1
|
Abdel-Azeem HH, Osman GY, Morsi DS. Antioxidant and Anti-Inflammatory Impacts of Soft Tissue Crude Extract and Mucous of Snail Helix aspersa on an Excision Wound Model in Mice. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:373-382. [PMID: 39803847 DOI: 10.1002/jez.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 03/04/2025]
Abstract
Wound healing is a complex natural process in which tissue requires recovering injured tissue cells. Helix aspersa has a high nutritional value and is considered a rich natural source of antioxidants and anti-inflammatory agents. So, this study aimed to assess the effect of soft tissue crude extract and mucous of H. aspersa topically applied as a gel for 12 days. The wounds were observed and photographed twice a week. The inflammatory, oxidative stress markers and matrix metalloproteinases were evaluated in skin tissue homogenate and CD3+ and CD69+ T lymphocytes were detected in wound tissue. Data showed that a comparison of applying soft tissue crude extract and mucous of H. aspersa to skin wounds enhanced the healing process, resulting in a significant decrease in dermal inflammation compared to untreated mice. Also, they significantly increased the antioxidant enzyme activities with reduced malondialdehyde (MDA) levels in wound tissues. The levels of matrix metalloproteases-2 and -9 were significantly decreased and the immune status was enhanced in the wound environment by increasing proportions of CD3+ and CD69+ T lymphocytes. H. aspersa mucous and soft tissue crude extract are viable substitutes for synthetic topical wound therapies with anti-inflammatory, antioxidant, and immunomodulatory potencies, with a preference for the crude soft tissue extract based on the outcomes.
Collapse
Affiliation(s)
- Hoda H Abdel-Azeem
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Gamalat Y Osman
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Dalia S Morsi
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
2
|
Li Q, Zhang M, Kim B, Soriano S, Mishra H, Wang Q, Kain KC, Wang R. The role of γδ T cells in flavivirus infections: Insights into immune defense and therapeutic opportunities. PLoS Negl Trop Dis 2025; 19:e0012972. [PMID: 40245023 PMCID: PMC12005506 DOI: 10.1371/journal.pntd.0012972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025] Open
Abstract
γδ T cells are a unique subset of unconventional T cells and an important component of the innate immune system. Unlike conventional αβ T cells, γδ T cells can respond rapidly during the early stages of infection, and their antigen recognition is not restricted by MHC molecules. These distinctive features underscore the important role of γδ T cells in viral clearance and infection control. Therefore, γδ T cell-based immunotherapies have been extensively explored for the treatment of a variety of diseases, including viral infections and cancers. Several therapeutic strategies based on γδ T cells have advanced to clinical trials, demonstrating promising safety and efficacy. Currently, there are no effective treatments for flavivirus infections, which are typically characterized by acute onset. Research has shown that γδ T cells can rapidly expand during the early phases of flavivirus infections and effectively suppress viral replication, making them an attractive target for the development of novel therapies for flavivirus infections. This review aims to highlight the immunological roles of γδ T cells in flavivirus infections and to explore the potential of γδ T cell-based therapeutic strategies for the prevention and treatment of these infections.
Collapse
Affiliation(s)
- Qi Li
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meng Zhang
- Department of Pediatric Rehabilitation, Beijing Boai Hospital, School of Rehabilitation Medicine, Capital Medical University, China Rehabilitation Research Center, Beijing, China
| | - Bridget Kim
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Samuel Soriano
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Hridesh Mishra
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Qiuyue Wang
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kevin C. Kain
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Experimental Therapeutics, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ran Wang
- Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Jean EE, Rossi HL, Hung LY, Inclan-Rico JM, Herbert DR. Myeloid-derived IL-33 drives γδ T cell-dependent resistance against cutaneous infection by Strongyloides ratti. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae038. [PMID: 40073150 PMCID: PMC11952876 DOI: 10.1093/jimmun/vkae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/05/2024] [Indexed: 03/14/2025]
Abstract
Interleukin 33 (IL-33) is a pleiotropic cytokine released from diverse cell types that regulate both pro- and anti-inflammatory responses during pathogen infection. However, it remains unclear whether IL-33 controls key aspects of cutaneous immunity against skin-penetrating parasites. In this study, mice percutaneously infected with the parasitic helminth Strongyloides ratti were investigated to understand mechanisms of anamnestic immunity at the skin barrier. Surprisingly, mice lacking the Type 2 transcription factor STAT6 (signal transducer and activator of transcription 6) had no defects in secondary resistance to infection, whereas IL-33 gene deficiency or local blockade of IL-33 receptor (ST2) signaling abrogated host resistance. Depletion of CD4+ T cells or type 2 innate lymphoid cells had only a moderate impact on protection, but the loss of γδ T cells completely ablated cutaneous immunity against rechallenge. We identified a CD62Lhi IL-33 receptor (ST2)-expressing γδ T cell population that accumulated in the skin of protected mice that was dependent upon IL-33 expression in myeloid lineage antigen-presenting cells. This work suggests a previously unrecognized mechanism wherein noncanonical type 2 immunity operates through myeloid antigen-presenting cells and skin γδ T cells to adaptively repel skin-penetrating helminth larvae.
Collapse
Affiliation(s)
- Erin Evonne Jean
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - Heather Lynn Rossi
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - Li Yin Hung
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - Juan M Inclan-Rico
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - De’Broski R Herbert
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 United States
| |
Collapse
|
4
|
Chung J, Lee JC, Oh H, Kim Y, Lim S, Lee C, Shim YG, Bang EC, Baek JH. Gut Microbiota Regulates the Homeostasis of Dendritic Epidermal T Cells. Life (Basel) 2024; 14:1695. [PMID: 39768401 PMCID: PMC11677426 DOI: 10.3390/life14121695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Dendritic epidermal T cells (DETCs) are a γδ T cell subset residing in the skin epidermis. Although they have been known for decades, the fate of DETCs has largely remained enigmatic. Recent studies have highlighted the relationship between the gut microbiome and γδ T cells in various epithelial and non-epithelial tissues, such as the small intestine, lung, liver, gingiva, and testis. While the skin microbiota has been shown to impact skin γδ T cells, a direct relationship between the gut microbiota and DETCs remains unexplored. In this study, we investigated whether DETCs are regulated by the gut microbiota in the steady-state skin epidermis. We examined the occurrence of DETCs in Balb/c mice, which have a skin epidermis barely populated with DETCs, compared to C57BL/6 mice, under different housing conditions. Our findings reveal that local skin inflammation markedly increases DETC numbers in the ear epidermis of Balb/c mice and that DETCs are activated by environmental factors. Furthermore, an investigation of the gut microbiota under different housing conditions revealed distinct microbial compositions and functional profiles. Taken together, these results suggest a strong connection between DETCs and gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jea-Hyun Baek
- Laboratory of Inflammation Research, School of Life Science, Handong Global University, Pohang 37554, Republic of Korea; (J.C.); (J.-C.L.); (H.O.); (Y.K.); (S.L.); (C.L.); (Y.-G.S.); (E.-C.B.)
| |
Collapse
|
5
|
Lv R, Guo Y, Liu W, Dong G, Liu X, Li C, Ren Y, Zhang Z, Neo SY, Mao W, Wu J. Revolutionizing cancer treatment: the emerging potential and potential challenges of in vivo self-processed CAR cell therapy. Theranostics 2024; 14:7424-7447. [PMID: 39659573 PMCID: PMC11626932 DOI: 10.7150/thno.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/23/2024] [Indexed: 12/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) cell immunotherapies, including CAR-T, CAR-Macrophages, CAR-Natural Killer, CAR-γδ T, etc., have demonstrated significant advancements in the treatment of both hematologic malignancies and solid tumors. Despite the notable successes of traditional CAR cell manufacturing, its application remains constrained by the complicated production process and expensive costs. Consequently, efforts are focused on streamlining CAR cell production to enhance efficacy and accessibility. Among numerous proposed strategies, direct in vivo generation of CAR cells represents the most substantial technical challenge, yet holding great promise for achieving clinical efficacy. Herein, we outlined the current state-of-the-art in vivo CAR therapy, including CAR technology development, transfection vectors, and influence factors of construction of CAR in vivo. We also reviewed the types and characteristics of different delivery systems and summarized the advantages of in vivo CAR cell therapy, such as rapid preparation and cost-effectiveness. Finally, we discussed the limitations, including technical issues, challenges in target and signal design, and cell-related constraints. Meanwhile, strategies have correspondingly been proposed to advance the development of CAR cell therapy, in order to open the new horizons on cancer treatment.
Collapse
Affiliation(s)
- Ruijie Lv
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yanting Guo
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Guangjian Dong
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiangyin Liu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Caihui Li
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yi Ren
- Department of Clinical Pharmacy, School of Pharmacy, Shandong Second Medical University, Weifang, Shandong 261042, China
| | - Zipeng Zhang
- Medical Science and Technology Innovation Center Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117, China
| | - Shi-Yong Neo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Jing Wu
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital; Jinan 250014, China; School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
6
|
Kuenzel NA, Dobner J, Reichert D, Rossi A, Boukamp P, Esser C. Vδ1 T Cells Integrated in Full-Thickness Skin Equivalents: A Model for the Role of Human Skin-Resident γδT Cells. J Invest Dermatol 2024:S0022-202X(24)02173-0. [PMID: 39384018 DOI: 10.1016/j.jid.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 10/11/2024]
Abstract
Vδ1 T cells are a subpopulation of γδT cells found in human dermis. Much less is known regarding their role and function in skin health and disease than regarding the roles of murine skin-resident γδT cells. In this study, we report the successful integration of Vδ1 T cells into long-term fibroblast-derived matrix skin equivalents. We isolated Vδ1 T cells from human blood, where they are rare, and established conditions for the integration and maintenance of the freshly isolated Vδ1 T cells in the skin equivalents. Plated on top of the dermal equivalents, almost all Vδ1 T cells migrated into the dermal matrix where they exerted their influence on both the dermal equivalents and the epithelium. Vδ1 T cells contributed to epidermal differentiation of HaCaT cells as indicated by histology, expression of epidermal differentiation markers, and RNA-sequencing expression profile. When complemented with the carcinoma-derived SCC13 cells instead of HaCaT, our data suggest a role for Vδ1 T cells in slowing growth of the tumor cells, as indicated by reduced stratification and changes in gene expression profiles. Together, we demonstrate the successful establishment of human Vδ1 T cell-competent skin equivalents and skin carcinoma equivalents and provide evidence for molecular and functional consequences of the Vδ1 T cells on their respective environment.
Collapse
Affiliation(s)
| | - Jochen Dobner
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Doreen Reichert
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andrea Rossi
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Petra Boukamp
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; German Cancer Research Centre, Heidelberg, Germany
| | - Charlotte Esser
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
7
|
Miller S, Vandergriff T, Woodworth Goff H, Xu J, Oliver D. Comparison of 2 T-Cell Receptor-γ Clonality Assays on Skin Biopsies Suspicious for Mycosis Fungoides. Am J Dermatopathol 2024; 46:581-587. [PMID: 38457687 DOI: 10.1097/dad.0000000000002654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
ABSTRACT PCR-based fragment analysis of the T-cell receptor (TCR) gene is used extensively in diagnostic labs to assess clonality in T-cell populations in multiple tissue sites. Of the numerous TCR assays that have been reported, studies assessing use on biopsies suspicious for mycosis fungoides specifically are lacking. We compared clonality findings from a previously run 2-tube/2-fluorochrome dye assay to a redesigned 1-tube/1-fluorochrome dye assay on formalin-fixed skin biopsies. Overall, the accuracy of the 2-tube assay was marginally better (75.7% vs. 71.4%), when using clinical history combined with histologic diagnosis as the gold standard. The 2-tube assay had better sensitivity (73.7% vs. 65.8%), while the 1-tube assay had superior specificity (93.8% vs. 87.5%). Clonality results were easier to interpret with the 1-tube assay. In nearly 19% of cases, a change of assays on the same biopsy resulted in a change of clonality interpretation. For laboratories that change TCR-γ clonality assays, follow-up biopsies for mycosis fungoides assessment may result in a change of diagnosis.
Collapse
Affiliation(s)
- Stan Miller
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX; and
| | - Travis Vandergriff
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX; and
- Department of Dermatology, UT Southwestern Medical Center, Dallas, TX
| | | | - Jing Xu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX; and
| | - Dwight Oliver
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX; and
| |
Collapse
|
8
|
Chojnacka-Purpurowicz J, Owczarczyk-Saczonek A, Nedoszytko B. The Role of Gamma Delta T Lymphocytes in Physiological and Pathological Condition-Focus on Psoriasis, Atopic Dermatitis, Autoimmune Disorders, Cancer and Lymphomas. Int J Mol Sci 2024; 25:7960. [PMID: 39063202 PMCID: PMC11277122 DOI: 10.3390/ijms25147960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gamma delta (γδ) T cells are a heterogeneous population of cells that play roles in inflammation, host tissue repair, clearance of viral and bacterial pathogens, regulation of immune processes, and tumor surveillance. Recent research suggests that these are the main skin cells that produce interleukin-17 (I-17). Furthermore, γδ T cells exhibit memory-cell-like characteristics that mediate repeated episodes of psoriatic inflammation. γδ T cells are found in epithelial tissues, where many cancers develop. There, they participate in antitumor immunity as cytotoxic cells or as immune coordinators. γδ T cells also participate in host defense, immune surveillance, and immune homeostasis. The aim of this review is to present the importance of γδ T cells in physiological and pathological diseases, such as psoriasis, atopic dermatitis, autoimmune diseases, cancer, and lymphoma.
Collapse
Affiliation(s)
- Joanna Chojnacka-Purpurowicz
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Bogusław Nedoszytko
- Department of Medical Laboratory Diagnostics–Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 3A M. Skłodowskiej-Curie Street, 80-210 Gdansk, Poland;
- Molecular Laboratory, Invicta Fertility and Reproductive Center, 81-740 Sopot, Poland
| |
Collapse
|
9
|
Shah SA, Oakes RS, Jewell CM. Advancing immunotherapy using biomaterials to control tissue, cellular, and molecular level immune signaling in skin. Adv Drug Deliv Rev 2024; 209:115315. [PMID: 38670230 PMCID: PMC11111363 DOI: 10.1016/j.addr.2024.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Immunotherapies have been transformative in many areas, including cancer treatments, allergies, and autoimmune diseases. However, significant challenges persist in extending the reach of these technologies to new indications and patients. Some of the major hurdles include narrow applicability to patient groups, transient efficacy, high cost burdens, poor immunogenicity, and side effects or off-target toxicity that results from lack of disease-specificity and inefficient delivery. Thus, there is a significant need for strategies that control immune responses generated by immunotherapies while targeting infection, cancer, allergy, and autoimmunity. Being the outermost barrier of the body and the first line of host defense, the skin presents a unique immunological interface to achieve these goals. The skin contains a high concentration of specialized immune cells, such as antigen-presenting cells and tissue-resident memory T cells. These cells feature diverse and potent combinations of immune receptors, providing access to cellular and molecular level control to modulate immune responses. Thus, skin provides accessible tissue, cellular, and molecular level controls that can be harnessed to improve immunotherapies. Biomaterial platforms - microneedles, nano- and micro-particles, scaffolds, and other technologies - are uniquely capable of modulating the specialized immunological niche in skin by targeting these distinct biological levels of control. This review highlights recent pre-clinical and clinical advances in biomaterial-based approaches to target and modulate immune signaling in the skin at the tissue, cellular, and molecular levels for immunotherapeutic applications. We begin by discussing skin cytoarchitecture and resident immune cells to establish the biological rationale for skin-targeting immunotherapies. This is followed by a critical presentation of biomaterial-based pre-clinical and clinical studies aimed at controlling the immune response in the skin for immunotherapy and therapeutic vaccine applications in cancer, allergy, and autoimmunity.
Collapse
Affiliation(s)
- Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, MD, 21201, USA.
| |
Collapse
|
10
|
Neuwirth T, Stary G. Expanding strategies to resolve psoriasis-like inflammation: Non-canonical NF-κB signaling controls IL-23 production in dendritic cells. Mol Ther 2024; 32:1195-1196. [PMID: 38631353 PMCID: PMC11081908 DOI: 10.1016/j.ymthe.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
11
|
Hu W, Zhang X, Liu Z, Yang J, Sheng H, Liu Z, Chen C, Shang R, Chen Y, Lu Y, Hu X, Huang Y, Yin W, Cai X, Fan D, Yan L, Hao J, Luo G, He W. Spatiotemporal orchestration of macrophage activation trajectories by Vγ4 T cells during skin wound healing. iScience 2024; 27:109545. [PMID: 38617557 PMCID: PMC11015460 DOI: 10.1016/j.isci.2024.109545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
Dysregulated macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotypes underlies impaired cutaneous wound healing. This study reveals Vγ4+ γδ T cells spatiotemporally calibrate macrophage trajectories during skin repair via sophisticated interferon-γ (IFN-γ) conditioning across multiple interconnected tissues. Locally within wound beds, infiltrating Vγ4+ γδ T cells directly potentiate M1 activation and suppress M2 polarization thereby prolonging local inflammation. In draining lymph nodes, infiltrated Vγ4+ γδ T cells expand populations of IFN-γ-competent lymphocytes which disseminate systemically and infiltrate into wound tissues, further enforcing M1 macrophages programming. Moreover, Vγ4+γδ T cells flushed into bone marrow stimulate increased IFN-γ production, which elevates the output of pro-inflammatory Ly6C+monocytes. Mobilization of these monocytes continually replenishes the M1 macrophage pool in wounds, preventing phenotypic conversion to M2 activation. Thus, multi-axis coordination of macrophage activation trajectories by trafficking Vγ4+ γδ T cells provides a sophisticated immunological mechanism regulating inflammation timing and resolution during skin repair.
Collapse
Affiliation(s)
- Wengang Hu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Zhongyang Liu
- Department of Plastic Surgery, the First Affiliated Hospital, Zhengzhou University, Henan, China
| | - Jiacai Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Hao Sheng
- Urology Department, the Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Zhihui Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Cheng Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Yunxia Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Yifei Lu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Yong Huang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Wenjing Yin
- Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Xin Cai
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Dejiang Fan
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Lingfeng Yan
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jianlei Hao
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000 Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| |
Collapse
|
12
|
Cioce A, Cavani A, Cattani C, Scopelliti F. Role of the Skin Immune System in Wound Healing. Cells 2024; 13:624. [PMID: 38607063 PMCID: PMC11011555 DOI: 10.3390/cells13070624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Wound healing is a dynamic and complex process, characterized by the coordinated activities of multiple cell types, each with distinct roles in the stages of hemostasis, inflammation, proliferation, and remodeling. The cells of the immune system not only act as sentinels to monitor the skin and promote homeostasis, but they also play an important role in the process of skin wound repair. Skin-resident and recruited immune cells release cytokines and growth factors that promote the amplification of the inflammatory process. They also work with non-immune cells to remove invading pathogens and debris, as well as guide the regeneration of damaged host tissues. Dysregulation of the immune system at any stage of the process may lead to a prolongation of the inflammatory phase and the development of a pathological condition, such as a chronic wound. The present review aims to summarize the roles of different immune cells, with special emphasis on the different stages of the wound healing process.
Collapse
Affiliation(s)
| | | | | | - Fernanda Scopelliti
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy; (A.C.); (A.C.); (C.C.)
| |
Collapse
|
13
|
Yuan M, Wang W, Hawes I, Han J, Yao Z, Bertaina A. Advancements in γδT cell engineering: paving the way for enhanced cancer immunotherapy. Front Immunol 2024; 15:1360237. [PMID: 38576617 PMCID: PMC10991697 DOI: 10.3389/fimmu.2024.1360237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Comprising only 1-10% of the circulating T cell population, γδT cells play a pivotal role in cancer immunotherapy due to their unique amalgamation of innate and adaptive immune features. These cells can secrete cytokines, including interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), and can directly eliminate tumor cells through mechanisms like Fas/FasL and antibody-dependent cell-mediated cytotoxicity (ADCC). Unlike conventional αβT cells, γδT cells can target a wide variety of cancer cells independently of major histocompatibility complex (MHC) presentation and function as antigen-presenting cells (APCs). Their ability of recognizing antigens in a non-MHC restricted manner makes them an ideal candidate for allogeneic immunotherapy. Additionally, γδT cells exhibit specific tissue tropism, and rapid responsiveness upon reaching cellular targets, indicating a high level of cellular precision and adaptability. Despite these capabilities, the therapeutic potential of γδT cells has been hindered by some limitations, including their restricted abundance, unsatisfactory expansion, limited persistence, and complex biology and plasticity. To address these issues, gene-engineering strategies like the use of chimeric antigen receptor (CAR) T therapy, T cell receptor (TCR) gene transfer, and the combination with γδT cell engagers are being explored. This review will outline the progress in various engineering strategies, discuss their implications and challenges that lie ahead, and the future directions for engineered γδT cells in both monotherapy and combination immunotherapy.
Collapse
Affiliation(s)
| | - Wenjun Wang
- *Correspondence: Wenjun Wang, ; Alice Bertaina,
| | | | | | | | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, School of Medicine, Stanford, CA, United States
| |
Collapse
|
14
|
Nichols JM, Pham HV, Lee EF, Mahalingam R, Shepherd AJ. Single-cell analysis of age-related changes in leukocytes of diabetic mouse hindpaws. Cell Mol Life Sci 2024; 81:146. [PMID: 38502310 PMCID: PMC10951029 DOI: 10.1007/s00018-024-05128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 03/21/2024]
Abstract
Complications associated with Type 1 and Type 2 diabetes, such as diabetic peripheral neuropathy and diabetic foot ulcers, are a growing health-care concern. In addition, this concern increases as diabetic patients age due to their increased susceptibility to complications. To address this growing problem, it is important to understand fluctuations in physiology which lead to pathological changes associated with the metabolic disturbances of diabetes. Our study explores dysregulation of immune cell populations in the hindpaws of healthy and diabetic mice at 12 and 21 weeks of age using single-cell RNA sequencing to provide insight into immune disruptions occurring in the distal limb during chronic diabetes. In 21-week-old Leprdb/db mice, increases were seen in mast cells/basophils, dermal γδ T cells, heterogeneous T cells, and Type 2 innate lymphoid cells. In addition, macrophages represented the largest cluster of immune cells and showed the greatest increase in genes associated with immune-specific pathways. Sub-clustering of macrophages revealed a bias toward angiogenic Lyve1+MHCIIlo macrophages in the hindpaws of 21-week-old diabetic mice, which corresponded to an increase in Lyve1+ macrophages in the hindpaws of 21-week-old diabetic mice on histology. Our results show that in Type 2 diabetes, the immunological function and phenotype of multiple immune cell types shift not only with metabolic disturbance, but also with duration of disease, which may explain the increased susceptibility to pathologies of the distal limb in patients with more chronic diabetes.
Collapse
Affiliation(s)
- James M Nichols
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Unit 1055, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Hoang Vu Pham
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Unit 1055, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Eric F Lee
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Unit 1055, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA
| | - Rajasekaran Mahalingam
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Unit 1055, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA.
| | - Andrew J Shepherd
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Unit 1055, 6565 MD Anderson Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Das D, Arava S, Khandpur S, Santosh KV, Akhtar S, Sharma A. Dominance and improved survivability of human γδT17 cell subset aggravates the immunopathogenesis of pemphigus vulgaris. Immunol Res 2024; 72:72-81. [PMID: 37620509 DOI: 10.1007/s12026-023-09413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
Human γδ T cells are highly enriched in epithelial cell-dominated compartments like skin. Nonetheless, their function in the pathogenesis of pemphigus vulgaris (PV), an autoimmune skin disorder, is lacking. Therefore, we investigated the functional expression of human γδT cell subsets along with their homing chemokine receptor-ligand and inflammatory cytokines in the immunopathogenesis of PV. Estimation of the frequency of γδT cell subsets by flow cytometry revealed four major subsets of γδ T cells (γδT1, γδT2, γδT17, γδTreg) in both control and PV circulation. The elevated frequency of γδT17 cells producing IL17 and expressing CCR6 receptor suggests their inflammatory and migratory potential in PV. In vitro culture of γδ T cells from patients showed increased mRNA expression of inflammatory cytokines IL17, RORγt, IL23, IL1, and co-stimulatory markers, CD27 and CD70. These findings correlated the role of IL1 and IL23 cytokines that alleviate the Th17 population in PV. Cytotoxic activities of γδ T cells were higher and inflammatory γδT17 cells were localized in the skin of PV whereas γδTreg cells associated TGFβ and FOXP3 were lowered. Hyperinflammatory phenotype of the γδT17 cell subset and its migratory potential might be aiding in the pathogenesis of PV, whereas γδTreg cells fail to suppress these inflammatory responses. Hence, γδT17 cell-associated markers can be targeted for identifying novel therapeutics in PV.
Collapse
Affiliation(s)
- Dayasagar Das
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sudheer Arava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujay Khandpur
- Department of Dermatology & Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - K V Santosh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Shamima Akhtar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
16
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
17
|
Ou L, Tan X, Qiao S, Wu J, Su Y, Xie W, Jin N, He J, Luo R, Lai X, Liu W, Zhang Y, Zhao F, Liu J, Kang Y, Shao L. Graphene-Based Material-Mediated Immunomodulation in Tissue Engineering and Regeneration: Mechanism and Significance. ACS NANO 2023; 17:18669-18687. [PMID: 37768738 DOI: 10.1021/acsnano.3c03857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Tissue engineering and regenerative medicine hold promise for improving or even restoring the function of damaged organs. Graphene-based materials (GBMs) have become a key player in biomaterials applied to tissue engineering and regenerative medicine. A series of cellular and molecular events, which affect the outcome of tissue regeneration, occur after GBMs are implanted into the body. The immunomodulatory function of GBMs is considered to be a key factor influencing tissue regeneration. This review introduces the applications of GBMs in bone, neural, skin, and cardiovascular tissue engineering, emphasizing that the immunomodulatory functions of GBMs significantly improve tissue regeneration. This review focuses on summarizing and discussing the mechanisms by which GBMs mediate the sequential regulation of the innate immune cell inflammatory response. During the process of tissue healing, multiple immune responses, such as the inflammatory response, foreign body reaction, tissue fibrosis, and biodegradation of GBMs, are interrelated and influential. We discuss the regulation of these immune responses by GBMs, as well as the immune cells and related immunomodulatory mechanisms involved. Finally, we summarize the limitations in the immunomodulatory strategies of GBMs and ideas for optimizing GBM applications in tissue engineering. This review demonstrates the significance and related mechanism of the immunomodulatory function of GBM application in tissue engineering; more importantly, it contributes insights into the design of GBMs to enhance wound healing and tissue regeneration in tissue engineering.
Collapse
Affiliation(s)
- Lingling Ou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuan Su
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528399, China
| | - Wenqiang Xie
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Nianqiang Jin
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiankang He
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ruhui Luo
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuan Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
18
|
Villafán H, Gutiérrez-Ospina G. Looking beyond Self-Protection: The Eyes Instruct Systemic Immune Tolerance Early in Life. Brain Sci 2023; 13:1261. [PMID: 37759864 PMCID: PMC10526493 DOI: 10.3390/brainsci13091261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
The eyes provide themselves with immune tolerance. Frequent skin inflammatory diseases in young blind people suggest, nonetheless, that the eyes instruct a systemic immune tolerance that benefits the whole body. We tested this premise by using delayed skin contact hypersensitivity (DSCH) as a tool to compare the inflammatory response developed by sighted (S) and birth-enucleated (BE) mice against oxazolone or dinitrofluorobenzene at the ages of 10, 30 and 60 days of life. Adult mice enucleated (AE) at 60 days of age were also assessed when they reached 120 days of life. BE mice displayed exacerbated DSCH at 60 but not at 10 or 30 days of age. AE mice, in contrast, show no exacerbated DSCH. Skin inflammation in 60-day-old BE mice was hapten exclusive and supported by distinct CD8+ lymphocytes. The number of intraepidermal T lymphocytes and migrating Langerhans cells was, however, similar between S and BE mice by the age of 60 days. Our observations support the idea that the eyes instruct systemic immune tolerance that benefits organs outside the eyes from an early age. The higher prevalence of inflammatory skin disorders reported in young people might then reflect reduced immune tolerance associated with the impaired functional morphology of the eyes.
Collapse
Affiliation(s)
- Horacio Villafán
- Programa de Doctorado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Edificio D, 1piso, Coyoacán, Ciudad de México 04510, Mexico
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Gabriel Gutiérrez-Ospina
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Department of Zoology and Physiology and Wyoming Sensory Biology Center of Biomedical Research Excellence, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
19
|
Battaglia M, Garrett-Sinha LA. Staphylococcus xylosus and Staphylococcus aureus as commensals and pathogens on murine skin. Lab Anim Res 2023; 39:18. [PMID: 37533118 PMCID: PMC10394794 DOI: 10.1186/s42826-023-00169-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Skin ulcers, skin dermatitis and skin infections are common phenomena in colonies of laboratory mice and are often found at increased prevalence in certain immunocompromised strains. While in many cases these skin conditions are mild, in other cases they can be severe and lead to animal morbidity. Furthermore, the presence of skin infections and ulcerations can complicate the interpretation of experimental protocols, including those examining immune cell activation. Bacterial species in the genus Staphylococcus are the most common pathogens recovered from skin lesions in mice. In particular, Staphylococcus aureus and Staphylococcus xylosus have both been implicated as pathogens on murine skin. Staphylococcus aureus is a well-known pathogen of human skin, but S. xylosus skin infections in humans have not been described, indicating that there is a species-specific difference in the ability of S. xylosus to serve as a skin pathogen. The aim of this review is to summarize studies that link S. aureus and S. xylosus to skin infections of mice and to describe factors involved in their adherence to tissue and their virulence. We discuss potential differences in mouse and human skin that might underlie the ability of S. xylosus to act as a pathogen on murine skin, but not human skin. Finally, we also describe mouse mutants that have shown increased susceptibility to skin infections with staphylococcal bacteria. These mutants point to pathways that are important in the control of commensal staphylococcal bacteria. The information here may be useful to researchers who are working with mouse strains that are prone to skin infections with staphylococcal bacteria.
Collapse
Affiliation(s)
- Michael Battaglia
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
20
|
Wang M, Yin X, Zeng Y, Hu C, Xue Y, Fang Q, Qiao X, Zhao X, Du C, Huang F, Lin Y. Extracts from Seseli mairei Wolff attenuate imiquimod-induced psoriasis-like inflammation by inhibiting Th17 cells. Heliyon 2023; 9:e17315. [PMID: 37539258 PMCID: PMC10394919 DOI: 10.1016/j.heliyon.2023.e17315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/03/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
Objective Seseli mairei Wolff extracts (SMWE) are widely used to treat psoriasis as a Chinese medicine, but their effect and mechanism are unclear. This study verified the effect of SMWE on psoriasis by regulating Th17 cells. Methods HaCaT cells were treated with IL-17A in vitro to evaluate the effect of SMWE on psoriasis. In vivo, the mice psoriasis model was established using imiquimod (IMQ, 62.5 mg/d), and intragastrically treated with the different drugs for six days. The severity of skin inflammation was evaluated with Psoriasis Area and Severity Index (PASI) scores and pathology. The levels of inflammation cytokines were assessed with immunofluorescence, immunochemistry, ELISA, and real-time PCR. The number of Th17 cells was determined with flows. Results SMWE inhibited the proliferation of HaCaT cells and reduced the IL-17A-induced IL-6 production in vitro. In vivo, SMWE deduced the levels of IL-1β, IL-6, IL-8, IL-17A, IL-17F, IL-22, IL-23, and TNF-α, while increasing the level of IL-10 compared to the model group. SMWE also inhibited the levels of NF-κB, JAK2, and STAT3 proteins, while declining the expressions of Gr-1, and MPO. Interestingly, SMWE significantly decreased the number of Th17 cells. Conclusion SMWE inhibited the proliferation of HaCaT cells and attenuated the development of psoriasis lesions by inhibiting Th17 cells to regulate the levels of inflammation cytokines.
Collapse
|
21
|
Huang S, Tan YQ, Zhou G. Aberrant Activation of the STING-TBK1 Pathway in γδ T Cells Regulates Immune Responses in Oral Lichen Planus. Biomedicines 2023; 11:biomedicines11030955. [PMID: 36979934 PMCID: PMC10046253 DOI: 10.3390/biomedicines11030955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic T cell-mediated inflammatory disease. Interferon (IFN)-γ has been suggested to be vital for the OLP immune responses. A prominent innate-like lymphocyte subset, γδ T cells, span the innate-adaptive continuum and exert immune effector functions by producing a wide spectrum of cytokines, including IFN-γ. The involvement and mechanisms of γδ T cells in the pathogenesis of OLP remain obscure. The expression of γδ T cells in lesion tissues and in the peripheral blood of OLP patients was determined via flow cytometry and immunohistochemistry, respectively. Human leukocyte antigen-DR (HLA-DR), cluster of differentiation (CD) 69, Toll-like receptors (TLRs), natural killer group 2, member D (NKG2D) and IFN-γ were detected in γδ T cells of OLP patients using flow cytometry. Additionally, the involvement of stimulator of the interferon genes (STING)-TANK-binding kinase 1 (TBK1) pathway in γδ T cells was evaluated by multi-color immunofluorescence. Western blotting was employed to investigate the regulatory mechanisms of γδ T cells in OLP. γδ T cells were significantly upregulated in the lesion tissues, whereas their peripheral counterparts were downregulated in OLP patients. Meanwhile, increased frequencies of local CD69+ and NKG2D+ γδ T cells and peripheral HLA-DR+ and TLR4+ γδ T cells were detected in OLP. Furthermore, significant co-localization of STING and TBK1 was observed in the γδ T cells of OLP lesions. In addition, enhanced IFN-γ and interleukin (IL)-17A were positively associated with the activated STING-TBK1 pathway and γδ T cells in OLP. Taken together, the upregulated STING-TBK1 pathway in activated γδ T cells might participate in the regulation of immune responses in OLP.
Collapse
Affiliation(s)
- Shan Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
22
|
Hofmann E, Schwarz A, Fink J, Kamolz LP, Kotzbeck P. Modelling the Complexity of Human Skin In Vitro. Biomedicines 2023; 11:biomedicines11030794. [PMID: 36979772 PMCID: PMC10045055 DOI: 10.3390/biomedicines11030794] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
The skin serves as an important barrier protecting the body from physical, chemical and pathogenic hazards as well as regulating the bi-directional transport of water, ions and nutrients. In order to improve the knowledge on skin structure and function as well as on skin diseases, animal experiments are often employed, but anatomical as well as physiological interspecies differences may result in poor translatability of animal-based data to the clinical situation. In vitro models, such as human reconstructed epidermis or full skin equivalents, are valuable alternatives to animal experiments. Enormous advances have been achieved in establishing skin models of increasing complexity in the past. In this review, human skin structures are described as well as the fast evolving technologies developed to reconstruct the complexity of human skin structures in vitro.
Collapse
Affiliation(s)
- Elisabeth Hofmann
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Anna Schwarz
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Julia Fink
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Lars-Peter Kamolz
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Petra Kotzbeck
- COREMED—Centre of Regenerative and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft, 8010 Graz, Austria
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Research Unit for Tissue Regeneration, Repair and Reconstruction, Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| |
Collapse
|
23
|
Induction of psoriasis- and atopic dermatitis-like phenotypes in 3D skin equivalents with a fibroblast-derived matrix. Sci Rep 2023; 13:1807. [PMID: 36720910 PMCID: PMC9889787 DOI: 10.1038/s41598-023-28822-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Skin homeostasis is a complex regulated process relying on the crosstalk of keratinocytes, fibroblasts and immune cells. Imbalances of T-cell subsets and the cytokine environment can lead to inflammatory skin diseases such as psoriasis (Ps) and atopic dermatitis (AD). Modern tissue engineering provides several in vitro models mimicking Ps and AD phenotypes. However, these models are either limited in their pathological features, life span, sample availability, reproducibility, controlled handling or simplicity. Some models further lack intensive characterization as they solely focus on differentiation and proliferation aspects. This study introduces a self-assembly model in which the pathological T-cell-signalling of Ps and AD was simulated by subcutaneous Th1 and Th2 cytokine stimulation. The self-established dermal fibroblast-derived matrices of these models were hypothesized to be beneficial for proximal cytokine signalling on epidermal keratinocytes. Comprehensive histological and mRNA analyses of the diseased skin models showed a weakened barrier, distinct differentiation defects, reduced cellular adhesion, inflammation and parakeratosis formation. A keratin shift of declining physiological cytokeratin-10 (CK10) towards increasing inflammatory CK16 was observed upon Th1 or Th2 stimulation. Antimicrobial peptides (AMPs) were upregulated in Ps and downregulated in AD models. The AD biomarker genes CA2, NELL2 and CCL26 were further induced in AD. While Ps samples featured basal hyperproliferation, cells in AD models displayed apoptotic signs. In accordance, these well-controllable three-dimensional in vitro models exhibited Ps and AD-like phenotypes with a high potential for disease research and therapeutic drug testing.
Collapse
|
24
|
Li X, Zhu X, Zhang X, Wang W. Successful treatment of a pure red-cell aplasia patient with γδT cells and clonal TCR gene rearrangement: A case report. Front Immunol 2023; 13:1103448. [PMID: 36726982 PMCID: PMC9885080 DOI: 10.3389/fimmu.2022.1103448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Pure red-cell aplasia (PRCA) is a syndrome associated with reduced erythroid precursors. This report presents the case of an elderly PRCA patient with significantly proliferated γδT cells and clonal T-cell receptor (TCR) gene rearrangement. The cause of this patient's PRCA was confirmed to be an autoimmune disorder rather than malignancy on the basis of flow cytometry, TCR gene rearrangement, and positron emission tomography/computed tomography (PET/CT) findings. Moreover, the γδT cell group identified in this case was captured for the first time under the microscope; this CD4+/CD8- (extremely high CD4/CD8 ratio) population is rare in PRCA patients. Our patient with a monoclonal and polyclonal hybrid of TCR gene rearrangement was sensitive to cyclosporin A (CsA), despite previous reports suggesting that patients with TCR clonal rearrangement may respond poorly to this drug. Overall, this case presents valuable clinical findings for the future diagnosis and management of PRCA caused by autoimmune conditions and further research on γδT cells' autoimmune pathophysiology and gene rearrangement.
Collapse
Affiliation(s)
- Xian Li
- Department of Hematology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Zhu
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Xiaohong Zhang
- Department of Hematology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiqin Wang
- Department of Hematology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Weiqin Wang,
| |
Collapse
|
25
|
Oh-Oka K, Abe F, Shibuya A, Shibuya K. CD96 Blockade Ameliorates Imiquimod-Induced Psoriasis-like Dermatitis via Suppression of IL-17A Production by Dermal γδ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2313-2321. [PMID: 36307121 DOI: 10.4049/jimmunol.2200502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/04/2022] [Indexed: 02/17/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease. IL-23 plays a critical role in its pathogenesis by inducing production of IL-17A from pathological Th17 cells and IL-17A-producing γδ T cells. However, the mechanisms regulating the IL-23/IL-17 axis in psoriasis are incompletely understood. In this study, we show that, in comparison with wild-type mice, those deficient in the CD96 immunoreceptor had lower production of IL-17A in their dermal γδ T cells and milder psoriasis-like dermatitis after topical application of imiquimod (IMQ). Moreover, transfer of CD96-deficient dermal γδ T cells into the skin of Rag1-deficient mice resulted in them developing milder IMQ-induced dermatitis compared with Rag1-deficient mice transferred with wild-type dermal γδ T cells. In γδ T cells in vitro, CD96 provides a costimulatory signal for the production of IL-23-induced IL-17A. In mice given an anti-CD96 neutralizing Ab, IL-17A production from dermal γδ T cells decreased and IMQ-induced dermatitis was milder compared with mice given a control Ab. These results suggest that CD96 is a potential molecular target for the treatment of psoriasis.
Collapse
Affiliation(s)
- Kyoko Oh-Oka
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Fumie Abe
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- TNAX Biopharma Corporation, Tsukuba, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan;
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan; and
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan;
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan; and
| |
Collapse
|
26
|
del Rio Oliva M, Mellett M, Basler M. Immunoproteasome inhibition attenuates experimental psoriasis. Front Immunol 2022; 13:1075615. [PMID: 36591277 PMCID: PMC9798438 DOI: 10.3389/fimmu.2022.1075615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Psoriasis is an autoimmune skin disease associated with multiple comorbidities. The immunoproteasome is a special form of the proteasome expressed in cells of hematopoietic origin. Methods The therapeutic use of ONX 0914, a selective inhibitor of the immunoproteasome, was investigated in Card14ΔE138+/- mice, which spontaneously develop psoriasis-like symptoms, and in the imiquimod murine model. Results In both models, treatment with ONX 0914 significantly reduced skin thickness, inflammation scores, and pathological lesions in the analyzed skin tissue. Furthermore, immunoproteasome inhibition normalized the expression of several pro-inflammatory genes in the ear and significantly reduced the inflammatory infiltrate, accompanied by a significant alteration in the αβ+ and γδ+ T cell subsets. Discussion ONX 0914 ameliorated psoriasis-like symptoms in two different murine psoriasis models, which supports the use of immunoproteasome inhibitors as a therapeutic treatment in psoriasis.
Collapse
Affiliation(s)
- Marta del Rio Oliva
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), Zürich, Switzerland
- Faculty of Medicine, University of Zürich (UZH), Zürich, Switzerland
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
27
|
Tian X, Zhang Y, Li H, Jiao Y, Wang Q, Zhang Y, Ma N, Wang W. Property of mud and its application in cosmetic and medical fields: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4235-4251. [PMID: 35254605 DOI: 10.1007/s10653-022-01228-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Mud is a semi-colloidal substance formed by the mixture of inorganic, organic and water under the influence of various physical and chemical factors through geological and biological processes. The chemical composition of mud is complex, rich in Ca2+, Zn2+, Mg2+, Na+ and other mineral elements, also contains organic matter such as humic acid, fulvic acid and acetic acid. In cosmetic field, mud can improve the activity of glutathione enzyme and superoxide dismutase in skin, which helps the skin anti-aging. Besides, it also can improve the skin microbial community, due to its distinctively physical properties, mineral ions, microorganisms, etc. In medical field, mud can treat osteoarthritis, especially knee osteoarthritis which has been studied extensively, and it can also increase the chemotaxis of macrophages. On the one hand, the use of clay (a kind of refined mud) can protect the gastrointestinal tract and treat some gastrointestinal diseases. On the other hand, clay is often used as carriers or composites in drug delivery, especially in skin drug delivery, showing very positive results. The purpose of this review is to present an overview of current knowledge about the application of mud in cosmetic and medical fields and to provide ideas for further research in mud.
Collapse
Affiliation(s)
- Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Haichao Li
- College of Chemistry and Chemical Engineering, Qinghai Nationalities University, Xining, 810007, People's Republic of China
| | - Yuzhen Jiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qiuli Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yumeng Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ning Ma
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
28
|
Mulder PP, Vlig M, Fasse E, Stoop MM, Pijpe A, van Zuijlen PP, Joosten I, Boekema BK, Koenen HJ. Burn-injured skin is marked by a prolonged local acute inflammatory response of innate immune cells and pro-inflammatory cytokines. Front Immunol 2022; 13:1034420. [PMID: 36451819 PMCID: PMC9703075 DOI: 10.3389/fimmu.2022.1034420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/28/2022] [Indexed: 10/10/2023] Open
Abstract
The systemic and local immune response in burn patients is often extreme and derailed. As excessive inflammation can damage healthy tissues and slow down the healing process, modulation of inflammatory responses could limit complications and improve recovery. Due to its complexity, more detailed information on the immune effects of thermal injury is needed to improve patient outcomes. We therefore characterized and quantified subsets of immune cells and mediators present in human burn wound tissue (eschar), sampled at various time points. This study shows that after burn injury, the number of immune cells were persistently increased, unlike the normal wound healing process. There was an immediate, strong increase in neutrophils and a moderate increase in monocytes/macrophages and lymphocytes, especially in the second and third week post burn. The percentage of classical (CD14highCD16-) monocytes/macrophages demonstrated a steady decrease over time, whereas the proportion of intermediate (CD14highCD16+) monocytes/macrophages slowly increased. The absolute numbers of T cells, NK cells and B cells increased up to week 3, while the fraction of γδ T cells was increased only in week 1. Secretome profiling revealed high levels of chemokines and an overall pro-inflammatory cytokine milieu in burn tissue. The local burn immune response shows similarities to the systemic immune reaction, but differs in neutrophil maturity and lymphocyte composition. Altogether, the neutrophil surges, high levels of pro-inflammatory cytokines and limited immunosuppression might be key factors that prolong the inflammation phase and delay the wound healing process in burns.
Collapse
Affiliation(s)
- Patrick P.G. Mulder
- Preclinical & Clinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel Vlig
- Preclinical & Clinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
| | - Esther Fasse
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthea M. Stoop
- Burn Center & Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, Netherlands
| | - Anouk Pijpe
- Preclinical & Clinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
- Burn Center & Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, Netherlands
- Department of Plastic Reconstructive and Hand Surgery, Amsterdam UMC Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Amsterdam, Netherlands
| | - Paul P.M. van Zuijlen
- Burn Center & Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, Netherlands
- Department of Plastic Reconstructive and Hand Surgery, Amsterdam UMC Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Amsterdam, Netherlands
- Paediatric Surgical Centre, Emma Children’s Hospital, Amsterdam UMC University of Amsterdam, Amsterdam, Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bouke K.H.L. Boekema
- Preclinical & Clinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, Netherlands
- Department of Plastic Reconstructive and Hand Surgery, Amsterdam UMC Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hans J.P.M. Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
29
|
Liu Y, Shi C, Ma S, Ma Y, Lu X, Zhu J, Yang D. The protective role of tissue-resident interleukin 17A-producing gamma delta T cells in Mycobacterium leprae infection. Front Immunol 2022; 13:961405. [PMID: 36389696 PMCID: PMC9644052 DOI: 10.3389/fimmu.2022.961405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/06/2022] [Indexed: 10/18/2023] Open
Abstract
Mycobacterium leprae is a kind of disease-causing bacteria and results in leprosy in human. Gamma delta (γδ) T cell is a T-cell subset that is presented in both human dermis and epidermis. These cells bridge innate and adaptive immune responses and play critical roles in regulating anti-microbial defense, wound healing, and skin inflammation. Here, we investigated skin resident γδ T cells in patients with leprosy. Our data showed that γδ T cells significantly accumulated in skin lesions of leprosy patients with tuberculoid (TT) form. IL-23 can predominantly stimulate dermal γδ T cells to produce interleukin 17 (IL-17), a cytokine which may lead to disease protection. These γδ T cells expressed a specific set of surface molecules, and majority of these cells were Vδ1+. Also, IL-23 can stimulate the expansion of dermal γδ T cells expansion. Moreover, our results revealed that the transcription factor RORγt was responsible for IL-17A expression in leprosy lesion. Therefore, these data indicated that IL-23-responsive dermal γδ T cells were the major resource of IL-17A production in the skin and could be a potential target in the treatment of leprosy.
Collapse
Affiliation(s)
- Yan Liu
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chao Shi
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Ma
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuelong Ma
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinyuan Lu
- Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jianyu Zhu
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Degang Yang
- Department of Infectious Diseases, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Silva RCMC, Vasconcelos LR, Travassos LH. The different facets of heme-oxygenase 1 in innate and adaptive immunity. Cell Biochem Biophys 2022; 80:609-631. [PMID: 36018440 DOI: 10.1007/s12013-022-01087-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Abstract
Heme oxygenase (HO) enzymes are responsible for the main oxidative step in heme degradation, generating equimolar amounts of free iron, biliverdin and carbon monoxide. HO-1 is induced as a crucial stress response protein, playing protective roles in physiologic and pathological conditions, due to its antioxidant, anti-apoptotic and anti-inflammatory effects. The mechanisms behind HO-1-mediated protection are being explored by different studies, affecting cell fate through multiple ways, such as reduction in intracellular levels of heme and ROS, transcriptional regulation, and through its byproducts generation. In this review we focus on the interplay between HO-1 and immune-related signaling pathways, which culminate in the activation of transcription factors important in immune responses and inflammation. We also discuss the dual interaction of HO-1 and inflammatory mediators that govern resolution and tissue damage. We highlight the dichotomy of HO-1 in innate and adaptive immune cells development and activation in different disease contexts. Finally, we address different known anti-inflammatory pharmaceuticals that are now being described to modulate HO-1, and the possible contribution of HO-1 in their anti-inflammatory effects.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Ricardo Vasconcelos
- Cellular Signaling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, UK
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Mu R, Campos de Souza S, Liao Z, Dong L, Wang C. Reprograming the immune niche for skin tissue regeneration - From cellular mechanisms to biomaterials applications. Adv Drug Deliv Rev 2022; 185:114298. [PMID: 35439569 DOI: 10.1016/j.addr.2022.114298] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Despite the rapid development of therapeutic approaches for skin repair, chronic wounds such as diabetic foot ulcers remain an unaddressed problem that affects millions of people worldwide. Increasing evidence has revealed the crucial and diverse roles of the immune cells in the development and repair of the skin tissue, prompting new research to focus on further understanding and modulating the local immune niche for comprehensive, 'perfect' regeneration. In this review, we first introduce how different immunocytes and certain stromal cells involved in innate and adaptive immunity coordinate to maintain the immune niche and tissue homeostasis, with emphasis on their specific roles in normal and pathological wound healing. We then discuss novel engineering approaches - particularly biomaterials systems and cellular therapies - to target different players of the immune niche, with three major aims to i) overcome 'under-healing', ii) avoid 'over-healing', and iii) promote functional restoration, including appendage development. Finally, we highlight how these strategies strive to manage chronic wounds and achieve full structural and functional skin recovery by creating desirable 'soil' through modulating the immune microenvironment.
Collapse
|
32
|
Reitermaier R, Ayub T, Staller J, Kienzl P, Fortelny N, Vieyra-Garcia PA, Worda C, Fiala C, Staud C, Eppel W, Scharrer A, Krausgruber T, Elbe-Bürger A. The molecular and phenotypic makeup of fetal human skin T lymphocytes. Development 2022; 149:dev199781. [PMID: 34604909 PMCID: PMC8601710 DOI: 10.1242/dev.199781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
The adult human skin contains a vast number of T cells that are essential for skin homeostasis and pathogen defense. T cells are first observed in the skin at the early stages of gestation; however, our understanding of their contribution to early immunity has been limited by their low abundance and lack of comprehensive methodologies for their assessment. Here, we describe a new workflow for isolating and expanding significant amounts of T cells from fetal human skin. Using multiparametric flow cytometry and in situ immunofluorescence, we found a large population with a naive phenotype and small populations with a memory and regulatory phenotype. Their molecular state was characterized using single-cell transcriptomics and TCR repertoire profiling. Importantly, culture of total fetal skin biopsies facilitated T cell expansion without a substantial impact on their phenotype, a major prerequisite for subsequent functional assays. Collectively, our experimental approaches and data advance the understanding of fetal skin immunity and potential use in future therapeutic interventions.
Collapse
Affiliation(s)
- René Reitermaier
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Tanya Ayub
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Julia Staller
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Philip Kienzl
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Nikolaus Fortelny
- Department of Biosciences, University of Salzburg, Salzburg 5020, Austria
| | | | - Christof Worda
- Department of Obstetrics & Gynecology, Medical University of Vienna, Vienna 1090, Austria
| | - Christian Fiala
- Gynmed Clinic, Vienna 1150, Austria
- Department of Women's and Children's Health, Division of Obstetrics and Gynaecology, Karolinska Institute and Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Clement Staud
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna 1090, Austria
| | - Wolfgang Eppel
- Department of Obstetrics & Gynecology, Medical University of Vienna, Vienna 1090, Austria
| | - Anke Scharrer
- Department of Pathology, Medical University of Vienna, Vienna 1090, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
33
|
Li M, Cheng H, Tian D, Yang L, Du X, Pan Y, Zhang D, Mei X. D-Mannose Suppresses γδ T Cells and Alleviates Murine Psoriasis. Front Immunol 2022; 13:840755. [PMID: 35296088 PMCID: PMC8918796 DOI: 10.3389/fimmu.2022.840755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Psoriasis is a chronic skin disorder associated with multiple sequelae, such as psoriatic arthritis and cardiovascular diseases. Increasing evidence has shown that γδ T cells, as sources of IL-17A, play critical roles in psoriatic inflammations. However, there still lack effective ways to manipulate these pathogenic γδ T cells, which are less well studied than αβ T cells. The present study aims to characterize the phenotype of γδ T cells and evaluate the impact of D-mannose (a C-2 epimer of glucose) on γδ T cell-mediated psoriasis. We found that skin-draining LN γδ T cells underwent robust proliferation and acquired an IL-17-producing phenotype during psoriasis. The transcriptomic profiles of these psoriatic γδ T cells had elevated glycolytic signatures. Importantly, D-mannose treatment suppressed the γδ T cell reaction and successfully alleviated the local and systematic inflammation induced by imiquimod. The decreased AKT/mTOR/HIF-1α signaling and glycolytic ability may contribute to the suppression of γδ T cells achieved by D-mannose. Our study increased understanding of γδ T cells in psoriasis and promoted D-mannose utilization as a potential clinical application for autoimmune diseases driven by γδ T cells.
Collapse
Affiliation(s)
- Mingyang Li
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center, Beijing Clinical Research Institute, Beijing, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Haiyan Cheng
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dan Tian
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center, Beijing Clinical Research Institute, Beijing, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lu Yang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center, Beijing Clinical Research Institute, Beijing, China
| | - Xiaonan Du
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center, Beijing Clinical Research Institute, Beijing, China
| | - Yuhualei Pan
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center, Beijing Clinical Research Institute, Beijing, China
| | - Dong Zhang
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Immunology Research Center, Beijing Clinical Research Institute, Beijing, China
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xueling Mei, ; Dong Zhang,
| | - Xueling Mei
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xueling Mei, ; Dong Zhang,
| |
Collapse
|
34
|
Gulla S, Reddy VC, Araveti PB, Lomada D, Srivastava A, Reddy MC, Reddy KR. Synthesis of titanium dioxide nanotubes (TNT) conjugated with quercetin and its in vivo antitumor activity against skin cancer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Gamma delta (γδ) T cells in cancer immunotherapy; where it comes from, where it will go? Eur J Pharmacol 2022; 919:174803. [DOI: 10.1016/j.ejphar.2022.174803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
|
36
|
Baur R, Shane HL, Weatherly LM, Lukomska E, Kashon M, Anderson SE. Exposure to the immunomodulatory chemical triclosan differentially impacts immune cell populations in the skin of haired (BALB/c) and hairless (SKH1) mice. Toxicol Rep 2022; 9:1766-1776. [PMID: 36518425 PMCID: PMC9742971 DOI: 10.1016/j.toxrep.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Workers across every occupational sector have the potential to be exposed to a wide variety of chemicals, and the skin is a primary route of exposure. Furthermore, exposure to certain chemicals has been linked to inflammatory and allergic diseases. Thus, understanding the immune responses to chemical exposures on the skin and the potential for inflammation and sensitization is needed to improve worker safety and health. Responses in the skin microenvironment impact the potential for sensitization; these responses may include proinflammatory cytokines, inflammasome activation, barrier integrity, skin microbiota, and the presence of immune cells. Selection of specific mouse strains to evaluate skin effects, such as haired (BALB/c) or hairless (SKH1) mice, varies dependent on experimental design and needs of a study. However, dermal chemical exposure may impact reactions in the skin differently depending on the strain of mouse. Additionally, there is a need for established methods to evaluate immune responses in the skin. In this study, exposure to the immunomodulatory chemical triclosan was evaluated in two mouse models using immunophenotyping by flow cytometry and gene expression analysis. BALB/c mice exposed to triclosan (2%) had a higher number and frequency of neutrophils and lower number and frequency of dendritic cells in the skin compared to controls. Although these changes were not observed in SKH1 mice, SKH1 mice exposed to triclosan had a higher number and frequency of type 2 innate lymphoid cells in the skin. Taken together, these results demonstrate that exposure to an immunomodulatory chemical, triclosan, differentially impacts immune cell populations in the skin of haired and hairless mice. Additionally, the flow cytometry panel reported in this manuscript, in combination with gene expression analysis, may be useful in future studies to better evaluate the effect of chemical exposures on the skin immune response. These findings may be important to consider during strain selection, experimental design, and result interpretation of chemical exposures on the skin.
Collapse
|
37
|
Zhang W, Pajulas A, Kaplan MH. γδ T Cells in Skin Inflammation. Crit Rev Immunol 2022; 42:43-56. [PMID: 37075018 PMCID: PMC10439530 DOI: 10.1615/critrevimmunol.2022047288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gamma delta (γδ) T cells are a subset of T lymphocytes that express T cell receptor γ and 5 chains and display structural and functional heterogeneity. γδ T cells are typically of low abundance in the body and account for 1-5% of the blood lymphocytes and peripheral lymphoid tissues. As a bridge between innate and adaptive immunity, γδ T cells are uniquely poised to rapidly respond to stimulation and can regulate immune responses in peripheral tissues. The dendritic epidermal T cells in the skin epidermis can secrete growth factors to regulate skin homeostasis and re-epithelization and release inflammatory factors to mediate wound healing during skin inflammatory responses. Dermal γδ T cells can regulate the inflammatory process by producing interleukin-17 and other cytokines or chemokines. Here, we offer a review of the immune functions of γδ T cells, intending to understand their role in regulating skin barrier integrity and skin wound healing, which may be crucial for the development of novel therapeutics in skin diseases like atopic dermatitis and psoriasis.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Abigail Pajulas
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| | - Mark H Kaplan
- Department of Microbiology & Immunology, Indiana University School Medicine, Indianapolis, IN 46202
| |
Collapse
|
38
|
Ripszky Totan A, Greabu M, Stanescu-Spinu II, Imre M, Spinu TC, Miricescu D, Ilinca R, Coculescu EC, Badoiu SC, Coculescu BI, Albu C. The Yin and Yang dualistic features of autophagy in thermal burn wound healing. Int J Immunopathol Pharmacol 2022; 36:3946320221125090. [PMID: 36121435 PMCID: PMC9490459 DOI: 10.1177/03946320221125090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Burn healing should be regarded as a dynamic process consisting of two main, interrelated phases: (a) the inflammatory phase when neutrophils and monocytes infiltrate the injury site, through localized vasodilation and fluid extravasation, and (b) the proliferative-remodeling phase, which represents a key event in wound healing. In the skin, both canonical autophagy (induced by starvation, oxidative stress, and environmental aggressions) and non-canonical or selective autophagy have evolved to play a discrete, but, essential, “housekeeping” role, for homeostasis, immune tolerance, and survival. Experimental data supporting the pro-survival roles of autophagy, highlighting its Yang, luminous and positive feature of this complex but insufficient explored molecular pathway, have been reported. Autophagic cell death describes an “excessive” degradation of important cellular components that are necessary for normal cell function. This deadly molecular mechanism brings to light the darker, concealed, Yin feature of autophagy. Autophagy seems to perform dual, conflicting roles in the angiogenesis context, revealing once again, its Yin–Yang features. Autophagy with its Yin–Yang features remains the shadow player, able to decide quietly whether the cell survives or dies.
Collapse
Affiliation(s)
- Alexandra Ripszky Totan
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Maria Greabu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Marina Imre
- Department of Complete Denture, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Tudor-Claudiu Spinu
- Department of Fixed Prosthodontics and Occlusology, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Daniela Miricescu
- Department of Biochemistry, 367124Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Radu Ilinca
- Department of Biophysics, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Elena Claudia Coculescu
- Department of Oral Pathology, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Romania
| | - Silviu Constantin Badoiu
- Department of Anatomy and Embryology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan-Ioan Coculescu
- Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Crenguta Albu
- Department of Genetics, Carol Davila University of Medicine and Pharmacy, Faculty of Dental Medicine, Bucharest, Romania
| |
Collapse
|
39
|
Dhariwala MO, Scharschmidt TC. Baby's skin bacteria: first impressions are long-lasting. Trends Immunol 2021; 42:1088-1099. [PMID: 34743922 PMCID: PMC9206859 DOI: 10.1016/j.it.2021.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
Early life is a dynamic period for skin microbial colonization and immune development. We postulate that microbial exposures in this period durably alter the skin immune trajectory and later disease susceptibility. Bacteria contribute to infant skin immune imprinting via interactions with microbes as well as with cutaneous epithelial and immune cells. Excellent research is underway at the skin microbiome-immune interface, both in deciphering basic mechanisms and implementing their therapeutic applications. As emphasized herein, focusing on the unique opportunities and challenges presented by microbial immune modulation in early life will be important. In our view, only through dedicated study of skin-microbe crosstalk in this developmental window can we elucidate the molecular underpinnings of pivotal events that contribute to sustained host-microbe symbiosis.
Collapse
Affiliation(s)
- Miqdad O Dhariwala
- Department of Dermatology, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
| | - Tiffany C Scharschmidt
- Department of Dermatology, University of California San Francisco (UCSF), San Francisco, CA 94143, USA.
| |
Collapse
|
40
|
Novak N, Tordesillas L, Cabanillas B. Diversity of T cells in the skin: Novel insights. Int Rev Immunol 2021; 42:185-198. [PMID: 34607528 DOI: 10.1080/08830185.2021.1985116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
T cells populate the skin to provide an effective immunosurveillance against external insults and to maintain tissue homeostasis. Most cutaneous T cells are αβ T cells, however, γδ T cells also exist although in much lower frequency. Different subsets of αβ T cells can be found in the skin, such as short-lived effector T cells, central memory T cells, effector memory T cells, and tissue-resident memory T cells. Their differential biology, function, and location provide an ample spectrum of immune responses in the skin. Foxp3+ memory regulatory T cells have a pivotal role in maintaining homeostasis in the skin and their dysregulation has been linked with different skin pathologies. The skin also contains populations of non-classical T cells, such as γδ T cells, NK T cells, and MR1-restricted T cells. Their role in skin homeostasis and response to pathogens has been well established in the past years, however, there is also growing evidence of their role in mediating allergic skin inflammation and promoting sensitization to allergens. In this review, we provide an updated overview on the different subsets of T cells that populate the skin with a specific focus on their role in allergic skin inflammation.
Collapse
Affiliation(s)
- Natalija Novak
- Department of Dermatology and Allergy, University Hospital, Bonn, Germany
| | - Leticia Tordesillas
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Beatriz Cabanillas
- Department of Allergy, Research Institute Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
41
|
T lymphocytes as critical mediators in tissue regeneration, fibrosis, and the foreign body response. Acta Biomater 2021; 133:17-33. [PMID: 33905946 DOI: 10.1016/j.actbio.2021.04.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/23/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
Research on the foreign body response (FBR) to biomaterial implants has been focused on the roles that the innate immune system has on mediating tolerance or rejection of implants. However, the immune system also involves the adaptive immune response and it must be included in order to form a complete picture of the response to biomaterials and medical implants. In this review, we explore recent understanding about the roles of adaptive immune cells, specifically T cells, in modulating the immune response to biomaterial implants. The immune response to implants elicits a delicate balance between tissue repair and fibrosis that is mainly regulated by three types of T helper cell responses -T helper type 1, T helper type 2, and T helper type 17- and their crosstalk with innate immune cells. Interestingly, many T cell response mechanisms to implants overlap with the process of fibrosis or repair in different tissues. This review explores the fibrotic and regenerative T cell biology and draws parallels to T cell responses to biomaterials. Additionally, we also explore the biomedical engineering advancements in biomaterial applications in designing particle and scaffold systems to modulate T cell activity for therapeutics and devices. Not only do the deliberate engineering design of physical and chemical material properties and the direct genetic modulation of T cells not only offer insights to T cell biology, but they also present different platforms to develop immunomodulatory biomaterials. Thus, an in-depth understanding of T cells' roles can help to navigate the biomaterial-immune interactions and reconsider the long-lasting adaptive immune response to implants, which, in the end, contribute to the design of immunomodulatory medical implants that can advance the next generation of regenerative therapy. STATEMENT OF SIGNIFICANCE: This review article integrates knowledge of adaptive immune responses in tissue damage, wound healing, and medical device implantation. These three fields, often not discussed in conjunction, are important to consider when evaluating and designing biomaterials. Through incorporation of basic biological research alongside engineering research, we provide an important lens through which to evaluate adaptive immune contributions to regenerative medicine and medical device development.
Collapse
|
42
|
Rana I, Badarinath K, Zirmire RK, Jamora C. Isolation and Quantification of Mouse γδT-cells in vitro and in vivo. Bio Protoc 2021; 11:e4148. [PMID: 34604453 DOI: 10.21769/bioprotoc.4148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/02/2022] Open
Abstract
The skin plays an important role in protecting the body from pathogens and chemicals in the external environment. Upon injury, a healing program is rapidly initiated and involves extensive intercellular communication to restore tissue homeostasis. The deregulation of this crosstalk can lead to abnormal healing processes and is the foundation of many skin diseases. A relatively overlooked cell type that nevertheless plays critical roles in skin homeostasis, wound repair, and disease is the dendritic epidermal T cells (DETCs), which are also called γδT-cells. Given their varied roles in both physiological and pathological scenarios, interest in the regulation and function of DETCs has substantially increased. Moreover, their ability to regulate other immune cells has garnered substantial attention for their potential role as immunomodulators and in immunotherapies. In this article, we describe a protocol to isolate and culture DETCs and analyse them in vivo within the skin. These approaches will facilitate the investigation of their crosstalk with other cutaneous cells and the mechanisms by which they influence the status of the skin. Graphic abstract: Overall workflow to analyse DETCs in vitro and in vivo.
Collapse
Affiliation(s)
- Isha Rana
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India.,Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India
| | - Krithika Badarinath
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India.,National Centre for Biological Sciences (NCBS), Bangalore, Karnataka, India
| | - Ravindra K Zirmire
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India.,Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India
| | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| |
Collapse
|
43
|
Johnston DGW, Kirby B, Tobin DJ. Hidradenitis suppurativa: A folliculotropic disease of innate immune barrier dysfunction? Exp Dermatol 2021; 30:1554-1568. [PMID: 34418166 DOI: 10.1111/exd.14451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022]
Abstract
The innate immune system of human skin consists of a multi-layered barrier consisting of cells and soluble effector molecules charged with maintaining homeostasis and responding to insults and infections. It has become increasingly clear that these barrier layers become compromised in skin diseases, especially in disorders of an (auto)inflammatory nature. In the case of hidradenitis suppurativa, great strides have been made in recent years in characterizing the underlying breakdown in homeostatic innate immunity, including an increasing understanding of the central role of the hair follicle in this process. This breakdown appears to occur at multiple levels: the pilosebaceous unit, associated epithelium, the cutaneous microbiome, alteration of immune cell function and local molecular events such as complement activation. This review seeks to summarize, contextualize and analyse critically our current understanding of how these innate immune barriers become dysregulated in the early stage(s) of hidradenitis suppurativa, and to speculate on where potential hidradenitis suppurativa research could be most fruitful.
Collapse
Affiliation(s)
- Daniel G W Johnston
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Brian Kirby
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.,Charles Department of Dermatology, St Vincent's University Hospital, Dublin, Ireland
| | - Desmond J Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.,The Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
44
|
Reitermaier R, Krausgruber T, Fortelny N, Ayub T, Vieyra-Garcia PA, Kienzl P, Wolf P, Scharrer A, Fiala C, Kölz M, Hiess M, Vierhapper M, Schuster C, Spittler A, Worda C, Weninger W, Bock C, Eppel W, Elbe-Bürger A. αβγδ T cells play a vital role in fetal human skin development and immunity. J Exp Med 2021; 218:e20201189. [PMID: 33561194 PMCID: PMC7876551 DOI: 10.1084/jem.20201189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
T cells in human skin play an important role in the immune defense against pathogens and tumors. T cells are present already in fetal skin, where little is known about their cellular phenotype and biological function. Using single-cell analyses, we identified a naive T cell population expressing αβ and γδ T cell receptors (TCRs) that was enriched in fetal skin and intestine but not detected in other fetal organs and peripheral blood. TCR sequencing data revealed that double-positive (DP) αβγδ T cells displayed little overlap of CDR3 sequences with single-positive αβ T cells. Gene signatures, cytokine profiles and in silico receptor-ligand interaction studies indicate their contribution to early skin development. DP αβγδ T cells were phosphoantigen responsive, suggesting their participation in the protection of the fetus against pathogens in intrauterine infections. Together, our analyses unveil a unique cutaneous T cell type within the native skin microenvironment and point to fundamental differences in the immune surveillance between fetal and adult human skin.
Collapse
Affiliation(s)
- René Reitermaier
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Thomas Krausgruber
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Nikolaus Fortelny
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
| | - Tanya Ayub
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Philip Kienzl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Anke Scharrer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Christian Fiala
- Gynmed Clinic, Vienna, Austria
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynaecology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Marita Kölz
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Manuela Hiess
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Martin Vierhapper
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Andreas Spittler
- Core Facilities, Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Christof Worda
- Department of Obstetrics & Gynecology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Eppel
- Department of Obstetrics & Gynecology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
45
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
46
|
Varadé J, Magadán S, González-Fernández Á. Human immunology and immunotherapy: main achievements and challenges. Cell Mol Immunol 2021; 18:805-828. [PMID: 32879472 PMCID: PMC7463107 DOI: 10.1038/s41423-020-00530-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system is a fascinating world of cells, soluble factors, interacting cells, and tissues, all of which are interconnected. The highly complex nature of the immune system makes it difficult to view it as a whole, but researchers are now trying to put all the pieces of the puzzle together to obtain a more complete picture. The development of new specialized equipment and immunological techniques, genetic approaches, animal models, and a long list of monoclonal antibodies, among many other factors, are improving our knowledge of this sophisticated system. The different types of cell subsets, soluble factors, membrane molecules, and cell functionalities are some aspects that we are starting to understand, together with their roles in health, aging, and illness. This knowledge is filling many of the gaps, and in some cases, it has led to changes in our previous assumptions; e.g., adaptive immune cells were previously thought to be unique memory cells until trained innate immunity was observed, and several innate immune cells with features similar to those of cytokine-secreting T cells have been discovered. Moreover, we have improved our knowledge not only regarding immune-mediated illnesses and how the immune system works and interacts with other systems and components (such as the microbiome) but also in terms of ways to manipulate this system through immunotherapy. The development of different types of immunotherapies, including vaccines (prophylactic and therapeutic), and the use of pathogens, monoclonal antibodies, recombinant proteins, cytokines, and cellular immunotherapies, are changing the way in which we approach many diseases, especially cancer.
Collapse
Affiliation(s)
- Jezabel Varadé
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Susana Magadán
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - África González-Fernández
- CINBIO, Centro de Investigaciones Biomédicas, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas, Marcosende, 36310, Vigo, Spain.
- Instituto de Investigación Sanitaria Galicia Sur (IIS-Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| |
Collapse
|
47
|
Caron J, Ridgley LA, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Front Immunol 2021; 12:666983. [PMID: 33854516 PMCID: PMC8039298 DOI: 10.3389/fimmu.2021.666983] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of viruses with pandemic potential such as the SARS-CoV-2 coronavirus causing COVID-19 poses a global health challenge. There is remarkable progress in vaccine technology in response to this threat, but their design often overlooks the innate arm of immunity. Gamma Delta (γδ) T cells are a subset of T cells with unique features that gives them a key role in the innate immune response to a variety of homeostatic alterations, from cancer to microbial infections. In the context of viral infection, a growing body of evidence shows that γδ T cells are particularly equipped for early virus detection, which triggers their subsequent activation, expansion and the fast deployment of antiviral functions such as direct cytotoxic pathways, secretion of cytokines, recruitment and activation of other immune cells and mobilization of a trained immunity memory program. As such, γδ T cells represent an attractive target to stimulate for a rapid and effective resolution of viral infections. Here, we review the known aspects of γδ T cells that make them crucial component of the immune response to viruses, and the ways that their antiviral potential can be harnessed to prevent or treat viral infection.
Collapse
Affiliation(s)
- Jonathan Caron
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Laura Alice Ridgley
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
48
|
Wang Y, Kong Y, Wu MX. Innovative Systems to Deliver Allergen Powder for Epicutaneous Immunotherapy. Front Immunol 2021; 12:647954. [PMID: 33841430 PMCID: PMC8033039 DOI: 10.3389/fimmu.2021.647954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Allergy is a disorder owing to hyperimmune responses to a particular kind of substance like food and the disease remains a serious healthcare burden worldwide. This unpleasant and sometimes fatal allergic disease has been tackled vigorously by allergen-specific immunotherapy over a century, but the progress made so far is far from satisfactory for some allergies. Herein, we introduce innovative, allergen powder-based epicutaneous immunotherapies (EPIT), which could potentially serve to generate a new stream of technological possibilities that embrace the features of super safety and efficacious immunotherapy by manipulating the plasticity of the skin immune system via sufficient delivery of not only allergens but also tolerogenic adjuvants. We attempt to lay a framework to help understand immune physiology of the skin, epicutaneous delivery of powdered allergy, and potentials for tolerogenic adjuvants. Preclinical and clinical data are reviewed showing that deposition of allergen powder into an array of micropores in the epidermis can confer significant advantages over intradermal or subcutaneous injection of aqueous allergens or other epicutaneous delivery systems to induce immunological responses toward tolerance at little risk of anaphylaxis. Finally, the safety, cost-effectiveness, and acceptability of these novel EPITs are discussed, which offers the perspective of future immunotherapies with all desirable features.
Collapse
Affiliation(s)
- Yensheng Wang
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yifei Kong
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mei X Wu
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Wang J, Zhang XR, He WF, Liang GP. [Research advances on the mechanism of dendritic epidermal T lymphocytes in wound healing]. ZHONGHUA SHAO SHANG ZA ZHI = ZHONGHUA SHAOSHANG ZAZHI = CHINESE JOURNAL OF BURNS 2021; 37:296-300. [PMID: 33765727 PMCID: PMC11917247 DOI: 10.3760/cma.j.cn501120-20200226-00092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Wound healing is a complex and critical process, which includes three stages: inflammation, proliferation, and remodeling. The epidermal cells are precisely regulated in this process. On one hand, keratinocytes around the wound edge migrate and proliferate to form a new basement membrane to cover the wound. On the other hand, the epidermal stem cells are activated with the proliferation and differentiation being enhanced, and the terminal differentiation and apoptosis being inhibited; and together with keratinocytes, epidermal stem cells promote the process of re-epithelialization under the regulation of various factors. In the epidermis, there is a group of resident T cell subsets, dendritic epidermal lymphocytes (DETCs) that play a key role in protecting the function of epidermal tissue. DETCs are activated after recognizing unknown antigens, the activated DETCs secret cytokines such as insulin-like growth factor Ⅰ, keratinocyte growth factor-1/2, granulocyte-macrophage colony stimulating factor, interferon-γ, and transforming growth factor-β, which promote epidermal homeostasis and re-epithelialization by regulating the dynamic balance among keratinocytes migration, proliferation, and apoptosis, and the differentiation of epidermal stem cells around the wound edge. This article discusses the biological characteristics of DETCs and their roles in the maintenance of epidermal homeostasis and wound healing.
Collapse
Affiliation(s)
- J Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - X R Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - W F He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - G P Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| |
Collapse
|
50
|
Identifying the Immunological Gene Signatures of Immune Cell Subtypes. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6639698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The immune system is a complicated defensive system that comprises multiple functional cells and molecules acting against endogenous and exogenous pathogenic factors. Identifying immune cell subtypes and recognizing their unique immunological functions are difficult because of the complicated cellular components and immunological functions of the immune system. With the development of transcriptomics and high-throughput sequencing, the gene expression profiling of immune cells can provide a new strategy to explore the immune cell subtyping. On the basis of the new profiling data of mouse immune cell gene expression from the Immunological Genome Project (ImmGen), a novel computational pipeline was applied to identify different immune cell subtypes, including αβ T cells, B cells, γδ T cells, and innate lymphocytes. First, the profiling data was analyzed by a powerful feature selection method, Monte-Carlo Feature Selection, resulting in a feature list and some informative features. For the list, the two-stage incremental feature selection method, incorporating random forest as the classification algorithm, was applied to extract essential gene signatures and build an efficient classifier. On the other hand, a rule learning scheme was applied on the informative features to construct quantitative expression rules. A group of gene signatures was found as qualitatively related to the biological processes of four immune cell subtypes. The quantitative expression rules can efficiently cluster immune cells. This work provides a novel computational tool for immune cell quantitative subtyping and biomarker recognition.
Collapse
|