens.
Collapse
Affiliation(s)
- Mosaad Hashim
- Applied Feed Research House (AFRH), Orabi Community, Obour City 11828, Egypt
| | | | | | | | - Salah Abdel Rahman El-Safty
- Applied Feed Research House (AFRH), Orabi Community, Obour City 11828, Egypt
- Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, Cairo 11241, Egypt
| | - Abdel Rahman Y Abdelhady
- Applied Feed Research House (AFRH), Orabi Community, Obour City 11828, Egypt
- Department of Poultry Production, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, Cairo 11241, Egypt
| |
Collapse
|
23
|
Buiatte V, Schultheis M, Lorenzoni AG. Deconstruction of a multi-strain Bacillus-based probiotic used for poultry: an in vitro assessment of its individual components against C. perfringens. BMC Res Notes 2023; 16:117. [PMID: 37349830 DOI: 10.1186/s13104-023-06384-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVE Probiotics have been used in poultry production to improve the performance and health of chickens raised without antibiotics. The combination of different probiotic strains has been used with the hope of conferring multiple benefits to the host. However, the inclusion of several strains does not necessarily boost benefits. There is a lack of studies that compare the efficacy of multi-strain probiotics to their individual components. In this study, the effects of a Bacillus-based probiotic product mix containing B. coagulans, B. licheniformis, B. pumilus, and B. subtilis against Clostridium perfringens were tested in vitro using a co-culture method. The individual strains and different combinations of the strains used in the product were also tested against C. perfringens. RESULTS The probiotic product mix tested in this study did not show effects against C. perfringens (P = 0.499). When tested individually, the strain of B. subtilis was the most efficient strain to decrease C. perfringens concentrations (P ≤ 0.01), and the addition of other Bacillus species strains significantly decreased its efficacy against C. perfringens. We concluded that the probiotic mix of Bacillus strains used in this study (B. coagulans, B. licheniformis, B. pumilus and B subtilis) was not effective in decreasing C. perfringens concentrations in vitro. However, when deconstructing the probiotic, the strain of B. subtilis alone or combined with the strain of B. licheniformis were effective against C. perfringens. This suggests that the anticlostridial properties of the particular strains of Bacillus used in this study were negatively affected when combined with other Bacillus spp. strains.
Collapse
Affiliation(s)
- Vinicius Buiatte
- Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Maria Schultheis
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Alberto Gino Lorenzoni
- Department of Animal Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
24
|
Liu L, Li L, Li C, Wang H, Zhang X, Ren Q, Zhang H, Jin N, Li C, Zhao C. Effects of Lactiplantibacillus plantarum LPJZ-658 Supplementation on the Production, Meat Quality, Intestinal Morphology, and Cecal Microbiota of Broilers Chickens. Microorganisms 2023; 11:1549. [PMID: 37375050 DOI: 10.3390/microorganisms11061549] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the effects of L. plantarum LPJZ-658 on the production, meat quality, intestinal morphology, and cecal microbiota of broilers. White-feathered broilers (1 day old, n = 600) were randomly assigned to two groups and raised for six weeks. The individuals in the LPJZ-658 group were supplemented with 2.6 × 109 cfu/g LPJZ-658. The growth performance, meat quality, intestinal epithelium morphology, and cecal microbiota were observed. The results showed that the average daily gain, average daily feed intake, and feed conversion ratio of broilers in the LPJZ-658 group were significantly improved. In addition, the LPJZ-658 groups had a higher thigh muscle (TM) yield, TM color, TMpH24h, breast muscle (BM) pH24h, and BM color24h, while the BM cooking loss was significantly lower than the CON group. Moreover, supplementation with LPJZ-658 increased ileum and cecum length, duodenum and ileum villus height, and ileum villus height/crypt depth ratio. Furthermore, 16S rRNA sequencing revealed the dietary LPJZ-658 supplementation modulated the diversity and composition of cecal microflora. At the phylum level, the relative abundances of Proteobacteria, Actinobacteria, Verrucomicrobiota, and Acidobacteriota were significantly higher. In addition, LPJZ-658 substantially decreased the genus relative abundances of Streptococcus, Veillonella, Neisseria, and Haemophilus compared with the CON group and facilitated the growth and colonization of beneficial cecal bacteria, such as OBacteroides, Phascolarctobacterium, Bacillus, and Akkermansia. It was concluded that LPJZ-658 supplementation significantly increased growth production, improved meat quality and intestinal status, and modulated the intestinal microbiota in the broilers.
Collapse
Affiliation(s)
- Liming Liu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Chunhua Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Haiyang Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Xiufeng Zhang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Qingdan Ren
- Jilin Provincial Animal Husbandry General Station, Changchun 130062, China
| | - Heping Zhang
- Department of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010010, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Cuiqing Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132101, China
| |
Collapse
|
25
|
Omrani AH, Mousavi SN, Foroudi F, Jafarabadi GA, Hosseini SA, Alahyaribeik S. The effects of probiotic and threonine application on the carcass yield, internal organ development, intestinal morphology and cecal microbiota of broilers challenged with Clostridium perfringens. Res Vet Sci 2023; 160:1-10. [PMID: 37201219 DOI: 10.1016/j.rvsc.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
The aim of this study was to explore the effects of probiotics (Ecobiol®) and threonine supplements on broiler internal organs and intestinal health under Clostridium perfringens challenge. A total of 1600 male Ross 308 broiler chicks were randomly assigned to eight treatments with eight replicates each of 25 birds. Dietary treatments consisted of two levels of supplemented threonine (without and with threonine supplementation), two levels of probiotics (Ecobiol®) supplement (0 and 0. 1% of diet), and two levels of challenge (without and with 1 ml of the C. perfringens inoculum (∼108 cfu/ml) on d 14, 15, and 16 of the experiment), which fed to the birds during a 42 d feeding trial. The results showed that adding threonine and probiotic supplements to the diets of C. perfringens-infected birds reduced the relative gizzard weight by 22.9% compared to those fed un-supplemented diet (P ≤ 0.024). As compared to the non-challenged group, the C. perfringens challenge significantly reduced the carcass yield of broilers by 1.18% (P < 0.0004). The groups receiving threonine and probiotic supplementation had higher carcass yield, and the inclusion of probiotics in the diet decreased abdominal fat by 16.18% compared with the control treatment (P ≤ 0.001). Adding threonine and probiotic supplements to the diets of broilers challenged with C. perfringens increased the jejunum villus height in comparison with C. perfringens-infected group fed an unsupplemented diet on day 18 (P ≤ 0.019). The number of cecal E. coli increased in birds under C. perfringens challenge in comparison with the negative group. Based on the findings, dietary inclusion of threonine and probiotic supplement could beneficially affect intestine health and carcass weight during the C. perfringens challenge.
Collapse
Affiliation(s)
- Amir Hassan Omrani
- Department of Animal Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Seyed Naser Mousavi
- Department of Animal Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
| | - Farhad Foroudi
- Department of Animal Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | | | - Seyed Abdollah Hosseini
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Samira Alahyaribeik
- Industrial and Environmental Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
26
|
Saleem W, Ren X, Van Den Broeck W, Nauwynck H. Changes in intestinal morphology, number of mucus-producing cells and expression of coronavirus receptors APN, DPP4, ACE2 and TMPRSS2 in pigs with aging. Vet Res 2023; 54:34. [PMID: 37055856 PMCID: PMC10100624 DOI: 10.1186/s13567-023-01169-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/01/2023] [Indexed: 04/15/2023] Open
Abstract
Porcine enteric viral infections cause high morbidity and mortality in young piglets (<3 weeks). Later, these rates decrease with age. This age-dependent infectivity remains largely unexplored. This study investigated the changes in intestinal morphology, number of mucus-producing cells and expression level of coronavirus receptors in three age groups of pigs. Villus height and crypt depth increased with age from 3 days to 3 months in duodenum and ileum but not in mid-jejunum, where the villus height decreased from 580 µm at 3 days to 430 µm at 3 months. Enterocyte length-to-width ratio increased from 3 days to 3 months in all intestinal regions. The number of mucus-producing cells increased with age in the intestinal villi and crypts. The Brunner's glands of the duodenum contained the highest concentration of mucus-producing cells. The expression of coronavirus receptor APN was highest in the small intestinal villi at all ages. DPP4 expression slightly decreased over time in jejunum and ileum; it was highest in the ileal villi of 3-day-old piglets (70.2% of cells). ACE2 and TMPRSS2 positive cells increased with age in jejunal and ileal crypts and were particularly dominant in the ileal crypts (> 45% of cells). Except for the expression of DPP4 in the jejunum and ileum of young pigs, the expression pattern of the selected coronavirus receptors was very different and not correlated with the age-dependent susceptibility to viral infections. In contrast, the number of mucus-producing cells increased over time and may play an essential role in protecting enteric mucosae against intestinal viruses.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Xiaolei Ren
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
27
|
Obianwuna UE, Agbai Kalu N, Wang J, Zhang H, Qi G, Qiu K, Wu S. Recent Trends on Mitigative Effect of Probiotics on Oxidative-Stress-Induced Gut Dysfunction in Broilers under Necrotic Enteritis Challenge: A Review. Antioxidants (Basel) 2023; 12:antiox12040911. [PMID: 37107286 PMCID: PMC10136232 DOI: 10.3390/antiox12040911] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
Gut health includes normal intestinal physiology, complete intestinal epithelial barrier, efficient immune response, sustained inflammatory balance, healthy microbiota, high nutrient absorption efficiency, nutrient metabolism, and energy balance. One of the diseases that causes severe economic losses to farmers is necrotic enteritis, which occurs primarily in the gut and is associated with high mortality rate. Necrotic enteritis (NE) primarily damages the intestinal mucosa, thereby inducing intestinal inflammation and high immune response which diverts nutrients and energy needed for growth to response mediated effects. In the era of antibiotic ban, dietary interventions like microbial therapy (probiotics) to reduce inflammation, paracellular permeability, and promote gut homeostasis may be the best way to reduce broiler production losses. The current review highlights the severity effects of NE; intestinal inflammation, gut lesions, alteration of gut microbiota balance, cell apoptosis, reduced growth performance, and death. These negative effects are consequences of; disrupted intestinal barrier function and villi development, altered expression of tight junction proteins and protein structure, increased translocation of endotoxins and excessive stimulation of proinflammatory cytokines. We further explored the mechanisms by which probiotics mitigate NE challenge and restore the gut integrity of birds under disease stress; synthesis of metabolites and bacteriocins, competitive exclusion of pathogens, upregulation of tight junction proteins and adhesion molecules, increased secretion of intestinal secretory immunoglobulins and enzymes, reduction in pro-inflammatory cytokines and immune response and the increased production of anti-inflammatory cytokines and immune boost via the modulation of the TLR/NF-ĸ pathway. Furthermore, increased beneficial microbes in the gut microbiome improve nutrient utilization, host immunity, and energy metabolism. Probiotics along with biosecurity measures could mitigate the adverse effects of NE in broiler production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nenna Agbai Kalu
- Department of Animal Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
28
|
Wang Y, Xu Y, Cao G, Zhou X, Wang Q, Fu A, Zhan X. Bacillus subtilis DSM29784 attenuates Clostridium perfringens-induced intestinal damage of broilers by modulating intestinal microbiota and the metabolome. Front Microbiol 2023; 14:1138903. [PMID: 37007491 PMCID: PMC10060821 DOI: 10.3389/fmicb.2023.1138903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Necrotic enteritis (NE), especially subclinical NE (SNE), without clinical symptoms, in chicks has become one of the most threatening problems to the poultry industry. Therefore, increasing attention has been focused on the research and application of effective probiotic strains as an alternative to antibiotics to prevent SNE in broilers. In the present study, we evaluated the effects of Bacillus subtilis DSM29784 (BS) on the prevention of subclinical necrotic enteritis (SNE) in broilers. A total of 480 1-day-old broiler chickens were randomly assigned to four dietary treatments, each with six replicates pens of twenty birds for 63 d. The negative (Ctr group) and positive (SNE group) groups were only fed a basal diet, while the two treatment groups received basal diets supplemented with BS (1 × 109 colony-forming units BS/kg) (BS group) and 10mg/kg enramycin (ER group), respectively. On days 15, birds except those in the Ctr group were challenged with 20-fold dose coccidiosis vaccine, and then with 1 ml of C. perfringens (2 × 108) at days 18 to 21 for SNE induction. BS, similar to ER, effectively attenuated CP-induced poor growth performance. Moreover, BS pretreatment increased villi height, claudin-1 expression, maltase activity, and immunoglobulin abundance, while decreasing lesional scores, as well as mucosal IFN-γ and TNF-α concentrations. In addition, BS pretreatment increased the relative abundance of beneficial bacteria and decreased that of pathogenic species; many lipid metabolites were enriched in the cecum of treated chickens. These results suggest that BS potentially provides active ingredients that may serve as an antibiotic substitute, effectively preventing SNE-induced growth decline by enhancing intestinal health in broilers.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yibin Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | | | - Xihong Zhou
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qian Wang
- Yancheng Biological Engineering Higher Vocational Technology School, Yancheng, China
| | - Aikun Fu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Xiuan Zhan, ; Aikun Fu,
| | - Xiuan Zhan
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Xiuan Zhan, ; Aikun Fu,
| |
Collapse
|
29
|
He W, Kamely M, Wakaruk J, Goes EC, Korver DR, Barreda DR. Early-life β-glucan exposure enhances disease resilience of broiler chickens to a natural Clostridium perfringens infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104613. [PMID: 36496011 DOI: 10.1016/j.dci.2022.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/27/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Necrotic enteritis (NE) is an economically important disease in poultry. Colonization by the opportunistic pathogen C. perfringens occurs early after hatch and induces host immune tolerance, which allows it to persist as part of the bird's commensal microflora. β-glucan, a yeast cell wall component, is well characterized for its immunomodulatory capacity, and is a strong driver of innate immune memory. In this study, we assessed the effectiveness of β-glucan to reduce severity of NE, when co-administered with heat-killed C. perfringens via intra-abdominal route at day 1 of age. We found that this early-life exposure in the presence of β-glucan did not reduce intestinal C. perfringens loads or lesion severity during a subsequent NE outbreak. However, it improved ileal morphology, prevented liver and spleen weight decline, and preserved feed efficiency in challenged birds. Molecular analyses revealed metabolic changes consistent with innate immune memory. Together, our results suggest that β-glucan can reduce the negative impacts of NE by influencing the context in which C. perfringens is first encountered.
Collapse
Affiliation(s)
- Wanwei He
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammad Kamely
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy Wakaruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Emanuele C Goes
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas R Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
30
|
Elbaz AM, El-Sheikh SE, Abdel-Maksoud A. Growth performance, nutrient digestibility, antioxidant state, ileal histomorphometry, and cecal ecology of broilers fed on fermented canola meal with and without exogenous enzymes. Trop Anim Health Prod 2023; 55:46. [PMID: 36701002 PMCID: PMC9879825 DOI: 10.1007/s11250-023-03476-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
This study was conducted to evaluate the effects of supplementation of exogenous enzymes in broiler diets that includes fermented canola meal on performance, nutrient digestibility, biochemical indication, antioxidative capacity, digestive enzyme activity, immune responses, and gut health. Five hundred 1-day-old Ross 308 broiler chicks were randomly allocated into five experimental groups (5 replicate/group), the first group: a control (CON) contained a basal diet, and the second to the fifth groups were fed diets as follows: containing 20% canola meal (CM), contains 20% fermented canola meal (FCM), contains 20% canola meal and exogenous enzymes at 0.02%/kg feed (ECM), and contains 20% fermented canola meal and exogenous enzymes at 0.02%/kg feed (EFC), respectively. At the finisher phase, the best body weight gain, feed conversion ratio, and nutrient utilization were associated with chickens fed EFC compared to other groups (P < 0.05). Total protein, albumin, alanine aminotransferase, and superoxide dismutase levels increased (P < 0.05), while cholesterol and malondialdehyde levels decreased in chickens fed on EFC. Likewise, there was a significant increase in the relative weight of the bursa of Fabricius and antibody titer against Newcastle disease, whereas the weight of abdominal fat decreased in the EFC group compared to other groups. Furthermore, there was a significant improvement in the activity of lipase and amylase enzymes (P < 0.05) in the EFC group. Fermented canola meal addition improved gut health (decreased Escherichia coli, increased Lactobacillus, and the highest values of villus height). Overall, these results confirmed that supplementing a fermented canola meal diet with exogenous enzymes improved growth performance through enhancing nutrient digestibility, immunity, antioxidant capacity, and gut health. Thus, adding enzymes to a diet containing fermented canola meal can be recommended as an alternative protein source that could be safely used to replace up to 20% soybean meal in broiler diets.
Collapse
|
31
|
He X, Ye G, Xu S, Chen X, He X, Gong Z. Effects of three different probiotics of Tibetan sheep origin and their complex probiotics on intestinal damage, immunity, and immune signaling pathways of mice infected with Clostridium perfringens type C. Front Microbiol 2023; 14:1177232. [PMID: 37138630 PMCID: PMC10149710 DOI: 10.3389/fmicb.2023.1177232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Tibetan sheep have unique intestinal microorganisms in their intestines that are adapted to the highland alpine and anoxic environment. To further clarify the probiotic properties of Tibetan sheep-derived probiotics, we selected three Tibetan sheep-derived probiotic isolates (Enterococcus faecalis EF1-mh, Bacillus subtilis BS1-ql, and Lactobacillus sakei LS-ql) to investigate the protective mechanisms of monocultures and their complex strains against Clostridium perfringens type C infection in mice. We established a model of C. perfringens type C infection and used histology and molecular biology to analyze the effects and mechanisms of different probiotic treatments on mice after C. perfringens type C infection. After supplementation with either probiotics or complex probiotics, mice were improved in terms of weight reduction and reduced the levels of cytokines in serum and increased the levels of intestinal sIgA, and supplementation with complex probiotics was effective. In addition, both probiotic and complex probiotic supplementation effectively improved the damage of intestinal mucosa and spleen tissue. The relative expressions of Muc 2, Claudin-1, and Occludin genes were increased in the ileum. The three probiotics and the compound probiotics treatment significantly reduced the relative mRNA expression of toll-like/MyD88/NF-κB/MAPK. The effect of probiotic treatment was similar to the results of engramycin treatment, but the effect of engramycin treatment on intestinal sIgA was not significant. Our results clarify the immunomodulatory effects of the three probiotic isolates and the complex probiotics on C. perfringens infection, and the repair of the intestinal mucosal barrier.
Collapse
|
32
|
Bahaddad SA, Almalki MHK, Alghamdi OA, Sohrab SS, Yasir M, Azhar EI, Chouayekh H. Bacillus Species as Direct-Fed Microbial Antibiotic Alternatives for Monogastric Production. Probiotics Antimicrob Proteins 2023; 15:1-16. [PMID: 35092567 PMCID: PMC8799964 DOI: 10.1007/s12602-022-09909-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2022] [Indexed: 01/18/2023]
Abstract
Antibiotic growth promoters have been utilized for long time at subtherapeutic levels as feed supplements in monogastric animal rations. Because of their side-effects such as antibiotic resistance, reduction of beneficial bacteria in the gut, and dysbiosis, it is necessary to look for non-therapeutic alternatives. Probiotics play an important role as the key substitutes to antibacterial agents due to their many beneficial effects on the monogastric animal host. For instance, enhancement of the gut microbiota balance can contribute to improvement of feed utilization efficiency, nutrients absorption, growth rate, and economic profitability of livestock. Probiotics are defined as "live microorganisms that, when administered in adequate amounts, confer a health benefit on the host." They are available in diverse forms for use as feed supplements. Their utilization as feed additives assists in good digestion of feed ingredients and hence, making the nutrients available for promoting growth. Immunity can also be enhanced by supplementing probiotics to monogastrics diets. Moreover, probiotics can help in improving major meat quality traits and countering a variety of monogastric animals infectious diseases. A proper selection of the probiotic strains is required in order to confer optimal beneficial effects. The present review focuses on the general functional, safety, and technological screening criteria for selection of ideal Bacillus probiotics as feed supplements as well as their mechanism of action and beneficial effects on monogastric animals for improving production performance and health status.
Collapse
Affiliation(s)
- Shifa A Bahaddad
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Meshal H K Almalki
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Othman A Alghamdi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Sayed S Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Hichem Chouayekh
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
33
|
Li P, Zheng L, Qi Y, Liu Z, Du E, Wei J, Zhang Z, Guo S, Ding B. Dietary Lactobacillus fermentum and Lactobacillus paracasei improve the intestinal health of broilers challenged with coccidia and Clostridium perfringens. Front Vet Sci 2022; 9:1025677. [PMID: 36590818 PMCID: PMC9797813 DOI: 10.3389/fvets.2022.1025677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Necrotic enteritis (NE) is a great threat to the intestinal health of broilers, resulting in decreased growth performance and significant economic losses. Lactobacillus fermentum (LF) and Lactobacillus paracasei (LP) exert beneficial effects on intestinal health. The aim of the present study was to investigate the effects of dietary LF and LP on the intestinal health and growth performance of broilers challenged with coccidia and Clostridium perfringens (CCP). The animal trial was carried out using 336 broilers (Ross 308) for 35 days with a completely randomized design. The broilers were divided into 4 groups based on treatment as follows: the control (CTR) group was fed the basal diet and without CCP challenge and the CCP group was fed the basal diet and with CCP challenge. The broilers in the CCP+LF and CCP+LP groups were challenged by CCP, and meanwhile, LF (1 × 109 CFU/g) and LP (1 × 109 CFU/g) were supplemented into the basal diets, respectively. The results showed that the growth performance and the intestinal morphology were negatively affected by the CCP challenge. In addition, the number of coccidia in the intestinal digesta and the relative abundance of Escherichia coli in the cecal digesta were increased. Besides, the mRNA level of IgA in the jejunum was downregulated, and the transcript level of IL-8 was upregulated by the CCP challenge. Dietary LF and LP failed to improve the growth performance of broilers with the CCP challenge. However, they were beneficial for intestinal barrier function. In addition, dietary LF was able to alleviate the downregulation of TGF-β mRNA level in the spleen with CCP challenge and decreased the lesion scores compared with the CCP group. Furthermore, dietary LP alleviated the upregulation of the IL-8 mRNA level in the jejunum with CCP challenge and reduced the number of coccidia in the ileal digesta. In conclusion, dietary LF and LP failed to mitigate the negative effects of CCP infection on growth performance; however, they were able to improve the intestinal health of broilers challenged with CCP by strengthening the intestinal barrier and alleviating inflammation.
Collapse
Affiliation(s)
- Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Liyun Zheng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Ya Qi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Zhipeng Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Encun Du
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jintao Wei
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhengfan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Shuangshuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China,*Correspondence: Shuangshuang Guo
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China,Binying Ding
| |
Collapse
|
34
|
Li Z, Liu R, Wang X, Wu H, Yi X, Huang L, Qin Q. Effects of melittin on laying performance and intestinal barrier function of quails. Poult Sci 2022; 102:102355. [PMID: 36502563 PMCID: PMC9763859 DOI: 10.1016/j.psj.2022.102355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
To study the effects of melittin on egg-laying performance and intestinal barrier of quails, 240 quails (aged 70 d) were randomly divided into 4 groups with 6 replicates (10 quails per replicate). They were fed with basal diet (group B), basal diet + 0.08 g/kg melittin (group BA1), basal diet + 0.12 g/kg melittin (group BA2) and basal diet + 0.16 g/kg melittin (group BA3). The experiment lasted for 21 days. The eggs were collected every day. At the end of the experiment, duodenal, jejunal, and ileal tissues were collected, and the cecal contents were sampled. Intestinal antioxidant index, barrier function, and intestinal flora were analyzed. The results showed that the addition of melittin significantly increased the laying rate and average egg weight. Addition of melittin significantly increased the antioxidant function, mechanical barrier, immune barrier, and the villus height to crypt depth ratio of small intestine. Addition of melittin had no significant effect on the α and β diversity of cecal flora, but significantly increased the abundance of Bacteroidales at family level and genus level. Bioinformatics analysis of cecal content showed significant increase in COG functional category of cytoskeleton, and significant decrease in RNA processing and modification in group BA2. KEGG functional analysis showed significant decrease in steroid biosynthesis, caffeine metabolism, and cytochrome P450 pathways in group BA2. In conclusion, addition of 0.12 g/kg melittin to feed improved the laying performance and the intestinal antioxidant capacity and barrier function of quails but had no significant effect on the composition and structure of cecal microbial community. This study provides experimental data and theoretical basis for the application of melittin as a new quail feed additive.
Collapse
|
35
|
Yang S, Yang N, Huang X, Li Y, Liu G, Jansen CA, Savelkoul HFJ, Liu G. Pigs' intestinal barrier function is more refined with aging. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104512. [PMID: 35995250 DOI: 10.1016/j.dci.2022.104512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The high mortality upon enteric virus infection in piglets causes huge economic losses. To control these infections, potential causes for this high susceptibility for enteric virus infections in younger piglets were analyzed by comparing the intestinal barrier between 1-week, 2-week and 4-week-old piglets. In this study, histological staining was used to analyze morphological differences in intestinal villi, real-time qPCR was performed to assess mRNA expression levels of genes that were related to viral infection and differentiation of immune cells, and flow cytometry was utilized to measure the frequencies of T cells. According to the results obtained, 1-week-old piglets have intestinal villi with shallower crypts, less well developed epithelial cells and a more immature immune system compared to older pigs. Moreover, high amounts of enteric virus invasion-assisting proteins but low amounts of resistant proteins in 1-week piglets could also be a reason for the high susceptibility of 1-week-old piglets.
Collapse
Affiliation(s)
- Shanshan Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Ning Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China; Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Belgium
| | - Xin Huang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Yang Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China; Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, Belgium
| | - Guo Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Christine A Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| |
Collapse
|
36
|
Word A, Broadway PR, Burdick-Sanchez N, Carroll J, Hales K, Karr K, Holland B, Ellis G, Maxwell C, Canterbury L, Leonhard JT, LaFleur D, Hergenreder J, Trojan S. The effect of supplementing CLOSTAT 500 ( Bacillus subtilis PB6) to yearling steers in a commercial feedyard on health, Salmonella spp. prevalence, feedlot growth performance and carcass characteristics. Transl Anim Sci 2022; 6:txac131. [PMID: 36381948 PMCID: PMC9661306 DOI: 10.1093/tas/txac131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/14/2022] [Indexed: 08/31/2023] Open
Abstract
British and British × Continental crossbred beef steers, n = 2,100; 313 ± 38 kg of initial body weight (BW) were used to evaluate the effects of Bacillus subtilis PB6 supplementation to yearling steers in a commercial feedyard on health, prevalence of Salmonella spp., growth performance, and carcass characteristics. Steers were blocked by arrival date and assigned randomly to pens within the block; pens were randomly assigned to 1 of 2 dietary treatments within block. Treatments, replicated in 15 pens/treatment with 70 steers/pen, included: 1) control (CON), diets containing no supplemental direct-fed microbials; 2) CLOSTAT (CLO), diets supplemented with 0.5 g/steer/d Bacillus subtilis PB6 (CLOSTAT 500, Kemin Industries, Des Moines, IA) to provide 6.6 × 109 CFU/g of the active ingredient. Supplementing CLO decreased the overall incidence of morbidity (P = 0.03), 10.38% (CLO) vs. 13.43% (CON), decreased the percentage of steers treated once for bovine respiratory disease (BRD; P < 0.01), 9.14% (CLO) vs. 12.76% (CON), and decreased the incidence of BRD retreatment (P = 0.03) compared with CON. Mortality did not differ among treatments (P = 0.23); however, overall deads and removals tended to be less for CLO than CON (53 heads vs. 73 heads respectively, P = 0.06). Prevalence of fecal Salmonella did not differ among treatments, (P ≥ 0.35); overall fecal Salmonella counts tended to be less for CLO (1.59 log (10) CFU/g) than CON (2.04 log (10) CFU/g; P = 0.07). Salmonella concentration in subiliac lymph nodes (n =150/treatment) was not different (P = 0.62) between CON (0.22 log (10) CFU/g) or CLO (0.19 log (10) CFU/g); however, there was a 46% reduction in the overall mean prevalence of lymph node Salmonella (P = 0.46; 15.48% vs. 28.66%) for CLO and CON, respectively. With deads and removals included, final BW was heavier for CLO steers than CON, (654 kg vs. 641 kg, respectively, P = 0.05), and average daily gain (ADG; P = 0.08) and gain efficiency (G:F; P = 0.06) tended to be greater for CLO than CON. With deads and removals excluded, final BW, ADG, and G:F did not differ among treatments (P ≥ 0.30). Carcass traits were not different between treatments (P ≥ 0.15). Supplementing CLO throughout the feeding period in a commercial feedyard improved the health outcomes of yearling steers by decreasing BRD and overall treatment rates, reducing the overall abundance of Salmonella, and resulting in fewer steers removed from the study compared with CON.
Collapse
Affiliation(s)
| | | | | | - Jeff Carroll
- Livestock Issues Research Unit, Lubbock, TX 79403, USA
| | | | | | | | - Guy Ellis
- Cactus Research, Amarillo, TX 79101, USA
| | | | | | | | - Doug LaFleur
- Kemin Industries, Inc., Des Moines, IA 50317, USA
| | | | - Sara Trojan
- Peak Beef Nutrition and Management Consulting, LLC, Casper, WY 82604, USA
| |
Collapse
|
37
|
Yaqoob MU, Wang G, Wang M. An updated review on probiotics as an alternative of antibiotics in poultry - A review. Anim Biosci 2022; 35:1109-1120. [PMID: 35073660 PMCID: PMC9262730 DOI: 10.5713/ab.21.0485] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 11/27/2022] Open
Abstract
Antibiotics used to be supplemented to animal feeds as growth promoter and as an effective strategy to reduce the burden of pathogenic bacteria present in the gastro-intestinal tract. However, in-feed antibiotics also kill bacteria that may be beneficial to the animal. Secondly, unrestricted use of antibiotics enhanced the antibiotic resistance in pathogenic bacteria. To overcome above problems, scientists are taking a great deal of measures to develop alternatives of antibiotics. There is convincing evidence that probiotics could replace in-feed antibiotics in poultry production. Because they have beneficial effects on growth performance, meat quality, bone health and eggshell quality in poultry. Better immune responses, healthier intestinal microflora and morphology which help the birds to resist against disease attack were also identified with the supplementation of probiotics. Probiotics establish cross-feeding between different bacterial strains of gut ecosystem and reduce the blood cholesterol level via bile salt hydrolase activity. The action mode of probiotics was also updated according to recently published literatures, i.e antimicrobial substances generation or toxin reduction. This comprehensive review of probiotics is aimed to highlight the beneficial effects of probiotics as a potential alternative strategy to replace the antibiotics in poultry.
Collapse
Affiliation(s)
- Muhammad Umar Yaqoob
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Hangzhou 310058, China
| | - Geng Wang
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Hangzhou 310058, China
| | - Minqi Wang
- College of Animal Science, Zhejiang University, Key Laboratory of Animal Nutrition and Feed Science (Eastern China), Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|
38
|
Abd El-Ghany WA, Abdel-Latif MA, Hosny F, Alatfeehy NM, Noreldin AE, Quesnell RR, Chapman R, Sakai L, Elbestawy AR. Comparative efficacy of postbiotic, probiotic, and antibiotic against necrotic enteritis in broiler chickens. Poult Sci 2022; 101:101988. [PMID: 35809347 PMCID: PMC9272375 DOI: 10.1016/j.psj.2022.101988] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 11/20/2022] Open
Abstract
Prevention of necrotic enteritis (NE), caused by Clostridium perfringens (C. perfringens), is one of the most important goals to improve the profitability of broiler chickens. This work aimed to compare the efficacy of 2 antibiotic alternatives including a postbiotic (dry feed additive and aqueous nonviable Lactobacillus (L.) species fermentation) and a probiotic (dry feed additive and aqueous Bacillus (B.) subtilis and B. lischeniformis mixture) with an antibiotic (amoxicillin in water) against NE. Four hundred, day-old broiler chicks were divided into 8 equal groups (Gs), n = 50 each (5 replicates; 10 each). Chickens of G1 (postbiotic dry-feed additive), G2 (postbiotic and antibiotic in drinking water), G3 (postbiotic dry and aqueous), G4 (probiotic dry-feed additive), G5 (probiotic and antibiotic in drinking water), G6 (probiotic dry and aqueous), and G7 (nontreated) were orally inoculated with a toxigenic C. perfringens type A on the d 19 to 21 of age and predisposed with 3X coccidial vaccine for induction of NE. However, chickens of G8 were kept nontreated or challenged. The severity of NE signs was markedly decreased in G3 in comparison with other challenged treatment groups, and the mortality rates were 22%, 10%, 16%, 22%, 12%, 20%, and 36% in Gs 1, 2, 3, 4, 5, 6, and 7, respectively. The best significant (P ≤ 0.05) feed conversion ratio was detected in G3 (1.51), G6 (1.54), and G2 and G8 (1.61). In addition, the European production efficiency factor was significantly (P ≤ 0.05) improved in G3 (279.33) and G2 (266.67), but it was decreased in G7 (177.33) when compared with G8 (339.33). An improvement in intestinal and hepatic pathology and liver function tests, as well as a significant (P ≤ 0.05) decrease in bacterial counts were observed in Gs 2, 5, 3, 6, 1, and 4, respectively in comparison with G7. Immunologically, the highest significant (P ≤ 0.05) hemagglutination inhibition antibody titers for Newcastle disease virus vaccine were in Gs 1 and 3 (6.4 log2). In conclusion, the combined feed and water postbiotic treatment demonstrated promising results in ameliorating the severity of NE and improving the hepatic and the immune status of broiler chickens when compared with the commonly used probiotic and antibiotic.
Collapse
Affiliation(s)
- Wafaa A Abd El-Ghany
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Mervat A Abdel-Latif
- Nutrition and Veterinary Clinical Nutrition Department, Faculty of Veterinary Medicine, Damanhour University, 22511, El-Beheira, Egypt
| | | | - Nayera M Alatfeehy
- Department of Bacteriology, Reference Laboratory for Veterinary Quality Control on Poultry Production (RLQP), Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Dokki, 12618, Giza, Egypt
| | - Ahmed E Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, 22511, El-Beheira, Egypt
| | | | - Robert Chapman
- Transagra International Inc., Storm Lake, 50588, Iowa, USA
| | - Lisa Sakai
- Transagra International Inc., Storm Lake, 50588, Iowa, USA
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, 22511, El-Beheira, Egypt.
| |
Collapse
|
39
|
Šimunović K, Sahin O, Erega A, Štefanič P, Zhang Q, Mandic Mulec I, Smole Možina S, Klančnik A. Bacillus subtilis PS-216 Spores Supplemented in Broiler Chicken Drinking Water Reduce Campylobacter jejuni Colonization and Increases Weight Gain. Front Microbiol 2022; 13:910616. [PMID: 35875550 PMCID: PMC9304915 DOI: 10.3389/fmicb.2022.910616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Campylobacter jejuni is the leading cause of bacterial gastroenteritis, or campylobacteriosis, in humans worldwide, and poultry serves as a major source of infection. To reduce the risk associated with C. jejuni transmission via poultry meat, effective interventions during poultry production are needed, and the use of probiotics is a promising approach. In this study, 15 Bacillus subtilis strains were initially screened for their anti-Campylobacter activities. B. subtilis PS-216 strain demonstrated the best anti-Campylobacter activity against 15 C. jejuni isolates when examined using in vitro co-cultures. To evaluate the suitability of B. subtilis PS-216 for probiotic use, its susceptibility to eight clinically important antimicrobials and simulated gastric conditions was investigated. B. subtilis PS-216 was sensitive to all of the tested antibiotics. Although vegetative cells were sensitive to gastric conditions, B. subtilis PS-216 spores were highly resistant. We further evaluated the use of a B. subtilis PS-216 spore preparation (2.5 × 106 CFU/mL water) to prevent and/or reduce C. jejuni colonization in broiler chickens in vivo. Compared to the untreated group, significantly lower Campylobacter counts were detected in caeca of broilers continuously treated with B. subtilis PS-216 spores in their drinking water. Furthermore, broilers continuously treated with B. subtilis PS-216 spores showed improved weight gain, compared to the control group. Together, these results demonstrate the potential of B. subtilis PS-216 for use in poultry to reduce C. jejuni colonization and improve weight gain.
Collapse
Affiliation(s)
- Katarina Šimunović
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Orhan Sahin
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Andi Erega
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Polonca Štefanič
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Qijing Zhang
- Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ines Mandic Mulec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Anja Klančnik,
| |
Collapse
|
40
|
Probiotics as Alternatives to Antibiotics for the Prevention and Control of Necrotic Enteritis in Chickens. Pathogens 2022; 11:pathogens11060692. [PMID: 35745546 PMCID: PMC9229159 DOI: 10.3390/pathogens11060692] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Necrotic enteritis (NE) in poultry is an economically important disease caused by Clostridium perfringens type A bacteria. A global trend on restricting the use of antibiotics as feed supplements in food animal production has caused a spike in the NE incidences in chickens, particularly in broiler populations. Amongst several non-antibiotic strategies for NE control tried so far, probiotics seem to offer promising avenues. The current review focuses on studies that have evaluated probiotic effects on C. perfringens growth and NE development. Several probiotic species, including Lactobacillus, Enterococcus, Bacillus, and Bacteroides bacteria as well as some yeast species have been tested in chickens against C. perfringens and NE development. These findings have shown to improve bird performance, reduce C. perfringens colonization and NE-associated pathology. The underlying probiotic mechanisms of NE control suggest that probiotics can help maintain a healthy gut microbial balance by modifying its composition, improve mucosal integrity by upregulating expression of tight-junction proteins, and modulate immune responses by downregulating expression of inflammatory cytokines. Collectively, these studies indicate that probiotics can offer a promising platform for NE control and that more investigations are needed to study whether these experimental probiotics can effectively prevent NE in commercial poultry operational settings.
Collapse
|
41
|
Jiang Z, Su W, Wen C, Li W, Zhang Y, Gong T, Du S, Wang X, Lu Z, Jin M, Wang Y. Effect of Porcine Clostridium perfringens on Intestinal Barrier, Immunity, and Quantitative Analysis of Intestinal Bacterial Communities in Mice. Front Vet Sci 2022; 9:881878. [PMID: 35769317 PMCID: PMC9234579 DOI: 10.3389/fvets.2022.881878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens (C. perfringens) is one of the main pathogens which can cause a range of histotoxic and enteric diseases in humans or animals (pigs, or broilers). The Centers for Disease Control and Prevention (CDC) estimates these bacteria cause nearly 1 million illnesses in the United States every year. For animal husbandry, necrotizing enteritis caused by C. perfringens can cost the global livestock industry between $2 billion and $6 billion per year. C. perfringens-infected animals can be isolated for its identification and pathology. A suitable animal model is one of the essential conditions for studying the disease pathogenesis. In previous studies, mice have been used as subjects for a variety of Clostridium perfringens toxicity tests. Thus, this study was designed to build a mouse model infected porcine C. perfringens which was isolated from the C.perfringens-infected pigs. A total of 32 6-week-old male C57BL/6 mice were randomly divided into four groups. Control group was orally administrated with PBS (200 μL) on day 0. Low group, Medium group, and High group were gavaged with 200 ul of PBS resuspension containing 8.0 × 107 CFU, 4.0 × 108 CFU, and 2.0 × 109 CFU, respectively. We examined growth performance, immune status, intestinal barrier integrity, apoptosis-related genes expression, and copies of C. perfringens in mice. The results showed that the growth performance declined and intestinal structure was seriously damaged in High group. Meanwhile, pro-inflammatory factors (IL-1β, TNF-α, and IL-6) were significantly increased (P < 0.05) in High group compared to other groups. The tight junctions and pro-apoptosis related genes' expression significantly decreased (P < 0.05) in High group, and high dose caused a disruption of intestinal villi integrity and tissue injury in the jejunum of mice. In addition, the enumerations of C. perfringens, Escherichia coli, and Lactobacillus explained why the gut of High group mice was seriously damaged, because the C. perfringens and Escherichia coli significantly enriched (P < 0.05), and Lactobacillus dramatically decreased (P < 0.05). Overall, our results provide an experimental and theoretical basis for understanding the pathogenesis and exploring the effects of porcine C. perfringens on mice.
Collapse
Affiliation(s)
- Zipeng Jiang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Weifa Su
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Chaoyue Wen
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Wentao Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Tao Gong
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Shuai Du
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Xinxia Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Zeqing Lu
| | - Mingliang Jin
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
- Yizhen Wang
| |
Collapse
|
42
|
He W, Goes EC, Wakaruk J, Barreda DR, Korver DR. A Poultry Subclinical Necrotic Enteritis Disease Model Based on Natural Clostridium perfringens Uptake. Front Physiol 2022; 13:788592. [PMID: 35795645 PMCID: PMC9251903 DOI: 10.3389/fphys.2022.788592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Necrotic enteritis (NE) in poultry is an opportunistic infection caused by Clostridium perfringens. Well-known as a multifactorial disease, NE development is under the influence of a wide range of environmental risk factors that promote the proliferation of pathogenic C. perfringens at the expense of nonpathogenic strains. Current in vivo NE challenge models typically incorporate pre-exposure to disease risk factors, in combination with exogenous C. perfringens inoculation. Our goal was to enhance current models using a natural uptake of C. perfringens from the barn environment to produce a subclinical infection. We incorporated access to litter, coccidial exposure (either 10× or 15× of the manufacturer-recommended Coccivac B52 Eimeria vaccine challenge; provided unspecified doses of E. acervulina, E. mivati, E. tenella, and two strains of E. maxima), feed composition, and feed withdrawal stress, and achieved the commonly observed NE infection peak at 3 weeks post-hatch. NE severity was evaluated based on gut lesion pathology, clinical signs, and mortality rate. Under cage-reared conditions, 15× coccidial vaccine-challenged birds showed overall NE lesion prevalence that was 8-fold higher than 10× coccidial vaccine-challenged birds. NE-associated mortality was observed only in a floor-reared flock after a 15× coccidial vaccine challenge.
Collapse
Affiliation(s)
- Wanwei He
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Emanuele C. Goes
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Wakaruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Daniel R. Barreda, ; Douglas R. Korver,
| | - Douglas R. Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Daniel R. Barreda, ; Douglas R. Korver,
| |
Collapse
|
43
|
Ogbuewu IP, Mabelebele M, Sebola NA, Mbajiorgu C. Bacillus Probiotics as Alternatives to In-feed Antibiotics and Its Influence on Growth, Serum Chemistry, Antioxidant Status, Intestinal Histomorphology, and Lesion Scores in Disease-Challenged Broiler Chickens. Front Vet Sci 2022; 9:876725. [PMID: 35573393 PMCID: PMC9096611 DOI: 10.3389/fvets.2022.876725] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
In commercial poultry production, chickens are reared under intensive conditions, which may allow infections to spread quickly. Antibiotics are used at sub-therapeutic doses in livestock and poultry feed to prevent diseases and improve productivity. However, restrictions on the use of antibiotics at sub-therapeutic concentrations in livestock feed due to growing concerns of antimicrobial resistance (AMR), together with antibiotic residues in meat and eggs has prompted poultry researchers and feed producers to look for viable alternatives. Thus, there is increasing interest in developing natural alternatives to in-feed antibiotics to improve chicken productivity and health. Probiotics, specifically from the genus Bacillus have proven to be effective due to their spore-forming capabilities. Furthermore, their ability to withstand heat during feed processing and be stored for a long time without losing viability as well as their potential to function in the acidic medium of the chicken gut, provide them with several advantages over conventional probiotics. Several studies regarding the antimicrobial and antioxidant activities of Bacillus probiotics and their positive impact in chicken nutrition have been documented. Therefore, the present review shields light on the positive effect of Bacillus probiotics as alternatives to in-feed antibiotics on growth performance, serum chemistry, antioxidant status, intestinal histomorphology and lesion scores of disease-challenged broiler chickens and the mechanisms by which they exert their actions. It is concluded that Bacillus probiotics supplementation improve growth, health and productive indices of disease-challenged broiler chickens and can be a good alternative to in-feed antibiotics. However, more studies are required on the effect of Bacillus probiotics supplementation in broiler chickens to maximize productivity and achieve the ultimate goal of stopping the usage of antibiotics at sub-therapeutic doses in broiler chicken feed to enhance performance.
Collapse
Affiliation(s)
- Ifeanyi Princewill Ogbuewu
- Department of Agriculture and Animal Health, University of South Africa, Florida, South Africa
- Department of Animal Science and Technology, Federal University of Technology, Owerri, Nigeria
| | - Monnye Mabelebele
- Department of Agriculture and Animal Health, University of South Africa, Florida, South Africa
| | | | - Christian Mbajiorgu
- Department of Agriculture and Animal Health, University of South Africa, Florida, South Africa
| |
Collapse
|
44
|
Amevor FK, Cui Z, Du X, Ning Z, Deng X, Xu D, Shu G, Wu Y, Cao X, Shuo W, Tian Y, Li D, Wang Y, Zhang Y, Du X, Zhu Q, Han X, Zhao X. Supplementation of Dietary Quercetin and Vitamin E Promotes the Intestinal Structure and Immune Barrier Integrity in Aged Breeder Hens. Front Immunol 2022; 13:860889. [PMID: 35386687 PMCID: PMC8977514 DOI: 10.3389/fimmu.2022.860889] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
In aged animals, the physiological functions of the gastrointestinal tract (GIT) are reduced. Dietary intervention is necessary to re-activate GIT functions. The objective of this study was to investigate the impacts of dietary combination of quercetin (Q) and vitamin E (VE) on the intestinal structure and barrier integrity in aged breeder chickens. A sum of 400 (65-wks-old) Tianfu breeder hens were randomly allotted into four (4) groups with four (4) replicates, and fed with basal diet; basal diet supplemented with 0.4g/kg of Q; basal diet supplemented with 0.2g/kg of VE; and basal diet supplemented with the combination of Q (0.4 g/kg) and VE (0.2 g/kg) for 14 weeks. At the end of the 14th week, serum and gut segments were collected from eight hens per group for analyses. The results showed that Q+VE exerted synergistic effects on intestinal morphology by promoting villi height and crypt depth (P < 0.05), as well as mitigated the intestinal inflammatory damage of the aged hens, but decreased the concentration of serum D-lactate and diamine oxidase; and increased the levels of secretory immunoglobulin A (sIgA) and Mucin-2 mRNA (P < 0.05). Furthermore, the mRNA expression of intestinal tight junction proteins including occludin, ZO1, and claudin-1 was increased by Q+VE (P < 0.05). Moreover, Q+VE decreased the mRNA expression of the pro-inflammatory genes (TNF-α, IL-6, and IL-1β), and increased the expression of anti-inflammatory genes (IL-10 and IL-4) (P < 0.05). These results were consistent with the mRNA expression of Bax and Bcl-2. In addition, Q+VE protected the small intestinal tract from oxidative damage by increasing the levels of superoxide dismutase, total antioxidant capacity, glutathione peroxidase, catalase (P < 0.05), and the mRNA expression of SOD1 and GPx-2. However, Q+VE decreased malondialdehyde levels in the intestine compared to the control (P < 0.05). These results indicated that dietary Q+VE improved intestinal function in aged breeder hens, by protecting the intestinal structure and integrity. Therefore, Q+VE could act as an anti-aging agent to elevate the physiological functions of the small intestine in chickens.
Collapse
Affiliation(s)
- Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xueqing Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Wei Shuo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xue Han
- Guizhou Institute of Animal Husbandry and Veterinary Medicine, Guiyang, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
45
|
Huang S, Rong X, Liu M, Liang Z, Geng Y, Wang X, Zhang J, Ji C, Zhao L, Ma Q. Intestinal Mucosal Immunity-Mediated Modulation of the Gut Microbiome by Oral Delivery of Enterococcus faecium Against Salmonella Enteritidis Pathogenesis in a Laying Hen Model. Front Immunol 2022; 13:853954. [PMID: 35371085 PMCID: PMC8967290 DOI: 10.3389/fimmu.2022.853954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 12/22/2022] Open
Abstract
Enterococcus faecium (E. faecium) is a protective role that has crucial beneficial functions on intestinal homeostasis. This study aimed to investigate the effects of E. faecium on the laying performance, egg quality, host metabolism, intestinal mucosal immunity, and gut microbiota of laying hens under the Salmonella Enteritidis (S. Enteritidis) challenge. A total of 400 45-week-old laying hens were randomly divided into four treatments (CON, EF, SCON, and SEF groups) with five replicates for each group and 20 hens per replicate and fed with a basal diet or a basal diet supplemented with E. faecium (2.5 × 108 cfu/g feed). The experiment comprised two phases, consisting of the pre-salmonella challenged phase (from day 14 to day 21) and the post-salmonella challenged phase (from day 21 to day 42). At day 21 and day 22, the hens in SCON and SEF groups were orally challenged with 1.0 ml suspension of 109 cfu/ml S. Enteritidis (CVCC3377) daily, whereas the hens in CON and EF groups received the same volume of sterile PBS. Herein, our results showed that E. faecium administration significantly improved egg production and shell thickness during salmonella infection. Also, E. faecium affected host lipid metabolism parameters via downregulating the concentration of serum triglycerides, inhibited oxidative stress, and enhanced immune functions by downregulating the level of serum malondialdehyde and upregulating the level of serum immunoglobulin G. Of note, E. faecium supplementation dramatically alleviated intestinal villi structure injury and crypt atrophy, and improved intestinal mucosal barrier injuries caused by S. Enteritidis challenge. Moreover, our data revealed that E. faecium supplementation ameliorated S. Enteritidis infection-induced gut microbial dysbiosis by altering the gut microbial composition (reducing Bacteroides, Desulfovibrio, Synergistes, and Sutterella, and increasing Barnesiella, Butyricimonas, Bilophila, and Candidatus_Soleaferrea), and modulating the gut microbial function, such as cysteine and methionine metabolism, pyruvate metabolism, fatty acid metabolism, tryptophan metabolism, salmonella infection, and the PI3K-Akt signaling pathway. Taken together, E. faecium has a strong capacity to inhibit the S. Enteritidis colonization of hens. The results highlight the potential of E. faecium supplementation as a dietary supplement to combat S. Enteritidis infection in animal production and to promote food safety.
Collapse
Affiliation(s)
- Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoping Rong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meiling Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhongjun Liang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanqiang Geng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinyue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Zhang H, Ding X, Bai S, Zeng Q, Zhang K, Mao X, Chu L, Hou D, Xuan Y, Wang J. Alleviating effect of dietary supplementation of benzoic acid, Enterococcus faecium and essential oil complex on coccidia and Clostridium perfringens challenge in laying hens. Poult Sci 2022; 101:101720. [PMID: 35231770 PMCID: PMC8886132 DOI: 10.1016/j.psj.2022.101720] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
The purpose of this experiment is to explore the effects of dietary supplementation of benzoic acid, Enterococcus faecium, and essential oil complex (BEC) on coccidia and Clostridium perfringens challenge in laying hens. A total of 80 Lohmann gray laying hens (35 wk old) were allocated to 4 treatments in a 2 × 2 factorial arrangement with the main effects of Clostridium perfringens type A (CP) and coccidia challenge (with or without challenge) and 2 BEC levels (0 and 1,000 mg/kg). The total experimental period was 6 wk. The results showed that: the challenge group significantly decreased the laying rate and average daily feed intake (ADFI) of laying hens (PChallenge < 0.01). The BEC + challenge group significantly increased the laying rate and decreased the feed conversion ratio (FCR) of laying hens (PBEC < 0.05). The challenge significantly decreased the thickness, strength, and relative weight of eggshell (PChallenge < 0.05). The BCE + challenge group significantly increased the relative weight and strength of the eggshell (PBEC < 0.05). The challenge significantly increased the crypt depth of the duodenum, jejunum and ileum, and decreased the villus-to-crypt ratio (V/C) (PChallenge < 0.01). The BEC + challenge group decreased the crypt depth of the duodenum and jejunum, and increased the V/C of the duodenum (PBEC < 0.01). The pathological scores of duodenum and jejunum of the challenge group were significantly higher than other groups (PChallenge < 0.01), while the BEC + challenge group had lower pathological scores of jejunum (PBEC < 0.01). The challenge significantly decreased the mRNA expression of Occludin, Mucin-2, Zonula occluden-1 (ZO-1) (Pchallenge < 0.05); whereas the BEC group significantly increased the expression of Occludin, Mucin-2, and Claudin-1 mRNA (PBEC < 0.05). The challenge significantly increased the level of interleukin 1β (IL-1β) in the jejunum (PChallenge < 0.05). Taken together, adding BEC to the diet can improved production performance and egg quality of layers, by protecting intestinal health against Clostridium perfringens type A (CP) and coccidia challenge.
Collapse
|
47
|
The Role of Nutraceuticals and Phytonutrients in Chickens’ Gastrointestinal Diseases. Animals (Basel) 2022; 12:ani12070892. [PMID: 35405880 PMCID: PMC8997120 DOI: 10.3390/ani12070892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The use of nutraceuticals and phytonutrients in poultry nutrition has been extensively explored over the past decade. The interest in these substances is linked to the search for natural compounds that can be effectively used to prevent and treat some of the main diseases of the chicken. The serious problem of antibiotic resistance and the consequent legislative constraints on their use required the search for alternatives. The purpose of this review is to describe the current status of the effects of some substances, such as probiotics and prebiotics, organic acids, vitamins and phytogenic feed additives, focusing specifically on studies concerning the prevention and treatment of four main gastrointestinal diseases in chicken: salmonellosis, necrotic enteritis (caused by Clostridium perfringens), campylobacteriosis, and coccidiosis. A brief description of these diseases and the effects of the main bioactive principles of the nutraceutical or phytonutrient groups will be provided. Although there are conflicting results, some works show very promising effects, with a reduction in the bacterial or protozoan load following treatment. Further studies are needed to verify the real effectiveness of these compounds and make them applicable in the field. Abstract In poultry, severe gastrointestinal diseases are caused by bacteria and coccidia, with important economic losses in the poultry industry and requirement of treatments which, for years, were based on the use of antibiotics and chemotherapies. Furthermore, Salmonella spp., Clostridium perfringens, and Campylobacter jejuni can cause serious foodborne diseases in people, resulting from consumption of poultry meat, eggs, and derived products. With the spread of antibiotic resistance, which affects both animals and humans, the restriction of antibiotic use in livestock production and the identification of a list of “critically important antimicrobials” became necessary. For this reason, researchers focused on natural compounds and effective alternatives to prevent gastrointestinal disease in poultry. This review summarizes the results of several studies published in the last decade, describing the use of different nutraceutical or phytonutrients in poultry industry. The results of the use of these products are not always encouraging. While some of the alternatives have proven to be very promising, further studies will be needed to verify the efficacy and practical applicability of other compounds.
Collapse
|
48
|
In Vivo Recovery of Bacteriophages and Their Effects on Clostridium perfringens-Infected Broiler Chickens. Vet Sci 2022; 9:vetsci9030119. [PMID: 35324847 PMCID: PMC8953289 DOI: 10.3390/vetsci9030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
Abstract
The objectives of this study were to recover bacteriophages (BPs) from the intestinal digesta of BP-fed broilers and to evaluate the antibacterial effects of encapsulated or powdered BPs in broiler chickens challenged with Clostridium perfringens. Day-old broiler chicks (n = 320/experiment) were randomly assigned to 32 pens (n = 10 broilers/pen) and allocated to one of four dietary groups: (1) unchallenged group (NEG); (2) C. perfringens-challenged group (POS); (3) POS group fed a diet supplemented with powdered BPs; and (4) POS group fed a diet supplemented with encapsulated BPs. On days 21, 22, and 23 post-hatch, all chickens except NEG were orally inoculated twice a day with 2 mL C. perfringens (1.0 × 108 cfu/mL). Varying BP levels were detected in gut digesta at all ages and were numerically or significantly higher in the encapsulated BP group than in the powdered BP group. Dietary powder or encapsulated BPs reversed the C. perfringens-mediated increase in crypt depth. In addition, villus height to crypt depth ratio was elevated in the NEG and BP-treated/challenged groups compared with that in the POS group. C. perfringens counts in the cecum were significantly lower in the BP-fed chickens than in the POS group. The encapsulated BP-supplemented diet-fed chickens had the highest serum IgA levels. Collectively, our results suggest that dietary BP remains viable in intestinal digesta upon ingestion and can inhibit cecal C. perfringens counts.
Collapse
|
49
|
Okyere SK, Wen J, Cui Y, Xie L, Gao P, Zhang M, Wang J, Wang S, Ran Y, Ren Z, Hu Y. Bacillus toyonensis SAU-19 and SAU-20 Isolated From Ageratina adenophora Alleviates the Intestinal Structure and Integrity Damage Associated With Gut Dysbiosis in Mice Fed High Fat Diet. Front Microbiol 2022; 13:820236. [PMID: 35250935 PMCID: PMC8891614 DOI: 10.3389/fmicb.2022.820236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
This study was performed to identify potential probiotic endophytes from Ageratina adenophora and evaluate their ameliorating effects on gut injury and integrity damage associated with microbiota dysbiosis in mice fed high fat diet. Using morphological and biochemical tests, and 16S rRNA gene sequencing technique, two bacteria endophytes were identified as strains of Bacillus toyonensis and were named Bacillus toyonensis SAU-19 (GenBank No. MW287198) and Bacillus toyonensis SAU-20 (GenBank No. MW287199). Sixty (60) mice were divided into five groups, group 1 was the negative control fed normal diet (NS), group 2 was fed High fat diet (HF), Group 3 was fed High fat diet + 106 Lactobacillus rhamnosus (LGG), group 4 was fed High fat + 106 Bacillus toyonensis SAU-19 and group 5 fed High fat diet + 106 Bacillus toyonensis SAU-20. After 35 days, histological and immunohistochemistry examination were performed in the ileum tissues. Furthermore, DAO and antioxidants activities were measured in serum, mRNA expressions of tight junction proteins (occludin and ZO-1) and inflammation related cytokines (IL-1β, TFN-α, IL-2, IL-4, and IL-10) in the ileum tissues as well as sIgA levels and total bacteria (Escherichia coli, Salmonella, Staphylococcus, and Lactobacillus) in the small intestine and cecum content. The results showed an increase in the DAO activity, oxidative stress parameter (MDA), pro-inflammation cytokines (IL-1β, TFN-α, IL-2), reduce immunity (sIgA), and destroyed intestinal structure and integrity (reduce tight junction proteins) in the high fat diet group and this was associated with destruction of the gut microbiota composition (increasing pathogenic bacteria; E. coli, Salmonella, Staphylococcus and reducing beneficial bacteria, Lactobacillus spp.) in mice (P < 0.05). However, the administration of Bacillus toyonensis SAU-19 and SAU-20 reverted these effects. Our findings indicated that, Bacillus toyonensis SAU-19 and SAU-20 isolated from A. adenophora could prevent the excess weight gain from high fat diet feeding, improved antioxidant status and alleviated the intestine integrity damage as well as reduce the population of enteric bacteria such as E. coli, Salmonella, and S. aureus and increasing the population of beneficial bacteria such as Lactobacillus in the gut of mice fed high fat diet, therefore, can serve as a potential probiotics in humans and animals.
Collapse
Affiliation(s)
- Samuel Kumi Okyere
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yujing Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Pei Gao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ming Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianchen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yinan Ran
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- New Ruipeng Pet Healthcare Group Co., Ltd., Shenzhen, China
| |
Collapse
|
50
|
Bacillus coagulans TL3 Inhibits LPS-Induced Caecum Damage in Rat by Regulating the TLR4/MyD88/NF-κB and Nrf2 Signal Pathways and Modulating Intestinal Microflora. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5463290. [PMID: 35178157 PMCID: PMC8843965 DOI: 10.1155/2022/5463290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Background Bacillus coagulans has been widely used in food and feed additives, which can effectively inhibit the growth of harmful bacteria, improve intestinal microecological environment, promote intestinal development, and enhance intestinal function, but its probiotic mechanism is not completely clear. Aim The aim of this study is to discuss the effect and mechanism of Bacillus coagulans TL3 on oxidative stress and inflammatory injury of cecum induced by LPS. Method The Wistar rats were randomly divided into four groups, each containing 7 animals. Two groups were fed with basic diet (the LPS and control, or CON, groups). The remaining groups were fed with basic diet and either a intragastric administration high or low dose of B. coagulans, forming the HBC and LBC groups, respectively. The rats were fed normally for two weeks. On the 15th day, those in the LPS, HBC, and LBC groups were injected intraperitoneally with LPS—the rats in the CON group were injected intraperitoneally with physiological saline. After 4 hours, all the rats were anesthetized and sacrificed by cervical dislocation, allowing samples to be collected and labeled. The inflammatory and antioxidant cytokine changes of the cecum were measured, and the pathological changes of the cecum were observed, determining the cecal antioxidant, inflammation, and changes in tight junction proteins and analysis of intestinal flora. Result The results show that LPS induces oxidative damage in the cecal tissues of rats and the occurrence of inflammation could also be detected in the serum. The Western blot results detected changes in the NF-κB- and Nrf2-related signaling pathways and TJ-related protein levels. Compared with the LPS group, the HBC group showed significantly downregulated levels of expression of Nrf2, NQO1, HO-1, GPX, and GCLC. The expression of TLR4, MYD88, NF-κB, IL-6, TNFα, and IL-1β was also significantly downregulated, while the expression of other proteins (ZO-1, occludin, and claudin-1) increased significantly. Bacillus coagulans TL3 was also found to increase the relative abundance of the beneficial bacterium Akkermansia muciniphila in the intestines. There is also a significant reduction in the number of harmful bacteria Escherichia coli and Shigella (Enterobacteriaceae). Conclusion Bacillus coagulans TL3 regulates the TLR4/MyD88/NF-κB and Nrf2 signaling pathways in the cecal tissue of rats, protects the intestine from inflammation and oxidative damage caused by LPS, and inhibits the reproduction of harmful bacteria and promotes beneficial effects by regulating the intestinal flora bacteria grow, thereby enhancing intestinal immunity.
Collapse
|