1
|
Das G, Ptacek J, Campbell J, Li X, Havlinova B, Noonepalle SK, Villagra A, Barinka C, Novakova Z. Targeting prostate cancer by new bispecific monocyte engager directed to prostate-specific membrane antigen. PLoS One 2025; 20:e0307353. [PMID: 40096254 PMCID: PMC11913275 DOI: 10.1371/journal.pone.0307353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
Prostate cancer (PCa) ranks as the second leading cause of cancer-related deaths among men in the United States. Prostate-specific membrane antigen (PSMA) represents a well-established biomarker of PCa, and its levels correlate positively with the disease progression, culminating at the stage of metastatic castration-resistant prostate cancer. Due to its tissue-specific expression and cell surface localization, PSMA shows superior potential for precise imaging and therapy of PCa. Antibody-based immunotherapy targeting PSMA offers the promise of selectively engaging the host immune system with minimal off-target effects. Here we report on the design, expression, purification, and characterization of a bispecific engager, termed 5D3-CP33, that efficiently recruits macrophages to the vicinity of PSMA-positive cancer cells mediating PCa death. The engager was engineered by fusing the anti-PSMA 5D3 antibody fragment to a cyclic peptide 33 (CP33), selectively binding the Fc gamma receptor I (FcγRI/CD64) on the surface of phagocytes. Functional parts of the 5D3-CP33 engager revealed a nanomolar affinity for PSMA and FcγRI/CD64 with dissociation constants of KD = 3 nM and KD = 140 nM, respectively. At a concentration as low as 0.3 nM, the engager was found to trigger the production of reactive oxygen species by U937 monocytic cells in the presence of PSMA-positive cells. Moreover, flow cytometry analysis demonstrated antibody-dependent cell-mediated phagocytosis of PSMA-positive cancer cells by U937 monocytes when exposed to 0.15 nM 5D3-CP33. Our findings illustrate that 5D3-CP33 effectively and specifically activates monocytes upon PSMA-positive target engagement, resulting in the elimination of tumor cells. The 5D3-CP33 engager can thus serve as a promising lead for developing new immunotherapy tools for the efficient treatment of PCa.
Collapse
Affiliation(s)
- Gargi Das
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Ptacek
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jana Campbell
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Xintang Li
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Barbora Havlinova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Satish kumar Noonepalle
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Alejandro Villagra
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Zora Novakova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
2
|
Sato A, Nagai H, Suzuki A, Ito A, Matsuyama S, Shibui N, Morita M, Hikosaka-Kuniishi M, Ishii N, So T. Generation and characterization of OX40-ligand fusion protein that agonizes OX40 on T-Lymphocytes. Front Immunol 2025; 15:1473815. [PMID: 39867912 PMCID: PMC11757143 DOI: 10.3389/fimmu.2024.1473815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survival-processes essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge. In this study, we successfully engineered soluble OX40L-fusion proteins capable of robustly activating OX40 on T cells. This was achieved by incorporating functional multimerization domains into the TNF homology domain of OX40L. These OX40L proteins bound to OX40, subsequently activated NF-κB signaling, and induced cytokine production by T cells in vitro. In vivo, mice treated with one of the OX40L-fusion proteins-comprising a single-chain OX40L trimer linked to the C-terminus of the human IgG1 Fc domain, forming a dimer of trimers-exhibited significantly enhanced clonal expansion of antigen-specific CD4+ T cells during the primary phase of the immune response. A comparable antibody-fusion single-chain TNF protein incorporating 4-1BBL, CD70 (CD27L), or GITRL in place of OX40L elicited similar in vivo T cell responses. Thus, we propose that optimizing the multimerization of OX40L proteins through innovative design strategies may facilitate the development of more effective agonists for targeted immunotherapies.
Collapse
Affiliation(s)
- Ayaka Sato
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hodaka Nagai
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ayano Suzuki
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Aya Ito
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shimpei Matsuyama
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Nagito Shibui
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masashi Morita
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mari Hikosaka-Kuniishi
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
3
|
Binder U, Skerra A. Strategies for extending the half-life of biotherapeutics: successes and complications. Expert Opin Biol Ther 2025; 25:93-118. [PMID: 39663567 DOI: 10.1080/14712598.2024.2436094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Engineering of the drug half-life in vivo has become an integral part of modern biopharmaceutical development due to the fact that many proteins/peptides with therapeutic potential are quickly cleared by kidney filtration after injection and, thus, circulate only a few hours in humans (or just minutes in mice). AREAS COVERED Looking at the growing list of clinically approved biologics that have been modified for prolonged activity, and also the plethora of such drugs under preclinical and clinical development, it is evident that not one solution fits all needs, owing to the vastly different structural features and functional properties of the pharmacologically active entities. This article provides an overview of established half-life extension strategies, as well as of emerging novel concepts for extending the in vivo stability of biologicals, and their pros and cons. EXPERT OPINION Beyond the classical and still dominating technologies for improving drug pharmacokinetics and bioavailability, Fc fusion and PEGylation, various innovative approaches that offer advantages in different respects have entered the clinical stage. While the Fc fusion partner may be gradually superseded by engineered albumin-binding domains, chemical PEGylation may be replaced by biodegradable recombinant amino-acid polymers like PASylation, thus also offering a purely biotechnological manufacturing route.
Collapse
Affiliation(s)
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| |
Collapse
|
4
|
Makela AV, Tundo A, Liu H, Schneider D, Hermiston T, Khodakivskyi P, Goun E, Contag CH. Targeted intracellular delivery of molecular cargo to hypoxic human breast cancer stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575071. [PMID: 39605477 PMCID: PMC11601403 DOI: 10.1101/2024.01.12.575071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cancer stem cells (CSCs) drive tumorigenesis, are responsible for metastasis, and resist conventional therapies thus posing significant treatment challenges. CSCs reside in hypoxic tumor regions and therefore, effective therapies must target CSCs within this specific microenvironment. CSCs are characterized by limited distinguishable features, however, surface displayed phosphatidylserine (PS) appears to be characteristic of stem cells and offers a potential target. GlaS, a truncated coagulation protein that is internalized after binding PS, was investigated for intracellular delivery of molecular payloads to CSCs. Intracellular delivery via GlaS was enhanced in patient-derived CD44+ mammary CSCs under hypoxic conditions relative to physoxia or hyperoxia. In vivo, GlaS successfully targeted hypoxic tumor regions, and functional delivery of molecular cargo was confirmed using luciferin conjugated to GlaS via a disulfide linkage (GlaS-SS-luc), which releases luciferin upon intracellular glutathione reduction. Bioluminescence imaging demonstrated effective GlaS-mediated delivery of luciferin, a model drug, to CSCs in culture and in vivo. These findings offer the promise of directed delivery of therapeutic agents to intracellular targets in CSCs.
Collapse
Affiliation(s)
- Ashley V Makela
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
| | - Anthony Tundo
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
| | - Huiping Liu
- Department of Pharmacology and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | - Elena Goun
- Department of Chemistry, University of Missouri, Columbia, MO
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
- Departments of Biomedical Engineering, and Microbiology, Genetics, and Immunology, Michigan State University, East Lansing MI
| |
Collapse
|
5
|
Schriek AI, Falck D, Wuhrer M, Kootstra NA, van Gils MJ, de Taeye SW. Functional comparison of Fc-engineering strategies to improve anti-HIV-1 antibody effector functions. Antiviral Res 2024; 231:106015. [PMID: 39343065 DOI: 10.1016/j.antiviral.2024.106015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Substantial reduction of the intact proviral reservoir is essential towards HIV-1 cure. In vivo administration of broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) trimer can decrease the viral reservoir, through Fc-mediated killing of infected cells. In this study, we compared three commonly used antibody engineering strategies to enhance Fc-mediated effector functions: (i) glyco-engineering, (ii) protein engineering, and (iii) subclass/hinge modifications in a panel of anti-HIV-1 antibodies. We found that antibody-dependent cellular phagocytosis (ADCP) was improved by elongating the hinge domain and switching to an IgG3 constant domain. In addition, potent NK cell activation and ADCC activity was observed for afucosylated antibodies and antibodies bearing the GASDALIE mutations. The combination of these engineering strategies further increased NK cell activation and induced antibody dependent cytotoxicity (ADCC) of infected cells at low antibody concentrations. The bNAb N6 was most effective at killing HIV-1 infected cells, likely due to its high affinity and optimal angle of approach. Overall, the findings of this study are applicable to other antibody formats, and can aid the development of effective immunotherapies and antibody-based treatments for HIV-1 cure strategies.
Collapse
Affiliation(s)
- Angela I Schriek
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands.
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Neeltje A Kootstra
- Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, the Netherlands
| | - Marit J van Gils
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands
| | - Steven W de Taeye
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious diseases, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Imai M, Colas K, Suga H. Protein Grafting Techniques: From Peptide Epitopes to Lasso-Grafted Neobiologics. Chempluschem 2024; 89:e202400152. [PMID: 38693599 DOI: 10.1002/cplu.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Protein engineering techniques have vastly expanded their domain of impact, notably following the success of antibodies. Likewise, smaller peptide therapeutics have carved an increasingly significant niche for themselves in the pharmaceutical landscape. The concept of grafting such peptides onto larger protein scaffolds, thus harvesting the advantages of both, has given rise to a variety of protein engineering strategies that are reviewed herein. We also describe our own "Lasso-Grafting" approach, which combines traditional grafting concepts with mRNA display to streamline the production of multiple grafted drug candidates for virtually any target.
Collapse
Affiliation(s)
- Mikio Imai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kilian Colas
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
7
|
Adame M, Vázquez H, Juárez-López D, Corzo G, Amezcua M, López D, González Z, Schcolnik-Cabrera A, Morales-Martínez A, Villegas E. Expression and characterization of scFv-6009FV in Pichia pastoris with improved ability to neutralize the neurotoxin Cn2 from Centruroides noxius. Int J Biol Macromol 2024; 275:133461. [PMID: 38945343 DOI: 10.1016/j.ijbiomac.2024.133461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Small single-chain variable fragments (scFv) are promising biomolecules to inhibit and neutralize toxins and to act as antivenoms. In this work, we aimed to produce a functional scFv-6009FV in the yeast Pichia pastoris, which inhibits the pure Cn2 neurotoxin and the whole venom of Centruroides noxius. We were able to achieve yields of up to 31.6 ± 2 mg/L in flasks. Furthermore, the protein showed a structure of 6.1 % α-helix, 49.1 % β-sheet, and 44.8 % of random coil by CD. Mass spectrometry confirmed the amino acid sequence and showed no glycosylation profile for this molecule. Purified scFv-6009FV allowed us to develop anti-scFvs in rabbits, which were then used in affinity columns to purify other scFvs. Determination of its half-maximal inhibitory concentration value (IC50) was 40 % better than the scFvs produced by E. coli as a control. Finally, we found that scFv-6009FV was able to inhibit ex vivo the pure Cn2 toxin and the whole venom from C. noxius in murine rescue experiments. These results demonstrated that under the conditions assayed here, P. pastoris is suited to produce scFv-6009FV that, compared to scFvs produced by E. coli, maintains the characteristics of an antibody and neutralizes the Cn2 toxin more effectively.
Collapse
Affiliation(s)
- Mariel Adame
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Hilda Vázquez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Daniel Juárez-López
- Instituto de Investigaciones Biomédicas, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mónica Amezcua
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Daniela López
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Zuriel González
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - Adriana Morales-Martínez
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Elba Villegas
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.
| |
Collapse
|
8
|
Frye Naharro E, Peterson D, Yohe SL, Linden MA. Application and pitfalls of immunophenotyping in challenging plasma cell neoplasms: A case series. Hum Pathol 2024; 150:86-96. [PMID: 38909710 DOI: 10.1016/j.humpath.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Multiple myeloma (MM) is an incurable malignant plasma cell neoplasm, representing the second most common hematopoietic cancer. As plasma cell neoplasms are clonal and often secrete a monoclonal protein (M-spike), laboratory diagnosis is usually straightforward, especially when ancillary studies such as immunohistochemistry, flow cytometry, and protein electrophoresis are available in addition to microscopic examination. Despite the repertoire of diagnostic tools, rare cases pose diagnostic dilemmas, especially when reagent antibodies do not react as expected, extent of disease is patchy, or when disease occurs in unique age groups. In this retrospective study, we report a series of challenging diagnostic cases, discussing aberrant findings and comparing them to more classic counterparts. Twelve cases collected during routine clinical sign-out were reanalyzed and include examples of MGUS, classic multiple myeloma, t(11; 14) rearranged myeloma, minimal residual disease, AA and AL amyloidosis, truncated light chain, non-secretory and non-producer myeloma, biphenotypic myeloma, oligoclonal expansion after bone marrow transplant, and plasma cell leukemia in a young adult. This cohort showcases the diversity of atypical presentations of plasma cell neoplasms, and we highlight standardized approaches to workup to avoid diagnostic pitfalls.
Collapse
Affiliation(s)
- Elena Frye Naharro
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
| | - Daniel Peterson
- MHealth Fairview University of Minnesota Medical Center, USA
| | - Sophia L Yohe
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Linden
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Martini S, Drzeniek NM, Stark R, Kollert MR, Du W, Reinke S, Ort M, Hardt S, Kotko I, Kath J, Schlickeiser S, Geißler S, Wagner DL, Krebs AC, Volk HD. Long-term in vitromaintenance of plasma cells in a hydrogel-enclosed human bone marrow microphysiological 3D model system. Biofabrication 2024; 16:045005. [PMID: 38955197 DOI: 10.1088/1758-5090/ad5dfe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Plasma cells (PCs) in bone marrow (BM) play an important role in both protective and pathogenic humoral immune responses, e.g. in various malignant and non-malignant diseases such as multiple myeloma, primary and secondary immunodeficiencies and autoimmune diseases. Dedicated microenvironmental niches in the BM provide PCs with biomechanical and soluble factors that support their long-term survival. There is a high need for appropriate and robust model systems to better understand PCs biology, to develop new therapeutic strategies for PCs-related diseases and perform targeted preclinical studies with high predictive value. Most preclinical data have been derived fromin vivostudies in mice, asin vitrostudies of human PCs are limited due to restricted survival and functionality in conventional 2D cultures that do not reflect the unique niche architecture of the BM. We have developed a microphysiological, dynamic 3D BM culture system (BM-MPS) based on human primary tissue (femoral biopsies), mechanically supported by a hydrogel scaffold casing. While a bioinert agarose casing did not support PCs survival, a photo-crosslinked collagen-hyaluronic acid (Col-HA) hydrogel preserved the native BM niche architecture and allowed PCs survivalin vitrofor up to 2 weeks. Further, the Col-HA hydrogel was permissive to lymphocyte migration into the microphysiological system´s circulation. Long-term PCs survival was related to the stable presence in the culture of soluble factors, as APRIL, BAFF, and IL-6. Increasing immunoglobulins concentrations in the medium confirm their functionality over culture time. To the best of our knowledge, this study is the first report of successful long-term maintenance of primary-derived non-malignant PCsin vitro. Our innovative model system is suitable for in-depthin vitrostudies of human PCs regulation and exploration of targeted therapeutic approaches such as CAR-T cell therapy or biologics.
Collapse
Affiliation(s)
- Stefania Martini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Norman Michael Drzeniek
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Regina Stark
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Reiner Kollert
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Julius Wolff Institute, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Weijie Du
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Simon Reinke
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Melanie Ort
- Julius Wolff Institute, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Hardt
- Center for Musculoskeletal Surgery Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Iuliia Kotko
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Jonas Kath
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- CheckImmune GmbH, Berlin, Germany
| | - Sven Geißler
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Julius Wolff Institute, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Dimitrios Laurin Wagner
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Anna-Catharina Krebs
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
10
|
Bergman PJ. Cancer Immunotherapy. Vet Clin North Am Small Anim Pract 2024; 54:441-468. [PMID: 38158304 DOI: 10.1016/j.cvsm.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The enhanced understanding of immunology experienced over the last 5 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies, which will hopefully expand our veterinary oncology treatment toolkit over time.
Collapse
Affiliation(s)
- Philip J Bergman
- Clinical Studies, VCA; Katonah Bedford Veterinary Center, Bedford Hills, NY, USA; Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Ng CL, Lim TS, Choong YS. Application of Computational Techniques in Antibody Fc-Fused Molecule Design for Therapeutics. Mol Biotechnol 2024; 66:568-581. [PMID: 37742298 DOI: 10.1007/s12033-023-00885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Since the advent of hybridoma technology in the year 1975, it took a decade to witness the first approved monoclonal antibody Orthoclone OKT39 (muromonab-CD3) in the year 1986. Since then, continuous strides have been made to engineer antibodies for specific desired effects. The engineering efforts were not confined to only the variable domains of the antibody but also included the fragment crystallizable (Fc) region that influences the immune response and serum half-life. Engineering of the Fc fragment would have a profound effect on the therapeutic dose, antibody-dependent cell-mediated cytotoxicity as well as antibody-dependent cellular phagocytosis. The integration of computational techniques into antibody engineering designs has allowed for the generation of testable hypotheses and guided the rational antibody design framework prior to further experimental evaluations. In this article, we discuss the recent works in the Fc-fused molecule design that involves computational techniques. We also summarize the usefulness of in silico techniques to aid Fc-fused molecule design and analysis for the therapeutics application.
Collapse
Affiliation(s)
- Chong Lee Ng
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia.
| |
Collapse
|
12
|
Schriek AI, Aldon YLT, van Gils MJ, de Taeye SW. Next-generation bNAbs for HIV-1 cure strategies. Antiviral Res 2024; 222:105788. [PMID: 38158130 DOI: 10.1016/j.antiviral.2023.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Despite the ability to suppress viral replication using anti-retroviral therapy (ART), HIV-1 remains a global public health problem. Curative strategies for HIV-1 have to target and eradicate latently infected cells across the body, i.e. the viral reservoir. Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have the capacity to neutralize virions and bind to infected cells to initiate elimination of these cells. To improve the efficacy of bNAbs in terms of viral suppression and viral reservoir eradication, next generation antibodies (Abs) are being developed that address the current limitations of Ab treatment efficacy; (1) low antigen (Env) density on (reactivated) HIV-1 infected cells, (2) high viral genetic diversity, (3) exhaustion of immune cells and (4) short half-life of Abs. In this review we summarize and discuss preclinical and clinical studies in which anti-HIV-1 Abs demonstrated potent viral control, and describe the development of engineered Abs that could address the limitations described above. Next generation Abs with optimized effector function, avidity, effector cell recruitment and immune cell activation have the potential to contribute to an HIV-1 cure or durable control.
Collapse
Affiliation(s)
- A I Schriek
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Y L T Aldon
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - M J van Gils
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - S W de Taeye
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Abdeldaim DT, Schindowski K. Fc-Engineered Therapeutic Antibodies: Recent Advances and Future Directions. Pharmaceutics 2023; 15:2402. [PMID: 37896162 PMCID: PMC10610324 DOI: 10.3390/pharmaceutics15102402] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Monoclonal therapeutic antibodies have revolutionized the treatment of cancer and other diseases. Fc engineering aims to enhance the effector functions or half-life of therapeutic antibodies by modifying their Fc regions. Recent advances in the Fc engineering of modern therapeutic antibodies can be considered the next generation of antibody therapy. Various strategies are employed, including altering glycosylation patterns via glycoengineering and introducing mutations to the Fc region, thereby enhancing Fc receptor or complement interactions. Further, Fc engineering strategies enable the generation of bispecific IgG-based heterodimeric antibodies. As Fc engineering techniques continue to evolve, an expanding portfolio of Fc-engineered antibodies is advancing through clinical development, with several already approved for medical use. Despite the plethora of Fc-based mutations that have been analyzed in in vitro and in vivo models, we focus here in this review on the relevant Fc engineering strategies of approved therapeutic antibodies to finetune effector functions, to modify half-life and to stabilize asymmetric bispecific IgGs.
Collapse
Affiliation(s)
- Dalia T. Abdeldaim
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany;
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany;
| |
Collapse
|
14
|
Pardridge WM. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier. FRONTIERS IN DRUG DELIVERY 2023; 3:1227816. [PMID: 37583474 PMCID: PMC10426772 DOI: 10.3389/fddev.2023.1227816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Therapeutic antibody drug development is a rapidly growing sector of the pharmaceutical industry. However, antibody drug development for the brain is a technical challenge, and therapeutic antibodies for the central nervous system account for ~3% of all such agents. The principal obstacle to antibody drug development for brain or spinal cord is the lack of transport of large molecule biologics across the blood-brain barrier (BBB). Therapeutic antibodies can be made transportable through the blood-brain barrier by the re-engineering of the therapeutic antibody as a BBB-penetrating bispecific antibody (BSA). One arm of the BSA is the therapeutic antibody and the other arm of the BSA is a transporting antibody. The transporting antibody targets an exofacial epitope on a BBB receptor, and this enables receptor-mediated transcytosis (RMT) of the BSA across the BBB. Following BBB transport, the therapeutic antibody then engages the target receptor in brain. RMT systems at the BBB that are potential conduits to the brain include the insulin receptor (IR), the transferrin receptor (TfR), the insulin-like growth factor receptor (IGFR) and the leptin receptor. Therapeutic antibodies have been re-engineered as BSAs that target the insulin receptor, TfR, or IGFR RMT systems at the BBB for the treatment of Alzheimer's disease and Parkinson's disease.
Collapse
|
15
|
Masloh S, Culot M, Gosselet F, Chevrel A, Scapozza L, Zeisser Labouebe M. Challenges and Opportunities in the Oral Delivery of Recombinant Biologics. Pharmaceutics 2023; 15:pharmaceutics15051415. [PMID: 37242657 DOI: 10.3390/pharmaceutics15051415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Recombinant biological molecules are at the cutting-edge of biomedical research thanks to the significant progress made in biotechnology and a better understanding of subcellular processes implicated in several diseases. Given their ability to induce a potent response, these molecules are becoming the drugs of choice for multiple pathologies. However, unlike conventional drugs which are mostly ingested, the majority of biologics are currently administered parenterally. Therefore, to improve their limited bioavailability when delivered orally, the scientific community has devoted tremendous efforts to develop accurate cell- and tissue-based models that allow for the determination of their capacity to cross the intestinal mucosa. Furthermore, several promising approaches have been imagined to enhance the intestinal permeability and stability of recombinant biological molecules. This review summarizes the main physiological barriers to the oral delivery of biologics. Several preclinical in vitro and ex vivo models currently used to assess permeability are also presented. Finally, the multiple strategies explored to address the challenges of administering biotherapeutics orally are described.
Collapse
Affiliation(s)
- Solene Masloh
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Maxime Culot
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Anne Chevrel
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Magali Zeisser Labouebe
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| |
Collapse
|
16
|
Mohammadi M, Jeddi-Tehrani M, Golsaz-Shirazi F, Arjmand M, Torkashvand F, Bahadori T, Judaki MA, Shiravi F, Ahmadi Zare H, Notash Haghighat F, Mobini M, Shokri F, Amiri MM. A Novel Fc-Engineered Anti-HER2 Bispecific Antibody With Enhanced Antitumor Activity. J Immunother 2023; 46:121-131. [PMID: 36939675 DOI: 10.1097/cji.0000000000000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/17/2023] [Indexed: 03/21/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression has been demonstrated in a variety of cancers. Targeted therapy with anti-HER2 monoclonal antibodies (mAbs) has been approved as a therapeutic modality. Despite the efficacy of mAbs in tumor treatment, many patients do not benefit from this therapeutic platform. Fragment crystallizable (Fc) engineering is a common approach to improve the efficacy of therapeutic mAbs. Five Fc-engineered mAbs have so far been approved by FDA. We have recently developed an anti-HER2 bispecific mAb, BiHT, constructed from variable domains of trastuzumab, and our novel humanized anti-HER2 mAb, hersintuzumab. BiHT displayed promising antitumor activity as potently as the combination of the parental mAbs. Here, we aimed to modify the Fc of BiHT to improve its therapeutic efficacy. The Fc-engineered BiHT (MBiHT) bound to recombinant HER2 and its subdomains with an affinity similar to BiHT. It also recognized native HER2 on different cell lines, inhibited their proliferation, downregulated HER2 expression, and suppressed downstream signaling pathways similar to BiHT. Compared with BiHT, MBiHT displayed enhanced antibody-dependent cellular cytotoxicity activity against various tumor cell lines. It also inhibited the growth of ovarian xenograft tumors in nude mice more potently than BiHT. Our findings suggest that MBiHT could be a potent therapeutic candidate for the treatment of HER2-overexpressing cancer types.
Collapse
Affiliation(s)
- Mehdi Mohammadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | | | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | | | | | - Tannaz Bahadori
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | - Mohammad Ali Judaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | - Fariba Shiravi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | | | | | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences
| |
Collapse
|
17
|
Brancati VU, Minutoli L, Marini HR, Puzzolo D, Allegra A. Identification and Targeting of Mutant Neoantigens in Multiple Myeloma Treatment. Curr Oncol 2023; 30:4603-4617. [PMID: 37232806 PMCID: PMC10217221 DOI: 10.3390/curroncol30050348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Multiple myeloma (MM) is malignant disease characterized by the clonal proliferation of plasma cells in the bone marrow, leading to anemia, immunosuppression, and other symptoms, that is generally hard to treat. In MM, the immune system is likely exposed to neoplasia-associated neoantigens for several years before the tumor onset. Different types of neoantigens have been identified. Public or shared neoantigens derive from tumor-specific modifications often reported in several patients or across diverse tumors. They are intriguing therapeutic targets because they are frequently observed, and they have an oncogenic effect. Only a small number of public neoantigens have been recognized. Most of the neoantigens that have been identified are patient-specific or "private", necessitating a personalized approach for adaptive cell treatment. It was demonstrated that the targeting of a single greatly immunogenic neoantigen may be appropriate for tumor control. The purpose of this review was to analyze the neoantigens present in patients with MM, and to evaluate the possibility of using their presence as a prognostic factor or as a therapeutic target. We reviewed the most recent literature on neoantigen treatment strategies and on the use of bispecific, trispecific, and conjugated antibodies for the treatment of MM. Finally, a section was dedicated to the use of CAR-T in relapsed and refractory patients.
Collapse
Affiliation(s)
- Valentina Urzì Brancati
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (V.U.B.); (H.R.M.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (V.U.B.); (H.R.M.)
| | - Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (V.U.B.); (H.R.M.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
18
|
Berentsen S, Fattizzo B, Barcellini W. The choice of new treatments in autoimmune hemolytic anemia: how to pick from the basket? Front Immunol 2023; 14:1180509. [PMID: 37168855 PMCID: PMC10165002 DOI: 10.3389/fimmu.2023.1180509] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Autoimmune hemolytic anemia (AIHA) is defined by increased erythrocyte turnover mediated by autoimmune mechanisms. While corticosteroids remain first-line therapy in most cases of warm-antibody AIHA, cold agglutinin disease is treated by targeting the underlying clonal B-cell proliferation or the classical complement activation pathway. Several new established or investigational drugs and treatment regimens have appeared during the last 1-2 decades, resulting in an improvement of therapy options but also raising challenges on how to select the best treatment in individual patients. In severe warm-antibody AIHA, there is evidence for the upfront addition of rituximab to prednisolone in the first line. Novel agents targeting B-cells, extravascular hemolysis, or removing IgG will offer further options in the acute and relapsed/refractory settings. In cold agglutinin disease, the development of complement inhibitors and B-cell targeting agents makes it possible to individualize therapy, based on the disease profile and patient characteristics. For most AIHAs, the optimal treatment remains to be found, and there is still a need for more evidence-based therapies. Therefore, prospective clinical trials should be encouraged.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Hospital Trust, Haugesund, Norway
| | - Bruno Fattizzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Wilma Barcellini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
19
|
Iwata Y, Katada H, Okuda M, Doi Y, Ching TJ, Harada A, Takeiri A, Honda M, Mishima M. Preclinical in vitro evaluation of immune suppression induced by GYM329, Fc-engineered sweeping antibody. J Toxicol Sci 2023; 48:399-409. [PMID: 37394653 DOI: 10.2131/jts.48.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Fc-engineering is commonly used to improve the therapeutic potency of antibody (Ab) treatments. Because FcγRIIb is the only inhibitory FcγR that contains an immunoreceptor tyrosine-based inhibition motif (ITIM), Fc-engineered Abs with enhanced binding affinity to FcγRIIb might provide immune suppression in clinical contexts. GYM329 is an anti-latent myostatin Fc-engineered Ab with increased affinity to FcγRIIb which is expected to improve muscle strength in patients with muscular disorders. Cross-linking of FcγRIIb by immune complex (IC) results in phosphorylation of ITIM to inhibit immune activation and apoptosis in B cells. We examined whether the IC of Fc-engineered Abs with enhanced binding affinity to FcγRIIb causes phosphorylation of ITIM or B cell apoptosis using GYM329 and its Fc variant Abs in human and cynomolgus-monkey (cyno) immune cells in vitro. IC of GYM329 with enhanced binding affinity to human FcγRIIb (×5) induced neither ITIM phosphorylation nor B cell apoptosis. As for GYM329, FcγRIIb should work as an endocytic receptor of small IC to sweep latent myostatin, so it is preferable that GYM329 induces neither ITIM phosphorylation nor B cell apoptosis to prevent immune suppression. In contrast, IC of myo-HuCy2b, the Ab with enhanced binding affinity to human FcγRIIb (×4), induced ITIM phosphorylation and B cell apoptosis. The result of the present study demonstrated that Fc-engineered Abs with similar binding affinity to FcγRIIb had different effects. Thus, it is important to also investigate FcγR-mediated immune functions other than binding to fully understand the biological effects of Fc-engineered Abs.
Collapse
Affiliation(s)
- Yoshika Iwata
- Translational Research Division, Chugai Pharmaceutical Co., Ltd
| | | | | | - Yoshiaki Doi
- Research Division, Chugai Pharmaceutical Co., Ltd
| | | | - Asako Harada
- Translational Research Division, Chugai Pharmaceutical Co., Ltd
| | - Akira Takeiri
- Translational Research Division, Chugai Pharmaceutical Co., Ltd
| | - Masaki Honda
- Translational Research Division, Chugai Pharmaceutical Co., Ltd
| | | |
Collapse
|
20
|
Carrara SC, Harwardt J, Grzeschik J, Hock B, Kolmar H. TriTECM: A tetrafunctional T-cell engaging antibody with built-in risk mitigation of cytokine release syndrome. Front Immunol 2022; 13:1051875. [DOI: 10.3389/fimmu.2022.1051875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
Harnessing the innate power of T cells for therapeutic benefit has seen many shortcomings due to cytotoxicity in the past, but still remains a very attractive mechanism of action for immune-modulating biotherapeutics. With the intent of expanding the therapeutic window for T-cell targeting biotherapeutics, we present an attenuated trispecific T-cell engager (TCE) combined with an anti- interleukin 6 receptor (IL-6R) binding moiety in order to modulate cytokine activity (TriTECM). Overshooting cytokine release, culminating in cytokine release syndrome (CRS), is one of the severest adverse effects observed with T-cell immunotherapies, where the IL-6/IL-6R axis is known to play a pivotal role. By targeting two tumour-associated antigens, epidermal growth factor receptor (EGFR) and programmed death ligand 1 (PD-L1), simultaneously with a bispecific two-in-one antibody, high tumour selectivity together with checkpoint inhibition was achieved. We generated tetrafunctional molecules that contained additional CD3- and IL-6R-binding modules. Ligand competition for both PD-L1 and IL-6R as well as inhibition of both EGF- and IL-6-mediated signalling pathways was observed. Furthermore, TriTECM molecules were able to activate T cells and trigger T-cell-mediated cytotoxicity through CD3-binding in an attenuated fashion. A decrease in pro-inflammatory cytokine interferon γ (IFNγ) after T-cell activation was observed for the TriTECM molecules compared to their respective controls lacking IL-6R binding, hinting at a successful attenuation and potential modulation via IL-6R. As IL-6 is a key player in cytokine release syndrome as well as being implicated in enhancing tumour progression, such molecule designs could reduce side effects and cytotoxicity observed with previous TCEs and widen their therapeutic windows.
Collapse
|
21
|
Hameedat F, Pizarroso NA, Teixeira N, Pinto S, Sarmento B. Functionalized FcRn-targeted nanosystems for oral drug delivery: A new approach to colorectal cancer treatment. Eur J Pharm Sci 2022; 176:106259. [PMID: 35842140 DOI: 10.1016/j.ejps.2022.106259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 01/17/2023]
Abstract
Colorectal cancer (CRC) is the second type of cancer with the highest lethality rate. The current chemotherapy to treat CRC causes systemic toxicity, unsatisfying response rate, and low tumor-specific selectivity, which is mainly administered by invasive routes. The chronic and aggressive nature of cancers may require long-term regimens. Thus, the oral route is preferred. However, the orally administered drugs still need to surpass the harsh environment of the gastrointestinal tract and the biological barriers. Nanotechnology is a promising strategy to overcome the oral route limitations. Targeted nanoparticle systems decorated with functional groups can enhance the delivery of anticancer agents to tumor sites. It is described in the literature that the neonatal Fc receptor (FcRn) is expressed in cancer tissue and overexpressed in CRC epithelial cells. However, the impact of FcRn-targeted nanosystems in the treatment of CRC has been poorly investigated. This review article discusses the current knowledge on the involvement of the FcRn in CRC, as well as to critically assess its relevance as a target for further localization of oral nanocarriers in CRC tumor cells. Finally, a brief overview of cancer therapeutics, strategies to design the nanoparticles of anticancer drugs and a review of decorated nanoparticles with FcRn moieties are explored.
Collapse
Affiliation(s)
- Fatima Hameedat
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; NANOMED EMJMD, Pharmacy School, Faculty of Health, University of Angers, France; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal
| | - Nuria A Pizarroso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal
| | - Natália Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Soraia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto 4150-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; CESPU - IUCS, Rua Central de Gandra 1317, Gandra 4585-116, Portugal.
| |
Collapse
|
22
|
Narvekar A, Pardeshi A, Jain R, Dandekar P. ADCC enhancement: A conundrum or a boon to mAb therapy? Biologicals 2022; 79:10-18. [PMID: 36085129 DOI: 10.1016/j.biologicals.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/27/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
The ability of antibodies to distinctly identify the antigens is an important feature exploited by the scientific community for the treatment of various diseases. The therapeutic action of monoclonal antibodies (mAbs) is mediated along with the cells of the immune system, such as natural killer cells, T cells and macrophages. The two major mechanisms that govern the therapeutic efficacy of mAbs are the antibody dependent cell mediated cytotoxicity (ADCC) and the complement dependent cytotoxicity (CDC). Consequently, much of the research dedicated to improving their action is focussed on enhancing either of these mechanisms. This manuscript focuses on the strategies to enhance ADCC, for providing more efficacious mAb therapeutics. These approaches essentially bring about changes in the elements of ADCC mechanism, such as the effector cell or the antibody itself and thus favour an enhanced therapeutic response. Several technologies of ADCC enhancement have been developed, based on the success of various strategies advanced by the researchers. These technologies show success with a few antibody therapeutics while they do not work with others. This review presents a detailed overview on these strategies and presents perspectives regarding the same.
Collapse
Affiliation(s)
- Aditya Narvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Apurva Pardeshi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
23
|
Hu H, Quintana J, Weissleder R, Parangi S, Miller M. Deciphering albumin-directed drug delivery by imaging. Adv Drug Deliv Rev 2022; 185:114237. [PMID: 35364124 PMCID: PMC9117484 DOI: 10.1016/j.addr.2022.114237] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023]
Abstract
Albumin is the most abundant plasma protein, exhibits extended circulating half-life, and its properties have long been exploited for diagnostics and therapies. Many drugs intrinsically bind albumin or have been designed to do so, yet questions remain about true rate limiting factors that govern albumin-based transport and their pharmacological impacts, particularly in advanced solid cancers. Imaging techniques have been central to quantifying - at a molecular and single-cell level - the impact of mechanisms such as phagocytic immune cell signaling, FcRn-mediated recycling, oncogene-driven macropinocytosis, and albumin-drug interactions on spatial albumin deposition and related pharmacology. Macroscopic imaging of albumin-binding probes quantifies vessel structure, permeability, and supports efficiently targeted molecular imaging. Albumin-based imaging in patients and animal disease models thus offers a strategy to understand mechanisms, guide drug development and personalize treatments.
Collapse
Affiliation(s)
- Huiyu Hu
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States; Department of General Surgery, Xiangya Hospital, Central South University, China
| | - Jeremy Quintana
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States; Department of Systems Biology, Harvard Medical School, United States
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States
| | - Miles Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States.
| |
Collapse
|
24
|
T-cell redirecting bispecific antibodies in multiple myeloma: a revolution? Blood 2022; 139:3681-3687. [PMID: 35404996 DOI: 10.1182/blood.2021014611] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Bispecific antibodies are designed to link a surface target molecule on the malignant plasma cells to CD3 on T-cells and thereby redirect activated T-cells to induce tumor cell death. Early-phase clinical trials targeting B-cell maturation antigen, GPRC5D or FcRH5, have demonstrated a favorable safety profile and promising efficacy data in triple-class refractory multiple myeloma. This novel immunotherapeutic modality will likely change the treatment paradigm in the coming years.
Collapse
|
25
|
Tien SM, Chang PC, Lai YC, Chuang YC, Tseng CK, Kao YS, Huang HJ, Hsiao YP, Liu YL, Lin HH, Chu CC, Cheng MH, Ho TS, Chang CP, Ko SF, Shen CP, Anderson R, Lin YS, Wan SW, Yeh TM. Therapeutic efficacy of humanized monoclonal antibodies targeting dengue virus nonstructural protein 1 in the mouse model. PLoS Pathog 2022; 18:e1010469. [PMID: 35486576 PMCID: PMC9053773 DOI: 10.1371/journal.ppat.1010469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/24/2022] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) which infects about 390 million people per year in tropical and subtropical areas manifests various disease symptoms, ranging from fever to life-threatening hemorrhage and even shock. To date, there is still no effective treatment for DENV disease, but only supportive care. DENV nonstructural protein 1 (NS1) has been shown to play a key role in disease pathogenesis. Recent studies have shown that anti-DENV NS1 antibody can provide disease protection by blocking the DENV-induced disruption of endothelial integrity. We previously demonstrated that anti-NS1 monoclonal antibody (mAb) protected mice from all four serotypes of DENV challenge. Here, we generated humanized anti-NS1 mAbs and transferred them to mice after DENV infection. The results showed that DENV-induced prolonged bleeding time and skin hemorrhage were reduced, even several days after DENV challenge. Mechanistic studies showed the ability of humanized anti-NS1 mAbs to inhibit NS1-induced vascular hyperpermeability and to elicit Fcγ-dependent complement-mediated cytolysis as well as antibody-dependent cellular cytotoxicity of cells infected with four serotypes of DENV. These results highlight humanized anti-NS1 mAb as a potential therapeutic agent in DENV infection. DENV comprising four serotypes has a complicated pathogenesis and remains an unresolved global health problem. To date, supportive therapy is the mainstay for treatment of dengue patients. Despite a licensed Sanofi vaccine and ongoing clinical trials, more effective vaccines and/or licensed therapeutic drugs are required. Therapeutic mAbs are a potential tool to treat many epidemic diseases because of their high target specificity. Humanized anti-NS1 mAbs can recognize the NS1 from all four serotypes of DENV without danger of inducing ADE. In the DENV infection mouse model, we demonstrate that humanized NS1 mAbs have therapeutic benefits such as reducing DENV-induced prolonged bleeding time and skin hemorrhage. In vitro mechanistic studies showed a reduction of NS1-induced vascular permeability and an increase in cytolysis of DENV-infected cells. Our results showed that humanized anti-NS1 mAbs show strong potential for development toward clinical use.
Collapse
Affiliation(s)
- Sen-Mao Tien
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Chun Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Leadgene Biomedical, Inc. Tainan, Taiwan
| | - Yen-Chung Lai
- Leadgene Biomedical, Inc. Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chun Chuang
- Leadgene Biomedical, Inc. Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Yu-San Kao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Jyun Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Peng Hsiao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ling Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsing-Han Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- SIDSCO Biomedical Co., Ltd. Kaohsiung, Taiwan
| | - Chien-Chou Chu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Miao-Huei Cheng
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shiann Ho
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Fen Ko
- Development Center for Biotechnology, Taipei, Taiwan
| | - Che-Piao Shen
- Development Center for Biotechnology, Taipei, Taiwan
| | - Robert Anderson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (YSL); (SWW); (TMY)
| | - Shu-Wen Wan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (YSL); (SWW); (TMY)
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (YSL); (SWW); (TMY)
| |
Collapse
|
26
|
Thoreau F, Chudasama V. Enabling the next steps in cancer immunotherapy: from antibody-based bispecifics to multispecifics, with an evolving role for bioconjugation chemistry. RSC Chem Biol 2022; 3:140-169. [PMID: 35360884 PMCID: PMC8826860 DOI: 10.1039/d1cb00082a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
In the past two decades, immunotherapy has established itself as one of the leading strategies for cancer treatment, as illustrated by the exponentially growing number of related clinical trials. This trend was, in part, prompted by the clinical success of both immune checkpoint modulation and immune cell engagement, to restore and/or stimulate the patient's immune system's ability to fight the disease. These strategies were sustained by progress in bispecific antibody production. However, despite the decisive progress made in the treatment of cancer, toxicity and resistance are still observed in some cases. In this review, we initially provide an overview of the monoclonal and bispecific antibodies developed with the objective of restoring immune system functions to treat cancer (cancer immunotherapy), through immune checkpoint modulation, immune cell engagement or a combination of both. Their production, design strategy and impact on the clinical trial landscape are also addressed. In the second part, the concept of multispecific antibody formats, notably MuTICEMs (Multispecific Targeted Immune Cell Engagers & Modulators), as a possible answer to current immunotherapy limitations is investigated. We believe it could be the next step to take for cancer immunotherapy research and expose why bioconjugation chemistry might play a key role in these future developments.
Collapse
Affiliation(s)
- Fabien Thoreau
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
27
|
Malik S, Grunert I, Roman MF, Walch H, Dams T, Thomann M, Falkenstein R. Implementation of in vitro glycoengineering of monoclonal antibodies into downstream processing of industrial production. Glycobiology 2021; 32:123-135. [PMID: 34939096 DOI: 10.1093/glycob/cwab109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
In vitro glycoengineering using exoenzymes for specific modification is recognized as appropriate method to tailor sugar moieties of glycan structures during the recombinant production of monoclonal antibodies (mAbs). This report describes enhanced in vitro glycoengineering approaches using β1,4-galactosyltransferase and α2,6-sialyltransferase to improve the efficiency of galactosylation and sialylation with the aim to implement in vitro glycoengineering into common mAb purification processes. Feasibility studies tested the potential of different in vitro glycoengineering protocols (2-step vs. 1-step) to facilitate the overall procedure. Scalability of the reactions was demonstrated for mAb amounts ranging from 1 mg to 1 g. Additionally, the reactions of β1,4-galactosyltransferase and α2,6-sialyltransferase were shown to work on column during affinity chromatography using Protein A or KappaSelect, the latter providing more efficient galactosylation and sialylation of IgG1 and IgG4 mAbs. Performing in vitro glycoengineering on column enabled the use of cell culture harvest which yielded results comparable to that of purified bulk. Based thereon, an optimized 2-step mixed mode approach was found most appropriate to integrate in vitro glycoengineering of the IgG1 mAb into the overall manufacturing process. Using harvest for on-column reaction of β1,4-galactosyltransferase combined with in-solution reaction of α2,6-sialyltransferase, this approach yielded 100 percent biantennary galactosylation and 61 percent biantennary sialylation. Moreover, the enzymes applied in in vitro glycoengineering could be separated, recycled, and reused in further reactions to improve economic efficiency. Overall, the study provides a toolbox for in vitro glycoengineering and presents an optimized easy-to-handle workflow to implement this method into the downstream processing of industrial mAb production.
Collapse
Affiliation(s)
- Sebastian Malik
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Ingrid Grunert
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | | | - Heiko Walch
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Thomas Dams
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Marco Thomann
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | | |
Collapse
|
28
|
Precision medicine in clinical oncology: the journey from IgG antibody to IgE. Curr Opin Allergy Clin Immunol 2021; 20:282-289. [PMID: 32349107 DOI: 10.1097/aci.0000000000000637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Cancer is one of the leading causes of death and the incidence rates are constantly rising. The heterogeneity of tumors poses a big challenge for the treatment of the disease and natural antibodies additionally affect disease progression. The introduction of engineered mAbs for anticancer immunotherapies has substantially improved progression-free and overall survival of cancer patients, but little efforts have been made to exploit other antibody isotypes than IgG. RECENT FINDINGS In order to improve these therapies, 'next-generation antibodies' were engineered to enhance a specific feature of classical antibodies and form a group of highly effective and precise therapy compounds. Advanced antibody approaches include among others antibody-drug conjugates, glyco-engineered and Fc-engineered antibodies, antibody fragments, radioimmunotherapy compounds, bispecific antibodies and alternative (non-IgG) immunoglobulin classes, especially IgE. SUMMARY The current review describes solutions for the needs of next-generation antibody therapies through different approaches. Careful selection of the best-suited engineering methodology is a key factor in developing personalized, more specific and more efficient mAbs against cancer to improve the outcomes of cancer patients. We highlight here the large evidence of IgE exploiting a highly cytotoxic effector arm as potential next-generation anticancer immunotherapy.
Collapse
|
29
|
Lancman G, Sastow DL, Cho HJ, Jagannath S, Madduri D, Parekh SS, Richard S, Richter J, Sanchez L, Chari A. Bispecific Antibodies in Multiple Myeloma: Present and Future. Blood Cancer Discov 2021; 2:423-433. [PMID: 34661161 PMCID: PMC8510808 DOI: 10.1158/2643-3230.bcd-21-0028] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Despite many recent advances in therapy, there is still no plateau in overall survival curves in multiple myeloma. Bispecific antibodies are a novel immunotherapeutic approach designed to bind antigens on malignant plasma cells and cytotoxic immune effector cells. Early-phase clinical trials targeting B-cell maturation antigen (BCMA), GPRC5D, and FcRH5 have demonstrated a favorable safety profile, with mainly low-grade cytokine release syndrome, cytopenias, and infections. Although dose escalation is ongoing in several studies, early efficacy data show response rates in the most active dose cohorts between 61% and 83% with many deep responses; however, durability remains to be established. Further clinical trial data are eagerly anticipated. SIGNIFICANCE Overall survival of triple-class refractory multiple myeloma remains poor. Bispecific antibodies are a novel immunotherapeutic modality with a favorable safety profile and impressive preliminary efficacy in heavily treated patients. Although more data are needed, bispecifics will likely become an integral part of the multiple myeloma treatment paradigm in the near future. Studies in earlier lines of therapy and in combination with other active anti-multiple myeloma agents will help further define the role of bispecifics in multiple myeloma.
Collapse
Affiliation(s)
- Guido Lancman
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Hearn J Cho
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sundar Jagannath
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Deepu Madduri
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samir S Parekh
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shambavi Richard
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joshua Richter
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Larysa Sanchez
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ajai Chari
- Tisch Cancer Insitute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
30
|
Muñoz-Villegas P, Sanchez-Rios A, Quinonez-Alvarado MG, Olvera-Montaño O, Quintana-Hau JD, Baiza-Duran L. Pharmacokinetics and Safety of an Intravitreal Humanized Anti-VEGF-A Monoclonal Antibody (PRO-169), a Biosimilar Candidate to Bevacizumab. J Exp Pharmacol 2021; 13:545-554. [PMID: 34113182 PMCID: PMC8185251 DOI: 10.2147/jep.s308388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/28/2021] [Indexed: 01/15/2023] Open
Abstract
Background PRO-169 is a biosimilar candidate to bevacizumab (BEV), a monoclonal antibody (mAb) that inhibits vascular endothelial growth factor-A (VEGF-A) developed for intravitreal use. The current study demonstrates the intraocular pharmacokinetics (PK) of PRO-169 and its safety using New Zealand white (NZW) rabbits. Methods Intraocular concentration was evaluated in thirty-six rabbits at 1h, 1, 2, 5, 14 and 30 days after a single bilateral injection of PRO-169 or BEV (1.25 mg/0.05 mL). In a secondary experiment, safety was evaluated after three consecutive unilateral injections at 30-day intervals in twenty-four rabbits (PRO-169: 1.25 mg/0.05 mL or ranibizumab [RZB]: 0.5 mg/0.05 mL), by liver-associated enzymes (LAE), ophthalmological examination and adverse event (AE) incidence. Primary endpoints were vitreous maximum concentration (Cmax), time to attain maximum concentration (tmax), area under curve (AUC0-t), half-life (t1/2) and LAE. Secondary endpoints included aqueous humor (AH) and plasma pharmacokinetics, clinical examination and AEs. Results The Cmax in the vitreous was 593.75 ± 45.63 (PRO-169) vs 644.79 ± 62.65 µg/mL (BEV) (p= 0.136). Tmax was 0.53 ± 0.82 vs 0.85 ± 0.73 days (p= 0.330). The AUC0-t was 3837.72 ± 465.91 vs 4247.31 ± 93.99 days*µg/mL (p= 0.052) and the half-life was 4.99 ± 0.89 vs 5.18 ± 0.88 days (p= 0.711). LAEs were normal in 92% of NZW rabbits; no differences between groups were observed (p>0.05). The AH and plasma PKs were also similar. Finally, clinical examinations found no alterations. AEs were observed in 25% of PRO-169 rabbits, without differences vs RZB (p=0.399). Conclusion PRO-169 can be efficiently diffused and distributed in ocular compartments, showing vitreous pharmacokinetics analogous to BEV. The safety experiment did not find evidence of clinical alterations from a repeated injection of PRO-169. These results provide scientific justification supporting that PRO-169 should be evaluated in future clinical trials to confirm its safety and efficacy.
Collapse
Affiliation(s)
| | | | | | - Oscar Olvera-Montaño
- Medical Affairs Department, Laboratorios Sophia, S.A. de C.V., Zapopan, Jalisco, México
| | | | - Leopoldo Baiza-Duran
- Medical Affairs Department, Laboratorios Sophia, S.A. de C.V., Zapopan, Jalisco, México
| |
Collapse
|
31
|
Sun Y, Izadi S, Callahan M, Deperalta G, Wecksler AT. Antibody-receptor interactions mediate antibody-dependent cellular cytotoxicity. J Biol Chem 2021; 297:100826. [PMID: 34044019 PMCID: PMC8214220 DOI: 10.1016/j.jbc.2021.100826] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/04/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
Binding of antibodies to their receptors is a core component of the innate immune system. Understanding the precise interactions between antibodies and their Fc receptors has led to the engineering of novel mAb biotherapeutics with tailored biological activities. One of the most significant findings is that afucosylated monoclonal antibodies demonstrate increased affinity toward the receptor FcγRIIIa, with a commensurate increase in antibody-dependent cellular cytotoxicity. Crystal structure analysis has led to the hypothesis that afucosylation in the Fc region results in reduced steric hindrance between antibody–receptor intermolecular glycan interactions, enhancing receptor affinity; however, solution-phase data have yet to corroborate this hypothesis. In addition, recent work has shown that the fragment antigen-binding (Fab) region may directly interact with Fc receptors; however, the biological consequences of these interactions remain unclear. By probing differences in solvent accessibility between native and afucosylated immunoglobulin G1 (IgG1) using hydroxyl radical footprinting–MS, we provide the first solution-phase evidence that an IgG1 bearing an afucosylated Fc region appears to require fewer conformational changes for FcγRIIIa binding. In addition, we performed extensive molecular dynamics (MD) simulations to understand the molecular mechanism behind the effects of afucosylation. The combination of these techniques provides molecular insight into the steric hindrance from the core Fc fucose in IgG1 and corroborates previously proposed Fab–receptor interactions. Furthermore, MD-guided rational mutagenesis enabled us to demonstrate that Fab–receptor interactions directly contribute to the modulation of antibody-dependent cellular cytotoxicity activity. This work demonstrates that in addition to Fc–polypeptide and glycan-mediated interactions, the Fab provides a third component that influences IgG–Fc receptor biology.
Collapse
Affiliation(s)
- Yue Sun
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA
| | - Saeed Izadi
- Pharmaceutical Development Department, Genentech Inc, South San Francisco, California, USA
| | - Matthew Callahan
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA
| | - Galahad Deperalta
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA
| | - Aaron T Wecksler
- Protein Analytical Chemistry Department, Genentech Inc, South San Francisco, California, USA.
| |
Collapse
|
32
|
Targeting CD300f to enhance hematopoietic stem cell transplantation in acute myeloid leukemia. Blood Adv 2021; 4:1206-1216. [PMID: 32215656 DOI: 10.1182/bloodadvances.2019001289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) significantly reduces the rate of relapse in acute myeloid leukemia (AML) but comes at the cost of significant treatment-related mortality. Despite the reduction in relapse overall, it remains common, especially in high-risk groups. The outcomes for patients who relapse after transplant remains very poor. A large proportion of the morbidity that prevents most patients from accessing allo-HSCT is due to toxic nonspecific conditioning agents that are required to remove recipient hematopoietic stem and progenitor cells (HSPCs), allowing for successful donor engraftment. CD300f is expressed evenly across HSPC subtypes. CD300f has transcription and protein expression equivalent to CD33 on AML. We have developed an anti-CD300f antibody that efficiently internalizes into target cells. We have generated a highly potent anti-CD300f antibody-drug conjugate (ADC) with a pyrrolobenzodiazepine warhead that selectively depletes AML cell lines and colony forming units in vitro. The ADC synergizes with fludarabine, making it a natural combination to use in a minimal toxicity conditioning regimen. Our ADC prolongs the survival of mice engrafted with human cell lines and depletes primary human AML engrafted with a single injection. In a humanized mouse model, a single injection of the ADC depletes CD34+ HSPCs and CD34+CD38-CD90+ hematopoietic stem cells. This work establishes an anti-CD300f ADC as an attractive potential therapeutic that, if validated in transplant models using a larger cohort of primary AML samples, will reduce relapse rate and toxicity for patients with AML undergoing allo-HSCT.
Collapse
|
33
|
Dash R, Rathore AS. Freeze thaw and lyophilization induced alteration in mAb therapeutics: Trastuzumab as a case study. J Pharm Biomed Anal 2021; 201:114122. [PMID: 33989996 DOI: 10.1016/j.jpba.2021.114122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 01/13/2023]
Abstract
Long-term stability of therapeutic monoclonal antibody (mAb) products is necessary for their successful commercialization. Freeze-thaw (F/T) operations are often performed for a mAb product during processing, storage and distribution. Lyophilization (Lyo) is another unit operation that is commonly used for drug product manufacturing of mAbs. This paper aims to explore the impact of these operations on structure and function of a mAb therapeutic, as well as of biosimilars. Trastuzumab innovator and its five biosimilars were analysed for aggregation, charge heterogeneity, secondary structure, binding kinetics, and potency after each freeze-thaw and lyophilization cycle. It is observed that both F/T and Lyo induce protein aggregation, which in turn causes perturbations in the biological potency of the mAb therapeutic. The average value of the percentage of aggregation increased from 0.6 % (week 1) to 5.3 % (week 10) in F/T study and from 0.8 % (week 1) to 10.1 % (week 10) in Lyo study. The acidic pool increased from 26.5 % (week 1) to 44.4 % (week 10) and the basic variants from 13.9 % (week 1) to 24.0 % (week 10) in F/T study. Similarly, acidic pool increased from 27.1 % (week 1) to 42.0 % (week 10) and basic variants from 14.8 % (week 1) to 24.4 % (week 10) in Lyo study. The average percentage of beta-sheet increased from 58.4 % (week 1) to 60.9 % (week 10) in F/T study and from 59.7 % (week 1) to 72.6 % (week 10) in Lyo study. Lower binding affinity was found in week 7 as compared to week 1 in Lyo study whereas no change in binding affinity was observed in the F/T study. The average potency value gradually decreased from 0.97IU/ ml (week 1) to 0.75IU/ ml (week 10) in F/T study and from 1.0IU/ ml (week 1) to 0.66IU/ ml (week 10) in Lyo study. Results indicate that lyophilization has a bigger impact on binding affinity than freeze thaw and as expected, the impact was comparable across the innovator and biosimilar products.
Collapse
Affiliation(s)
- Rozaleen Dash
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
34
|
Parzych EM, Gulati S, Zheng B, Bah MA, Elliott STC, Chu JD, Nowak N, Reed GW, Beurskens FJ, Schuurman J, Rice PA, Weiner DB, Ram S. Synthetic DNA Delivery of an Optimized and Engineered Monoclonal Antibody Provides Rapid and Prolonged Protection against Experimental Gonococcal Infection. mBio 2021; 12:e00242-21. [PMID: 33727348 PMCID: PMC8092225 DOI: 10.1128/mbio.00242-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022] Open
Abstract
Monoclonal antibody (MAb) 2C7 recognizes a lipooligosaccharide epitope expressed by most clinical Neisseria gonorrhoeae isolates and mediates complement-dependent bactericidal activity. We recently showed that a recombinant human IgG1 chimeric variant of MAb 2C7 containing an E430G Fc modification (2C7_E430G), which enhances complement activation, outperformed the parental MAb 2C7 (2C7_WT) in vivo Because natural infection with N. gonorrhoeae often does not elicit protective immunity and reinfections are common, approaches that prolong bacterial control in vivo are of great interest. Advances in DNA-based approaches have demonstrated the combined benefit of genetic engineering, formulation optimizations, and facilitated delivery via CELLECTRA-EP technology, which can induce robust in vivo expression of protective DNA-encoded monoclonal antibodies (DMAbs) with durable serum activity relative to traditional recombinant MAb therapies. Here, we created optimized 2C7-derived DMAbs encoding the parental Fc (2C7_WT) or complement-enhancing Fc variants (2C7_E430G and 2C7_E345K). 2C7 DMAbs were rapidly generated and detected throughout the 4-month study. While all complement-engaging 2C7 variants facilitated rapid clearance following primary N. gonorrhoeae challenge (day 8 after DMAb administration), the complement-enhancing 2C7_E430G variant demonstrated significantly higher potency against mice rechallenged 65 days after DMAb administration. Passive intravenous transfer of in vivo-produced, purified 2C7 DMAbs confirmed the increased potency of the complement-enhancing variants. This study highlights the ability of the DMAb platform to launch the in vivo production of antibodies engineered to promote and optimize downstream innate effector mechanisms such as complement-mediated killing, leading to hastened bacterial elimination.IMPORTANCENeisseria gonorrhoeae has become resistant to most antibiotics in clinical use. Currently, there is no safe and effective vaccine against gonorrhea. Measures to prevent the spread of gonorrhea are a global health priority. A monoclonal antibody (MAb) called 2C7, directed against a lipooligosaccharide glycan epitope expressed by most clinical isolates, displays complement-dependent bactericidal activity and hastens clearance of gonococcal vaginal colonization in mice. Fc mutations in a human IgG1 chimeric version of MAb 2C7 further enhance complement activation, and the resulting MAb displays greater activity than wild-type MAb 2C7 in vivo Here, we utilized a DNA-encoded MAb (DMAb) construct designed to launch production and assembly of "complement-enhanced" chimeric MAb 2C7 in vivo The ensuing rapid and sustained MAb 2C7 expression attenuated gonococcal colonization in mice at 8 days as well as 65 days postadministration. The DMAb system may provide an effective, economical platform to deliver MAbs for durable protection against gonorrhea.
Collapse
Affiliation(s)
- Elizabeth M Parzych
- Vaccine & Immunotherapy Center, The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania, USA
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mamadou A Bah
- Vaccine & Immunotherapy Center, The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania, USA
| | - Sarah T C Elliott
- Vaccine & Immunotherapy Center, The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania, USA
| | - Jacqueline D Chu
- Vaccine & Immunotherapy Center, The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania, USA
| | - Nancy Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - George W Reed
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Janine Schuurman
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - David B Weiner
- Vaccine & Immunotherapy Center, The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
35
|
Kyrklund M, Kaski H, Akhi R, Nissinen AE, Kummu O, Bergmann U, Pussinen P, Hörkkö S, Wang C. Existence of natural mouse IgG mAbs recognising epitopes shared by malondialdehyde acetaldehyde adducts and Porphyromonas gingivalis. Innate Immun 2021; 27:158-169. [PMID: 33445998 PMCID: PMC7882809 DOI: 10.1177/1753425920981133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Natural Abs are produced by B lymphocytes in the absence of external Ag stimulation. They recognise self, altered self and foreign Ags, comprising an important first-line defence against invading pathogens and serving as innate recognition receptors for tissue homeostasis. Natural IgG Abs have been found in newborns and uninfected individuals. Yet, their physiological role remains unclear. Previously, no natural IgG Abs to oxidation-specific epitopes have been reported. Here, we show the cloning and characterisation of mouse IgG mAbs against malondialdehyde acetaldehyde (MAA)-modified low-density lipoprotein. Sequence analysis reveals high homology with germline genes, suggesting that they are natural. Further investigation shows that the MAA-specific natural IgG Abs cross-react with the major periodontal pathogen Porphyromonas gingivalis and recognise its principle virulence factors gingipain Kgp and long fimbriae. The study provides evidence that natural IgGs may play an important role in innate immune defence and in regulation of tissue homeostasis by recognising and removing invading pathogens and/or modified self-Ags, thus being involved in the development of periodontitis and atherosclerosis.
Collapse
MESH Headings
- Acetaldehyde/chemistry
- Acetaldehyde/metabolism
- Animals
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/metabolism
- Clone Cells
- Epitopes, B-Lymphocyte/metabolism
- Fimbriae Proteins/metabolism
- Gingipain Cysteine Endopeptidases/metabolism
- Immunity, Innate
- Immunoglobulin G/isolation & purification
- Immunoglobulin G/metabolism
- Lipoproteins, LDL/chemistry
- Lipoproteins, LDL/metabolism
- Malondialdehyde/chemistry
- Malondialdehyde/metabolism
- Mice
- Mice, Knockout
- Oxidation-Reduction
- Periodontitis/immunology
- Porphyromonas gingivalis/physiology
- Receptors, LDL/genetics
- Receptors, Pattern Recognition/isolation & purification
- Receptors, Pattern Recognition/metabolism
Collapse
Affiliation(s)
- Mikael Kyrklund
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Heidi Kaski
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
| | - Ramin Akhi
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Antti E Nissinen
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Outi Kummu
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Ulrich Bergmann
- Protein Analysis Core Facility, Biocentre Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
| | - Pirkko Pussinen
- Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland
| | - Sohvi Hörkkö
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
| | - Chunguang Wang
- Medical Microbiology and Immunology, Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, Finland
- Medical Research Centre and Nordlab Oulu, University Hospital and University of Oulu, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Finland
- Chunguang Wang, Cardiovascular Research Unit, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, Helsinki 00290, Finland.
| |
Collapse
|
36
|
|
37
|
Lancman G, Richter J, Chari A. Bispecifics, trispecifics, and other novel immune treatments in myeloma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:264-271. [PMID: 33275733 PMCID: PMC7727546 DOI: 10.1182/hematology.2020000110] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Despite recent advances in treatment, relapses in multiple myeloma (MM) are inevitable. Off-the-shelf immunotherapeutics represent a promising avenue for research, with various classes of agents under development and several demonstrating deep and durable responses in patients who have exhausted all available therapies. Antibody-drug conjugates (ADCs) seek to improve on naked monoclonal antibodies by delivering a cytotoxic payload directly to tumor cells while largely limiting systemic effects. Belantamab mafodotin, a B-cell maturation antigen (BCMA)-targeted ADC, has shown response rates >30% in a phase 2 trial of highly refractory patients and is being investigated in a variety of settings and combinations. Several other ADCs are in earlier stages of development that target cell surface antigens that are internalized, including BCMA, CD38, CD46, CD56, CD74, and CD138. Bispecifics are designed to bring cytotoxic immune effector cells into proximity with tumor cells, and several agents have shown high response rates in early trials. Current targets include BCMA, CD38, GPRC5d, and FCRH5, and all of these seek to engage T cells through CD3. Bispecifics targeting natural killer (NK) cells through CD16 are still in preclinical development. Trispecific antibodies may represent an advance over bispecifics by providing a T-cell costimulatory signal such as CD28, or alternatively, dual MM antigens to increase specificity of NK or T-cell targeting. This is an area of active preclinical research at this time. Lastly, designed ankyrin repeat proteins, which are small antibody-mimetic proteins with high target-binding affinity, have the potential to block multiple pathways at once and provide stimulatory signals to the immune system.
Collapse
Affiliation(s)
- Guido Lancman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joshua Richter
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ajai Chari
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
38
|
Pardridge WM. Brain Delivery of Nanomedicines: Trojan Horse Liposomes for Plasmid DNA Gene Therapy of the Brain. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:602236. [PMID: 35047884 PMCID: PMC8757841 DOI: 10.3389/fmedt.2020.602236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Non-viral gene therapy of the brain is enabled by the development of plasmid DNA brain delivery technology, which requires the engineering and manufacturing of nanomedicines that cross the blood-brain barrier (BBB). The development of such nanomedicines is a multi-faceted problem that requires progress at multiple levels. First, the type of nanocontainer, e.g., nanoparticle or liposome, which encapsulates the plasmid DNA, must be developed. Second, the type of molecular Trojan horse, e.g., peptide or receptor-specific monoclonal antibody (MAb), must be selected for incorporation on the surface of the nanomedicine, as this Trojan horse engages specific receptors expressed on the BBB, and the brain cell membrane, to trigger transport of the nanomedicine from blood into brain cells beyond the BBB. Third, the plasmid DNA must be engineered without bacterial elements, such as antibiotic resistance genes, to enable administration to humans; the plasmid DNA must also be engineered with tissue-specific gene promoters upstream of the therapeutic gene, to insure gene expression in the target organ with minimal off-target expression. Fourth, upstream manufacturing of the nanomedicine must be developed and scalable so as to meet market demand for the target disease, e.g., annual long-term treatment of 1,000 patients with an orphan disease, short term treatment of 10,000 patients with malignant glioma, or 100,000 patients with new onset Parkinson's disease. Fifth, downstream manufacturing problems, such as nanomedicine lyophilization, must be solved to ensure the nanomedicine has a commercially viable shelf-life for treatment of CNS disease in humans.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
39
|
NK Cell Adoptive Immunotherapy of Cancer: Evaluating Recognition Strategies and Overcoming Limitations. Transplant Cell Ther 2020; 27:21-35. [PMID: 33007496 DOI: 10.1016/j.bbmt.2020.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells, the primary effector cells of the innate immune system, utilize multiple strategies to recognize tumor cells by (1) detecting the presence of activating receptor ligands, which are often upregulated in cancer; (2) targeting cells that have a loss of major histocompatibility complex (MHC); and (3) binding to antibodies that bind to tumor-specific antigens on the tumor cell surface. All these strategies have been successfully harnessed in adoptive NK cell immunotherapies targeting cancer. In this review, we review the applications of NK cell therapies across different tumor types. Similar to other forms of immunotherapy, tumor-induced immune escape and immune suppression can limit NK cell therapies' efficacy. Therefore, we also discuss how these limitations can be overcome by conferring NK cells with the ability to redirect their tumor-targeting capabilities and survive the immune-suppressive tumor microenvironment. Finally, we also discuss how future iterations can benefit from combination therapies with other immunotherapeutic agents.
Collapse
|
40
|
Bansal R, Dash R, Rathore AS. Impact of mAb Aggregation on Its Biological Activity: Rituximab as a Case Study. J Pharm Sci 2020; 109:2684-2698. [DOI: 10.1016/j.xphs.2020.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/03/2023]
|
41
|
Garcia-Martinez LF, Raport CJ, Ojala EW, Dutzar B, Anderson K, Stewart E, Kovacevich B, Baker B, Billgren J, Scalley-Kim M, Karasek C, Allison D, Latham JA. Pharmacologic Characterization of ALD403, a Potent Neutralizing Humanized Monoclonal Antibody Against the Calcitonin Gene-Related Peptide. J Pharmacol Exp Ther 2020; 374:93-103. [PMID: 32366601 DOI: 10.1124/jpet.119.264671] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/24/2020] [Indexed: 03/08/2025] Open
Abstract
ALD403 is a genetically engineered, humanized immunoglobulin G1 monoclonal antibody that inhibits the action of human calcitonin gene-related peptide (CGRP). Clinical trial data indicate that ALD403 is effective as a preventive therapy for migraine and has an acceptable safety profile. For preclinical characterization of ALD403, rabbit antibodies targeting α-CGRP were humanized and modified to eliminate fragment crystallizable (Fc) γ receptor (FcγR) and complement interactions. The ability of ALD403 to inhibit CGRP-induced cAMP production was assessed using a cAMP bioassay (Meso Scale Discovery). The IC50 for inhibition of cAMP release was 434 and 288 pM with the rabbit-human chimera antibody and the humanized ALD403, respectively. ALD403 inhibited α-CGRP binding with an IC50 of 4.7 × 10-11 and 1.2 × 10-10 M for the α-CGRP and AMY1 receptors, respectively. ALD403 did not induce antibody-dependent cellular cytotoxicity or complement-dependent cytotoxicity and did not stably interact with any of the FcγR mediating these functions, exhibiting only weak binding to FcγRI. ALD403 significantly lowered capsaicin-induced blood flow responses in rodents at all time points starting at 5 minutes postapplication in a dose-dependent manner. In conclusion, ALD403 is a potent functional ligand inhibitor of α-CGRP‒driven pharmacology. SIGNIFICANCE STATEMENT: α-Calcitonin gene-related peptide blockade by ALD403 was assessed via radiolabeled ligand displacement, in vitro inhibition of cell signaling, and in vivo inhibition of capsaicin-induced vasodilation. Lack of engagement of fragment crystallizable-mediated immune-effector functions by ALD403 was shown.
Collapse
Affiliation(s)
| | - Carol J Raport
- Lundbeck Seattle BioPharmaceuticals, Inc., Bothell, Washington
| | - Ethan W Ojala
- Lundbeck Seattle BioPharmaceuticals, Inc., Bothell, Washington
| | - Benjamin Dutzar
- Lundbeck Seattle BioPharmaceuticals, Inc., Bothell, Washington
| | - Katie Anderson
- Lundbeck Seattle BioPharmaceuticals, Inc., Bothell, Washington
| | - Erica Stewart
- Lundbeck Seattle BioPharmaceuticals, Inc., Bothell, Washington
| | | | - Brian Baker
- Lundbeck Seattle BioPharmaceuticals, Inc., Bothell, Washington
| | - Jens Billgren
- Lundbeck Seattle BioPharmaceuticals, Inc., Bothell, Washington
| | | | - Charlie Karasek
- Lundbeck Seattle BioPharmaceuticals, Inc., Bothell, Washington
| | - Dan Allison
- Lundbeck Seattle BioPharmaceuticals, Inc., Bothell, Washington
| | - John A Latham
- Lundbeck Seattle BioPharmaceuticals, Inc., Bothell, Washington
| |
Collapse
|
42
|
The covalent SNAP tag for protein display quantification and low-pH protein engineering. J Biotechnol 2020; 320:50-56. [PMID: 32561362 DOI: 10.1016/j.jbiotec.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022]
Abstract
Yeast display has become an important tool for modern biotechnology with many advantages for eukaryotic protein engineering. Antibody-based peptide interactions are often used to quantify yeast surface expression (e.g., by fusing a target protein to a FLAG, Myc, polyhistidine, or other peptide tag). However, antibody-antigen interactions require high stability for accurate quantification, and conventional tag systems based on such interactions may not be compatible with a low pH environment. In this study, a SNAP tag was introduced to a yeast display platform to circumvent disadvantages of conventional antibody display tags at low pH. SNAP forms a covalent bond with its small-molecule substrate, enabling precise and pH-independent protein display tagging. We compared the SNAP tag to conventional antibody-based peptide fusion and to direct fluorescent domain fusion using antibody fragment crystallizable (Fc) gene libraries as a case study in low pH protein engineering. Our results demonstrated that covalent SNAP tags can effectively quantify protein-surface expression at low pH, enabling the enrichment of Fc variants with increased affinity at pH 6.0 to the neonatal Fc receptor (FcRn). Incorporation of a covalent SNAP tag thus overcomes disadvantages of conventional antibody-based expression tags and enables protein-engineering applications outside of physiological pH.
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Numerous B-cell abnormalities in HIV-1 infection have been described over the past three decades yet have remained poorly defined mechanistically. We review recent studies that describe mechanisms of B-cell dysregulation in chronic HIV-1 infection associated with IgG3 and T-bet. RECENT FINDINGS HIV-1 infection causes hypergammaglobulinemia and dysregulation of B-cell populations, including the expansion during chronic viremia of functionally impaired tissue-like memory (TLM) B cells. TLM B cells and B cells in other conditions of chronic activation and inflammation with similar phenotypes are characterized by increased expression of the transcription factor T-bet and preferential immunoglobulin class-switching to IgG3. However, defects in B-cell function during chronic HIV-1 viremia are also associated with the binding of soluble IgG3 to IgM-expressing B cells, with the highest intensities observed on TLM B cells. The consequence of IgG3 binding to TLM B cells is increased clustering of the IgM B-cell receptor and decreased response to stimulation. SUMMARY The identification of T-bet and IgG3 as the regulators of B-cell function in chronic HIV-1 viremia could provide new targets for therapeutic intervention aimed at reversing the damaging effects of HIV-1-associated chronic immune activation.
Collapse
|
44
|
Affiliation(s)
- Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
45
|
Macromolecules and Antibody-Based Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32185723 DOI: 10.1007/978-981-15-3266-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Macromolecule drugs particularly antibody drugs are very powerful therapies developing rapidly in the recent 20 years, providing hopes for many patients diagnosed with "incurable" diseases in the past. They also provide more effective and less side effects for many afflicting diseases, and greatly improve the survival rate and life quality of patients. In the last two decades, the proportion of US Food and Drug Administration (FDA) approved macromolecules and antibody drugs are increasing quickly, especially after the discovery of immune checkpoints. To crown all, the 2017 Nobel prize in physiology or medicine was given to immunotherapy. In this chapter, we would like to summarize the current situation of macromolecule and antibody drugs, and what effort scientists and pharmaceutical industry have made to discover and manufacture better antibody drugs.
Collapse
|
46
|
Reprogramming the Constant Region of Immunoglobulin G Subclasses for Enhanced Therapeutic Potency against Cancer. Biomolecules 2020; 10:biom10030382. [PMID: 32121592 PMCID: PMC7175108 DOI: 10.3390/biom10030382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
The constant region of immunoglobulin (Ig) G antibodies is responsible for their effector immune mechanism and prolongs serum half-life, while the fragment variable (Fv) region is responsible for cellular or tissue targeting. Therefore, antibody engineering for cancer therapeutics focuses on both functional efficacy of the constant region and tissue- or cell-specificity of the Fv region. In the functional aspect of therapeutic purposes, antibody engineers in both academia and industry have capitalized on the constant region of different IgG subclasses and engineered the constant region to enhance therapeutic efficacy against cancer, leading to a number of successes for cancer patients in clinical settings. In this article, we review IgG subclasses for cancer therapeutics, including (i) IgG1, (ii) IgG2, 3, and 4, (iii) recent findings on Fc receptor functions, and (iv) future directions of reprogramming the constant region of IgG to maximize the efficacy of antibody drug molecules in cancer patients.
Collapse
|
47
|
Lim YY, Lim TS, Choong YS. Human IgG1 Fc pH-dependent optimization from a constant pH molecular dynamics simulation analysis. RSC Adv 2020; 10:13066-13075. [PMID: 35492131 PMCID: PMC9051383 DOI: 10.1039/c9ra10712f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/11/2020] [Indexed: 11/21/2022] Open
Abstract
The binding of IgG Fc with FcRn enables the long circulating half-life of IgG, where the Fc–FcRn complex interacts in a pH-dependent manner. This complex shows stronger interaction at pH ≤ 6.5 and weaker interaction at pH ≥ 7.4. The Fc–FcRn binding mechanism that promotes the long circulating half-life of IgG has prompted several IgG Fc-related mutational studies to focus on the pH-dependent Fc–FcRn complex interactions in order to improve the pharmacokinetic properties of Fc. Hence, in this study, we applied the in silico constant pH molecular dynamics (CpHMD) simulation approach to evaluate the human Fc–FcRn complex binding (pH 6.0) and dissociating (pH 7.5) mechanism at the molecular level. The analysis showed that the protonated state of the titratable residues changes from pH 6.0 to pH 7.5, where the disrupting energy for Fc–FcRn complex formation was found to be due to the electrostatic repulsion between the complex. According to the analysis, an Fc variant was computationally designed with an improved binding affinity at pH 6.0, which is still able to dissociate at pH 7.5 with FcRn at the in silico level. The binding free energy calculation via the MMPB/GBSA approach showed that the designed Fc mutant (MutM4) has increased binding affinity only at pH 6.0 compared with the reported mutant (YTE) Fc. This work demonstrates an alternative Fc design with better binding properties for FcRn, which can be useful for future experimental evaluation and validation. An in silico IgG-Fc variant with better affinity at pH 6.0 but retained the dissociation at pH 7.5 was designed.![]()
Collapse
Affiliation(s)
- Yee Ying Lim
- Institute for Research in Molecular Medicine (INFORMM)
- Universiti Sains Malaysia
- 11800 Minden
- Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM)
- Universiti Sains Malaysia
- 11800 Minden
- Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM)
- Universiti Sains Malaysia
- 11800 Minden
- Malaysia
| |
Collapse
|
48
|
Vázquez NAR. Adsorption of terbium ion on Fc/dymethylacrylamide: application of Monte Carlo simulation. POLIMEROS 2020. [DOI: 10.1590/0104-1428.08419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103. [PMID: 31173761 PMCID: PMC6891151 DOI: 10.1016/j.xphs.2019.05.031] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Antibody-based proteins have become an important class of biologic therapeutics, due in large part to the stability, specificity, and adaptability of the antibody framework. Indeed, antibodies not only have the inherent ability to bind both antigens and endogenous immune receptors but also have proven extremely amenable to protein engineering. Thus, several derivatives of the monoclonal antibody format, including bispecific antibodies, antibody-drug conjugates, and antibody fragments, have demonstrated efficacy for treating human disease, particularly in the fields of immunology and oncology. Reviewed here are considerations for the design of antibody-based therapeutics, including immunological context, therapeutic mechanisms, and engineering strategies. First, characteristics of antibodies are introduced, with emphasis on structural domains, functionally important receptors, isotypic and allotypic differences, and modifications such as glycosylation. Then, aspects of therapeutic antibody design are discussed, including identification of antigen-specific variable regions, choice of expression system, use of multispecific formats, and design of antibody derivatives based on fragmentation, oligomerization, or conjugation to other functional moieties. Finally, strategies to enhance antibody function through protein engineering are reviewed while highlighting the impact of fundamental biophysical properties on protein developability.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
50
|
Su B, Dispinseri S, Iannone V, Zhang T, Wu H, Carapito R, Bahram S, Scarlatti G, Moog C. Update on Fc-Mediated Antibody Functions Against HIV-1 Beyond Neutralization. Front Immunol 2019; 10:2968. [PMID: 31921207 PMCID: PMC6930241 DOI: 10.3389/fimmu.2019.02968] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies (Abs) are the major component of the humoral immune response and a key player in vaccination. The precise Ab-mediated inhibitory mechanisms leading to in vivo protection against HIV have not been elucidated. In addition to the desired viral capture and neutralizing Ab functions, complex Ab-dependent mechanisms that involve engaging immune effector cells to clear infected host cells, immune complexes, and opsonized virus have been proposed as being relevant. These inhibitory mechanisms involve Fc-mediated effector functions leading to Ab-dependent cellular cytotoxicity, phagocytosis, cell-mediated virus inhibition, aggregation, and complement inhibition. Indeed, the decreased risk of infection observed in the RV144 HIV-1 vaccine trial was correlated with the production of non-neutralizing inhibitory Abs, highlighting the role of Ab inhibitory functions besides neutralization. Moreover, Ab isotypes and subclasses recognizing specific HIV envelope epitopes as well as pecular Fc-receptor polymorphisms have been associated with disease progression. These findings further support the need to define which Fc-mediated Ab inhibitory functions leading to protection are critical for HIV vaccine design. Herein, based on our previous review Su & Moog Front Immunol 2014, we update the different inhibitory properties of HIV-specific Abs that may potentially contribute to HIV protection.
Collapse
Affiliation(s)
- Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Iannone
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Raphael Carapito
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Christiane Moog
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Vaccine Research Institute (VRI), Créteil, France
| |
Collapse
|