1
|
Sequeira DP, Suomalainen M, Freitag PC, Plückthun A, Klingenbrunner M, Fischer L, Hemmi S, Münz C, Volle R, Greber UF. Activated blood-derived human primary T cells support replication of HAdV C5 and virus transmission to polarized human primary epithelial cells. J Virol 2025:e0182524. [PMID: 40265914 DOI: 10.1128/jvi.01825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/29/2025] [Indexed: 04/24/2025] Open
Abstract
Human adenoviruses (HAdVs) cause self-limiting disease but are life-threatening to immunocompromised individuals. HAdV-C5 infects epithelial cells of the airways and eyes through aerosols, contaminated hands, or medical instruments, as well as fecal-oral contacts, gives rise to viremia, persisting in lymphoid cells of the gastrointestinal tract. Here, we show that pre-activated human primary blood-derived T cells can be infected with HAdV-C5 in vitro, upon incubation of the virus with a mixture of three distinct homotrimeric adapter proteins that target the virus to T cells. Each of the adapter proteins can bind 1 of the 12 fiber knobs of the virion through a designed ankyrin repeat protein. Two of the adapters contained a single-chain antibody fragment to T cell surface proteins CD3 or CD28, and the third one contained the cytokine interleukin-2. These adapters mediated efficient infection of primary T cells by HAdV-C5 and infectious progeny release, albeit with donor-to-donor variability. Co-culture of well-polarized air-liquid interface human bronchial epithelial cells with infected CD3+ T cells gave rise to progressively increased viral titers from replicating but not from replication-defective E1-deleted HAdV-C5, notably with similar kinetics as cell-free virus infections, suggesting that progeny virus from T cells was further amplified in epithelial cells. This study provides a platform to explore interactions between epithelial and immune cells in acute and persistent HAdV-C5 infection settings.IMPORTANCEMany human adenoviruses (HAdV), including HAdV-C5, infect and propagate to high titers in epithelial cells of the airways. Virus ends up in lymphoid cells of the gastrointestinal and respiratory mucosa, where it can persist subclinically for years, restricted by memory T cells and humoral immune defense. In immunodeficient patients or newborns, however, HAdV can be fatal, coincident with lymphocytopenia and virus proliferation in epithelial cells. Here, we show that activated blood-derived human primary T lymphocytes can be productively infected with HAdV-C5 coated with trimerized adapter proteins targeting CD3, CD28, and the interleukin 2 receptors. A co-culture model of infected T cells and primary human bronchial epithelial cells in the absence of HAdV-specific immune cells showed that progeny virus from T cells was transferred to epithelial cells and led to increased progeny production compared to infected T cells alone, a situation potentially mimicking persistently infected mucosal lymphoid cells in immunosuppressed patients.
Collapse
Affiliation(s)
| | - Maarit Suomalainen
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Patrick C Freitag
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | | | - Lucy Fischer
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Silvio Hemmi
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Christian Münz
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Romain Volle
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Olofsson A, Humbert M, Rekha RS, Frankling MH, Lund-Johansen F, Bergman P, Björkhem-Bergman L, Karlsson AC. Adaptive immune responses against common viruses are sustained and functional in end-of-life patients. iScience 2025; 28:112082. [PMID: 40124502 PMCID: PMC11930376 DOI: 10.1016/j.isci.2025.112082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Viral infections occur with increased frequency in patients in palliative care, impacting their quality of life and increasing mortality rates. Still, the function of the immune system has never been thoroughly studied at the end of life. We investigated virus-specific humoral and cellular immune responses in elderly end-of-life patients (n = 38) and controls (n = 28). Virus-specific T cell responses were characterized using high-parameter flow cytometry, after stimulation with cytomegalovirus (CMV) and human coronavirus OC43 peptides. Although some virus-specific T cells from patients exhibited elevated expression of costimulatory and coinhibitory molecules, their functional profile remained largely intact compared to controls. The expression of the cytotoxic markers Granzyme B, CD107a, and 2B4 on CMV-specific T cells correlated closely with survival time. Significantly, our data demonstrate that both humoral and cellular immunity remain responsive and functional against common viruses in end-of-life patients.
Collapse
Affiliation(s)
- Anna Olofsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marion Humbert
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Rokeya S. Rekha
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Helde Frankling
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Fridtjof Lund-Johansen
- Institute of Clinical Medicine, University of Oslo, Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Immunology, Oslo University Hospital, ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Peter Bergman
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Björkhem-Bergman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Research and Development Unit/Palliative Care, Stockholms Sjukhem, Mariebergsgatan 22, Stockholm, Sweden
| | - Annika C. Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Samaan P, Korosec CS, Budylowski P, Chau SLL, Pasculescu A, Qi F, Delgado-Brand M, Tursun TR, Mailhot G, Dayam RM, Arnold CR, Langlois MA, Mendoza J, Morningstar T, Law R, Mihelic E, Sheikh-Mohamed S, Cao EY, Paul N, Patel A, de Launay KQ, Boyd JM, Takaoka A, Colwill K, Matveev V, Yue FY, McGeer A, Straus S, Gingras AC, Heffernen JM, Ostrowski M. mRNA vaccine-induced SARS-CoV-2 spike-specific IFN-γ and IL-2 T-cell responses are predictive of serological neutralization and are transiently enhanced by pre-existing cross-reactive immunity. J Virol 2025; 99:e0168524. [PMID: 39887249 PMCID: PMC11915849 DOI: 10.1128/jvi.01685-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
The contributions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells to vaccine efficacy and durability are unclear. We investigated relationships between mRNA vaccine-induced spike-specific interferon- gamma (IFN-γ) and interleukin-2 (IL-2) T-cell responses and neutralizing antibody development in long-term care home staff doubly vaccinated with BNT162b2 or mRNA-1273. The impacts of pre-existing cross-reactive T-cell immunity on cellular and humoral responses to vaccination were additionally assessed. Mathematical modeling of the kinetics of spike-specific IFN-γ and IL-2 T-cell responses over 6 months post-second dose was bifurcated into recipients who exhibited gradual increases with doubling times of 155 and 167 days or decreases with half-lives of 165 and 132 days, respectively. Differences in kinetics did not correlate with clinical phenotypes. Serological anti-spike IgG, anti-receptor binding domain (RBD) IgG, anti-spike IgA, and anti-RBD IgA antibody levels otherwise decayed in all participants with half-lives of 63, 57, 79, and 46 days, respectively, alongside waning neutralizing capacity (t1/2 = 408 days). Spike-specific T-cell responses induced at 2-6 weeks positively correlated with live viral neutralization at 6 months post-second dose, especially in hybrid immune individuals. Participants with pre-existing cross-reactive T-cell immunity to SARS-CoV-2 exhibited greater spike-specific T-cell responses, reduced anti-RBD IgA antibody levels, and a trending increase in neutralization at 2-6 weeks post-second dose. Non-spike-specific T-cells predominantly targeted SARS-CoV-2 non-structural protein at 6 months post-second dose in cross-reactive participants. mRNA vaccination was lastly shown to induce off-target T-cell responses against unrelated antigens. In summary, vaccine-induced spike-specific T-cell immunity appeared to influence serological neutralizing capacity, with only a modest effect induced by pre-existing cross-reactivity. IMPORTANCE Our findings provide valuable insights into the potential contributions of mRNA vaccine-induced spike-specific T-cell responses to the durability of neutralizing antibody levels in both uninfected and hybrid immune recipients. Our study additionally sheds light on the precise impacts of pre-existing cross-reactive T-cell immunity to severe acute respiratory syndrome coronavirus 2 on the magnitude and kinetics of cellular and humoral responses to vaccination. Accordingly, our data will help optimize the development of next-generation T cell-based coronavirus vaccines and vaccine regimens to maximize efficacy and durability.
Collapse
Affiliation(s)
- Philip Samaan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Chapin S Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, Toronto, Ontario, Canada
- Center for Disease Modelling, Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Patrick Budylowski
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Serena L L Chau
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Freda Qi
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | | | - Tulunay R Tursun
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Geneviève Mailhot
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Roya Monica Dayam
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Corey R Arnold
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Justin Mendoza
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Ryan Law
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erik Mihelic
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Eric Yixiao Cao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nimitha Paul
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Anjali Patel
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | | | - Jamie M Boyd
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Alyson Takaoka
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Vitaliy Matveev
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Feng Yun Yue
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Allison McGeer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Sharon Straus
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jane M Heffernen
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, Toronto, Ontario, Canada
- Center for Disease Modelling, Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Mario Ostrowski
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Unity Health Toronto, St Michael's Hospital, Toronto, Ontario, Canada
- Keenan Research Center for Biomedical Science, St Michael's Hospital Keenan, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Chan C, Loh JXY, Sin WX, Teo DBL, Tan NKZ, Nagarajan C, Chen Y, Lim FLWI, Birnbaum ME, Williams RB, Springs SL. Extracellular viral microRNAs as biomarkers of virus infection in human cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102444. [PMID: 39897577 PMCID: PMC11787021 DOI: 10.1016/j.omtn.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025]
Abstract
Nucleic acid amplification tests (NAATs) have enabled fast and sensitive detection of virus infections but are unable to discriminate between live and dead/inert viral fragments or between latent and reactivated virus infections. Here, we show that extracellular viral microRNAs (viral exmiRs) are cell-free candidate biomarkers of live, latent, and reactivated virus infections, achieving fast (under 1 day) and sensitive (30 attomolar [aM]) detection by quantitative real-time reverse transcription PCR (real-time RT-qPCR). We report that spent-media-derived Epstein-Barr virus (EBV) miR-BART10-3p and herpes simplex virus 1 (HSV-1) miR-H5 are biomarkers of live EBV-2 and HSV-1 infection of T cell cultures, respectively. We identified extracellular human herpesvirus 6 (HHV-6) miR-Ro6-4 as a biomarker of endogenous latent HHV-6 in healthy human donor T cell cultures and identified human cytomegalovirus (HCMV) miR-US5-2-5p and miR-US22-5p as plasma biomarkers of endogenous latent HCMV infection. Viral exmiR profiling of spent media from EBV- and HHV-8-reactivated B cell models revealed specific signatures of elevated EBV miR-BHRF1-2-3p and HHV-8 miR-K12-10a-3p, miR-K12-10b, and miR-K12-12-3p, respectively, during virus reactivation. Our study thus suggests the utility of viral exmiR biomarkers in enabling NAAT-based detection of live, endogenous latent, and reactivated virus infections of cells.
Collapse
Affiliation(s)
- Cheryl Chan
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Joanne Xin Yi Loh
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Wei-Xiang Sin
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Denise Bei Lin Teo
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Nicholas Kwan Zen Tan
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Chandramouli Nagarajan
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore 168582, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 168582, Singapore
| | - Yunxin Chen
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore 168582, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 168582, Singapore
| | - Francesca Lorraine Wei Inng Lim
- Department of Haematology, Singapore General Hospital, Singapore 169608, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Programme, SingHealth Duke-NUS Academic Medical Centre, Singapore 168582, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 168582, Singapore
| | - Michael E. Birnbaum
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rohan B.H. Williams
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Stacy L. Springs
- Critical Analytics for Manufacturing Personalized-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Kim JS, Lee NR, Park KI, Hwang HS, Lee SH, Chung BH, Jung CW, Cho JH, Park WY, Kim HJ, Jeong JC, Yang J, Lee YH, Park JB, Jeon JS, Lee J, Kim YH, Choi SJN, Oh J, Yoon HE, Kim DG, Shin HS, Ban TH, Kim MS, Ko MJ, Jeong KH. Valacyclovir for the prevention of cytomegalovirus infection after kidney transplantation. BMC Infect Dis 2025; 25:314. [PMID: 40045190 PMCID: PMC11881300 DOI: 10.1186/s12879-025-10671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is a frequent complication after kidney transplantation (KT) and has various effects on recipient and graft survival. Although guidelines recommend anti-viral prophylaxis with ganciclovir or valganciclovir, there is a demand for alternative regimen for CMV prevention. We investigated the effects of a 3-month valacyclovir-based prophylaxis on CMV infection and clinical outcomes in KT recipients using a nationwide cohort. METHODS Overall, 2,584 KT recipients from 20 transplant centers registered with the Korean Organ Transplantation Registry between May 2014 and December 2019 were analyzed in this study. The recipients were divided into valacyclovir prophylaxis and non-prophylaxis groups, a 1:3 propensity score matching was performed, and 1,036 recipients (291 and 745 in the prophylaxis and non-prophylaxis groups, respectively) were analyzed. The impact of valacyclovir-based prophylaxis on CMV after KT, other clinical outcomes, and the risk factors for CMV infection development were investigated. RESULTS The prophylaxis group showed a lower incidence of CMV infection and rejection compared to the non-prophylaxis group (3.64 vs. 10.25 events/100 person-years and 1.85 vs. 7.27 events/100 person-years, respectively). Valacyclovir prophylaxis, donor age, deceased donor, length of hospitalization after KT, anti-thymocyte globulin use, and CMV serological mismatch between the donor and recipient were independent risk factors for CMV infection after KT. CONCLUSIONS Valacyclovir prophylaxis after KT significantly reduced CMV infection and rejection. We suggest that valacyclovir could be considered as an alternative strategy for CMV prophylaxis after KT. However, our study has limitations, including its retrospective design, variability in valacyclovir dosing and CMV monitoring, and unassessed confounding factors. Further prospective studies with standardized protocols and larger cohorts are needed to validate our findings.
Collapse
Grants
- 2014-ER6301-00, 2014-ER6301-01, 2014-ER6301-02, 2017-ER6301-00, 2017-ER6301-01, and 2017-ER6301-02 "National Institute of Health" research project
- 2014-ER6301-00, 2014-ER6301-01, 2014-ER6301-02, 2017-ER6301-00, 2017-ER6301-01, and 2017-ER6301-02 "National Institute of Health" research project
- NA-21-002 National Evidence-based Healthcare Collaborating Agency
Collapse
Affiliation(s)
- Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Na Rae Lee
- Division of Healthcare Technology Assessment Research, National Evidence-Based Healthcare Collaborating Agency, 400, Neungdong-Ro, Gwangjin-Gu, Seoul, 04933, Republic of Korea
| | - Kyun-Ik Park
- Division of Healthcare Technology Assessment Research, National Evidence-Based Healthcare Collaborating Agency, 400, Neungdong-Ro, Gwangjin-Gu, Seoul, 04933, Republic of Korea
| | - Hyeon Seok Hwang
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Sang Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary'S Hospital, Seoul, Republic of Korea
| | - Cheol Woong Jung
- Department of Surgery, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Woo Yeong Park
- Division of Nephrology, Department of Internal Medicine, Keimyung University School of Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Hyo Jin Kim
- Division of Nephrology, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Jong Cheol Jeong
- Division of Nephrology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jaeseok Yang
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Jeon
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Juhan Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeong Hoon Kim
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Soo Jin Na Choi
- Department of Surgery, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jieun Oh
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hye Eun Yoon
- Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Deok Gie Kim
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju Severance Christian Hospital, Wonju, Republic of Korea
| | - Ho Sik Shin
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea
- Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Tae Hyun Ban
- Division of Nephrology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myoung Soo Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Jung Ko
- Division of Healthcare Technology Assessment Research, National Evidence-Based Healthcare Collaborating Agency, 400, Neungdong-Ro, Gwangjin-Gu, Seoul, 04933, Republic of Korea.
| | - Kyung Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University Medical Center, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
6
|
De Bartolo A, Angelone T, Rocca C. Elucidating emerging signaling pathways driving endothelial dysfunction in cardiovascular aging. Vascul Pharmacol 2025; 158:107462. [PMID: 39805379 DOI: 10.1016/j.vph.2025.107462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
The risk for developing cardiovascular diseases dramatically increases in older individuals, and aging vasculature plays a crucial role in determining their morbidity and mortality. Aging disrupts endothelial balance between vasodilators and vasoconstrictors, impairing function and promoting pathological vascular remodeling. In this Review, we discuss the impact of key and emerging molecular pathways that transduce aberrant inflammatory signals (i.e., chronic low-grade inflammation-inflammaging), oxidative stress, and mitochondrial dysfunction in aging vascular compartment. We focus on the interplay between these events, which contribute to generating a vicious cycle driving the progressive alterations in vascular structure and function during cardiovascular aging. We also discuss the primary role of senescent endothelial cells and vascular smooth muscle cells, and the potential link between vascular and myeloid cells, in impairing plaque stability and promoting the progression of atherosclerosis. The aim of this summary is to provide potential novel insights into targeting these processes for therapeutic benefit.
Collapse
Affiliation(s)
- Anna De Bartolo
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
7
|
Coskun E, Kakkar F, Riley LE, Ciaranello AL, Prabhu M. Evaluation and Management of Congenital Cytomegalovirus Infection. Obstet Gynecol 2025; 145:297-306. [PMID: 39847776 DOI: 10.1097/aog.0000000000005840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025]
Abstract
The purpose of this review is to serve as an update on congenital cytomegalovirus (CMV) evaluation and management for obstetrician-gynecologists and to provide a framework for counseling birthing people at risk for or diagnosed with a primary CMV infection or reactivation or reinfection during pregnancy. A DNA virus, CMV is the most common congenital viral infection and the most common cause of nongenetic childhood hearing loss in the United States. The risk of congenital CMV infection from transplacental viral transfer depends on the gestational age at the time of maternal infection and whether the infection is primary or nonprimary. Although the risk of congenital CMV infection is lower with infection at earlier gestational ages, clinical sequelae are more severe with maternal infections earlier in gestation. At present, routine screening for maternal CMV infection is not recommended by U.S. guidelines. When maternal primary infection is confirmed in early pregnancy, emerging data support consideration of maternal antiviral therapy to prevent congenital CMV infection. When congenital CMV infection is confirmed, typically after an abnormal prenatal ultrasound result, there are more limited data on the utility of maternal antiviral therapy. Universal newborn screening for congenital CMV infection is not mandatory in most U.S. states at present. Newborns diagnosed with congenital CMV infection undergo an extensive evaluation to determine whether neurologic symptoms are present, which guides postnatal evaluation and management. In this review, we discuss the diagnosis and management of maternal CMV infection, the risk and diagnosis of congenital CMV infection, prevention and potential treatment of congenital CMV infection in utero, and neonatal congenital CMV infection diagnosis and management.
Collapse
Affiliation(s)
- Elif Coskun
- Medical Practice Evaluation Center, the Division of Infectious Disease, and the Division of Maternal Fetal Medicine, Massachusetts General Hospital, Boston, Massachusetts; the Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada; and the Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, New York
| | | | | | | | | |
Collapse
|
8
|
Mayhew JA, Witten AJ, Bond CA, Opoka RO, Bangirana P, Conroy AL, Hernandez-Alvarado N, Schleiss MR, John CC. Cytomegalovirus reactivation and acute and chronic complications in children with cerebral malaria: a prospective cohort study. Malar J 2025; 24:48. [PMID: 39962580 PMCID: PMC11834542 DOI: 10.1186/s12936-025-05293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Virus co-infection or reactivation may modify the host response during cerebral malaria. Cytomegalovirus (CMV) DNAemia has been associated with increased morbidity and mortality in adults with sepsis; however, the impact of CMV DNAemia on adverse outcomes in children with cerebral malaria is unknown. METHODS Clinical, physiological, and neurocognitive outcomes were compared in children aged 18 months to 12 years with cerebral malaria (N = 242) based on the presence or absence of CMV DNAemia 24 h after admission. The primary study outcome was subsequent in-hospital mortality. Secondary outcomes included the presence of acute kidney injury, neurocognitive impairment over a 2-year follow-up, and chronic kidney disease at the 1-year follow-up. Markers of platelet and endothelial cell activation and oxidative and nitrosative stress were measured to characterize the mechanisms by which CMV DNAemia might contribute to pathogenesis. RESULTS CMV DNAemia was present in 33 children with cerebral malaria (13.6%) 24 h after admission. CMV DNAemia was not significantly associated with mortality in this study. Children with CMV-DNAemia had a higher prevalence of acute kidney injury than those without CMV-DNAemia (59.4% vs. 38.6%, p = 0.03). There was no difference in the prevalence of chronic kidney disease or long-term neurocognitive impairment based on the presence of DNAemia. CMV DNAemia was associated with elevated plasma levels of P-selectin, angiopoietin-1, asymmetric dimethylarginine, and platelet counts. CONCLUSIONS In children with cerebral malaria, CMV DNAemia is associated with acute kidney injury but not in-hospital mortality, chronic kidney disease, or long-term neurocognitive impairment.
Collapse
Affiliation(s)
- Jonathan A Mayhew
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 705 Riley Hospital Dr, Indianapolis, IN, 46202, USA
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker, M.D. School of Medicine, Kalamazoo, MI, USA
| | - Andrew J Witten
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 705 Riley Hospital Dr, Indianapolis, IN, 46202, USA
| | - Caitlin A Bond
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 705 Riley Hospital Dr, Indianapolis, IN, 46202, USA
| | - Robert O Opoka
- Aga Khan University, Nairobi, Kenya
- Global Health Uganda, Kampala, Uganda
| | - Paul Bangirana
- Global Health Uganda, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 705 Riley Hospital Dr, Indianapolis, IN, 46202, USA
| | | | - Mark R Schleiss
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 705 Riley Hospital Dr, Indianapolis, IN, 46202, USA.
| |
Collapse
|
9
|
Blanco R, Muñoz JP. Human Cytomegalovirus Infection and Breast Cancer: A Literature Review of Clinical and Experimental Data. BIOLOGY 2025; 14:174. [PMID: 40001942 PMCID: PMC11851556 DOI: 10.3390/biology14020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 02/27/2025]
Abstract
Breast cancer (BC) remains a significant global health challenge, highlighting the need for continued research into novel risk factors, diagnostic approaches, and personalized treatments. Among emerging risk factors, viral infections have been implicated as potential contributors to breast carcinogenesis and BC progression. Recent evidence suggests that specific oncogenic strains of human cytomegalovirus (HCMV) may have the capacity to transform human mammary epithelial cells. This review assesses clinical data regarding HCMV presence in both tumor and non-tumor breast tissues, examining the role of HCMV oncoproteins in BC development and progression. Current findings indicate a higher prevalence of HCMV infection in breast carcinomas compared to non-tumor tissues, associated with an elevated risk of BC. Additionally, the HCMV-driven breast carcinogenesis model proposed here suggests that HCMV oncoproteins may activate multiple oncogenic pathways, fostering cell proliferation, survival, and tumor development. A deeper understanding of the role of HCMV in BC could enhance risk stratification and support the creation of targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| |
Collapse
|
10
|
Medica S, Denton M, Diggins NL, Kramer-Hansen O, Crawford LB, Mayo AT, Perez WD, Daily MA, Parkins CJ, Slind LE, Pung LJ, Weber WC, Jaeger HK, Streblow ZJ, Sulgey G, Kreklywich CN, Alexander T, Rosenkilde MM, Caposio P, Hancock MH, Streblow DN. Third intracellular loop of HCMV US28 is necessary for signaling and viral reactivation. J Virol 2025; 99:e0180124. [PMID: 39655954 PMCID: PMC11784217 DOI: 10.1128/jvi.01801-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/13/2024] [Indexed: 02/01/2025] Open
Abstract
The human cytomegalovirus (HCMV) encoded chemokine receptor US28 plays a critical role in viral pathogenesis, mediating several processes such as cellular migration, differentiation, transformation, and viral latency and reactivation. Despite significant research examining the signal transduction pathways utilized by US28, the precise mechanism by which US28 activates these pathways remains unclear. We performed a mutational analysis of US28 to identify signaling domains that are critical for functional activities. Our results indicate that specific residues within the third intracellular loop (ICL3) of US28 are major determinants of G-protein coupling and downstream signaling activity. Alanine substitutions at positions S218, K223, and R225 attenuated US28-mediated activation of MAPK and RhoA signal transduction pathways. Furthermore, we show that mutations at positions S218, K223, or R225 result in impaired coupling to multiple Gα isoforms. However, these substitutions did not affect US28 plasma membrane localization or the receptor internalization rate. Utilizing CD34+ HPC models, we demonstrate that attenuation of US28 signaling via mutation of residues within the ICL3 region results in an inability of the virus to efficiently reactivate from latency. These results were recapitulated in vivo, utilizing a humanized mouse model of HCMV infection. Together, our results provide new insights into the mechanism by which US28 manipulates host signaling networks to mediate viral latency and reactivation. The results reported here will guide the development of targeted therapies to prevent HCMV-associated disease.IMPORTANCEHuman cytomegalovirus (HCMV) is a β-herpesvirus that infects between 44% and 100% of the world population. Primary infection is typically asymptomatic and results in the establishment of latent infection within CD34+hematopoietic progenitor cells (HPCs). However, reactivation from latent infection remains a significant cause of morbidity and mortality in immunocompromised individuals. The viral chemokine receptor US28 influences various cellular processes crucial for viral latency and reactivation, yet the precise mechanism by which US28 functions remains unclear. Through mutational analysis, we identified key residues within the third intracellular loop (ICL3) of US28 that govern G-protein coupling, downstream signaling, and viral reactivation in vitro and in vivo. These findings offer novel insights into how US28 manipulates host signaling networks to regulate HCMV latency and reactivation and expand our understanding of HCMV pathogenesis.
Collapse
Affiliation(s)
- Samuel Medica
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Nicole L. Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Olivia Kramer-Hansen
- Department of Biomedical Sciences Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Lindsey B. Crawford
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Adam T. Mayo
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Wilma D. Perez
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael A. Daily
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Christopher J. Parkins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Luke E. Slind
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lydia J. Pung
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Whitney C. Weber
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Hannah K. Jaeger
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Zachary J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Gauthami Sulgey
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Timothy Alexander
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences Molecular Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, USA
| |
Collapse
|
11
|
Otero CE, Petkova S, Ebermann M, Taher H, John N, Hoffmann K, Davalos A, Moström MJ, Gilbride RM, Papen CR, Barber-Axthelm A, Scheef EA, Barfield R, Sprehe LM, Kendall S, Manuel TD, Beechwood T, Nguyen LK, Vande Burgt NH, Chan C, Denton M, Streblow ZJ, Streblow DN, Tarantal AF, Hansen SG, Kaur A, Permar S, Früh K, Hengel H, Malouli D, Kolb P. Rhesus Cytomegalovirus-encoded Fcγ-binding glycoproteins facilitate viral evasion from IgG-mediated humoral immunity. Nat Commun 2025; 16:1200. [PMID: 39885150 PMCID: PMC11782611 DOI: 10.1038/s41467-025-56419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Human cytomegalovirus (HCMV) encodes four viral Fc-gamma receptors (vFcγRs) that counteract antibody-mediated activation in vitro, but their role in infection and pathogenesis is unknown. To examine their in vivo function in an animal model evolutionarily closely related to humans, we identified and characterized Rh05, Rh152/151 and Rh173 as the complete set of vFcγRs encoded by rhesus CMV (RhCMV). Each one of these proteins displays functional similarities to their prospective HCMV orthologs with respect to antagonizing host FcγR activation in vitro. When RhCMV-naïve male rhesus macaques were infected with vFcγR-deleted RhCMV, peak plasma DNAemia levels and anti-RhCMV antibody responses were comparable to wildtype infections of both male and female animals. However, the duration of plasma DNAemia was significantly shortened in immunocompetent, but not in CD4 + T cell-depleted animals. Since vFcγRs were not required for superinfection of rhesus macaques, we conclude that these proteins can prolong lytic replication during primary infection by evading virus-specific adaptive immune responses, particularly antibodies.
Collapse
Affiliation(s)
- Claire E Otero
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Sophia Petkova
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Ebermann
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Husam Taher
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Nessy John
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Katja Hoffmann
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Angel Davalos
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Matilda J Moström
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Courtney R Papen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Aaron Barber-Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Elizabeth A Scheef
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Lesli M Sprehe
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Savannah Kendall
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Tabitha D Manuel
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Teresa Beechwood
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Linh Khanh Nguyen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Nathan H Vande Burgt
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Zachary J Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, CA, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Sallie Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, USA.
| | - Philipp Kolb
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Permar SR, Schleiss MR, Plotkin SA. A vaccine against cytomegalovirus: how close are we? J Clin Invest 2025; 135:e182317. [PMID: 39744948 DOI: 10.1172/jci182317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
The pursuit of a vaccine against the human cytomegalovirus (HCMV) has been ongoing for more than 50 years. HCMV is the leading infectious cause of birth defects, including damage to the brain, and is a common cause of complications in organ transplantation. The complex biology of HCMV has made vaccine development difficult, but a recent meeting sponsored by the National Institute of Allergy and Infectious Diseases in September of 2023 brought together experts from academia, industry, and federal agencies to discuss progress in the field. The meeting reviewed the status of candidate HCMV vaccines under study and the challenges in clinical trial design in demonstrating efficacy against congenital CMV infection or the reduction of HCMV disease following solid organ transplantation or hematopoietic stem cell transplantation. Discussion in the meeting revealed that, with the numerous candidate vaccines that are under study, it is clear that a safe and effective HCMV vaccine is within reach. Meeting attendees achieved a consensus opinion that even a partially effective vaccine would have a major effect on the global health consequences of HCMV infection.
Collapse
Affiliation(s)
- Sallie R Permar
- Department of Pediatrics, Weill Cornell Medical Center, New York, New York, USA
| | - Mark R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stanley A Plotkin
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Vaxconsult, Doylestown, Pennsylvania, USA
| |
Collapse
|
13
|
Savitz J, McKinney BA, Meier TB, Zheng H, Ford BN, Yolken RH, Teague TK, Cole SW. Nuclear factor kappa-B cell (NF-κB), interferon regulatory Factor, and glucocorticoid receptor pathway activation in major depressive Disorder: The role of cytomegalovirus infection. Brain Behav Immun 2025; 123:1052-1060. [PMID: 39532200 PMCID: PMC11624063 DOI: 10.1016/j.bbi.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Altered activity of major immunoregulatory pathways has been reported in major depressive disorder (MDD) and is thought to underlie the elevations in circulating inflammatory mediators present in a subgroup of patients. However, the drivers of these changes in gene expression remain unclear. One potential modulator of immune function is viral infection. Here we examined the relationship between cytomegalovirus (CMV), a common herpesvirus, that has been shown to be a pathological cofactor in inflammatory disorders, and activity of key coordinators of the innate inflammatory response in MDD. We used RNAseq to characterize gene expression differences in in 79 unmedicated individuals with MDD and 80 healthy controls (HCs). A well-established bioinformatic strategy was used to quantify transcription control pathway activity based on the relative prevalence of pre-specified transcription factor-binding motifs in the promoters of differentially expressed genes. The main aim was to characterize diagnostic differences in immunoregulatory pathway activity and determine if these were related to CMV serostatus or antibody titer (viral reactivation). Significantly increased activity of interferon regulatory factor 1 (IRF1) and nuclear factor kappa-B cell (NF-κB) pathways was observed in the MDD group compared with HCs. Transcript Origin Analyses using cell-specific reference transcriptomes indicated that the MDD-associated transcriptome changes derived primarily from myeloid lineage immune cells (classical and non-classical monocytes). A more modest MDD-associated upregulation of glucocorticoid receptor (GR) pathway activity was also present. CMV infection/activity across the combined MDD and HC groups was weakly related to GR pathway activation but not to IRF1 and NF-κB activity; the most salient signature of CMV was activation and/or expansion of the CD8+ T-cell population. The elevated MDD-associated NF-κB (but not IRF1) activity was markedly attenuated after controlling for CMV antibody titer or for CD8+ T-cell prevalence. At least some of the NF-κB signal in MDD may be attributable to the cellular immune response to CMV, suggesting that CMV infection may be one of several pathways contributing to inflammation in depression. The pronounced activation of the antiviral IRF-1 pathway in MDD suggests the contribution of viral processes although this specific antiviral effect was not specific to CMV.CMV may indirectly drive interferon responses by impairing T-cell control of other viral infections.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa OK, USA; Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa OK, USA.
| | - Brett A McKinney
- Department of Mathematics and Computer Science, The University of Tulsa, Tulsa, OK, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI USA
| | - Haixia Zheng
- Laureate Institute for Brain Research, Tulsa OK, USA; Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa OK, USA
| | - Bart N Ford
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK, USA; Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK, USA; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Steve W Cole
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Los Angeles, CA, USA; University of California, Los Angeles, David Geffen School of Medicine, Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA, USA
| |
Collapse
|
14
|
Bewarder M, Christofyllakis K, Petersen M, Held G, Smola S, Carbon G, Bette B, Link A, Kiefer M, Bittenbring JT, Kos IA, Lesan V, Kaddu-Mulindwa D, Thurner L, Neumann F. Cytomegalovirus-Specific T-Cell-Receptor-like Antibodies Target In Vivo-Infected Human Leukocytes Inducing Natural Killer Cell-Mediated Antibody-Dependent Cellular Cytotoxicity. Int J Mol Sci 2024; 25:12908. [PMID: 39684614 DOI: 10.3390/ijms252312908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Cytomegalovirus (CMV) reactivation after stem cell or solid organ transplantation remains a major cause of morbidity and mortality in this setting. T-cell receptor (TCR)-like antibodies bind to intracellular peptides presented in major histocompatibility complex (MHC) molecules on the cell surface and may have the potential to replace T-cell function in immunocompromised patients. Three previously selected CMV-specific, human leukocyte antigen (HLA)-restricted (HLA-A*0101, HLA-A*0201 and HLA-B*0702) Fab-antibodies (A6, C1 and C7) were produced as IgG antibodies with Fc optimization. All antibodies showed specific binding to CMV peptide-loaded tumor cell lines and primary fibroblasts expressing the corresponding MHC-I molecules, leading to specific target cell lysis after the addition of natural killer (NK) cells. When deployed in combination as an antibody pool against target cells expressing more than one matching HLA allele, cytotoxic effects were amplified accordingly. CMV-specific TCR-like antibodies were also able to mediate their cytotoxic effects through neutrophils, which is important considering the delayed recovery of NK cells after stem cell transplantation. When tested on patient blood obtained during CMV reactivation, CMV-specific antibodies were able to bind to and induce cytotoxic effects in lymphocytes. CMV-specific TCR-like antibodies may find application in patients with CMV reactivation or at risk of CMV reactivation. In contrast to previous HLA/peptide-directed therapeutic approaches, the concept of a TCR-like antibody repertoire covering more than one HLA allele would make this therapeutic format available to a much larger group of patients.
Collapse
Affiliation(s)
- Moritz Bewarder
- Internal Medicine I, Saarland University Medical Center, 66421 Homburg, Germany
| | | | - Milena Petersen
- Internal Medicine I, Saarland University Medical Center, 66421 Homburg, Germany
| | - Gerhard Held
- Internal Medicine I, Westpfalz-Klinikum Kaiserslautern, 67655 Kaiserslautern, Germany
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, 66421 Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrucken, Germany
| | - Gabi Carbon
- Internal Medicine I, Saarland University Medical Center, 66421 Homburg, Germany
| | - Birgit Bette
- Internal Medicine I, Saarland University Medical Center, 66421 Homburg, Germany
| | - Annika Link
- Internal Medicine I, Saarland University Medical Center, 66421 Homburg, Germany
| | - Maximilian Kiefer
- Internal Medicine I, Saarland University Medical Center, 66421 Homburg, Germany
| | | | - Igor Age Kos
- Internal Medicine I, Saarland University Medical Center, 66421 Homburg, Germany
| | - Vadim Lesan
- Internal Medicine I, Saarland University Medical Center, 66421 Homburg, Germany
| | | | - Lorenz Thurner
- Internal Medicine I, Saarland University Medical Center, 66421 Homburg, Germany
| | - Frank Neumann
- Internal Medicine I, Saarland University Medical Center, 66421 Homburg, Germany
| |
Collapse
|
15
|
Planchon MS, Fishman JA, El Khoury J. Modulation of Monocyte Effector Functions and Gene Expression by Human Cytomegalovirus Infection. Viruses 2024; 16:1809. [PMID: 39772120 PMCID: PMC11680302 DOI: 10.3390/v16121809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Monocytes are crucial players in innate immunity. The human cytomegalovirus (CMV) infection has significant impacts on monocyte effector functions and gene expression. CMV, a β-herpesvirus, disrupts key monocyte roles, including phagocytosis, antigen presentation, cytokine production, and migration, impairing their ability to combat pathogens and activate adaptive immune responses. CMV modulates monocyte gene expression, decreasing their capacity for antigen presentation and phagocytosis while increasing pro-inflammatory cytokine production, which can contribute to tissue damage and chronic inflammation. CMV also alters monocyte migration to sites of infection while promoting trans-endothelial migration, thus aiding viral dissemination. Additionally, the virus affects reactive oxygen species (ROS) production, thereby contributing to end-organ disease associated with CMV infection. Overall, these changes enhance viral persistence during acute infection and facilitate immune evasion during latency. We highlight the clinical significance of these disruptions, particularly in immunocompromised patients such as transplant recipients, where the modulation of monocyte function by CMV exacerbates risks for infection, inflammation, and graft rejection. An understanding of these mechanisms will inform therapeutic strategies to mitigate CMV-related complications in vulnerable populations.
Collapse
Affiliation(s)
- Matthew S. Planchon
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA;
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jay A. Fishman
- Transplant Infectious Disease and Compromised Host Program, Division of Infectious Diseases, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA;
| | - Joseph El Khoury
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA;
- Transplant Infectious Disease and Compromised Host Program, Division of Infectious Diseases, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
16
|
Razonable RR. Cytomegalovirus Infection After Solid Organ Transplantation: How I Use Cell-Mediated Immune Assays for Management. Viruses 2024; 16:1781. [PMID: 39599895 PMCID: PMC11598960 DOI: 10.3390/v16111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION The pathogenesis and outcome of cytomegalovirus (CMV) infection after solid organ transplantation (SOT) reflects the interplay between viral replication and CMV-specific immunity. Despite advances in its diagnosis and treatment, CMV continues to cause significant morbidity after SOT. Since CMV is an opportunistic pathogen that occurs as a result of impaired pathogen-specific immunity, laboratory assays that measure CMV-specific immune responses may be useful in assisting clinicians in its management. METHODS AND RESULTS The author summarizes the evolving and emerging data on the clinical utility of assays that quantify cell-mediated immune responses to CMV in SOT recipients. The majority of publications are observational studies that demonstrate that a lack or deficiency in CMV-specific cell-mediated immunity is correlated with a heightened risk of primary, reactivation, or recurrent CMV after transplantation. A few prospective interventional studies have utilized CMV-specific cell-mediated immune assays in guiding the duration of antiviral prophylaxis among CMV-seropositive SOT recipients. Likewise, CMV-specific cell-mediated immunity assays have been suggested to inform the need for secondary antiviral prophylaxis and immunologic optimization to prevent CMV relapse after treatment. CONCLUSIONS CMV-specific cell-mediated immune assays are emerging to assist transplant clinicians in predicting a patient's risk of CMV after transplantation, and these assays have been utilized to individualize the approach to CMV prevention and treatment. The author suggests the conduct of more interventional studies to further solidify the role of CMV-specific cell-mediated immune assays in routine clinical practice.
Collapse
Affiliation(s)
- Raymund R Razonable
- Division of Infectious Diseases and the William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Razonable RR. Pathogen-specific cell-mediated immunity to guide the management of cytomegalovirus in solid organ transplantation: state of the art clinical review. Expert Rev Clin Immunol 2024; 20:1367-1380. [PMID: 39039915 DOI: 10.1080/1744666x.2024.2384060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/21/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) is a common opportunistic infection after solid organ transplantation, with significant impact on morbidity and long-term survival. Despite advances in diagnostics and therapeutics, the management of CMV remains very challenging. AREAS COVERED This article reviews emerging data on the clinical utility of laboratory assays that quantify cell-mediated immune responses to CMV. Observational studies have consistently demonstrated that a deficiency in pathogen-specific cell-mediated immunity is correlated with a heightened risk of primary, reactivation or recurrent CMV after transplantation. A limited number of interventional studies have recently investigated cell-mediated immune assays in guiding the prevention and treatment of CMV infection after solid organ transplantation. EXPERT OPINION The pathogenesis and outcome of CMV after solid organ transplantion reflect the interplay between viral replication and CMV-specific immune reconstitution. Research in CMV-specific cell-mediated immunity paved way for the development of several laboratory assays that may assist clinicians in predicting the risk of CMV after transplantation, individualize the approach to CMV disease prevention, guide the need and duration of treatment of CMV infection, and predict the risk of relapse after treatment. More interventional studies are needed to further solidify the role of cell-mediated immune assays in various clinical situations after transplantation.
Collapse
Affiliation(s)
- Raymund R Razonable
- Division of Public Health, Infectious Diseases and Occupational Medicine, and the William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
Pata R, Kristeva J, Kosuru B. Pneumonia in Transplant Recipients: A Comprehensive Review of Diagnosis and Management. Cureus 2024; 16:e73669. [PMID: 39544950 PMCID: PMC11562015 DOI: 10.7759/cureus.73669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
Transplant recipients have an increased risk of complications, including graft dysfunction and infections, which can be life-threatening if not recognized early. Pneumonia ranks as one of the most frequent complications in both solid organ and hematopoietic stem cell transplants. Clinical symptoms manifest late during infections in immunocompromised patients. An aggressive approach centered on early confirmatory diagnosis and a low threshold for empiric therapy is often the most effective strategy. The isolation of a pathogen in an upper airway sample does not necessarily mean the same organism is responsible for pneumonia. Viruses such as CMV (cytomegalovirus virus) may function as co-pathogens for opportunistic infections in transplant recipients in addition to causing their own primary infectious syndrome. Furthermore, some viruses exhibit immunomodulatory effects that can affect the graft function. Given the exhaustive list of causative pathogens responsible for pneumonia, the best approach to the diagnosis is to have a conceptual framework that includes a detailed history, such as the type of transplant, degree of immunosuppression, antimicrobial prophylaxis, risk factors, time of presentation since transplantation and the radiographic pattern on the CT chest (computer tomography of the chest). Management depends predominantly on the degree of antimicrobial resistance, drug-to-drug interaction, and adjustments to the immunosuppression.
Collapse
Affiliation(s)
- Ramakanth Pata
- Pulmonary and Critical Care Medicine, One Brooklyn Health, New York, USA
- Pulmonary and Critical Care Medicine, University of Cincinnati Medical Center, Cincinatti, USA
| | | | - Bhanu Kosuru
- Internal Medicine, University of Pittsburgh Medical Center (UPMC) East, Monroeville, USA
| |
Collapse
|
19
|
Stoicescu ER, Ghenciu LA, Iacob R, Ardelean AI, Dăescu E, Hațegan OA, Manolescu D, Tudorache E, Boru C, Dima M. CMV Retinitis in the Context of SARS-CoV-2 Infection: A Case Study and Comprehensive Review of Viral Interactions. Pathogens 2024; 13:938. [PMID: 39599491 PMCID: PMC11597558 DOI: 10.3390/pathogens13110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
PURPOSE Cytomegalovirus (CMV) retinitis is a sight-threatening condition predominantly affecting immunocompromised individuals, such as those with Human Immunodeficiency Virus (HIV)/Acquired Immunodeficiency Syndrome (AIDS). We aimed to present an observational case report on CMV retinitis following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and to review the literature on the molecular and cellular changes in CMV and SARS-CoV-2 infections and how they may influence each other. Case Description: A 32-year-old man with a history of AIDS presented with decreased vision and ocular pain exacerbated by movement, beginning a day prior. Ocular examination revealed anterior uveitis, corneal endothelial edema, and retinal necrosis in the left eye. CMV retinitis was diagnosed based on positive serologic testing and a low cluster of differentiation 4 (CD4) count, with concurrent SARS-CoV-2 infection detected. Treatment included valganciclovir and topical agents, with a focus on managing CMV complications. This case highlights the potential role of SARS-CoV-2 in reactivating dormant CMV in severely immunocompromised individuals. We also discuss the implications of this interaction for immunocompromised patients, emphasizing the need for vigilant monitoring and personalized treatment strategies. Conclusions: Our case suggests that SARS-CoV-2 may trigger reactivation of CMV infection, leading to bilateral involvement in patients with low CD4 lymphocyte counts, which can result in severe visual impairment. The review discusses the molecular and cellular interactions between CMV and SARS-CoV-2, as well as risk factors, pathophysiology, and diagnostic methods for CMV retinitis, providing recommendations based on the literature findings.
Collapse
Affiliation(s)
- Emil Robert Stoicescu
- Radiology and Medical Imaging University Clinic, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (E.R.S.); (D.M.)
- Research Center for Medical Communication, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
| | - Laura Andreea Ghenciu
- Department of Functional Sciences, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Iacob
- Research Center for Medical Communication, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
- Department of Anatomy and Embriology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Adina Iuliana Ardelean
- Discipline of Ophtalmology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Ecaterina Dăescu
- Department of Anatomy and Embriology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Ovidiu Alin Hațegan
- Discipline of Anatomy and Embriology, Medicine Faculty, “Vasile Goldis” Western University of Arad, Revolution Boulevard 94, 310025 Arad, Romania; (O.A.H.); (C.B.)
| | - Diana Manolescu
- Radiology and Medical Imaging University Clinic, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (E.R.S.); (D.M.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Emanuela Tudorache
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Casiana Boru
- Discipline of Anatomy and Embriology, Medicine Faculty, “Vasile Goldis” Western University of Arad, Revolution Boulevard 94, 310025 Arad, Romania; (O.A.H.); (C.B.)
| | - Mirabela Dima
- Department of Neonatology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
20
|
Evans EF, Saraph A, Tokuyama M. Transactivation of Human Endogenous Retroviruses by Viruses. Viruses 2024; 16:1649. [PMID: 39599764 PMCID: PMC11599155 DOI: 10.3390/v16111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that are part the human genome and are normally silenced through epigenetic mechanisms. However, HERVs can be induced by various host and environmental factors, including viral infection, and transcriptionally active HERVs have been implicated in various physiological processes. In this review, we summarize mounting evidence of transactivation of HERVs by a wide range of DNA and RNA viruses. Though a mechanistic understanding of this phenomenon and the biological implications are still largely missing, the link between exogenous and endogenous viruses is intriguing. Considering the increasing recognition of the role of viral infections in disease, understanding these interactions provides novel insights into human health.
Collapse
Affiliation(s)
| | | | - Maria Tokuyama
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
21
|
Balegamire SJ, Mâsse B, Audibert F, Lamarre V, Giguere Y, Forest JC, Boucoiran I. Association Between Maternal Cytomegalovirus Seropositivity, Preterm Birth, and Preeclampsia in Two Cohorts From Quebec, Canada: A Mediation Analysis. Am J Reprod Immunol 2024; 92:e13941. [PMID: 39436114 DOI: 10.1111/aji.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
PROBLEM Preterm birth and preeclampsia significantly contribute to infant morbidity and mortality, posing critical public health concerns. Viral infections, particularly Cytomegalovirus (CMV), associated with chronic inflammation, may play a role in these adverse pregnancy outcomes. The contribution of CMV to preterm birth and preeclampsia requires further investigation. METHOD OF STUDY Data from 6048 pregnant women from two prospective Quebec cohorts, recruited between May 2005 and August 2012, were analyzed. First-trimester CMV serology was the exposure variable. Associations were assessed using multivariable logistic regression adjusted by inverse probability treatment weighting (IPTW) of propensity scores. Mediation analyses estimated the direct effect of maternal CMV serostatus on preterm birth, excluding mediation by preeclampsia. RESULTS Preterm birth and preeclampsia proportions were 5.1% (95% CI: 4.6-5.7) and 1.9% (95% CI: 1.6-2.3), respectively. Multivariable logistic regression adjusted by IPTW showed associations between CMV seropositivity and preterm birth (OR 1.20, 95% CI: 1.02-1.41) and CMV seropositivity and preeclampsia (OR 1.41, 95% CI: 1.08-1.84). Mediation analysis indicated that 97% of the total effect of CMV seropositivity on preterm birth is direct, with the remaining 3% mediated by preeclampsia. CONCLUSIONS CMV seropositivity appears to be a risk factor for both preterm birth and preeclampsia. The effect of maternal CMV seropositivity on preterm birth is primarily direct, not mediated by preeclampsia. Future studies should explore the impact of preventive measures against CMV infection on the incidence of preterm delivery and preeclampsia.
Collapse
Affiliation(s)
- Safari Joseph Balegamire
- Department of Social and Preventive Medicine, École de Santé Publique de Université de Montréal, Montreal, Quebec, Canada
- Women and Children's Infectious Diseases Center, CHU Sainte-Justine Research Center, Montreal, Canada
| | - Benoît Mâsse
- Department of Social and Preventive Medicine, École de Santé Publique de Université de Montréal, Montreal, Quebec, Canada
- Applied Clinical Research Unit, CHU Sainte Justine Research Center, Montreal, Canada
| | - François Audibert
- Department of Obstetrics and Gynecology, Division of Maternofetal Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Valerie Lamarre
- Department of Obstetrics and Gynecology, Division of Maternofetal Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Yves Giguere
- CHU de Québec-Université Laval Research Center, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Jean-Claude Forest
- CHU de Québec-Université Laval Research Center, Quebec City, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Isabelle Boucoiran
- Department of Social and Preventive Medicine, École de Santé Publique de Université de Montréal, Montreal, Quebec, Canada
- Women and Children's Infectious Diseases Center, CHU Sainte-Justine Research Center, Montreal, Canada
- Department of Obstetrics and Gynecology, Division of Maternofetal Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Aydın Güçlü Ö, Demirdöğen E, Kazak E, Acet Öztürk NA, Yıldız MN, Terzi OE, Görek Dilektaşlı A, Ursavaş A. Prognostic significance of plasma cytomegalovirus (CMV) DNA load in immunocompetent patients with CMV pneumonia: A retrospective cohort study. J Med Virol 2024; 96:e70019. [PMID: 39428968 DOI: 10.1002/jmv.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Cytomegalovirus (CMV) pneumonia, often presented as pneumonitis, is characterized by respiratory failure and large interstitial infiltrates visible on chest radiographs. This retrospective cohort study investigates the predictive significance of plasma CMV DNA load on the short- and long-term mortality among immunocompetent patients diagnosed with CMV pneumonia. The study included 61 immunocompetent patients suspected of having CMV pneumonia, treated with intravenous ganciclovir after positive CMV DNA results from bronchoalveolar lavage or plasma. Our multivariate Cox regression analysis identified several independent predictors of mortality. Having idiopathic pulmonary fibrosis (IPF) significantly increased the risk of in-hospital mortality (HR: 7.27, 95% CI: 1.62-32.52, p = 0.009), as did shorter durations of antiviral therapy (HR: 0.90, 95% CI: 0.84-0.97, p = 0.005) and higher CMV DNA levels (>3870 IU/mL; HR: 9.63, 95% CI: 2.32-39.98, p = 0.002). High CMV DNA levels (>5154 IU/mL) were also predictors of 30-day mortality (HR: 9.39, 95% CI: 2.20-40.01, p = 0.002). For 1-year mortality, the presence of IPF (HR: 2.96, 95% CI: 1.08-8.06, p = 0.034), hypersensitivity pneumonia (HP) (HR: 4.30, 95% CI: 1.57-11.78, p = 0.005), shorter duration of total antiviral therapy (HR: 0.95, 95% CI: 0.93-0.99, p = 0.010), and higher CMV DNA levels (>327 IU/mL) (HR: 3.36, 95% CI: 1.33-8.47, p = 0.010) were identified as independent determinants. The study reveals that IPF increases short and long-term mortality risks, while HP increases long-term mortality. Extended antiviral treatment duration results in a 10% reduction in in-hospital mortality for each additional day of treatment. Furthermore, elevated viral loads are associated with higher mortality rates, highlighting the necessity for careful monitoring.
Collapse
Affiliation(s)
- Özge Aydın Güçlü
- Department of Pulmonology, Faculty of Medicine, Uludağ University, Bursa, Turkey
| | - Ezgi Demirdöğen
- Department of Pulmonology, Faculty of Medicine, Uludağ University, Bursa, Turkey
| | - Esra Kazak
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | | | - Merve Nur Yıldız
- Department of Pulmonology, Faculty of Medicine, Uludağ University, Bursa, Turkey
| | - Orkun Eray Terzi
- Department of Pulmonology, Faculty of Medicine, Uludağ University, Bursa, Turkey
| | | | - Ahmet Ursavaş
- Department of Pulmonology, Faculty of Medicine, Uludağ University, Bursa, Turkey
| |
Collapse
|
23
|
Fierro C, Brune D, Shaw M, Schwartz H, Knightly C, Lin J, Carfi A, Natenshon A, Kalidindi S, Reuter C, Miller J, Panther L. Safety and Immunogenicity of a Messenger RNA-Based Cytomegalovirus Vaccine in Healthy Adults: Results From a Phase 1 Randomized Clinical Trial. J Infect Dis 2024; 230:e668-e678. [PMID: 38478705 PMCID: PMC11420795 DOI: 10.1093/infdis/jiae114] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/11/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND This phase 1 trial evaluated the safety, reactogenicity, and immunogenicity of mRNA-1647, a messenger RNA (mRNA)-based cytomegalovirus (CMV) vaccine, in CMV-seronegative and -seropositive adults. METHODS Participants were randomly assigned to receive 30, 90, 180, or 300 µg of mRNA-1647 or placebo on a 0-, 2-, and 6-month schedule and followed for 12 months after the last dose. RESULTS A total of 154 (80 CMV-seronegative and 74 CMV-seropositive) participants were enrolled; 118 participants were randomized to mRNA-1647 and 36 to placebo. Mean (standard deviation) age was 32.5 (8.6) and 35.1 (8.9) years in the placebo and mRNA-1647 groups, respectively, in phase B (63% and 64% female) and 42.5 (6.2) and 33.3 (8.7) years, respectively, in phase C (2% and 16% female). No deaths, related serious adverse events, or adverse events of special interest were reported. Most adverse reactions were grade ≤2 severity. Increased neutralizing antibody, binding antibody, and antigen-specific cell-mediated responses were observed across mRNA-1647 treatment groups, regardless of CMV serostatus. CONCLUSIONS This phase 1, first-in-human trial demonstrated that mRNA-1647 has an acceptable safety profile in adults and elicits humoral and cellular immune responses. Clinical Trials Registration. NCT03382405.
Collapse
Affiliation(s)
- Carlos Fierro
- Johnson County Clin-Trials, Department of Clinical Safety & Risk Management, Lenexa, Kansas
| | | | | | | | - Conor Knightly
- Moderna, Inc, Department of Clinical Development Operations, Cambridge, Massachusetts
| | - Jiang Lin
- Moderna, Inc, Department of Biostatistics, Cambridge, Massachusetts
| | - Andrea Carfi
- Moderna, Inc, Department of Research and Development, Cambridge, Massachusetts
| | - Andrew Natenshon
- Moderna, Inc, Department of Infectious Disease Development, Cambridge, Massachusetts
| | - Shiva Kalidindi
- Moderna, Inc, Department of Statistical Programming, Cambridge, Massachusetts
| | - Caroline Reuter
- Johnson County Clin-Trials, Department of Clinical Safety & Risk Management, Lenexa, Kansas
| | - Jacqueline Miller
- Moderna, Inc, Department of Infectious Diseases, Cambridge, Massachusetts
| | - Lori Panther
- Moderna, Inc, Department of Infectious Diseases, Cambridge, Massachusetts
| |
Collapse
|
24
|
Clarke M, Falcione S, Boghozian R, Todoran R, Zhang Y, C. Real MG, StPierre A, Joy T, Jickling GC. Viral Infection and Ischemic Stroke: Emerging Trends and Mechanistic Insights. J Am Heart Assoc 2024; 13:e035892. [PMID: 39258541 PMCID: PMC11935600 DOI: 10.1161/jaha.124.035892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024]
Abstract
Population studies have suggested that viral infections may be contributing to risk of ischemic stroke, although the mechanisms for this are unclear. In this review, we examine the epidemiological evidence supporting the involvement of viral diseases, including influenza, COVID-19, chronic herpesvirus infections, and hepatitis C in current trends of stroke incidence. To support these associations, we highlight the virus-host interactions that are critical in the context of stroke, including direct effects of acute and persistent viral infections on vascular function, inflammation, and thrombosis. Additionally, we evaluate the systemic changes that occur during viral infection that can predispose individuals to ischemic stroke, including alterations in blood pressure regulation, coagulation, and lipid metabolism. Our review emphasizes the need to further elucidate precise mechanisms involved in viral infections and stroke risk. Future research will inform the development of targeted interventions for stroke prevention in the context of viral diseases.
Collapse
Affiliation(s)
- Michael Clarke
- Faculty of Medicine and DentistryDepartment of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonABCanada
| | - Sarina Falcione
- Faculty of Medicine and DentistryDepartment of MedicineDivision of NeurologyUniversity of AlbertaEdmontonABCanada
| | - Roobina Boghozian
- Faculty of Medicine and DentistryDepartment of MedicineDivision of NeurologyUniversity of AlbertaEdmontonABCanada
| | - Raluca Todoran
- Faculty of Medicine and DentistryDepartment of MedicineDivision of NeurologyUniversity of AlbertaEdmontonABCanada
| | - Yiran Zhang
- Faculty of Medicine and DentistryDepartment of MedicineDivision of NeurologyUniversity of AlbertaEdmontonABCanada
| | - Maria Guadalupe C. Real
- Faculty of Medicine and DentistryDepartment of MedicineDivision of NeurologyUniversity of AlbertaEdmontonABCanada
| | - Alexis StPierre
- Faculty of Medicine and DentistryDepartment of MedicineDivision of NeurologyUniversity of AlbertaEdmontonABCanada
| | - Twinkle Joy
- Faculty of Medicine and DentistryDepartment of MedicineDivision of NeurologyUniversity of AlbertaEdmontonABCanada
| | - Glen C. Jickling
- Faculty of Medicine and DentistryDepartment of Medical Microbiology and ImmunologyUniversity of AlbertaEdmontonABCanada
- Faculty of Medicine and DentistryDepartment of MedicineDivision of NeurologyUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
25
|
Vandrevala T, Montague A, Boulton R, Coxon K, Jones CE. Exploring the implementation of an educational film within antenatal care to reduce the risk of cytomegalovirus infection in pregnancy: A qualitative study. BMC Pregnancy Childbirth 2024; 24:524. [PMID: 39127657 DOI: 10.1186/s12884-024-06715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Congenital cytomegalovirus (CMV) infection is a leading cause of sensorineural hearing loss and neuro-disability in childhood. In the absence of a licensed vaccine, adoption of hygiene-based measures may reduce the risk of CMV infection in pregnancy, however these measures are not routinely discussed with pregnant women as part of National Health Service (NHS) antenatal care in the United Kingdom (UK). METHODS An exploratory qualitative study was conducted, underpinned by Normalization Process Theory (NPT), to investigate how an educational intervention comprising of a short film about CMV may best be implemented, sustained, and enhanced in real-world routine antenatal care settings. Video, semi-structured interviews were conducted with participants who were recruited using a purposive sample that comprised of midwives providing antenatal care from three NHS hospitals (n = 15) and participants from professional colleges and from organisations or charities providing, or with an interest in, antenatal education or health information in the UK (n = 15). FINDINGS Midwives were reluctant to include CMV as part of early pregnancy discussions about reducing the risk of other infections due to lack of time, knowledge and absence of guidance or policies relating to CMV in antenatal education. However, the educational intervention was perceived to be a useful tool to encourage conversations and empower women to manage risk by all stakeholders, which would overcome some identified barriers. Macro-level challenges such as screening policies and lack of official guidelines to legitimise dissemination were identified. DISCUSSION Successful implementation of education about CMV as part of routine NHS care in the UK will require an increase in awareness and knowledge about CMV amongst midwives. NPT revealed that 'coherence' and 'cognitive participation' between service members are vital to imbed CMV education in routine practice. 'Collective action' and 'reflexive monitoring' is required to sustain service changes.
Collapse
Affiliation(s)
- Tushna Vandrevala
- Centre for Applied Health and Social Care Research, Faculty of Health, Science, Social Care and Education, Kingston University, London, UK.
| | - Amy Montague
- Department of Psychology, Faculty of Business and Social Sciences, Kingston University, London, UK
| | - Richard Boulton
- Centre for Applied Health and Social Care Research, Faculty of Health, Science, Social Care and Education, Kingston University, London, UK
- Centre for Allied Health, St George's, University of London, London, UK
| | - Kirstie Coxon
- School of Nursing and Midwifery, University of Central Lancashire, Preston, UK
| | - Christine E Jones
- Clinical and Experimental Sciences, Faculty of Medicine and Institute for Life Sciences, NIHR Southampton Clinical Research Facility and NIHR Southampton Biomedical Research Centre, University of Southamptonand, University Hospital Southampton NHS Foundation Trust , Southampton, UK
| |
Collapse
|
26
|
Schattner A. The Wide Spectrum of Presentations of Cytomegalovirus Infection in Immunocompetent Hosts: An Exhaustive Narrative Review. Pathogens 2024; 13:667. [PMID: 39204267 PMCID: PMC11357360 DOI: 10.3390/pathogens13080667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
CMV is a ubiquitous DNA virus that establishes infection and results in 40-100% seropositivity. Viral replication occurs following an acquired primary infection (or reinfection) or by the reactivation of life-long latency. In immunocompetent patients, CMV infection is mostly asymptomatic or mild and self-limited. However, an extensive review of the literature published up to April 2024 reveals that despite immunocompetence, CMV can cause a very large variety of clinical syndromes in any part of the gastrointestinal tract (the most common pattern), the central or peripheral nervous system, and the eyes, as well as hematological, pulmonary, cardiac, and cutaneous disease. Not uncommonly, more than one system is involved, and though the disease is often self-limited, treatment with intravenous ganciclovir or oral valganciclovir may be required, and in isolated cases, fatalities may occur. Thus, a potential CMV infection should be considered in the differential of myriad syndromes in non-immunocompromised patients. Associated systemic symptoms (fever, sweats, and weight loss), lymphocytosis, and hepatitis are not uncommon and can be a useful clue. Some populations, such as critically ill patients in intensive care, pregnant women, elderly patients, and those with inflammatory bowel disease, may be more susceptible. Moreover, the potential of past, latent CMV infection (i.e., CMV seropositivity) to be associated with significant cardiovascular morbidity and all-cause mortality years later is intriguing and requires further study. All these data indicate the outstanding importance of developing a vaccine against CMV, which hopefully will become available in the foreseeable future. Meanwhile, a solid diagnosis of active CMV infection can be quickly established (or ruled out) by widely available serology tests and PCR amplification, and clinicians in all disciplines need to be more aware of the diverse guises of CMV infection and remember to consider it in any host, including an immunocompetent one.
Collapse
Affiliation(s)
- Ami Schattner
- The Faculty of Medicine, Hebrew University Hadassah Medical School, Ein Kerem, Jerusalem 91120, Israel
| |
Collapse
|
27
|
Zhang XJ, Zhang JX, Qu Y, Peng RM, Zhang P, Hong J. Cytokine analysis of aqueous humor in patients with cytomegalovirus corneal endotheliitis. Graefes Arch Clin Exp Ophthalmol 2024; 262:2593-2600. [PMID: 38446197 DOI: 10.1007/s00417-024-06417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/25/2024] [Accepted: 02/11/2024] [Indexed: 03/07/2024] Open
Abstract
PURPOSE To evaluate cytokine levels of aqueous humor in patients with cytomegalovirus (CMV) corneal endotheliitis and their relationships with CMV DNA load. METHODS 44 aqueous humor samples were obtained from 26 patients with CMV corneal endotheliitis at various stages of treatment. 33 samples obtained from cataract patients during the same period were selected as a control group. Each sample was used to measure the concentration of the CMV DNA load using real-time quantitative polymerase chain reaction, and to examine the levels of IL-6, IL-8, IL-10, MCP-1, VCAM-1, VEGF, IP-10, G-CSF, ICAM-1 and IFN-γ using a cytometric bead array. RESULTS All 10 cytokines were found to have statistically significant differences between the CMV endotheliitis and cataract groups. The Spearman correlation test showed that the concentration of CMV DNA load was significantly associated with the levels of IL-6 (P = 0.005, r = 0.417), IL-8 (P < 0.001, r = 0.514), IL-10 (P < 0.001, r = 0.700), MCP-1 (P = 0.001, r = 0.487), VEGF (P < 0.001, r = 0.690), IP-10 (P = 0.001, r = 0.469), G-CSF (P < 0.001, r = 0.554) and ICAM-1 (P < 0.001, r = 0.635), but not significantly associated with VCAM-1 (P = 0.056) and IFN-γ (P = 0.219). CONCLUSIONS There was a combined innate and adaptive immune response in aqueous humor in patients with CMV endotheliitis. Levels of multiple cytokines were significantly correlated with viral particle. Cytokines are potential indicators to help diagnose CMV endotheliitis, evaluate disease activity and assess treatment response.
Collapse
Affiliation(s)
- Xuan-Jun Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jia-Xin Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yi Qu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Rong-Mei Peng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Pei Zhang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
28
|
Pisitpayat P, Mentreddy A, Pekmezci M, Hwang D, Shantha J, Benador-Shen C, Terry M, Pothikamjorn T, Gonzales J. Stromal Keratitis Associated With Cytomegalovirus Anterior Uveitis. Cornea 2024; 43:903-908. [PMID: 38294900 DOI: 10.1097/ico.0000000000003487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024]
Abstract
PURPOSE Human cytomegalovirus (CMV) has commonly been reported as a cause of anterior uveitis and corneal endotheliitis. Unlike its other herpetic family members, herpes simplex virus and varicella zoster virus, involvement of the corneal stroma in CMV is uncommon. In this case series, we describe patients with CMV stromal keratitis. METHODS This was a retrospective chart review of patients seen at a tertiary referral center from 1999 to 2023 with stromal keratitis who tested positive for CMV by directed polymerase chain reaction of aqueous fluid or corneal tissue. RESULTS This series describes 5 patients, 4 of whom presented with anterior uveitis and stromal keratitis and were confirmed to be positive for CMV through the polymerase chain reaction of aqueous fluid. The fifth patient experienced recurrent corneal graft failures, with the most recent failed graft being positive for CMV based on immunohistochemical stains of the corneal stroma. The average age of patients was 62 years (range 36-80 years). Only 1 patient (20%) exhibited elevated intraocular pressure with stellate keratic precipitates at the initial presentation, whereas 3 other patients (60%) had a known history of glaucoma. CONCLUSIONS Uveitis specialists are well aware of CMV as a cause of recurrent, hypertensive anterior uveitis but should also consider CMV in cases featuring stromal keratitis. The corneal endothelium may serve as a reservoir for both anterior uveitis and development of corneal stromal inflammation as demonstrated by the immunohistopathology exhibited in 1 case.
Collapse
Affiliation(s)
- Punyanuch Pisitpayat
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA
- Department of Ophthalmology, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Akshay Mentreddy
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
| | - Melike Pekmezci
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
- Department of Pathology, University of California, San Francisco, San Francisco, CA
| | - David Hwang
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
| | - Jessica Shantha
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
| | | | - Merryl Terry
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
- Department of Pathology, University of California, San Francisco, San Francisco, CA
| | | | - John Gonzales
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, CA
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
29
|
Contreras-Valero JF, Ruíz-Ordóñez I, Pinilla-Monsalve GD, Bautista-Vargas M, Ocampo-Piraquive V, Aguirre-Valencia D. Cytomegalovirus infection and disease in systemic lupus erythematosus patients at a high-complexity hospital in southwestern Colombia. Lupus 2024; 33:797-803. [PMID: 38709545 DOI: 10.1177/09612033241247103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Cytomegalovirus (CMV) infection and disease is a condition usually described in immunocompromised patients, but among them, those with connective tissue diseases are poorly represented. Here we present the clinical, laboratory characteristics, management and outcomes of systemic lupus erythematosus (SLE) patients who presented with a CMV infection/disease to a high complexity hospital in southwestern Colombia between 2011 and 2020. 16 SLE patients were found to have a CMV infection. SLE was predominantly characterized by renal involvement (10 patients; 62.50%), and 14 patients (87.5%) were receiving steroids previous to the CMV infection. The entire sample required hospital admission, mainly related to acute kidney injury, and nine patients were admitted to the intensive care unit (ICU). Gastrointestinal organ damage was the most common CMV disease manifestation. All patients received ganciclovir, five of them (31.25%) suffered from septic shock, and seven (43.75%) died. Age ≥38 years and the presence of septic shock at admission were correlated to the mortality outcome. To our knowledge, this is the first publication evaluating SLE patients with CMV infection/disease in a Colombian population.
Collapse
Affiliation(s)
- Juan Fernando Contreras-Valero
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ingrid Ruíz-Ordóñez
- GIRAT: Grupo de Investigación en Reumatología, Inmunología y Medicina Traslacional, School of Medicine, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia
- Facultad de Ciencias de la Salud, Universidad de Caldas, Manizales, Colombia
| | | | - Mario Bautista-Vargas
- Unidad de Reumatología, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Vanessa Ocampo-Piraquive
- GIRAT: Grupo de Investigación en Reumatología, Inmunología y Medicina Traslacional, School of Medicine, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia
- Unidad de Reumatología, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - David Aguirre-Valencia
- GIRAT: Grupo de Investigación en Reumatología, Inmunología y Medicina Traslacional, School of Medicine, Fundación Valle del Lili, Universidad Icesi, Cali, Colombia
- Unidad de Reumatología, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| |
Collapse
|
30
|
Ng SH, Puong KY, Ng W, Wan WY. Seroprevalence of cytomegalovirus over the last 2 decades (2001-2020): A retrospective data analysis from a single laboratory in Singapore. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2024; 53:396-398. [PMID: 38979996 DOI: 10.47102/annals-acadmedsg.2023363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cytomegalovirus (CMV) is ubiquitous and infects human of all ages, where it remains latent after primary infection and can reactivate upon various triggers.1 Reactivated CMV may cause complications and end organ damages in immunocompromised hosts, leading to increased morbidity and mortality.2 In addition, the presence of actively replicating CMV during pregnancy can result in congenital sequelae, a leading cause of nongenetic sensorineural hearing loss in children.3 Despite the potential harm, few women of childbearing age in Singapore are aware of this risk.4
Collapse
Affiliation(s)
- Soon Hwee Ng
- Department of Microbiology, Singapore General Hospital, Singapore
| | - Kim Yoong Puong
- Department of Microbiology, Singapore General Hospital, Singapore
| | - Weiling Ng
- Department of Microbiology, Singapore General Hospital, Singapore
| | - Wei Yee Wan
- Department of Microbiology, Singapore General Hospital, Singapore
- SingHealth Duke-NUS Pathology Academic Clinical Programme, Singapore
| |
Collapse
|
31
|
Lawrence SM. Human cytomegalovirus and neonatal infection. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100257. [PMID: 39070527 PMCID: PMC11276932 DOI: 10.1016/j.crmicr.2024.100257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Human cytomegalovirus is an ancient virus that has co-evolved with humans. It establishes a life-long infection in suspectable individuals for which there is no vaccination or cure. The virus can be transmitted to a developing fetus in seropositive pregnant women, and it is the leading cause of congenital infectious disease. While the majority of infected infants remain asymptomatic at birth, congenital cytomegalovirus infection can lead to substantial long-term neurodevelopmental impairments in survivors, resulting in considerable economic and social hardships. Recent discoveries regarding cytomegalovirus pathophysiology and viral replication cycles might enable the development of innovative diagnostics and therapeutics, including an effective vaccine. This Review will detail our understanding of human cytomegalovirus infection, with an in-depth discussion regarding the viral genome and transcriptome that contributes to its pathophysiology. The neonate's clinical course will also be highlighted, including maternal and neonatal testing, treatment recommendations, and long-term outcomes.
Collapse
Affiliation(s)
- Shelley M. Lawrence
- University of Utah, College of Medicine, Department of Pediatrics, Division of Neonatology, Salt Lake City, UT, USA
| |
Collapse
|
32
|
Yan T, Pang X, Liang B, Meng Q, Wei H, Li W, Liu D, Hu Y. Comprehensive bioinformatics analysis of human cytomegalovirus pathway genes in pan-cancer. Hum Genomics 2024; 18:65. [PMID: 38886862 PMCID: PMC11181644 DOI: 10.1186/s40246-024-00633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) is a herpesvirus that can infect various cell types and modulate host gene expression and immune response. It has been associated with the pathogenesis of various cancers, but its molecular mechanisms remain elusive. METHODS We comprehensively analyzed the expression of HCMV pathway genes across 26 cancer types using the Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We also used bioinformatics tools to study immune invasion and tumor microenvironment in pan-cancer. Cox regression and machine learning were used to analyze prognostic genes and their relationship with drug sensitivity. RESULTS We found that HCMV pathway genes are widely expressed in various cancers. Immune infiltration and the tumor microenvironment revealed that HCMV is involved in complex immune processes. We obtained prognostic genes for 25 cancers and significantly found 23 key genes in the HCMV pathway, which are significantly enriched in cellular chemotaxis and synaptic function and may be involved in disease progression. Notably, CaM family genes were up-regulated and AC family genes were down-regulated in most tumors. These hub genes correlate with sensitivity or resistance to various drugs, suggesting their potential as therapeutic targets. CONCLUSIONS Our study has revealed the role of the HCMV pathway in various cancers and provided insights into its molecular mechanism and therapeutic significance. It is worth noting that the key genes of the HCMV pathway may open up new doors for cancer prevention and treatment.
Collapse
Affiliation(s)
- Tengyue Yan
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xianwu Pang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, 530028, China
| | - Boying Liang
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Qiuxia Meng
- School of Information and Managent, Guangxi Medical University, Nanning, China
| | - Huilin Wei
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China
| | - Wen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China
| | - Dahai Liu
- School of Medicine, Foshan University, Foshan, Guangdong, 528000, People's Republic of China.
| | - Yanling Hu
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China.
| |
Collapse
|
33
|
Bharti R, Calabrese DR. Innate and adaptive effector immune drivers of cytomegalovirus disease in lung transplantation: a double-edged sword. FRONTIERS IN TRANSPLANTATION 2024; 3:1388393. [PMID: 38993763 PMCID: PMC11235306 DOI: 10.3389/frtra.2024.1388393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 07/13/2024]
Abstract
Up to 90% of the global population has been infected with cytomegalovirus (CMV), a herpesvirus that remains latent for the lifetime of the host and drives immune dysregulation. CMV is a critical risk factor for poor outcomes after solid organ transplant, though lung transplant recipients (LTR) carry the highest risk of CMV infection, and CMV-associated comorbidities compared to recipients of other solid organ transplants. Despite potent antivirals, CMV remains a significant driver of chronic lung allograft dysfunction (CLAD), re-transplantation, and death. Moreover, the extended utilization of CMV antiviral prophylaxis is not without adverse effects, often necessitating treatment discontinuation. Thus, there is a critical need to understand the immune response to CMV after lung transplantation. This review identifies key elements of each arm of the CMV immune response and highlights implications for lung allograft tolerance and injury. Specific attention is paid to cellular subsets of adaptive and innate immune cells that are important in the lung during CMV infection and reactivation. The concept of heterologous immune responses is reviewed in depth, including how they form and how they may drive tissue- and allograft-specific immunity. Other important objectives of this review are to detail the emerging role of NK cells in CMV-related outcomes, in addition to discussing perturbations in CMV immune function stemming from pre-existing lung disease. Finally, this review identifies potential mechanisms whereby CMV-directed treatments may alter the cellular immune response within the allograft.
Collapse
Affiliation(s)
- Reena Bharti
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
34
|
Sayeed K, Parameswaran S, Beucler MJ, Edsall LE, VonHandorf A, Crowther A, Donmez O, Hass M, Richards S, Forney C, Wright J, Leong MML, Murray-Nerger LA, Gewurz BE, Kaufman KM, Harley JB, Zhao B, Miller WE, Kottyan LC, Weirauch MT. Human cytomegalovirus infection coopts chromatin organization to diminish TEAD1 transcription factor activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588762. [PMID: 38645179 PMCID: PMC11030363 DOI: 10.1101/2024.04.12.588762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hours after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity. We confirm extensive concordant loss of TEAD1 binding, active H3K27ac histone marks, and chromatin looping interactions upon infection. Our data position TEAD1 at the top of a hierarchy involving multiple altered important developmental pathways. HCMV infection reduces TEAD1 activity through four distinct mechanisms: closing of TEAD1-bound chromatin, reduction of YAP1 and phosphorylated YAP1 levels, reduction of TEAD1 transcript and protein levels, and alteration of TEAD1 exon-6 usage. Altered TEAD1-based mechanisms are highly enriched at genetic risk loci associated with eye and ear development, providing mechanistic insight into HCMV's established roles in these processes.
Collapse
Affiliation(s)
- Khund Sayeed
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew J. Beucler
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Lee E. Edsall
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Audrey Crowther
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Omer Donmez
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew Hass
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Scott Richards
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jay Wright
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Merrin Man Long Leong
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Laura A. Murray-Nerger
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Ben E. Gewurz
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kenneth M. Kaufman
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Research Service, Cincinnati VA Medical Center, Cincinnati, OH 45229, USA
| | - John B. Harley
- Research Service, Cincinnati VA Medical Center, Cincinnati, OH 45229, USA
| | - Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - William E. Miller
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Leah C. Kottyan
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
35
|
Monday LM, Keri V, Chandrasekar PH. Advances in pharmacotherapies for cytomegalovirus infection: what is the current state of play? Expert Opin Pharmacother 2024; 25:685-694. [PMID: 38717943 DOI: 10.1080/14656566.2024.2353627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Cytomegalovirus (CMV) remains a serious opportunistic infection in hematopoietic cell transplant (HCT) and solid-organ transplant (SOT) recipients. Traditional anti-CMV drugs are limited by toxicities and the development of resistance. Letermovir and maribavir are newly approved antivirals for the prevention and treatment of CMV. AREAS COVERED Prior reviews have discussed use of letermovir for prevention of CMV after HCT and maribavir for resistant or refractory (R/R) CMV post HCT or SOT. Subsequent data have expanded their use including letermovir for primary CMV prophylaxis in high-risk renal transplant recipients and new recommendations for extending prophylaxis through day + 200 in certain HCT patients. Data on the use of maribavir for first asymptomatic CMV infection post-HCT has also been published. This review compares the pharmacology of anti-CMV agents and discusses the updated literature of these new drugs in the prevention and treatment of CMV. EXPERT OPINION Letermovir and maribavir are much needed tools that spare toxicities of ganciclovir, foscarnet, and cidofovir. High cost is a challenge preventing their integration into clinical practice in resource-limited countries. Transplant centers need to exercise restraint in overuse to avoid resistance, particularly in the setting of high viral loads.
Collapse
Affiliation(s)
- Lea M Monday
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Vishakh Keri
- Division of Infectious Diseases, Department of Medicine, Wayne State University, Detroit, MI, USA
| | | |
Collapse
|
36
|
Perera DJ, Koger-Pease C, Paulini K, Daoudi M, Ndao M. Beyond schistosomiasis: unraveling co-infections and altered immunity. Clin Microbiol Rev 2024; 37:e0009823. [PMID: 38319102 PMCID: PMC10938899 DOI: 10.1128/cmr.00098-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mohamed Daoudi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
37
|
Egorov AI, Griffin SM, Styles JN, Kobylanski J, Klein J, Wickersham L, Ritter R, Sams E, Hudgens EE, Wade TJ. Time outdoors and residential greenness are associated with reduced systemic inflammation and allostatic load. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123408. [PMID: 38278402 DOI: 10.1016/j.envpol.2024.123408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Contacts with nature are linked with reduced morbidity and mortality. Hypothesized pathways include relaxation, physical activity, and improved immune function. This cross-sectional study of 320 adults in central North Carolina assessed health benefits of residential greenness using allostatic load (AL) and systemic inflammation (INFL) indices, composite biomarker-based measures of physiological dysregulation and inflammation, respectively. Distance-to-residence weighted tree cover and vegetated land cover measures were estimated within 500 m of each residence; 37 biomarkers of immune, neuroendocrine, cardiovascular, and metabolic functions were dichotomized at distribution or health-based cut-offs. AL was calculated as a sum of potentially unhealthy values of all biomarkers; INFL was based on a subset of 18 immune biomarkers. Regression analysis used generalized additive models for Poisson-distributed outcome. An interquartile range (IQR) increase in tree cover was associated with 0.89 (95 % Confidence Limits 0.82; 0.97) and 0.90 (0.79; 1.03)-fold change in AL and INFL, respectively. Greater daily outdoor time was associated with reduced AL and INFL, while leisure screen time, problems with sleeping, and common chronic infections were linked with increased AL and INFL. Among 138 individuals spending more than 1 h outdoors daily, an IQR increase in tree cover was associated with 0.76 (0.67; 0.86) and 0.81 (0.65; 1.02)-fold changes in AL and INFL, respectively. Among individuals with residential tree cover above the 50th percentile, spending more than 3 h outdoors daily was associated with 0.54 (0.37; 0.78) and 0.28 (0.15; 0.54)-fold changes in AL and INFL, respectively, compared to spending less than 30 min outdoors; there were no significant effects in the low tree cover stratum. Consistent but weaker effects were observed for vegetated land cover. Interaction effects of tree and vegetative cover and time spent outdoors on AL and INFL were statistically significant. This biomarker-based approach can help to assess public health benefits of green spaces.
Collapse
Affiliation(s)
- Andrey I Egorov
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Shannon M Griffin
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - Jennifer N Styles
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA; Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason Kobylanski
- ORAU Student Services Contractor, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jo Klein
- ORAU Student Services Contractor, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Lindsay Wickersham
- ORAU Student Services Contractor, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rebecca Ritter
- ORAU Student Services Contractor, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Elizabeth Sams
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Edward E Hudgens
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Timothy J Wade
- Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
38
|
Abu Dail Y, Daas L, Flockerzi E, Munteanu C, Kahlert J, Smola S, Seitz B. PCR testing for herpesviruses in aqueous humor samples from patients with and without clinical corneal endothelial graft rejection. J Med Virol 2024; 96:e29538. [PMID: 38506230 DOI: 10.1002/jmv.29538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/11/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
To compare prevalence of positive PCR tests for herpesviruses between patients with and without a history of clinical corneal endothelial allograft rejection (AGR). Retrospective cross-sectional study with two-group comparison. A total of 307 aqueous humor (AH) samples from 235 Patients and 244 eyes who underwent penetrating keratoplasty or Descemet membrane endothelial keratoplasty or had a diagnostic AH aspiration due to clinical AGR between 2019 and 2023 were tested for DNA of herpes simplex virus (HSV), varicella-zoster virus (VZV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV). PCR test results were compared between the two groups (with/without AGR). Another sub-analysis examined the results of patients without a history of herpetic keratitis. A total of 8% of eyes with clinical AGR (9/108) had a positive PCR result for one of the herpesviruses (HSV:3, CMV:3, EBV:2, VZV:1). All patients in the group without AGR had negative PCR results for all previous viruses (0/136). The difference was statistically significant (p < 0.001). The sub-analysis of eyes without a history of herpetic keratitis also revealed significantly more positive herpes PCR results (7/87) in eyes with AGR than in eyes without AGR (0/42, p = 0.005). Clinical AGR after keratoplasty shows a significant correlation to viral replication. Herpetic infection and AGR could occur simultaneously and act synergistically. Timely differentiation between active herpetic infection and/or AGR is pivotal for proper treatment and graft preservation.
Collapse
Affiliation(s)
- Yaser Abu Dail
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Loay Daas
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Elias Flockerzi
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Cristian Munteanu
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Julian Kahlert
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Sigrun Smola
- Department of Virology, Institute of Virology, Saarland University Medical Center, Homburg, Saarland, Germany
- Department of Virology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saarland, Germany
| |
Collapse
|
39
|
Rodríguez-Muñoz MF, Martín-Martín C, Kovacheva K, Olivares ME, Izquierdo N, Pérez-Romero P, García-Ríos E. Hygiene-based measures for the prevention of cytomegalovirus infection in pregnant women: a systematic review. BMC Pregnancy Childbirth 2024; 24:172. [PMID: 38424481 PMCID: PMC10905865 DOI: 10.1186/s12884-024-06367-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Human Cytomegalovirus (HCMV) is the most frequent congenital infection worldwide causing important sequelae. However, no vaccine or antiviral treatments are currently available, thus interventions are restricted to behavioral measures. The aim of this systematic review was to assess evidence from available intervention studies using hygiene-based measures to prevent HCMV infection during pregnancy. METHODS Studies published from 1972 to 2023 were searched in Medline, PsycInfo, and Clinical Trials (PROSPERO, CRD42022344840) according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Methodological quality was assessed by two authors, using ROBE-2 and MINORS. RESULTS After reviewing 6 selected articles, the outcome analysis suggested that implementation of hygiene-based interventions during pregnancy prevent, to some extent, the acquisition of congenital HCMV. CONCLUSIONS However, these conclusions are based on limited and low-quality evidence available from few studies using this type of intervention in clinical practice. Thus, it would be necessary to perform effective and homogeneous intervention studies using hygiene-based measures, evaluated in high-quality randomized controlled trials (RCTs).
Collapse
Affiliation(s)
| | - Clara Martín-Martín
- National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda - Pozuelo km. 2, Majadahonda, Madrid, 28220, Spain
| | - Katina Kovacheva
- Faculty of Psychology, Universidad Nacional de Educación a Distancia, (UNED), Madrid, Spain
| | | | - Nuria Izquierdo
- Department of Gynecology and Obstetrics, Hospital Clínico San Carlos, Madrid, Spain
| | - Pilar Pérez-Romero
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Estéfani García-Ríos
- National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Carretera Majadahonda - Pozuelo km. 2, Majadahonda, Madrid, 28220, Spain.
- Department of Food Biotechnology, Instituto de Agroquimica y Tecnologia de los Alimentos (IATA), CSIC, Agustín Escardino 7, Paterna, Valencia, 46980, Spain.
| |
Collapse
|
40
|
Otero CE, Petkova S, Ebermann M, Taher H, John N, Hoffmann K, Davalos A, Moström MJ, Gilbride RM, Papen CR, Barber-Axthelm A, Scheef EA, Barfield R, Sprehe LM, Kendall S, Manuel TD, Vande Burgt NH, Chan C, Denton M, Streblow ZJ, Streblow DN, Hansen SG, Kaur A, Permar S, Früh K, Hengel H, Malouli D, Kolb P. Rhesus Cytomegalovirus-encoded Fcγ-binding glycoproteins facilitate viral evasion from IgG-mediated humoral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582371. [PMID: 38464092 PMCID: PMC10925275 DOI: 10.1101/2024.02.27.582371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Human cytomegalovirus (HCMV) encodes four viral Fc-gamma receptors (vFcγRs) that counteract antibody-mediated activation in vitro , but their role in infection and pathogenesis is unknown. To examine the in vivo function of vFcγRs in animal hosts closely related to humans, we identified and characterized vFcγRs encoded by rhesus CMV (RhCMV). We demonstrate that Rh05, Rh152/151 and Rh173 represent the complete set of RhCMV vFcγRs, each displaying functional similarities to their respective HCMV orthologs with respect to antagonizing host FcγR activation in vitro . When RhCMV-naïve rhesus macaques were infected with vFcγR-deleted RhCMV, peak plasma viremia levels and anti-RhCMV antibody responses were comparable to wildtype infections. However, the duration of plasma viremia was significantly shortened in immunocompetent, but not in CD4+ T cell-depleted animals. Since vFcγRs were not required for superinfection, we conclude that vFcγRs delay control by virus-specific adaptive immune responses, particularly antibodies, during primary infection.
Collapse
|
41
|
Zhao XC, Ju B, Xiu NN, Sun XY, Meng FJ. When inflammatory stressors dramatically change, disease phenotypes may transform between autoimmune hematopoietic failure and myeloid neoplasms. Front Immunol 2024; 15:1339971. [PMID: 38426096 PMCID: PMC10902444 DOI: 10.3389/fimmu.2024.1339971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Aplastic anemia (AA) and hypoplastic myelodysplastic syndrome are paradigms of autoimmune hematopoietic failure (AHF). Myelodysplastic syndrome and acute myeloid leukemia are unequivocal myeloid neoplasms (MNs). Currently, AA is also known to be a clonal hematological disease. Genetic aberrations typically observed in MNs are detected in approximately one-third of AA patients. In AA patients harboring MN-related genetic aberrations, a poor response to immunosuppressive therapy (IST) and an increased risk of transformation to MNs occurring either naturally or after IST are predicted. Approximately 10%-15% of patients with severe AA transform the disease phenotype to MNs following IST, and in some patients, leukemic transformation emerges during or shortly after IST. Phenotypic transformations between AHF and MNs can occur reciprocally. A fraction of advanced MN patients experience an aplastic crisis during which leukemic blasts are repressed. The switch that shapes the disease phenotype is a change in the strength of extramedullary inflammation. Both AHF and MNs have an immune-active bone marrow (BM) environment (BME). In AHF patients, an inflamed BME can be evoked by infiltrated immune cells targeting neoplastic molecules, which contributes to the BM-specific autoimmune impairment. Autoimmune responses in AHF may represent an antileukemic mechanism, and inflammatory stressors strengthen antileukemic immunity, at least in a significant proportion of patients who have MN-related genetic aberrations. During active inflammatory episodes, normal and leukemic hematopoieses are suppressed, which leads to the occurrence of aplastic cytopenia and leukemic cell regression. The successful treatment of underlying infections mitigates inflammatory stress-related antileukemic activities and promotes the penetration of leukemic hematopoiesis. The effect of IST is similar to that of treating underlying infections. Investigating inflammatory stress-powered antileukemic immunity is highly important in theoretical studies and clinical practice, especially given the wide application of immune-activating agents and immune checkpoint inhibitors in the treatment of hematological neoplasms.
Collapse
Affiliation(s)
- Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Fan-Jun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
42
|
Wyżewski Z, Stępkowska J, Kobylińska AM, Mielcarska A, Mielcarska MB. Mcl-1 Protein and Viral Infections: A Narrative Review. Int J Mol Sci 2024; 25:1138. [PMID: 38256213 PMCID: PMC10816053 DOI: 10.3390/ijms25021138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
MCL-1 is the prosurvival member of the Bcl-2 family. It prevents the induction of mitochondria-dependent apoptosis. The molecular mechanisms dictating the host cell viability gain importance in the context of viral infections. The premature apoptosis of infected cells could interrupt the pathogen replication cycle. On the other hand, cell death following the effective assembly of progeny particles may facilitate virus dissemination. Thus, various viruses can interfere with the apoptosis regulation network to their advantage. Research has shown that viral infections affect the intracellular amount of MCL-1 to modify the apoptotic potential of infected cells, fitting it to the "schedule" of the replication cycle. A growing body of evidence suggests that the virus-dependent deregulation of the MCL-1 level may contribute to several virus-driven diseases. In this work, we have described the role of MCL-1 in infections caused by various viruses. We have also presented a list of promising antiviral agents targeting the MCL-1 protein. The discussed results indicate targeted interventions addressing anti-apoptotic MCL1 as a new therapeutic strategy for cancers as well as other diseases. The investigation of the cellular and molecular mechanisms involved in viral infections engaging MCL1 may contribute to a better understanding of the regulation of cell death and survival balance.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Justyna Stępkowska
- Institute of Family Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Aleksandra Maria Kobylińska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| | - Adriana Mielcarska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| |
Collapse
|
43
|
Di Vito C, Coianiz N, Calvi M, Terzoli S, Zaghi E, Puccio S, Frigo A, Mariotti J, De Philippis C, Mannina D, Sarina B, Mineri R, Le-Trilling VTK, Trilling M, Castagna L, Bramanti S, Santoro A, Mavilio D. Persistence of KIR neg NK cells after haploidentical hematopoietic stem cell transplantation protects from human cytomegalovirus infection/reactivation. Front Immunol 2024; 14:1266051. [PMID: 38268918 PMCID: PMC10806243 DOI: 10.3389/fimmu.2023.1266051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Haploidentical hematopoietic stem cell transplantation (h-HSCT) is a therapeutic option to cure patients affected by hematologic malignancies. The kinetics and the quality of immune-reconstitution (IR) impact the clinical outcome of h-HSCT and limit the onset of life-threatening Human Cytomegalovirus (HCMV) infection/reactivation. Natural Killer (NK) cells are the first lymphocytes that recover after h-HSCT and they can provide rapid innate immune responses against opportunistic pathogens. By performing a longitudinal single-cell analysis of multiparametric flow-cytometry data, we show here that the persistence at high frequencies of CD158b1b2jneg/NKG2Apos/NKG2Cneg/NKp30pos/NKp46pos (KIRneg) NK cells is associated with HCMV infection/reactivation control. These KIRneg NK cells are "unlicensed", and are not terminal-differentiated lymphocytes appearing early during IR and mainly belonging to CD56bright/CD16neg and CD56bright/CD16pos subsets. KIRneg NK cells are enriched in oxidative and glucose metabolism pathways, produce interferon-γ, and are endowed with potent antiviral activity against HCMV ex vivo. Decreased frequencies of KIRneg NK cells early during IR are associated with clinically relevant HCMV replication. Taken together, our findings indicate that the prolonged persistence of KIRneg NK cells after h-HSCT could serve as a biomarker to better predict HCMV infection/reactivation. This phenomenon also paves the way to optimize anti-viral immune responses by enriching post-transplant donor lymphocyte infusions with KIRneg NK cells.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Nicolò Coianiz
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Sara Terzoli
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alessandro Frigo
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Jacopo Mariotti
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Chiara De Philippis
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Daniele Mannina
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Barbara Sarina
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Rossana Mineri
- Molecular Biology Section, Clinical Investigation Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Luca Castagna
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Stefania Bramanti
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Armando Santoro
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| |
Collapse
|
44
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
45
|
Park PG, Fatima M, An T, Moon YE, Woo S, Youn H, Hong KJ. Current development of therapeutic vaccines for the treatment of chronic infectious diseases. Clin Exp Vaccine Res 2024; 13:21-27. [PMID: 38362373 PMCID: PMC10864879 DOI: 10.7774/cevr.2024.13.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024] Open
Abstract
Chronic infectious diseases refer to diseases that require a long period of time from onset to cure or death, the use of therapeutic vaccines has recently emerged to eradicate diseases. Currently, clinical research is underway to develop therapeutic vaccines for chronic infectious diseases based on various vaccine formulations, and the recent success of the messenger RNA vaccine platform and efforts to apply it to therapeutic vaccines are having a positive impact on conquering chronic infectious diseases. However, since research on the development of therapeutic vaccines is still relatively lacking compared to prophylactic vaccines, there is a need to focus more on the development of therapeutic vaccines to overcome threats to human health caused by chronic infectious diseases. In order to accelerate the development of therapeutic vaccines for chronic infectious diseases in the future, it is necessary to establish a clear concept of therapeutic vaccines suitable for the characteristics of each chronic infectious disease, as well as standardize vaccine effectiveness evaluation methods, secure standards/reference materials, and simplify the vaccine approval procedure.
Collapse
Affiliation(s)
- Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Timothy An
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Ye-Eun Moon
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Seungkyun Woo
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Korea
| |
Collapse
|
46
|
Rinaldi I, Muthalib A, Sutandar JW, Kuncoro HA, Harsono BI, Susanto N, Setiawan T, Winston K, Dewantara IR, Amin IF, Shufiyani YM. Cytomegalovirus Infection in Patient with Clear Cell Renal Cell Carcinoma. Case Rep Med 2023; 2023:5560673. [PMID: 38023618 PMCID: PMC10661874 DOI: 10.1155/2023/5560673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Cytomegalovirus (CMV) infection is a widespread condition that can affect individuals of all ages. Most cases of CMV infection are mild and resolve on their own. However, in immunocompromised individuals, such as post-transplant patients or those with cancer, severe infections can occur. While there have been several studies on CMV infection in post-transplant patients, there is limited literature on CMV infection in cancer, particularly in kidney cancer. Case Report. In this case report, we present the case of a 61-year-old man with clear cell renal cell carcinoma who underwent targeted therapy with the receptor tyrosine kinase (RTK) inhibitor lenvatinib and the mammalian target of rapamycin (mTOR) inhibitor everolimus. The patient was hospitalized for 26 days and admitted to the intensive care unit (ICU) due to shortness of breath, decreased oxygen saturation, and irregular breathing. Cytomegalovirus polymerase chain reaction (PCR) test results were positive. Given the high prevalence of CMV infection in developing countries, it is likely that the patient had a reactivation of CMV. As such, the patient was subsequently treated with ganciclovir for 14 days and showed improvement in symptoms such as shortness of breath, cough, fever, and increased oxygen saturation. Following recovery, the patient received maintenance therapy with oral valganciclovir for 7 days. No further symptoms appeared during subsequent cancer treatments. Conclusion Cancer patients who are undergoing treatment are at a higher risk for developing opportunistic infections, which can result in morbidity and mortality. Therefore, healthcare professionals should be aware of the possibility of CMV infection in cancer patients and be prepared to diagnose and treat the infection, particularly in areas where the prevalence of CMV infection is high.
Collapse
Affiliation(s)
- Ikhwan Rinaldi
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Abdul Muthalib
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | | | | | - Nelly Susanto
- Department of Radiology, Gading Pluit Hospital, Jakarta, Indonesia
| | - Tjondro Setiawan
- Department of Radiology, Gading Pluit Hospital, Jakarta, Indonesia
| | - Kevin Winston
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | | | | |
Collapse
|
47
|
Naigeon M, Roulleaux Dugage M, Danlos FX, Boselli L, Jouniaux JM, de Oliveira C, Ferrara R, Duchemann B, Berthot C, Girard L, Flippot R, Albiges L, Farhane S, Saulnier P, Lacroix L, Griscelli F, Roman G, Hulett T, Marabelle A, Cassard L, Besse B, Chaput N. Human virome profiling identified CMV as the major viral driver of a high accumulation of senescent CD8 + T cells in patients with advanced NSCLC. SCIENCE ADVANCES 2023; 9:eadh0708. [PMID: 37939189 PMCID: PMC10631735 DOI: 10.1126/sciadv.adh0708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Circulating senescent CD8+ T (T8sen) cells are characterized by a lack of proliferative capacities but retain cytotoxic activity and have been associated to resistance to immunotherapy in patients with advanced non-small cell lung cancer (aNSCLC). We aimed to better characterize T8sen and to determine which factors were associated with their accumulation in patients with aNSCLC. Circulating T8sen cells were characterized by a higher expression of SA-βgal and the transcription factor T-bet, confirming their senescent status. Using whole virome profiling, cytomegalovirus (CMV) was the only virus associated with T8sen. CMV was necessary but not sufficient to explain high accumulation of T8sen (T8senhigh status). In CMV+ patients, the proportion of T8sen cells increased with cancer progression. Last, CMV-induced T8senhigh phenotype but not CMV seropositivity itself was associated with worse progression-free and overall survival in patients treated with anti-PD-(L)1 therapy but not with chemotherapy. Overall, CMV is the unique viral driver of T8sen-driven resistance to anti-PD-(L)1 antibodies in patients with aNSCLC.
Collapse
Affiliation(s)
- Marie Naigeon
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Matthieu Roulleaux Dugage
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Service d’Oncologie Médicale, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - François-Xavier Danlos
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015 and Centre d’Investigation Clinique BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France
| | - Lisa Boselli
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Jean-Mehdi Jouniaux
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Caroline de Oliveira
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Roberto Ferrara
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Boris Duchemann
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Département d’oncologie thoracique et médicale, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, AP-HP, Bobigny, France
| | - Caroline Berthot
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Lou Girard
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Ronan Flippot
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Laurence Albiges
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Siham Farhane
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015 and Centre d’Investigation Clinique BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France
| | | | - Ludovic Lacroix
- AMMICa, UAR 3655/US23, Gustave Roussy, Villejuif, France
- Département de Biologie Médicale et Pathologie Médicales, Gustave Roussy, Villejuif, France
| | - Frank Griscelli
- Département de Biologie Médicale et Pathologie Médicales, Gustave Roussy, Villejuif, France
| | - Gabriel Roman
- CDI Laboratories Inc., 1 N. Haven Street, Suite B001, Baltimore, MD 21224, USA
| | - Tyler Hulett
- CDI Laboratories Inc., 1 N. Haven Street, Suite B001, Baltimore, MD 21224, USA
| | - Aurélien Marabelle
- Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
- Laboratoire de Recherche Translationnelle en Immunothérapie (LRTI), INSERM U1015 and Centre d’Investigation Clinique BIOTHERIS, INSERM CIC1428, Gustave Roussy, Villejuif, France
| | - Lydie Cassard
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| |
Collapse
|
48
|
Huang C, Solis D, Sahoo MK, Pinsky BA. Assessment of an automated Cytomegalovirus nucleic acid amplification test using clinical plasma, bronchoalveolar lavage, and tissue specimens. J Clin Virol 2023; 168:105582. [PMID: 37788527 DOI: 10.1016/j.jcv.2023.105582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) causes significant morbidity and mortality in immunocompromised patients, particularly transplant recipients. Quantitation of CMV DNA in peripheral blood is used to monitor prophylactic and pre-emptive approaches to prevent CMV disease, whereas CMV DNA testing of non-plasma specimens may aid in the diagnosis of end-organ disease. METHODS The analytical performance of the FDA-approved Aptima CMV Quant Assay was evaluated using reference CMV (SeraCare) diluted in defibrinated human plasma, as well as negative bronchoalveolar lavage fluid and tissue. Agreement was determined using 100 clinical acid-citrate-dextrose (ACD) plasma specimens, 77 bronchoalveolar lavage (BAL) fluids, and 101 tissues previously tested using artus CMV qPCR. RESULTS Aptima CMV lower limit of detection (LLOD) was 169 IU/mL for ACD plasma, 100 IU/mL for BAL, and 50 IU/mL for tissue. Positive percent agreement (PPA) was 100.0% (50/50; 95% CI: 92.9% - 100.0%) and negative percent agreement (NPA) was 94.0% (47/50; 95% CI: 83.5% - 98.8%) for ACD plasma. Bland-Altman analysis revealed a bias of 0.20 log10 IU/mL (Aptima - artus) with 95% limits of agreement of -0.53 to 0.93. For BAL fluids, PPA was 70.0% (14/20; 95% CI: 45.7% - 88.1%) and NPA was 82.4% (43/51; 95% CI: 69.1% - 91.6%). For tissues, PPA was 90.0% (45/50; 95% CI: 78.2% - 96.7%) and NPA was 94.0% (47/50; 95% CI: 83.5% - 98.8%). CONCLUSIONS The Aptima CMV Quant Assay demonstrates high analytical sensitivity and good overall agreement using clinical plasma and tissue specimens.
Collapse
Affiliation(s)
- ChunHong Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Solis
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
49
|
Bruno F, Abondio P, Bruno R, Ceraudo L, Paparazzo E, Citrigno L, Luiselli D, Bruni AC, Passarino G, Colao R, Maletta R, Montesanto A. Alzheimer's disease as a viral disease: Revisiting the infectious hypothesis. Ageing Res Rev 2023; 91:102068. [PMID: 37704050 DOI: 10.1016/j.arr.2023.102068] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. Two major forms of the disease exist: sporadic - the causes of which have not yet been fully understood - and familial - inherited within families from generation to generation, with a clear autosomal dominant transmission of mutations in Presenilin 1 (PSEN1), 2 (PSEN2) or Amyloid Precursors Protein (APP) genes. The main hallmark of AD consists of extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein. An ever-growing body of research supports the viral infectious hypothesis of sporadic forms of AD. In particular, it has been shown that several herpes viruses (i.e., HHV-1, HHV-2, HHV-3 or varicella zoster virus, HHV-4 or Epstein Barr virus, HHV-5 or cytomegalovirus, HHV-6A and B, HHV-7), flaviviruses (i.e., Zika virus, Dengue fever virus, Japanese encephalitis virus) as well as Human Immunodeficiency Virus (HIV), hepatitis viruses (HAV, HBV, HCV, HDV, HEV), SARS-CoV2, Ljungan virus (LV), Influenza A virus and Borna disease virus, could increase the risk of AD. Here, we summarized and discussed these results. Based on these findings, significant issues for future studies are also put forward.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy.
| | - Rossella Bruno
- Sudent at the Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88050 Catanzaro, Italy
| | - Leognano Ceraudo
- Sudent at the Department of Medical and Surgical Sciences, University of Parma, 43121 Parma, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Luigi Citrigno
- National Research Council (CNR) - Institute for Biomedical Research and Innovation - (IRIB), 87050 Mangone, Cosenza, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Rosanna Colao
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy.
| |
Collapse
|
50
|
Pantalone MR, Almazan NM, Lattanzio R, Taher C, De Fabritiis S, Valentinuzzi S, Bishehsari F, Mahdavinia M, Verginelli F, Rahbar A, Mariani-Costantini R, Söderberg-Naucler C. Human cytomegalovirus infection enhances 5‑lipoxygenase and cycloxygenase‑2 expression in colorectal cancer. Int J Oncol 2023; 63:116. [PMID: 37654195 PMCID: PMC10546380 DOI: 10.3892/ijo.2023.5564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and fatal types of cancer. Inflammation promotes CRC development, however, the underlying etiological factors are unknown. Human cytomegalovirus (HCMV), a virus that induces inflammation and other cancer hallmarks, has been detected in several types of malignancy, including CRC. The present study investigated whether HCMV infection was associated with expression of the pro‑inflammatory enzymes 5‑lipoxygenase (5‑LO) and cyclooxygenase‑2 (COX‑2) and other molecular, genetic and clinicopathological CRC features. The present study assessed 146 individual paraffin‑embedded CRC tissue microarray (TMA) cores already characterized for TP53 and KRAS mutations, microsatellite instability (MSI) status, Ki‑67 index and EGFR by immunohistochemistry (IHC). The cores were further analyzed by IHC for the expression of two HCMV proteins (Immediate Early, IE and pp65) and the inflammatory markers 5‑LO and COX‑2. The CRC cell lines Caco‑2 and LS‑174T were infected with HCMV strain VR1814, treated with antiviral drug ganciclovir (GCV) and/or anti‑inflammatory drug celecoxib (CCX) and analyzed by reverse transcription‑quantitative PCR and immunofluorescence for 5‑LO, COX‑2, IE and pp65 transcripts and proteins. HCMV IE and pp65 proteins were detected in ~90% of the CRC cases tested; this was correlated with COX‑2, 5‑LO and KI‑67 expression, but not with EGFR immunostaining, TP53 and KRAS mutations or MSI status. In vitro, HCMV infection upregulated 5‑LO and COX‑2 transcript and proteins in both Caco‑2 and LS‑174T cells and enhanced cell proliferation as determined by MTT assay. Treatment with GCV and CCX significantly decreased the transcript levels of COX‑2, 5‑LO, HCMV IE and pp65 in infected cells. HCMV was widely expressed in CRC and may promote inflammation and serve as a potential new target for CRC therapy.
Collapse
Affiliation(s)
- Mattia Russel Pantalone
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Nerea Martin Almazan
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Laboratory Medicine, Unit of Microbial Pathogenesis, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Rossano Lattanzio
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Chato Taher
- Department of Basic Sciences, Hawler Medical University, Erbil 44001, Iraq
| | - Simone De Fabritiis
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Faraz Bishehsari
- Division of Digestive Diseases, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14114, Iran
| | - Mahboobeh Mahdavinia
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14114, Iran
- Department of Internal Medicine, Division of Allergy and Immunology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fabio Verginelli
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Afsar Rahbar
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
| | | | - Cecilia Söderberg-Naucler
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
- MediCity Research Laboratory, University of Turku, FI-20014 Turku, Finland
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|