1
|
Kim K, Lee M, Shin Y, Lee Y, Kim TJ. Optimizing Cancer Treatment Through Gut Microbiome Modulation. Cancers (Basel) 2025; 17:1252. [PMID: 40227841 PMCID: PMC11988035 DOI: 10.3390/cancers17071252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/30/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome plays a pivotal role in modulating cancer therapies, including immunotherapy and chemotherapy. Emerging evidence demonstrates its influence on treatment efficacy, immune response, and resistance mechanisms. Specific microbial taxa enhance immune checkpoint inhibitor efficacy, while dysbiosis can contribute to adverse outcomes. Chemotherapy effectiveness is also influenced by microbiome composition, with engineered probiotics and prebiotics offering promising strategies to enhance drug delivery and reduce toxicity. Moreover, microbial metabolites, such as short-chain fatty acids, and engineered microbial systems have shown potential to improve therapeutic responses. These findings underscore the importance of personalized microbiome-based approaches in optimizing cancer treatments.
Collapse
Affiliation(s)
- Kyuri Kim
- College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul 03760, Republic of Korea;
| | - Mingyu Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Yoojin Shin
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Yoonji Lee
- College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (M.L.); (Y.S.); (Y.L.)
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| |
Collapse
|
2
|
Tang MH, Ligthart I, Varga S, Lebeer S, van Overveld FJ, Rijkers GT. Mutual Interactions Between Microbiota and the Human Immune System During the First 1000 Days of Life. BIOLOGY 2025; 14:299. [PMID: 40136555 PMCID: PMC11940030 DOI: 10.3390/biology14030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/25/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
The development of the human immune system starts during the fetal period in a largely, but probably not completely, sterile environment. During and after birth, the immune system is exposed to an increasingly complex microbiota. The first microbiota encountered during passage through the birth canal colonize the infant gut and induce the tolerance of the immune system. Transplacentally derived maternal IgG as well as IgA from breast milk protect the infant from infections during the first 100 days, during which the immune system further develops and immunological memory is formed. The Weaning and introduction of solid food expose the immune system to novel (food) antigens and allow for other microbiota to colonize. The cells and molecules involved in the mutual and intricate interactions between microbiota and the developing immune system are now beginning to be recognized. These include bacterial components such as polysaccharide A from Bacteroides fragilis, as well as bacterial metabolites such as the short-chain fatty acid butyrate, indole-3-aldehyde, and indole-3-propionic acid. All these, and probably more, bacterial metabolites have specific immunoregulatory functions which shape the development of the human immune system during the first 1000 days of life.
Collapse
Affiliation(s)
- Muy Heang Tang
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Ishbel Ligthart
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Samuel Varga
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Sarah Lebeer
- Lab of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, 2020 Antwerpen, Belgium;
| | - Frans J. van Overveld
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| | - Ger T. Rijkers
- Department of Science and Engineering, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.H.T.); (I.L.); (S.V.); (F.J.v.O.)
| |
Collapse
|
3
|
Mandle HB, Jenab M, Gunter MJ, Tjønneland A, Olsen A, Dahm CC, Zhang J, Sugier PE, Rothwell J, Severi G, Kaaks R, Katzke VA, Schulze MB, Masala G, Sieri S, Panico S, Sacerdote C, Bonet C, Sánchez MJ, Amiano P, Huerta JM, Guevara M, Palmqvist R, Löwenmark T, Perez-Cornago A, Weiderpass E, Heath AK, Cross AJ, Vineis P, Hughes DJ, Fedirko V. Inflammation and gut barrier function-related genes and colorectal cancer risk in western European populations. Mutagenesis 2025; 40:48-60. [PMID: 38441165 PMCID: PMC11911009 DOI: 10.1093/mutage/geae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/04/2024] [Indexed: 03/21/2024] Open
Abstract
Gut barrier dysfunction and related inflammation are known to be associated with the development and progression of colorectal cancer (CRC). We investigated associations of 292 single-nucleotide polymorphisms (SNPs) from 27 genes related to endotoxins/lipopolysaccharide (LPS) sensing and tolerance, mucin synthesis, inflammation, and Crohn's disease with colon and rectal cancer risks. Incident CRC cases (N = 1374; colon = 871, rectum = 503) were matched 1:1 to controls nested within the European Prospective Investigation into Cancer and Nutrition cohort. Previously measured serum concentrations of gut barrier function and inflammation biomarkers (flagellin/LPS-specific immunoglobulins and C-reactive protein [CRP]) were available for a sub-set of participants (Ncases = 1001; Ncontrols = 667). Forty-two unique SNPs from 19 different genes were associated with serum biomarkers at Punadjusted ≤ 0.05 among controls. Among SNPs associated with a gut permeability score, 24 SNPs were in genes related to LPS sensing and mucin synthesis. Nine out of 12 SNPs associated with CRP were in genes related to inflammation or Crohn's disease. TLR4 was associated with colon cancer at the SNP level (nine SNPs, all Punadjusted ≤ 0.04) and at the gene level (Punadjusted ≤ 0.01). TLR4 rs10759934 was associated with rectal cancer but not colon cancer. Similarly, IL10 was associated with rectal cancer risk at an SNP and gene level (both Punadjusted ≤ 0.01), but not colon cancer. Genes and SNPs were selected a priori; therefore, we present unadjusted P-values. However, no association was statistically significant after multiple testing correction. This large and comprehensive study has identified gut barrier function and inflammation-related genes possibly contributing to CRC risk in European populations and is consistent with potential etiological links between host genetic background, gut barrier permeability, microbial endotoxemia, and CRC development.
Collapse
Affiliation(s)
- Hannah B Mandle
- Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK
| | - Anne Tjønneland
- Diet, Cancer and Health, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, 1353 Copenhagen K, Denmark
| | - Anja Olsen
- Department of Public Health, University of Copenhagen, 1353 Copenhagen K, Denmark
- Department of Public Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Christina C Dahm
- Department of Public Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jie Zhang
- Department of Public Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Pierre-Emmanuel Sugier
- Université Paris-Saclay, UVSQ, Inserm ‘Exposome and Heredity’ team, CESP U1018, 94807 Villejuif Cedex, France
- Laboratoire de Mathématiques et de leurs Applications de Pau E2S UPPA, CNRS, 64013 Pau Cedex, France
| | - Joseph Rothwell
- Université Paris-Saclay, UVSQ, Inserm ‘Exposome and Heredity’ team, CESP U1018, 94807 Villejuif Cedex, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm ‘Exposome and Heredity’ team, CESP U1018, 94807 Villejuif Cedex, France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Verena A Katzke
- Division of Cancer Epidemiology, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14469 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14469 Nuthetal, Germany
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy
| | - Salvatore Panico
- Dipartimento Di Medicina Clinica E Chirurgia, Federico II University, 80131 Naples, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, AOU Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Catalina Bonet
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, 0890x Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 0890x Barcelona, Spain
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.18011 Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, BioGipuzkoa Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, 20014 Donostia – San Sebastian, Spain
| | - José María Huerta
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council-IMIB, 30120, El Palmar, Murcia, Spain
| | - Marcela Guevara
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Instituto de Salud Pública y Laboral de Navarra, 31003 Pamplona, Navarra, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain
| | - Richard Palmqvist
- Department of Medical Biosciences, Umea University, 901 87 Umeå, Sweden
| | - Thyra Löwenmark
- Department of Medical Biosciences, Umea University, 901 87 Umeå, Sweden
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Elisabete Weiderpass
- Office of the Director, International Agency for Research on Cancer, 69366 Lyon Cedex 07, France
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of public Health, Imperial College London, London W2 1PG, UK
- Italian Institute for Genomic Medicine (IIGM), 10060 Candiolo TO,Italy
| | - David J Hughes
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Veronika Fedirko
- Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA 30322, USA
- Department of Epidemiology, University of Texas M. D. Anderson Cancer Center, 77030 Houston, TX, USA
| |
Collapse
|
4
|
Chen J, Chen X, Ma J. Causal relationships of gut microbiota and blood metabolites with ovarian cancer and endometrial cancer: a Mendelian randomization study. J Ovarian Res 2025; 18:54. [PMID: 40082983 PMCID: PMC11905533 DOI: 10.1186/s13048-025-01630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVES The study aimed to investigate the causal relationships of gut microbiota (GM), ovarian cancer (OC), endometrial cancer (EC), and potential metabolite mediators using Mendelian randomization (MR) analysis. METHODS Bidirectional two-sample MR analysis and reverse MR analysis of GM on OC/EC were employed to determine the causal effects of GM on OC/EC and the mediating role of blood metabolites in the relationship between GM and OC/EC, with results validated through sensitivity analysis. RESULTS We identified 6 pathogenic bacterial taxa associated with OC, including Euryarchaeota, Escherichia-Shigella, FamilyXIIIAD3011group, Prevotella9, and two unknown genera. Christensenellaceae R.7group, Tyzzerella3, and Victivallaceae were found to be protective against OC. The increase in EC risk was positively associated with Erysipelotrichia, Erysipelotrichaceae, Erysipelotrichales, and FamilyXI. Dorea, RuminococcaceaeUCG014, and Turicibacter exhibited a negative correlation with the EC risk. A total of 26 and 19 blood metabolites related to GM were identified, showing significant correlations with OC and EC, respectively. Cytosine was found to be an intermediate metabolite greatly associated with EC and FamilyXI. In reverse MR analysis, the FamilyXIIIAD3011group exhibited a significant bidirectional causal relationship with OC. CONCLUSION Our study revealed causal relationships of GM and intermediate metabolites with OC/EC, providing new avenues for understanding OC/EC and developing effective treatment strategies.
Collapse
Affiliation(s)
- Jinyan Chen
- Department of Gynecology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310003, China
| | - Xuejun Chen
- Department of Gynecology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310003, China
| | - Jiong Ma
- Department of Gynecology, School of Medicine, The Second Affiliated Hospital of Zhejiang University, No. 88 Jiefang Road, Shangcheng District, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Li Y, Zhuang M, Mei S, Hu G, Zhang J, Qiu W, Wang X, Tang J. Gut microbiota, immune cell, colorectal cancer association mediators: a Mendelian randomization study. BMC Cancer 2025; 25:396. [PMID: 40038645 DOI: 10.1186/s12885-025-13574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND There have been previously reported associations between the gut microbiota, immune cells, and colorectal cancer; however, the specific mechanisms underlying these relationships remain largely unexplored and require further research. Therefore, in this study, we aimed to unravel the interactions between the gut microbiota, immune cells, and colorectal cancer. METHODS The analysis used genome-wide association study (GWAS) data encompassing 207 microbial taxa and 205 functional pathways and data on 731 immune cell phenotypes. Colorectal cancer data on 6 581 cases and 463 421 controls were sourced from the Integrative Epidemiology Unit Open GWAS Project. Univariate inverse-variance weighted Mendelian randomization analysis was used to identify gut microbial taxa associated with colorectal cancer. Mediation analysis was used to identify the mediating role of specific immune cells in the link between gut bacteria and colorectal cancer. RESULTS Univariate inverse-variance weighted Mendelian randomization analysis revealed that several microbial taxa from the Actinobacteria and Firmicutes phyla were significantly associated with colorectal cancer. Coriobacteriaceae (odds ratio [OR]: 0.84, 95% confidence interval [CI]: 0.72-0.97), Sutterellaceae (OR: 0.88, 95% CI: 0.78-0.99), Eggerthella (OR: 0.91, 95% CI: 0.84-0.99), Coriobacteriales (OR: 0.84, 95% CI: 0.72-0.97), Collinsella aerofaciens (OR: 0.85, 95% CI: 0.74-0.99), and Ruminococcus bromii (OR: 0.91, 95% CI: 0.83-0.99) were negatively associated with colorectal cancer, whereas Lactobacillales (OR: 1.11, 95% CI: 1.03-1.20), Veillonella (OR: 1.08, 95% CI: 1.01-1.15), and Bifidobacterium bifidum (OR: 1.05, 95% CI: 1.00-1.09) were positively associated with colorectal cancer. Mediation analysis revealed that in the causal pathway from Collinsella aerofaciens to colorectal cancer, CD127 on CD28+ CD45RA- CD8br and human leukocyte antigen (HLA) DR on CD33- HLA DR+, mediated 11.30% and - 6.52% of the effect, respectively, and that in the causal pathway from Ruminococcus bromii to colorectal cancer, IgD- CD38dim %lymphocyte mediated - 14.80% of the effect. CONCLUSIONS These results highlight the potential of gut microbiota and immune cell phenotypes as novel treatment strategies for colorectal cancer.
Collapse
Affiliation(s)
- Yuegang Li
- Department of Surgical Oncology, First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Meng Zhuang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shiwen Mei
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Gang Hu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jinzhu Zhang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenlong Qiu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xishan Wang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianqiang Tang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
6
|
Parhizkar E, Vosough P, Baneshi M, Keshavarzi A, Lohrasbi P, Taghizadeh S, Savardashtaki A. Probiotics and gut microbiota modulation: implications for skin health and disease management. Arch Microbiol 2025; 207:68. [PMID: 39988585 DOI: 10.1007/s00203-025-04267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
The gut microbiota, consisting of a varied population of microorganisms in the digestive tract, is essential for sustaining overall human health, encompassing skin health. This review explored the intricate relationship between gut microbiota and various skin disorders, investigating the pathways through which gut dysbiosis may have impacted the development and progression of these conditions. We focused on the impact of gut microbiota on atopic dermatitis, psoriasis, acne vulgaris, acne rosacea, and melanoma. The review highlighted the potential of probiotics as a therapeutic strategy for modulating gut microbiota composition and, consequently, improving skin health. We discussed the evidence supporting the use of probiotics in managing these skin disorders and explored the mechanisms by which probiotics delivered their positive effects. Finally, we discussed the potential role of gut microbiota in other skin diseases, emphasizing the need for further research to unravel the complex interplay between the gut and the skin. Significant gaps remain in understanding the gut-skin axis, how microbial interactions contribute to skin disorders, and how to effectively manipulate the microbiome for therapeutic purposes. This review provided extensive research on the gut-skin axis, highlighting the promising prospects of modulating gut microbiota as a therapeutic strategy for various dermatological conditions.
Collapse
Affiliation(s)
- Elahe Parhizkar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Baneshi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Parvin Lohrasbi
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Taghizadeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Wu F, Lin S, Luo H, Wang C, Liu J, Zhu X, Pang Y. Noncontact microbiota transplantation by core-shell microgel-enabled nonleakage envelopment. SCIENCE ADVANCES 2025; 11:eadr7373. [PMID: 39908366 DOI: 10.1126/sciadv.adr7373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Transplantation of beneficial bacteria to specific microbiota has been widely exploited to treat diseases by reshaping a healthy microbial structure. However, direct exposure of exogenous bacteria in vivo suffers from low bioavailability and infection risk. Here, we describe a noncontact microbiota transplantation system (NMTS) by core-shell microgel-enabled nonleakage envelopment. Bacteria are encapsulated into the core of core-shell microgels via two-step light-initiated emulsion polymerization of gelatin methacrylate. NMTS is versatile for biocontainment of diverse strains, showing near complete encapsulation and negligible influence on bacterial activity. As a proof-of-concept study on probiotic transplantation to the gut microbiota, NMTS demonstrates the shielding effect to protect sealed bacteria from intraluminal insults of low pH and bile acid, the toughness to prevent bacterial leakage during entire gastrointestinal passage and reduce infection risk, and the permeability to release beneficial metabolites and reconstruct a balanced intestinal microbial structure, proposing a contactless fashion for advanced microbiota transplantation.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huilong Luo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chuhan Wang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jinyao Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Ayyanar MP, Vijayan M. A review on gut microbiota and miRNA crosstalk: implications for Alzheimer's disease. GeroScience 2025; 47:339-385. [PMID: 39562408 PMCID: PMC11872870 DOI: 10.1007/s11357-024-01432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and progressive neuronal damage. Recent research has highlighted the significant roles of the gut microbiota and microRNAs (miRNAs) in the pathogenesis of AD. This review explores the intricate interaction between gut microbiota and miRNAs, emphasizing their combined impact on Alzheimer's progression. First, we discuss the bidirectional communication within the gut-brain axis and how gut dysbiosis contributes to neuroinflammation and neurodegeneration in AD. Changes in gut microbiota composition in Alzheimer's patients have been linked to inflammation, which exacerbates disease progression. Next, we delve into the biology of miRNAs, focusing on their roles in gene regulation, neurodevelopment, and neurodegeneration. Dysregulated miRNAs are implicated in AD pathogenesis, influencing key processes like inflammation, tau pathology, and amyloid deposition. We then examine how the gut microbiota modulates miRNA expression, particularly in the brain, potentially altering neuroinflammatory responses and synaptic plasticity. The interplay between gut microbiota and miRNAs also affects blood-brain barrier integrity, further contributing to Alzheimer's pathology. Lastly, we explore therapeutic strategies targeting this gut microbiota-miRNA axis, including probiotics, prebiotics, and dietary interventions, aiming to modulate miRNA expression and improve AD outcomes. While promising, challenges remain in fully elucidating these interactions and translating them into effective therapies. This review highlights the importance of understanding the gut microbiota-miRNA relationship in AD, offering potential pathways for novel therapeutic approaches aimed at mitigating the disease's progression.
Collapse
Affiliation(s)
- Maruthu Pandian Ayyanar
- Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624302, Tamil Nadu, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
9
|
Wang YF, Wang XY, Chen BJ, Yang YP, Li H, Wang F. Impact of microplastics on the human digestive system: From basic to clinical. World J Gastroenterol 2025; 31:100470. [PMID: 39877718 PMCID: PMC11718642 DOI: 10.3748/wjg.v31.i4.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/08/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024] Open
Abstract
As a new type of pollutant, the harm caused by microplastics (MPs) to organisms has been the research focus. Recently, the proportion of MPs ingested through the digestive tract has gradually increased with the popularity of fast-food products, such as takeout. The damage to the digestive system has attracted increasing attention. We reviewed the literature regarding toxicity of MPs and observed that they have different effects on multiple organs of the digestive system. The mechanism may be related to the toxic effects of MPs themselves, interactions with various substances in the biological body, and participation in various signaling pathways to induce adverse reactions as a carrier of toxins to increase the time and amount of body absorption. Based on the toxicity mechanism of MPs, we propose specific suggestions to provide a theoretical reference for the government and relevant departments.
Collapse
Affiliation(s)
- Ya-Fen Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Xin-Yi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Bang-Jie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yi-Pin Yang
- First Clinical Medical College, Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Hao Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Fan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
10
|
Valciukiene J, Lastauskiene E, Laurinaviciene A, Jakubauskas M, Kryzauskas M, Valkiuniene RB, Augulis R, Garnelyte A, Kavoliunas J, Silinskaite U, Poskus T. Interaction of human gut microbiota and local immune system in progression of colorectal adenoma (MIMICA-1): a protocol for a prospective, observational cohort study. Front Oncol 2025; 14:1495635. [PMID: 39834942 PMCID: PMC11743970 DOI: 10.3389/fonc.2024.1495635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction The current understanding of colorectal carcinogenesis is based on the adenoma-carcinoma sequence, where genetics, intestinal microbiota changes and local immunity shifts seem to play the key roles. Despite the emerging evidence of dysbiotic intestinal state and immune-cell infiltration changes in patients with colorectal adenocarcinoma, early and advanced adenoma as precursors of colorectal cancer, and carcinoma in situ as the following progression, are rather less studied. The newly colon-site adapted AI-based analysis of immune infiltrates is able to predict long-term outcomes of colon carcinoma. Though it could also facilitate the pathologic evaluation of precancerous lesion's potential to progress. Therefore, the purpose of this prospective cohort study (MIMICA-1) is, firstly, to identify the intestinal microbiota and immune infiltration patterns around the normal bowel tissue, early and advanced adenoma, carcinoma in situ, and adenocarcinoma, and secondly, to analyze the immune - microbiome interplay along the steps of conventional colorectal tumorigenesis. Methods and analyses This study aims to prospectively recruit 40 patients (10 per group) with confirmed colorectal dysplasia undergoing endoscopic polypectomy, endoscopic mucosal resection for colorectal small (≤1cm), and large (>1cm) adenoma or carcinoma in situ, or biopsy and subsequent colon resection for invasive colorectal cancer, and 10 healthy patients undergoing screening colonoscopy. Stool samples will be collected prior to bowel preparation for the analysis of fecal (luminal) microbiota composition. Biopsy specimens will be taken from the terminal ileum, right colon, left colon, and a pathological lesion in the colon (if present) to assess mucosa-associated microbiota composition and intestinal immunity response. DNA will be extracted from all samples and sequenced using the Illumina MiSeq platform. Unifrac and Bray-Curtis methods will be used to assess microbial diversity. The intestinal immune system response will be examined using digital image analysis where primarily immunohistochemistry procedures for CD3, CD8, CD20 and CD68 immune cell markers will be performed. Thereafter, the count, density and distribution of immunocompetent cells in epithelial and stromal tissue compartments will be evaluated using AI-based platform. The interaction between the microbial shifts and intestinal immune system response in adenoma-carcinoma sequence and the healthy patients will be examined. In addition, fecal samples will be explored for gut microbiota's composition, comparing fecal- and tissue-derived bacterial patterns in healthy gut and along the adenoma-carcinoma sequence. Discussion We hypothesize that changes within the human gut microbiota led to detectable alterations of the local immune response and correlate with the progression from normal mucosa to colorectal adenoma and invasive carcinoma. It is expectable to find more severe gut immune infiltration at dysplasia site, though analyzing invasive colorectal cancer we expect to detect broader mucosa-associated and luminal microbiota changes with subsequent local immune response at near-lesion site and possibly throughout the entire colon. We believe that specific compositional differences detected around premalignant colorectal lesions are critically important for its primary role in initiation and acceleration of colorectal carcinogenesis. Thus, these microbial patterns could potentially supplement fecal immunohistochemical tests for the early non-invasive detection of colorectal adenoma. Moreover, AI-based analysis of immune infiltrates could become additional diagnostic and prognostic tool in precancerous lesions prior to the development of colorectal cancer. Registration The study is registered at the Australian New Zealand Clinical Trials Registry (ACTRN12624000976583) https://www.anzctr.org.au/.
Collapse
Affiliation(s)
- Jurate Valciukiene
- Clinic of Gastroenterology, Nephro-Urology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Egle Lastauskiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aida Laurinaviciene
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Matas Jakubauskas
- Clinic of Gastroenterology, Nephro-Urology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Marius Kryzauskas
- Clinic of Gastroenterology, Nephro-Urology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ruta Barbora Valkiuniene
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Renaldas Augulis
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ausra Garnelyte
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Justinas Kavoliunas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Tomas Poskus
- Clinic of Gastroenterology, Nephro-Urology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
11
|
Song C, Zhao C. Innovative Bacterial Therapies and Genetic Engineering Approaches in Colorectal Cancer: A Review of Emerging Strategies and Clinical Implications. J Microbiol Biotechnol 2024; 34:2397-2412. [PMID: 39467702 PMCID: PMC11733548 DOI: 10.4014/jmb.2408.08026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Colorectal cancer (CRC) is considered a widespread cancer, ranking second in mortality and incidence among cancer patients worldwide. CRC develops from adenoma to carcinoma through the dynamic interplay of genetic and environmental factors. The conventional modes of treatment, including operation, chemotherapy, and irradiation, are associated with significant challenges, such as drug resistance and toxicity, necessitating the exploration of new treatment modalities. These difficulties reveal the necessity of the emergence of new therapeutic approaches. This review mainly emphasizes the bacterial-based therapies that have recently developed like the engineered bacteriophage therapy and bacterial immunotherapy that pale the existing chemotherapy in terms of toxicity but are effective in killing tumor cells. Also, it also investigates various molecular genetic engineering strategies such as CRISPR-Cas9, CRISPR prime editing and gene silencing to achieve better targeting of CRC. Implementing these new approaches into the forefront of CRC treatment may bring better, more effective therapy with fewer side effects on patients' quality of life.
Collapse
Affiliation(s)
- Chunxiao Song
- Department of Colorectal and Anal Surgery, Weifang People's Hospital, Weifang 261000, P. R. China
| | - Chunwu Zhao
- Department of Gastrointestinal Surgery, Weifang People's Hospital, Weifang 261000, P. R. China
| |
Collapse
|
12
|
Guzowska M, Dziendzikowska K, Kopiasz Ł, Gajewska M, Wilczak J, Harasym J, Czerwińska M, Gromadzka-Ostrowska J. Oat Beta-Glucans Modulate the Gut Microbiome, Barrier Function, and Immune Responses in an In Vivo Model of Early-Stage Colorectal Cancer. Int J Mol Sci 2024; 25:13586. [PMID: 39769349 PMCID: PMC11677220 DOI: 10.3390/ijms252413586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Oat beta-glucans (OBGs) are known for their beneficial effects on gut health, including anti-inflammatory and prebiotic effects. The aim of this study was to evaluate the impact of two doses (1% or 3% w/w) of dietary low-molar-mass OBG supplementation on colorectal cancer (CRC) development, immune cell profiles, intestinal barrier protein expression, and microbiota composition in a rat model of CRC induced by azoxymethane (AOM). Microbiome analysis revealed significant differences between the control and CRC groups. OBG supplementation influenced microbial diversity and abundance, particularly increasing the population of beneficial bacteria, such as Lachnospiraceae and Ruminococcaceae, associated with butyrate production. However, higher doses of OBG (3%) led to a decrease in butyrate-producing bacteria and a shift toward higher levels of Akkermansia muciniphila and Enterococcus faecalis. Immune cell profiling showed a higher percentage of T lymphocytes (CD3+) in rats fed a diet supplemented with 3% OBG, both in the intraepithelial (IEL) and lamina propria lymphocytes (LPLs). Immunohistochemical analysis of the large intestine revealed a significantly elevated expression of intestinal barrier proteins, i.e., claudin 3 and 4 in rats receiving 1% OBG, while claudin 7 expression was reduced in early-stage CRC. Gene expression analysis also revealed a significant downregulation of Cldn1 in CRC rats. These findings suggest that dietary OBG supplementation modulates the gut microbiota, immune response, and intestinal barrier integrity, with potential implications for nutritional CRC development prevention and treatment strategies.
Collapse
Affiliation(s)
- Magdalena Guzowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.G.); (J.W.)
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (Ł.K.); (M.C.); (J.G.-O.)
| | - Łukasz Kopiasz
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (Ł.K.); (M.C.); (J.G.-O.)
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.G.); (J.W.)
| | - Jacek Wilczak
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (M.G.); (J.W.)
| | - Joanna Harasym
- Department of Biotechnology and Food Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland;
| | - Malwina Czerwińska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (Ł.K.); (M.C.); (J.G.-O.)
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (Ł.K.); (M.C.); (J.G.-O.)
| |
Collapse
|
13
|
Tanasă F, Nechifor M, Teacă CA. Essential Oils as Alternative Green Broad-Spectrum Biocides. PLANTS (BASEL, SWITZERLAND) 2024; 13:3442. [PMID: 39683235 DOI: 10.3390/plants13233442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Natural compounds from plants represent suitable options to replace synthetic biocides when employed against microorganisms in various applications. Essential oils (EOs) have attracted increased interest due to their biocompatible and rather innocuous nature, and complex biological activity (fungicide, biocide and anti-inflammatory, antioxidant, immunomodulatory action, etc.). EOs are complex mixtures of derived metabolites with high volatility obtained from various vegetal parts and employed to a great extent in different healthcare (natural cures, nutrition, phyto- and aromatherapy, spices) and cosmetics applications (perfumery, personal and beauty care), as well as in cleaning products, agriculture and pest control, food conservation and active packaging, or even for restauration and preservation of cultural artifacts. EOs can act in synergy with other compounds, organic and synthetic as well, when employed in different complex formulations. This review will illustrate the employment of EOs in different applications based on some of the most recent reports in a systematic and comprehensive, though not exhaustive, manner. Some critical assessments will also be included, as well as some perspectives in this regard.
Collapse
Affiliation(s)
- Fulga Tanasă
- Polyaddition and Photochemistry Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marioara Nechifor
- Polyaddition and Photochemistry Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
14
|
Chen Y, Ye X, Li X, Wang F, Yang J, Sun X, Yan S. Dynamic change of gut microbiota in head and neck concurrent chemoradiotherapy patients and its potential value in the prediction of acute oral mucositis grade as well as quality of life. Clin Transl Oncol 2024; 26:3191-3201. [PMID: 38844739 DOI: 10.1007/s12094-024-03542-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/28/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE Radiotherapy is the major therapy for head and neck squamous cell carcinoma (HNSCC). However, whether gut microbiota changes in HNSCC patients who received concurrent chemoradiotherapy remains unclear. This study aimed to investigate the dynamic change of gut microbiota composition, construct the first radiotherapy-related gut microbiota database in these patients and identify the potential value of the gut microbiota changing in the prediction of acute oral mucositis grade as well as patients' life quality. METHODS We enrolled 47 HNSCC patients who scheduled with concurrent chemoradiotherapy. The field was irradiated with a total dose of 66-70 Gy in 33-35 fractions. All the patients received 2-3 cycles of platinum-based chemotherapy. After feces specimens collected, bacterial genomic DNA was isolated using magnetic beads and then analyzed by the Illumina MiSeq Sequencing System based on the V3-V4 hypervariable regions of the 16S rRNA gene. RESULTS 194 genera which belonged to 27 phyla were found in 141 samples. Increased abundance of microbiota in diversity and richness was observed in mid-radiotherapy group. Bacteroides, Blautia, Phascolarctobacterium were three main genera in all three groups and the mid-radiotherapy group had the highest relative abundance of Phascolarctobacterium. What is more, most significantly altered bacteria shared the same variation pattern which was increased in mid-radiotherapy while decreased to the almost same level of as pre-radiotherapy in post-radiotherapy group. Further analysis indicated that Bacteroidetes showing an upward trend while Proteobacteria declining in higher grade of acute mucositis. Moreover, relatively low abundant Proteobacteria was significantly correlated with high-grade acute oral mucositis. As for the quality of life, Lactobacillales and Actinomycetales were specifically found in better life quality group. However, Clostridia_UCG_014, Eubacteriaceae, UCG_010 and Moraxellaceae were unique abundantly present in worse life quality group. CONCLUSION Chemoradiotherapy can affect the composition of the gut microbiota in HNSCC patients during the mid-term of treatment. Yet self-stabilized ability maintained the gut microbiota homeostasis. Dynamic change of specific species could help predict acute oral mucositis grade and characterize different quality of life group in these patients.
Collapse
Affiliation(s)
- Ying Chen
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xianghua Ye
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xinke Li
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Fang Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jinsong Yang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaoli Sun
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Senxiang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
15
|
Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, Baffy G, Portincasa P. Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms 2024; 12:2333. [PMID: 39597722 PMCID: PMC11596745 DOI: 10.3390/microorganisms12112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The human gut is a complex ecosystem that supports billions of living species, including bacteria, viruses, archaea, phages, fungi, and unicellular eukaryotes. Bacteria give genes and enzymes for microbial and host-produced compounds, establishing a symbiotic link between the external environment and the host at both the gut and systemic levels. The gut microbiome, which is primarily made up of commensal bacteria, is critical for maintaining the healthy host's immune system, aiding digestion, synthesizing essential nutrients, and protecting against pathogenic bacteria, as well as influencing endocrine, neural, humoral, and immunological functions and metabolic pathways. Qualitative, quantitative, and/or topographic shifts can alter the gut microbiome, resulting in dysbiosis and microbial dysfunction, which can contribute to a variety of noncommunicable illnesses, including hypertension, cardiovascular disease, obesity, diabetes, inflammatory bowel disease, cancer, and irritable bowel syndrome. While most evidence to date is observational and does not establish direct causation, ongoing clinical trials and advanced genomic techniques are steadily enhancing our understanding of these intricate interactions. This review will explore key aspects of the relationship between gut microbiota, eubiosis, and dysbiosis in human health and disease, highlighting emerging strategies for microbiome engineering as potential therapeutic approaches for various conditions.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Nour Jaber
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Domenica Maria Di Palo
- Division of Hygiene, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| |
Collapse
|
16
|
Paziewska M, Szelest M, Kiełbus M, Masternak M, Zaleska J, Wawrzyniak E, Kotkowska A, Siemieniuk-Ryś M, Morawska M, Kalicińska E, Jabłonowska P, Wróbel T, Wolska-Washer A, Błoński JZ, Robak T, Bullinger L, Giannopoulos K. Increased abundance of Firmicutes and depletion of Bacteroidota predicts poor outcome in chronic lymphocytic leukemia. Oncol Lett 2024; 28:552. [PMID: 39328278 PMCID: PMC11425030 DOI: 10.3892/ol.2024.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024] Open
Abstract
Evidence indicates that there are significant alterations in gut microbiota diversity and composition in patients with hematological malignancies. The present study investigated the oral and intestinal microbiome in patients with chronic lymphocytic leukemia (CLL) (n=81) and age-matched healthy volunteers (HVs; n=21) using 16S ribosomal RNA next-generation sequencing. Changes in both oral and gut microbiome structures were identified, with a high abundance of Proteobacteria and depletion of Bacteroidetes in CLL as compared to HVs. Oral and stool samples of patients with CLL revealed a significant change in the abundance of short-chain fatty acid-producing genera in comparison with HVs. Furthermore, the relative abundance of oral and intestine Bacteroidetes was significantly decreased in patients with CLL with negative prognostic features, including unmutated immunoglobulin heavy chain gene (IGHV). Notably, an increased abundance of gut Firmicutes was found to be associated with high expression of CD38. Finally, the present study suggested the log Firmicutes/Bacteroidota ratio as a novel intestinal microbiome signature associated with a shorter time to first treatment in individuals with CLL. The findings indicate that oral and gut microbial diversity in CLL might point to the inflammatory-related modulation of the clinical course of the disease.
Collapse
Affiliation(s)
- Magdalena Paziewska
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Szelest
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michał Kiełbus
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marta Masternak
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
- Department of Hematology and Bone Marrow Transplantation, St John's Cancer Centre, 20-090 Lublin, Poland
| | - Joanna Zaleska
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewa Wawrzyniak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| | | | | | - Marta Morawska
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Elżbieta Kalicińska
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Paula Jabłonowska
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Wolska-Washer
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, 93-513 Lodz, Poland
| | - Jerzy Zdzisław Błoński
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, 93-513 Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, 93-513 Lodz, Poland
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin (Corporate Member of Free University of Berlin, Humboldt University of Berlin), D-13353 Berlin, Germany
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
17
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
18
|
Wang L, Li S, Hao Y, Liu X, Liu Y, Zuo L, Tai F, Yin L, Young LJ, Li D. Exposure to polystyrene microplastics reduces sociality and brain oxytocin levels through the gut-brain axis in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174026. [PMID: 38885706 DOI: 10.1016/j.scitotenv.2024.174026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The rising global prevalence of microplastics (MPs) has highlighted their diverse toxicological effects. The oxytocin (OT) system in mammals, deeply intertwined with social behaviors, is recognized to be vulnerable to environmental stressors. We hypothesized that MP exposure might disrupt this system, a topic not extensively studied. We investigated the effects of MPs on behavioral neuroendocrinology via the gut-brain axis by exposing adolescent male C57BL/6 mice to varied sizes (5 μm and 50 μm) and concentrations (100 μg/L and 1000 μg/L) of polystyrene MPs over 10 weeks. The results demonstrated that exposure to 50 μm MPs significantly reduced colonic mucin production and induced substantial alterations in gut microbiota. Notably, the 50 μm-100 μg/L group showed a significant reduction in OT content within the medial prefrontal cortex and associated deficits in sociality, along with damage to the blood-brain barrier. Importantly, blocking the vagal pathway ameliorated these behavioral impairments, emphasizing the pivotal role of the gut-brain axis in mediating neurobehavioral outcomes. Our findings confirm the toxicity of MPs on sociality and the corresponding neuroendocrine systems, shedding light on the potential hazards and adverse effects of environmental MPs exposure on social behavior and neuroendocrine frameworks in social mammals, including humans.
Collapse
Affiliation(s)
- Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Ecology Postdoctoral Research Station at Hebei Normal University, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Shuxin Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao, Hebei 066003, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yaqing Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lirong Zuo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Liyun Yin
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 3032, United States; Center for Social Neural Networks, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-857, Japan
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
19
|
Lim ESY, Ong Y, Chou Y, Then CK. Interconnected influences of tumour and host microbiota on treatment response and side effects in nasopharyngeal cancer. Crit Rev Oncol Hematol 2024; 202:104468. [PMID: 39103130 DOI: 10.1016/j.critrevonc.2024.104468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
This study elucidates the intricate relationship between nasopharyngeal carcinoma (NPC), a significant malignancy predominant in Asia with notable global incidence and mortality rates, and the host microbiota, including those of tumour, nasal, nasopharyngeal, oral, oropharyngeal, and gut communities. It underscores how the composition and diversity of microbiota are altered in NPC, delving into their implications for disease pathogenesis, treatment response, and the side effects of therapies. A consistent reduction in alpha diversity across oral, nasal, and gut microbiomes in NPC patients compared to healthy individuals signals a distinct microbial signature indicative of the diseased state. The study also shows unique microbial changes tied to different NPC stages, indicating a dynamic interplay between disease progression and microbiota composition. Patients with specific microbial profiles exhibit varied responses to chemotherapy and immunotherapy, underscoring the potential for treatment personalisation based on microbiota analysis. Furthermore, the side effects of NPC treatments, such as oral mucositis, are intensified by shifts in microbial communities, suggesting a direct link between microbiota composition and treatment tolerance. This nexus offers opportunities for interventions aimed at modulating the microbiota to alleviate side effects, improve quality of life, and potentially enhance treatment efficacy. Highlighting the dual potential of microbiota as both a therapeutic target and a biomarker for NPC, this review emphasises its significance in influencing treatment outcomes and side effects, heralding a new era in NPC management through personalised treatment strategies and innovative approaches.
Collapse
Affiliation(s)
- Eugene Sheng Yao Lim
- Jeffery Cheah School of Medicine and Health Sciences, Monash University, Malaysia
| | - Yenyi Ong
- Jeffery Cheah School of Medicine and Health Sciences, Monash University, Malaysia
| | - Yang Chou
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Chee Kin Then
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
20
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
21
|
Prasad S, Singh S, Menge S, Mohapatra I, Kim S, Helland L, Singh G, Singh A. Gut redox and microbiome: charting the roadmap to T-cell regulation. Front Immunol 2024; 15:1387903. [PMID: 39234241 PMCID: PMC11371728 DOI: 10.3389/fimmu.2024.1387903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
The gastrointestinal (GI) tract redox environment, influenced by commensal microbiota and bacterial-derived metabolites, is crucial in shaping T-cell responses. Specifically, metabolites from gut microbiota (GM) exhibit robust anti-inflammatory effects, fostering the differentiation and regulation of CD8+ tissue-resident memory (TRM) cells, mucosal-associated invariant T (MAIT) cells, and stabilizing gut-resident Treg cells. Nitric oxide (NO), a pivotal redox mediator, emerges as a central regulator of T-cell functions and gut inflammation. NO impacts the composition of the gut microbiome, driving the differentiation of pro-inflammatory Th17 cells and exacerbating intestinal inflammation, and supports Treg expansion, showcasing its dual role in immune homeostasis. This review delves into the complex interplay between GI redox balance and GM metabolites, elucidating their profound impact on T-cell regulation. Additionally, it comprehensively emphasizes the critical role of GI redox, particularly reactive oxygen species (ROS) and NO, in shaping T-cell phenotype and functions. These insights offer valuable perspectives on disease mechanisms and potential therapeutic strategies for conditions associated with oxidative stress. Understanding the complex cross-talk between GI redox, GM metabolites, and T-cell responses provides valuable insights into potential therapeutic avenues for immune-mediated diseases, underscoring the significance of maintaining GI redox balance for optimal immune health.
Collapse
Affiliation(s)
- Sujata Prasad
- Translational Division, MLM Labs, LLC, Oakdale, MN, United States
| | - Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Samuel Menge
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Stefan Kim
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Logan Helland
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Amar Singh
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
22
|
Xie W, Sharma A, Kaushik H, Sharma L, Nistha, Anwer MK, Sachdeva M, Elossaily GM, Zhang Y, Pillappan R, Kaur M, Behl T, Shen B, Singla RK. Shaping the future of gastrointestinal cancers through metabolic interactions with host gut microbiota. Heliyon 2024; 10:e35336. [PMID: 39170494 PMCID: PMC11336605 DOI: 10.1016/j.heliyon.2024.e35336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Gastrointestinal (GI) cancers represent a significant global health challenge, driving relentless efforts to identify innovative diagnostic and therapeutic approaches. Recent strides in microbiome research have unveiled a previously underestimated dimension of cancer progression that revolves around the intricate metabolic interplay between GI cancers and the host's gut microbiota. This review aims to provide a comprehensive overview of these emerging metabolic interactions and their potential to catalyze a paradigm shift in precision diagnosis and therapeutic breakthroughs in GI cancers. The article underscores the groundbreaking impact of microbiome research on oncology by delving into the symbiotic connection between host metabolism and the gut microbiota. It offers valuable insights into tailoring treatment strategies to individual patients, thus moving beyond the traditional one-size-fits-all approach. This review also sheds light on novel diagnostic methodologies that could transform the early detection of GI cancers, potentially leading to more favorable patient outcomes. In conclusion, exploring the metabolic interactions between host gut microbiota and GI cancers showcases a promising frontier in the ongoing battle against these formidable diseases. By comprehending and harnessing the microbiome's influence, the future of precision diagnosis and therapeutic innovation for GI cancers appears more optimistic, opening doors to tailored treatments and enhanced diagnostic precision.
Collapse
Affiliation(s)
- Wen Xie
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Hitesh Kaushik
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Nistha
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia
| | - Yingbo Zhang
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610218, China
| | - Ramkumar Pillappan
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangaluru, Karnataka, India
| | - Maninderjit Kaur
- Department of Pharmaceutical Sciences, lovely Professional University, Phagwara, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Bairong Shen
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rajeev K. Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
| |
Collapse
|
23
|
Mueller S. Existing and emerging mRNA vaccines and their environmental impact: a transdisciplinary assessment. ENVIRONMENTAL SCIENCES EUROPE 2024; 36:144. [DOI: 10.1186/s12302-024-00966-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/30/2024] [Indexed: 01/05/2025]
|
24
|
Ilie CI, Spoiala A, Chircov C, Dolete G, Oprea OC, Vasile BS, Crainiceanu SA, Nicoara AI, Marinas IC, Stan MS, Ditu LM, Ficai A, Oprea E. Antioxidant, Antitumoral, Antimicrobial, and Prebiotic Activity of Magnetite Nanoparticles Loaded with Bee Pollen/Bee Bread Extracts and 5-Fluorouracil. Antioxidants (Basel) 2024; 13:895. [PMID: 39199141 PMCID: PMC11351729 DOI: 10.3390/antiox13080895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota dysbiosis that often occurs in cancer therapy requires more efficient treatment options to be developed. In this concern, the present research approach is to develop drug delivery systems based on magnetite nanoparticles (MNPs) as nanocarriers for bioactive compounds. First, MNPs were synthesized through the spraying-assisted coprecipitation method, followed by loading bee pollen or bee bread extracts and an antitumoral drug (5-fluorouracil/5-FU). The loaded-MNPs were morphologically and structurally characterized through transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Dynamic Light Scattering (DLS), and thermogravimetric analysis. UV-Vis spectroscopy was applied to establish the release profiles and antioxidant activity. Furthermore, the antibacterial and antitumoral activity of loaded-MNPs was assessed. The results demonstrate that MNPs with antioxidant, antibacterial, antiproliferative, and prebiotic properties are obtained. Moreover, the data highlight the improvement of 5-FU antibacterial activity by loading on the MNPs' surface and the synergistic effects between the anticancer drug and phenolic compounds (PCs). In addition, the prolonged release behavior of PCs for many hours (70-75 h) after the release of 5-FU from the developed nanocarriers is an advantage, at least from the point of view of the antioxidant activity of PCs. Considering the enhancement of L. rhamnosus MF9 growth and antitumoral activity, this study developed promising drug delivery alternatives for colorectal cancer therapy.
Collapse
Affiliation(s)
- Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Angela Spoiala
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Bogdan-Stefan Vasile
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
| | - Simona Adriana Crainiceanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
| | - Adrian-Ionut Nicoara
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | | | - Miruna Silvia Stan
- The Research Institute, University of Bucharest, 050663 Bucharest, Romania (M.S.S.)
- Department of Biochemistry, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Lia-Mara Ditu
- The Research Institute, University of Bucharest, 050663 Bucharest, Romania (M.S.S.)
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| |
Collapse
|
25
|
Murdaca G, Tagliafico L, Page E, Paladin F, Gangemi S. Gender Differences in the Interplay between Vitamin D and Microbiota in Allergic and Autoimmune Diseases. Biomedicines 2024; 12:1023. [PMID: 38790985 PMCID: PMC11117902 DOI: 10.3390/biomedicines12051023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The synergic role of vitamin D and the intestinal microbiota in the regulation of the immune system has been thoroughly described in the literature. Vitamin D deficiency and intestinal dysbiosis have shown a pathogenetic role in the development of numerous immune-mediated and allergic diseases. The physiological processes underlying aging and sex have proven to be capable of having a negative influence both on vitamin D values and the biodiversity of the microbiome. This leads to a global increase in levels of systemic inflammatory markers, with potential implications for all immune-mediated diseases and allergic conditions. Our review aims to collect and analyze the relationship between vitamin D and the intestinal microbiome with the immune system and the diseases associated with it, emphasizing the effect mediated by sexual hormones and aging.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Allergology and Clinical Immunology Unit, San Bartolomeo Hospital, 19038 Sarzana, Italy
| | - Luca Tagliafico
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Elena Page
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Francesca Paladin
- Elderly and Disabeld Department, San Paolo Hospital, 17100 Savona, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
26
|
Zhao Y, Chen H, Liang H, Zhao T, Ren B, Li Y, Liang H, Liu Y, Cao H, Cui N, Wei W. Combined toxic effects of polyethylene microplastics and lambda-cyhalothrin on gut of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116296. [PMID: 38593498 DOI: 10.1016/j.ecoenv.2024.116296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Microplastics (MPs), which are prevalent and increasingly accumulating in aquatic environments. Other pollutants coexist with MPs in the water, such as pesticides, and may be carried or transferred to aquatic organisms, posing unpredictable ecological risks. This study sought to assess the adsorption of lambda-cyhalothrin (LCT) by virgin and aged polyethylene MPs (VPE and APE, respectively), and to examine their influence on LCT's toxicity in zebrafish, specifically regarding acute toxicity, oxidative stress, gut microbiota and immunity. The adsorption results showed that VPE and APE could adsorb LCT, with adsorption capacities of 34.4 mg∙g-1 and 39.0 mg∙g-1, respectively. Compared with LCT exposure alone, VPE and APE increased the acute toxicity of LCT to zebrafish. Additionally, exposure to LCT and PE-MPs alone can induce oxidative stress in the zebrafish gut, while combined exposure can exacerbate the oxidative stress response and intensify intestinal lipid peroxidation. Moreover, exposure to LCT or PE-MPs alone promotes inflammation, and combined exposure leads to downregulation of the myd88-nf-κb related gene expression, thus impacting intestinal immunity. Furthermore, exposure to APE increased LCT toxicity to zebrafish more than VPE. Meanwhile, exposure to PE-MPs and LCT alone or in combination has the potential to affect gut microbiota function and alter the abundance and diversity of the zebrafish gut flora. Collectively, the presence of PE-MPs may affect the toxicity of pesticides in zebrafish. The findings emphasize the importance of studying the interaction between MPs and pesticides in the aquatic environment.
Collapse
Affiliation(s)
- Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yu Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Cao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Naqi Cui
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Wei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
27
|
Giridhar P, Pradhan S, Dokania S, Venkatesulu B, Sarode R, Welsh JS. Microbiome and Abdominopelvic Radiotherapy Related Chronic Enteritis: A Microbiome-based Mechanistic Role of Probiotics and Antibiotics. Am J Clin Oncol 2024; 47:246-252. [PMID: 38193365 DOI: 10.1097/coc.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Chronic diarrhea and abdominal pain after radiotherapy continue to be a problem in cancer survivors. Gut microbiomes are essential for preventing intestinal inflammation, maintaining intestinal integrity, maintaining enterohepatic circulation, regulating bile acid metabolism, and absorption of nutrients, including fat-soluble vitamins. Gut microbiome dysbiosis is expected to cause inflammation, bile acid malabsorption, malnutrition, and associated symptoms. Postradiotherapy, Firmicutes and Bacteroidetes phylum are significantly decreased while Fusobacteria and other unclassified bacteria are increased. Available evidence suggests harmful bacteria Veillonella, Erysipelotrichaceae, and Ruminococcus are sensitive to Metronidazole or Ciprofloxacin. Beneficial bacteria lactobacillus and Bifidobacterium are relatively resistant to metronidazole. We hypothesize and provide an evidence-based review that short-course targeted antibiotics followed by specific probiotics may lead to alleviation of radiation enteritis.
Collapse
Affiliation(s)
| | | | | | - Bhanuprasad Venkatesulu
- Department of Radiation Oncology, Loyola University Chicago, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood
- Department of Radiation Oncology, MPMMCC/HBCH Varanasi Edward Hines Veteran Affairs Hospital, Chicago, IL
| | - Rahul Sarode
- Department of Microbiology, Mahamana Pandit Madanmohan Malaviya Cancer Centre/Homi Bhabha Cancer hospital, Tata Memorial Centre, Varanasi, India
| | - James S Welsh
- Department of Radiation Oncology, Loyola University Chicago, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood
- Department of Radiation Oncology, MPMMCC/HBCH Varanasi Edward Hines Veteran Affairs Hospital, Chicago, IL
| |
Collapse
|
28
|
Zhao Y, Ma C, Wei W, Wang Y, Cao H, Cui N, Liu Y, Liang H. Effects of single and combined exposure of virgin or aged polyethylene microplastics and penthiopyrad on zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171160. [PMID: 38395170 DOI: 10.1016/j.scitotenv.2024.171160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The interaction between pesticides and microplastics (MPs) can lead to changes in their mode of action and biological toxicity, creating substantial uncertainty in risk assessments. Succinate dehydrogenase inhibitor (SDHI) fungicides, a common fungicide type, are widely used. However, little is known about how penthiopyrad (PTH), a member of the SDHI fungicide group, interacts with polyethylene microplastics (PE-MPs). This study primarily investigates the individual and combined effects of virgin or aged PE-MPs and penthiopyrad on zebrafish (Danio rerio), including acute toxicity, bioaccumulation, tissue pathology, enzyme activities, gut microbiota, and gene expression. Short-term exposure revealed that PE-MPs enhance the acute toxicity of penthiopyrad. Long-term exposure demonstrated that PE-MPs, to some extent, enhance the accumulation of penthiopyrad in zebrafish, leading to increased oxidative stress injury in their intestines by the 7th day. Furthermore, exposure to penthiopyrad and/or PE-MPs did not result in histopathological damage to intestinal tissue but altered the gut flora at the phylum level. Regarding gene transcription, penthiopyrad exposure significantly modified the expression of pro-inflammatory genes in the zebrafish gut, with these effects being mitigated when VPE or APE was introduced. These findings offer a novel perspective on environmental behavior and underscore the importance of assessing the combined toxicity of PE-MPs and fungicides on organisms.
Collapse
Affiliation(s)
- Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Chaofan Ma
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Wei Wei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Yang Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Huihui Cao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Naqi Cui
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Yu Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China.
| |
Collapse
|
29
|
Elgabry RM, Hassan M, Fawzy GA, Meselhy KM, Mohamed OG, Al-Taweel AM, Sedeek MS. A Comparative Analysis of Polysaccharides and Ethanolic Extracts from Two Egyptian Sweet Potato Cultivars, Abees and A 195: Chemical Characterization and Immunostimulant Activities. Metabolites 2024; 14:222. [PMID: 38668350 PMCID: PMC11051996 DOI: 10.3390/metabo14040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) belongs to family Convolvulaceae. The plant is distributed worldwide and consumed, especially for its edible tubers. Many studies have proved that the plant has variable biological activities such as antidiabetic, anti-cancer, antihypertensive, antimicrobial, and immunostimulant activities. The roots of sweet potatoes are rich in valuable phytochemical constituents that vary according to the flesh color. Our investigation focused on the chemical profiling of two Egyptian sweet potato cultivars, Abees and A 195, using UPLC-QTOF and the analysis of their polysaccharide fractions by GC-MS. Furthermore, we assessed the immunostimulant properties of these extracts in immunosuppressed mice. The study revealed that sweet potato roots contain significant concentrations of phenolic acids, including caffeoylquinic, caffeic, caffeoyl-feruloyl quinic, and p-coumaric acids, as well as certain flavonoids, such as diosmin, diosmetin, and jaceosidin, and coumarins, such as scopoletin and umbelliferone. Moreover, polysaccharides prepared from both studied cultivars were analyzed using GC-MS. Further biological analysis demonstrated that all the tested extracts possessed immunostimulant properties by elevating the level of WBCs, IL-2, TNF, and IFN-γ in the immunosuppressed mice relative to the control group with the highest values in polysaccharide fractions of A195 (the ethanolic extract showed a higher effect on TNF and IFN-γ, while its polysaccharide fraction exhibited a promising effect on IL-2 and WBCs). In conclusion, the roots of the Egyptian sweet potato cultivars Abees and A 195 demonstrated significant immunostimulant activities, which warrants further investigation through clinical studies.
Collapse
Affiliation(s)
- Rehab M. Elgabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City 43511, Egypt
| | - Ghada A. Fawzy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| | - Khaled M. Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| | - Osama G. Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Areej M. Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Mohamed S. Sedeek
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| |
Collapse
|
30
|
Yang J, Isaka T, Kikuchi K, Numayama-Tsuruta K, Ishikawa T. Bacterial accumulation in intestinal folds induced by physical and biological factors. BMC Biol 2024; 22:76. [PMID: 38581018 PMCID: PMC10998401 DOI: 10.1186/s12915-024-01874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND The gut microbiota, vital for host health, influences metabolism, immune function, and development. Understanding the dynamic processes of bacterial accumulation within the gut is crucial, as it is closely related to immune responses, antibiotic resistance, and colorectal cancer. We investigated Escherichia coli behavior and distribution in zebrafish larval intestines, focusing on the gut microenvironment. RESULTS We discovered that E. coli spread was considerably suppressed within the intestinal folds, leading to a strong physical accumulation in the folds. Moreover, a higher concentration of E. coli on the dorsal side than on the ventral side was observed. Our in vitro microfluidic experiments and theoretical analysis revealed that the overall distribution of E. coli in the intestines was established by a combination of physical factor and bacterial taxis. CONCLUSIONS Our findings provide valuable insight into how the intestinal microenvironment affects bacterial motility and accumulation, enhancing our understanding of the behavioral and ecological dynamics of the intestinal microbiota.
Collapse
Affiliation(s)
- Jinyou Yang
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Toma Isaka
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Sendai, 980-8579, Japan
| | - Kenji Kikuchi
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Sendai, 980-8579, Japan
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Sendai, 980-8579, Japan
| | - Keiko Numayama-Tsuruta
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Sendai, 980-8579, Japan
| | - Takuji Ishikawa
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Sendai, 980-8579, Japan
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Sendai, 980-8579, Japan
| |
Collapse
|
31
|
Ali A, Wu L, Ali SS. Gut microbiota and acute kidney injury: immunological crosstalk link. Int Urol Nephrol 2024; 56:1345-1358. [PMID: 37749436 DOI: 10.1007/s11255-023-03760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/14/2023] [Indexed: 09/27/2023]
Abstract
The gut microbiota, often called the "forgotten organ," plays a crucial role in bidirectional communication with the host for optimal physiological function. This communication helps regulate the host's immunity and metabolism positively and negatively. Many factors influence microbiota homeostasis and subsequently lead to an immune system imbalance. The correlation between an unbalanced immune system and acute diseases such as acute kidney injury is not fully understood, and the role of gut microbiota in disease pathogenesis is still yet uncovered. This review summarizes our understanding of gut microbiota, focusing on the interactions between the host's immune system and the microbiome and their impact on acute kidney injury.
Collapse
Affiliation(s)
- Asmaa Ali
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo, Egypt.
- Department of Respiratory Allergy, A Al-Rashed Allergy Center, Ministry of Health, Kuwait, Kuwait.
| | - Liang Wu
- Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng, 210008, China.
| | - Sameh Samir Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
32
|
Mofrad LZ, Fateh A, Sotoodehnejadnematalahi F, Asbi DNS, Davar Siadat S. The Effect of Akkermansia muciniphila and Its Outer Membrane Vesicles on MicroRNAs Expression of Inflammatory and Anti-inflammatory Pathways in Human Dendritic Cells. Probiotics Antimicrob Proteins 2024; 16:367-382. [PMID: 36884184 DOI: 10.1007/s12602-023-10058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Probiotics play a crucial role in immunomodulation by regulating dendritic cell (DC) maturation and inducing tolerogenic DCs. Akkermansia muciniphila affects inflammatory response by elevating inhibitory cytokines. We aimed to evaluate whether Akkermansia muciniphila and its outer membrane vesicles (OMVs) affect microRNA-155, microRNA-146a, microRNA-34a, and let-7i expression of inflammatory and anti-inflammatory pathways. Peripheral blood mononuclear cells (PBMCs) were isolated from the healthy volunteers. To produce DCs, monocytes were cultivated with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). DCs were allocated into six subgroups: DC + Lipopolysaccharide (LPS), DC + dexamethasone, DC + A. muciniphila (MOI 100, 50), DC + OMVs (50 µg/ml), and DC + PBS. The surface expression of human leukocyte antigen-antigen D related (HLA-DR), CD86, CD80, CD83, CD11c, and CD14 was examined using flow cytometry, and the expression of microRNAs was assessed using qRT-PCR, and the levels of IL-12 and IL-10 were measured using ELISA. A. muciniphila (MOIs 50, 100) could significantly decrease IL-12 levels relative to the LPS group. The IL-10 levels were decreased in the DC + LPS group than the DC + dexamethasone group. Treatment with A. muciniphila (MOI 100) and OMVs could elevate the concentrations of IL-10. DC treatment with LPS led to a significant increment in the expression of microRNA-155, microRNA-34a, and microRNA-146a. The expression of these microRNAs was reversed by A. muciniphilia and its OMVs treatment. Let-7i increased in treatment groups compared to the DC + LPS group. A. muciniphilia (MOI 50) had a substantial effect on the expression of HLA-DR, CD80, and CD83 on DCs. Therefore, DCs treatment with A. muciniphila led to induce tolerogenic DCs and the production of anti-inflammatory IL-10.
Collapse
Affiliation(s)
- Laya Zoghi Mofrad
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
33
|
Kong Y, Liu S, Wang X, Qie R. Associations between gut microbiota and gynecological cancers: A bi-directional two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37628. [PMID: 38552081 PMCID: PMC10977594 DOI: 10.1097/md.0000000000037628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Growing evidence has suggested that gut microbiota is associated with gynecologic cancers. However, whether there is a causal relationship between these associations remains to be determined. A two-sample Mendelian randomization (MR) evaluation was carried out to investigate the mechanism associating gut microbiota and 3 prevalent gynecological cancers, ovarian cancer (OC), endometrial cancer, and cervical cancer as well as their subtypes in individuals of European ancestry. The Genome-wide association studies statistics, which are publically accessible, were used. Eligible instrumental single nucleotide polymorphisms that were significantly related to the gut microbiota were selected. Multiple MR analysis approaches were carried out, including inverse variance weighted, MR-Egger, Weighted Median methods, and a range of sensitivity analyses. Lastly, we undertook a reverse MR analysis to evaluate the potential of reverse causality. We sifted through 196 bacterial taxa and identified 33 suggestive causal relationships between genetic liability in the gut microbiota and gynecological cancers. We found that 11 of these genera could be pathogenic risk factors for gynecological cancers, while 19 could lessen the risk of cancer. In the other direction, gynecological cancers altered gut microbiota composition. Our MR analysis revealed that the gut microbiota was causally associated with OC, endometrial cancer, and cervical cancer. This may assist in providing new insights for further mechanistic and clinical studies of microbiota-mediated gynecological cancer.
Collapse
Affiliation(s)
- Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shaoxuan Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui Qie
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
34
|
Morimoto T, Hirata H, Sugita K, Paholpak P, Kobayashi T, Tanaka T, Kato K, Tsukamoto M, Umeki S, Toda Y, Mawatari M. A view on the skin-bone axis: unraveling similarities and potential of crosstalk. Front Med (Lausanne) 2024; 11:1360483. [PMID: 38500951 PMCID: PMC10944977 DOI: 10.3389/fmed.2024.1360483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
The phrase "skin as a mirror of internal medicine," which means that the skin reflects many of the diseases of the internal organs, is a well-known notion. Despite the phenotypic differences between the soft skin and hard bone, the skin and bone are highly associated. Skin and bone consist of fibroblasts and osteoblasts, respectively, which secrete collagen and are involved in synthesis, while Langerhans cells and osteoclasts control turnover. Moreover, the quality and quantity of collagen in the skin and bone may be modified by aging, inflammation, estrogen, diabetes, and glucocorticoids. Skin and bone collagen are pathologically modified by aging, drugs, and metabolic diseases, such as diabetes. The structural similarities between the skin and bone and the crosstalk controlling their mutual pathological effects have led to the advocacy of the skin-bone axis. Thus, the skin may mirror the health of the bones and conversely, the condition of the skin may be reflected in the bones. From the perspective of the skin-bone axis, the similarities between skin and bone anatomy, function, and pathology, as well as the crosstalk between the two, are discussed in this review. A thorough elucidation of the pathways governing the skin-bone axis crosstalk would enhance our understanding of disease pathophysiology, facilitating the development of new diagnostics and therapies for skin collagen-induced bone disease and of new osteoporosis diagnostics and therapies that enhance skin collagen to increase bone quality and density.
Collapse
Affiliation(s)
- Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazunari Sugita
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Permsak Paholpak
- Department of Orthopedics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Takaomi Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tatsuya Tanaka
- Department of Neurosurgery, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Kinshi Kato
- Department of Orthopaedic Surgery, Fukushima Medical University, Fukushima, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Shun Umeki
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Yu Toda
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
35
|
Wang XM, Fan L, Meng CC, Wang YJ, Deng LE, Yuan Z, Zhang JP, Li YY, Lv SC. Gut microbiota influence frailty syndrome in older adults: mechanisms and therapeutic strategies. Biogerontology 2024; 25:107-129. [PMID: 38150088 DOI: 10.1007/s10522-023-10082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Frailty syndrome denotes a decreased capacity of the body to maintain the homeostasis and stress of the internal environment, which simultaneously increases the risk of adverse health outcomes in older adults, including disability, hospitalization, falls, and death. To promote healthy aging, we should find strategies to cope with frailty. However, the pathogenesis of frailty syndrome is not yet clear. Recent studies have shown that the diversity, composition, and metabolites of gut microbiota significantly changed in older adults with frailty. In addition, several frailty symptoms were alleviated by adjusting gut microbiota with prebiotics, probiotics, and symbiosis. Therefore, we attempt to explore the pathogenesis of frailty syndrome in older people from gut microbiota and summarize the existing interventions for frailty syndrome targeting gut microbiota, with the aim of providing timely and necessary interventions and assistance for older adults with frailty.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen-Chen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun-Jiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li-E Deng
- Nephrology department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Zhuo Yuan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
| | - Yan-Yang Li
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shi-Chao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China.
- Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
36
|
Yadav M, Chauhan NS. Role of gut-microbiota in disease severity and clinical outcomes. Brief Funct Genomics 2024; 23:24-37. [PMID: 36281758 DOI: 10.1093/bfgp/elac037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2024] Open
Abstract
A delicate balance of nutrients, antigens, metabolites and xenobiotics in body fluids, primarily managed by diet and host metabolism, governs human health. Human gut microbiota is a gatekeeper to nutrient bioavailability, pathogens exposure and xenobiotic metabolism. Human gut microbiota starts establishing during birth and evolves into a resilient structure by adolescence. It supplements the host's metabolic machinery and assists in many physiological processes to ensure health. Biotic and abiotic stressors could induce dysbiosis in gut microbiota composition leading to disease manifestations. Despite tremendous scientific advancements, a clear understanding of the involvement of gut microbiota dysbiosis during disease onset and clinical outcomes is still awaited. This would be important for developing an effective and sustainable therapeutic intervention. This review synthesizes the present scientific knowledge to present a comprehensive picture of the role of gut microbiota in the onset and severity of a disease.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
37
|
Wang S, Ju D, Zeng X. Mechanisms and Clinical Implications of Human Gut Microbiota-Drug Interactions in the Precision Medicine Era. Biomedicines 2024; 12:194. [PMID: 38255298 PMCID: PMC10813426 DOI: 10.3390/biomedicines12010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
The human gut microbiota, comprising trillions of microorganisms residing in the gastrointestinal tract, has emerged as a pivotal player in modulating various aspects of human health and disease. Recent research has shed light on the intricate relationship between the gut microbiota and pharmaceuticals, uncovering profound implications for drug metabolism, efficacy, and safety. This review depicted the landscape of molecular mechanisms and clinical implications of dynamic human gut Microbiota-Drug Interactions (MDI), with an emphasis on the impact of MDI on drug responses and individual variations. This review also discussed the therapeutic potential of modulating the gut microbiota or harnessing its metabolic capabilities to optimize clinical treatments and advance personalized medicine, as well as the challenges and future directions in this emerging field.
Collapse
Affiliation(s)
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China;
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China;
| |
Collapse
|
38
|
Amato KR, Pradhan P, Mallott EK, Shirola W, Lu A. Host-gut microbiota interactions during pregnancy. Evol Med Public Health 2024; 12:7-23. [PMID: 38288320 PMCID: PMC10824165 DOI: 10.1093/emph/eoae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalian pregnancy is characterized by a well-known suite of physiological changes that support fetal growth and development, thereby positively affecting both maternal and offspring fitness. However, mothers also experience trade-offs between current and future maternal reproductive success, and maternal responses to these trade-offs can result in mother-offspring fitness conflicts. Knowledge of the mechanisms through which these trade-offs operate, as well as the contexts in which they operate, is critical for understanding the evolution of reproduction. Historically, hormonal changes during pregnancy have been thought to play a pivotal role in these conflicts since they directly and indirectly influence maternal metabolism, immunity, fetal growth and other aspects of offspring development. However, recent research suggests that gut microbiota may also play an important role. Here, we create a foundation for exploring this role by constructing a mechanistic model linking changes in maternal hormones, immunity and metabolism during pregnancy to changes in the gut microbiota. We posit that marked changes in hormones alter maternal gut microbiome composition and function both directly and indirectly via impacts on the immune system. The gut microbiota then feeds back to influence maternal immunity and metabolism. We posit that these dynamics are likely to be involved in mediating maternal and offspring fitness as well as trade-offs in different aspects of maternal and offspring health and fitness during pregnancy. We also predict that the interactions we describe are likely to vary across populations in response to maternal environments. Moving forward, empirical studies that combine microbial functional data and maternal physiological data with health and fitness outcomes for both mothers and infants will allow us to test the evolutionary and fitness implications of the gestational microbiota, enriching our understanding of the ecology and evolution of reproductive physiology.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
| | - Priyanka Pradhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Wesley Shirola
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
39
|
Yuan Z, Kang Y, Mo C, Huang S, Qin F, Zhang J, Wang F, Jiang J, Yang X, Liang H, Ye L. Causal relationship between gut microbiota and tuberculosis: a bidirectional two-sample Mendelian randomization analysis. Respir Res 2024; 25:16. [PMID: 38178098 PMCID: PMC10765819 DOI: 10.1186/s12931-023-02652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Growing evidence from observational studies and clinical trials suggests that the gut microbiota is associated with tuberculosis (TB). However, it is unclear whether any causal relationship exists between them and whether causality is bidirectional. METHODS A bidirectional two-sample Mendelian randomization (MR) analysis was performed. The genome-wide association study (GWAS) summary statistics of gut microbiota were obtained from the MiBioGen consortium, while the GWAS summary statistics of TB and its specific phenotypes [respiratory tuberculosis (RTB) and extrapulmonary tuberculosis (EPTB)] were retrieved from the UK Biobank and the FinnGen consortium. And 195 bacterial taxa from phylum to genus were analyzed. Inverse variance weighted (IVW), MR-Egger regression, maximum likelihood (ML), weighted median, and weighted mode methods were applied to the MR analysis. The robustness of causal estimation was tested using the heterogeneity test, horizontal pleiotropy test, and leave-one-out method. RESULTS In the UK Biobank database, we found that 11 bacterial taxa had potential causal effects on TB. Three bacterial taxa genus.Akkermansia, family.Verrucomicrobiacea, order.Verrucomicrobiales were validated in the FinnGen database. Based on the results in the FinnGen database, the present study found significant differences in the characteristics of gut microbial distribution between RTB and EPTB. Four bacterial taxa genus.LachnospiraceaeUCG010, genus.Parabacteroides, genus.RuminococcaceaeUCG011, and order.Bacillales were common traits in relation to both RTB and TB, among which order.Bacillales showed a protective effect. Additionally, family.Bacteroidacea and genus.Bacteroides were identified as common traits in relation to both EPTB and TB, positively associating with a higher risk of EPTB. In reverse MR analysis, no causal association was identified. No significant heterogeneity of instrumental variables (IVs) or horizontal pleiotropy was found. CONCLUSION Our study supports a one-way causal relationship between gut microbiota and TB, with gut microbiota having a causal effect on TB. The identification of characteristic gut microbiota provides scientific insights for the potential application of the gut microbiota as a preventive, diagnostic, and therapeutic tool for TB.
Collapse
Affiliation(s)
- Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yiwen Kang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Chuye Mo
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shihui Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Fang Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Junhan Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Fengyi Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Xiaoxiang Yang
- Department of Infectious Diseases in Children, Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, 530003, Guangxi, China.
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
40
|
Lin TL, Kuo YL, Lai JH, Lu CC, Yuan CT, Hsu CY, Yan BS, Wu LSH, Wu TS, Wang JY, Yu CJ, Lai HC, Shu JC, Shu CC. Gut microbiota dysbiosis-related susceptibility to nontuberculous mycobacterial lung disease. Gut Microbes 2024; 16:2361490. [PMID: 38860456 PMCID: PMC11174134 DOI: 10.1080/19490976.2024.2361490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
The role of gut microbiota in host defense against nontuberculous mycobacterial lung disease (NTM-LD) was poorly understood. Here, we showed significant gut microbiota dysbiosis in patients with NTM-LD. Reduced abundance of Prevotella copri was significantly associated with NTM-LD and its disease severity. Compromised TLR2 activation activity in feces and plasma in the NTM-LD patients was highlighted. In the antibiotics-treated mice as a study model, gut microbiota dysbiosis with reduction of TLR2 activation activity in feces, sera, and lung tissue occurred. Transcriptomic analysis demonstrated immunocompromised in lung which were closely associated with increased NTM-LD susceptibility. Oral administration of P. copri or its capsular polysaccharides enhanced TLR2 signaling, restored immune response, and ameliorated NTM-LD susceptibility. Our data highlighted the association of gut microbiota dysbiosis, systematically compromised immunity and NTM-LD development. TLR2 activation by P. copri or its capsular polysaccharides might help prevent NTM-LD.
Collapse
Affiliation(s)
- Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, Taiwan
- REVIVEBIO CO, Taipei city, Taiwan
| | - Yen-Liang Kuo
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Juo-Hsin Lai
- Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Chen Lu
- REVIVEBIO CO, Taipei city, Taiwan
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chang-Tsu Yuan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Yu Hsu
- Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Bo-Shiun Yan
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Jann-Yuan Wang
- Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chong-Jen Yu
- Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, Taiwan
- REVIVEBIO CO, Taipei city, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jwu-Ching Shu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin-Chung Shu
- Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
41
|
Samiraninezhad N, Kazemi H, Rezaee M, Gholami A. Effect of lactobacillus reuteri-derived probiotic nano-formulation on recurrent aphthous stomatitis: a double-blinded randomized clinical trial. BMC Oral Health 2023; 23:1019. [PMID: 38114936 PMCID: PMC10729528 DOI: 10.1186/s12903-023-03756-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
OBJECTIVES We aimed to assess the therapeutic effects of a topical probiotic nano-formulation derived from Lactobacillus reuteri on treating recurrent aphthous stomatitis. MATERIALS AND METHODS 60 participants were randomly allocated into two groups (control and probiotic). Probiotic group administered topical probiotic nano-formulation three times a day for seven days. The control group administered a standard analgesic oral rinse. The size of ulcer(s) and pain severity were recorded on days 0, 3, 5, and 7 after intervention. RESULTS Before the intervention, the groups had no significant differences in terms of pain severity (P-value = 0.28) and lesion size (P-value = 0.24). Both groups exhibited significant reductions in pain severity and lesion size over the course of the intervention. After one week, the probiotic group had a notably larger lesion size reduction than the control group (P-value = 0.01). The probiotic group also showed a significantly greater reduction in pain severity than the control group (P-value = 0.04). CONCLUSIONS Applying topical probiotic nano-formulation derived from Lactobacillus reuteri three times a day decreased lesion size and pain severity in RAS patients faster than the local analgesic oral rinse. CLINICAL RELEVANCE Lactobacillus reuteri-derived probiotic nano-formulation might be a promising treatment option for RAS.
Collapse
Affiliation(s)
| | - Hojat Kazemi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Rezaee
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
42
|
Isegawa Y. Activation of Immune and Antiviral Effects by Euglena Extracts: A Review. Foods 2023; 12:4438. [PMID: 38137241 PMCID: PMC10743201 DOI: 10.3390/foods12244438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza is an acute respiratory illness caused by influenza virus infection, which is managed using vaccines and antiviral drugs. Recently, the antiviral effects of plants and foods have gained attention. Euglena is a motile unicellular alga and eukaryotic photosynthetic microorganism. It has secondary chloroplasts and is a mixotroph able to feed by photosynthesis or phagocytosis. This review summarizes the influenza treatment effects of Euglena from the perspective of a functional food that is attracting attention. While it has been reported that Euglena contributes to suppressing blood sugar levels and ameliorates symptoms caused by stress by acting on the autonomic nervous system, the immunostimulatory and antiviral activities of Euglena have also been reported. In this review, I focused on the immunostimulation of antiviral activity via the intestinal environment and the suppression of viral replication in infected cells. The functions of specific components of Euglena, which also serves as the source of a wide range of nutrients such as vitamins, minerals, amino acids, unsaturated fatty acids, and β-1,3-glucan (paramylon), are also reviewed. Euglena has animal and plant properties and natural compounds with a wide range of functions, providing crucial information for improved antiviral strategies.
Collapse
Affiliation(s)
- Yuji Isegawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
43
|
Su Y, Ding T. Targeting microbial quorum sensing: the next frontier to hinder bacterial driven gastrointestinal infections. Gut Microbes 2023; 15:2252780. [PMID: 37680117 PMCID: PMC10486307 DOI: 10.1080/19490976.2023.2252780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Bacteria synchronize social behaviors via a cell-cell communication and interaction mechanism termed as quorum sensing (QS). QS has been extensively studied in monocultures and proved to be intensively involved in bacterial virulence and infection. Despite the role QS plays in pathogens during laboratory engineered infections has been proved, the potential functions of QS related to pathogenesis in context of microbial consortia remain poorly understood. In this review, we summarize the basic molecular mechanisms of QS, primarily focusing on pathogenic microbes driving gastrointestinal (GI) infections. We further discuss how GI pathogens disequilibrate the homeostasis of the indigenous microbial consortia, rebuild a realm dominated by pathogens, and interact with host under worsening infectious conditions via pathogen-biased QS signaling. Additionally, we present recent applications and main challenges of manipulating QS network in microbial consortia with the goal of better understanding GI bacterial sociality and facilitating novel therapies targeting bacterial infections.
Collapse
Affiliation(s)
- Ying Su
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| |
Collapse
|
44
|
Benešová I, Křížová Ľ, Kverka M. Microbiota as the unifying factor behind the hallmarks of cancer. J Cancer Res Clin Oncol 2023; 149:14429-14450. [PMID: 37555952 PMCID: PMC10590318 DOI: 10.1007/s00432-023-05244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The human microbiota is a complex ecosystem that colonizes body surfaces and interacts with host organ systems, especially the immune system. Since the composition of this ecosystem depends on a variety of internal and external factors, each individual harbors a unique set of microbes. These differences in microbiota composition make individuals either more or less susceptible to various diseases, including cancer. Specific microbes are associated with cancer etiology and pathogenesis and several mechanisms of how they drive the typical hallmarks of cancer were recently identified. Although most microbes reside in the distal gut, they can influence cancer initiation and progression in distant tissues, as well as modulate the outcomes of established cancer therapies. Here, we describe the mechanisms by which microbes influence carcinogenesis and discuss their current and potential future applications in cancer diagnostics and management.
Collapse
Affiliation(s)
- Iva Benešová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
| | - Ľudmila Křížová
- Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic.
| |
Collapse
|
45
|
Alvarado-Peña N, Galeana-Cadena D, Gómez-García IA, Mainero XS, Silva-Herzog E. The microbiome and the gut-lung axis in tuberculosis: interplay in the course of disease and treatment. Front Microbiol 2023; 14:1237998. [PMID: 38029121 PMCID: PMC10643882 DOI: 10.3389/fmicb.2023.1237998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB) that remains a significant global health challenge. The extensive use of antibiotics in tuberculosis treatment, disrupts the delicate balance of the microbiota in various organs, including the gastrointestinal and respiratory systems. This gut-lung axis involves dynamic interactions among immune cells, microbiota, and signaling molecules from both organs. The alterations of the microbiome resulting from anti-TB treatment can significantly influence the course of tuberculosis, impacting aspects such as complete healing, reinfection, and relapse. This review aims to provide a comprehensive understanding of the gut-lung axis in the context of tuberculosis, with a specific focus on the impact of anti-TB treatment on the microbiome.
Collapse
Affiliation(s)
- Néstor Alvarado-Peña
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, México City, Mexico
| | - David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México City, Mexico
| | - Xavier Soberón Mainero
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eugenia Silva-Herzog
- Laboratorio de Vinculación Científica, Facultad de Medicina-Universidad Nacional Autonoma de México-Instituto Nacional de Medicina Genomica, México City, Mexico
| |
Collapse
|
46
|
Chaudhary A, Nadeem M, Townsend J, Miller VJ, Hajrasouliha AR. Perinatal events and development of juvenile idiopathic arthritis-associated uveitis. Sci Rep 2023; 13:17576. [PMID: 37845273 PMCID: PMC10579364 DOI: 10.1038/s41598-023-44208-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
Uveitis is one of the most common manifestations of juvenile idiopathic arthritis (JIA). Currently, JIA is associated with decreased gut microbiota diversity. Studies confirm that perinatal events can cause aberrant microbial colonization. The objective of this study is to determine if JIA is associated with perinatal events with a secondary focus on these variables to the development of JIA-uveitis. 369 patients with strabismus (n = 200) or JIA (n = 196) were included in the study. Completed surveys (JIA 37; strabismus 18) collected data about birth route, pregnancy and labor complications, JIA medications, and the presence of eye disorders. Analysis indicates that there is no relationship between JIA development and the perinatal events investigated. Similarly, no significance was found between JIA-uveitis and birth route or labor complications. Pregnancy complications, namely gestational diabetes (GD), were statistically higher in the JIA group with uveitis compared to JIA without uveitis. The data from this survey study showed that JIA-uveitis was highly associated with pregnancy complications, particularly with GD. However, no statistically significant association was found between JIA and route of delivery, labor complications, or pregnancy complications. Further studies are needed to understand the ways that GD interrelates with the development of uveitis in JIA patients.
Collapse
Affiliation(s)
- Aysha Chaudhary
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Manahil Nadeem
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Jack Townsend
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Victoria J Miller
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Amir R Hajrasouliha
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
47
|
Pal P, Shastry RP. Exploring the complex role of gut microbiome in the development of precision medicine strategies for targeting microbial imbalance-induced colon cancer. Folia Microbiol (Praha) 2023; 68:691-701. [PMID: 37624549 DOI: 10.1007/s12223-023-01085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The gut microbiome has been increasingly recognized as a key player in the development and progression of colon cancer. Alterations in the gut microbiota, known as dysbiosis, can lead to a variety of medical issues. Microbial adaptation through signals and small molecules can enhance pathogen colonization and modulate host immunity, significantly impacting disease progression. Quorum sensing peptides and molecules have been linked to the progression of colon cancer. Various interventions, such as fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and antibiotics, have been used to reverse dysbiosis with mixed results and potential side effects. Thus, a personalized approach to treatment selection based on patient characteristics, such as individual gut microbiota manipulation, is necessary to prevent and treat diseases like colon cancer. With advances in metagenomic sequencing and other omics technologies, there has been a growing interest in developing precision medicine strategies for microbial imbalance-induced colon cancer. This review serves as a comprehensive synthesis of current knowledge on the gut microbiome involvement in colon cancer. By exploring the potential of utilizing the gut microbiome as a target for precision medicine, this review underscores the exciting opportunities that lie ahead. Although challenges exist, the integration of microbiome data into precision medicine approaches has the potential to revolutionize the management of colon cancer, providing patients with more personalized and effective treatment options.
Collapse
Affiliation(s)
- Pamela Pal
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to Be University), Yenepoya Research Centre, University Road, Mangaluru-575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to Be University), Yenepoya Research Centre, University Road, Mangaluru-575018, India.
| |
Collapse
|
48
|
Fang X, Gao C, Wu W, Hu X, Shao M, Zhou C, Cai R, Fang J, Li Y, Xu Y, Zhang X. The role of the gut microbiome in weight-gain in schizophrenia patients treated with atypical antipsychotics: Evidence based on altered composition and function in a cross-sectional study. Psychiatry Res 2023; 328:115463. [PMID: 37717547 DOI: 10.1016/j.psychres.2023.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVES We aimed to explore the interconnection between the weight-gain in schizophrenia patients with atypical antipsychotic treatment and gut microbiome. METHODS This study employed a cross-sectional design, encompassing a total of 88 schizophrenia patients with long-term atypical antipsychotic treatment. The 16S rRNA gene sequencing was used to identify gut microbiome contents. RESULTS No significant differences in alpha diversity between normal-weight and overweight schizophrenia treated with atypical antipsychotics. The beta diversity analysis showed that overweight patients clustered tightly while normal-weight patients clustered widely. For taxonomic composition, overweight patients had a lower relative abundance in Porphyromonadaceae at family level and Butyrivibrio at genus level, but higher relative abundance in Ruminococcus2 and Clostridium_XIVa at genus level than normal-weight patients. Function prediction revelated that four pathways (including Cell cycle, Non-homologous end-joining, Vibrio cholerae infection and Meiosis-yeast) were significantly different between groups. Correlation analysis indicated that Klebsiella, Butyrivibrio, Unassigned, Methanosphaera, Holdemania, Anaerotruncus were negatively, while Veillonella was positively correlated with BMI in patients. CONCLUSION Our findings offer evidence that perturbations in the gut microbiome composition, encompassing taxa such as Porphyromonadaceae, Butyrivibrio, Ruminococcus2, and Clostridium_XIVa, in conjunction with distinct functional pathways including Cell cycle, Non-homologous end-joining, Vibrio cholerae infection, and Meiosis-yeast, might contribute to the weight-gain in schizophrenia treated with atypical antipsychotics.
Collapse
Affiliation(s)
- Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chunying Gao
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Department of Psychiatry, Changzhou De'an Hospital, Changzhou, China
| | - Weifeng Wu
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China; Nanjing Public Health and Medical Center, Nanjing, China
| | - Xiuxiu Hu
- Department of Psychiatry, Jiangning District Second People' s Hospital, Nanjing, China
| | - Miaomiao Shao
- Department of Psychiatry, Jiangning District Second People' s Hospital, Nanjing, China
| | - Chou Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Renliang Cai
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Li
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Yue Xu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
49
|
Rust C, Malan-Muller S, van den Heuvel LL, Tonge D, Seedat S, Pretorius E, Hemmings SMJ. Platelets bridging the gap between gut dysbiosis and neuroinflammation in stress-linked disorders: A narrative review. J Neuroimmunol 2023; 382:578155. [PMID: 37523892 DOI: 10.1016/j.jneuroim.2023.578155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
In this narrative review, we examine the association between gut dysbiosis, neuroinflammation, and stress-linked disorders, including depression, anxiety, and post-traumatic stress disorder (PTSD), and investigate whether tryptophan (TRP) metabolism and platelets play a role in this association. The mechanisms underlying the aetiology of stress-linked disorders are complex and not yet completely understood. However, a potential link between chronic inflammation and these disorders may potentially be found in TRP metabolism and platelets. By critically analysing existing literature on platelets, the gut microbiome, and stress-linked disorders, we hope to elicit the role of platelets in mediating the effects on serotonin (5-HT) levels and neuroinflammation. We have included studies specifically investigating platelets and TRP metabolism in relation to inflammation, neuroinflammation and neuropsychiatric disorders. Alteration in microbial composition due to stress could contribute to increased intestinal permeability, facilitating the translocation of microbial products, and triggering the release of pro-inflammatory cytokines. This causes platelets to become hyperactive and secrete 5-HT into the plasma. Increased levels of pro-inflammatory cytokines may also lead to increased permeability of the blood-brain barrier (BBB), allowing inflammatory mediators entry into the brain, affecting the balance of TRP metabolism products, such as 5-HT, kynurenic acid (KYNA), and quinolinic acid (QUIN). These alterations may contribute to neuroinflammation and possible neurological damage. Furthermore, platelets can cross the compromised BBB and interact with astrocytes and neurons, leading to the secretion of 5-HT and pro-inflammatory factors, exacerbating inflammatory conditions in the brain. The mechanisms underlying neuroinflammation resulting from peripheral inflammation are still unclear, but the connection between the brain and gut through the bloodstream could be significant. Identifying peripheral biomarkers and mechanisms in the plasma that reflect neuroinflammation may be important. This review serves as a foundation for further research on the association between the gut microbiome, blood microbiome, and neuropsychiatric disorders. The integration of these findings with protein and metabolite markers in the blood may expand our understanding of the subject.
Collapse
Affiliation(s)
- Carlien Rust
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa.
| | - Stefanie Malan-Muller
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Neurochemistry Research Institute UCM, Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Daniel Tonge
- School of Life Sciences, Faculty of Natural Sciences, Keele University, ST5 5BG Newcastle, England, UK
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology Biosciences Building, University of Liverpool, Liverpool, United Kingdom.
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| |
Collapse
|
50
|
Łoniewska B, Łoniewski I. Effect of Pre- and Perinatal Factors and Infant Nutrition on the Intestinal Microbiota. Nutrients 2023; 15:3977. [PMID: 37764760 PMCID: PMC10534608 DOI: 10.3390/nu15183977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal microbiota is an essential determinant of human health [...].
Collapse
Affiliation(s)
- Beata Łoniewska
- Department of Neonatology and Intensive Neonatal Care, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
- Sanprobi sp. z o.o. sp. k., 70-535 Szczecin, Poland
| |
Collapse
|