1
|
Qiu Y, Jiang J, Yi X, Wang S, Sun X. Exploration of the differential expression patterns of immunoglobulin heavy chain genes in horses and donkeys. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105360. [PMID: 40112937 DOI: 10.1016/j.dci.2025.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/23/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
This study investigated the immunoglobulins (IG) gene locus structure and expression diversity in local Chinese horse and donkey breeds, including Ningqiang, Guanzhong horses, and varieties such as Guanzhong, Jiami, and Northern Shaanxi donkey using genome alignment and high-throughput sequencing. The aim was to expand understanding of IG expression patterns in horses, donkeys, and their different breeds. The results revealed that the donkey IGH locus contains 117 VH genes (23 functional), 44 DH genes, and 8 JH genes, arranged in a VH-DH-JH sequence on chromosome 7, spanning approximately 1189 kb. Both horses and donkeys exhibited high frequencies of the IGHV4-IGHD2-IGHJ6, IGHV4-IGHD4-IGHJ6, and IGHV4-IGHD2-IGHJ4 combinations during VDJ recombination. Significant differences in V, D, and J junctions between horses and donkeys, as well as among breeds, were observed, mainly due to variations in N-nucleotide insertion length. The CDR3H region in horses exhibited greater length diversity and a higher Cys content than that in donkeys, which may contribute to species-specific differences in IGH spatial structure. Both horses and donkeys showed a clear preference for A > G and G > A mutations during somatic hypermutation (SHM), with consistent trends across breeds and species. In conclusion, this study reveals that V(D)J recombination, junction diversity, and SHM are key mechanisms driving IGH diversity in horses and donkeys. While the basic mechanisms for IGH diversification are similar across species and breeds, their specific manifestations exhibit both distinct and consistent patterns, reflecting differences in immune system adaptations and providing a theoretical basis for understanding IGH expression diversity in equids.
Collapse
Affiliation(s)
- Yanbo Qiu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China.
| | - Junyi Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Shuhui Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
2
|
Nur A, Lai JY, Ch'ng ACW, Choong YS, Wan Isa WYH, Lim TS. A review of in vitro stochastic and non-stochastic affinity maturation strategies for phage display derived monoclonal antibodies. Int J Biol Macromol 2024; 277:134217. [PMID: 39069045 DOI: 10.1016/j.ijbiomac.2024.134217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Monoclonal antibodies identified using display technologies like phage display occasionally suffers from a lack of affinity making it unsuitable for application. This drawback is circumvented with the application of affinity maturation. Affinity maturation is an essential step in the natural evolution of antibodies in the immune system. The evolution of molecular based methods has seen the development of various mutagenesis approaches. This allows for the natural evolutionary process during somatic hypermutation to be replicated in the laboratories for affinity maturation to fine-tune the affinity and selectivity of antibodies. In this review, we will discuss affinity maturation strategies for mAbs generated through phage display systems. The review will highlight various in vitro stochastic and non-stochastic affinity maturation approaches that includes but are not limited to random mutagenesis, site-directed mutagenesis, and gene synthesis.
Collapse
Affiliation(s)
- Alia Nur
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Wan Yus Haniff Wan Isa
- School of Medical Sciences, Department of Medicine, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
3
|
Altman PX, Ozorowski G, Stanfield RL, Haakenson J, Appel M, Parren M, Lee WH, Sang H, Woehl J, Saye-Francisco K, Sewall LM, Joyce C, Song G, Porter K, Landais E, Andrabi R, Wilson IA, Ward AB, Mwangi W, Smider VV, Burton DR, Sok D. Immunization of cows with HIV envelope trimers generates broadly neutralizing antibodies to the V2-apex from the ultralong CDRH3 repertoire. PLoS Pathog 2024; 20:e1012042. [PMID: 39250525 PMCID: PMC11412654 DOI: 10.1371/journal.ppat.1012042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/19/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
The generation of broadly neutralizing antibodies (bnAbs) to conserved epitopes on HIV Envelope (Env) is one of the cornerstones of HIV vaccine research. The animal models commonly used for HIV do not reliably produce a potent broadly neutralizing serum antibody response, with the exception of cows. Cows have previously produced a CD4 binding site response by homologous prime and boosting with a native-like Env trimer. In small animal models, other engineered immunogens were shown to focus antibody responses to the bnAb V2-apex region of Env. Here, we immunized two groups of cows (n = 4) with two regimens of V2-apex focusing Env immunogens to investigate whether antibody responses could be generated to the V2-apex on Env. Group 1 was immunized with chimpanzee simian immunodeficiency virus (SIV)-Env trimer that shares its V2-apex with HIV, followed by immunization with C108, a V2-apex focusing immunogen, and finally boosted with a cross-clade native-like trimer cocktail. Group 2 was immunized with HIV C108 Env trimer followed by the same HIV trimer cocktail as Group 1. Longitudinal serum analysis showed that one cow in each group developed serum neutralizing antibody responses to the V2-apex. Eight and 11 bnAbs were isolated from Group 1 and Group 2 cows, respectively, and showed moderate breadth and potency. Potent and broad responses in this study developed much later than previous cow immunizations that elicited CD4bs bnAbs responses and required several different immunogens. All isolated bnAbs were derived from the ultralong CDRH3 repertoire. The finding that cow antibodies can target more than one broadly neutralizing epitope on the HIV surface reveals the generality of elongated structures for the recognition of highly glycosylated proteins. The exclusive isolation of ultralong CDRH3 bnAbs, despite only comprising a small percent of the cow repertoire, suggests these antibodies outcompete the long and short CDRH3 antibodies during the bnAb response.
Collapse
Affiliation(s)
- Pilar X Altman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Gabriel Ozorowski
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jeremy Haakenson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Applied Biomedical Science Institute, San Diego, California, United States of America
| | - Michael Appel
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medical, Kansas State University, Manhattan, Kansas, United States of America
| | - Jordan Woehl
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Karen Saye-Francisco
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Leigh M Sewall
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Collin Joyce
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Katelyn Porter
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Elise Landais
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ian A Wilson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Andrew B Ward
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medical, Kansas State University, Manhattan, Kansas, United States of America
| | - Vaughn V Smider
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Applied Biomedical Science Institute, San Diego, California, United States of America
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Devin Sok
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative, New York, New York, United States of America
- Global Health Investment Corporation, New York, New York, United States of America
| |
Collapse
|
4
|
Arras P, Zimmermann J, Lipinski B, Valldorf B, Evers A, Elter D, Krah S, Doerner A, Guarnera E, Siegmund V, Kolmar H, Pekar L, Zielonka S. Bovine ultralong CDR-H3 derived knob paratopes elicit potent TNF-α neutralization and enable the generation of novel adalimumab-based antibody architectures with augmented features. Biol Chem 2024; 405:461-470. [PMID: 38373142 DOI: 10.1515/hsz-2023-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
In this work we have generated cattle-derived chimeric ultralong CDR-H3 antibodies targeting tumor necrosis factor α (TNF-α) via immunization and yeast surface display. We identified one particular ultralong CDR-H3 paratope that potently neutralized TNF-α. Interestingly, grafting of the knob architecture onto a peripheral loop of the CH3 domain of the Fc part of an IgG1 resulted in the generation of a TNF-α neutralizing Fc (Fcknob) that did not show any potency loss compared with the parental chimeric IgG format. Eventually, grafting this knob onto the CH3 region of adalimumab enabled the engineering of a novel TNF-α targeting antibody architecture displaying augmented TNF-α inhibition.
Collapse
Affiliation(s)
- Paul Arras
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
- Biomolecular Immunotherapy, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
- Targeted mRNA Delivery, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Jasmin Zimmermann
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Britta Lipinski
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
- Biomolecular Immunotherapy, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Bernhard Valldorf
- Targeted mRNA Delivery, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Andreas Evers
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Desislava Elter
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Simon Krah
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Achim Doerner
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Enrico Guarnera
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Vanessa Siegmund
- Early Protein Supply & Characterization, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Harald Kolmar
- Applied Biochemistry, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| | - Lukas Pekar
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Stefan Zielonka
- Antibody Discovery & Protein Engineering, Merck Healthcare KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
- Biomolecular Immunotherapy, Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Peter-Grünberg-Strasse 4, D-64287 Darmstadt, Germany
| |
Collapse
|
5
|
Altman PX, Ozorowski G, Stanfield RL, Haakenson J, Appel M, Parren M, Lee WH, Sang H, Woehl J, Saye-Francisco K, Joyce C, Song G, Porter K, Landais E, Andrabi R, Wilson IA, Ward AB, Mwangi W, Smider VV, Burton DR, Sok D. Immunization of cows with HIV envelope trimers generates broadly neutralizing antibodies to the V2-apex from the ultralong CDRH3 repertoire. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580058. [PMID: 38405899 PMCID: PMC10888833 DOI: 10.1101/2024.02.13.580058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The generation of broadly neutralizing antibodies (bnAbs) to specific HIV epitopes of the HIV Envelope (Env) is one of the cornerstones of HIV vaccine research. The current animal models we use have been unable to reliable produce a broadly neutralizing antibody response, with the exception of cows. Cows have rapidly and reliably produced a CD4 binding site response by homologous prime and boosting with a native-like Env trimer. In small animal models other engineered immunogens previously have been able to focus antibody responses to the bnAb V2-apex region of Env. Here, we immunized two groups of cows (n=4) with two regiments of V2-apex focusing immunogens to investigate whether antibody responses could be directed to the V2-apex on Env. Group 1 were immunized with chimpanzee simian immunodeficiency virus (SIV)-Env trimer that shares its V2-apex with HIV, followed by immunization with C108, a V2-apex focusing immunogen, and finally boosted with a cross-clade native-like trimer cocktail. Group 2 were immunized with HIV C108 Env trimer followed by the same HIV trimer cocktail as Group 1. Longitudinal serum analysis showed that one cow in each group developed serum neutralizing antibody responses to the V2-apex. Eight and 11 bnAbs were isolated from Group 1 and Group 2 cows respectively. The best bnAbs had both medium breadth and potency. Potent and broad responses developed later than previous CD4bs cow bnAbs and required several different immunogens. All isolated bnAbs were derived from the ultralong CDRH3 repertoire. The finding that cow antibodies can target multiple broadly neutralizing epitopes on the HIV surface reveals important insight into the generation of immunogens and testing in the cow animal model. The exclusive isolation of ultralong CDRH3 bnAbs, despite only comprising a small percent of the cow repertoire, suggests these antibodies outcompete the long and short CDRH3 antibodies during the bnAb response.
Collapse
Affiliation(s)
- Pilar X. Altman
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Gabriel Ozorowski
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeremy Haakenson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Applied Biomedical Science Institute, San Diego, CA, USA
| | - Michael Appel
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative, New York, NY, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medical, Kansas State University, Manhattan, Kansas, USA
| | - Jordan Woehl
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative, New York, NY, USA
| | - Karen Saye-Francisco
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Collin Joyce
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Katelyn Porter
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Elise Landais
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative, New York, NY, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A. Wilson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Andrew B. Ward
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medical, Kansas State University, Manhattan, Kansas, USA
| | - Vaughn V. Smider
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Applied Biomedical Science Institute, San Diego, CA, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Devin Sok
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA
- International AIDS Vaccine Initiative, New York, NY, USA
- Lead contact
| |
Collapse
|
6
|
Yanakieva D, Vollmer L, Evers A, Siegmund V, Arras P, Pekar L, Doerner A, Valldorf B, Kolmar H, Zielonka S, Krah S. Cattle-derived knob paratopes grafted onto peripheral loops of the IgG1 Fc region enable the generation of a novel symmetric bispecific antibody format. Front Immunol 2023; 14:1238313. [PMID: 37942319 PMCID: PMC10628450 DOI: 10.3389/fimmu.2023.1238313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
In this work we present a novel symmetric bispecific antibody format based on engraftments of cattle-derived knob paratopes onto peripheral loops of the IgG1 Fc region. For this, knob architectures obtained from bovine ultralong CDR-H3 antibodies were inserted into the AB loop or EF loop of the CH3 domain, enabling the introduction of an artificial binding specificity into an IgG molecule. We demonstrate that inserted knob domains largely retain their binding affinities, resulting into bispecific antibody derivatives versatile for effector cell redirection. Essentially, generated bispecifics demonstrated adequate biophysical properties and were not compromised in their Fc mediated functionalities such as FcRn or FcγRIIIa binding.
Collapse
Affiliation(s)
- Desislava Yanakieva
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Lena Vollmer
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Andreas Evers
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Vanessa Siegmund
- Early Protein Supply and Characterization, Merck Healthcare KGaA, Darmstadt, Germany
| | - Paul Arras
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Lukas Pekar
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Achim Doerner
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | | | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Zielonka
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Simon Krah
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
7
|
Li TT, Xia T, Wu JQ, Hong H, Sun ZL, Wang M, Ding FR, Wang J, Jiang S, Li J, Pan J, Yang G, Feng JN, Dai YP, Zhang XM, Zhou T, Li T. De novo genome assembly depicts the immune genomic characteristics of cattle. Nat Commun 2023; 14:6601. [PMID: 37857610 PMCID: PMC10587341 DOI: 10.1038/s41467-023-42161-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023] Open
Abstract
Immunogenomic loci remain poorly understood because of their genetic complexity and size. Here, we report the de novo assembly of a cattle genome and provide a detailed annotation of the immunogenomic loci. The assembled genome contains 143 contigs (N50 ~ 74.0 Mb). In contrast to the current reference genome (ARS-UCD1.2), 156 gaps are closed and 467 scaffolds are located in our assembly. Importantly, the immunogenomic regions, including three immunoglobulin (IG) loci, four T-cell receptor (TR) loci, and the major histocompatibility complex (MHC) locus, are seamlessly assembled and precisely annotated. With the characterization of 258 IG genes and 657 TR genes distributed across seven genomic loci, we present a detailed depiction of immune gene diversity in cattle. Moreover, the MHC gene structures are integrally revealed with properly phased haplotypes. Together, our work describes a more complete cattle genome, and provides a comprehensive view of its complex immune-genome.
Collapse
Affiliation(s)
- Ting-Ting Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tian Xia
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jia-Qi Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Hao Hong
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Zhao-Lin Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ming Wang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuanmingyuan Xilu, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan Xilu, Beijing, 100193, China
| | - Fang-Rong Ding
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuanmingyuan Xilu, Beijing, 100193, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Shuai Jiang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jin Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Jie Pan
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Guang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jian-Nan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yun-Ping Dai
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No.2 Yuanmingyuan Xilu, Beijing, 100193, China
| | - Xue-Min Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Tao Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Huang R, Warner Jenkins G, Kim Y, Stanfield RL, Singh A, Martinez-Yamout M, Kroon GJ, Torres JL, Jackson AM, Kelley A, Shaabani N, Zeng B, Bacica M, Chen W, Warner C, Radoicic J, Joh J, Dinali Perera K, Sang H, Kim T, Yao J, Zhao F, Sok D, Burton DR, Allen J, Harriman W, Mwangi W, Chung D, Teijaro JR, Ward AB, Dyson HJ, Wright PE, Wilson IA, Chang KO, McGregor D, Smider VV. The smallest functional antibody fragment: Ultralong CDR H3 antibody knob regions potently neutralize SARS-CoV-2. Proc Natl Acad Sci U S A 2023; 120:e2303455120. [PMID: 37722054 PMCID: PMC10523490 DOI: 10.1073/pnas.2303455120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/15/2023] [Indexed: 09/20/2023] Open
Abstract
Cows produce antibodies with a disulfide-bonded antigen-binding domain embedded within ultralong heavy chain third complementarity determining regions. This "knob" domain is analogous to natural cysteine-rich peptides such as knottins in that it is small and stable but can accommodate diverse loops and disulfide bonding patterns. We immunized cattle with SARS-CoV-2 spike and found ultralong CDR H3 antibodies that could neutralize several viral variants at picomolar IC50 potencies in vitro and could protect from disease in vivo. The independent CDR H3 peptide knobs were expressed and maintained the properties of the parent antibodies. The knob interaction with SARS-CoV-2 spike was revealed by electron microscopy, X-ray crystallography, NMR spectroscopy, and mass spectrometry and established ultralong CDR H3-derived knobs as the smallest known recombinant independent antigen-binding fragment. Unlike other vertebrate antibody fragments, these knobs are not reliant on the immunoglobulin domain and have potential as a new class of therapeutics.
Collapse
Affiliation(s)
- Ruiqi Huang
- Applied Biomedical Science Institute, San Diego, CA92127
| | | | - Yunjeong Kim
- College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS66506
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Amrinder Singh
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Maria Martinez-Yamout
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Gerard J. Kroon
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Abigail M. Jackson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Abigail Kelley
- Applied Biomedical Science Institute, San Diego, CA92127
| | - Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA92037
| | | | | | - Wen Chen
- Ligand Pharmaceuticals, San Diego, CA92121
| | | | | | - Joongho Joh
- School of Medicine, Department of Medicine, University of Louisville, Louisville, KY40202
| | - Krishani Dinali Perera
- College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS66506
| | - Huldah Sang
- College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS66506
| | - Tae Kim
- College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS66506
| | - Jianxiu Yao
- College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS66506
| | - Fangzhu Zhao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA92037
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA92037
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA92037
| | - Jeff Allen
- Ligand Pharmaceuticals, San Diego, CA92121
| | | | - Waithaka Mwangi
- College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS66506
| | - Donghoon Chung
- School of Medicine, Department of Microbiology and Immunology, University of Louisville, Louisville, KY40202
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA92037
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Kyeong-Ok Chang
- College of Veterinary Medicine, Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS66506
| | | | - Vaughn V. Smider
- Applied Biomedical Science Institute, San Diego, CA92127
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
9
|
Ott JA, Mitchell C, Sheppard M, Deiss TC, Horton JMC, Haakenson JK, Huang R, Kelley AR, Davis BW, Derr JN, Smider VV, Criscitiello MF. Evolution of immunogenetic components encoding ultralong CDR H3. Immunogenetics 2023; 75:323-339. [PMID: 37084012 PMCID: PMC10119515 DOI: 10.1007/s00251-023-01305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
The genomes of most vertebrates contain many V, D, and J gene segments within their Ig loci to construct highly variable CDR3 sequences through combinatorial diversity. This nucleotide variability translates into an antibody population containing extensive paratope diversity. Cattle have relatively few functional VDJ gene segments, requiring innovative approaches for generating diversity like the use of ultralong-encoding IGHV and IGHD gene segments that yield dramatically elongated CDR H3. Unique knob and stalk microdomains create protracted paratopes, where the antigen-binding knob sits atop a long stalk, allowing the antibody to bind both surface and recessed antigen epitopes. We examined genomes of twelve species of Bovidae to determine when ultralong-encoding IGHV and IGHD gene segments evolved. We located the 8-bp duplication encoding the unique TTVHQ motif in ultralong IGHV segments in six Bovid species (cattle, zebu, wild yak, domestic yak, American bison, and domestic gayal), but we did not find evidence of the duplication in species beyond the Bos and Bison genera. Additionally, we analyzed mRNA from bison spleen and identified a rich repertoire of expressed ultralong CDR H3 antibody mRNA, suggesting that bison use ultralong IGHV transcripts in their host defense. We found ultralong-encoding IGHD gene segments in all the same species except domestic yak, but again not beyond the Bos and Bison clade. Thus, the duplication event leading to this ultralong-encoding IGHV gene segment and the emergence of the ultralong-encoding IGHD gene segment appears to have evolved in a common ancestor of the Bos and Bison genera 5-10 million years ago.
Collapse
Affiliation(s)
- Jeannine A Ott
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Christian Mitchell
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Morgan Sheppard
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Thad C Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - J M Cody Horton
- Department of Veterinary Integrative Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jeremy K Haakenson
- Applied Biomedical Science Institute, San Diego, CA, 92127, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ruiqi Huang
- Applied Biomedical Science Institute, San Diego, CA, 92127, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Brian W Davis
- Department of Veterinary Integrative Sciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - James N Derr
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Vaughn V Smider
- Applied Biomedical Science Institute, San Diego, CA, 92127, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, TX, 77807, USA.
| |
Collapse
|
10
|
Passon M, De Smedt S, Svilenov HL. Principles of antibodies with ultralong complementarity-determining regions and picobodies. Biotechnol Adv 2023; 64:108120. [PMID: 36764335 DOI: 10.1016/j.biotechadv.2023.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
In contrast to other species, cattle possess exceptional antibodies with ultra-long complementarity-determining regions (ulCDRs) that can consist of 40-70 amino acids. The bovine ulCDR is folded into a stalk and a disulfide-rich knob domain. The binding to the antigen is via the 3-6 kDa knob. There exists an immense sequence and structural diversity in the knob that enables binding to different antigens. Here we summarize the current knowledge of the ulCDR structure and provide an overview of the approaches to discover ulCDRs against novel antigens. Furthermore, we outline protein engineering approaches inspired by the natural ulCDRs. Finally, we discuss the enormous potential of using isolated bovine knobs, also named picobodies, as the smallest antigen-binding domains derived from natural antibodies.
Collapse
Affiliation(s)
- Marcel Passon
- Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Stefaan De Smedt
- Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Hristo L Svilenov
- Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium.
| |
Collapse
|
11
|
Arras P, Zimmermann J, Lipinski B, Yanakieva D, Klewinghaus D, Krah S, Kolmar H, Pekar L, Zielonka S. Isolation of Antigen-Specific Unconventional Bovine Ultra-Long CDR3H Antibodies Using Cattle Immunization in Combination with Yeast Surface Display. Methods Mol Biol 2023; 2681:113-129. [PMID: 37405646 DOI: 10.1007/978-1-0716-3279-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Cattle are known for their repertoire of antibodies harboring extremely long CDR3H regions that form extensive "knob on stalk" cysteine-rich structures. The compact knob domain allows for the recognition of epitopes potentially not accessible to classical antibodies. To effectively access the potential of bovine-derived antigen-specific ultra-long CDR3 antibodies, a straightforward and effective high-throughput method based on yeast surface display and fluorescence-activated cell sorting is described.
Collapse
Affiliation(s)
- Paul Arras
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Jasmin Zimmermann
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Britta Lipinski
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Desislava Yanakieva
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Daniel Klewinghaus
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Simon Krah
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Lukas Pekar
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany.
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
12
|
Jenkins GW, Safonova Y, Smider VV. Germline-Encoded Positional Cysteine Polymorphisms Enhance Diversity in Antibody Ultralong CDR H3 Regions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2141-2148. [PMID: 36426974 PMCID: PMC9940733 DOI: 10.4049/jimmunol.2200455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/25/2022] [Indexed: 01/04/2023]
Abstract
Ab "ultralong" third H chain complementarity-determining regions (CDR H3) appear unique to bovine Abs and may enable binding to difficult epitopes that shorter CDR H3 regions cannot easily access. Diversity is concentrated in the "knob" domain of the CDR H3, which is encoded by the DH gene segment and sits atop a β-ribbon "stalk" that protrudes far from the Ab surface. Knob region cysteine content is quite diverse in terms of total number of cysteines, sequence position, and disulfide bond pattern formation. We investigated the role of germline cysteines in production of a diverse CDR H3 structural repertoire. The relationship between DH polymorphisms and deletions relative to germline at the nucleotide level, as well as diversity in cysteine and disulfide bond content at the structural level, was ascertained. Structural diversity is formed through (1) DH polymorphisms with altered cysteine positions, (2) DH deletions, and (3) new cysteines that arise through somatic hypermutation that form new, unique disulfide bonds to alter the knob structure. Thus, a combination of mechanisms at both the germline and somatic immunogenetic levels results in diversity in knob region cysteine content, contributing to remarkable complexity in knob region disulfide patterns, loops, and Ag binding surface.
Collapse
Affiliation(s)
| | - Yana Safonova
- Computer Science and Engineering Department, University of California, San Diego, La Jolla, CA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD; and
| | - Vaughn V Smider
- Applied Biomedical Science Institute, San Diego, CA
- Department of Molecular Medicine, Scripps Research, La Jolla, CA
| |
Collapse
|
13
|
Ott JA, Haakenson JK, Kelly AR, Christian C, Criscitiello MF, Smider VV. Evolution of surrogate light chain in tetrapods and the relationship between lengths of CDR H3 and VpreB tails. Front Immunol 2022; 13:1001134. [PMID: 36311706 PMCID: PMC9614664 DOI: 10.3389/fimmu.2022.1001134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
In the mammalian immune system, the surrogate light chain (SLC) shapes the antibody repertoire during B cell development by serving as a checkpoint for production of functional heavy chains (HC). Structural studies indicate that tail regions of VpreB contact and cover the third complementarity-determining region of the HC (CDR H3). However, some species, particularly bovines, have CDR H3 regions that may not be compatible with this HC-SLC interaction model. With immense structural and genetic diversity in antibody repertoires across species, we evaluated the genetic origins and sequence features of surrogate light chain components. We examined tetrapod genomes for evidence of conserved gene synteny to determine the evolutionary origin of VpreB1, VpreB2, and IGLL1, as well as VpreB3 and pre-T cell receptor alpha (PTCRA) genes. We found the genes for the SLC components (VpreB1, VpreB2, and IGLL1) only in eutherian mammals. However, genes for PTCRA occurred in all amniote groups and genes for VpreB3 occurred in all tetrapod groups, and these genes were highly conserved. Additionally, we found evidence of a new VpreB gene in non-mammalian tetrapods that is similar to the VpreB2 gene of eutherian mammals, suggesting VpreB2 may have appeared earlier in tetrapod evolution and may be a precursor to traditional VpreB2 genes in higher vertebrates. Among eutherian mammals, sequence conservation between VpreB1 and VpreB2 was low for all groups except rabbits and rodents, where VpreB2 was nearly identical to VpreB1 and did not share conserved synteny with VpreB2 of other species. VpreB2 of rabbits and rodents likely represents a duplicated variant of VpreB1 and is distinct from the VpreB2 of other mammals. Thus, rabbits and rodents have two variants of VpreB1 (VpreB1-1 and VpreB1-2) but no VpreB2. Sequence analysis of VpreB tail regions indicated differences in sequence content, charge, and length; where repertoire data was available, we observed a significant relationship between VpreB2 tail length and maximum DH length. We posit that SLC components co-evolved with immunoglobulin HC to accommodate the repertoire - particularly CDR H3 length and structure, and perhaps highly unusual HC (like ultralong HC of cattle) may bypass this developmental checkpoint altogether.
Collapse
Affiliation(s)
- Jeannine A. Ott
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jeremy K. Haakenson
- Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Abigail R. Kelly
- Applied Biomedical Science Institute, San Diego, CA, United States
| | - Claire Christian
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Michael F. Criscitiello
- Comparative Immunogenetics Lab, Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Vaughn V. Smider
- Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
14
|
Wu M, Zhao H, Tang X, Zhao W, Yi X, Li Q, Sun X. Organization and Complexity of the Yak (Bos Grunniens) Immunoglobulin Loci. Front Immunol 2022; 13:876509. [PMID: 35615368 PMCID: PMC9124968 DOI: 10.3389/fimmu.2022.876509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
As important livestock in Qinghai-Tibet Plateau, yak provides meat and other necessities for Tibetans living. Plateau yak has resistance to diseases and stress, yet is nearly unknown in the structure and expression mechanism of yak immunoglobulin loci. Based on the published immunoglobulin genes of bovids (cattle, sheep and goat), the genomic organization of the yak immunoglobulin heavy chain (IgH) and immunoglobulin light chain (IgL) were described. The assemblage diversity of IgH, Igλ and Igκ in yak was similar to that in bovids, and contributes little to the antibody lineage compared with that in humans and mice. Somatic hypermutation (SHM) had a greater effect on immunoglobulin diversity in yak than in goat and sheep, and in addition to the complementarity-determining region (CDR), some loci in the framework region (FR) also showed high frequency mutations. CDR3 diversity showed that immunological lineages in yak were overwhelmingly generated through linkage diversity in IgH rearrangements. The emergence of new high-throughput sequencing technologies and the yak whole genome (2019) publication have greatly improved our understanding of the immune response in yaks. We had a more comprehensive analysis of yak immunoglobulin expression diversity by PE300, which avoided the disadvantage of missing low-frequency recombination in traditional Sanger sequencing. In summary, we described the schematic structure of the genomic organization of yak IgH loci and IgL loci. The analysis of immunoglobulin expression diversity showed that yak made up for the deficiency of V(D)J recombinant diversity by junctional diversity and CDR3 diversity. In addition, yak, like cattle, also had the same ultra-long IgH CDR3 (CDR3H), which provided more contribution to the diverse expression of yak immunoglobulin. These findings might provide a theoretical basis for disease resistance breeding and vaccine development in yak.
Collapse
Affiliation(s)
- Mingli Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haidong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wanxia Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- *Correspondence: Xiuzhu Sun,
| |
Collapse
|
15
|
Safonova Y, Shin SB, Kramer L, Reecy J, Watson CT, Smith TPL, Pevzner PA. Variations in antibody repertoires correlate with vaccine responses. Genome Res 2022; 32:791-804. [PMID: 35361626 PMCID: PMC8997358 DOI: 10.1101/gr.276027.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022]
Abstract
An important challenge in vaccine development is to figure out why a vaccine succeeds in some individuals and fails in others. Although antibody repertoires hold the key to answering this question, there have been very few personalized immunogenomics studies so far aimed at revealing how variations in immunoglobulin genes affect a vaccine response. We conducted an immunosequencing study of 204 calves vaccinated against bovine respiratory disease (BRD) with the goal to reveal variations in immunoglobulin genes and somatic hypermutations that impact the efficacy of vaccine response. Our study represents the largest longitudinal personalized immunogenomics study reported to date across all species, including humans. To analyze the generated data set, we developed an algorithm for identifying variations of the immunoglobulin genes (as well as frequent somatic hypermutations) that affect various features of the antibody repertoire and titers of neutralizing antibodies. In contrast to relatively short human antibodies, cattle have a large fraction of ultralong antibodies that have opened new therapeutic opportunities. Our study reveals that ultralong antibodies are a key component of the immune response against the costliest disease of beef cattle in North America. The detected variants of the cattle immunoglobulin genes, which are implicated in the success/failure of the BRD vaccine, have the potential to direct the selection of individual cattle for ongoing breeding programs.
Collapse
Affiliation(s)
- Yana Safonova
- Computer Science and Engineering Department, University of California at San Diego, San Diego, California 92093, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sung Bong Shin
- U.S. Meat Animal Research Center, USDA-ARS, Clay Center, Nebraska 68933, USA
| | - Luke Kramer
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - James Reecy
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Timothy P L Smith
- U.S. Meat Animal Research Center, USDA-ARS, Clay Center, Nebraska 68933, USA
| | - Pavel A Pevzner
- Computer Science and Engineering Department, University of California at San Diego, San Diego, California 92093, USA
| |
Collapse
|
16
|
Klewinghaus D, Pekar L, Arras P, Krah S, Valldorf B, Kolmar H, Zielonka S. Grabbing the Bull by Both Horns: Bovine Ultralong CDR-H3 Paratopes Enable Engineering of 'Almost Natural' Common Light Chain Bispecific Antibodies Suitable For Effector Cell Redirection. Front Immunol 2022; 12:801368. [PMID: 35087526 PMCID: PMC8787767 DOI: 10.3389/fimmu.2021.801368] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
A subset of antibodies found in cattle comprises ultralong CDR-H3 regions of up to 70 amino acids. Interestingly, this type of immunoglobulin usually pairs with the single germline VL gene, V30 that is typically very conserved in sequence. In this work, we have engineered ultralong CDR-H3 common light chain bispecific antibodies targeting Epidermal Growth Factor Receptor (EGFR) on tumor cells as well as Natural Cytotoxicity Receptor NKp30 on Natural Killer (NK) cells. Antigen-specific common light chain antibodies were isolated by yeast surface display by means of pairing CDR-H3 diversities following immunization with a single V30 light chain. After selection, EGFR-targeting paratopes as well as NKp30-specific binders were combined into common light chain bispecific antibodies by exploiting the strand-exchange engineered domain (SEED) technology for heavy chain heterodimerization. Biochemical characterization of resulting bispecifics revealed highly specific binding to the respective antigens as well as simultaneous binding to both targets. Most importantly, engineered cattle-derived bispecific common light chain molecules elicited potent NK cell redirection and consequently tumor cell lysis of EGFR-overexpressing cells as well as robust release of proinflammatory cytokine interferon-γ. Taken together, this data is giving clear evidence that bovine bispecific ultralong CDR-H3 common light chain antibodies are versatile for biotechnological applications.
Collapse
Affiliation(s)
- Daniel Klewinghaus
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Paul Arras
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
17
|
Dou L, Zhang Y, Bai Y, Li Y, Liu M, Shao S, Li Q, Yu W, Shen J, Wang Z. Advances in Chicken IgY-Based Immunoassays for the Detection of Chemical and Biological Hazards in Food Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:976-991. [PMID: 34990134 DOI: 10.1021/acs.jafc.1c06750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As antibodies are the main biological binder for hazards in food samples, their performance directly determines the sensitivity, specificity, and reproducibility of the developed immunoassay. The overwhelmingly used mammalian-derived antibodies usually suffer from complicated preparation, high cost, frequent bleeding of animals, and sometimes low titer and affinity. Chicken yolk antibody (IgY) has recently attracted considerable attention in the bioanalytical field owing to its advantages in productivity, animal welfare, comparable affinity, and high specificity. However, a broad understanding of the application of IgY-based immunoassay for the detection of chemical and biological hazards in food samples remains limited. Here, we briefly summarized the diversity, structure, and production of IgY including polyclonal and monoclonal formats. Then, a comprehensive overview of the principles, designs, and applications of IgY-based immunoassays for these hazards was reviewed and discussed, including food-borne pathogens, food allergens, veterinary drugs, pesticides, toxins, endocrine disrupting chemicals, etc. Thus, the trend of IgY-based immunoassays is expected, and more IgY types, higher sensitivity, and diversification of recognition-to-signal manners are necessary in the future.
Collapse
Affiliation(s)
- Leina Dou
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yingjie Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yuchen Bai
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Yuan Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Minggang Liu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Shibei Shao
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Qing Li
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, People's Republic of China
| |
Collapse
|
18
|
Pekar L, Klewinghaus D, Arras P, Carrara SC, Harwardt J, Krah S, Yanakieva D, Toleikis L, Smider VV, Kolmar H, Zielonka S. Milking the Cow: Cattle-Derived Chimeric Ultralong CDR-H3 Antibodies and Their Engineered CDR-H3-Only Knobbody Counterparts Targeting Epidermal Growth Factor Receptor Elicit Potent NK Cell-Mediated Cytotoxicity. Front Immunol 2021; 12:742418. [PMID: 34759924 PMCID: PMC8573386 DOI: 10.3389/fimmu.2021.742418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/04/2021] [Indexed: 01/11/2023] Open
Abstract
In this work, we have generated epidermal growth factor receptor (EGFR)-specific cattle-derived ultralong CDR-H3 antibodies by combining cattle immunization with yeast surface display. After immunization, ultralong CDR-H3 regions were specifically amplified and grafted onto an IGHV1-7 scaffold by homologous recombination to facilitate Fab display. Antigen-specific clones were readily obtained by fluorescence-activated cell sorting (FACS) and reformatted as chimeric antibodies. Binning experiments revealed epitope targeting of domains I, II, and IV of EGFR with none of the generated binders competing with Cetuximab, Matuzumab, or EGF for binding to EGFR. Cattle-derived chimeric antibodies were potent in inducing antibody-dependent cell-mediated cytotoxicity (ADCC) against EGFR-overexpressing tumor cells with potencies (EC50 killing) in the picomolar range. Moreover, most of the antibodies were able to significantly inhibit EGFR-mediated downstream signaling. Furthermore, we demonstrate that a minor fraction of CDR-H3 knobs derived from generated antibodies was capable of independently functioning as a paratope facilitating EGFR binding when grafted onto the Fc part of human IgG1. Besides slightly to moderately diminished capacities, these engineered Knobbodies largely retained main properties of their parental antibodies such as cellular binding and triggering of ADCC. Hence, Knobbodies might emerge as promising tools for biotechnological applications upon further optimization.
Collapse
Affiliation(s)
- Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Daniel Klewinghaus
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Paul Arras
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Stefania C. Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Julia Harwardt
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Desislava Yanakieva
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| | - Vaughn V. Smider
- The Applied Biomedical Science Institute, San Diego, CA, United States
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
19
|
Access to ultra-long IgG CDRH3 bovine antibody sequences using short read sequencing technology. Mol Immunol 2021; 139:97-105. [PMID: 34464839 PMCID: PMC8508064 DOI: 10.1016/j.molimm.2021.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022]
Abstract
The advances in high-throughput DNA sequencing and recombinant antibody technologies has presented new methods for characterizing antibody repertoires and significantly increased our understanding on the functional role of antibodies in immunity and their use in diagnostics, vaccine antigen design and as biological therapeutics. A subset of Bos taurus antibodies possesses unique ultra-long third complementary-determining region of the heavy chain (CDRH3) and are of special interest because they are thought to have unique functional abilities of broadly neutralizing properties - a functional role that has not been fully explored in vaccine development. Next generation sequencing technologies that are widely used to profile immunoglobulin (Ig) repertoires are based on short-read methods such as the Illumina technology. Although this technology has worked well in sequencing Ig V-D-J regions of most jawed vertebrates, it has faced serious technical challenges with sequencing regions in bovine Ig bearing ultra-long CDRH3 sequences, which are longer than 120 bp. To overcome this limitation, we have developed a sequencing strategy based on nested PCR products that allows sequence assembly of full-length bovine Ig heavy-chain (IgH) V-D-J regions. We have used this strategy to sequence IgH V-D-J regions of two Bos indicus breeds, Ankole and Boran. We confirm the presence of ultra-long CDRH3 sequences in IgG transcripts in both African cattle breeds, and provide preliminary evidence for differences and preferences in germline VH, DH and JH allele gene usage as well as differences in the length of the VH region in the two bovine breeds. Our method provides tools that should allow more robust analyses of ultra-long CDRH3 sequences aiding antibody and epitope discovery in different cattle breeds and their role in mediating immunity.
Collapse
|
20
|
Di Y, Cai S, Zheng S, Huang J, Du L, Song Y, Zhang M, Wang Z, Yu G, Ren L, Han H, Zhao Y. Reshaping the murine immunoglobulin heavy chain repertoire with bovine DH genes. Immunology 2021; 165:74-87. [PMID: 34428313 DOI: 10.1111/imm.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Having a limited number of VH segments, cattle rely on uniquely long DH gene segments to generate CDRH3 length variation (3-70 aa) far greater than that in humans or mice. Bovine antibodies with ultralong CDRH3s (>50 aa) possess unusual structures and abilities to bind to special antigens. In this study, we replaced most murine endogenous DH segments with bovine DH genes, generating a mouse line termed B-DH. The use of bovine DH genes significantly increased the length variation of CDRH3 and consequently the Ig heavy chain repertoire in B-DH mice. However, no ultralong CDRH3 was observed in B-DH mice, suggesting that other factors, in addition to long DH genes, are also involved in the formation of ultralong CDRH3. The B-DH mice mounted a normal humoral immune response to various antigens, although the B-cell developmental paradigm was obviously altered compared with wild-type mice. Additionally, B-DH mice are not predisposed to the generation of autoantibodies despite the interspecies DH gene replacement. The B-DH mice reported in this study provide a unique model to answer basic questions regarding the synergistic evolution of DH and VH genes, VDJ recombination and BCR selection in B-cell development.
Collapse
Affiliation(s)
- Yu Di
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Shuyi Cai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Shunan Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Jinwei Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Lijuan Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yu Song
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Zhao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Guotao Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
He Y, Li K, Cao Y, Sun Z, Li P, Bao H, Wang S, Zhu G, Bai X, Sun P, Liu X, Yang C, Liu Z, Lu Z, Rao Z, Lou Z. Structures of Foot-and-mouth Disease Virus with neutralizing antibodies derived from recovered natural host reveal a mechanism for cross-serotype neutralization. PLoS Pathog 2021; 17:e1009507. [PMID: 33909694 PMCID: PMC8081260 DOI: 10.1371/journal.ppat.1009507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
The development of a universal vaccine against foot-and-mouth disease virus (FMDV) is hindered by cross-serotype antigenic diversity and by a lack of knowledge regarding neutralization of the virus in natural hosts. In this study, we isolated serotype O-specific neutralizing antibodies (NAbs) (F145 and B77) from recovered natural bovine hosts by using the single B cell antibody isolation technique. We also identified a serotype O/A cross-reacting NAb (R50) and determined virus-NAb complex structures by cryo-electron microscopy at near-atomic resolution. F145 and B77 were shown to engage the capsid of FMDV-O near the icosahedral threefold axis, binding to the BC/HI-loop of VP2. In contrast, R50 engages the capsids of both FMDV-O and FMDV-A between the 2- and 5-fold axes and binds to the BC/EF/GH-loop of VP1 and to the GH-loop of VP3 from two adjacent protomers, revealing a previously unknown antigenic site. The cross-serotype neutralizing epitope recognized by R50 is highly conserved among serotype O/A. These findings help to elucidate FMDV neutralization by natural hosts and provide epitope information for the development of a universal vaccine for cross-serotype protection against FMDV. FMDV is the causative agent of foot-and-mouth disease, one of the most contagious and economically devastating diseases of cloven-hoofed animals. The antigenic diversities of the currently known epitopes throughout FMDV serotypes and the lack of understanding of FMDV neutralization in natural hosts limit the development of a vaccine that is able to provide cross-serotype protection. In this work, we isolated FMDV serotype O-specific neutralizing antibodies (NAbs) (F145 and B77) and a serotype O/A cross-reacting NAb (R50) from recovered natural bovine hosts and determined virus-NAb complex structures by cryo-electron microscopy at near-atomic resolution. Structures of virus-NAb complex reveal F145 and B77 engage the capsid of FMDV-O near the icosahedral threefold axis. In contrast, R50 engages the capsids of both FMDV-O and FMDV-A between the 2- and 5-fold axes, revealing a previously unknown antigenic site. This is the first time to present structure details of FMDV neutralization by natural hosts. And this work also provides epitope information for the development of a universal vaccine for cross-serotype protection against FMDV.
Collapse
Affiliation(s)
- Yong He
- State Key Laboratory of Medicinal Chemical Biology and Drug Discovery Center for Infectious Disease, College of Pharmacy, Nankai University, Tianjin, China
- MOE Key Laboratory of Protein Science & Collaborative Innovation Center of Biotherapy, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Kun Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixian Sun
- MOE Key Laboratory of Protein Science & Collaborative Innovation Center of Biotherapy, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sheng Wang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guoqiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuerong Liu
- China Agricultural Vet Biology and Technology Co. Ltd., Lanzhou, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and Drug Discovery Center for Infectious Disease, College of Pharmacy, Nankai University, Tianjin, China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- * E-mail: (ZL); (ZL); (ZR); (ZL)
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- * E-mail: (ZL); (ZL); (ZR); (ZL)
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and Drug Discovery Center for Infectious Disease, College of Pharmacy, Nankai University, Tianjin, China
- MOE Key Laboratory of Protein Science & Collaborative Innovation Center of Biotherapy, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail: (ZL); (ZL); (ZR); (ZL)
| | - Zhiyong Lou
- MOE Key Laboratory of Protein Science & Collaborative Innovation Center of Biotherapy, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
- * E-mail: (ZL); (ZL); (ZR); (ZL)
| |
Collapse
|
22
|
Garces F, Mohr C, Zhang L, Huang CS, Chen Q, King C, Xu C, Wang Z. Molecular Insight into Recognition of the CGRPR Complex by Migraine Prevention Therapy Aimovig (Erenumab). Cell Rep 2021; 30:1714-1723.e6. [PMID: 32049005 DOI: 10.1016/j.celrep.2020.01.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 01/28/2023] Open
Abstract
Calcitonin-gene-related peptide (CGRP) plays a key role in migraine pathophysiology. Aimovig (erenumab; erenumab-aooe in the United States) is the only US Food and Drug Administration (FDA)-approved monoclonal antibody (mAb) therapy against the CGRP receptor (CGRPR) for the prevention of migraine. Aimovig is also the first FDA-approved mAb against a G-protein-coupled receptor (GPCR). Here, we report the architecture and functional attributes of erenumab critical for its potent antagonism against CGRPR. The crystal structure of erenumab in complex with CGRPR reveals a direct ligand-blocking mechanism, enabled by a remarkable 21-residue-long complementary determining region (CDR)-H3 loop, which adopts a tyrosine-rich helix-turn tip and projects into the deep interface of the calcitonin receptor-like receptor (CLR) and RAMP1 subunits of CGRPR. Furthermore, erenumab engages with residues specific to CLR and RAMP1, providing the molecular basis for its exquisite selectivity. Such structural insights reveal the drug action mechanism of erenumab and shed light on developing antibody therapeutics targeting GPCRs.
Collapse
Affiliation(s)
- Fernando Garces
- Department of Therapeutic Discovery, Amgen Research, Amgen, Thousand Oaks, CA 91320, USA
| | - Christopher Mohr
- Department of Therapeutic Discovery, Amgen Research, Amgen, Thousand Oaks, CA 91320, USA
| | - Li Zhang
- Department of Neuroscience, Amgen Research, Amgen, Thousand Oaks, CA 91320, USA
| | - Ching-Shin Huang
- Department of Therapeutic Discovery, Amgen Research, Amgen, San Francisco, CA 94080, USA
| | - Qing Chen
- Department of Therapeutic Discovery, Amgen Research, Amgen, Thousand Oaks, CA 91320, USA
| | - Chadwick King
- Department of Therapeutic Discovery, Amgen Research, Amgen, Burnaby, BC V5A 1V7, Canada
| | - Cen Xu
- Department of Neuroscience, Amgen Research, Amgen, Thousand Oaks, CA 91320, USA.
| | - Zhulun Wang
- Department of Therapeutic Discovery, Amgen Research, Amgen, San Francisco, CA 94080, USA.
| |
Collapse
|
23
|
Abstract
Unique, functional, homodimeric heavy chain-only antibodies, devoid of light chains, are circulating in the blood of Camelidae. These antibodies recognize their cognate antigen via one single domain, known as VHH or Nanobody. This serendipitous discovery made three decades ago has stimulated a growing number of researchers to generate highly specific Nanobodies against a myriad of targets. The small size, strict monomeric state, robustness, and easy tailoring of these Nanobodies have inspired many groups to design innovative Nanobody-based multi-domain constructs to explore novel applications. As such, Nanobodies have been employed as an exquisite research tool in structural, cell, and developmental biology. Furthermore, Nanobodies have demonstrated their benefit for more sensitive diagnostic tests. Finally, several Nanobody-based constructs have been designed to develop new therapeutic products.
Collapse
Affiliation(s)
- Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium; .,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, People's Republic of China
| |
Collapse
|
24
|
Higashi K, Maeda K, Miyata K, Yoshimura S, Yamada K, Konno D, Tachibana T, Saito K. Carbohydrate 3′-sialyllactose as a novel target for theranostics in pancreatic ductal adenocarcinoma. Tumour Biol 2020. [DOI: 10.1177/1010428320965279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We previously demonstrated that the carbohydrate 3′-sialyllactose is overexpressed in cancer stem-like cells such as metastatic pancreatic and poorly differentiated gastric cancer cells, and undifferentiated human embryonic stem cells. In this study, we investigated the possibility of 3′-sialyllactose as a target for theranostics in cancers using a recombinant mouse monoclonal antibody r3B1E2 that binds to 3′-sialyllactose. Immunohistochemistry analysis confirmed an elevated expression of 3′-sialyllactose in tumors of pancreas, stomach, and testis, while no expression of 3′-sialyllactose was observed in corresponding normal controls. In addition, a stage-independent expression of 3′-sialyllactose was observed, especially in pancreatic ductal adenocarcinoma (PDAC). The level of serum 3′-sialyllactose in PDAC subjects was significantly higher than that in healthy controls, providing excellent AUC of 0.88. We next explored the therapeutic potential of r3B1E2 for PDAC in vitro. Treatment of r3B1E2 with 3′-sialyllactose-bearing human PDAC cells exhibited a complement-dependent cytotoxicity, whereas no significant activity of r3B1E2 against 3′-sialyllactose-negative cells was observed. Collectively, these findings raise the possibility of 3′-sialyllactose as a novel target for theranostics in PDAC.
Collapse
Affiliation(s)
- Kiyoshi Higashi
- Advanced Materials Development Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Keiko Maeda
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | - Kaori Miyata
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| | | | - Keita Yamada
- Laboratory of Toxicology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Daijiro Konno
- Cell Engineering Corporation, Osaka, Japan
- Division of Pathophysiology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Taro Tachibana
- Cell Engineering Corporation, Osaka, Japan
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Koichi Saito
- Advanced Materials Development Laboratory, Sumitomo Chemical Co., Ltd., Osaka, Japan
| |
Collapse
|
25
|
Structural characteristics of circulating immune complexes in calves with bronchopneumonia: Impact on the quiescent leukocytes. Res Vet Sci 2020; 133:63-74. [PMID: 32942254 DOI: 10.1016/j.rvsc.2020.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/12/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Calf bronchopneumonia is accompanied by increased level of circulating immune complexes (CIC), and we analysed size, and protein and lipid constituents of these CIC with an attempt to elucidate the connection between the CIC structural properties and their capacity to modulate leukocyte function. CIC of heathy calves (CICH) and calves with naturally occurring bronchopneumonia (CICD) were isolated by PEG precipitation and analysed by electrophoresis and chromatography. The predominant CIC proteins were IgG, albumin, and transferrin. Affinity isolated serum and CIC IgG coprecipitated several proteins, but only 75 and 80 kDa proteins bound CIC IgG, exclusively. 60 and 65 kDa proteins co-precipitated with CICD IgG, unlike CICH IgG. In both CICH and CICD, oleic acid-containing phospholipids predominated. In CICD, the content of oleic and vaccenic acid was higher than in CICH, while myristic, palmitic, stearic, linoleic and arachidonic acid showed lower content. Dynamic light scattering displayed difference in particle size distribution between CICH and CICD; 1280 nm large particles were present only in CICD. The effect of CICH and CICD on mononuclear cells (MNC) and granulocytes was analysed in vitro. CICH and CICD, with slight difference in intensity, stimulate MNC apoptosis, promote cell cycle arrest of unstimulated MNC, and cell cycle progression of PHA stimulated MNC. Both CIC reduced granulocyte apoptosis after 24 h while after 48 h this effect was detected for CICD only. These results indicate that structural differences of CICH and CICD might interfere with the CIC functional capacity, which we consider important for evaluation of CIC immunoregulatory function.
Collapse
|
26
|
Macpherson A, Scott-Tucker A, Spiliotopoulos A, Simpson C, Staniforth J, Hold A, Snowden J, Manning L, van den Elsen J, Lawson ADG. Isolation of antigen-specific, disulphide-rich knob domain peptides from bovine antibodies. PLoS Biol 2020; 18:e3000821. [PMID: 32886672 PMCID: PMC7498065 DOI: 10.1371/journal.pbio.3000821] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/17/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
As a novel alternative to established surface display or combinatorial chemistry approaches for the discovery of therapeutic peptides, we present a method for the isolation of small, cysteine-rich domains from bovine antibody ultralong complementarity-determining regions (CDRs). We show for the first time that isolated bovine antibody knob domains can function as autonomous entities by binding antigen outside the confines of the antibody scaffold. This yields antibody fragments so small as to be considered peptides, each stabilised by an intricate, bespoke arrangement of disulphide bonds. For drug discovery, cow immunisations harness the immune system to generate knob domains with affinities in the picomolar to low nanomolar range, orders of magnitude higher than unoptimized peptides from naïve library screening. Using this approach, knob domain peptides that tightly bound Complement component C5 were obtained, at scale, using conventional antibody discovery and peptide purification techniques. This study describes a method for the isolation of knob domains (a disulfide-rich domain found in the ultra-long CDRH3 of a subset of bovine antibodies) to create a uniquely small antibody fragment. With a molecular weight 3-6 KDa, the knob domain fragment is so small as to be considered a peptide. This approach uniquely harnesses the bovine immune system to affinity maturate peptides in vivo.
Collapse
Affiliation(s)
- Alex Macpherson
- UCB, Slough, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| | | | | | | | | | | | | | | | - Jean van den Elsen
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | |
Collapse
|
27
|
Smider BA, Smider VV. Formation of ultralong DH regions through genomic rearrangement. BMC Immunol 2020; 21:30. [PMID: 32487018 PMCID: PMC7265228 DOI: 10.1186/s12865-020-00359-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Background Cow antibodies are very unusual in having exceptionally long CDR H3 regions. The genetic basis for this length largely derives from long heavy chain diversity (DH) regions, with a single “ultralong” DH, IGHD8–2, encoding over 50 amino acids. Many bovine IGHD regions have sequence similarity but have several nucleotide repeating units that diversify their lengths. Genomically, most DH regions exist in three clusters that appear to have formed from DNA duplication events. However, the relationship between the genomic arrangement and long CDR lengths is unclear. Results The DH cluster containing IGHD8–2 underwent a rearrangement and deletion event in relation to the other clusters in the region corresponding to IGHD8–2, with possible fusion of two DH regions and expansion of short repeats to form the ultralong IGHD8–2 gene. Conclusions Length heterogeneity within DH regions is a unique evolutionary genomic mechanism to create immune diversity, including formation of ultralong CDR H3 regions.
Collapse
Affiliation(s)
- Brevin A Smider
- The Applied Biomedical Science Institute, San Diego, CA, 92127, USA
| | - Vaughn V Smider
- The Applied Biomedical Science Institute, San Diego, CA, 92127, USA. .,The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
28
|
Stanfield RL, Berndsen ZT, Huang R, Sok D, Warner G, Torres JL, Burton DR, Ward AB, Wilson IA, Smider VV. Structural basis of broad HIV neutralization by a vaccine-induced cow antibody. SCIENCE ADVANCES 2020; 6:eaba0468. [PMID: 32518821 PMCID: PMC7253169 DOI: 10.1126/sciadv.aba0468] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2020] [Indexed: 05/02/2023]
Abstract
Potent broadly neutralizing antibodies (bnAbs) to HIV have been very challenging to elicit by vaccination in wild-type animals. Here, by x-ray crystallography, cryo-electron microscopy, and site-directed mutagenesis, we structurally and functionally elucidate the mode of binding of a potent bnAb (NC-Cow1) elicited in cows by immunization with the HIV envelope (Env) trimer BG505 SOSIP.664. The exceptionally long (60 residues) third complementarity-determining region of the heavy chain (CDR H3) of NC-Cow1 forms a mini domain (knob) on an extended stalk that navigates through the dense glycan shield on Env to target a small footprint on the gp120 CD4 receptor binding site with no contact of the other CDRs to the rest of the Env trimer. These findings illustrate, in molecular detail, how an unusual vaccine-induced cow bnAb to HIV Env can neutralize with high potency and breadth.
Collapse
Affiliation(s)
- Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zachary T. Berndsen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ruiqi Huang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Applied Biomedical Science Institute, San Diego, CA 92127, USA
- Taurus Biosciences LLC, San Diego, CA 92127, USA
| | - Devin Sok
- IAVI, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabrielle Warner
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Applied Biomedical Science Institute, San Diego, CA 92127, USA
- Taurus Biosciences LLC, San Diego, CA 92127, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- IAVI, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02114, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vaughn V. Smider
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Applied Biomedical Science Institute, San Diego, CA 92127, USA
- Taurus Biosciences LLC, San Diego, CA 92127, USA
| |
Collapse
|
29
|
Burke MJ, Stockley PG, Boyes J. Broadly Neutralizing Bovine Antibodies: Highly Effective New Tools against Evasive Pathogens? Viruses 2020; 12:v12040473. [PMID: 32331321 PMCID: PMC7232318 DOI: 10.3390/v12040473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Potent antibody-mediated neutralization is critical for an organism to combat the vast array of pathogens it will face during its lifetime. Due to the potential genetic diversity of some viruses, such as HIV-1 and influenza, standard neutralizing antibodies are often ineffective or easily evaded as their targets are masked or rapidly mutated. This has thwarted efforts to both prevent and treat HIV-1 infections and means that entirely new formulations are required to vaccinate against influenza each year. However, some rare antibodies isolated from infected individuals confer broad and potent neutralization. A subset of these broadly neutralizing antibodies possesses a long complementarity-determining 3 region of the immunoglobulin heavy chain (CDR H3). This feature generates unique antigen binding site configurations that can engage conserved but otherwise inaccessible epitope targets thus neutralizing many viral variants. Remarkably, ultralong CDR H3s are a common feature of the cow antibody repertoire and are encoded by a single variable, diversity, joining (VDJ) recombination that is extensively diversified prior to antigen exposure. Recently, it was shown that cows rapidly generate a broadly neutralizing response upon exposure to HIV-1 and this is primarily mediated by these novel ultralong antibody types. This review summarises the current knowledge of these unusual CDR H3 structures and discusses their known and potential future uses.
Collapse
Affiliation(s)
- Matthew J. Burke
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (P.G.S.)
| | - Peter G. Stockley
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (P.G.S.)
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Joan Boyes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (P.G.S.)
- Correspondence:
| |
Collapse
|
30
|
Li K, Wang S, Cao Y, Bao H, Li P, Sun P, Bai X, Fu Y, Ma X, Zhang J, Li D, Chen Y, Liu X, An F, Wu F, Lu Z, Liu Z. Development of Foot-and-Mouth Disease Virus-Neutralizing Monoclonal Antibodies Derived From Plasmablasts of Infected Cattle and Their Germline Gene Usage. Front Immunol 2019; 10:2870. [PMID: 31867017 PMCID: PMC6908506 DOI: 10.3389/fimmu.2019.02870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/22/2019] [Indexed: 01/27/2023] Open
Abstract
Cattle are susceptible to foot-and-mouth disease virus (FMDV), and neutralizing antibodies are critical for protection against FMDV infection in this species. However, more information is needed on the host specific antigenic structure recognized by the FMDV-specific monoclonal antibodies (mAbs) and on the functional properties of the mAb that are produced in the natural host, cattle. Herein, we characterized 55 plasmablast-derived mAbs from three FMDV-infected cattle and obtained 28 FMDV-neutralizing antibodies by the single B cell antibody technique. The neutralizing mAbs (27/28) mainly recognized conformational epitopes that differ from the well-characterized immunodominant antigenic site 1 of FMDV as defined by murine mAbs. Of these FMDV-neutralizing mAbs, 13 mAbs showed intra-type broadly neutralizing activity against the three topotypes of FMDV serotype O (ME-SA, SEA, and Cathay topotypes). Moreover, all these intra-type broadly neutralizing antibodies competed with sera from FMDV infected or vaccinated cattle, which indicates their binding to native dominant epitopes, as revealed by a blocking ELISA. We further analyzed the germline V(D)J gene usage of the 55 FMDV-specific mAbs and found cattle IgG antibodies containing ultralong HCDR3 were exclusively restricted to usage of the germline gene segment VH 1-7*02. In addition, the restricted germline gene segments of VH 1-7*02 and VL1-47*01 or 1-52*01 pairing were observed in all IgG antibodies with ultralong HCDR3. Furthermore, antibodies with longer HCDR3 were more inclined to display FMDV-neutralizing activity. This study presents a novel method for screening FMDV-specific cattle mAbs which then provide the most useful tools for studying FMDV antigenic structure and variation.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Sheng Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yimei Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huifang Bao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pinghua Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pu Sun
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xingwen Bai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuanfang Fu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xueqing Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dong Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yingli Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuerong Liu
- China Agricultural Vet Biology and Technology Co. Ltd., Lanzhou, China
| | - Fanglan An
- China Agricultural Vet Biology and Technology Co. Ltd., Lanzhou, China
| | - Faju Wu
- China Agricultural Vet Biology and Technology Co. Ltd., Lanzhou, China
| | - Zengjun Lu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zaixin Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
31
|
Haakenson JK, Deiss TC, Warner GF, Mwangi W, Criscitiello MF, Smider VV. A Broad Role for Cysteines in Bovine Antibody Diversity. Immunohorizons 2019; 3:478-487. [PMID: 31619454 PMCID: PMC7366855 DOI: 10.4049/immunohorizons.1900058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/29/2019] [Indexed: 01/26/2023] Open
Abstract
Ab diversity in most vertebrates results from the assortment of amino acid side chains on CDR loops formed through V(D)J recombination. Cows (Bos taurus) have a low combinatorial diversity potential because of a small number of highly homologous V, D, and J gene segments. Despite this, a subset of the Ab repertoire (~10%) contains exceptionally long CDR H chain (HC) 3 (H3) regions with a rich diversity of cysteines and disulfide-bonded loops that diversify through a single V-D-J recombination event followed by massive somatic hypermutation. However, the much larger portion of the repertoire, encoding shorter CDR H3s, has not been examined in detail. Analysis of germline gene segments reveals noncanonical cysteines in the HC V regions and significant cysteine content in the HC D regions. Deep sequencing analysis of naturally occurring shorter CDR H3 (<40 aa) Ab genes shows that HC V and HC D regions preferentially combine to form a functional gene with an even number of total cysteines in the final V region, suggesting that disulfide bonds contribute to diversity not only in ultralong CDR H3 bovine Abs but in shorter CDR H3 bovine Abs as well. In addition to germline “hard-coded” cysteines, the bovine Ab repertoire can produce additional cysteine codons through somatic hypermutation, further diversifying the repertoire. Given the limited combinatorial diversity at the bovine Ig loci, this helps to explain how diversity is created in shorter CDR H3 Abs and potentially provides novel structural paratopes in bovine Ab combining sites.
Collapse
Affiliation(s)
- Jeremy K Haakenson
- Applied Biomedical Science Institute, San Diego, CA 92127.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Thaddeus C Deiss
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843; and
| | - Gabrielle F Warner
- Applied Biomedical Science Institute, San Diego, CA 92127.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Waithaka Mwangi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506
| | - Michael F Criscitiello
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843; and
| | - Vaughn V Smider
- Applied Biomedical Science Institute, San Diego, CA 92127; .,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|