1
|
Cong R, Lu C, Li X, Xu Z, Wang Y, Sun S. Tumor organoids in cancer medicine: from model systems to natural compound screening. PHARMACEUTICAL BIOLOGY 2025; 63:89-109. [PMID: 39893515 PMCID: PMC11789228 DOI: 10.1080/13880209.2025.2458149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
CONTEXT The advent of tissue engineering and biomedical techniques has significantly advanced the development of three-dimensional (3D) cell culture systems, particularly tumor organoids. These self-assembled 3D cell clusters closely replicate the histopathological, genetic, and phenotypic characteristics of primary tissues, making them invaluable tools in cancer research and drug screening. OBJECTIVE This review addresses the challenges in developing in vitro models that accurately reflect tumor heterogeneity and explores the application of tumor organoids in cancer research, with a specific focus on the screening of natural products for antitumor therapies. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, Google Scholar, Scopus, PubMed and Springer Link. Publications were selected without date restrictions, using terms such as 'organoid', 'natural product', 'pharmacological', 'extract', 'nanomaterial' and 'traditional uses'. Articles related to agriculture, ecology, synthetic work or published in languages other than English were excluded. RESULTS AND CONCLUSIONS The review identifies key challenges related to the efficiency and variability of organoid generation and discusses ongoing efforts to enhance their predictive capabilities in drug screening and personalized medicine. Recent studies utilizing patient-derived organoid models for natural compound screening are highlighted, demonstrating the potential of these models in developing new classes of anticancer agents. The integration of natural products with patient-derived organoid models presents a promising approach for discovering novel anticancer compounds and elucidating their mechanisms of action.
Collapse
Affiliation(s)
- Rong Cong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
2
|
Wu Y, Zhang F, Du F, Huang J, Wei S. Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review). Mol Med Rep 2025; 31:140. [PMID: 40183402 PMCID: PMC11976518 DOI: 10.3892/mmr.2025.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Malignant tumors notably decrease life expectancy. Despite advances in cancer diagnosis and treatment, the mechanisms underlying tumorigenesis, progression and drug resistance have not been fully elucidated. An emerging method to study tumors is tumor organoids, which are a three‑dimensional miniature structure. These retain the patient‑specific tumor heterogeneity while demonstrating the histological, genetic and molecular features of original tumors. Compared with conventional cancer cell lines and animal models, patient‑derived tumor organoids are more advanced at physiological and clinical levels. Their synergistic combination with other technologies, such as organ‑on‑a‑chip, 3D‑bioprinting, tissue‑engineered cell scaffolds and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‑associated protein 9, may overcome limitations of the conventional 3D organoid culture and result in the development of more appropriate model systems that preserve the complex tumor stroma, inter‑organ and intra‑organ communications. The present review summarizes the evolution of tumor organoids and their combination with advanced technologies, as well as the application of tumor organoids in basic and clinical research.
Collapse
Affiliation(s)
- Ying Wu
- Department of Obstetrics and Gynecology, The 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan 650032, P.R. China
| | - Fan Zhang
- Department of Comprehensive Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| | - Furong Du
- Department of Medicine, Kingbio Medical Co., Ltd., Chongqing 401123, P.R. China
| | - Juan Huang
- Department of Breast Surgery and Multidisciplinary Breast Cancer Center, Clinical Research Center of Breast Cancer in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuqing Wei
- Department of Comprehensive Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| |
Collapse
|
3
|
Wang J, Ji R, Zhang L, Cheng X, Zhang X. Progression of differentiation of iPSCs into specific subtypes of neurons. Differentiation 2025; 143:100869. [PMID: 40449261 DOI: 10.1016/j.diff.2025.100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/28/2025] [Accepted: 05/16/2025] [Indexed: 06/03/2025]
Abstract
Induced pluripotent stem cells (iPSCs), generated through somatic cell reprogramming, exhibit self-renewal capacity and multilineage differentiation potential. In recent years, iPSC-derived neurons have emerged as a significant platform for researching mechanisms and developing therapies for neurological diseases. This paper reviews the targeted differentiation strategies of iPSCs into dopaminergic neurons, motor neurons, cholinergic neurons and medium spinal neurons, providing detailed insights into the differentiation processes. Additionally, this paper discusses the challenges associated with the future application of iPSCs-derived neurons in the treatment of nervous system diseases are also discussed in this paper, aiming to provide references for the application of iPSCs in cellular therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Anatomy, Medical School, Co-innovation Center of Neurodegeneration, Nantong University, Nantong, China
| | - Ruijie Ji
- Department of Anatomy, Medical School, Co-innovation Center of Neurodegeneration, Nantong University, Nantong, China
| | - Lei Zhang
- Department of Anatomy, Medical School, Co-innovation Center of Neurodegeneration, Nantong University, Nantong, China
| | - Xiang Cheng
- Department of Anatomy, Medical School, Co-innovation Center of Neurodegeneration, Nantong University, Nantong, China; Clinical trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China
| | - Xinhua Zhang
- Department of Anatomy, Medical School, Co-innovation Center of Neurodegeneration, Nantong University, Nantong, China; Clinical trial Center, Yancheng Third People's Hospital, The Sixth Affiliated Hospital of Nantong University, Yancheng, 224002, China.
| |
Collapse
|
4
|
Tonini L, Ahn C. Latest Advanced Techniques for Improving Intestinal Organoids Limitations. Stem Cell Rev Rep 2025:10.1007/s12015-025-10894-9. [PMID: 40388043 DOI: 10.1007/s12015-025-10894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2025] [Indexed: 05/20/2025]
Abstract
Intestinal organoids are valuable tools across different disciplines, from a clinical aspect to the biomedical research, providing a unique perspective on the complexity of the gastrointestinal system. They are alternatives to common cell lines as they can offer insights into architectural functionality and reduce the use of animal models. A deeper understanding of their organoid characteristics is required to harness their full potential. Despite their beneficial uses and multiple advantages, organoids have limitations that remain unaddressed. This review aims to elucidate the principal limitations of intestinal organoids, investigate structural defects such as the deficiency in a vascularized and lymphatic system, and absence of the microbiome, restrictions in mimicking the physiological gut model, including the lack of an acid-neutralizing system or a shortage of digestive enzymes, and the difficulties in their long-term maintenance and polarity accessibility. Development of innovative techniques to address these limitations will lead to improve in vivo recapitulation and pioneering further advancements in this field.
Collapse
Affiliation(s)
- Lisa Tonini
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Changhwan Ahn
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
- Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
5
|
Liu Y, Zhou Z, Lu G, Zhang X, Shi D, Tong L, Chen D, Tuan RS, Li ZA. Musculoskeletal organoids: An emerging toolkit for establishing personalized models of musculoskeletal disorders and developing regenerative therapies. Acta Biomater 2025:S1742-7061(25)00362-9. [PMID: 40381929 DOI: 10.1016/j.actbio.2025.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Musculoskeletal (MSK) conditions are the primary cause of physical disability globally. These disorders are physically and mentally debilitating and severely impact the patients' quality of life. As the median age of the world's population increases, there has been an intensifying urgency of developing efficacious therapies for various orthopaedic conditions. Furthermore, the highly heterogeneous nature of MSK conditions calls for a personalized approach to studying disease mechanisms and developing regenerative treatments. Organoids have emerged as an advanced approach to generating functional tissue/organ mimics in vitro, which hold promise in MSK regeneration, disease modeling, and therapeutic development. Herein, we review the preparation, characterization, and application of various MSK organoids. We highlight the potential of patient-specific organoids in the development of personalized medicine and discuss the challenges and opportunities in the future development of MSK organoids. STATEMENT OF SIGNIFICANCE: Despite decades of research, translation of MSK research into clinical applications remains limited, partially attributed to our inadequate understanding of disease mechanisms. To advance therapeutic development, there are critical needs for MSK disease models with higher clinical relevance and predictive power. Additionally, engineered constructs that closely mimic the structural and functional features of native MSK tissues are highly desirable. MSK organoids have emerged as a promising approach to meet the above requirements. To unleash the full potential of MSK organoids necessitates a comprehensive understanding of their categories, construction, development, functions, applications, and challenges. This review aims to fulfill this crucial need, aiming to accelerate the clinical translation of MSK organoid platforms to benefit millions of patients afflicted with MSK conditions.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, PR China
| | - Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Gang Lu
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong Special Administrative Region of China
| | - Xin Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191 PR China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China; Department of Pharmacology, Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518000, PR China.
| | - Rocky S Tuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong Special Administrative Region of China.
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong Special Administrative Region of China; Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China.
| |
Collapse
|
6
|
Eun J, Lee JE, Yang SH. Cerebral organoid research for pediatric patients with neurological disorders. Clin Exp Pediatr 2025; 68:269-277. [PMID: 39608368 PMCID: PMC11969208 DOI: 10.3345/cep.2024.01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/30/2024] Open
Abstract
Cerebral organoids derived from human induced pluripotent stem cells offer a groundbreaking foundation for the analysis of pediatric neurological diseases. Unlike organoids from other somatic systems, cerebral organoids present unique challenges, such as the high sensitivity of neuronal cells to environmental conditions and the complexity of replicating brain-specific architectures. Cerebral organoids replicate the human brain development and pathology, enabling research on conditions such as microcephaly, Rett syndrome, autism spectrum disorders, and brain tumors. This review explores the utility of cerebral organoids for modeling diseases and testing therapeutic interventions. Despite current limitations such as variability and lack of vascularization, recent technological advancements have improved the reliability and application of such interventions. Cerebral organoids provide valuable insight into the mechanisms underlying complex neural disorders and hold promise as novel treatment strategies for pediatric neurological diseases.
Collapse
Affiliation(s)
- Jin Eun
- Department of Neurosurgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Eun Lee
- Department of Neurosurgery, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
7
|
Yao N, Jing N, Lin J, Niu W, Yan W, Yuan H, Xiong Z, Hou Q, Qiao X, Liu Q, Cao J, Li N. Patient-derived tumor organoids for cancer immunotherapy: culture techniques and clinical application. Invest New Drugs 2025; 43:394-404. [PMID: 40232355 PMCID: PMC12048417 DOI: 10.1007/s10637-025-01523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/03/2025] [Indexed: 04/16/2025]
Abstract
Cancer immunotherapy has revolutionized tumor treatment. However, robust and effective testing platforms remain lacking, especially for the selection of the optimized therapy at the patient-specific level. Unlike conventional treatment evaluations, testing platforms for cancer immunotherapy must incorporate not only tumor cells but also the tumor microenvironment (TME), including immune components. Recently, emergence of patient-derived tumor organoids (PDTOs), an in vitro preclinical model, has provided a novel approach for studying tumor evolution and assessing treatment responses, and shows great potential when coculturing with immune cells to study the mechanisms of immunotherapy efficacy and resistance. However, traditional organoid technology is limited in capturing the full impact of the TME on tumor behaviors due to the absence of stromal components. To circumvent these restrictions, complex organoid cocultures with immune cells, cancer-associated fibroblasts and vasculatures are developed. In this review, we summarized recent advances in PDTO culture techniques for modeling the TME and explored the application of complex tumor organoids in cancer immunotherapy.
Collapse
Affiliation(s)
- Ningning Yao
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Zhigong New Street, Xinghualing District, Taiyuan, 030013, China
| | - Na Jing
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Zhigong New Street, Xinghualing District, Taiyuan, 030013, China
| | - Jianzhong Lin
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Wenxia Niu
- Department of Oncology, The Second Clinical Medical College of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
| | - Wenxing Yan
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Zhigong New Street, Xinghualing District, Taiyuan, 030013, China
| | - Hongqin Yuan
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Zhigong New Street, Xinghualing District, Taiyuan, 030013, China
| | - Zeyi Xiong
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Zhigong New Street, Xinghualing District, Taiyuan, 030013, China
| | - Qing Hou
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Zhigong New Street, Xinghualing District, Taiyuan, 030013, China
| | - Xiaxi Qiao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Quanming Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianzhong Cao
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Zhigong New Street, Xinghualing District, Taiyuan, 030013, China.
| | - Ning Li
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No.3, Zhigong New Street, Xinghualing District, Taiyuan, 030013, China.
| |
Collapse
|
8
|
Wang MJ, Gao C, Huang X, Wang M, Zhang S, Gao XP, Zhong CQ, Li LY. Establishing Pancreatic Cancer Organoids from EUS-Guided Fine-Needle Biopsy Specimens. Cancers (Basel) 2025; 17:692. [PMID: 40002285 PMCID: PMC11852484 DOI: 10.3390/cancers17040692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Pancreatic cancer is a highly malignant digestive system tumor characterized by covert onset and rapid progression, with a 5-year survival rate of less than 10%. Most patients have already reached an advanced or metastatic stage at the time of diagnosis. Therefore, it is particularly important to study the occurrence, development, and drug resistance mechanisms of pancreatic cancer. In recent years, the development of 3D tumor cell culture technology has provided new avenues for pancreatic cancer research. Patient-derived organoids (PDOs) are micro-organ structures that are obtained directly from the patient's body and rapidly expand in vitro. PDOs have the ability to self-renew and self-organize and retain the genetic heterogeneity and molecular characteristics of the original tumor. However, the use of organoids is limited because most patients with pancreatic ductal adenocarcinoma (PDAC) are inoperable. Endoscopic ultrasound-guided fine-needle aspiration/biopsy (EUS-FNA/FNB) is an important method for obtaining tissue samples from non-surgical pancreatic cancer patients. This article reviews the factors that affect the formation of pancreatic cancer organoids using EUS-FNA/FNB. High-quality samples, sterile operations, and optimized culture media are key to successfully generating organoids. Additionally, individual patient differences and disease stages can impact the formation of organoids. Pancreatic cancer organoids constructed using EUS-FNA/FNB have significant potential, suggesting new approaches for research and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lian-Yong Li
- Department of Gastroenterology, The Ninth Medical Center of Chinese PLA General Hospital, Beijing 100101, China; (M.-J.W.); (C.G.); (X.H.); (M.W.); (S.Z.); (X.-P.G.); (C.-Q.Z.)
| |
Collapse
|
9
|
Ament AL, Heiner M, Hessler MC, Alexopoulos I, Steeg K, Gärtner U, Vazquez-Armendariz AI, Herold S. Endothelialized Bronchioalveolar Lung Organoids Model Endothelial Cell Responses to Injury. Am J Respir Cell Mol Biol 2025; 72:124-132. [PMID: 39226154 DOI: 10.1165/rcmb.2023-0373ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/03/2024] [Indexed: 09/05/2024] Open
Abstract
Organoid three-dimensional systems are powerful platforms to study development and disease. Recently, the complexity of lung organoid models derived from adult mouse and human stem cells has increased substantially in terms of cellular composition and structural complexity. However, a murine lung organoid system with a clear integrated endothelial compartment is still missing. Here, we describe a novel method that adds another level of intricacy to our published bronchioalveolar lung organoid (BALO) model by microinjection of FACS-sorted lung endothelial cells (ECs) into differentiated organoid cultures. Before microinjection, ECs obtained from the lung homogenate of young mice expressed typical EC markers such as CD31 and vascular endothelial cadherin and showed tube formation capacity. Following microinjection, ECs surrounded the BALO's alveolar-like compartment, aligning with type I and type II alveolar epithelial cells, as demonstrated by confocal and electron microscopy. Notably, expression of Car4 and Aplnr was as well detected, suggesting the presence of EC microvascular phenotypes in the cultured ECs. Moreover, upon epithelial cell injury by LPS and influenza A virus, endothelialized BALOs released proinflammatory cytokines, leading to the upregulation ICAM-1 (intercellular adhesion molecule 1) in ECs. In summary, we characterized for the first time an organoid model that incorporates ECs into the alveolar structures of lung organoids, not only increasing our previous model's cellular and structural complexity but also providing a suitable niche to model lung endothelium responses to injury ex vivo.
Collapse
Affiliation(s)
- Anna-Lena Ament
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Organoid Biology, Life & Medical Sciences Institute (LIMES), Transdisciplinary Research Area (TRA) Life and Health, University of Bonn, Bonn, Germany
| | - Monika Heiner
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
| | - Marie Christin Hessler
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Institute of Lung Health (ILH), Giessen, Germany
| | - Katharina Steeg
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Giessen, and
| | - Ulrich Gärtner
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Organoid Biology, Life & Medical Sciences Institute (LIMES), Transdisciplinary Research Area (TRA) Life and Health, University of Bonn, Bonn, Germany
| | - Susanne Herold
- Department of Medicine V (Internal Medicine, Infectious Diseases and Infection Control), Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Member of the German Center for Lung Research (DZL), Institute of Lung Health (ILH), Giessen, Germany
| |
Collapse
|
10
|
Beutel AK, Ekizce M, Ettrich TJ, Seufferlein T, Lindenmayer J, Gout J, Kleger A. Organoid-based precision medicine in pancreatic cancer. United European Gastroenterol J 2025; 13:21-33. [PMID: 39540683 PMCID: PMC11866314 DOI: 10.1002/ueg2.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) ranks among the leading causes of cancer-related deaths worldwide. Despite advances in precision oncology in other malignancies, treatment of PDAC still largely relies on conventional chemotherapy. Given the dismal prognosis and heterogeneity in PDAC, there is an urgent need for personalized therapeutic strategies to improve treatment response. Organoids, generated from patients' tumor tissue, have emerged as a powerful tool in cancer research. These three-dimensional models faithfully recapitulate the morphological and genetic features of the parental tumor and retain patient-specific heterogeneity. This review summarizes existing precision oncology approaches in PDAC, explores current applications and limitations of organoid cultures in personalized medicine, details preclinical studies correlating in vitro organoid prediction and patient treatment response, and provides an overview of ongoing organoid-based clinical trials.
Collapse
Affiliation(s)
- Alica K. Beutel
- Department of Internal Medicine IUniversity Hospital UlmUlmGermany
| | - Menar Ekizce
- Institute of Molecular Oncology and Stem Cell BiologyUlm University HospitalUlmGermany
| | | | | | | | - Johann Gout
- Institute of Molecular Oncology and Stem Cell BiologyUlm University HospitalUlmGermany
| | - Alexander Kleger
- Institute of Molecular Oncology and Stem Cell BiologyUlm University HospitalUlmGermany
- Core Facility OrganoidsMedical Faculty of Ulm UniversityUlmGermany
- Division of Interdisciplinary PancreatologyDepartment of Internal Medicine IUlm University HospitalUlmGermany
| |
Collapse
|
11
|
Kim Y, Kang M, Mamo MG, Adisasmita M, Huch M, Choi D. Liver organoids: Current advances and future applications for hepatology. Clin Mol Hepatol 2025; 31:S327-S348. [PMID: 39722609 PMCID: PMC11925438 DOI: 10.3350/cmh.2024.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024] Open
Abstract
The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine. These 3D cultures, capable of replicating key features of human liver function and pathology, have opened new avenues for human-relevant disease modeling, CRISPR gene editing, and high-throughput drug screening that animal models cannot accomplish. Moreover, advancements in creating more complex systems have led to the development of multicellular assembloids, dynamic organoid-on-chip systems, and 3D bioprinting technologies. These innovations enable detailed modeling of liver microenvironments and complex tissue interactions. Progress in regenerative medicine and transplantation applications continues to evolve and strives to overcome the obstacles of biocompatibility and tumorigenecity. In this review, we examine the current state of liver organoid research by offering insights into where the field currently stands, and the pivotal developments that are shaping its future.
Collapse
Affiliation(s)
- Yohan Kim
- Department of MetaBioHealth, Sungkyunkwan University, Suwon, Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Korea
| | - Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Michael Girma Mamo
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Michael Adisasmita
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
12
|
Atta D, Abou-Shanab AM, Kamar SS, Soliman MW, Magdy S, El-Badri N. Amniotic Membrane-Derived Extracellular Matrix for Developing a Cost-Effective Xenofree Hepatocellular Carcinoma Organoid Model. J Biomed Mater Res A 2025; 113:e37882. [PMID: 39925207 DOI: 10.1002/jbm.a.37882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Current limitations in the treatment of hepatocellular carcinoma (HCC) include tumor recurrence, chemoresistance, and severe side effects, all of which call for novel cancer models that better represent the tumor microenvironment (TME). 3D organoids hold promise due to their increased relevance to the TME hallmarks. Herein, we aim to establish an HCC organoid model that mimics the HCC microenvironment and its metabolic interactome. The organoid comprises a decellularized human amniotic membrane (dAM) as a biomimetic matrix, Huh-7 cell line, bone marrow mesenchymal stromal cells (BM-MSC), and human umbilical vein endothelial cell-conditioned medium (HUVEC-CM). The structure integrity of the HCC organoid was monitored using H&E staining at 7, 14, and 21 days and transmission electron microscopy (TEM) and scanning electron microscopy (SEM) at 21 days. The established organoid model maintained its viability over 21 days as tested by propidium iodide (PI) fluorescence staining, MTT, upregulated expression of proliferating cell nuclear antigen (PCNA), and alpha-fetoprotein (AFP). The expression of vascular endothelial growth factor (VEGF) in the HCC organoid induced a neo-angiogenic response in ovo. Metabolic reprogramming in the HCC organoid showed a shift toward glycolysis as indicated by promoted glucose consumption, upregulated lactate production, and reduced cellular pyruvate concentration. Oxidative phosphorylation was suppressed as indicated by reduced reactive oxygen species (ROS), and hydrogen peroxide (H2O2), and halted urea cycle progression. The dataset shows that the dAM may hold a promise for its use as extracellular matrix (ECM) source for HCC organoid models, by replicating the HCC microenvironment and metabolic signature, thus holding a promise for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dina Atta
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Samaa Samir Kamar
- Histology Department, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mariam Waleed Soliman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
13
|
Moss SP, Bakirci E, Feinberg AW. Engineering the 3D structure of organoids. Stem Cell Reports 2025; 20:102379. [PMID: 39706178 PMCID: PMC11784486 DOI: 10.1016/j.stemcr.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Organoids form through the sel f-organizing capabilities of stem cells to produce a variety of differentiated cell and tissue types. Most organoid models, however, are limited in terms of the structure and function of the tissues that form, in part because it is difficult to regulate the cell type, arrangement, and cell-cell/cell-matrix interactions within these systems. In this article, we will discuss the engineering approaches to generate more complex organoids with improved function and translational relevance, as well as their advantages and disadvantages. Additionally, we will explore how biofabrication strategies can manipulate the cell composition, 3D organization, and scale-up of organoids, thus improving their utility for disease modeling, drug screening, and regenerative medicine applications.
Collapse
Affiliation(s)
- Samuel P Moss
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ezgi Bakirci
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Wu M, Ma Z, Tian Z, Rich JT, He X, Xia J, He Y, Yang K, Yang S, Leong KW, Lee LP, Huang TJ. Sound innovations for biofabrication and tissue engineering. MICROSYSTEMS & NANOENGINEERING 2024; 10:170. [PMID: 39562793 PMCID: PMC11577104 DOI: 10.1038/s41378-024-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/31/2024] [Accepted: 06/20/2024] [Indexed: 11/21/2024]
Abstract
Advanced biofabrication techniques can create tissue-like constructs that can be applied for reconstructive surgery or as in vitro three-dimensional (3D) models for disease modeling and drug screening. While various biofabrication techniques have recently been widely reviewed in the literature, acoustics-based technologies still need to be explored. The rapidly increasing number of publications in the past two decades exploring the application of acoustic technologies highlights the tremendous potential of these technologies. In this review, we contend that acoustics-based methods can address many limitations inherent in other biofabrication techniques due to their unique advantages: noncontact manipulation, biocompatibility, deep tissue penetrability, versatility, precision in-scaffold control, high-throughput capabilities, and the ability to assemble multilayered structures. We discuss the mechanisms by which acoustics directly dictate cell assembly across various biostructures and examine how the advent of novel acoustic technologies, along with their integration with traditional methods, offers innovative solutions for enhancing the functionality of organoids. Acoustic technologies are poised to address fundamental challenges in biofabrication and tissue engineering and show promise for advancing the field in the coming years.
Collapse
Affiliation(s)
- Mengxi Wu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Zhiteng Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Joseph T Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Xin He
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
15
|
Kim D, Lim H, Youn J, Park TE, Kim DS. Scalable production of uniform and mature organoids in a 3D geometrically-engineered permeable membrane. Nat Commun 2024; 15:9420. [PMID: 39482314 PMCID: PMC11528013 DOI: 10.1038/s41467-024-53073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
The application of organoids has been limited by the lack of methods for producing uniformly mature organoids at scale. This study introduces an organoid culture platform, called UniMat, which addresses the challenges of uniformity and maturity simultaneously. UniMat is designed to not only ensure consistent organoid growth but also facilitate an unrestricted supply of soluble factors by a 3D geometrically-engineered, permeable membrane-based platform. Using UniMat, we demonstrate the scalable generation of kidney organoids with enhanced uniformity in both structure and function compared to conventional methods. Notably, kidney organoids within UniMat show improved maturation, showing increased expression of nephron transcripts, more in vivo-like cell-type balance, enhanced vascularization, and better long-term stability. Moreover, UniMat's design offers a more standardized organoid model for disease modeling and drug testing, as demonstrated by polycystic-kidney disease and acute kidney injury modeling. In essence, UniMat presents a valuable platform for organoid technology, with potential applications in organ development, disease modeling, and drug screening.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hyeonji Lim
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
16
|
Randall-Demllo S, Al-Qadami G, Raposo AE, Ma C, Priebe IK, Hor M, Singh R, Fung KYC. Ex Vivo Intestinal Organoid Models: Current State-of-the-Art and Challenges in Disease Modelling and Therapeutic Testing for Colorectal Cancer. Cancers (Basel) 2024; 16:3664. [PMID: 39518102 PMCID: PMC11544769 DOI: 10.3390/cancers16213664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Despite improvements in participation in population-based screening programme, colorectal cancer remains a major cause of cancer-related mortality worldwide. Targeted interventions are desirable to reduce the health and economic burden of this disease. Two-dimensional monolayers of colorectal cancer cell lines represent the traditional in vitro models for disease and are often used for diverse purposes, including the delineation of molecular pathways associated with disease aetiology or the gauging of drug efficacy. The lack of complexity in such models, chiefly the limited epithelial cell diversity and differentiation, attenuated mucus production, lack of microbial interactions and mechanical stresses, has driven interest in the development of more holistic and physiologically relevant in vitro model systems. In particular, established ex vivo patient-derived explant and patient-derived tumour xenograft models have been supplemented by progress in organoid and microfluidic organ-on-a-chip cultures. Here, we discuss the applicability of advanced culturing technologies, such as organoid systems, as models for colorectal cancer and for testing chemotherapeutic drug sensitivity and efficacy. We highlight current challenges associated with organoid technologies and discuss their future for more accurate disease modelling and personalized medicine.
Collapse
Affiliation(s)
- Sarron Randall-Demllo
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Ghanyah Al-Qadami
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Anita E. Raposo
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Westmead 2145, Australia; (A.E.R.); (C.M.)
| | - Chenkai Ma
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Westmead 2145, Australia; (A.E.R.); (C.M.)
| | - Ilka K. Priebe
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Maryam Hor
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Rajvinder Singh
- Division of Gastroenterology, Lyell McEwin Hospital, Adelaide 5112, Australia
| | - Kim Y. C. Fung
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Westmead 2145, Australia; (A.E.R.); (C.M.)
| |
Collapse
|
17
|
Zebochin I, Denk F, Nochi Z. Modeling neuropathic pain in a dish. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:233-278. [PMID: 39580214 DOI: 10.1016/bs.irn.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The study of pain mechanisms has advanced significantly with the development of innovative in vitro models. This chapter explores those already used in or potentially useful for neuropathic pain research, emphasizing the complementary roles of animal and human cellular models to enhance translational success. Traditional animal models have provided foundational insights into the neurobiology of pain and remain invaluable for understanding complex pain pathways. However, integrating human cellular models addresses the need for better replication of human nociceptors. The chapter details methodologies for culturing rodent and human primary sensory neurons, including isolation and culture techniques, advantages, and limitations. It highlights the application of these models in neuropathic pain research, such as identifying pain-associated receptors and ion channels. Recent advancements in using induced pluripotent stem cell (iPSC)-derived sensory neurons are also discussed. Finally, the chapter explores advanced in vitro models, including 2D co-cultures and 3D organoids, and their implications for studying neuropathic pain. These models offer significant advantages for drug screening and ethical research practices, providing a more accurate representation of human pain pathways and paving the way for innovative therapeutic strategies. Despite challenges such as limited access to viable human tissue and variability between samples, these in vitro models, alongside traditional animal models, are indispensable for advancing our understanding of neuropathic pain and developing effective treatments.
Collapse
Affiliation(s)
- Irene Zebochin
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Franziska Denk
- Wolfson Sensory Pain and Regeneration Centre (SPaRC), King's College London
| | - Zahra Nochi
- Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
18
|
Murphy JF, Lavelle M, Asciak L, Burdis R, Levis HJ, Ligorio C, McGuire J, Polleres M, Smith PO, Tullie L, Uribe-Gomez J, Chen B, Dawson JI, Gautrot JE, Hooper NM, Kelly DJ, Li VSW, Mata A, Pandit A, Phillips JB, Shu W, Stevens MM, Williams RL, Armstrong JPK, Huang YYS. Biofabrication and biomanufacturing in Ireland and the UK. Biodes Manuf 2024; 7:825-856. [PMID: 39650072 PMCID: PMC11618173 DOI: 10.1007/s42242-024-00316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/11/2024] [Indexed: 12/11/2024]
Abstract
As we navigate the transition from the Fourth to the Fifth Industrial Revolution, the emerging fields of biomanufacturing and biofabrication are transforming life sciences and healthcare. These sectors are benefiting from a synergy of synthetic and engineering biology, sustainable manufacturing, and integrated design principles. Advanced techniques such as 3D bioprinting, tissue engineering, directed assembly, and self-assembly are instrumental in creating biomimetic scaffolds, tissues, organoids, medical devices, and biohybrid systems. The field of biofabrication in the United Kingdom and Ireland is emerging as a pivotal force in bioscience and healthcare, propelled by cutting-edge research and development. Concentrating on the production of biologically functional products for use in drug delivery, in vitro models, and tissue engineering, research institutions across these regions are dedicated to innovating healthcare solutions that adhere to ethical standards while prioritising sustainability, affordability, and healthcare system benefits. Graphic abstract
Collapse
Affiliation(s)
- Jack F. Murphy
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ UK
| | - Martha Lavelle
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY UK
| | - Lisa Asciak
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW UK
| | - Ross Burdis
- Department of Materials, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Hannah J. Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX UK
| | - Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD UK
| | - Jamie McGuire
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, S016 6YD UK
| | - Marlene Polleres
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Poppy O. Smith
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT UK
| | - Juan Uribe-Gomez
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 W2TY Ireland
| | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, BT9 5AH UK
| | - Jonathan I. Dawson
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, S016 6YD UK
| | - Julien E. Gautrot
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS UK
| | - Nigel M. Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, M13 9PL UK
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 H903 Ireland
| | - Vivian S. W. Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD UK
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 W2TY Ireland
| | - James B. Phillips
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW UK
| | - Molly M. Stevens
- Department of Materials, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
- Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
| | - Rachel L. Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX UK
| | - James P. K. Armstrong
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY UK
| | | |
Collapse
|
19
|
Benčurová K, Tran L, Friske J, Bevc K, Helbich TH, Hacker M, Bergmann M, Zeitlinger M, Haug A, Mitterhauser M, Egger G, Balber T. An in vivo tumour organoid model based on the chick embryonic chorioallantoic membrane mimics key characteristics of the patient tissue: a proof-of-concept study. EJNMMI Res 2024; 14:86. [PMID: 39331331 PMCID: PMC11436503 DOI: 10.1186/s13550-024-01151-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Patient-derived tumour organoids (PDOs) are highly advanced in vitro models for disease modelling, yet they lack vascularisation. To overcome this shortcoming, organoids can be inoculated onto the chorioallantoic membrane (CAM); the highly vascularised, not innervated extraembryonic membrane of fertilised chicken eggs. Therefore, we aimed to (1) establish a CAM patient-derived xenograft (PDX) model based on PDOs generated from the liver metastasis of a colorectal cancer (CRC) patient and (2) to evaluate the translational pipeline (patient - in vitro PDOs - in vivo CAM-PDX) regarding morphology, histopathology, expression of C-X-C chemokine receptor type 4 (CXCR4), and radiotracer uptake patterns. RESULTS The main liver metastasis of the CRC patient exhibited high 2-[18F]FDG uptake and moderate and focal [68Ga]Ga-Pentixafor accumulation in the peripheral part of the metastasis. Inoculation of PDOs derived from this region onto the CAM resulted in large, highly viable, and extensively vascularised xenografts, as demonstrated immunohistochemically and confirmed by high 2-[18F]FDG uptake. The xenografts showed striking histomorphological similarity to the patient's liver metastasis. The moderate expression of CXCR4 was maintained in ovo and was concordant with the expression levels of the patient's sample and in vitro PDOs. Following in vitro re-culturing of CAM-PDXs, growth, and [68Ga]Ga-Pentixafor uptake were unaltered compared to PDOs before transplantation onto the CAM. Although [68Ga]Ga-Pentixafor was taken up into CAM-PDXs, the uptake in the baseline and blocking group were comparable and there was only a trend towards blocking. CONCLUSIONS We successfully established an in vivo CAM-PDX model based on CRC PDOs. The histomorphological features and target protein expression of the original patient's tissue were mirrored in the in vitro PDOs, and particularly in the in vivo CAM-PDXs. The [68Ga]Ga-Pentixafor uptake patterns were comparable between in vitro, in ovo and clinical data and 2-[18F]FDG was avidly taken up in the patient's liver metastasis and CAM-PDXs. We thus propose the CAM-PDX model as an alternative in vivo model with promising translational value for CRC patients.
Collapse
Affiliation(s)
- Katarína Benčurová
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Loan Tran
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Joachim Friske
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Kajetana Bevc
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Thomas H Helbich
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory Applied Metabolomics, Vienna, Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria.
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Theresa Balber
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Rizzuti M, Melzi V, Brambilla L, Quetti L, Sali L, Ottoboni L, Meneri M, Ratti A, Verde F, Ticozzi N, Comi GP, Corti S, Abati E. Shaping the Neurovascular Unit Exploiting Human Brain Organoids. Mol Neurobiol 2024; 61:6642-6657. [PMID: 38334812 PMCID: PMC11338975 DOI: 10.1007/s12035-024-03998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Brain organoids, three-dimensional cell structures derived from pluripotent stem cells, closely mimic key aspects of the human brain in vitro, providing a powerful tool for studying neurodevelopment and disease. The neuroectodermal induction protocol employed for brain organoid generation primarily gives rise to the neural cellular component but lacks the vital vascular system, which is crucial for the brain functions by regulating differentiation, migration, and circuit formation, as well as delivering oxygen and nutrients. Many neurological diseases are caused by dysfunctions of cerebral microcirculation, making vascularization of human brain organoids an important tool for pathogenetic and translational research. Experimentally, the creation of vascularized brain organoids has primarily focused on the fusion of vascular and brain organoids, on organoid transplantation in vivo, and on the use of microfluidic devices to replicate the intricate microenvironment of the human brain in vitro. This review summarizes these efforts and highlights the importance of studying the neurovascular unit in a forward-looking perspective of leveraging their use for understanding and treating neurological disorders.
Collapse
Affiliation(s)
- Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Melzi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Brambilla
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Quetti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sali
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Linda Ottoboni
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
| | - Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Federico Verde
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nicola Ticozzi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
21
|
Wang Z, Liu X, Shi X, Wang Y. Microvascular network based on the Hilbert curve for nutrient transport in thick tissue. Regen Biomater 2024; 11:rbae094. [PMID: 39350955 PMCID: PMC11441758 DOI: 10.1093/rb/rbae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/09/2024] [Accepted: 08/04/2024] [Indexed: 10/04/2024] Open
Abstract
To address the uneven nutrient distribution within three-dimensional (3D) tissue models and organoids currently used in medical research, this study introduces a microvascular network based on the Hilbert curve. Our aim was to develop innovative solutions for enhancing nutrient supply in thick tissue models in vitro. By using 3D bioprinting, we engineered microvascular networks of varying Hilbert orders and validated their efficacy in enhancing nutrient uniformity through numerical simulations and experiments. These networks facilitated broader and more uniform nutrient distribution throughout the thick tissue models, particularly the 2° Hilbert microvascular structure, which occupies less space and significantly reduces regions of cellular death. Furthermore, we explored the potential of assembling larger tissue constructs using the 2° Hilbert microvascular network, showcasing its applicability in constructing large-scale biological models. The findings suggest that the 2° Hilbert microvascular structure is particularly effective in ensuring adequate nutrient delivery, thus enhancing the viability and functionality of large-volume tissue models. These innovations hold significant promise for advancing the fields of tissue engineering and regenerative medicine by improving nutrient delivery to in vitro thick tissue block models. This provides a robust foundation for future in vitro research and clinical applications, potentially leading to more effective treatments and interventions in the medical field. The development of these microvascular networks represents a crucial step forward in overcoming the limitations of current 3D tissue models and organoids, paving the way for more sophisticated and reliable biomedical research tools.
Collapse
Affiliation(s)
- Zhenxing Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Xuemin Liu
- Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Yingjun Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
22
|
Garreta E, Moya-Rull D, Marco A, Amato G, Ullate-Agote A, Tarantino C, Gallo M, Esporrín-Ubieto D, Centeno A, Vilas-Zornoza A, Mestre R, Kalil M, Gorroñogoitia I, Zaldua AM, Sanchez S, Izquierdo Reyes L, Fernández-Santos ME, Prosper F, Montserrat N. Natural Hydrogels Support Kidney Organoid Generation and Promote In Vitro Angiogenesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400306. [PMID: 38762768 DOI: 10.1002/adma.202400306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/14/2024] [Indexed: 05/20/2024]
Abstract
To date, strategies aiming to modulate cell to extracellular matrix (ECM) interactions during organoid derivation remain largely unexplored. Here renal decellularized ECM (dECM) hydrogels are fabricated from porcine and human renal cortex as biomaterials to enrich cell-to-ECM crosstalk during the onset of kidney organoid differentiation from human pluripotent stem cells (hPSCs). Renal dECM-derived hydrogels are used in combination with hPSC-derived renal progenitor cells to define new approaches for 2D and 3D kidney organoid differentiation, demonstrating that in the presence of these biomaterials the resulting kidney organoids exhibit renal differentiation features and the formation of an endogenous vascular component. Based on these observations, a new method to produce kidney organoids with vascular-like structures is achieved through the assembly of hPSC-derived endothelial-like organoids with kidney organoids in 3D. Major readouts of kidney differentiation and renal cell morphology are assessed exploiting these culture platforms as new models of nephrogenesis. Overall, this work shows that exploiting cell-to-ECM interactions during the onset of kidney differentiation from hPSCs facilitates and optimizes current approaches for kidney organoid derivation thereby increasing the utility of these unique cell culture platforms for personalized medicine.
Collapse
Affiliation(s)
- Elena Garreta
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 15-21, Barcelona, 08028, Spain
- University of Barcelona, Barcelona, 08028, Spain
| | - Daniel Moya-Rull
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 15-21, Barcelona, 08028, Spain
| | - Andrés Marco
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 15-21, Barcelona, 08028, Spain
| | - Gaia Amato
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 15-21, Barcelona, 08028, Spain
| | - Asier Ullate-Agote
- Regenerative Medicine Program, Centre for Applied Medical Research (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, 31008, Spain
| | - Carolina Tarantino
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 15-21, Barcelona, 08028, Spain
| | - Maria Gallo
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 15-21, Barcelona, 08028, Spain
| | - David Esporrín-Ubieto
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, Barcelona, 08028, Spain
| | - Alberto Centeno
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias, A Coruña, 15006, Spain
| | - Amaia Vilas-Zornoza
- Regenerative Medicine Program, Centre for Applied Medical Research (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, 31008, Spain
| | - Rafael Mestre
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, Barcelona, 08028, Spain
| | - María Kalil
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 15-21, Barcelona, 08028, Spain
| | | | - Ane Miren Zaldua
- Leartiker S. Coop, Xemein Etorbidea 12A, Markina-Xemein, 48270, Spain
| | - Samuel Sanchez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, Barcelona, 08028, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, Barcelona, 08010, Spain
| | | | - María Eugenia Fernández-Santos
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, 28009, Spain
- ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, 28009, Spain
| | - Felipe Prosper
- Hematology Service and Cell Therapy Unit and Program of Hematology-Oncology CIMA-Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN) and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, 31008, Spain
- Centro de Investigación Biomedica en Red de Oncología (CIBERONC) and RICORS TERAV, Madrid, 28029, Spain
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 15-21, Barcelona, 08028, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
23
|
Orge I, Nogueira Pinto H, Silva M, Bidarra S, Ferreira S, Calejo I, Masereeuw R, Mihăilă S, Barrias C. Vascular units as advanced living materials for bottom-up engineering of perfusable 3D microvascular networks. Bioact Mater 2024; 38:499-511. [PMID: 38798890 PMCID: PMC11126780 DOI: 10.1016/j.bioactmat.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The timely establishment of functional neo-vasculature is pivotal for successful tissue development and regeneration, remaining a central challenge in tissue engineering. In this study, we present a novel (micro)vascularization strategy that explores the use of specialized "vascular units" (VUs) as building blocks to initiate blood vessel formation and create perfusable, stroma-embedded 3D microvascular networks from the bottom-up. We demonstrate that VUs composed of endothelial progenitor cells and organ-specific fibroblasts exhibit high angiogenic potential when embedded in fibrin hydrogels. This leads to the formation of VUs-derived capillaries, which fuse with adjacent capillaries to form stable microvascular beds within a supportive, extracellular matrix-rich fibroblastic microenvironment. Using a custom-designed biomimetic fibrin-based vessel-on-chip (VoC), we show that VUs-derived capillaries can inosculate with endothelialized microfluidic channels in the VoC and become perfused. Moreover, VUs can establish capillary bridges between channels, extending the microvascular network throughout the entire device. When VUs and intestinal organoids (IOs) are combined within the VoC, the VUs-derived capillaries and the intestinal fibroblasts progressively reach and envelop the IOs. This promotes the formation of a supportive vascularized stroma around multiple IOs in a single device. These findings underscore the remarkable potential of VUs as building blocks for engineering microvascular networks, with versatile applications spanning from regenerative medicine to advanced in vitro models.
Collapse
Affiliation(s)
- I.D. Orge
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - H. Nogueira Pinto
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - M.A. Silva
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - S.J. Bidarra
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - S.A. Ferreira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - I. Calejo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - R. Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - S.M. Mihăilă
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - C.C. Barrias
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
Liu H, Gan Z, Qin X, Wang Y, Qin J. Advances in Microfluidic Technologies in Organoid Research. Adv Healthc Mater 2024; 13:e2302686. [PMID: 38134345 DOI: 10.1002/adhm.202302686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Organoids have emerged as major technological breakthroughs and novel organ models that have revolutionized biomedical research by recapitulating the key structural and functional complexities of their in vivo counterparts. The combination of organoid systems and microfluidic technologies has opened new frontiers in organoid engineering and offers great opportunities to address the current challenges of existing organoid systems and broaden their biomedical applications. In this review, the key features of the existing organoids, including their origins, development, design principles, and limitations, are described. Then the recent progress in integrating organoids into microfluidic systems is highlighted, involving microarrays for high-throughput organoid manipulation, microreactors for organoid hydrogel scaffold fabrication, and microfluidic chips for functional organoid culture. The opportunities in the nascent combination of organoids and microfluidics that lie ahead to accelerate research in organ development, disease studies, drug screening, and regenerative medicine are also discussed. Finally, the challenges and future perspectives in the development of advanced microfluidic platforms and modified technologies for building organoids with higher fidelity and standardization are envisioned.
Collapse
Affiliation(s)
- Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqing Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
25
|
Wei J, Sun Y, Wang H, Zhu T, Li L, Zhou Y, Liu Q, Dai Z, Li W, Yang T, Wang B, Zhu C, Shen X, Yao Q, Song G, Zhao Y, Pei H. Designer cellular spheroids with DNA origami for drug screening. SCIENCE ADVANCES 2024; 10:eado9880. [PMID: 39028810 PMCID: PMC11259176 DOI: 10.1126/sciadv.ado9880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Current in vitro models struggle to balance the complexity of human diseases with suitability for large-scale drug tests. While 3D cultures simulate human tissues, they lack cellular intricacy, and integrating these models with high-throughput drug screening remains a challenge. Here, we introduce a method that uses self-assembling nucleic acid nanostructures decorated living cells, termed NACs, to create spheroids with a customizable 3D layout. To demonstrate its uniqueness, our method effectively creates designer 3D spheroids by combining parenchymal cells, stromal cells, and immune cells, leading to heightened physiological relevance and detailed modeling of complex chronic diseases and immune-stromal interactions. Our approach achieves a high level of biological fidelity while being standardized and straightforward to construct with the potential for large-scale drug discovery applications. By merging the precision of DNA nanotechnology with advanced cell culture techniques, we are streamlining human-centric models, striking a balance between complexity and standardization, to boost drug screening efficiency.
Collapse
Affiliation(s)
- Jiayi Wei
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Tong Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| | - Ying Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| | - Quan Liu
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130117, China
| | - Zhen Dai
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wenjuan Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Taihua Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
- Shanghai Geriatric Medical Center, Shanghai 201104, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
| | - Guangqi Song
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology, Suzhou 215000, China
| | - Yicheng Zhao
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130117, China
- China-Japan Union Hospital of Jilin University, 130012 Changchun, Jilin, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai 200241, China
| |
Collapse
|
26
|
Wan S, Aregueta Robles U, Poole-Warren L, Esrafilzadeh D. Advances in 3D tissue models for neural engineering: self-assembled versus engineered tissue models. Biomater Sci 2024; 12:3522-3549. [PMID: 38829222 DOI: 10.1039/d4bm00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Neural tissue engineering has emerged as a promising field that aims to create functional neural tissue for therapeutic applications, drug screening, and disease modelling. It is becoming evident in the literature that this goal requires development of three-dimensional (3D) constructs that can mimic the complex microenvironment of native neural tissue, including its biochemical, mechanical, physical, and electrical properties. These 3D models can be broadly classified as self-assembled models, which include spheroids, organoids, and assembloids, and engineered models, such as those based on decellularized or polymeric scaffolds. Self-assembled models offer advantages such as the ability to recapitulate neural development and disease processes in vitro, and the capacity to study the behaviour and interactions of different cell types in a more realistic environment. However, self-assembled constructs have limitations such as lack of standardised protocols, inability to control the cellular microenvironment, difficulty in controlling structural characteristics, reproducibility, scalability, and lengthy developmental timeframes. Integrating biomimetic materials and advanced manufacturing approaches to present cells with relevant biochemical, mechanical, physical, and electrical cues in a controlled tissue architecture requires alternate engineering approaches. Engineered scaffolds, and specifically 3D hydrogel-based constructs, have desirable properties, lower cost, higher reproducibility, long-term stability, and they can be rapidly tailored to mimic the native microenvironment and structure. This review explores 3D models in neural tissue engineering, with a particular focus on analysing the benefits and limitations of self-assembled organoids compared with hydrogel-based engineered 3D models. Moreover, this paper will focus on hydrogel based engineered models and probe their biomaterial components, tuneable properties, and fabrication techniques that allow them to mimic native neural tissue structures and environment. Finally, the current challenges and future research prospects of 3D neural models for both self-assembled and engineered models in neural tissue engineering will be discussed.
Collapse
Affiliation(s)
- Shuqian Wan
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ulises Aregueta Robles
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
27
|
Liu Y, Wang D, Luan Y, Tao B, Li Q, Feng Q, Zhou H, Mu J, Yu J. The application of organoids in colorectal diseases. Front Pharmacol 2024; 15:1412489. [PMID: 38983913 PMCID: PMC11231380 DOI: 10.3389/fphar.2024.1412489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Intestinal organoids are a three-dimensional cell culture model derived from colon or pluripotent stem cells. Intestinal organoids constructed in vitro strongly mimic the colon epithelium in cell composition, tissue architecture, and specific functions, replicating the colon epithelium in an in vitro culture environment. As an emerging biomedical technology, organoid technology has unique advantages over traditional two-dimensional culture in preserving parental gene expression and mutation, cell function, and biological characteristics. It has shown great potential in the research and treatment of colorectal diseases. Organoid technology has been widely applied in research on colorectal topics, including intestinal tumors, inflammatory bowel disease, infectious diarrhea, and intestinal injury regeneration. This review focuses on the application of organoid technology in colorectal diseases, including the basic principles and preparation methods of organoids, and explores the pathogenesis of and personalized treatment plans for various colorectal diseases to provide a valuable reference for organoid technology development and application.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yanhong Luan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jianfeng Mu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jinhai Yu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Edri S, Rosenthal V, Ginsburg O, Newman Frisch A, Pierreux CE, Sharon N, Levenberg S. 3D model of mouse embryonic pancreas and endocrine compartment using stem cell-derived mesoderm and pancreatic progenitors. iScience 2024; 27:109959. [PMID: 38832019 PMCID: PMC11144751 DOI: 10.1016/j.isci.2024.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
The developing mouse pancreas is surrounded by mesoderm compartments providing signals that induce pancreas formation. Most pancreatic organoid protocols lack this mesoderm niche and only partially capture the pancreatic cell repertoire. This work aims to generate pancreatic aggregates by differentiating mouse embryonic stem cells (mESCs) into mesoderm progenitors (MPs) and pancreas progenitors (PPs), without using Matrigel. First, mESCs were differentiated into epiblast stem cells (EpiSCs) to enhance the PP differentiation rate. Next, PPs and MPs aggregated together giving rise to various pancreatic cell types, including endocrine, acinar, and ductal cells, and to endothelial cells. Single-cell RNA sequencing analysis revealed a larger endocrine population within the PP + MP aggregates, as compared to PPs alone or PPs in Matrigel aggregates. The PP + MP aggregate gene expression signatures and its endocrine population percentage closely resembled those of the endocrine population found in the mouse embryonic pancreas, which holds promise for studying pancreas development.
Collapse
Affiliation(s)
- Shlomit Edri
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Vardit Rosenthal
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Or Ginsburg
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Abigail Newman Frisch
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Nadav Sharon
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
29
|
Musiu C, Lupo F, Agostini A, Lionetto G, Bevere M, Paiella S, Carbone C, Corbo V, Ugel S, De Sanctis F. Cellular collusion: cracking the code of immunosuppression and chemo resistance in PDAC. Front Immunol 2024; 15:1341079. [PMID: 38817612 PMCID: PMC11137177 DOI: 10.3389/fimmu.2024.1341079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Despite the efforts, pancreatic ductal adenocarcinoma (PDAC) is still highly lethal. Therapeutic challenges reside in late diagnosis and establishment of peculiar tumor microenvironment (TME) supporting tumor outgrowth. This stromal landscape is highly heterogeneous between patients and even in the same patient. The organization of functional sub-TME with different cellular compositions provides evolutive advantages and sustains therapeutic resistance. Tumor progressively establishes a TME that can suit its own needs, including proliferation, stemness and invasion. Cancer-associated fibroblasts and immune cells, the main non-neoplastic cellular TME components, follow soluble factors-mediated neoplastic instructions and synergize to promote chemoresistance and immune surveillance destruction. Unveiling heterotypic stromal-neoplastic interactions is thus pivotal to breaking this synergism and promoting the reprogramming of the TME toward an anti-tumor milieu, improving thus the efficacy of conventional and immune-based therapies. We underscore recent advances in the characterization of immune and fibroblast stromal components supporting or dampening pancreatic cancer progression, as well as novel multi-omic technologies improving the current knowledge of PDAC biology. Finally, we put into context how the clinic will translate the acquired knowledge to design new-generation clinical trials with the final aim of improving the outcome of PDAC patients.
Collapse
Affiliation(s)
- Chiara Musiu
- Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gabriella Lionetto
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
30
|
Park S, Cho SW. Bioengineering toolkits for potentiating organoid therapeutics. Adv Drug Deliv Rev 2024; 208:115238. [PMID: 38447933 DOI: 10.1016/j.addr.2024.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoids are three-dimensional, multicellular constructs that recapitulate the structural and functional features of specific organs. Because of these characteristics, organoids have been widely applied in biomedical research in recent decades. Remarkable advancements in organoid technology have positioned them as promising candidates for regenerative medicine. However, current organoids still have limitations, such as the absence of internal vasculature, limited functionality, and a small size that is not commensurate with that of actual organs. These limitations hinder their survival and regenerative effects after transplantation. Another significant concern is the reliance on mouse tumor-derived matrix in organoid culture, which is unsuitable for clinical translation due to its tumor origin and safety issues. Therefore, our aim is to describe engineering strategies and alternative biocompatible materials that can facilitate the practical applications of organoids in regenerative medicine. Furthermore, we highlight meaningful progress in organoid transplantation, with a particular emphasis on the functional restoration of various organs.
Collapse
Affiliation(s)
- Sewon Park
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
31
|
Zhou G, Pang S, Li Y, Gao J. Progress in the generation of spinal cord organoids over the past decade and future perspectives. Neural Regen Res 2024; 19:1013-1019. [PMID: 37862203 PMCID: PMC10749595 DOI: 10.4103/1673-5374.385280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 10/22/2023] Open
Abstract
Spinal cord organoids are three-dimensional tissues derived from stem cells that recapitulate the primary morphological and functional characteristics of the spinal cord in vivo. As emerging bioengineering methods have led to the optimization of cell culture protocols, spinal cord organoids technology has made remarkable advancements in the past decade. Our literature search found that current spinal cord organoids do not only dynamically simulate neural tube formation but also exhibit diverse cytoarchitecture along the dorsal-ventral and rostral-caudal axes. Moreover, fused organoids that integrate motor neurons and other regionally specific organoids exhibit intricate neural circuits that allows for functional assessment. These qualities make spinal cord organoids valuable tools for disease modeling, drug screening, and tissue regeneration. By utilizing this emergent technology, researchers have made significant progress in investigating the pathogenesis and potential therapeutic targets of spinal cord diseases. However, at present, spinal cord organoid technology remains in its infancy and has not been widely applied in translational medicine. Establishment of the next generation of spinal cord organoids will depend on good manufacturing practice standards and needs to focus on diverse cell phenotypes and electrophysiological functionality evaluation.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Siyuan Pang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
Yin H, Wang Y, Liu N, Zhong S, Li L, Zhang Q, Liu Z, Yue T. Advances in the Model Structure of In Vitro Vascularized Organ-on-a-Chip. CYBORG AND BIONIC SYSTEMS 2024; 5:0107. [PMID: 40353137 PMCID: PMC12063728 DOI: 10.34133/cbsystems.0107] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/29/2024] [Indexed: 05/14/2025] Open
Abstract
Microvasculature plays a crucial role in human physiology and is closely related to various human diseases. Building in vitro vascular networks is essential for studying vascular tissue behavior with repeatable morphology and signaling conditions. Engineered 3D microvascular network models, developed through advanced microfluidic-based techniques, provide accurate and reproducible platforms for studying the microvasculature in vitro, an essential component for designing organ-on-chips to achieve greater biological relevance. By optimizing the microstructure of microfluidic devices to closely mimic the in vivo microenvironment, organ-specific models with healthy and pathological microvascular tissues can be created. This review summarizes recent advancements in in vitro strategies for constructing microvascular tissue and microfluidic devices. It discusses the static vascularization chips' classification, structural characteristics, and the various techniques used to build them: growing blood vessels on chips can be either static or dynamic, and in vitro blood vessels can be grown in microchannels, elastic membranes, and hydrogels. Finally, the paper discusses the application scenarios and key technical issues of existing vascularization chips. It also explores the potential for a novel organoid chip vascularization approach that combines organoids and organ chips to generate better vascularization chips.
Collapse
Affiliation(s)
- Hongze Yin
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai 200444, China
| | - Yue Wang
- School of Future Technology,
Shanghai University, Shanghai, China
| | - Na Liu
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics,
Shanghai University, Shanghai 200444, China
- Shanghai Institute of Intelligent Science and Technology,
Tongji University, Shanghai, China
| | - Songyi Zhong
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics,
Shanghai University, Shanghai 200444, China
| | - Long Li
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai 200444, China
- School of Future Technology,
Shanghai University, Shanghai, China
| | - Quan Zhang
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai 200444, China
- School of Future Technology,
Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics,
Shanghai University, Shanghai 200444, China
| | - Zeyang Liu
- Department of Bioengineering,
University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tao Yue
- School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai 200444, China
- School of Future Technology,
Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Intelligent Manufacturing and Robotics,
Shanghai University, Shanghai 200444, China
- Shanghai Institute of Intelligent Science and Technology,
Tongji University, Shanghai, China
| |
Collapse
|
33
|
Riddiough GE, Fifis T, Muralidharan V, Christophi C, Tran BM, Perini MV, Vincan E. Renin-Angiotensin Inhibitor, Captopril, Attenuates Growth of Patient-Derived Colorectal Liver Metastasis Organoids. Int J Mol Sci 2024; 25:3282. [PMID: 38542253 PMCID: PMC10970006 DOI: 10.3390/ijms25063282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 02/09/2025] Open
Abstract
The recurrence of colorectal liver metastasis (CRLM) following liver resection is common; approximately 40% of patients will experience tumor recurrence post-surgery. Renin-angiotensin inhibitors (RASis) have been shown to attenuate the growth and progression of CRLM in pre-clinical models following liver resection. This study examined the efficacy of the RASi captopril on patient-derived colorectal liver metastasis organoids. Patient-derived organoids (PDOs) were established using fresh samples of colorectal liver metastasis from appropriately consented patients undergoing liver resection. To mimic the regenerating liver post-CRLM liver resection, PDOs were cultured under hepatocyte regeneration conditions in vitro. CRLM PDOs were established from three patients' parent tissue. CRLM PDOs and parent tissue expressed markers of colorectal cancer, CDX2 and CK20, consistently. Furthermore, CRLM PDOs treated with captopril showed a dose dependent reduction in their expansion in vitro. In conclusion, CRLM PDOs recapitulate in vivo disease and displayed a dose-dependent response to treatment with captopril. RASis may be an additional viable treatment for patients with CRLM.
Collapse
Affiliation(s)
- Georgina E. Riddiough
- Department of Surgery, Austin Health Precinct, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia; (G.E.R.); (T.F.); (V.M.); (C.C.)
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute, Melbourne, VIC 3000, Australia;
| | - Theodora Fifis
- Department of Surgery, Austin Health Precinct, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia; (G.E.R.); (T.F.); (V.M.); (C.C.)
| | - Vijayaragavan Muralidharan
- Department of Surgery, Austin Health Precinct, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia; (G.E.R.); (T.F.); (V.M.); (C.C.)
| | - Christopher Christophi
- Department of Surgery, Austin Health Precinct, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia; (G.E.R.); (T.F.); (V.M.); (C.C.)
| | - Bang M. Tran
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute, Melbourne, VIC 3000, Australia;
| | - Marcos V. Perini
- Department of Surgery, Austin Health Precinct, The University of Melbourne, Austin Health, Lance Townsend Building, Level 8, 145 Studley Road, Heidelberg, VIC 3084, Australia; (G.E.R.); (T.F.); (V.M.); (C.C.)
| | - Elizabeth Vincan
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute, Melbourne, VIC 3000, Australia;
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute, Melbourne, VIC 3000, Australia
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
34
|
Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes Dis 2024; 11:614-632. [PMID: 37692477 PMCID: PMC10491878 DOI: 10.1016/j.gendis.2023.02.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/16/2023] [Indexed: 09/12/2023] Open
Abstract
An accumulation of previous work has established organoids as good preclinical models of human tumors, facilitating translation from basic research to clinical practice. They are changing the paradigm of preclinical cancer research because they can recapitulate the heterogeneity and pathophysiology of human cancers and more closely approximate the complex tissue environment and structure found in clinical tumors than in vitro cell lines and animal models. However, the potential applications of cancer organoids remain to be comprehensively summarized. In the review, we firstly describe what is currently known about cancer organoid culture and then discuss in depth the basic mechanisms, including tumorigenesis and tumor metastasis, and describe recent advances in patient-derived tumor organoids (PDOs) for drug screening and immunological studies. Finally, the present challenges faced by organoid technology in clinical practice and its prospects are discussed. This review highlights that organoids may offer a novel therapeutic strategy for cancer research.
Collapse
Affiliation(s)
- Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| |
Collapse
|
35
|
Ko J, Song J, Choi N, Kim HN. Patient-Derived Microphysiological Systems for Precision Medicine. Adv Healthc Mater 2024; 13:e2303161. [PMID: 38010253 PMCID: PMC11469251 DOI: 10.1002/adhm.202303161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Patient-derived microphysiological systems (P-MPS) have emerged as powerful tools in precision medicine that provide valuable insight into individual patient characteristics. This review discusses the development of P-MPS as an integration of patient-derived samples, including patient-derived cells, organoids, and induced pluripotent stem cells, into well-defined MPSs. Emphasizing the necessity of P-MPS development, its significance as a nonclinical assessment approach that bridges the gap between traditional in vitro models and clinical outcomes is highlighted. Additionally, guidance is provided for engineering approaches to develop microfluidic devices and high-content analysis for P-MPSs, enabling high biological relevance and high-throughput experimentation. The practical implications of the P-MPS are further examined by exploring the clinically relevant outcomes obtained from various types of patient-derived samples. The construction and analysis of these diverse samples within the P-MPS have resulted in physiologically relevant data, paving the way for the development of personalized treatment strategies. This study describes the significance of the P-MPS in precision medicine, as well as its unique capacity to offer valuable insights into individual patient characteristics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano TechnologyGachon UniversitySeongnam‐siGyeonggi‐do13120Republic of Korea
| | - Jiyoung Song
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Nakwon Choi
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Hong Nam Kim
- Brain Science InstituteKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science & TechnologyKIST SchoolSeoul02792Republic of Korea
- School of Mechanical EngineeringYonsei UniversitySeoul03722Republic of Korea
- Yonsei‐KIST Convergence Research InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
36
|
Acharya P, Choi NY, Shrestha S, Jeong S, Lee MY. Brain organoids: A revolutionary tool for modeling neurological disorders and development of therapeutics. Biotechnol Bioeng 2024; 121:489-506. [PMID: 38013504 PMCID: PMC10842775 DOI: 10.1002/bit.28606] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Brain organoids are self-organized, three-dimensional (3D) aggregates derived from pluripotent stem cells that have cell types and cellular architectures resembling those of the developing human brain. The current understanding of human brain developmental processes and neurological disorders has advanced significantly with the introduction of this in vitro model. Brain organoids serve as a translational link between two-dimensional (2D) cultures and in vivo models which imitate the neural tube formation at the early and late stages and the differentiation of neuroepithelium with whole-brain regionalization. In addition, the generation of region-specific brain organoids made it possible to investigate the pathogenic and etiological aspects of acquired and inherited brain disease along with drug discovery and drug toxicity testing. In this review article, we first summarize an overview of the existing methods and platforms used for generating brain organoids and their limitations and then discuss the recent advancement in brain organoid technology. In addition, we discuss how brain organoids have been used to model aspects of neurodevelopmental and neurodegenerative diseases, including autism spectrum disorder (ASD), Rett syndrome, Zika virus-related microcephaly, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).
Collapse
Affiliation(s)
- Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Na Young Choi
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
- Department of Healthcare Information Technology, Inje University, Gimhae, Republic of Korea
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Sehoon Jeong
- Department of Healthcare Information Technology, Inje University, Gimhae, Republic of Korea
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| |
Collapse
|
37
|
Gu Z, Wu Q, Shang B, Zhang K, Zhang W. Organoid co-culture models of the tumor microenvironment promote precision medicine. CANCER INNOVATION 2024; 3:e101. [PMID: 38948532 PMCID: PMC11212345 DOI: 10.1002/cai2.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 07/02/2024]
Abstract
In recent years, the three-dimensional (3D) culture system has emerged as a promising preclinical model for tumor research owing to its ability to replicate the tissue structure and molecular characteristics of solid tumors in vivo. This system offers several advantages, including high throughput, efficiency, and retention of tumor heterogeneity. Traditional Matrigel-submerged organoid cultures primarily support the long-term proliferation of epithelial cells. One solution for the exploration of the tumor microenvironment is a reconstitution approach involving the introduction of exogenous cell types, either in dual, triple or even multiple combinations. Another solution is a holistic approach including patient-derived tumor fragments, air-liquid interface, suspension 3D culture, and microfluidic tumor-on-chip models. Organoid co-culture models have also gained popularity for studying the tumor microenvironment, evaluating tumor immunotherapy, identifying predictive biomarkers, screening for effective drugs, and modeling infections. By leveraging these 3D culture systems, it is hoped to advance the clinical application of therapeutic approaches and improve patient outcomes.
Collapse
Affiliation(s)
- Zhaoru Gu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Quanyou Wu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Bingqing Shang
- Department of Urology, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wen Zhang
- Department of Immunology, National Cancer Center, National Clinical Research Center for Cancer, Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
38
|
Joo H, Min S, Cho SW. Advanced lung organoids for respiratory system and pulmonary disease modeling. J Tissue Eng 2024; 15:20417314241232502. [PMID: 38406820 PMCID: PMC10894554 DOI: 10.1177/20417314241232502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Amidst the recent coronavirus disease 2019 (COVID-19) pandemic, respiratory system research has made remarkable progress, particularly focusing on infectious diseases. Lung organoid, a miniaturized structure recapitulating lung tissue, has gained global attention because of its advantages over other conventional models such as two-dimensional (2D) cell models and animal models. Nevertheless, lung organoids still face limitations concerning heterogeneity, complexity, and maturity compared to the native lung tissue. To address these limitations, researchers have employed co-culture methods with various cell types including endothelial cells, mesenchymal cells, and immune cells, and incorporated bioengineering platforms such as air-liquid interfaces, microfluidic chips, and functional hydrogels. These advancements have facilitated applications of lung organoids to studies of pulmonary diseases, providing insights into disease mechanisms and potential treatments. This review introduces recent progress in the production methods of lung organoids, strategies for improving maturity, functionality, and complexity of organoids, and their application in disease modeling, including respiratory infection and pulmonary fibrosis.
Collapse
Affiliation(s)
- Hyebin Joo
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
| |
Collapse
|
39
|
Bhattacharya A, Alam K, Roy NS, Kaur K, Kaity S, Ravichandiran V, Roy S. Exploring the interaction between extracellular matrix components in a 3D organoid disease model to replicate the pathophysiology of breast cancer. J Exp Clin Cancer Res 2023; 42:343. [PMID: 38102637 PMCID: PMC10724947 DOI: 10.1186/s13046-023-02926-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
In vitro models are necessary to study the pathophysiology of the disease and the development of effective, tailored treatment methods owing to the complexity and heterogeneity of breast cancer and the large population affected by it. The cellular connections and tumor microenvironments observed in vivo are often not recapitulated in conventional two-dimensional (2D) cell cultures. Therefore, developing 3D in vitro models that mimic the complex architecture and physiological circumstances of breast tumors is crucial for advancing our understanding of the illness. A 3D scaffold-free in vitro disease model mimics breast cancer pathophysiology by allowing cells to self-assemble/pattern into 3D structures, in contrast with other 3D models that rely on artificial scaffolds. It is possible that this model, whether applied to breast tumors using patient-derived primary cells (fibroblasts, endothelial cells, and cancer cells), can accurately replicate the observed heterogeneity. The complicated interactions between different cell types are modelled by integrating critical components of the tumor microenvironment, such as the extracellular matrix, vascular endothelial cells, and tumor growth factors. Tissue interactions, immune cell infiltration, and the effects of the milieu on drug resistance can be studied using this scaffold-free 3D model. The scaffold-free 3D in vitro disease model for mimicking tumor pathophysiology in breast cancer is a useful tool for studying the molecular basis of the disease, identifying new therapeutic targets, and evaluating treatment modalities. It provides a more physiologically appropriate high-throughput platform for screening large compound library in a 96-384 well format. We critically discussed the rapid development of personalized treatment strategies and accelerated drug screening platforms to close the gap between traditional 2D cell culture and in vivo investigations.
Collapse
Affiliation(s)
- Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Santanu Kaity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
40
|
Li M, Yuan Y, Zou T, Hou Z, Jin L, Wang B. Development trends of human organoid-based COVID-19 research based on bibliometric analysis. Cell Prolif 2023; 56:e13496. [PMID: 37218396 PMCID: PMC10693193 DOI: 10.1111/cpr.13496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed a catastrophic threat to human health worldwide. Human stem cell-derived organoids serve as a promising platform for exploring SARS-CoV-2 infection. Several review articles have summarized the application of human organoids in COVID-19, but the research status and development trend of this field have seldom been systematically and comprehensively studied. In this review, we use bibliometric analysis method to identify the characteristics of organoid-based COVID-19 research. First, an annual trend of publications and citations, the most contributing countries or regions and organizations, co-citation analysis of references and sources and research hotspots are determined. Next, systematical summaries of organoid applications in investigating the pathology of SARS-CoV-2 infection, vaccine development and drug discovery, are provided. Lastly, the current challenges and future considerations of this field are discussed. The present study will provide an objective angle to identify the current trend and give novel insights for directing the future development of human organoid applications in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
- Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Ting Zou
- Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Zongkun Hou
- School of Basic Medical Sciences/School of Biology and Engineering (School of Modern Industry for Health and Medicine)Guizhou Medical UniversityGuiyangChina
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| |
Collapse
|
41
|
Roberto de Barros N, Wang C, Maity S, Peirsman A, Nasiri R, Herland A, Ermis M, Kawakita S, Gregatti Carvalho B, Hosseinzadeh Kouchehbaghi N, Donizetti Herculano R, Tirpáková Z, Mohammad Hossein Dabiri S, Lucas Tanaka J, Falcone N, Choroomi A, Chen R, Huang S, Zisblatt E, Huang Y, Rashad A, Khorsandi D, Gangrade A, Voskanian L, Zhu Y, Li B, Akbari M, Lee J, Remzi Dokmeci M, Kim HJ, Khademhosseini A. Engineered organoids for biomedical applications. Adv Drug Deliv Rev 2023; 203:115142. [PMID: 37967768 PMCID: PMC10842104 DOI: 10.1016/j.addr.2023.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
As miniaturized and simplified stem cell-derived 3D organ-like structures, organoids are rapidly emerging as powerful tools for biomedical applications. With their potential for personalized therapeutic interventions and high-throughput drug screening, organoids have gained significant attention recently. In this review, we discuss the latest developments in engineering organoids and using materials engineering, biochemical modifications, and advanced manufacturing technologies to improve organoid culture and replicate vital anatomical structures and functions of human tissues. We then explore the diverse biomedical applications of organoids, including drug development and disease modeling, and highlight the tools and analytical techniques used to investigate organoids and their microenvironments. We also examine the latest clinical trials and patents related to organoids that show promise for future clinical translation. Finally, we discuss the challenges and future perspectives of using organoids to advance biomedical research and potentially transform personalized medicine.
Collapse
Affiliation(s)
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
| | - Rohollah Nasiri
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Anna Herland
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Bruna Gregatti Carvalho
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), 13083-970 Campinas, Brazil
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, 1591634311 Tehran, Iran
| | - Rondinelli Donizetti Herculano
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; São Paulo State University (UNESP), Bioengineering and Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Zuzana Tirpáková
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia
| | - Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Jean Lucas Tanaka
- Butantan Institute, Viral Biotechnology Laboratory, São Paulo, SP Brazil; University of São Paulo (USP), São Paulo, SP Brazil
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - RunRun Chen
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Shuyi Huang
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Elisheva Zisblatt
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Yixuan Huang
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | | | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; College of Pharmacy, Korea University, Sejong 30019, Republic of Korea.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.
| |
Collapse
|
42
|
Elliott MAT, Schweiger HE, Robbins A, Vera-Choqqueccota S, Ehrlich D, Hernandez S, Voitiuk K, Geng J, Sevetson JL, Core C, Rosen YM, Teodorescu M, Wagner NO, Haussler D, Mostajo-Radji MA. Internet-Connected Cortical Organoids for Project-Based Stem Cell and Neuroscience Education. eNeuro 2023; 10:ENEURO.0308-23.2023. [PMID: 38016807 PMCID: PMC10755643 DOI: 10.1523/eneuro.0308-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
The introduction of Internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell (PSC)-derived cortical organoids in two different settings: using microscopy to monitor organoid growth in an introductory tissue culture course and using high-density (HD) multielectrode arrays (MEAs) to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses. All together, we propose cloud technologies as an effective and scalable approach for complex project-based university training.
Collapse
Affiliation(s)
- Matthew A T Elliott
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Hunter E Schweiger
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Ash Robbins
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Samira Vera-Choqqueccota
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Drew Ehrlich
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Computational Media, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Sebastian Hernandez
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Kateryna Voitiuk
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Jinghui Geng
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Jess L Sevetson
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Cordero Core
- Scientific Software Engineering Center, eScience Institute, University of Washington, Seattle, WA 98195
| | - Yohei M Rosen
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Mircea Teodorescu
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Nico O Wagner
- College of Arts and Sciences, University of San Francisco, San Francisco, CA 94117
| | - David Haussler
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060
| | - Mohammed A Mostajo-Radji
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA 95060
| |
Collapse
|
43
|
Honeycutt SE, N'Guetta PEY, Hardesty DM, Xiong Y, Cooper SL, Stevenson MJ, O'Brien LL. Netrin 1 directs vascular patterning and maturity in the developing kidney. Development 2023; 150:dev201886. [PMID: 37818607 PMCID: PMC10690109 DOI: 10.1242/dev.201886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
The intricate vascular system of the kidneys supports body fluid and organ homeostasis. However, little is known about how vascular architecture is established during kidney development. More specifically, how signals from the kidney influence vessel maturity and patterning remains poorly understood. Netrin 1 (Ntn1) is a secreted ligand that is crucial for vessel and neuronal guidance. Here, we demonstrate that Ntn1 is expressed by Foxd1+ stromal progenitors in the developing mouse kidney and conditional deletion (Foxd1GC/+;Ntn1fl/fl) results in hypoplastic kidneys with extended nephrogenesis. Wholemount 3D analyses additionally revealed the loss of a predictable vascular pattern in Foxd1GC/+;Ntn1fl/fl kidneys. As vascular patterning has been linked to vessel maturity, we investigated arterialization. Quantification of the CD31+ endothelium at E15.5 revealed no differences in metrics such as the number of branches or branch points, whereas the arterial vascular smooth muscle metrics were significantly reduced at both E15.5 and P0. In support of our observed phenotypes, whole kidney RNA-seq revealed disruptions to genes and programs associated with stromal cells, vasculature and differentiating nephrons. Together, our findings highlight the significance of Ntn1 to proper vascularization and kidney development.
Collapse
Affiliation(s)
- Samuel E. Honeycutt
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pierre-Emmanuel Y. N'Guetta
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deanna M. Hardesty
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yubin Xiong
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shamus L. Cooper
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew J. Stevenson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lori L. O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
44
|
Naderi-Meshkin H, Cornelius VA, Eleftheriadou M, Potel KN, Setyaningsih WAW, Margariti A. Vascular organoids: unveiling advantages, applications, challenges, and disease modelling strategies. Stem Cell Res Ther 2023; 14:292. [PMID: 37817281 PMCID: PMC10566155 DOI: 10.1186/s13287-023-03521-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
Understanding mechanisms and manifestations of cardiovascular risk factors, including diabetes, on vascular cells such as endothelial cells, pericytes, and vascular smooth muscle cells, remains elusive partly due to the lack of appropriate disease models. Therefore, here we explore different aspects for the development of advanced 3D in vitro disease models that recapitulate human blood vessel complications using patient-derived induced pluripotent stem cells, which retain the epigenetic, transcriptomic, and metabolic memory of their patient-of-origin. In this review, we highlight the superiority of 3D blood vessel organoids over conventional 2D cell culture systems for vascular research. We outline the key benefits of vascular organoids in both health and disease contexts and discuss the current challenges associated with organoid technology, providing potential solutions. Furthermore, we discuss the diverse applications of vascular organoids and emphasize the importance of incorporating all relevant cellular components in a 3D model to accurately recapitulate vascular pathophysiology. As a specific example, we present a comprehensive overview of diabetic vasculopathy, demonstrating how the interplay of different vascular cell types is critical for the successful modelling of complex disease processes in vitro. Finally, we propose a strategy for creating an organ-specific diabetic vasculopathy model, serving as a valuable template for modelling other types of vascular complications in cardiovascular diseases by incorporating disease-specific stressors and organotypic modifications.
Collapse
Affiliation(s)
- Hojjat Naderi-Meshkin
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Victoria A Cornelius
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Magdalini Eleftheriadou
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Koray Niels Potel
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Wiwit Ananda Wahyu Setyaningsih
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Sleman, D.I. Yogyakarta, 55281, Indonesia
| | - Andriana Margariti
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
45
|
Sullivan MA, Lane S, Volkerling A, Engel M, Werry EL, Kassiou M. Three-dimensional bioprinting of stem cell-derived central nervous system cells enables astrocyte growth, vasculogenesis, and enhances neural differentiation/function. Biotechnol Bioeng 2023; 120:3079-3091. [PMID: 37395340 PMCID: PMC10953436 DOI: 10.1002/bit.28470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
Current research tools for preclinical drug development such as rodent models and two-dimensional immortalized monocultures have failed to serve as effective translational models for human central nervous system (CNS) disorders. Recent advancements in the development of induced pluripotent stem cells (iPSCs) and three-dimensional (3D) culturing can improve the in vivo-relevance of preclinical models, while generating 3D cultures though novel bioprinting technologies can offer increased scalability and replicability. As such, there is a need to develop platforms that combine iPSC-derived cells with 3D bioprinting to produce scalable, tunable, and biomimetic cultures for preclinical drug discovery applications. We report a biocompatible poly(ethylene glycol)-based matrix which incorporates Arg-Gly-Asp and Tyr-Ile-Gly-Ser-Arg peptide motifs and full-length collagen IV at a stiffness similar to the human brain (1.5 kPa). Using a high-throughput commercial bioprinter we report the viable culture and morphological development of monocultured iPSC-derived astrocytes, brain microvascular endothelial-like cells, neural progenitors, and neurons in our novel matrix. We also show that this system supports endothelial-like vasculogenesis and enhances neural differentiation and spontaneous activity. This platform forms a foundation for more complex, multicellular models to facilitate high-throughput translational drug discovery for CNS disorders.
Collapse
Affiliation(s)
- Michael A. Sullivan
- School of Medical Sciences, The Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Samuel Lane
- School of Chemistry, The Faculty of ScienceThe University of SydneySydneyNew South WalesAustralia
| | | | - Martin Engel
- Inventia Life Science Operations Pty Ltd.AlexandriaNew South WalesAustralia
| | - Eryn L. Werry
- School of Chemistry, The Faculty of ScienceThe University of SydneySydneyNew South WalesAustralia
- Central Clinical School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Michael Kassiou
- School of Chemistry, The Faculty of ScienceThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
46
|
Hong ZX, Zhu ST, Li H, Luo JZ, Yang Y, An Y, Wang X, Wang K. Bioengineered skin organoids: from development to applications. Mil Med Res 2023; 10:40. [PMID: 37605220 PMCID: PMC10463602 DOI: 10.1186/s40779-023-00475-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
Significant advancements have been made in recent years in the development of highly sophisticated skin organoids. Serving as three-dimensional models that mimic human skin, these organoids have evolved into complex structures and are increasingly recognized as effective alternatives to traditional culture models and human skin due to their ability to overcome the limitations of two-dimensional systems and ethical concerns. The inherent plasticity of skin organoids allows for their construction into physiological and pathological models, enabling the study of skin development and dynamic changes. This review provides an overview of the pivotal work in the progression from 3D layered epidermis to cyst-like skin organoids with appendages. Furthermore, it highlights the latest advancements in organoid construction facilitated by state-of-the-art engineering techniques, such as 3D printing and microfluidic devices. The review also summarizes and discusses the diverse applications of skin organoids in developmental biology, disease modelling, regenerative medicine, and personalized medicine, while considering their prospects and limitations.
Collapse
Affiliation(s)
- Zi-Xuan Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Shun-Tian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Hao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Jing-Zhi Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Yu Yang
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Xi Wang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, 100037, China.
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
47
|
Li C, Holman JB, Shi Z, Qiu B, Ding W. On-chip modeling of tumor evolution: Advances, challenges and opportunities. Mater Today Bio 2023; 21:100724. [PMID: 37483380 PMCID: PMC10359640 DOI: 10.1016/j.mtbio.2023.100724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Tumor evolution is the accumulation of various tumor cell behaviors from tumorigenesis to tumor metastasis and is regulated by the tumor microenvironment (TME). However, the mechanism of solid tumor progression has not been completely elucidated, and thus, the development of tumor therapy is still limited. Recently, Tumor chips constructed by culturing tumor cells and stromal cells on microfluidic chips have demonstrated great potential in modeling solid tumors and visualizing tumor cell behaviors to exploit tumor progression. Herein, we review the methods of developing engineered solid tumors on microfluidic chips in terms of tumor types, cell resources and patterns, the extracellular matrix and the components of the TME, and summarize the recent advances of microfluidic chips in demonstrating tumor cell behaviors, including proliferation, epithelial-to-mesenchymal transition, migration, intravasation, extravasation and immune escape of tumor cells. We also outline the combination of tumor organoids and microfluidic chips to elaborate tumor organoid-on-a-chip platforms, as well as the practical limitations that must be overcome.
Collapse
Affiliation(s)
- Chengpan Li
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Joseph Benjamin Holman
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Zhengdi Shi
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Bensheng Qiu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, 230027, China
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Weiping Ding
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
48
|
Buskin A, Scott E, Nelson R, Gaughan L, Robson CN, Heer R, Hepburn AC. Engineering prostate cancer in vitro: what does it take? Oncogene 2023; 42:2417-2427. [PMID: 37438470 PMCID: PMC10403358 DOI: 10.1038/s41388-023-02776-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
A key challenge in the clinical management and cause of treatment failure of prostate cancer (PCa) is its molecular, cellular and clinical heterogeneity. Modelling systems that fully recapitulate clinical diversity and resistant phenotypes are urgently required for the development of successful personalised PCa therapies. The advent of the three-dimensional (3D) organoid model has revolutionised preclinical cancer research through reflecting heterogeneity and offering genomic and environmental manipulation that has opened up unparalleled opportunities for applications in disease modelling, high-throughput drug screening and precision medicine. Despite these remarkable achievements of organoid technology, several shortcomings in emulating the complex tumor microenvironment and dynamic process of metastasis as well as the epigenome profile limit organoids achieving true in vivo functionality. Technological advances in tissue engineering have enabled the development of innovative tools to facilitate the design of improved 3D cancer models. In this review, we highlight the current in vitro 3D PCa models with a special focus on organoids and discuss engineering approaches to create more physiologically relevant PCa organoid models and maximise their translational relevance that ultimately will help to realise the transformational power of precision medicine.
Collapse
Affiliation(s)
- Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma Scott
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ryan Nelson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Luke Gaughan
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig N Robson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| | - Anastasia C Hepburn
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
49
|
Zhao S, Zhang Q, Liu M, Du J, Wang T, Li Y, Zeng W. Application of stem cells in engineered vascular graft and vascularized organs. Semin Cell Dev Biol 2023; 144:31-40. [PMID: 36411157 DOI: 10.1016/j.semcdb.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022]
Abstract
Recent studies report that stem cell therapies have been applied successfully to patients, This has increased anticipations that this regeneration strategy could be a potential method to treat a wide range of intractable diseases some day. Stem cells offer new prospects for the treatment of incurable diseases and for tissue regeneration and repairation because of their unique biological properties. Angiogenesis a key process in tissue regeneration and repairation. Vascularization of organs is one of the main challenges hindering the clinical application of engineered tissues. Efficient production of engineered vascular grafts and vascularized organs is of critical importance for regenerative medicine. In this review, we focus on the types of stem cells that are widely used in tissue engineering and regeneration, as well as their application of these stem cells in the construction of tissue-engineered vascular grafts and vascularization of tissue-engineered organs.
Collapse
Affiliation(s)
- Shanlan Zhao
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Qiao Zhang
- Department of Cell Biology, Third Military Medical University, Chongqing, China; Department of Pain and Rehabilitation, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, China
| | - Min Liu
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Jiahui Du
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Tingting Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Yanzhao Li
- Department of Anatomy, Third Military Medical University, Chongqing, China.
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, China; Jinfeng Laboratory, Chongqing 401329, People's Republic China; State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.
| |
Collapse
|
50
|
Elliott MA, Schweiger HE, Robbins A, Vera-Choqqueccota S, Ehrlich D, Hernandez S, Voitiuk K, Geng J, Sevetson JL, Rosen YM, Teodorescu M, Wagner NO, Haussler D, Mostajo-Radji MA. Internet-connected cortical organoids for project-based stem cell and neuroscience education. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.546418. [PMID: 37503236 PMCID: PMC10369936 DOI: 10.1101/2023.07.13.546418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The introduction of internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell-derived cortical organoids in two different settings: Using microscopy to monitor organoid growth in an introductory tissue culture course, and using high density multielectrode arrays to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses. All together, we propose cloud technologies as an effective and scalable approach for complex project-based university training.
Collapse
Affiliation(s)
- Matthew A.T. Elliott
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Hunter E. Schweiger
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Ash Robbins
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Samira Vera-Choqqueccota
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Drew Ehrlich
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Computational Media, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Sebastian Hernandez
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Kateryna Voitiuk
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Jinghui Geng
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Jess L. Sevetson
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Yohei M. Rosen
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Mircea Teodorescu
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Nico O. Wagner
- College of Arts and Sciences, University of San Francisco, San Francisco, CA, 94117, USA
| | - David Haussler
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Mohammed A. Mostajo-Radji
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
- Live Cell Biotechnology Discovery Lab, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| |
Collapse
|