1
|
Jalševac F, Segú H, Balaguer F, Ocaña T, Moreira R, Abad-Jordà L, Gràcia-Sancho J, Fernández-Iglesias A, Andres-Lacueva C, Martínez-Huélamo M, Beltran-Debon R, Rodríguez-Gallego E, Terra X, Ardévol A, Pinent M. TAS2R5 and TAS2R38 are bitter taste receptors whose colonic expressions could play important roles in age-associated processes. J Nutr Biochem 2025; 140:109872. [PMID: 39986633 DOI: 10.1016/j.jnutbio.2025.109872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/09/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Ageing disrupts how our bodies process nutrients, leading to deregulation of nutrient-sensing and increased inflammation. Dietary interventions can promote healthy ageing, which demonstrates the importance of both metabolism and the gastrointestinal tract for our health. Bitter taste receptors (TAS2R) present in the intestine are key members of metabolic regulation. TAS2R are involved in controlling enterohormonal secretion, detect phenolic compounds in our diet, and potentially have a great impact on the ageing process. Here, we aimed to analyze the potential role of intestinal TAS2R on the ageing process and establish potential impact of these receptors on the biomarkers. Healthy subjects were divided into two age cohorts: young (38.9±6) and aged (63.6±6). TAS2R expression was analyzed in the colon. Analyses of metabolomics and of phenolic markers were performed in plasma. Best discriminatory parameters were obtained using three machine-learning methods. Finally, Spearman's rank correlation was performed. The best separators of the age cohorts were docosahexaenoic acid and multiple lipoprotein fractions. Two TAS2R were also identified: TAS2R5 and TAS2R38. TAS2R5 correlated with multiple lipoprotein-derived fractions, inflammatory marker IL-6 and polyunsaturated fatty acids. TAS2R38 was much more selective, correlating with a few parameters, including membrane lipid sphingomyelin, ketone body acetone, and omega acids. Both TAS2R5 and TAS2R38 correlated with β-hydroxybutyrate. The parameters that correlated with TAS2R have known effects on the ageing process. This suggests that TAS2R5 and TAS2R38 are the bitter receptors most likely to play a role in the development and progress of ageing.
Collapse
Affiliation(s)
- Florijan Jalševac
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain
| | - Helena Segú
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain
| | - Francesc Balaguer
- Gastroenterology department, Hospital Clinic Barcelona, IDIBAPS (Institut d´Investigacions Biomédiques August Pi i Sunyer), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Teresa Ocaña
- Gastroenterology department, Hospital Clinic Barcelona, IDIBAPS (Institut d´Investigacions Biomédiques August Pi i Sunyer), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Rebeca Moreira
- Gastroenterology department, Hospital Clinic Barcelona, IDIBAPS (Institut d´Investigacions Biomédiques August Pi i Sunyer), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Laia Abad-Jordà
- Liver Vascular Biology, Hospital Clinic Barcelona, IDIBAPS (Institut d´Investigacions Biomédiques August Pi i Sunyer), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Jordi Gràcia-Sancho
- Liver Vascular Biology, Hospital Clinic Barcelona, IDIBAPS (Institut d´Investigacions Biomédiques August Pi i Sunyer), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology, Hospital Clinic Barcelona, IDIBAPS (Institut d´Investigacions Biomédiques August Pi i Sunyer), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA), Food Innovation Network (XIA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Martínez-Huélamo
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA), Food Innovation Network (XIA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Raul Beltran-Debon
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain; IISPV, Hospital Joan XXIII, Tarragona, Spain
| | - Esther Rodríguez-Gallego
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain; IISPV, Hospital Joan XXIII, Tarragona, Spain
| | - Ximena Terra
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain; IISPV, Hospital Joan XXIII, Tarragona, Spain
| | - Anna Ardévol
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain; IISPV, Hospital Joan XXIII, Tarragona, Spain.
| | - Montserrat Pinent
- Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, MoBioFood Research Group, Tarragona, Spain; IISPV, Hospital Joan XXIII, Tarragona, Spain
| |
Collapse
|
2
|
Camillo L, Pollastro F, Talmon M, Fresu LG. Bitter Taste Receptors 38 and 46 Regulate Intestinal Peristalsis. Int J Mol Sci 2025; 26:2092. [PMID: 40076714 PMCID: PMC11900946 DOI: 10.3390/ijms26052092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Bitter taste receptors (TAS2Rs) are expressed in extraoral tissues, exerting several functions and generating a whole-body chemosensory and protective system. TAS2Rs expression has been observed in the gastrointestinal tract, although their role is poorly understood. This study aims to investigate the role of TAS2R38 and 46 in human intestinal smooth muscle cells (HISMCs) after activation with the specific bitter ligands phenylthiocarbamide and absinthin, respectively. We found that TAS2R38 and 46 activation by phenylthiocarbamide (PTC) and absinthin, respectively, induces a rapid membrane depolarization and increase of cytosolic calcium levels due to internal storage in the IP3 pathway, resulting in an accelerated cell contraction. Overall, this study unravels, for the first time, the contractile impact of these TAS2R subtypes on intestinal smooth muscle cells, suggesting their involvement in gut peristalsis and recommending these receptors as possible targets for new therapies.
Collapse
Affiliation(s)
- Lara Camillo
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (F.P.); (M.T.)
| | - Maria Talmon
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (F.P.); (M.T.)
| | - Luigia Grazia Fresu
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
3
|
Sternini C, Rozengurt E. Bitter taste receptors as sensors of gut luminal contents. Nat Rev Gastroenterol Hepatol 2025; 22:39-53. [PMID: 39468215 DOI: 10.1038/s41575-024-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Taste is important in the selection of food and is orchestrated by a group of distinct receptors, the taste G protein-coupled receptors (GPCRs). Taste 1 receptors (Tas1rs in mice and TAS1Rs in humans; also known as T1Rs) detect sweet and umami tastes, and taste 2 receptors (Tas2rs in mice and TAS2Rs in humans; also known as T2Rs) detect bitterness. These receptors are also expressed in extraoral sites, including the gastrointestinal mucosa. Tas2rs/TAS2Rs have gained interest as potential targets to prevent or treat metabolic disorders. These bitter taste receptors are expressed in functionally distinct types of gastrointestinal mucosal cells, including enteroendocrine cells, which, upon stimulation, increase intracellular Ca2+ and release signalling molecules that regulate gut chemosensory processes critical for digestion and absorption of nutrients, for neutralization and expulsion of harmful substances, and for metabolic regulation. Expression of Tas2rs/TAS2Rs in gut mucosa is upregulated by high-fat diets, and intraluminal bitter 'tastants' affect gastrointestinal functions and ingestive behaviour through local and gut-brain axis signalling. Tas2rs/TAS2Rs are also found in Paneth and goblet cells, which release antimicrobial peptides and glycoproteins, and in tuft cells, which trigger type 2 immune response against parasites, thus providing a direct line of defence against pathogens. This Review will focus on gut Tas2r/TAS2R distribution, signalling and regulation in enteroendocrine cells, supporting their role as chemosensors of luminal content that serve distinct functions as regulators of body homeostasis and immune response.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Wang K, Chi C, Huang S, Yu M, Li X. Effect of starch molecular weight on the colon-targeting delivery and promoting GLP-1 secretion of starch-lecithin complex nanoparticles. Food Hydrocoll 2025; 158:110589. [DOI: 10.1016/j.foodhyd.2024.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Itoigawa A, Nakagita T, Toda Y. The Remarkable Diversity of Vertebrate Bitter Taste Receptors: Recent Advances in Genomic and Functional Studies. Int J Mol Sci 2024; 25:12654. [PMID: 39684366 PMCID: PMC11641376 DOI: 10.3390/ijms252312654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
Bitter taste perception is crucial for animal survival. By detecting potentially harmful substances, such as plant secondary metabolites, as bitter, animals can avoid ingesting toxic compounds. In vertebrates, this function is mediated by taste receptors type 2 (T2Rs), a family of G protein-coupled receptors (GPCRs) expressed on taste buds. Given their vital roles, T2Rs have undergone significant selective pressures throughout vertebrate evolution, leading to frequent gene duplications and deletions, functional changes, and intrapopulation differentiation across various lineages. Recent advancements in genomic and functional research have uncovered the repertoires and functions of bitter taste receptors in a wide range of vertebrate species, shedding light on their evolution in relation to dietary habits and other ecological factors. This review summarizes recent research on bitter taste receptors and explores the mechanisms driving the diversity of these receptors from the perspective of vertebrate ecology and evolution.
Collapse
Affiliation(s)
- Akihiro Itoigawa
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku 102-0083, Tokyo, Japan
| | - Tomoya Nakagita
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Yasuka Toda
- Department of Agricultural Chemistry, School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
6
|
Shimizu T, Fushimi T, Ohno R, Yasuyuki F, Aso K, Jacobs UM, Nureki O, Suhara Y, Calabrese V, Osakabe N. Verification of the interaction between human bitter taste receptor T2R46 and polyphenols; Computational chemistry approach. Curr Res Food Sci 2024; 9:100914. [PMID: 39687422 PMCID: PMC11647170 DOI: 10.1016/j.crfs.2024.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 12/18/2024] Open
Abstract
Recent studies have indicated that the activation of bitter taste receptors (T2R) expressed in gastrointestinal secretory cells has a regulatory effect on the secretion of gastrointestinal hormones. Polyphenols are known to be ingested at a daily intake of 5 g or more and commonly have a bitter taste. Consequently, the interaction between the bitter taste receptor T2R46 and 490 polyphenols was investigated using in silico simulation techniques. It was demonstrated that W883.32 and E2657.39 play a pivotal role in the recognition of polyphenols and known ligands by T2R46, with frequent interactions observed, particularly with flavonoids. The results of the quantitative structure-activity relationship (QSAR) analysis demonstrated a high degree of correlation (R2 = 0.9359) between polyphenols and T2R46 in a model that incorporated molecular interaction field regions and branching scales. Furthermore, known ligands were also found to fit this model (R2 = 0.9155). These findings suggest that polyphenols may act as T2R46 ligands.
Collapse
Affiliation(s)
- Takafumi Shimizu
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan
| | - Taiki Fushimi
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan
| | - Rio Ohno
- Department of Bioscience and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Japan
| | - Fujii Yasuyuki
- SIT Research Laboratories, Shibaura Institute of Technology, Japan
| | - Kenta Aso
- Central Research Institute, ITO EN, Ltd., Japan
| | | | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | - Yoshitomo Suhara
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan
- Department of Bioscience and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Japan
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Naomi Osakabe
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Japan
- Department of Bioscience and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Japan
| |
Collapse
|
7
|
Lela L, Carlucci V, Kioussi C, Choi J, Stevens JF, Milella L, Russo D. Humulus lupulus L.: Evaluation of Phytochemical Profile and Activation of Bitter Taste Receptors to Regulate Appetite and Satiety in Intestinal Secretin Tumor Cell Line (STC-1 Cells). Mol Nutr Food Res 2024; 68:e2400559. [PMID: 39388530 DOI: 10.1002/mnfr.202400559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Indexed: 10/12/2024]
Abstract
SCOPE Inflorescences of the female hop plant (Humulus lupulus L.) contain biologically active compounds, most of which have a bitter taste. Given the rising global obesity rates, there is much increasing interest in bitter taste receptors (TAS2Rs). Intestinal TAS2Rs can have beneficial effects on obesity when activated by bitter agonists. This study aims to investigate the mechanism of action of a hydroalcoholic hop extract in promoting hormone secretion that reduces the sense of hunger at the intestinal level through the interaction with TAS2Rs. METHODS AND RESULTS The results demonstrate that the hop extract is a rich source of bitter compounds (mainly α-, β-acids) that stimulate the secretion of anorexigenic peptides (glucagon-like peptide 1 [GLP-1], cholecystokinin [CCK]) in a calcium-dependent manner while reducing levels of hunger-related hormones like ghrelin. This effect is mediated through interaction with TAS2Rs, particularly Tas2r138 and Tas2r120, and through the activation of downstream signaling cascades. Knockdown of these receptors using siRNA transfection and inhibition of Trpm5, Plcβ-2, and other calcium channels significantly reduces the hop-induced calcium response as well as GLP-1 and CCK secretion. CONCLUSIONS This study provides a potential application of H. lupulus extract for the formulation of food supplements with satiating activity capable of preventing or combating obesity.
Collapse
Affiliation(s)
- Ludovica Lela
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Vittorio Carlucci
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Chrissa Kioussi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Jan F Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Luigi Milella
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
| | - Daniela Russo
- Department of Sciences, University of Basilicata, Potenza, 85100, Italy
- Spinoff Bioactiplant, via dell'Ateneo Lucano 10, Potenza, 85100, Italy
| |
Collapse
|
8
|
Mohammadpour Z, Heshmati E, Heilbronn LK, Hendrie GA, Brooker PG, Page AJ. The effect of post-oral bitter compound interventions on the postprandial glycemia response: A systematic review and meta-analysis of randomised controlled trials. Clin Nutr 2024; 43:31-45. [PMID: 39317085 DOI: 10.1016/j.clnu.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND & AIMS The post-oral sensing of bitter compounds by a family of bitter taste receptors (TAS2Rs) is suggested to regulate postprandial glycemia in humans. However, reports are inconsistent. This systematic review used meta-analysis to synthesise the impact of bitter compound interventions on the postprandial glycaemic response in humans. METHODS Electronic databases (Medline, PubMed, and Web of Science) were systematically searched from inception to April 2024 to identify randomised controlled trials reporting the effect of interventions utilising post-oral bitter compounds vs. placebo on postprandial plasma glucose levels at t = 2 h (2 h-PPG), and area under the curve (AUC) of glucose, insulin, and c-peptide. The random-effect and subgroup analysis were performed to calculate pooled weighted mean differences (WMD), overall and by predefined criteria. RESULTS Forty-six studies (within 34 articles) were identified; 29 and 17 studies described chronic and acute interventions, respectively. The chronic interventions reduced 2 h-PPG (n = 21, WMD = -0.35 mmol/L, 95%CIs = -0.58, -0.11) but not AUC for glucose or insulin. Subgroup analysis showed the former was particularly evident in individuals with impaired glycemia, interventions longer than three months, or quinine family administration. The acute interventions did not improve the postprandial glycemia response, but subgroup analysis revealed a decrease in AUC-glucose after quinine family administration (n = 4 WMD = -90.40 (nmol × time/L), 95%CIs = -132.70, -48.10). CONCLUSION Chronic bitter compound interventions, particularly those from the quinine family, may have therapeutic potential in those with glycemia dysregulation. Acute intervention of the quinine family may also improve postprandial glucose. Given the very low quality of the evidence, further investigations with more rigorous methods are still required.
Collapse
Affiliation(s)
- Zinat Mohammadpour
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; College of Medicine and Dentistry, James Cook University, Cairns, QLD 4878, Australia
| | - Elaheh Heshmati
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes and Gut Health, Lifelong Health Theme, SAHMRI, SA 5000, Australia
| | - Leonie K Heilbronn
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes and Gut Health, Lifelong Health Theme, SAHMRI, SA 5000, Australia
| | - Gilly A Hendrie
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide 5000, Australia
| | - Paige G Brooker
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide 5000, Australia
| | - Amanda J Page
- School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes and Gut Health, Lifelong Health Theme, SAHMRI, SA 5000, Australia.
| |
Collapse
|
9
|
Osakabe N, Ohmoto M, Shimizu T, Iida N, Fushimi T, Fujii Y, Abe K, Calabrese V. Gastrointestinal hormone-mediated beneficial bioactivities of bitter polyphenols. FOOD BIOSCI 2024; 61:104550. [DOI: 10.1016/j.fbio.2024.104550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Wang J, Song H, Huang Y, Yang C, Wu Y, Lin R, Xiao T, Lin W. Protective effect of crocin on peroxidation-induced oxidative stress and apoptosis in IPEC-J2 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3537-3547. [PMID: 38469959 DOI: 10.1002/tox.24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
The antioxidant properties of crocin are attracting interest, yet the underlying mechanisms by which crocin mitigates oxidative stress-induced intestinal damage have not been determined. This study aimed to elucidate the effects of crocin on oxidative stress, apoptosis, and intestinal epithelial injury in intestinal epithelial cells (IPEC-J2). Using an H2O2-induced oxidative stress model in IPEC-J2 cells, crocin was added to assess its effects. Cell viability and apoptosis were evaluated using methyl thiazolyl tetrazolium assays and flow cytometry. Additionally, oxidative stress markers, such as superoxide dismutase (SOD), catalase (CAT), reactive oxygen species (ROS), and malondialdehyde (MDA), were quantified. We investigated, in which cell oxidation and apoptosis were measured at the gene and protein levels and employed transcriptome analysis to probe the mechanism of action and validate relevant pathways. The results showed that crocin ameliorates H2O2-induced oxidative stress by reducing ROS and MDA levels and by countering the reductions in CAT, total antioxidant capacity, and SOD. Crocin also attenuates the upregulation of key targets in the Nrf2 pathway. Furthermore, it effectively mitigated IPEC-J2 cell apoptosis caused by oxidative stress, as evidenced by changes in cell cycle factor expression, apoptosis rate, mitochondrial membrane potential, and apoptosis pathway activity. In addition, crocin preserves the integrity of the intestinal barrier by protecting tight junction proteins against oxidative stress. Transcriptome sequencing analysis suggested that the mitochondrial pathway may be a crucial mechanism through which crocin exerts its protective effects. In summary, crocin decreases oxidative stress molecule formation, inhibits Nrf2 pathway activity, prevents apoptosis-induced damage, enhances oxidative stress resistance in IPEC-J2 cells, and maintains redox balance in the pig intestine.
Collapse
Affiliation(s)
- Jing Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongbing Song
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongjie Huang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chu Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanling Wu
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ruiyi Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weimin Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Huang W, O'Hara SE, Xie C, Liu N, Rayner CK, Nicholas LM, Wu T. Effects of a bitter substance, denatonium benzoate, on pancreatic hormone secretion. Am J Physiol Endocrinol Metab 2024; 326:E537-E544. [PMID: 38477876 DOI: 10.1152/ajpendo.00046.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
There is increasing evidence linking bitter taste receptor (BTR) signaling to gut hormone secretion and glucose homeostasis. However, its effect on islet hormone secretion has been poorly characterized. This study investigated the effect of the bitter substance, denatonium benzoate (DB), on hormone secretion from mouse pancreatic islets and INS-1 832/13 cells. DB (0.5-1 mM) augmented insulin secretion at both 2.8 mM and 16.7 mM glucose. This effect was no longer present at 5 mM DB likely due to the greater levels of cellular apoptosis. DB-stimulated insulin secretion involved closure of the KATP channel, activation of T2R signaling in beta-cells, and intraislet glucagon-like peptide-1 (GLP-1) release. DB also enhanced glucagon and somatostatin secretion, but the underlying mechanism was less clear. Together, this study demonstrates that the bitter substance, DB, is a strong potentiator of islet hormone secretion independent of glucose. This observation highlights the potential for widespread off-target effects associated with the clinical use of bitter-tasting substances.NEW & NOTEWORTHY We show that the bitter substance, denatonium benzoate (DB), stimulates insulin, glucagon, somatostatin, and GLP-1 secretion from pancreatic islets, independent of glucose, and that DB augments insulin release via the KATP channel, bitter taste receptor signaling, and intraislet GLP-1 secretion. Exposure to a high dose of DB (5 mM) induces cellular apoptosis in pancreatic islets. Therefore, clinical use of bitter substances to improve glucose homeostasis may have unintended negative impacts beyond the gut.
Collapse
Affiliation(s)
- Weikun Huang
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Stephanie E O'Hara
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Cong Xie
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ning Liu
- Bioinformatics Division, The Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - Christopher K Rayner
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lisa M Nicholas
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Tongzhi Wu
- Centre for Research Excellence in Translating Nutritional Sciences to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
12
|
Schiano E, Iannuzzo F, Stornaiuolo M, Guerra F, Tenore GC, Novellino E. Gengricin ®: A Nutraceutical Formulation for Appetite Control and Therapeutic Weight Management in Adults Who Are Overweight/Obese. Int J Mol Sci 2024; 25:2596. [PMID: 38473841 DOI: 10.3390/ijms25052596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
In the field of nutritional science and metabolic disorders, there is a growing interest in natural bitter compounds capable of interacting with bitter taste receptors (TAS2Rs) useful for obesity management and satiety control. This study aimed to evaluate the effect of a nutraceutical formulation containing a combination of molecules appropriately designed to simultaneously target and stimulate these receptors. Specifically, the effect on CCK release exerted by a multi-component nutraceutical formulation (Cinchona bark, Chicory, and Gentian roots in a 1:1:1 ratio, named Gengricin®) was investigated in a CaCo-2 cell line, in comparison with Cinchona alone. In addition, these nutraceutical formulations were tested through a 3-month randomized controlled trial (RCT) conducted in subjects who were overweight-obese following a hypocaloric diet. Interestingly, the Gengricin® group exhibited a significant greater weight loss and improvement in body composition than the Placebo and Cinchona groups, indicating its effectiveness in promoting weight regulation. Additionally, the Gengricin® group reported higher satiety levels and a significant increase in serum CCK levels, suggesting a physiological basis for the observed effects on appetite control. Overall, these findings highlight the potential of natural nutraceutical strategies based on the combination of bitter compounds in modulating gut hormone release for effective appetite control and weight management.
Collapse
Affiliation(s)
- Elisabetta Schiano
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy
| | - Fortuna Iannuzzo
- Department of Pharmacy, University of Chieti-Pescara G. D'Annunzio, 66100 Chieti, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy
| | - Fabrizia Guerra
- NGN Healthcare-New Generation Nutraceuticals s.r.l., Torrette Via Nazionale 207, 83013 Mercogliano, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 59, 80131 Naples, Italy
| | - Ettore Novellino
- Inventia Biotech-Healthcare Food Research Center s.r.l., Strada Statale Sannitica KM 20.700, 81020 Caserta, Italy
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
13
|
Osakabe N, Shimizu T, Fujii Y, Fushimi T, Calabrese V. Sensory Nutrition and Bitterness and Astringency of Polyphenols. Biomolecules 2024; 14:234. [PMID: 38397471 PMCID: PMC10887135 DOI: 10.3390/biom14020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have demonstrated that the interaction of dietary constituents with taste and olfactory receptors and nociceptors expressed in the oral cavity, nasal cavity and gastrointestinal tract regulate homeostasis through activation of the neuroendocrine system. Polyphenols, of which 8000 have been identified to date, represent the greatest diversity of secondary metabolites in plants, most of which are bitter and some of them astringent. Epidemiological studies have shown that polyphenol intake contributes to maintaining and improving cardiovascular, cognitive and sensory health. However, because polyphenols have very low bioavailability, the mechanisms of their beneficial effects are unknown. In this review, we focused on the taste of polyphenols from the perspective of sensory nutrition, summarized the results of previous studies on their relationship with bioregulation and discussed their future potential.
Collapse
Affiliation(s)
- Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Takafumi Shimizu
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Yasuyuki Fujii
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Taiki Fushimi
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
14
|
Zhang M, Zhu L, Wu G, Zhang H, Wang X, Qi X. The impacts and mechanisms of dietary proteins on glucose homeostasis and food intake: a pivotal role of gut hormones. Crit Rev Food Sci Nutr 2023; 64:12744-12758. [PMID: 37800337 DOI: 10.1080/10408398.2023.2256400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Glucose and energy metabolism disorders are the main reasons induced type 2 diabetes (T2D) and obesity. Besides providing energy, dietary nutrients could regulate glucose homeostasis and food intake via intestinal nutrient sensing induced gut hormone secretion. However, reviews regarding intestinal protein sensing are very limited, and no accurate information is available on their underlying mechanisms. Through intestinal protein sensing, dietary proteins regulate glucose homeostasis and food intake by secreting gut hormones, such as glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), peptide YY (PYY) and glucose-dependent insulinotropic polypeptide (GIP). After activating the sensory receptors, such as calcium-sensing receptor (CaSR), peptide transporter-1 (PepT1), and taste 1 receptors (T1Rs), protein digests induced Ca2+ influx and thus triggered gut hormone release. Additionally, research models used to study intestinal protein sensing have been emphasized, especially several innovative models with excellent physiological relevance, such as co-culture cell models, intestinal organoids, and gut-on-a-chips. Lastly, protein-based dietary strategies that stimulate gut hormone secretion and inhibit gut hormone degradation are proposed for regulating glucose homeostasis and food intake.
Collapse
Affiliation(s)
- Mingkai Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiguang Qi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Caremoli F, Huynh J, Lagishetty V, Markovic D, Braun J, Dong TS, Jacobs JP, Sternini C. Microbiota-Dependent Upregulation of Bitter Taste Receptor Subtypes in the Mouse Large Intestine in High-Fat Diet-Induced Obesity. Nutrients 2023; 15:4145. [PMID: 37836428 PMCID: PMC10574285 DOI: 10.3390/nu15194145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Bitter taste receptors (Tas2rs in mice) detect bitterness, a warning signal for toxins and poisons, and are expressed in enteroendocrine cells. We tested the hypothesis that Tas2r138 and Tas2r116 mRNAs are modulated by microbiota alterations induced by a long-term high-fat diet (HFD) and antibiotics (ABX) (ampicillin and neomycin) administered in drinking water. Cecum and colon specimens and luminal contents were collected from C57BL/6 female and male mice for qRT-PCR and microbial luminal 16S sequencing. HFD with/without ABX significantly increased body weight and fat mass at 4, 6, and 8 weeks. Tas2r138 and Tas2r116 mRNAs were significantly increased in mice fed HFD for 8 weeks vs. normal diet, and this increase was prevented by ABX. There was a distinct microbiota separation in each experimental group and significant changes in the composition and diversity of microbiome in mice fed a HFD with/without ABX. Tas2r mRNA expression in HFD was associated with several genera, particularly with Akkermansia, a Gram-negative mucus-resident bacterium. These studies indicate that luminal bacterial composition is affected by sex, diet, and ABX and support a microbial dependent upregulation of Tas2rs in HFD-induced obesity, suggesting an adaptive host response to specific diet-induced dysbiosis.
Collapse
Affiliation(s)
- Filippo Caremoli
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Jennifer Huynh
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Venu Lagishetty
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Daniela Markovic
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Jonathan Braun
- Inflammatory Bowel and Immunobiology Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Tien S. Dong
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Jonathan P. Jacobs
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; (F.C.); (J.H.); (V.L.); (T.S.D.); (J.P.J.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Descamps-Solà M, Vilalta A, Jalsevac F, Blay MT, Rodríguez-Gallego E, Pinent M, Beltrán-Debón R, Terra X, Ardévol A. Bitter taste receptors along the gastrointestinal tract: comparison between humans and rodents. Front Nutr 2023; 10:1215889. [PMID: 37712001 PMCID: PMC10498470 DOI: 10.3389/fnut.2023.1215889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 09/16/2023] Open
Abstract
For decades bitter taste receptors (TAS2R) were thought to be located only in the mouth and to serve as sensors for nutrients and harmful substances. However, in recent years Tas2r have also been reported in extraoral tissues such as the skin, the lungs, and the intestine, where their function is still uncertain. To better understand the physiological role of these receptors, in this paper we focused on the intestine, an organ in which their activation may be similar to the receptors found in the mouth. We compare the relative presence of these receptors along the gastrointestinal tract in three main species of biomedical research (mice, rats and humans) using sequence homology. Current data from studies of rodents are scarce and while more data are available in humans, they are still deficient. Our results indicate, unexpectedly, that the reported expression profiles do not always coincide between species even if the receptors are orthologs. This may be due not only to evolutionary divergence of the species but also to their adaptation to different dietary patterns. Further studies are needed in order to develop an integrated vision of these receptors and their physiological functionality along the gastrointestinal tract.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Raúl Beltrán-Debón
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, MoBioFood Research Group, Tarragona, Spain
| | - Ximena Terra
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, MoBioFood Research Group, Tarragona, Spain
| | | |
Collapse
|
17
|
Barroso E, Montori-Grau M, Wahli W, Palomer X, Vázquez-Carrera M. Striking a gut-liver balance for the antidiabetic effects of metformin. Trends Pharmacol Sci 2023; 44:457-473. [PMID: 37188578 DOI: 10.1016/j.tips.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
Metformin is the most prescribed drug for the treatment of type 2 diabetes mellitus (T2DM), but its mechanism of action has not yet been completely elucidated. Classically, the liver has been considered the major site of action of metformin. However, over the past few years, advances have unveiled the gut as an additional important target of metformin, which contributes to its glucose-lowering effect through new mechanisms of action. A better understanding of the mechanistic details of metformin action in the gut and the liver and its relevance in patients remains the challenge of present and future research and may impact drug development for the treatment of T2DM. Here, we offer a critical analysis of the current status of metformin-driven multiorgan glucose-lowering effects.
Collapse
Affiliation(s)
- Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Marta Montori-Grau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Walter Wahli
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland; Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore; ToxAlim (Research Center in Food Toxicology), INRAE, UMR1331, 31300 Toulouse Cedex, France
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, E-08950 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Avinguda Joan XXII 27-31, E-08028 Barcelona, Spain.
| |
Collapse
|
18
|
Hoshino R, Sano H, Yoshinari Y, Nishimura T, Niwa R. Circulating fructose regulates a germline stem cell increase via gustatory receptor-mediated gut hormone secretion in mated Drosophila. SCIENCE ADVANCES 2023; 9:eadd5551. [PMID: 36827377 PMCID: PMC9956130 DOI: 10.1126/sciadv.add5551] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Oogenesis is influenced by multiple environmental factors. In the fruit fly, Drosophila melanogaster, nutrition and mating have large impacts on an increase in female germline stem cells (GSCs). However, it is unclear whether these two factors affect this GSC increase interdependently. Here, we report that dietary sugars are crucial for the GSC increase after mating. Dietary glucose is required for mating-induced release of neuropeptide F (NPF) from enteroendocrine cells (EECs), followed by NPF-mediated enhancement of GSC niche signaling. Unexpectedly, dietary glucose does not directly act on NPF-positive EECs. Rather, it contributes to elevation of hemolymph fructose generated through the polyol pathway. Elevated fructose stimulates the fructose-specific gustatory receptor, Gr43a, in NPF-positive EECs, leading to NPF secretion. This study demonstrates that circulating fructose, derived from dietary sugars, is a prerequisite for the GSC increase that leads to enhancement of egg production after mating.
Collapse
Affiliation(s)
- Ryo Hoshino
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroko Sano
- Department of Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Fukuoka 830-0011, Japan
| | - Yuto Yoshinari
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| | - Takashi Nishimura
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
19
|
Welcome MO, Dogo D, Nikos E Mastorakis. Cellular mechanisms and molecular pathways linking bitter taste receptor signalling to cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Inflammopharmacology 2023; 31:89-117. [PMID: 36471190 PMCID: PMC9734786 DOI: 10.1007/s10787-022-01086-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Heart diseases and related complications constitute a leading cause of death and socioeconomic threat worldwide. Despite intense efforts and research on the pathogenetic mechanisms of these diseases, the underlying cellular and molecular mechanisms are yet to be completely understood. Several lines of evidence indicate a critical role of inflammatory and oxidative stress responses in the development and progression of heart diseases. Nevertheless, the molecular machinery that drives cardiac inflammation and oxidative stress is not completely known. Recent data suggest an important role of cardiac bitter taste receptors (TAS2Rs) in the pathogenetic mechanism of heart diseases. Independent groups of researchers have demonstrated a central role of TAS2Rs in mediating inflammatory, oxidative stress responses, autophagy, impulse generation/propagation and contractile activities in the heart, suggesting that dysfunctional TAS2R signalling may predispose to cardiac inflammatory and oxidative stress disorders, characterised by contractile dysfunction and arrhythmia. Moreover, cardiac TAS2Rs act as gateway surveillance units that monitor and detect toxigenic or pathogenic molecules, including microbial components, and initiate responses that ultimately culminate in protection of the host against the aggression. Unfortunately, however, the molecular mechanisms that link TAS2R sensing of the cardiac milieu to inflammatory and oxidative stress responses are not clearly known. Therefore, we sought to review the possible role of TAS2R signalling in the pathophysiology of cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction in heart diseases. Potential therapeutic significance of targeting TAS2R or its downstream signalling molecules in cardiac inflammation, oxidative stress, arrhythmia and contractile dysfunction is also discussed.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Plot 681 Cadastral Zone, C-00 Research and Institution Area, Jabi Airport Road Bypass, FCT, Abuja, Nigeria.
| | - Dilli Dogo
- Department of Surgery, Faculty of Clinical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| | - Nikos E Mastorakis
- Technical University of Sofia, Klement Ohridksi 8, Sofia, 1000, Bulgaria
| |
Collapse
|
20
|
Interactions between Bitter Taste Receptor Gene Variants and Dietary Intake Are Associated with the Incidence of Type 2 Diabetes Mellitus in Middle-Aged and Older Korean Adults. Int J Mol Sci 2023; 24:ijms24032199. [PMID: 36768516 PMCID: PMC9916528 DOI: 10.3390/ijms24032199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
The relationship between the variants of bitter taste receptor gene TAS2R4, dietary intake, and incidence of type 2 diabetes mellitus (T2DM) remains unclear. Hence, we aimed to examine the association of TAS2R4 rs2233998 variants with T2DM incidence in middle-aged and older Korean adults to understand if their association was modulated by dietary intake. Data of the Ansan-Ansung cohort from the Korean Genome and Epidemiology Study were used in this study. A total of 4552 Korean adults aged 40-69 years with no history of T2DM or cancer at baseline were followed-up for 16 years. Dietary intake was assessed using a 103-item food frequency questionnaire, and new T2DM cases were defined based on the World Health Organization and International Diabetes Federation criteria. Multivariate Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for T2DM incidence. During the mean follow-up period of 11.97 years, 1082 (23.77%) new T2DM cases were identified. Women carrying the TT genotype of TAS2R4 rs2233998 exhibited 1.48 times higher incidence of T2DM (HR: 1.48; 95 CI: 1.13-1.93) than those carrying the CC genotype. TAS2R4 rs2233998 variants were positively associated with the incidence of T2DM among Korean women with high intakes of carbohydrates or sugars and low intakes of fruits or vegetables. TT carrier women in the highest tertile of carbohydrate or sugar intake exhibited an increased incidence of T2DM (HR: 2.08, 95% CI: 1.33-3.27 for carbohydrates; HR: 2.31, 95% CI: 1.53-3.51 for sugars) than CC carrier women. Women carrying the TT genotype in the lowest tertile exhibited an increased incidence of T2DM (HR: 1.55, 95% CI: 1.02-2.37 for vegetables; HR: 1.62, 95% CI: 1.06-2.48 for fruits) than women carrying the CC genotype in the highest tertile of vegetable or fruit consumption. However, no association was observed between TAS2R4 rs2233998 variants and dietary intake with T2DM incidence in Korean men. Our findings suggest that variants of TAS2R4 rs2233998 are associated with T2DM incidence, and their associations are strengthened by excessive intake of carbohydrates or sugars and inadequate intake of fruits or vegetables. Diet encompassing optimal intake of carbohydrates or sugars and high intake of fruits or vegetables may minimize the risk of developing T2DM.
Collapse
|
21
|
Liu S, Grierson D, Xi W. Biosynthesis, distribution, nutritional and organoleptic properties of bitter compounds in fruit and vegetables. Crit Rev Food Sci Nutr 2022; 64:1934-1953. [PMID: 36099178 DOI: 10.1080/10408398.2022.2119930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Compounds that confer a bitter taste on fruits and vegetables (FAVs) play crucial roles in both plant defense and health promotion. This review details the current knowledge of the distribution, properties (toxicity, pharmacological effects and receptors) and environmental plant responses relating to the biosynthesis, catabolism and transcriptional regulation of 53 bitter plant metabolites in diverse species of FAVs. Some bitter compounds, such as flavonoids, are common in all plant species and make a minor contribution to bitter flavor, but many are synthesized only in specific taxa. They make major contributions to the bitter taste of the corresponding species and some also have significant pharmacological effects. Levels of bitter metabolites are genetically determined, but various environmental cues can affect their final concentration during preharvest development and postharvest storage processes. Molecular approaches are helping to unravel the mechanisms of biosynthesis and regulation of bitter compounds in diverse crop species. This review not only discusses the theoretical basis for utilizing breeding programs and other agricultural technologies to produce FAVs with improved safety, favorable taste and healthier profiles, but also suggests new directions for the utilization of bitter compounds in FAVs for the development of natural pesticides and health-promoting medicines.
Collapse
Affiliation(s)
- Shengyu Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Donald Grierson
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Ministry of Education, Key Laboratory of Horticulture Science for Southern Mountainous Regions, Chongqing, China
| |
Collapse
|
22
|
Chen L, Yang Y, Sun S, Xie Y, Pan C, Li M, Li C, Liu Y, Xu Z, Liu W, Ji M. Indolepropionic acid reduces obesity‐induced metabolic dysfunction through colonic barrier restoration mediated via tuft cell‐derived IL‐25. FEBS J 2022; 289:5985-6004. [DOI: 10.1111/febs.16470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/06/2022] [Accepted: 05/03/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Lu Chen
- Department of Pathogen Biology Nanjing Medical University China
- Jiangsu Province Engineering Research Center of Antibody Drug Nanjing China
| | - Yuxuan Yang
- Department of Pathogen Biology Nanjing Medical University China
| | - Siyu Sun
- Department of Pathogen Biology Nanjing Medical University China
| | - Yuan Xie
- Department of Endocrinology Sir Run Run Hospital Nanjing Medical University China
| | - Cailong Pan
- Department of Pathology School of Basic Medicine Nanjing Medical University China
| | - Maining Li
- Department of Pathogen Biology Nanjing Medical University China
| | - Chen Li
- Department of Pathogen Biology Nanjing Medical University China
| | - Yu Liu
- Department of Endocrinology Sir Run Run Hospital Nanjing Medical University China
| | - Zhipeng Xu
- Department of Pathogen Biology Nanjing Medical University China
| | - Wentao Liu
- Department of Pharmacology School of Basic Medicine Nanjing Medical University China
| | - Minjun Ji
- Department of Pathogen Biology Nanjing Medical University China
- Jiangsu Province Engineering Research Center of Antibody Drug Nanjing China
| |
Collapse
|
23
|
Zhao A, Jeffery EH, Miller MJ. Is Bitterness Only a Taste? The Expanding Area of Health Benefits of Brassica Vegetables and Potential for Bitter Taste Receptors to Support Health Benefits. Nutrients 2022; 14:nu14071434. [PMID: 35406047 PMCID: PMC9002472 DOI: 10.3390/nu14071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022] Open
Abstract
The list of known health benefits from inclusion of brassica vegetables in the diet is long and growing. Once limited to cancer prevention, a role for brassica in prevention of oxidative stress and anti-inflammation has aided in our understanding that brassica provide far broader benefits. These include prevention and treatment of chronic diseases of aging such as diabetes, neurological deterioration, and heart disease. Although animal and cell culture studies are consistent, clinical studies often show too great a variation to confirm these benefits in humans. In this review, we discuss causes of variation in clinical studies, focusing on the impact of the wide variation across humans in commensal bacterial composition, which potentially result in variations in microbial metabolism of glucosinolates. In addition, as research into host-microbiome interactions develops, a role for bitter-tasting receptors, termed T2Rs, in the gastrointestinal tract and their role in entero-endocrine hormone regulation is developing. Here, we summarize the growing literature on mechanisms of health benefits by brassica-derived isothiocyanates and the potential for extra-oral T2Rs as a novel mechanism that may in part describe the variability in response to brassica among free-living humans, not seen in research animal and cell culture studies.
Collapse
Affiliation(s)
- Anqi Zhao
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Elizabeth H. Jeffery
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA;
| | - Michael J. Miller
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA;
- Correspondence:
| |
Collapse
|
24
|
Yao Z, Scott K. Serotonergic neurons translate taste detection into internal nutrient regulation. Neuron 2022; 110:1036-1050.e7. [PMID: 35051377 DOI: 10.1016/j.neuron.2021.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/26/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
The nervous and endocrine systems coordinately monitor and regulate nutrient availability to maintain energy homeostasis. Sensory detection of food regulates internal nutrient availability in a manner that anticipates food intake, but sensory pathways that promote anticipatory physiological changes remain unclear. Here, we identify serotonergic (5-HT) neurons as critical mediators that transform gustatory detection by sensory neurons into the activation of insulin-producing cells and enteric neurons in Drosophila. One class of 5-HT neurons responds to gustatory detection of sugars, excites insulin-producing cells, and limits consumption, suggesting that they anticipate increased nutrient levels and prevent overconsumption. A second class of 5-HT neurons responds to gustatory detection of bitter compounds and activates enteric neurons to promote gastric motility, likely to stimulate digestion and increase circulating nutrients upon food rejection. These studies demonstrate that 5-HT neurons relay acute gustatory detection to divergent pathways for longer-term stabilization of circulating nutrients.
Collapse
Affiliation(s)
- Zepeng Yao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
25
|
Huang TT, Gu PP, Zheng T, Gou LS, Liu YW. Piperine, as a TAS2R14 agonist, stimulates the secretion of glucagon-like peptide-1 in the human enteroendocrine cell line Caco-2. Food Funct 2022; 13:242-254. [PMID: 34881772 DOI: 10.1039/d1fo02932k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Piperine is reported to ameliorate common metabolic diseases, however, its molecular mechanism is still unclear. In the present study, we examined whether piperine could stimulate glucagon-like peptide-1 (GLP-1) secretion in a human enteroendocrine cell line, Caco-2, and explored the potential mechanisms from the activation of human bitter taste receptors (TAS2Rs). It was found that TAS2R14 was highly expressed in Caco-2 cells, far more than TAS2R4 and TAS2R10. Piperine and flufenamic acid (FA, a known TAS2R14 agonist) markedly increased intracellular calcium mobilization and significantly enhanced the GLP-1 secretion, accompanied by elevated levels of proglucagon mRNA in Caco-2 cells compared with the control. Moreover, piperine and FA activated TAS2R14 signaling as evidenced by the increased mRNA and protein levels of TAS2R14, and the protein expression of its downstream key molecules including phospholipase C β2 (PLCβ2) and a transient receptor potential channel melastatin 5 (TRPM5). On the other hand, a G protein βγ subunit inhibitor Gallein or a PLC inhibitor U73122 alleviated piperine-stimulated GLP-1 secretion in Caco-2 cells. In the meantime, a flavanone hesperetin significantly attenuated piperine and FA induced the intracellular calcium mobilization and GLP-1 secretion. Furthermore, TAS2R14 knockdown reversed the piperine-triggered up-regulation of PLCβ2 and TRPM5 as well as increased the GLP-1 secretion in Caco-2 cells by TAS2R14 shRNA transfection. In summary, our findings demonstrated that piperine promoted the GLP-1 secretion from enteroendocrine cells through the activation of TAS2R14 signaling. Moreover, TAS2R14 was likely a target of piperine in the alleviation of metabolic diseases.
Collapse
Affiliation(s)
- Ting-Ting Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Pan-Pan Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Ting Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| | - Ling-Shan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, Jiangsu, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China. .,Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
26
|
A Novel Pathway of Flavonoids Protecting against Inflammatory Bowel Disease: Modulating Enteroendocrine System. Metabolites 2022; 12:metabo12010031. [PMID: 35050153 PMCID: PMC8777795 DOI: 10.3390/metabo12010031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a comprehensive term for chronic or relapsing inflammatory diseases occurring in the intestinal tract, generally including Crohn's disease (CD) and ulcerative colitis (UC). Presently, the pathogenesis of IBD is unknown, yet multiple factors have been reported to be related with the development of IBD. Flavonoids are phytochemicals with biological activity, which are ubiquitously distributed in edible plants, such as fruits and vegetables. Recent studies have demonstrated impressively that flavonoids have anti-IBD effects through multiple mechanisms. These include anti-inflammatory and antioxidant actions; the preservation of the epithelial barrier integrity, the intestinal immunomodulatory property, and the shaping microbiota composition and function. In addition, a few studies have shown the impact of flavonoids on enterohormones release; nonetheless, there is hardly any work showing the link between flavonoids, enterohormones release and IBD. So far, the interaction between flavonoids, enterohormones and IBD is elucidated for the first time in this review. Furthermore, the inference can be drawn that flavonoids may protect against IBD through modulating enterohormones, such as glucagon-like peptide 1 (GLP-1), GLP-2, dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), ghrelin and cholecystokinin (CCK). In conclusion, this manuscript explores a possible mechanism of flavonoids protecting against IBD.
Collapse
|
27
|
Affiliation(s)
- Beverly J Tepper
- Center for Sensory Science & Innovation, Department of Food Science, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
28
|
Expression of Jejunal Taste Receptors in Women with Morbid Obesity. Nutrients 2021; 13:nu13072437. [PMID: 34371946 PMCID: PMC8308737 DOI: 10.3390/nu13072437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Nutrient sensing plays important roles in promoting satiety and maintaining good homeostatic control. Taste receptors (TAS) are located through the gastrointestinal tract, and recent studies have shown they have a relationship with metabolic disorders. The aim of this study was to analyze the jejunal expression of TAS1R2, TAS1R3, TAS2R14 and TAS2R38 in women with morbid obesity, first classified according to metabolic syndrome presence (MetS; n = 24) or absence (non-MetS; n = 45) and then classified according to hepatic histology as normal liver (n = 28) or nonalcoholic fatty liver disease (n = 41). Regarding MetS, we found decreased expression of TAS2R14 in MetS patients. However, when we subclassified patients according to liver histology, we did not find differences between groups. We found negative correlations between glucose levels, triglycerides and MetS with TAS1R3 expression. Moreover, TAS2R14 jejunal expression correlated negatively with the presence of MetS and ghrelin levels and positively with the jejunal Toll-like receptor (TLR)4, peroxisome proliferator-activated receptor (PPAR)-γ, and interleukin (IL)-10 levels. Furthermore, TAS2R38 expression correlated negatively with TLR9 jejunal expression and IL-6 levels and positively with TLR4 levels. Our findings suggest that metabolic dysfunctions such as MetS trigger downregulation of the intestinal TASs. Therefore, taste receptors modulation could be a possible therapeutic target for metabolic disorders.
Collapse
|
29
|
Morini G, Winnig M, Vennegeerts T, Borgonovo G, Bassoli A. Vanillin Activates Human Bitter Taste Receptors TAS2R14, TAS2R20, and TAS2R39. Front Nutr 2021; 8:683627. [PMID: 34307435 PMCID: PMC8298857 DOI: 10.3389/fnut.2021.683627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Vanilla is widely used in food preparation worldwide for its sensory properties, mainly related to its fragrance, being vanillin the major compound present in the processed vanilla. Vanillin is also known to elicit bitterness as a secondary sensory sensation, but the molecular mechanism of its bitterness has never been reported. Assay buffers of vanillin were tested in vitro on all known 25 human bitter taste receptors TAS2Rs. Three receptors, TAS2R14, TAS2R20, and TAS2R39, were activated, showing that these receptors are mediating the bitterness of vanillin. The result could be useful to improve the overall sensory profile of this broadly used food ingredient, but even more could represent the starting point for further studies to investigate the potential of vanillin in sensory nutrition and other pharmaceutical applications.
Collapse
Affiliation(s)
| | - Marcel Winnig
- IMAX Discovery GmbH, Dortmund, Germany.,Axxam S.p.A. Bresso, Italy
| | - Timo Vennegeerts
- IMAX Discovery GmbH, Dortmund, Germany.,Axxam S.p.A. Bresso, Italy
| | - Gigliola Borgonovo
- DeFENS - Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Angela Bassoli
- DeFENS - Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|
30
|
Sung WW, Tu JH, Yu JS, Ulfa MZ, Chang JH, Cheng HL. Bacillus amyloliquefaciens exopolysaccharide preparation induces glucagon-like peptide 1 secretion through the activation of bitter taste receptors. Int J Biol Macromol 2021; 185:562-571. [PMID: 34216658 DOI: 10.1016/j.ijbiomac.2021.06.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/23/2022]
Abstract
The exopolysaccharide preparation of Bacillus amyloliquefaciens amy-1 (EPS) regulates glycemic levels and promotes glucagon-like peptide 1 (GLP-1) secretion in vivo and in vitro. This study aimed to identify the molecular mechanism underlying EPS-induced GLP-1 secretion. HEK293T cells stably expressing human Gα-gustducin were used as a heterologous system for expressing the genes of human bitter taste receptor (T2R) 10, 14, 30, 38 (PAV), 38 (AVI), 43, and 46, which were expressed as recombinant proteins with an N-terminal tag composed of a Lucy peptide and a human somatostatin receptor subtype 3 fragment for membrane targeting and a C-terminal red fluorescent protein for expression monitoring. EPS induced a dose-dependent calcium response from the human NCI-H716 enteroendocrine cell line revealed by fluorescent calcium imaging, but inhibitors of the G protein-coupled receptor pathway suppressed the response. EPS activated heterologously expressed T2R14 and T2R38 (PAV). shRNAs of T2R14 effectively inhibited EPS-induced calcium response and GLP-1 secretion in NCI-H716 cells, suggesting the involvement of T2R14 in these effects. The involvement of T2R38 was not characterized because NCI-H716 cells express T2R38 (AVI). In conclusion, the activation of T2Rs mediates EPS-induced GLP-1 secretion from enteroendocrine cells, and T2R14 is a critical target activated by EPS in these cells.
Collapse
Affiliation(s)
- Wei-Wen Sung
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan
| | - Jing-Hong Tu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan
| | - Jyun-Sian Yu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan
| | - Marisa Zakiya Ulfa
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan; Department of Agroindustrial Biotechnology, Brawijaya University, Jalan Veteran, Malang 65145, Indonesia
| | - Jia-Hong Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan
| | - Hsueh-Ling Cheng
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, No. 1, Shuehfu Rd., Neipu Township, Pingtung 912301, Taiwan.
| |
Collapse
|
31
|
Rose BD, Bitarafan V, Rezaie P, Fitzgerald PCE, Horowitz M, Feinle-Bisset C. Comparative Effects of Intragastric and Intraduodenal Administration of Quinine on the Plasma Glucose Response to a Mixed-Nutrient Drink in Healthy Men: Relations with Glucoregulatory Hormones and Gastric Emptying. J Nutr 2021; 151:1453-1461. [PMID: 33704459 DOI: 10.1093/jn/nxab020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In preclinical studies, bitter compounds, including quinine, stimulate secretion of glucoregulatory hormones [e.g., glucagon-like peptide-1 (GLP-1)] and slow gastric emptying, both key determinants of postprandial glycemia. A greater density of bitter-taste receptors has been reported in the duodenum than the stomach. Thus, intraduodenal (ID) delivery may be more effective in stimulating GI functions to lower postprandial glucose. OBJECTIVE We compared effects of intragastric (IG) and ID quinine [as quinine hydrochloride (QHCl)] administration on the plasma glucose response to a mixed-nutrient drink and relations with gastric emptying, plasma C-peptide (reflecting insulin secretion), and GLP-1. METHODS Fourteen healthy men [mean ± SD age: 25 ± 3 y; BMI (in kg/m2): 22.5 ± 0.5] received, on 4 separate occasions, in double-blind, randomly assigned order, 600 mg QHCl or control, IG or ID, 60 min (IG conditions) or 30 min (IG conditions) before a mixed-nutrient drink. Plasma glucose (primary outcome) and hormones were measured before, and for 2 h following, the drink. Gastric emptying of the drink was measured using a 13C-acetate breath test. Data were analyzed using repeated-measures 2-way ANOVAs (factors: treatment and route of administration) to evaluate effects of QHCl alone and 3-way ANOVAs (factors: treatment, route-of-administration, and time) for responses to the drink. RESULTS After QHCl alone, there were effects of treatment, but not route of administration, on C-peptide, GLP-1, and glucose (P < 0.05); QHCl stimulated C-peptide and GLP-1 and lowered glucose concentrations (IG control: 4.5 ± 0.1; IG-QHCl: 3.9 ± 0.1; ID-control: 4.6 ± 0.1; ID-QHCl: 4.2 ± 0.1 mmol/L) compared with control. Postdrink, there were treatment × time interactions for glucose, C-peptide, and gastric emptying, and a treatment effect for GLP-1 (all P < 0.05), but no route-of-administration effects. QHCl stimulated C-peptide and GLP-1, slowed gastric emptying, and reduced glucose (IG control: 7.2 ± 0.3; IG-QHCl: 6.2 ± 0.3; ID-control: 7.2 ± 0.3; ID-QHCl: 6.4 ± 0.4 mmol/L) compared with control. CONCLUSIONS In healthy men, IG and ID quinine administration similarly lowered plasma glucose, increased plasma insulin and GLP-1, and slowed gastric emptying. These findings have potential implications for lowering blood glucose in type 2 diabetes. This study was registered as a clinical trial with the Australian New Zealand Clinical Trials at www.anzctr.org.au as ACTRN12619001269123.
Collapse
Affiliation(s)
- Braden D Rose
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Vida Bitarafan
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Peyman Rezaie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Penelope C E Fitzgerald
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
32
|
Therapeutic potential of targeting intestinal bitter taste receptors in diabetes associated with dyslipidemia. Pharmacol Res 2021; 170:105693. [PMID: 34048925 DOI: 10.1016/j.phrs.2021.105693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022]
Abstract
Intestinal release of incretin hormones after food intake promotes glucose-dependent insulin secretion and regulates glucose homeostasis. The impaired incretin effects observed in the pathophysiologic abnormality of type 2 diabetes have triggered the pharmacological development of incretin-based therapy through the activation of glucagon-like peptide-1 (GLP-1) receptor, including GLP-1 receptor agonists (GLP-1 RAs) and dipeptidyl peptidase 4 (DPP4) inhibitors. In the light of the mechanisms involved in the stimulation of GLP-1 secretion, it is a fundamental question to explore whether glucose and lipid homeostasis can be manipulated by the digestive system in response to nutrient ingestion and taste perception along the gastrointestinal tract. While glucose is a potent stimulant of GLP-1 secretion, emerging evidence highlights the importance of bitter tastants in the enteroendocrine secretion of gut hormones through activation of bitter taste receptors. This review summarizes bitter chemosensation in the intestines for GLP-1 secretion and metabolic regulation based on recent advances in biological research of bitter taste receptors and preclinical and clinical investigation of bitter medicinal plants, including bitter melon, hops strobile, and berberine-containing herbs (e.g. coptis rhizome and barberry root). Multiple mechanisms of action of relevant bitter phytochemicals are discussed with the consideration of pharmacokinetic studies. Current evidence suggests that specific agonists targeting bitter taste receptors, such as human TAS2R1 and TAS2R38, may provide both metabolic benefits and anti-inflammatory effects with the modulation of the enteroendocrine hormone secretion and bile acid turnover in metabolic syndrome individuals or diabetic patients with dyslipidemia-related comorbidities.
Collapse
|
33
|
Rezaie P, Bitarafan V, Horowitz M, Feinle-Bisset C. Effects of Bitter Substances on GI Function, Energy Intake and Glycaemia-Do Preclinical Findings Translate to Outcomes in Humans? Nutrients 2021; 13:1317. [PMID: 33923589 PMCID: PMC8072924 DOI: 10.3390/nu13041317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bitter substances are contained in many plants, are often toxic and can be present in spoiled food. Thus, the capacity to detect bitter taste has classically been viewed to have evolved primarily to signal the presence of toxins and thereby avoid their consumption. The recognition, based on preclinical studies (i.e., studies in cell cultures or experimental animals), that bitter substances may have potent effects to stimulate the secretion of gastrointestinal (GI) hormones and modulate gut motility, via activation of bitter taste receptors located in the GI tract, reduce food intake and lower postprandial blood glucose, has sparked considerable interest in their potential use in the management or prevention of obesity and/or type 2 diabetes. However, it remains to be established whether findings from preclinical studies can be translated to health outcomes, including weight loss and improved long-term glycaemic control. This review examines information relating to the effects of bitter substances on the secretion of key gut hormones, gastric motility, food intake and blood glucose in preclinical studies, as well as the evidence from clinical studies, as to whether findings from animal studies translate to humans. Finally, the evidence that bitter substances have the capacity to reduce body weight and/or improve glycaemic control in obesity and/or type 2 diabetes, and potentially represent a novel strategy for the management, or prevention, of obesity and type 2 diabetes, is explored.
Collapse
Affiliation(s)
| | | | | | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005, Australia; (P.R.); (V.B.); (M.H.)
| |
Collapse
|
34
|
Welcome MO, Mastorakis NE. The taste of neuroinflammation: Molecular mechanisms linking taste sensing to neuroinflammatory responses. Pharmacol Res 2021; 167:105557. [PMID: 33737243 DOI: 10.1016/j.phrs.2021.105557] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Evidence indicates a critical role of neuroinflammatory response as an underlying pathophysiological process in several central nervous system disorders, including neurodegenerative diseases. However, the molecular mechanisms that trigger neuroinflammatory processes are not fully known. The discovery of bitter taste receptors in regions other than the oral cavity substantially increased research interests on their functional roles in extra-oral tissues. It is now widely accepted that bitter taste receptors, for instance, in the respiratory, intestinal, reproductive and urinary tracts, are crucial not only for sensing poisonous substances, but also, act as immune sentinels, mobilizing defense mechanisms against pathogenic aggression. The relatively recent discovery of bitter taste receptors in the brain has intensified research investigation on the functional implication of cerebral bitter taste receptor expression. Very recent data suggest that responses of bitter taste receptors to neurotoxins and microbial molecules, under normal condition, are necessary to prevent neuroinflammatory reactions. Furthermore, emerging data have revealed that downregulation of key components of the taste receptor signaling cascade leads to increased oxidative stress and inflammasome signaling in neurons that ultimately culminate in neuroinflammation. Nevertheless, the mechanisms that link taste receptor mediated surveillance of the extracellular milieu to neuroinflammatory responses are not completely understood. This review integrates new data on the molecular mechanisms that link bitter taste receptor sensing to neuroinflammatory responses. The role of bitter taste receptor-mediated sensing of toxigenic substances in brain disorders is also discussed. The therapeutic significance of targeting these receptors for potential treatment of neurodegenerative diseases is also highlighted.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.
| | | |
Collapse
|
35
|
First evidence for the presence of amino acid sensing mechanisms in the fish gastrointestinal tract. Sci Rep 2021; 11:4933. [PMID: 33654150 PMCID: PMC7925595 DOI: 10.1038/s41598-021-84303-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to characterize amino acid sensing systems in the gastrointestinal tract (GIT) of the carnivorous fish model species rainbow trout. We observed that the trout GIT expresses mRNAs encoding some amino acid receptors described in mammals [calcium-sensing receptor (CaSR), G protein-coupled receptor family C group 6 member A (GPRC6A), and taste receptors type 1 members 1 and 2 (T1r1, T1r2)], while others [taste receptor type 1 member 3 (T1r3) and metabotropic glutamate receptors 1 and 4 (mGlur1, mGlur4)] could not be found. Then, we characterized the response of such receptors, as well as that of intracellular signaling mechanisms, to the intragastric administration of l-leucine, l-valine, l-proline or l-glutamate. Results demonstrated that casr, gprc6a, tas1r1 and tas1r2 mRNAs are modulated by amino acids in the stomach and proximal intestine, with important differences with respect to mammals. Likewise, gut amino acid receptors triggered signaling pathways likely mediated, at least partly, by phospholipase C β3 and β4. Finally, the luminal presence of amino acids led to important changes in ghrelin, cholecystokinin, peptide YY and proglucagon mRNAs and/or protein levels. Present results offer the first set of evidence in favor of the existence of amino acid sensing mechanisms within the fish GIT.
Collapse
|
36
|
Nunez‐Salces M, Li H, Feinle‐Bisset C, Young RL, Page AJ. The regulation of gastric ghrelin secretion. Acta Physiol (Oxf) 2021; 231:e13588. [PMID: 33249751 DOI: 10.1111/apha.13588] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Ghrelin is a gastric hormone with multiple physiological functions, including the stimulation of food intake and adiposity. It is well established that circulating ghrelin levels are closely associated with feeding patterns, rising strongly before a meal and lowering upon food intake. However, the mechanisms underlying the modulation of ghrelin secretion are not fully understood. The purpose of this review is to discuss current knowledge on the circadian oscillation of circulating ghrelin levels, the neural mechanisms stimulating fasting ghrelin levels and peripheral mechanisms modulating postprandial ghrelin levels. Furthermore, the therapeutic potential of targeting the ghrelin pathway is discussed in the context of the treatment of various metabolic disorders, including obesity, type 2 diabetes, diabetic gastroparesis and Prader-Willi syndrome. Moreover, eating disorders including anorexia nervosa, bulimia nervosa and binge-eating disorder are also discussed.
Collapse
Affiliation(s)
- Maria Nunez‐Salces
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| | - Hui Li
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| | - Christine Feinle‐Bisset
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Richard L. Young
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
- Intestinal Nutrient Sensing Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Amanda J. Page
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| |
Collapse
|
37
|
Hayashi M, Inaba A, Hakukawa M, Iwatsuki K, Imai H, Masuda K. Expression of TAS2R14 in the intestinal endocrine cells of non-human primates. Genes Genomics 2021; 43:259-267. [PMID: 33609226 DOI: 10.1007/s13258-021-01054-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recent studies have demonstrated that genes related to bitter taste receptors (TAS2Rs) on various chromosomes are expressed in extra-oral organs of various animals. The bitter taste receptor TAS2R14 is conserved among primate species and shows broad ligand sensitivity. Mice have a number of orthologues to primate TAS2R14 located in tandem on chromosome 16; however, their expression patterns are not unique. OBJECTIVE We characterized the expression of TAS2R14 in various cell types in the intestines of the rhesus macaque and evaluated its role in hormone production in the gut. METHODS TAS2R14 expression was examined in the intestines of rhesus macaques, a common non-human primate model, by RT-qPCR and immunohistochemical staining. RESULTS Mean expression levels of TAS2R14 in the duodenum, ileum, and colon were similar to each other and were lower than those in circumvallate papillae. An immunohistochemical analysis revealed TAS2R14 immunoreactivity in enteroendocrine cells positive for cholecystokinin, serotonin, and the G protein GNAT3. CONCLUSION These results suggest that primate TAS2R14 is broadly expressed in the intestine, mainly in enteroendocrine cells, and promotes gut hormone secretion in response to bitter stimuli.
Collapse
Affiliation(s)
- Misa Hayashi
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi, 484-8506, Japan
| | - Akihiko Inaba
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi, 484-8506, Japan
| | - Miho Hakukawa
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi, 484-8506, Japan
| | - Ken Iwatsuki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, 1568502, Japan
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, 41-2 Kanrin, Inuyama, Aichi, 484-8506, Japan.
| | - Katsuyoshi Masuda
- Structural Bioscience for Taste Molecular Recognition, Graduate School of Medicine, Kyoto University, Kyoto, 6068507, Japan.
| |
Collapse
|
38
|
Xiong X, Cheng Z, Wu F, Hu M, Liu Z, Dong R, Chen G. Berberine in the treatment of ulcerative colitis: A possible pathway through Tuft cells. Biomed Pharmacother 2020; 134:111129. [PMID: 33348308 DOI: 10.1016/j.biopha.2020.111129] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with complex pathogenesis, which is affected by genetic factors, intestinal immune status and intestinal microbial homeostasis. Intestinal epithelial barrier defect is crucial to the development of UC. Berberine, extracted from Chinese medicine, can identify bitter taste receptor on intestinal Tuft cells and activate IL-25-ILC2-IL-13 immune pathway to impair damaged intestinal tract by promoting differentiation of intestinal stem cells, which might be a potential approach for the treatment of UC.
Collapse
Affiliation(s)
- Xinyu Xiong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhe Cheng
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhimin Liu
- Department of Coloproctology, The Sixth Affiliated Hospital of Sun Yat-sen University (Gastrointestinal & Anal Hospital of Sun Yat-sen University), Guangzhou 510655, China
| | - Ruolan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guang Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
39
|
Dzydzan O, Brodyak I, Sokół-Łętowska A, Kucharska AZ, Sybirna N. Loganic Acid, an Iridoid Glycoside Extracted from Cornus mas L. Fruits, Reduces of Carbonyl/Oxidative Stress Biomarkers in Plasma and Restores Antioxidant Balance in Leukocytes of Rats with Streptozotocin-Induced Diabetes Mellitus. Life (Basel) 2020; 10:E349. [PMID: 33333730 PMCID: PMC7765206 DOI: 10.3390/life10120349] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
The various complications related to diabetes are due to the alteration in plasma components and functional activity of blood cells, hence the search for preventive remedies that would ameliorate the clinical condition of patients is a relevant problem today. The main aim of the present study was to examine the antidiabetic potency and antioxidant effects of loganic acid (LA) in blood of diabetic rats. LA showed a restoration of balance between functioning of antioxidant defense system and oxidative stress in leukocytes without notable effects on blood glucose levels when administered orally to rats (20 mg/kg b.w./day) for 14 days. LA ameliorated antioxidant status in leukocytes, as indicated by increasing the content of reduced glutathione and activities of catalase, glutathione peroxidase and glutathione reductase along with decreasing levels of intracellular reactive oxygen species. In addition, we observed the ability of LA to protect against formation and accumulation of glycation and oxidation protein products and malondialdehyde derivates in plasma. Therefore, LA showed antioxidant properties that may have beneficial effects under diabetes. Such results may represent LA as one of the plant components in the development of new drugs that will correct metabolic and functional disorders in leukocytes under diabetes.
Collapse
Affiliation(s)
- Olha Dzydzan
- Department of Biochemistry, Ivan Franko National University of Lviv, 4 Hrushevskyi St., 79005 Lviv, Ukraine; (O.D.); (N.S.)
| | - Iryna Brodyak
- Department of Biochemistry, Ivan Franko National University of Lviv, 4 Hrushevskyi St., 79005 Lviv, Ukraine; (O.D.); (N.S.)
| | - Anna Sokół-Łętowska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, J. Chełmo’ nskiego 37/41, 51-630 Wrocław, Poland; (A.S.-Ł.); (A.Z.K.)
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, J. Chełmo’ nskiego 37/41, 51-630 Wrocław, Poland; (A.S.-Ł.); (A.Z.K.)
| | - Natalia Sybirna
- Department of Biochemistry, Ivan Franko National University of Lviv, 4 Hrushevskyi St., 79005 Lviv, Ukraine; (O.D.); (N.S.)
| |
Collapse
|
40
|
Cimino AE, Cowell AC, Nieschwitz NC, Kershaw JC. Subtle sensory and labeling modifications have minimal impact on expected appetitive sensations in chewy bars. Food Res Int 2020; 137:109386. [PMID: 33233088 DOI: 10.1016/j.foodres.2020.109386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 11/26/2022]
Abstract
Given the contribution of frequent hunger and overeating to the rising incidence of obesity, strategies to increase the satiating and satiety-inducing properties of snacks and meals are needed. In this study, we conducted three experiments to explore the contribution of sensory and labeling modifications to expected satiation and satiety in a popular and versatile snack: a chewy bar. For each experiment, we chose subtle interventions that could be incorporated into a variety of products without requiring significant reformulation. In experiment one, participants evaluated ten chewy bar samples (five flavors, two peanut form conditions) and rated five expected appetitive sensations. In experiment two, participants viewed one of six packaging images with various labeling interventions (control, protein bar label, "good for you" logo, meal bar label, calorie content logo, and "satisfies hunger longer" logo). The strongest sensory and labeling interventions from the first two experiments were combined and simultaneously evaluated in experiment three. Although we did not detect any significant effects of sensory or labeling modifications in any of the experiments, exploratory post-hoc analysis suggested that whole peanuts suppressed expected hunger and increased expected fullness, and that protein labeling increased expected satiety. Additionally, through a penalty-benefit analysis of check-all-that-apply (CATA) product characteristics, we identified several attributes that consumers may positively (wholesome, indulgent, sweet, heavy, rich) and negatively (processed) associate with expected appetitive sensations. Incorporation of sensory and packaging cues that elicit (or avoid, in the case of "processed") these attributes may aid in the creation of functional products to help manage appetite. Combining several intrinsic and extrinsic product modifications is likely necessary to meaningfully alter expected appetitive sensations.
Collapse
Affiliation(s)
- Allison E Cimino
- Deparment of Public and Allied Health, Bowling Green State University, 136 Health and Human Service Building, Bowling Green, OH 43403, USA
| | - Aaron C Cowell
- Deparment of Public and Allied Health, Bowling Green State University, 136 Health and Human Service Building, Bowling Green, OH 43403, USA
| | - Natalie C Nieschwitz
- Deparment of Public and Allied Health, Bowling Green State University, 136 Health and Human Service Building, Bowling Green, OH 43403, USA
| | - Jonathan C Kershaw
- Deparment of Public and Allied Health, Bowling Green State University, 136 Health and Human Service Building, Bowling Green, OH 43403, USA.
| |
Collapse
|
41
|
Borg MJ, Rayner CK, Jones KL, Horowitz M, Xie C, Wu T. Gastrointestinal Mechanisms Underlying the Cardiovascular Effect of Metformin. Pharmaceuticals (Basel) 2020; 13:410. [PMID: 33266396 PMCID: PMC7700183 DOI: 10.3390/ph13110410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Metformin, the most widely prescribed drug therapy for type 2 diabetes, has pleiotropic benefits, in addition to its capacity to lower elevated blood glucose levels, including mitigation of cardiovascular risk. The mechanisms underlying the latter remain unclear. Mechanistic studies have, hitherto, focused on the direct effects of metformin on the heart and vasculature. It is now appreciated that effects in the gastrointestinal tract are important to glucose-lowering by metformin. Gastrointestinal actions of metformin also have major implications for cardiovascular function. This review summarizes the gastrointestinal mechanisms underlying the action of metformin and their potential relevance to cardiovascular benefits.
Collapse
Affiliation(s)
- Malcolm J. Borg
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Christopher K. Rayner
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
| | - Cong Xie
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia; (M.J.B.); (C.K.R.); (K.L.J.); (M.H.); (C.X.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5000, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210096, China
| |
Collapse
|
42
|
Xie C, Jones KL, Rayner CK, Wu T. Enteroendocrine Hormone Secretion and Metabolic Control: Importance of the Region of the Gut Stimulation. Pharmaceutics 2020; 12:790. [PMID: 32825608 PMCID: PMC7559385 DOI: 10.3390/pharmaceutics12090790] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
It is now widely appreciated that gastrointestinal function is central to the regulation of metabolic homeostasis. Following meal ingestion, the delivery of nutrients from the stomach into the small intestine (i.e., gastric emptying) is tightly controlled to optimise their subsequent digestion and absorption. The complex interaction of intraluminal nutrients (and other bioactive compounds, such as bile acids) with the small and large intestine induces the release of an array of gastrointestinal hormones from specialised enteroendocrine cells (EECs) distributed in various regions of the gut, which in turn to regulate gastric emptying, appetite and postprandial glucose metabolism. Stimulation of gastrointestinal hormone secretion, therefore, represents a promising strategy for the management of metabolic disorders, particularly obesity and type 2 diabetes mellitus (T2DM). That EECs are distributed distinctively between the proximal and distal gut suggests that the region of the gut exposed to intraluminal stimuli is of major relevance to the secretion profile of gastrointestinal hormones and associated metabolic responses. This review discusses the process of intestinal digestion and absorption and their impacts on the release of gastrointestinal hormones and the regulation of postprandial metabolism, with an emphasis on the differences between the proximal and distal gut, and implications for the management of obesity and T2DM.
Collapse
Affiliation(s)
- Cong Xie
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
| | - Karen L. Jones
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Christopher K. Rayner
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Tongzhi Wu
- Adelaide Medical School and Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5005, Australia; (C.X.); (K.L.J.); (C.K.R.)
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide 5005, Australia
- Institute of Diabetes, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
43
|
How Chemical and Sensorial Markers Reflect Gentian Geographic Origin in Chardonnay Wine Macerated with Gentiana lutea Roots? Foods 2020; 9:foods9081061. [PMID: 32764291 PMCID: PMC7466338 DOI: 10.3390/foods9081061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 01/03/2023] Open
Abstract
A Burgundian Chardonnay wine was enriched with Gentiana lutea root powders originating from two French mountain sites (Massif Central and Jura) in order to prepare semi-dry gentian aromatized Chardonnay wine-based drinks. These novel alcoholic beverages were chemically and sensorially characterized for evaluating if the gentian geographic origin influenced bitter and elemental and volatile composition and sensory profiles in the final products. For that, the chemical fingerprint of gentian powders and wines were carried by headspace solid phase microextraction gas chromatography coupled to mass spectrometry (HS-SPME-GC), liquid chromatography coupled to diode array detector (LC-DAD) and inductive coupled plasma optical emission spectroscopy (ICP-OES). The mineral and volatile analysis show that the geographic distinction is more obvious in gentian powders compared to gentian macerated wines. Interestingly the maceration process in Chardonnay wine involves extraction processes revealing statistical distinctions in other chemical markers of gentian origin, like for amarogentin and loganic acid or some mineral elements such as barium and aluminum that affect undoubtedly bitterness perception and sensory properties in macerated wines compared to unmacerated wine. Additionally, the gentian volatile 2-methoxy-3-sec-butylpyrazine and the Chardonnay wine volatile ethyl-9-decenoate differentiated, respectively by extraction and powder adsorption mechanisms could be responsible of more subtle sensory differentiations between macerated wines from two distinct gentian origins.
Collapse
|
44
|
Polyphenols and taste 2 receptors. Physiological, pathophysiological and pharmacological implications. Biochem Pharmacol 2020; 178:114086. [DOI: 10.1016/j.bcp.2020.114086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
|
45
|
Jeruzal-Świątecka J, Fendler W, Pietruszewska W. Clinical Role of Extraoral Bitter Taste Receptors. Int J Mol Sci 2020; 21:E5156. [PMID: 32708215 PMCID: PMC7404188 DOI: 10.3390/ijms21145156] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Humans can recognise five basic tastes: sweet, sour, salty, bitter and umami. Sour and salty substances are linked to ion channels, while sweet, bitter and umami flavours are transmitted through receptors linked to the G protein (G protein-coupled receptors; GPCRs). There are two main types of GPCRs that transmit information about sweet, umami and bitter tastes-the Tas1r and TAS2R families. There are about 25 functional TAS2R genes coding bitter taste receptor proteins. They are found not only in the mouth and throat, but also in the intestines, brain, bladder and lower and upper respiratory tract. The determination of their purpose in these locations has become an inspiration for much research. Their presence has also been confirmed in breast cancer cells, ovarian cancer cells and neuroblastoma, revealing a promising new oncological marker. Polymorphisms of TAS2R38 have been proven to have an influence on the course of chronic rhinosinusitis and upper airway defensive mechanisms. TAS2R receptors mediate the bronchodilatory effect in human airway smooth muscle, which may lead to the creation of another medicine group used in asthma or chronic obstructive pulmonary disease. The discovery that functionally compromised TAS2R receptors negatively impact glucose homeostasis has produced a new area of diabetes research. In this article, we would like to focus on what facts have been already established in the matter of extraoral TAS2R receptors in humans.
Collapse
Affiliation(s)
- Joanna Jeruzal-Świątecka
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 90-419 Lodz, Poland;
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Wioletta Pietruszewska
- Department of Otolaryngology, Head and Neck Oncology, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
46
|
Turner A, Veysey M, Keely S, Scarlett CJ, Lucock M, Beckett EL. Intense Sweeteners, Taste Receptors and the Gut Microbiome: A Metabolic Health Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4094. [PMID: 32521750 PMCID: PMC7312722 DOI: 10.3390/ijerph17114094] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Intense sweeteners (IS) are often marketed as a healthier alternative to sugars, with the potential to aid in combating the worldwide rise of diabetes and obesity. However, their use has been counterintuitively associated with impaired glucose homeostasis, weight gain and altered gut microbiota. The nature of these associations, and the mechanisms responsible, are yet to be fully elucidated. Differences in their interaction with taste receptors may be a potential explanatory factor. Like sugars, IS stimulate sweet taste receptors, but due to their diverse structures, some are also able to stimulate bitter taste receptors. These receptors are expressed in the oral cavity and extra-orally, including throughout the gastrointestinal tract. They are involved in the modulation of appetite, glucose homeostasis and gut motility. Therefore, taste genotypes resulting in functional receptor changes and altered receptor expression levels may be associated with metabolic conditions. IS and taste receptors may both interact with the gastrointestinal microbiome, and their interactions may potentially explain the relationship between IS use, obesity and metabolic outcomes. While these elements are often studied in isolation, the potential interactions remain unexplored. Here, the current evidence of the relationship between IS use, obesity and metabolic outcomes is presented, and the potential roles for interactions with taste receptors and the gastrointestinal microbiota in modulating these relationships are explored.
Collapse
Affiliation(s)
- Alexandria Turner
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (A.T.); (C.J.S.); (M.L.)
| | - Martin Veysey
- School of Medicine and Public Health, University of Newcastle, Ourimbah 2258, Australia;
- Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia;
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| | - Christopher J. Scarlett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (A.T.); (C.J.S.); (M.L.)
| | - Mark Lucock
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (A.T.); (C.J.S.); (M.L.)
| | - Emma L. Beckett
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah 2258, Australia; (A.T.); (C.J.S.); (M.L.)
- Hunter Medical Research Institute, New Lambton Heights 2305, Australia
| |
Collapse
|
47
|
Widmayer P, Partsch V, Pospiech J, Kusumakshi S, Boehm U, Breer H. Distinct Cell Types With the Bitter Receptor Tas2r126 in Different Compartments of the Stomach. Front Physiol 2020; 11:32. [PMID: 32116750 PMCID: PMC7019106 DOI: 10.3389/fphys.2020.00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Cells expressing bitter taste receptors (T2Rs or Tas2rs) in extraoral tissues are considered to be chemosensory cells mediating protective responses to potentially harmful or even antiinflammatory or antimicrobial compounds. In a previous study the activity of the Tas2R143/Tas2R135/Tas2r126 cluster promoter in the stomach was monitored using a Cre-reporter mouse line. Reporter gene expression and Tas2r126 mRNA were found in brush cells located at the distal wall of the gastric groove. In this study, we explored whether brush cells and epithelial cells of the stomach in fact contain the Tas2r126 receptor protein. Using immunohistochemistry, we demonstrate the presence of Tas2r126 immunoreactivity in different cell populations in the glandular stomach, in a subset of brush cells at the gastric groove and in unique glandular units as well as in certain enteroendocrine cells. In brush cells at the gastric groove, a strong immunofluorescence signal for the Tas2r126 receptor was observed at the most apical region of the cells, i.e., the microvillar tuft. In addition, we found a high density of Tas2r126-positive brush cells in the unique glandular units. These invaginations are located distally to the groove, open directly into the furrow and are enwrapped by smoothelin-immunoreactive muscles. In the corpus, Tas2r126 immunoreactivity was found in histamine-producing ECL cells and in ghrelin-producing X/A-like cells, the main enteroendcrine cells of this compartment. In the antrum, Tas2r126 labeling was observed in serotonin-storing EC cells and ghrelin cells, both representing only minor populations of enteroendocrine cells in this compartment. In conclusion, our data provide evidence for the presence of the Tas2r126 receptor protein in distinct cell types in the epithelium lining the mouse stomach which render the stomach responsive to agonists for bitter receptors.
Collapse
Affiliation(s)
- Patricia Widmayer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Vanessa Partsch
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jonas Pospiech
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Soumya Kusumakshi
- Experimental Pharmacology, Center for Molecular Signaling, School of Medicine, Saarland University, Homburg, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, School of Medicine, Saarland University, Homburg, Germany
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
48
|
Bitarafan V, Fitzgerald PCE, Little TJ, Meyerhof W, Wu T, Horowitz M, Feinle-Bisset C. Effects of Intraduodenal Infusion of the Bitter Tastant, Quinine, on Antropyloroduodenal Motility, Plasma Cholecystokinin, and Energy Intake in Healthy Men. J Neurogastroenterol Motil 2019; 25:413-422. [PMID: 31177650 PMCID: PMC6657929 DOI: 10.5056/jnm19036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/22/2019] [Accepted: 04/07/2019] [Indexed: 02/05/2023] Open
Affiliation(s)
- Vida Bitarafan
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, A
| | - Penelope C E Fitzgerald
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, A
| | - Tanya J Little
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, A
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Tongzhi Wu
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, A
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, A
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Christine Feinle-Bisset
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, A
| |
Collapse
|