1
|
Dorscheid D, Gauvreau GM, Georas SN, Hiemstra PS, Varricchi G, Lambrecht BN, Marone G. Airway epithelial cells as drivers of severe asthma pathogenesis. Mucosal Immunol 2025; 18:524-536. [PMID: 40154790 DOI: 10.1016/j.mucimm.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Our understanding of the airway epithelium's role in driving asthma pathogenesis has evolved over time. From being regarded primarily as a physical barrier that could be damaged via inflammation, the epithelium is now known to actively contribute to asthma development through interactions with the immune system. The airway epithelium contains multiple cell types with specialized functions spanning barrier action, mucociliary clearance, immune cell recruitment, and maintenance of tissue homeostasis. Environmental insults may cause direct or indirect injury to the epithelium leading to impaired barrier function, epithelial remodelling, and increased release of inflammatory mediators. In severe asthma, the epithelial barrier repair process is inhibited and the response to insults is exaggerated, driving downstream inflammation. Genetic and epigenetic mechanisms also maintain dysregulation of the epithelial barrier, adding to disease chronicity. Here, we review the role of the airway epithelium in severe asthma and how targeting the epithelium can contribute to asthma treatment.
Collapse
Affiliation(s)
- Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gail M Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Bart N Lambrecht
- Center for Inflammation Research, Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), School of Medicine, University of Naples Federico II, Naples, Italy; Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.
| |
Collapse
|
2
|
Mobayed H, Al-Nesf M, Ibrahim T, Aqel S, Al-Ahmad M, Bousquet J. Secondary Non-Response to Biologic Treatment in Patients with Severe Asthma. J Asthma Allergy 2025; 18:795-800. [PMID: 40416365 PMCID: PMC12101457 DOI: 10.2147/jaa.s517784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/16/2025] [Indexed: 05/27/2025] Open
Abstract
Biologic therapies have revolutionized the management of severe asthma (SA), offering significant symptom control and reduced exacerbations for many patients. However, up to 25% of individuals do not show satisfactory responses to these treatments and are categorized as non-responders. Definitions of response and primary non-response to biologics in SA are well-established. In secondary nonresponse, patients show initial response to biological treatment in the first 6-12 months but later lose asthma control, and in SA this phenomenon remains undefined and unstudied in literature. We present 4 cases of severe asthma treated with different biologic agents. All patients demonstrated significant clinical improvement during the first 12 months of therapy but followed by a gradual loss of asthma control, indicative of secondary nonresponse. We discuss the clinical features, potential mechanisms, and implications of secondary nonresponse to biologics in severe asthma, highlighting an unmet need for further research to define this phenomenon and guide future therapeutic strategies.
Collapse
Affiliation(s)
- Hassan Mobayed
- Allergy and Immunology Division, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Maryam Al-Nesf
- Allergy and Immunology Division, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Tayseer Ibrahim
- Allergy and Immunology Division, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Sami Aqel
- Allergy and Immunology Division, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Mona Al-Ahmad
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
- Al‐Rashed Allergy Center, Ministry of Health, Kuwait City, Kuwait
| | - Jean Bousquet
- Macvia France, Montpellier, France
- Hospital Charité, Institute of Allergology, Universitätsmedizin Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Dermatology and Allergy, Comprehensive Allergy Center, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
3
|
Huanjin L, Xia P, Yue Y, Yiqing G, Yanning L, Juan W, Jia L, Lihui L, Li L, Guogang X. Intranasal Immunotherapy with Allergen-Loaded Extracellular Vesicles from Mast Cells Alleviates Allergic Asthma Inflammation in a Murine Model. Inflammation 2025:10.1007/s10753-025-02307-3. [PMID: 40366524 DOI: 10.1007/s10753-025-02307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
Allergen immunotherapy (AIT) is the only treatment that can alter the course of allergic diseases by inducing immune tolerance through long-term, repeated low-dose allergen exposure. Nonetheless, AIT persistently faces challenges necessitating resolution, particularly in relation to treatment duration, the incidence of adverse reactions, and patient adherence. Extracellular vesicles (EVs) are promising drug delivery carriers for medications, vaccines, and targeted antibodies. Previously, we demonstrated that intravenous bone marrow-derived mast cell EVs (BMMC-EVs) can reduce allergic airway inflammation in asthmatic mice by interacting with free IgE. This study explores the potential of intranasally administered BMMC-EVs loaded with dermatophagoides farinae extracts to induce local immune tolerance and more effectively alleviate allergic asthma in mice. BMMC were co-cultured with the crude extract of dermatophagoides farina (DfE). BMMC-EVs-DfE were obtained and analyzed for the presence and concentration of DfE. The allergic asthma model was sensitized by intraperitoneal injection of DfE and Al(OH)3 in BALB/c mice. Mice were immunized with PBS, BMMC-EVs-DfE, BMMC-EVs, and DfE intranasally. Then, mice were challenged with DfE after treatment. Effects of immunization were analyzed based on lung histology, bronchoalveolar lavage cell counts, lung cytokine levels, and plasma antibody levels. There were no deaths or signs of systemic toxicity noted in association with the BMMC-EVs-DfE, BMMC-EVs, and DfE immunized mice. BMMC-EVs-DfE immunization could decrease the total cells, macrophages and eosinophils number in bronchoalveolar lavage fluid (BALF), and attenuate goblet cell hyperplasia and MUC5AC expression in lung tissue. DfE specific IgE and IgG3 antibody, and histamine levels were significantly suppressed by BMMC-EVs-DfE immunization, while DfE specific IgG1 and IgG2a levels were increased. Moreover, BMMC-EVs-DfE can regulate the Th1/Th2 balance toward Th1 via increasing the IFN-γ and decreasing the IL-4 levels. We demonstrate here that BMMC-EVs-DfE could efficiently prevent allergic asthma inflammation, rebuild Th1/Th2 balance, reduce goblet hyperplasia and mucus production. BMMC-EVs-DfE as a platform for allergen delivery that effectively inhibits asthma airway inflammation.
Collapse
Affiliation(s)
- Liao Huanjin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Peng Xia
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yin Yue
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Ge Yiqing
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Department of Laboratory Medicine, Shanghai Chest Hospital Affiliated Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Li Yanning
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wang Juan
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Li Jia
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lin Lihui
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Xie Guogang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Zhang A, Zhang H, Liu L, Zhang H, Mo L, Zhang W, Harith HH, Cheng L, Lv J, Tham CL, Yang P. USP14 inhibits sensitization-mediated degradation of KDM4D to epigenetically regulate dendritic cell tolerogenic capacity and mitigates airway allergy. Cell Immunol 2025; 411-412:104943. [PMID: 40088847 DOI: 10.1016/j.cellimm.2025.104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/19/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Numerous immune disorders are caused by the dysfunction of dendritic cells (DC). The mechanism has not been fully comprehended yet. This research is designed to regulate the epigenetic status of lysine-specific demethylase 4D (KDM4D) to enhance DC's immune tolerogenic capacity. In this study, an airway allergy (AA) mouse model was established with dust mite extracts (DME) as the specific antigen. A mouse strain carrying Kdm4d-deficient DCs was employed in the experiments to assess the role of KDM4D in modulating DC's immune tolerogenic functions. The results showed that mice carrying Kdm4d-deficient DCs (KO mice) showed spontaneous Th2 polarization in the airways. Reduced quantities of KDM4D were detected in airway naive DCs (nDCs) of AA mice. The parameters of AA response had a negative correlation with the quantity of KDM4D. The immune tolerogenic capacity of airway nDCs was impaired in KO mice as well as in AA mice. The Il10 promoter was found to be hypermethylated in airway nDCs of AA mice and KO mice. The low quantity of deubiquitinating enzyme 14 (USP14) was related to the high level of hyper ubiquitination observed in KDM4D in the Il10 promoter locus of airway nDCs of AA mice. Exposure to recombinant USP14 increased the quantity of KDM4D in nDCs, restoring the immune tolerogenic capacity of nDCs in AA mice. In conclusion, dysfunctional tolerogenicity is caused by low levels of KDM4D in airway nDCs from AA mice. USP14 restores the tolerogenic capacity of nDCs in AA mice and mitigates experimental AA.
Collapse
Affiliation(s)
- Aizhi Zhang
- Department of Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Huanping Zhang
- Department of Allergy Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Le Liu
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Hanqing Zhang
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Lihua Mo
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China; Department of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenkai Zhang
- Department of Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hanis Hazeera Harith
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Liying Cheng
- Department of Emergency Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jieping Lv
- Department of Anesthesiology, The first hospital of Shanxi Medical University, Taiyuan, China.
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Pingchang Yang
- State Key Laboratory of Respiratory Diseases Allergy Division at Shenzhen University and Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
5
|
Pollock J, Goeminne PC, Aliberti S, Polverino E, Crichton ML, Ringshausen FC, Dhar R, Vendrell M, Burgel PR, Haworth CS, De Soyza A, De Gracia J, Bossios A, Rademacher J, Grünewaldt A, McDonnell M, Stolz D, Sibila O, van der Eerden M, Kauppi P, Hill AT, Wilson R, Amorim A, Munteanu O, Menendez R, Torres A, Welte T, Blasi F, Boersma W, Elborn JS, Shteinberg M, Dimakou K, Chalmers JD, Loebinger MR. Aspergillus Serologic Findings and Clinical Outcomes in Patients With Bronchiectasis: Data From the European Bronchiectasis Registry. Chest 2025; 167:975-992. [PMID: 39461553 DOI: 10.1016/j.chest.2024.06.3843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Aspergillus species cause diverse clinical manifestations in bronchiectasis including allergic bronchopulmonary aspergillosis (ABPA), Aspergillus sensitization (AS), and raised IgG indicating exposure to, or infection with, Aspergillus. RESEARCH QUESTION What are the prevalence and clinical significance of Aspergillus-associated conditions in individuals with bronchiectasis? STUDY DESIGN AND METHODS Patients with bronchiectasis enrolled into the European Bronchiectasis Registry from 2015 through 2022 with laboratory testing for Aspergillus lung disease (total IgE, IgE specific to Aspergillus or Aspergillus skin test, or IgG specific to Aspergillus and blood eosinophil counts) were included for analysis. Modified International Society for Human and Anima Mycology ABPA working group criteria (2024) were used to define ABPA. RESULTS Nine thousand nine hundred fifty-three patients were included. Six hundred eight patients (6.1%) were classified as having ABPA, 570 patients (5.7%) showed AS, 806 patients (8.1%) showed raised Aspergillus-specific IgG without AS, 184 patients (1.8%) showed both AS and had raised Aspergillus-specific IgG levels, and 619 patients (6.2%) demonstrated eosinophilic bronchiectasis (elevated eosinophil counts without evidence of Aspergillus lung disease). The remaining 72% showed negative Aspergillus serologic findings. Patients with ABPA, AS, or raised Aspergillus-specific IgG demonstrated more severe disease, with worse lung function and more frequent exacerbations at baseline. During long-term follow-up, patients with raised Aspergillus-specific IgG experienced higher exacerbation frequency and more severe exacerbations. AS was associated with increased exacerbations and hospitalizations only in patients not receiving inhaled corticosteroids. INTERPRETATION Aspergillus lung disease is common in bronchiectasis. Raised IgG levels to Aspergillus were associated with significantly worse outcomes, whereas ABPA and AS were associated with severe disease and exacerbations with a risk that is attenuated by inhaled corticosteroid use.
Collapse
Affiliation(s)
- Jennifer Pollock
- Division of Respiratory Medicine and Gastroenterology, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland
| | - Pieter C Goeminne
- Department of Respiratory Disease, VITAZ Hospital, Sint-Nikolaas, Belgium
| | - Stefano Aliberti
- IRCCS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Eva Polverino
- Department of Pneumology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Thorax Institute, Institute of Biomedical Research August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Megan L Crichton
- Division of Respiratory Medicine and Gastroenterology, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland
| | - Felix C Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; European Reference Network on Rare and Complex Respiratory Diseases, Frankfurt am Main, Germany
| | - Raja Dhar
- Department of Pulmonology, C. K. Birla Hospitals, Kolkata, India
| | - Montserrat Vendrell
- Department of Pulmonology, Dr Trueta University Hospital, Girona Biomedical Research Institute (IDIBGI), University of Girona, Girona, Spain
| | - Pierre-Régis Burgel
- Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, AP-HP and Université Paris Cité, Inserm U1016, Institut Cochin, Paris, France
| | - Charles S Haworth
- Cambridge Centre for Lung Infection, Royal Papworth Hospital and University of Cambridge, Cambridge, England
| | - Anthony De Soyza
- Population and Health Science Institute, Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle, England
| | - Javier De Gracia
- Department of Respiratory Medicine, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Apostolos Bossios
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden; Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Rademacher
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; European Reference Network on Rare and Complex Respiratory Diseases, Frankfurt am Main, Germany
| | - Achim Grünewaldt
- Department of Respiratory Medicine and Allergology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Melissa McDonnell
- Department of Respiratory Medicine, Galway University Hospital, Galway, Ireland
| | - Daiana Stolz
- Department of Pneumology, Medical Center - University of Freiburg, Baden-Württemberg, Germany
| | - Oriol Sibila
- Servicio de Neumología, Hospital Clínic, University of Barcelona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Menno van der Eerden
- Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paula Kauppi
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Adam T Hill
- Department of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, Scotland
| | - Robert Wilson
- Royal Brompton and Harefield Hospitals and National Heart and Lung Institute, Imperial College London, London, England
| | - Adelina Amorim
- Department of Pulmonology, Centro Hospitalar Universitário S. João and Faculty of Medicine, University of Porto, Porto, Portugal
| | - Oxana Munteanu
- Pneumology/Allergology Division, University of Medicine and Pharmacy Nicolae Testemitanu, Medpark International Hospital, Chisinau, Moldova
| | - Rosario Menendez
- Department of Pneumology, Hospital Universitario y Politécnico La Fe-Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antoni Torres
- Instituto Clínico de Respiratorio, IDIBAPS, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Tobias Welte
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, German Center for Lung Research, Hannover, Germany; European Reference Network on Rare and Complex Respiratory Diseases, Frankfurt am Main, Germany
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Wim Boersma
- Department of Pulmonary Diseases, Northwest Clinics, Alkmaar, The Netherlands
| | - J Stuart Elborn
- Faculty of Medicine, Health and Life Sciences, Queen's University, Belfast, Northern Ireland
| | - Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel
| | - Katerina Dimakou
- 5th Respiratory Medicine Department, General Hospital for Chest Diseases of Athens SOTIRIA, Athens, Greece
| | - James D Chalmers
- Division of Respiratory Medicine and Gastroenterology, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland.
| | - Michael R Loebinger
- Royal Brompton and Harefield Hospitals and National Heart and Lung Institute, Imperial College London, London, England
| |
Collapse
|
6
|
Zhang X, Li X, Wang P, Zhao S, Zhao Y. Safranal restores RUNX3-mediated immunoregulation by inhibiting the NLRP3 inflammasome in allergic asthma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03943-0. [PMID: 40163148 DOI: 10.1007/s00210-025-03943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025]
Abstract
Safranal is an active ingredient with pharmacological anti-inflammatory effects derived from Crocus sativus essential oil. To explore the comprehensive effects of Safranal on airway inflammation, airway hyperreactivity, and remodeling and its potential mechanisms through the allergic asthma model, an in vitro model of ASMC cells stimulated by TNF-α was established. The cells were transfected with si-RUNX3 and RUNX3 overexpression plasmids, and DEX was used as a positive control. The expression of RUNX3 was detected by western blot and immunofluorescence. The levels of inflammatory factors were measured by ELISA, while flow cytometry detected the anti-apoptotic effects and ROS production. Subsequently, OVA-sensitized WT mice and RUNX3-KO mice were administered with DEX and Safranal for 2 weeks to establish a mouse model of allergic asthma, and changes in airway hyperresponsiveness, inflammatory manifestations, and airway remodeling were detected. The mechanism of Safranal was verified by detecting the expression of RUNX3, inflammation, and fibrosis-related proteins in the lung tissues. By modulating the NLRP3/Caspase-1 pathway, Safranal significantly alleviated the negative effects caused by RUNX3 suppression in vivo and in vitro. We propose that Safranal is a potential active compound for the treatment of asthma, and its clinical application value in allergic asthma should be further explored.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Pulmonary and Critical Care Medicine, Yantaishan Hospital, Yantai, Shandong, China
| | - Xuanyi Li
- Department of Center for Laboratory Diagnosis, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Peng Wang
- Ministry of Scientific and Technological Innovation, Yantai Hi-tech Industrial Development Zone, Yantai, Shandong, China
| | - Shuqin Zhao
- Department of Pediatrics, Yuhuangding Hospital, Laishan Branch, No. 59 Shuanghe West Road, Laishan District, Yantai, 264003, Shandong, China.
| | - Yuanyuan Zhao
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai No. 20 Yudong Road, Zhifu District, Yantai, 264000, Shandong, China.
| |
Collapse
|
7
|
Bai R, Liu B, Li T, Zhou H, Yue X, Liu Y, Shan Y, Li Z, Wei Y, Wu J. The synergistic effects of PM 2.5 and high-fat diet on Th1/Th2 balance in model mice with asthma. J Thorac Dis 2025; 17:1502-1511. [PMID: 40223976 PMCID: PMC11986740 DOI: 10.21037/jtd-24-1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/22/2025] [Indexed: 04/15/2025]
Abstract
Background Particulate matter, ambient particulate matter with an aerodynamic equivalent diameter ≤2.5 µm (PM2.5) is closely associated with asthma, and a high-fat diet is also a risk factor for the condition. In many cities in China, exposure to PM2.5 and consumption of a high-fat diet coexist. The Th1/Th2 balance is the immunological foundation for the onset and progression of asthma, and it is more accurate to describe asthma symptoms in terms of changes in this balance. Therefore, the aim of this study was to investigate the effects of PM2.5 and high-fat diet the combined effects on Th1/Th2 balance in asthma immune. Methods Given this background, our study examined the effects of PM2.5 and high-fat diets on the Th1/Th2 balance and proposed potential molecular mechanisms for asthma development induced by these factors. In this study, male BALB/c mice and ovalbumin (OVA)-sensitized asthma mice subjected to either a normal or high-fat diet were exposed to PM2.5 or filtered air for one month. We evaluated the effects of PM2.5 and high-fat diets on asthma using histopathology, enzyme-linked immunosorbent assays, transcriptome sequencing, and quantitative polymerase chain reaction (PCR). Results We found that PM2.5 exposure increased the secretion of Th2-related inflammatory mediators, while a high-fat diet increased the secretion of Th1-related inflammatory mediators. However, the combined effects still predominantly favored a Th2 skew. PM2.5 exposure shifted the Th1/Th2 balance toward Th2, whereas a high-fat diet shifted it toward Th1. The combination of PM2.5 exposure and a high-fat diet resulted in a less pronounced Th2 polarization compared to PM2.5 exposure alone. Conclusions PM2.5 exposure and short-term high-fat diet both exacerbate asthma but there is an opposite direction of modulation of the Th1/Th2 balance.
Collapse
Affiliation(s)
- Ruifeng Bai
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Bingqian Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Tianshui Li
- Respiratory and Critical Care Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Heng Zhou
- Department of Emergency, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xinyang Yue
- Department of Clinical Laboratory, Peking University Fourth School of Clinical Medicine, Beijing, China
| | - Ying Liu
- Blood Transfusion Department, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yining Shan
- Department of Nursing, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jun Wu
- Department of Clinical Laboratory, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Ren K, Niu B, Liang H, Xi C, Song M, Chen J, Zhao F, Cao Z. Zhichuanling injection improves bronchial asthma by attenuation airway inflammation and epithelia-mesenchymal transition. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119540. [PMID: 40020793 DOI: 10.1016/j.jep.2025.119540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhichuanling (ZCL) Injection, is a compound formulation containing extracts of mahuang (Herba Ephedrae, dried stem or aerial part of Ephedra sinica Stapf), bitter almond (Semen Armeniacae Amarum, seeds of Prunus armeniaca var. sibirica (L.) K. Koch), yangjinhua (flower of Datura metel L.) and Fructus Forsythiae (fruits of Forsythia suspensa (Thunb.) Vahl). Intramuscular injection of ZCL has been used in the clinical practice to control asthma. The aerosol inhalation of ZCL has been shown to be effective on allergic bronchial asthma. However, the underlying mechanisms remain established. AIM OF THE STUDY To investigate the underling mechanism by which ZCL inhibits the pathogenesis of bronchial asthma. METHODS The guinea pig tracheal rings and human bronchial epithelial (16HBE) cells were used to assess ZCL's impact on acetylcholine (Ach) induced tracheal contraction, tumor necrosis factor α (TNF-α) induced bronchial inflammation, and transforming growth factor-β1 (TGF-β1) induced airway remodeling. Cell viability and gene expression were assessed using MTT assays, qPCR. RNA-seq (gene expression analysis) was employed to explore the novel mechanisms of ZCL in OVA-induced bronchial asthma. RESULTS In this study, we found that ZCL reduces Ach-induced contraction of isolated guinea pig trachea, suppress TNF-α-induced interleukin (IL)-1β, IL-6, and IL-8 and TGF-β1-induced E-cadherin, α-SMA, Vimentin, N-cadherin mRNA expression in the 16HBE. Transcriptomic analysis of lung tissue from mice with OVA-induced bronchial asthma suggests that ZCL may alleviate asthma symptoms by modulating BPIFA1, HIF3Α, CTXN3, GRFA3, PPEF1, KSR2, and CDSN. CONCLUSION ZCL alleviates asthma by suppressing tracheal contractions, inflammation, and epithelial-to-mesenchymal transition. ZCL effect on asthma is likely through the upregulation of BPIFA1 expression thus providing the molecular insight for the treatment of asthma. The findings suggest that ZCL holds promise as a asthma therapeutic approach, and further research is needed to explore its full clinical potential. Future studies should focus on optimizing dosage, evaluating long-term efficacy, and investigating potential synergistic effects with existing treatments to enhance asthma management and patient outcomes.
Collapse
Affiliation(s)
- Kerui Ren
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Bo Niu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Huaduan Liang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chuchu Xi
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Mengmeng Song
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jingyi Chen
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Lianyungang, 222001, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
9
|
Al-Ahmad M, Ali A, Talat W. Younger severe asthma patients with interleukin 4 (CC variant) and dupilumab treatment are more likely to achieve clinical remission. BMC Pulm Med 2025; 25:131. [PMID: 40119276 PMCID: PMC11929188 DOI: 10.1186/s12890-025-03578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/05/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Asthma is a complex condition characterized by variable respiratory symptoms and chronic inflammation. In recent years, the use of biologics in severe asthma patients led to significant improvements in symptom control and disease outcomes. This has prompted healthcare providers to explore the possibility of achieving clinical remission (CR). This study aimed to evaluate the prevalence of clinical remission in severe asthma patients treated with biologics. Additionally, to identify factors associated with achieving clinical remission. METHODS The study recruited 116 patients from a national severe asthma registry in Kuwait, focusing on patients who had been treated with biologic therapy for at least 12 months. CR was defined as the absence of exacerbations and oral corticosteroids (OCS) use, an Asthma Control Test (ACT) score of ≥ 20, Asthma Control Questionnaire (ACQ-6) score of ≤ 0.75 and forced expiratory volume in one second (FEV1) ≥ 80% predicted. Data were collected on demographics, clinical, and functional parameters; including biomarkers such as blood eosinophils count (BEC), total immunoglobulin E (IgE), and fractional exhaled nitric oxide (FeNO), as well as the polymorphism patterns of the interleukin-4 (IL-4) and tumor necrosis factor-alpha (TNF-α) genes. RESULTS Patients with severe asthma were predominantly female (68.9%) with an average age of 54.09 years. Most had adult-onset asthma (67.3%), comorbid allergic rhinitis (AR) (81.03%), and experienced frequent exacerbations, with a median of four corticosteroids-requiring flare-ups per year. The allergic eosinophilic phenotype was common (74.14%), and a significant portion carried the CC genotype of the IL-4 gene (51.72%) or the GG genotype of the TNFα gene (57.76%). Biologic therapy significantly improved asthma control, reduced exacerbations and OCS use while improved lung function (p = 0.001 for all). About 18.1% of patients achieved CR after at least 12 months of biologic therapy, with dupilumab being the most effective, especially in biologic-naive patients. A multiple logistic regression analysis found that increasing age was negatively associated with CR (OR 0.95, p = 0.02), while the CC genotype of the IL-4 gene (OR 4.57, p = 0.008) and the use of dupilumab (OR 3.63, p = 0.001) were strong positive predictors of CR. CONCLUSION This study suggested that CR can be achieved in patients with severe asthma. However, biologic therapy, particularly dupilumab, offers a promising avenue for achieving CR in comparison to other biologics, especially in younger patients with specific genetic profiles (CC genotype of the IL-4 gene).
Collapse
Affiliation(s)
- Mona Al-Ahmad
- Department of Microbiology, College of Medicine, Kuwait University, Safat, P.O. Box 24923, Kuwait City, 13110, Kuwait.
- Department of Allergy, Al-Rashed Allergy Center, Ministry of Health, Kuwait City, Kuwait.
| | - Asmaa Ali
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Allergy, Al-Rashed Allergy Center, Ministry of Health, Kuwait City, Kuwait
- Department of Pulmonary Medicine, Abbassia Chest Hospital, Ministry of Health, Cairo, Egypt
| | - Wafaa Talat
- Department of Allergy, Al-Rashed Allergy Center, Ministry of Health, Kuwait City, Kuwait.
| |
Collapse
|
10
|
Khan M, Alteneder M, Reiter W, Krausgruber T, Dobnikar L, Madern M, Waldherr M, Bock C, Hartl M, Ellmeier W, Henriksson J, Boucheron N. Single-cell and chromatin accessibility profiling reveals regulatory programs of pathogenic Th2 cells in allergic asthma. Nat Commun 2025; 16:2565. [PMID: 40089475 PMCID: PMC11910648 DOI: 10.1038/s41467-025-57590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Lung pathogenic T helper type 2 (pTh2) cells are important in mediating allergic asthma, but fundamental questions remain regarding their heterogeneity and epigenetic regulation. Here we investigate immune regulation in allergic asthma by single-cell RNA sequencing in mice challenged with house dust mite, in the presence and absence of histone deacetylase 1 (HDAC1) function. Our analyses indicate two distinct highly proinflammatory subsets of lung pTh2 cells and pinpoint thymic stromal lymphopoietin (TSLP) and Tumour Necrosis Factor Receptor Superfamily (TNFRSF) members as important drivers to generate pTh2 cells in vitro. Using our in vitro model, we uncover how signalling via TSLP and a TNFRSF member shapes chromatin accessibility at the type 2 cytokine gene loci by modulating HDAC1 repressive function. In summary, we have generated insights into pTh2 cell biology and establish an in vitro model for investigating pTh2 cells that proves useful for discovering molecular mechanisms involved in pTh2-mediated allergic asthma.
Collapse
Affiliation(s)
- Matarr Khan
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Marlis Alteneder
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Wolfgang Reiter
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Center for Medical Data Science, Institute of Artificial Intelligence, Vienna, Austria
| | - Lina Dobnikar
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Moritz Madern
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Monika Waldherr
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
- FH Campus Wien, Department of Applied Life Sciences/Bioengineering/Bioinformatics, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Center for Medical Data Science, Institute of Artificial Intelligence, Vienna, Austria
| | - Markus Hartl
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Johan Henriksson
- Umeå University, Umeå Centre for Microbial Research (UCMR), Integrated Science Lab (Icelab), Department of Molecular Biology, Umeå, Sweden
| | - Nicole Boucheron
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria.
| |
Collapse
|
11
|
Adler A, Bergwik J, Padra M, Papareddy P, Schmidt T, Dahlgren M, Kahn R, Berglund UW, Egesten A. Pharmacological inhibition of MutT homolog 1 (MTH1) in allergic airway inflammation as a novel treatment strategy. Respir Res 2025; 26:101. [PMID: 40087604 PMCID: PMC11909806 DOI: 10.1186/s12931-025-03175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/01/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Despite progress in the treatment of asthma, there is an unmet need for additional therapeutic strategies, not least to avoid side-effects of corticosteroids. The enzyme MutT homolog 1 (MTH1) hydrolyzes oxidized purines and prevents their insertion to DNA. Small molecule inhibition of MTH1 has shown promising therapeutic effects in both cancer and inflammatory conditions. In this study, a small molecule inhibitor of MTH1 (TH1579), was investigated in models of allergic inflammation. METHODS In vitro, effects on T cell proliferation and apoptosis were investigated. Furthermore, a murine model, using female BALB/c mice, of OVA-induced allergic airway inflammation was used to investigate effects from MTH1-inhibition in vivo. RESULTS Inhibition of MTH1 prevented T cell proliferation in vitro and induced apoptosis in isolated human CD4+ T cells. However, the viability of isolated human eosinophils was unaffected by MTH1 inhibition in vitro. Pharmacological inhibition of MTH1 in a murine model of allergic airway inflammation reduced mucus production, recruitment of inflammatory cells, such as T cells and eosinophils in the BAL fluid and lung tissue, reduced plasma levels of total IgE and OVA-specific IgE, IgG, and IgG1, as well as reduced IL-13 levels in BAL fluid, lung tissue and plasma. CONCLUSION MTH1 inhibition reduced proliferation and promoted apoptosis of T cells in vitro. In vivo, TH1579 dampened the type 2 associated immune response in a murine model. These findings suggest that MTH1 could serve as a novel target to treat allergic airway inflammation.
Collapse
Affiliation(s)
- Anna Adler
- Division of Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund and Skåne University Hospital, Lund, Sweden.
| | - Jesper Bergwik
- Division of Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund and Skåne University Hospital, Lund, Sweden
| | - Médea Padra
- Division of Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund and Skåne University Hospital, Lund, Sweden
| | | | - Tobias Schmidt
- Division of Pediatrics Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund, Sweden
| | - Madelene Dahlgren
- Lung Biology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Robin Kahn
- Division of Pediatrics Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
- Oxcia AB, Stockholm, Sweden
| | - Arne Egesten
- Division of Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
12
|
Zhu S, Zhou Z, Gu R, Zhao Z, Zhang Y, Miao Y, Lei Q, Liu T, Wang G, Dai C, Huo Y, You J, Lv L, Li C, Yin M, Wang C, Deng H. TLR7/8 signaling activation enhances the potency of human pluripotent stem cell-derived eosinophils in cancer immunotherapy for solid tumors. Exp Hematol Oncol 2025; 14:26. [PMID: 40025520 PMCID: PMC11871822 DOI: 10.1186/s40164-025-00613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/11/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Efficient tumor T-cell infiltration is crucial for the effectiveness of T-cell-based therapies against solid tumors. Eosinophils play crucial roles in recruiting T cells in solid tumors. Our group has previously generated induced eosinophils (iEOs) from human pluripotent stem cells and exhibited synergistic efficacy with CAR-T cells in solid tumor inhibition. However, administrated eosinophils might influx into inflammatory lungs, posing a potential safety risk. Mitigating the safety concern and enhancing efficacy is a promising development direction for further application of eosinophils. METHODS We developed a new approach to generate eosinophils with enhanced potency from human chemically reprogrammed induced pluripotent stem cells (hCiPSCs) with the Toll-like receptor (TLR) 7/8 signaling agonist R848. RESULTS R848-activated iEOs (R-iEOs) showed significantly decreased influx to the inflamed lungs, indicating a lower risk of causing airway disorders. Furthermore, these R-iEOs had enhanced anti-tumor functions, preferably accumulated at tumor sites, and further increased T-cell infiltration. The combination of R-iEOs and CAR-T cells suppressed tumor growth in mice. Moreover, the chemo-trafficking signaling increased in R-iEOs, which may contribute to the decreased lung influx of R-iEOs and the increased tumor recruitment of T cells. CONCLUSION Our study provides a novel approach to alleviate the potential safety concerns associated with eosinophils while increasing T-cell infiltration in solid tumors. This finding offers a prospective strategy for incorporating eosinophils to improve CAR-T-cell immunotherapy for solid tumors in the future.
Collapse
Affiliation(s)
- Sheng Zhu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Zhengyang Zhou
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Ruixin Gu
- Center for Bioinformatics, Center for Statistical Science, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zixin Zhao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yingfeng Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yudi Miao
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Qi Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Tianxing Liu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Guokai Wang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chenyi Dai
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yi Huo
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jinghao You
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Lejun Lv
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Cheng Li
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Center for Bioinformatics, Center for Statistical Science, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ming Yin
- Beijing Vitalstar Biotechnology, Beijing, 100012, China
| | - Chengyan Wang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Hongkui Deng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| |
Collapse
|
13
|
Yuk CM, Hong S, Kim D, Kim M, Jeong HW, Park SJ, Min H, Kim W, Lim J, Kim HD, Kim SG, Seong RH, Kim S, Lee SH. Inositol polyphosphate multikinase regulates Th1 and Th17 cell differentiation by controlling Akt-mTOR signaling. Cell Rep 2025; 44:115281. [PMID: 39946233 DOI: 10.1016/j.celrep.2025.115281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/15/2024] [Accepted: 01/16/2025] [Indexed: 02/28/2025] Open
Abstract
Activated proinflammatory T helper (Th) cells, including Th1 and Th17 cells, drive immune responses against pathogens and contribute to autoimmune diseases. We show that the expression of inositol polyphosphate multikinase (IPMK), an enzyme essential for inositol phosphate metabolism, is highly induced in Th1 and Th17 subsets. Deletion of IPMK in CD4+ T cells leads to diminished Th1- and Th17-mediated responses, reducing resistance to Leishmania major and attenuating experimental autoimmune encephalomyelitis. IPMK-deficient CD4+ T cells show impaired activation and Th17 differentiation, linked to the decreased activation of Akt, mTOR, and STAT3. Mechanistically, IPMK functions as a phosphatidylinositol 3-kinase to regulate phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) production, promoting T cell activation and effector functions. In IPMK-deficient CD4+ T cells, T cell receptor-stimulated PtdIns(3,4,5)P3 generation is abolished by wortmannin, suggesting IPMK acts in a wortmannin-sensitive manner. These findings establish IPMK as a critical regulator of Th1 and Th17 differentiation, underscoring its role in maintaining immune homeostasis.
Collapse
Affiliation(s)
- Chae Min Yuk
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Sehoon Hong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Dongeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; VA Palo Alto Health Care System, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Faculty of Medicine, University of Münster, 48149 Münster, Germany
| | - Seung Ju Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Hyungyu Min
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Wooseob Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongbu Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Hyo Dam Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea
| | - Rho Hyun Seong
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea.
| | - Seung-Hyo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; Biomedical Research Center, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-Gu, Daejeon 34141, Republic of Korea; Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
14
|
Zhang H, Zhang H, Wang L, Zhang Y, Hu L, Liu J, Zhou Y, Wang J. Bioinformatics and Network Pharmacology Identify the Therapeutic Role of Guominkang in Allergic Asthma by Inhibiting PI3K/Akt Signaling. J Inflamm Res 2025; 18:2805-2821. [PMID: 40026302 PMCID: PMC11871930 DOI: 10.2147/jir.s484251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/21/2024] [Indexed: 03/05/2025] Open
Abstract
Background As a classical regulating formula, Guominkang (GMK) has been extensively employed in clinical practice to treat the allergic asthma (AA) and alleviate allergy symptoms, however, the underlying mechanism remains elusive. The aim of this study was to explored the mechanism of action through which GMK combats AA. Methods Potential target genes for the compounds were identified from the database and subjected to functional enrichment analysis. Subsequently, a protein-protein interaction (PPI) network was constructed in order to screen the core target and confirmed by molecular docking. An asthma model was further developed in mice and airway hyperresponsiveness and lung pathological changes were observed following drug administration. The expression of PI3K and AKT proteins in lung tissues was then detected by Western blotting. Subsequently, the GSE104468 data were normalised and visualised using the R language, compared to the PI3K-Akt pathway gene set to identify overlapping genes, constructed a PPI network and analysed correlations between genes. Results 267 compounds and 475 disease-relevant GMK targets have been obtained, primarily in the areas of chemokine binding, drug binding, and PI3K-Akt pathway modulation. Molecular docking simulations revealed that predicted targets (PI3K, TNF, IL6, AKT1, SRC, TP53, and STAT3) could be closely bonded with component of GMK. According to in vivo experiments, GMK could reduce mucus obstruction and airway inflammation (P < 0.05), decrease airway hyperresponsiveness (P < 0.05), and inhibited the PI3K-Akt pathway (P < 0.05). After normalising the genes in the dataset between AA and healthy individuals, GO showed that 388 DEGs were associated with PI3K/AKT signaling pathway. The PPI network showed that the overlapping gene were located in the centre of asthma-associated network and that exhibited a correlation with the PI3K-Akt signaling pathway. Conclusion Based on our findings, GMK potentially acts via the PI3K/Akt pathway and alleviates allergic symptoms in AA.
Collapse
Affiliation(s)
- Honglei Zhang
- National Institute of TCM Body Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Haiyun Zhang
- National Institute of TCM Body Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- Dalian Women and Children’s Medical Group, Dalian, 116000, People’s Republic of China
| | - Lei Wang
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, People’s Republic of China
| | - Yihang Zhang
- National Institute of TCM Body Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Linhan Hu
- National Institute of TCM Body Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Juntong Liu
- National Institute of TCM Body Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yumei Zhou
- National Institute of TCM Body Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Ji Wang
- National Institute of TCM Body Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
15
|
Quinn AE, Zhao L, Bell SD, Huq MH, Fang Y. Exploring Asthma as a Protective Factor in COVID-19 Outcomes. Int J Mol Sci 2025; 26:1678. [PMID: 40004141 PMCID: PMC11855143 DOI: 10.3390/ijms26041678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Asthma has long been associated with increased susceptibility to viral respiratory infections, leading to significant exacerbations and poorer clinical outcomes. Contrarily and interestingly, emerging data and research surrounding the COVID-19 pandemic have shown that patients with asthma infected with SARS-CoV-2 experienced decreased severity of disease, lower hospitalization rates, as well as decreased morbidity and mortality. Research has shown that eosinophils could enhance immune defense against viral infections, while inhaled corticosteroids can assist in controlling systematic inflammation. Moreover, reduced ACE-2 expression in individuals with asthma may restrict viral entry, and the Th2 immune response may offset the Th1 response typically observed in severe COVID-19 patients. These factors may help explain the favorable outcomes seen in asthmatic patients during the COVID-19 pandemic. This review highlights potential protective mechanisms seen in asthmatic patients, including eosinophilia, the use of inhaled corticosteroids, reduced ACE-2 expression, and a dominate Th2 immune response. Such a study will be helpful to better manage patients with asthma who have contracted COVID-19.
Collapse
Affiliation(s)
- Anthony E. Quinn
- Department of Microbiology, Immunology & Pathology, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA; (A.E.Q.); (S.D.B.); (M.H.H.)
| | - Lei Zhao
- The Department of Respiratory Medicine, the 2nd People’s Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei 230002, China;
| | - Scott D. Bell
- Department of Microbiology, Immunology & Pathology, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA; (A.E.Q.); (S.D.B.); (M.H.H.)
| | - Muhammad H. Huq
- Department of Microbiology, Immunology & Pathology, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA; (A.E.Q.); (S.D.B.); (M.H.H.)
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, College of Osteopathic Medicine, Des Moines University, West Des Moines, IA 50266, USA; (A.E.Q.); (S.D.B.); (M.H.H.)
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
16
|
Dai C, Liu D, Qin C, Fang J, Cheng G, Xu C, Wang Q, Lu T, Guo Z, Wang J, Zhong T, Guo Q. Guben Kechuan granule attenuates bronchial asthma by inhibiting NF-κB/STAT3 signaling pathway-mediated apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119124. [PMID: 39694430 DOI: 10.1016/j.jep.2024.119124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/20/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic asthma caused by allergies is a lung illness marked by airway remodeling and hyperresponsiveness. Guben Kechuan (GK) granule is a clinically proven formula for treating lung disease. It relieves cough and helps to clear phlegm, but the mechanisms underlying its treatment for asthma are not clear. AIM OF THE STUDY We aimed to elucidate the efficacy and potential mechanisms by which GK ameliorates allergic asthma. MATERIALS AND METHODS Ultra-performance liquid chromatography (UHPLC-LTQ-Orbitrap-MS) identified the main chemical components of GK. The efficacy of GK was studied in an ovalbumin/alum (OVA)/AL(OH)3-sensitized rat model of bronchial asthma by measuring cytokine concentrations in serum and alveolar lavage samples, examining tissue pathology, and performing leukocyte counts. The mechanisms underlying its effectiveness in asthma were investigated by both transcriptomic and proteomic analyses. RESULTS GK relieved asthma-induced airway inflammation and remodeling, reduced inflammatory cell infiltration, and decreased the levels of the inflammatory cytokines TNF-α, IL-4, IL-5, IL-6, and IL-10. Analysis of the transcriptomic and proteomic results found that asthma activated the transcription factors STAT3 and NF-κB and induced oxidative-stress damage and apoptosis. GK was found to reduce Bax and caspase-3 expression, increase Bcl-2 expression, and inhibit asthma-induced apoptosis. GK downregulated the expression of the transcription factors STAT3 and NF-kB, which decreased the inflammatory response. Decreases in CAT, SOD, and GSH reduced asthma-induced oxidative-stress damage. CONCLUSIONS Our findings provide evidence that GK alleviates bronchial asthma by inhibiting apoptosis and oxidative stress damage mediated by the NF-κB/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Chuanhao Dai
- Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Dewen Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cuiying Qin
- Development Center of Medical Science & Technology National Health Commission of the People's Republic of China, Beijing, 100044, China
| | - Jingya Fang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chunhong Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qixin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tianming Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zuchang Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Department of Critical Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Tianyu Zhong
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China.
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
17
|
Jia L, Ma M, Xiong W, Zhu J, Cai Y, Chen Y, Jin J, Gao M. Evaluating the Anti-inflammatory Potential of JN-KI3: The Therapeutic Role of PI3Kγ-Selective Inhibitors in Asthma Treatment. Inflammation 2025:10.1007/s10753-024-02180-6. [PMID: 39776396 DOI: 10.1007/s10753-024-02180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025]
Abstract
Asthma is a chronic airway inflammatory disease of the airways characterized by the involvement of numerous inflammatory cells and factors. Therefore, targeting airway inflammation is one of the crucial strategies for developing novel drugs in the treatment of asthma. Phosphoinositide 3-kinase gamma (PI3Kγ) has been demonstrated to have a significant impact on inflammation and immune responses, thus emerging as a promising therapeutic target for airway inflammatory disease, including asthma. There are few studies reporting on the therapeutic effects of PI3Kγ-selective inhibitors in asthma disease. In this study, we investigated the anti-inflammatory and therapeutic effects of PI3Kγ-selective inhibitor JN-KI3 for treating asthma by utilizing both in vivo and in vitro approaches, thereby proving that PI3Kγ-selective inhibitors could be valuable in the treatment of asthma. In RAW264.7 macrophages, JN-KI3 effectively suppressed C5a-induced Akt phosphorylation in a concentration-dependent manner, with no discernible toxicity observed in RAW264.7 cells. Furthermore, JN-KI3 can inhibit the PI3K/Akt signaling pathway in lipopolysaccharide-induced RAW264.7 cells, leading to the suppression of transcription and expression of the classical inflammatory cytokines in a concentration-dependent manner. Finally, an ovalbumin-induced murine asthma model was constructed to evaluate the initial therapeutic effect of JN-KI3 for treating asthma. Oral administration of JN-KI3 inhibited the infiltration of inflammatory cells and the expression of T-helper type 2 cytokines in bronchoalveolar lavage fluid, which was associated with the suppression of the PI3K signaling pathway. Lung tissue and immunohistochemical studies demonstrated that JN-KI3 inhibited the accumulation of inflammatory cells around the bronchus and blood vessels, as well as the secretion of mucus and excessive deposition of collagen around the airway. In addition, it reduced the infiltration of white blood cells into the lungs. In summary, JN-KI3 shows promise as a candidate for the treatment of asthma. Our study also suggests that the inhibitory effects of PI3Kγ on inflammation could offer an additional therapeutic strategy for pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Lei Jia
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Mengyun Ma
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wendian Xiong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jingyu Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Yanfei Cai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yun Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Jin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Mingzhu Gao
- Department of Clinical Research Center for Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, 214000, Jiangsu, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
18
|
Chuang HC, Yang YCSH, Chou HC, Chen CM. Maternal aspartame exposure alters lung Th1/Th2 cytokine balance in offspring through nuclear factor-κB activation. Int Immunopharmacol 2025; 145:113800. [PMID: 39672024 DOI: 10.1016/j.intimp.2024.113800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/17/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Epidemiological evidence suggests that maternal intake of nonnutritive sweeteners is positively associated with early childhood asthma incidence. We investigated the effects of maternal aspartame exposure during pregnancy and lactation on lung Th1/Th2 cytokine balance and intestinal microbiota in offspring and explored the mechanisms that mediate these effects. METHOD Pregnant BALB/c mice were randomly divided on gestational day 7 into two dietary intervention groups: control (drinking water only) and aspartame (drinking water +0.25 g/L aspartame) groups. The dams nursed their offspring for 3 weeks. On postnatal day 21, heart blood samples were collected, and immunoglobulin E levels were measured. Microorganisms from the lower gastrointestinal tract were sampled using a culture-independent approach. Lung tissues were harvested for biochemical analyses. RESULTS Maternal aspartame exposure increased the body weight of the dams from gestational day 7 to postnatal day 21 and the body weight of the offspring from birth to postnatal day 21. Maternal aspartame exposure significantly increased the levels of Th2 cytokines (interleukin [IL]-4, IL-5, and IL-13) and IL-17 and immunoglobulin E but reduced that of a Th1 cytokine (interferon-γ) in the offspring's lung tissues. The altered Th1/Th2 balance was accompanied by increased lung nuclear factor-κB activation. The bacterial composition and alpha-diversity of the gut microbiota of the offspring did not differ significantly between the control and aspartame groups. CONCLUSION Our findings suggest maternal aspartame exposure influences lung Th1/Th2 cytokine balance in offspring through nuclear factor-κB activation.
Collapse
Affiliation(s)
- Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
19
|
Jawla N, Kar R, Patil VS, Arimbasseri GA. Inherent metabolic preferences differentially regulate the sensitivity of Th1 and Th2 cells to ribosome-inhibiting antibiotics. Immunology 2025; 174:73-91. [PMID: 39263985 DOI: 10.1111/imm.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Mitochondrial translation is essential to maintain mitochondrial function and energy production. Mutations in genes associated with mitochondrial translation cause several developmental disorders, and immune dysfunction is observed in many such patients. Besides genetic mutations, several antibiotics targeting bacterial ribosomes are well-established to inhibit mitochondrial translation. However, the effect of such antibiotics on different immune cells is not fully understood. Here, we addressed the differential effect of mitochondrial translation inhibition on different subsets of helper T cells (Th) of mice and humans. Inhibition of mitochondrial translation reduced the levels of mitochondrially encoded electron transport chain subunits without affecting their nuclear-encoded counterparts. As a result, mitochondrial oxygen consumption reduced dramatically, but mitochondrial mass was unaffected. Most importantly, we show that inhibition of mitochondrial translation induced apoptosis, specifically in Th2 cells. This increase in apoptosis was associated with higher expression of Bim and Puma, two activators of the intrinsic pathway of apoptosis. We propose that this difference in the sensitivity of Th1 and Th2 cells to mitochondrial translation inhibition reflects the intrinsic metabolic demands of these subtypes. Though Th1 and Th2 cells exhibit similar levels of oxidative phosphorylation, Th1 cells exhibit higher levels of aerobic glycolysis than Th2 cells. Moreover, Th1 cells are more sensitive to the inhibition of glycolysis, while higher concentrations of glycolysis inhibitor 2-deoxyglucose are required to induce cell death in the Th2 lineage. These observations reveal that selection of metabolic pathways for substrate utilization during differentiation of Th1 and Th2 lineages is a fundamental process conserved across species.
Collapse
Affiliation(s)
- Neha Jawla
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | - Raunak Kar
- Immuno Genomics Laboratory, National Institute of Immunology, New Delhi, India
| | - Veena S Patil
- Immuno Genomics Laboratory, National Institute of Immunology, New Delhi, India
| | | |
Collapse
|
20
|
Hagino T, Saeki H, Fujimoto E, Kanda N. Predictive Factors for Long-Term High Responders to Upadacitinib Treatment in Patients with Atopic Dermatitis. Dermatitis 2025; 36:62-71. [PMID: 39311694 DOI: 10.1089/derm.2024.0230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Background: Upadacitinib, a Janus kinase 1 inhibitor, is an effective medicine for moderate-to-severe atopic dermatitis (AD). Identifying long-term responders to upadacitinib is crucial for optimal treatment strategies in real-world clinical practice. To identify predictive factors for long-term high responders to upadacitinib 15 mg or 30 mg, defined as achievers of investigator's global assessment (IGA) 0/1 with ≥2-point improvement from baseline IGA at week 48. Methods: A retrospective study was conducted from August 2021 to September 2023 on 63 AD patients treated with upadacitinib 15 mg and 31 patients with 30 mg. Patients of each group were categorized into long-term high responders (achievers of IGA 0/1 at week 48) and low responders (non-achievers). We compared baseline values of clinical indexes and laboratory parameters between long-term responders and nonresponders. Results: In 15 mg group, long-term high responders showed lower rate of bronchial asthma (BA), lower values of baseline eczema area and severity index (EASI) of head and neck, IgE, and systemic inflammatory response index (SIRI) compared with low responders. In 30 mg group, long-term high responders showed lower baseline levels of IgE compared with low responders. Conclusion: Patients with lower baseline EASI of head and neck, IgE, or SIRI or without BA and those with lower baseline IgE may have a higher potential to become long-term high responders to upadacitinib 15 mg and 30 mg treatment, respectively.
Collapse
Affiliation(s)
- Teppei Hagino
- From the Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| | - Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | | | - Naoko Kanda
- From the Department of Dermatology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| |
Collapse
|
21
|
Contreras N, Escolar-Peña A, Delgado-Dolset MI, Fernández P, Obeso D, Izquierdo E, Cuervo HG, Cumplido JÁ, Múgica V, Cisneros C, Angulo-Díaz-Parreño S, Barbas C, Blanco C, Carrillo T, Barber D, Villaseñor A, Escribese MM. Multiomic Integration Analysis for Monitoring Severe Asthma Treated With Mepolizumab or Omalizumab. Allergy 2024. [PMID: 39692160 DOI: 10.1111/all.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024]
Abstract
RATIONALE Biologics are becoming increasingly important in the management of severe asthma. However, little is known about the systemic immunometabolic consequences of Th2 response blockage. OBJECTIVES To provide a better immunometabolic understanding of the effects of mepolizumab and omalizumab treatments by identifying potential biomarkers for monitoring. METHODS In this exploratory longitudinal study severe asthmatic patients were followed for 18 months after initiating mepolizumab (n = 36) or Omalizumab (n = 20) treatment. Serum samples were collected before, 6, and 18 months after treatment. Targeted omic approaches were performed to analyze inflammatory metabolites (n = 35) and proteins (n = 45). Multiomic integration was performed individually for each treatment applying supervised analysis Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO) framework. Then, potential biomarkers were confirmed using multivariate ROC analyses and correlated with clinical variables along treatment. MEASUREMENTS AND MAIN RESULTS Mepolizumab and omalizumab were both effective (improved clinical variables) and showed different and specific metabolic and protein profiles in severe asthmatic patients during treatment. Multiomic integration and multivariate ROC analyses identified specific biomarkers, such as arachidonic acid, palmitoleic acid, oleic acid, propionylcarnitine, bilirubin, CCL11, and TNFSF10, which can explain the differences observed with Mepolizumab treatment over 18 months and significantly correlate with clinical improvement. However, no significant biomolecules and no discriminative multivariate ROC curves were found for Omalizumab treatment. CONCLUSIONS Our results provide a comprehensive insight into the differential effects of mepolizumab and omalizumab on the immunometabolic kinetics of the inflammatory response in severe asthma. We identified a set of biomolecules with potential for monitoring mepolizumab treatment which could be useful for personalized medicine.
Collapse
Affiliation(s)
- Nuria Contreras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada - Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Andrea Escolar-Peña
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada - Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María I Delgado-Dolset
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada - Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Paloma Fernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada - Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - David Obeso
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Elena Izquierdo
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada - Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Heleia González Cuervo
- Servicio de Alergia, Hospital Universitario de Gran Canaria Doctor Negrín, Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - José Ángel Cumplido
- Servicio de Alergia, Hospital Universitario de Gran Canaria Doctor Negrín, Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Victoria Múgica
- Servicio de Alergia, Hospital Universitario de La Princesa, Instituto De Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain
| | - Carolina Cisneros
- Servicio de Neumología, Hospital Universitario de La Princesa, Instituto De Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Carlos Blanco
- Servicio de Alergia, Hospital Universitario de La Princesa, Instituto De Investigación Sanitaria Princesa (IIS-Princesa), Madrid, Spain
| | - Teresa Carrillo
- Servicio de Alergia, Hospital Universitario de Gran Canaria Doctor Negrín, Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Domingo Barber
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada - Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - María M Escribese
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada - Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
22
|
Guo L, Huang E, Wang T, Ling Y, Li Z. Exploring the molecular mechanisms of asthma across multiple datasets. Ann Med 2024; 56:2258926. [PMID: 38489401 PMCID: PMC10946276 DOI: 10.1080/07853890.2023.2258926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/09/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Asthma, a prevalent chronic respiratory disorder, remains enigmatic, notwithstanding considerable advancements in our comprehension. Continuous efforts are crucial for discovering novel molecular targets and gaining a comprehensive understanding of its pathogenesis. MATERIALS AND METHODS In this study, we analyzed gene expression data from 212 individuals, including asthma patients and healthy controls, to identify 267 differentially expressed genes, among which C1orf64 and C7orf26 emerged as potential key genes in asthma pathogenesis. Various bioinformatics tools, including differential gene expression analysis, pathway enrichment, drug target prediction, and single-cell analysis, were employed to explore the potential roles of the genes. RESULTS Quantitative PCR demonstrated differential expression of C1orf64 and C7orf26 in the asthmatic airway epithelial tissue, implying their potential involvement in asthma pathogenesis. GSEA enrichment analysis revealed significant enrichment of these genes in signaling pathways associated with asthma progression, such as ABC transporters, cell cycle, CAMs, DNA replication, and the Notch signaling pathway. Drug target prediction, based on upregulated and downregulated differential expression, highlighted potential asthma treatments, including Tyrphostin-AG-126, Cephalin, Verrucarin-a, and Emetine. The selection of these drugs was based on their significance in the analysis and their established anti-inflammatory and antiviral invasion properties. Utilizing Seurat and Celldex packages for single-cell sequencing analysis unveiled disease-specific gene expression patterns and cell types. Expression of C1orf64 and C7orf26 in T cells, NK cells, and B cells, instrumental in promoting hallmark features of asthma, was observed, suggesting their potential influence on asthma development and progression. CONCLUSION This study uncovers novel genetic aspects of asthma, highlighting potential therapeutic pathways. It exemplifies the power of integrative bioinformatics in decoding complex disease patterns. However, these findings require further validation, and the precise roles of C1orf64 and C7orf26 in asthma warrant additional investigation to validate their therapeutic potential.
Collapse
Affiliation(s)
- Lianshan Guo
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Enhao Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tongting Wang
- Department of Nursing, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Ling
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengzhao Li
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Zhu Z, Shibata R, Hoffman KL, Cormier J, Mansbach JM, Liang L, Camargo CA, Hasegawa K. Integrated nasopharyngeal airway metagenome and asthma genetic risk endotyping of severe bronchiolitis in infancy and risk of childhood asthma. Eur Respir J 2024; 64:2401130. [PMID: 39326916 DOI: 10.1183/13993003.01130-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Infants with bronchiolitis are at increased risk of developing asthma. Growing evidence suggests bronchiolitis is a heterogeneous condition. However, little is known about its biologically distinct subgroups based on the integrated metagenome and asthma genetic risk signature and their longitudinal relationships with asthma development. METHODS In a multicentre prospective cohort study of infants with severe bronchiolitis (i.e. bronchiolitis requiring hospitalisation), we profiled nasopharyngeal airway metagenome and virus at hospitalisation, and calculated the polygenic risk score of asthma. Using similarity network fusion clustering approach, we identified integrated metagenome-asthma genetic risk endotypes. In addition, we examined their longitudinal association with the risk of developing asthma by the age of 6 years. RESULTS Out of 450 infants with bronchiolitis (median age 3 months), we identified five distinct endotypes, characterised by their nasopharyngeal metagenome, virus and asthma genetic risk profiles. Compared with endotype A infants (who clinically resembled "classic" bronchiolitis), endotype E infants (characterised by a high abundance of Haemophilus influenzae, high proportion of rhinovirus (RV)-A and RV-C infections and high asthma genetic risk) had a significantly higher risk of developing asthma (16.7% versus 35.9%; adjusted OR 2.24, 95% CI 1.02-4.97; p=0.046). The pathway analysis showed that endotype E had enriched microbial pathways (e.g. glycolysis, l-lysine, arginine metabolism) and host pathways (e.g. interferons, interleukin-6/Janus kinase/signal transducers and activators of transcription-3, fatty acids, major histocompatibility complex and immunoglobin-related) (false discovery rate (FDR)<0.05). Additionally, endotype E had a significantly higher proportion of neutrophils (FDR<0.05). CONCLUSION In this multicentre prospective cohort study of infant bronchiolitis, the clustering analysis of integrated-omics data identified biologically distinct endotypes with differential risks of developing asthma.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryohei Shibata
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Juwan Cormier
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Tang Y, Zhao Y, Guan Y, Xue L, Guo J, Zhao T, Guan Y, Tong S, Che C. Silencing TRIM8 alleviates allergic asthma and suppressing Th2 differentiation through inhibiting NF-κB/NLRP3 signaling pathway. Immunol Lett 2024; 270:106923. [PMID: 39260527 DOI: 10.1016/j.imlet.2024.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/30/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIM Allergic asthma is a primary type of asthma and characterized by T helper 2 (Th2) cells -mediated inflammation. Tripartite motif containing 8 (TRIM8) protein is involved in immunoreaction and inflammatory response in many diseases. However, its role in allergic asthma remains unclear. Medical databank showed that TRIM8 was increased in lung of ovalbumin (OVA)-challenged mice. This study aimed to elucidate the effects of TRIM8 on allergic asthma and Th2 development. METHODS Asthma were induced by OVA challenge in mice, and the adenovirus vector loaded with TRIM8 knockdown sequence was delivered into asthma mice by nasal inhalation. The percentage of Th2 cells in lung was assessed by flow cytometric analysis, and the contents of Th2 cytokines (interleukin (IL)-4, IL-5 and IL-13) in bronchoalveolar lavage fluid (BALF) were assessed with ELISA. In vitro Th2 induction was performed in CD4+ cells from mouse spleen, the expression of Th2 molecules (IL-4, IL-5 and GATA binding protein 3 (GATA3)) were measured by real-time PCR. In addition, the nuclear factor-kappa B (NF-κB)/nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 3 (NLRP3) signaling was determined. RESULTS TRIM8 was highly expressed in the lung tissues of asthmatic mice and Th2-induced CD4+ cells. OVA challenge-induced Th2 development and Th2 cytokine secretion were restrained by silencing of TRIM8 in vivo. Similarly, the Th2 differentiation in vitro was also suppressed by TRIM8 knockdown. TRIM8 inhibited the NF-κB/NLRP3 activity by blocking transforming growth factor-beta-activated kinase 1 (TAK1), and the effects of TRIM8 were abrogated by overexpression of NLRP3. CONCLUSIONS Silencing TRIM8 relieved the asthmatic injury in mice and excessive Th2 development via inhibiting the NF-κB/NLRP3 pathway. It is indicated that TRIM8 may contribute to the airway inflammation in allergic asthma via activating the NF-κB/NLRP3 signaling pathway. The current study provided a novel potential target for allergic asthma treatment.
Collapse
Affiliation(s)
- Yao Tang
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China; Department of Internal Medicine, Harbin Medical University, Harbin, PR China; NHC Key Laboratory of Cell Transplantation, Harbin, PR China
| | - Yan Zhao
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Yuanyuan Guan
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Longge Xue
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Jingsong Guo
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Tingrui Zhao
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Yuqing Guan
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Songlin Tong
- Department of Allergy, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Chunli Che
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China; Department of Internal Medicine, Harbin Medical University, Harbin, PR China.
| |
Collapse
|
25
|
Hsieh YA, Hsiao YH, Ko HK, Shen YL, Huang CW, Perng DW, Su KC. House dust mites stimulate thymic stromal lymphopoietin production in human bronchial epithelial cells and promote airway remodeling through activation of PAR2 and ERK signaling pathway. Sci Rep 2024; 14:28649. [PMID: 39562597 PMCID: PMC11577110 DOI: 10.1038/s41598-024-79226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
House dust mites (HDM) are common aeroallergens linked to airway inflammation and remodeling in asthma. Protease-activated receptor 2 (PAR2) and thymic stromal lymphopoietin (TSLP) may mediate these immune responses. However, how the epithelium influences fibroblasts toward airway remodeling remains unclear. We hypothesize that HDM stimulates human bronchial epithelial cells (HBECs) to produce TSLP via PAR2 activation, driving fibroblasts toward remodeling processes. HBECs were treated with HDM, with or without the PAR2 antagonist FSLLRY-NH2 (FSL), and TSLP expression was measured by qPCR and ELISA. Phosphorylation of MAPKs was assessed by western blotting. Human lung fibroblasts (HLFs) were exposed to recombinant TSLP or conditioned medium (CM) from HDM-stimulated HBECs, with or without anti-TSLP antibodies. Fibroblast proliferation and collagen production were assessed as remodeling markers. HDM increased ERK phosphorylation (not p38 or JNK) and TSLP expression at mRNA and protein levels. FSL preincubation significantly reduced ERK phosphorylation and TSLP production: HDM-stimulated CM induced fibroblast proliferation and collagen production, effects suppressed by anti-TSLP or FSL. Direct treatment with recombinant TSLP also promoted fibroblast proliferation and collagen synthesis. These findings suggest that HDM promotes HBEC-to-HLF paracrine interactions via PAR2-ERK-TSLP axis, participating in airway remodeling. PAR2 antagonists may represent potential therapeutic targets for HDM-induced remodeling processes.
Collapse
Affiliation(s)
- Yi-An Hsieh
- Division of Chest Medicine, Department of Internal Medicine, Asia University Hospital, No. 222, Fuxin Road, Wufeng District, 413505, Taichung City, Taiwan, ROC
| | - Yi-Han Hsiao
- Department of Chest Medicine, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Road., Beitou District, 11217, Taipei City, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City, Taiwan, ROC
| | - Hsin-Kuo Ko
- Department of Chest Medicine, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Road., Beitou District, 11217, Taipei City, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City, Taiwan, ROC
| | - Yi-Luen Shen
- Division of Chest Medicine, Department of Internal Medicine, Asia University Hospital, No. 222, Fuxin Road, Wufeng District, 413505, Taichung City, Taiwan, ROC
| | - Chien-Wen Huang
- Division of Chest Medicine, Department of Internal Medicine, Asia University Hospital, No. 222, Fuxin Road, Wufeng District, 413505, Taichung City, Taiwan, ROC
- Department of Medical Laboratory Science and Biotechnology, Asia University, No. 500, Lioufeng Road, Wufeng District, 413305, Taichung City, Taiwan, ROC
| | - Diahn-Warng Perng
- Department of Chest Medicine, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Road., Beitou District, 11217, Taipei City, Taiwan, ROC.
- School of Medicine, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City, Taiwan, ROC.
- Division of General Chest Medicine, Department of Chest Medicine, Taipei Veterans General Hospital, School of Medicine, Yangming Campus, National Yang Ming Chiao Tung University, No.201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei, Taiwan, ROC.
| | - Kang-Cheng Su
- Department of Chest Medicine, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Road., Beitou District, 11217, Taipei City, Taiwan, ROC.
- School of Medicine, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City, Taiwan, ROC.
- Division of Clinical Respirology Physiology, Department of Chest Medicine, Taipei Veterans General Hospital, School of Medicine, Yangming Campus, National Yang Ming Chiao Tung University, No.201, Sec. 2, Shipai Rd., Beitou District, 11217, Taipei, Taiwan, ROC.
| |
Collapse
|
26
|
Kim JW, Jeong JS, Kim JH, Kim CY, Chung EH, Ko JW, Kim TW. Turmeric extract alleviates airway inflammation via oxidative stress-driven MAPKs/MMPs pathway. Int Immunopharmacol 2024; 141:113018. [PMID: 39216235 DOI: 10.1016/j.intimp.2024.113018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Turmeric (Curcuma longa L.) extract (CLE) has been shown to elicit several pharmacological properties and is widely used in Asian traditional medicine. Herein, we assessed the impact of CLE on airway inflammation in BALB/c mice and A549 cells to clarify the underlying mechanism. An asthmatic mouse model was established by administering ovalbumin (OVA). CLE (100 or 300 mg/kg/day) was orally administered daily from days 18 to 23, with dexamethasone (3 mg/kg/day) used as the positive control. Human airway epithelial cells, A549, were stimulated using recombinant tumor necrosis factor-α. The CLE100 and CLE400 groups exhibited a significant downregulation in eosinophil counts, cytokine levels, and immunoglobulin-E levels. Moreover, CLE administration dose-dependently suppressed oxidative stress and airway inflammation in the lung tissue. CLE administration inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and the expression and activity of matrix metalloproteinase (MMP)-9. In vitro, CLE treatment reduced mRNA levels of proinflammatory cytokines, MAPK phosphorylation, and the expression and activity of MMP-2 and MMP-9. Additionally, 50 µg/mL CLE and 2.5 µg/mL curcumin showed similar anti-inflammatory effects. Collectively, our findings revealed that CLE could suppress airway inflammation in asthmatic mice and A549 cells via oxidative stress-driven MAPK/MMPs signaling, suggesting that CLE could be developed as a potential treatment option for patients with asthma.
Collapse
Affiliation(s)
- Jeong-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea
| | - Ji-Soo Jeong
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea
| | - Jin-Hwa Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea
| | - Chang-Yeop Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea
| | - Eun-Hye Chung
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea.
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon 34131, Republic of Korea.
| |
Collapse
|
27
|
Huang R, Zhang B, Ye W, Tang Z, Zheng Q. IL-4 Downregulates PD-L1 Level Via SOCS1 Upregulation-Induced JNK Deactivation to Enhance Antitumor Immunity in In Vitro Colorectal Cancer. J Interferon Cytokine Res 2024; 44:486-495. [PMID: 39364618 DOI: 10.1089/jir.2024.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Interleukin-4 (IL-4) controls cell growth and immune system regulation in tumorigenesis and can inhibit the growth of colon cancer cell lines, but the possible mechanism is unclear. In this study, we investigated the possible mechanism of IL-4 in colorectal cancer (CRC) through in vitro experiments. CRC cells received treatment with IL-4 (50 ng/mL), investigating the suppressor of cytokine signaling 1 (SOCS1)-related mechanism underlying the role of IL-4 in the progression and immunosuppression of CRC. The malignant processes of CRC cells and CD8+T cell-mediated immune response in CRC cells were determined by CCK-8, Transwell, wound healing, and flow cytometry assays. Programmed death ligand 1 (PD-L1), SOCS1 expressions, and c-Jun N-terminal kinase (JNK) activation in CRC cells were analyzed by quantitative reverse transcription polymerase chain reaction and/or Western blot. IL-4 repressed the malignant processes, yet promoted the apoptosis of CRC cells. Besides, IL-4 downregulated PD-L1 level, upregulated SOCS1 level, and restrained JNK activation in CRC cells, while enhancing CRC cell-killing effect of CD8+T cells. IL-4-induced effects on the aforementioned malignant processes of CRC cells and the killing effect of CD8+T cells toward CRC cells were all reversed when SOCS1 was knocked down in the CRC cells. IL-4 downregulates PD-L1 level via SOCS1 upregulation-induced JNK deactivation to enhance antitumor immunity in in vitro CRC. The study provides a theoretical basis for the clinical application of IL-4 in antitumor immunity in CRC.
Collapse
Affiliation(s)
- Ruiyan Huang
- The Second Department of Oncology, Wenzhou Central Hospital, Wenzhou, China
| | - Baofan Zhang
- The Second Department of Oncology, Wenzhou Central Hospital, Wenzhou, China
| | - Wanchun Ye
- The Second Department of Oncology, Wenzhou Central Hospital, Wenzhou, China
| | - Zhongjie Tang
- The Second Department of Oncology, Wenzhou Central Hospital, Wenzhou, China
| | - Qingsong Zheng
- The Second Department of Oncology, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
28
|
Zhang S, Kim J, Lee G, Ahn HR, Kim YE, Kim HJ, Yu JS, Park M, Kang KW, Kim H, Jung BH, Kwon SW, Jang DS, Yang HO. Phytotherapeutic BS012 and Its Active Component Ameliorate Allergic Asthma via Inhibition of Th2-Mediated Immune Response and Apoptosis. Biomol Ther (Seoul) 2024; 32:744-758. [PMID: 39370723 PMCID: PMC11535288 DOI: 10.4062/biomolther.2024.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 10/08/2024] Open
Abstract
Asthma is a chronic inflammatory disorder of the lungs that results in airway inflammation and narrowing. BS012 is an herbal remedy containing Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum cassia extracts. To elucidate the anti-asthma effect of BS012, this study analyzed the immune response, respiratory protection, and changes in metabolic mechanisms in an ovalbumin-induced allergic asthma mouse model. Female BALB/c mice were exposed to ovalbumin to induce allergic asthma. Bronchoalveolar lavage fluid and plasma were analyzed for interleukin and immunoglobulin E levels. Histological analyses of the lungs were performed to measure morphological changes. Apoptosis-related mediators were assayed by western blotting. Plasma and lung tissue metabolomic analyses were performed to investigate the metabolic changes. A T-helper-2-like differentiated cell model was used to identify the active components of BS012. BS012 treatment improved inflammatory cell infiltration, mucus production, and goblet cell hyperplasia in lung tissues. BS012 also significantly downregulated ovalbumin-specific immunoglobulin E in plasma and T-helper-2-specific cytokines, interleukin-4 and -5, in bronchoalveolar lavage fluid. The lungs of ovalbumin-inhaled mice exhibited nerve growth factor-mediated apoptotic protein expression, which was significantly attenuated by BS012 treatment. Ovalbumin-induced abnormalities in amino acid and lipid metabolism were improved by BS012 in correlation with its anti-inflammatory properties and normalization of energy metabolism. Additionally, the differentiated cell model revealed that N-isobutyl-dodecatetraenamide is an active component that contributes to the anti-allergic properties of BS012. The current findings demonstrate the anti-allergic and respiratory protective functions of BS012 against allergic asthma, which can be considered a therapeutic candidate.
Collapse
Affiliation(s)
- Siqi Zhang
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
- KIST-School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Joonki Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
- KIST-School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Gakyung Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Hong Ryul Ahn
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Yeo Eun Kim
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Hee Ju Kim
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Jae Sik Yu
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Miso Park
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Byung Hwa Jung
- KIST-School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Ok Yang
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
29
|
Rong Y, Tang M, Liu L, Ma X, Liu M, Qu L, Liao X, Jiang Q, Zhang N, Xu X. Artemisia argyi essential oil alleviates asthma by regulating 5-LOX-CysLTs and IDO-1-KYN pathways: Insights from metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118458. [PMID: 38871010 DOI: 10.1016/j.jep.2024.118458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi essential oil (AAEO) is a traditional herbal remedy for asthma. However, the potential effect of AAEO on asthma has not been elucidated. AIM OF THE STUDY To investigate the protective properties of AAEO upon asthma and elucidate its mechanism. MATERIALS AND METHODS The effects of AAEO in asthma were assessed by histology and biochemical analysis. Then, we integrated real-time reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, immunohistochemistry and metabolomics analysis to reveal its mechanism. RESULTS In vivo, AAEO reduced the counts of white blood cells (WBCs) and cytokines in bronchoalveolar lavage fluid (BALF), ameliorated pathologic alterations in lung tissues, and inhibited secretion of OVA-sIgE and muc5ac. Metabolomics results showed that AAEO can exert therapeutic effects on asthmatic mice by regulating disordered arachidonic acid metabolism and tryptophan metabolism. Further studies shown that AAEO inhibited the expression of 5-LOX and reduced the accumulation of CysLTs in mice. Meanwhile, AAEO promoted the activity of IDO-1, facilitated the conversion of tryptophan to kynurenine, and regulated the imbalance of Treg/Th17 immunity. Immunohistochemical results showed that AAEO promoted the expression of IDO-1. RT-qPCR results showed that AAEO promoted the expression of IL-10 and Foxp3 mRNA, and inhibited the expression of IL-17A and RORγt mRNA, thus regulated the imbalance of Treg/Th17 immunity and exerted its therapeutic effects. CONCLUSION AAEO treatment not only attenuates the clinical symptoms of asthma but is also involved in regulating lung tissue metabolism. The anti-asthmatic activity of AAEO may be achieved by reprogramming 5-LOX-CysLTs and IDO-1-KYN pathways.
Collapse
Affiliation(s)
- Ying Rong
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Mengqi Tang
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Luyao Liu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xiaoge Ma
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Mengge Liu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lingbo Qu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xinglin Liao
- Nanyang LANHAISENYUAN Medical Technology Ltd.,CO, Nanyang, Henan, 473000, PR China
| | - Qiman Jiang
- Nanyang LANHAISENYUAN Medical Technology Ltd.,CO, Nanyang, Henan, 473000, PR China
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Xia Xu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
30
|
Worasilchai J, Thongchaichayakon P, Chansri K, Leelahavanichkul S, Chiewvit V, Visitchanakun P, Somparn P, Hiengrach P. Fluconazole worsened lung inflammation, partly through lung microbiome dysbiosis in mice with ovalbumin-induced asthma. PeerJ 2024; 12:e18421. [PMID: 39484217 PMCID: PMC11526796 DOI: 10.7717/peerj.18421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
Innate immunity in asthma may be influenced by alterations in lung microbiota, potentially affecting disease severity. This study investigates the differences in lung inflammation and microbiome between asthma-ovalbumin (OVA) administered with and without fluconazole treatment in C57BL/6 mice. Additionally, the role of inflammation was examined in an in vitro study using a pulmonary cell line. At 30 days post-OVA administration, allergic asthma mice exhibited increased levels of IgE and IL-4 in serum and lung tissue, higher pathological scores, and elevated eosinophils in bronchoalveolar lavage fluid (BALF) compared to control mice. Asthma inflammation was characterized by elevated serum IL-6, increased lung cytokines (TNF-α, IL-6, IL-10), and higher fungal abundance confirmed by polymerase chain reaction (PCR). Fluconazole-treated asthma mice displayed higher levels of cytokines in serum and lung tissue (TNF-α and IL-6), increased pathological scores, and a higher number of mononuclear cells in BALF, with undetectable fungal levels compared to untreated mice. Lung microbiome analysis revealed similarities between control and asthma mice; however, fluconazole-treated asthma mice exhibited higher Bacteroidota levels, lower Firmicutes, and reduced bacterial abundance. Pro-inflammatory cytokine production was increased in supernatants of the pulmonary cell line (NCI-H292) after co-stimulation with LPS and beta-glucan (BG) compared to LPS alone. Fluconazole treatment in OVA-induced asthma mice exacerbated inflammation, partially due to fungi and Gram-negative bacteria, as demonstrated by LPS+BG-activated pulmonary cells. Therefore, fluconazole should be reserved for treating fungal asthma rather than asthma caused by other etiologies.
Collapse
Affiliation(s)
- Jesadakorn Worasilchai
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Piyapat Thongchaichayakon
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kittipat Chansri
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supichaya Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Vathin Chiewvit
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pratsanee Hiengrach
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
31
|
Liu C, He Y, Zhou K, Wang H, Zhou M, Sun J, Lu Y, Huang Y, Wang Y, Liu T, Li Y. Mitigation of allergic asthma in mice: A compound mixture comprising luteolin, arbutin, and marmesin from Gerbera Piloselloides Herba by suppression of PI3K/Akt pathway. Heliyon 2024; 10:e37632. [PMID: 39381113 PMCID: PMC11456855 DOI: 10.1016/j.heliyon.2024.e37632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Background Gerberae Piloselloidis Herba (GPH) exhibits notable efficacy in alleviating allergic asthma. Previous studies in our research have identified a mixture of luteolin, arbutin, and marmesin as effective components of GPH in treating allergic asthma. However, the underlying mechanism remains unclear. This study aims to elucidate the molecular mechanism of these active components. Method Using an ovalbumin (OVA)-induced allergic asthma mouse model, various treatment groups were administered, including GPH, the active component mixture (termed "Mixture") containing luteolin, arbutin, and marmesin, and a positive drug (dexamethasone, DEX). Relevant indices were assessed, including behavioral characteristics, inflammatory cell counts, cytokine levels, histopathological examination of lung tissue, apoptosis, and expression of key proteins such as Caspase-3, Bax, Bcl-2, PI3K, p-PI3K, Akt, and p-Akt. The effect of the Mixture on the PI3K/Akt signaling pathway was further verified using the PI3K inhibitor LY294002. Results The Mixture significantly alleviated asthma symptoms, decreased IgE levels, cytokine levels (IL-4, IL-5, IL-13 and TNF-α), and the number of inflammatory cells in serum or bronchoalveolar lavage fluid (BALF), leading to the alleviation of lung pathological lesions. Additionally, the Mixture reduced the expression of Bax and Caspase-3 while increasing Bcl-2 expression, resulting in mitigated apoptosis in lung tissue. Furthermore, there appeared a decrease in the levels of PI3K and p-PI3K, as well as the ratio of p-Akt to Akt in the Mixture group, indicating the suppression of PI3K and Akt phosphorylation. Interestingly, the effects of the Mixture were comparable to those of GPH, LY294002, or the combination of LY294002 with the Mixture. Conclusion The study confirms that the Mixture containing luteolin, arbutin, and marmesin indeed alleviates allergic asthma induced by OVA in mice by suppressing the PI3K/Akt signaling pathway. These findings highlight the potential of the GPH-derived Mixture as a novel therapeutic for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Chunhua Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Yu He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Kun Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Hong Wang
- Department of Pediatrics, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Meng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| | - Jia Sun
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yuan Lu
- Computer Education and Information Technology Center, Guizhou Medical University,Guiyang, 561113, China
| | - Yong Huang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yonglin Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Ting Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
32
|
Miao G, Yang Y, Yang X, Chen D, Liu L, Lei X. The multifaceted potential of TPT1 as biomarker and therapeutic target. Heliyon 2024; 10:e38819. [PMID: 39397949 PMCID: PMC11471257 DOI: 10.1016/j.heliyon.2024.e38819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Tumor Protein Translationally-Controlled 1 (TPT1) is a highly conserved gene found across eukaryotic species. The protein encoded by TPT1 is ubiquitously expressed both intracellularly and extracellularly across various tissues, and its levels are influenced by various external factors. TPT1 interacts with several key proteins, including p53, MCL1, and immunoglobulins, highlighting its crucial role in cellular processes. The dysregulation of TPT1 expression has been documented in a wide range of diseases, indicating its potential as a valuable biomarker. Additionally, targeting TPT1 presents a promising approach for treating and preventing various conditions. This review will assess the potential of TPT1 as a biomarker and evaluate the effectiveness of current strategies designed to inhibit TPT1 in disease contexts.
Collapse
Affiliation(s)
- Gelan Miao
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yulian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xuelian Yang
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Dexiu Chen
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xianying Lei
- Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
33
|
Mishra R, Sharma S, Arora N. Flagellin conjugated Per a 10 and its T cell peptides attenuate airway inflammation and restore cellular function. Immunol Res 2024; 72:1051-1060. [PMID: 38879717 DOI: 10.1007/s12026-024-09507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/07/2024] [Indexed: 11/15/2024]
Abstract
Adjuvants were used to modulate response towards relevant immune cells. The present study aims to investigate FlaA-conjugated Per a 10 and T cell peptides in amelioration of allergic airway disease in mice. Mice given Per a 10 showed allergic features with higher cellular infiltration, IgE, Th-2 cytokines and alarmins. Fusion protein treatment reduced lung inflammation (p < 0.0001) and cellular infiltrates (p < 0.001) with higher IgG2a/IgE indicating resolution of disease. Immunotherapy with FPT1 and FPT3 reduces IL-4, IL-5 and IL-13 levels (p < 0.0001) with a fourfold increase in IFN-γ secretion in BALF. FPT1- and FPT3-treated mice have increased IL-10 and TGF-β levels (p < 0.001) with CD4+Foxp3+ T cells (p < 0.01) indicating Treg response. There was enhanced expression of claudin-1 (1.7-fold) and occludin (fourfold) in lungs of FPT1- and FPT3-treated mice with reduced TSLP (p < 0.01) and IL-33 (p < 0.0001) secretion in BALF indicating recovery of epithelial function. Peptide-conjugated FlaA proteins showed protective immunity in mice and have potential for immunotherapy with restoration of cellular function.
Collapse
Affiliation(s)
- Richa Mishra
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Mall Road Campus, New Delhi, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swati Sharma
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Mall Road Campus, New Delhi, Delhi, 110007, India
| | - Naveen Arora
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Mall Road Campus, New Delhi, Delhi, 110007, India.
| |
Collapse
|
34
|
Chen C, Zhang W, Zheng X, Jiang C, Zhang W. Analysis of the potential molecular mechanisms of asthma and gastroesophageal reflux disease. J Asthma 2024; 61:1222-1234. [PMID: 38517701 DOI: 10.1080/02770903.2024.2334361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 03/24/2024]
Abstract
OBJECTIVE Asthma and gastroesophageal reflux disease (GERD) often occur simultaneously, with GERD being a comorbidity of asthma. This study aimed to explore the biological markers related to asthma and GERD by bioinformatics analysis. METHODS Initially, gene expression datasets for asthma and GERD were obtained from the Gene Expression Omnibus database, and subsequent differential expression analysis yielded 620 differentially expressed genes (DEGs) for asthma and 2367 DEGs for GERD. The intersection of these two gene sets yielded a total of 84 DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that these genes may be involved in steroid hormone secretion and cellular stress response. Five hub genes (PTGDR2, CPA3, FCER1A, TPSAB1, and IL1RL1) were identified by a protein-protein interaction (PPI) network analysis and topological algorithm. RESULTS Enrichment analysis results indicated that hub genes may be involved in hormone secretion and disease development, particularly in regulating the renin-angiotensin system and systemic arterial blood pressure. PTGDR2, CPA3, TPSAB1, and IL1RL1 were upregulated in both asthma and GERD patient groups, while FCER1A was upregulated in asthma patients but downregulated in GERD patients. Through drug prediction, 22 drugs targeting hub genes PTGDR2, FCER1A, and TPSAB1 were identified. By constructing a transcription factor (TF)-target gene network, we found that eight TFs may regulate the expression of PTGDR2, FCER1A, and IL1RL1. CONCLUSION Hence, Asthma and GERD were related to steroid hormone secretion and the renin-angiotensin system.
Collapse
Affiliation(s)
- Changdan Chen
- Department of Gastroenterology Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Wei Zhang
- Department of Gastroenterology Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Xiujin Zheng
- Department of Gastroenterology Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Chenglin Jiang
- Department of Gastroenterology Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Wen Zhang
- Department of Pulmonary and Critical Care Medicine, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| |
Collapse
|
35
|
Zhang Y, Yang Y, Liang H, Liang Y, Xiong G, Lu F, Yang K, Zou Q, Zhang X, Du G, Xu X, Hao J. Nobiletin, as a Novel PDE4B Inhibitor, Alleviates Asthma Symptoms by Activating the cAMP-PKA-CREB Signaling Pathway. Int J Mol Sci 2024; 25:10406. [PMID: 39408735 PMCID: PMC11477036 DOI: 10.3390/ijms251910406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Asthma is a chronic airway inflammation that is considered a serious public health concern worldwide. Nobiletin (5,6,7,8,3',4'-hexamethyl flavonoid), an important compound isolated from several traditional Chinese medicines, especially Citri Reticulatae Pericarpium, is widely used for a number of indications, including cancer, allergic diseases, and chronic inflammation. However, the mechanism by which nobiletin exerts its anti-asthmatic effect remains unclear. In this research, we comprehensively demonstrated the anti-asthmatic effects of nobiletin in an animal model of asthma. It was found that nobiletin significantly reduced the levels of inflammatory cells and cytokines in mice and alleviated airway hyperresponsiveness. To explore the target of nobiletin, we identified PDE4B as the target of nobiletin through pharmacophore modeling, molecular docking, molecular dynamics simulation, SPR, and enzyme activity assays. Subsequently, it was found that nobiletin could activate the cAMP-PKA-CREB signaling pathway downstream of PDE4B in mouse lung tissues. Additionally, we studied the anti-inflammatory and anti-airway remodeling effects of nobiletin in LPS-induced RAW264.7 cells and TGF-β1-induced ASM cells, confirming the activation of the cAMP-PKA-CREB signaling pathway by nobiletin. Further validation in PDE4B-deficient RAW264.7 cells confirmed that the increase in cAMP levels induced by nobiletin depended on the inhibition of PDE4B. In conclusion, nobiletin exerts anti-asthmatic activity by targeting PDE4B and activating the cAMP-PKA-CREB signaling pathway.
Collapse
Affiliation(s)
- Yan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Yaping Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Huicong Liang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Yuerun Liang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Guixin Xiong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Fang Lu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Kan Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Qi Zou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Xiaomin Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
| | - Guanhua Du
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China;
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China;
- Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jiejie Hao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Z.); (Y.Y.); (H.L.); (Y.L.); (G.X.); (F.L.); (K.Y.); (Q.Z.); (X.Z.)
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China;
| |
Collapse
|
36
|
Yang X, Liu C, Lei Y, Liu Z, Zhu B, Zhao D. PIM1 signaling in immunoinflammatory diseases: an emerging therapeutic target. Front Immunol 2024; 15:1443784. [PMID: 39372407 PMCID: PMC11449710 DOI: 10.3389/fimmu.2024.1443784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
PIM1, the proviral integration site for Moloney murine leukemia virus, is a member of the serine/threonine protein kinase family. It is involved in many biological events, such as cell survival, cell cycle progression, cell proliferation, and cell migration, and has been widely studied in malignant diseases. However, recent studies have shown that PIM1 plays a prominent role in immunoinflammatory diseases, including autoimmune uveitis, inflammatory bowel disease, asthma, and rheumatoid arthritis. PIM1 can function in inflammatory signal transduction by phosphorylating multiple inflammatory protein substrates and mediating macrophage activation and T lymphocyte cell specification, thus participating in the development of multiple immunoinflammatory diseases. Moreover, the inhibition of PIM1 has been demonstrated to ameliorate certain immunoinflammatory disorders. Based on these studies, we suggest PIM1 as a potential therapeutic target for immunoinflammatory diseases and a valid candidate for future research. Herein, for the first time, we provide a detailed review that focuses on the roles of PIM1 in the pathogenesis of immunoinflammatory diseases.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunming Liu
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuxi Lei
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhi Liu
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Zhu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Dongchi Zhao
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
37
|
Zeng Z, Ruan Y, Ying H, Wang J, Wang H, Chen S. Baicalin Attenuates Type 2 Immune Responses in a Mouse Allergic Asthma Model through Inhibiting the Production of Thymic Stromal Lymphopoietin. Int Arch Allergy Immunol 2024; 186:203-211. [PMID: 39299223 DOI: 10.1159/000541100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION Baicalin is a flavonoid chemical extracted and purified from the traditional Chinese medicine named Scutellaria baicalensis Georgi, which possesses broad pharmacological properties. Our work aimed to explore the protective role of baicalin in allergic asthma and its potential mechanisms on regulating type 2 immune response. METHODS Mice were injected intraperitoneally with ovalbumin (OVA) twice, further challenged with OVA aerosol for continuous 5 days. For baicalin group, mice were pre-administrated with baicalin. After the final challenge, the immune cells in bronchoalveolar lavage fluid (BALF) and blood were examined. The cytokines were evaluated by ELISA. Histological inspections were examined by hematoxylin and eosin staining and Periodic Acid-Schiff staining. Thymic stromal lymphopoietin (TSLP) expression in lungs were detected using immunohistochemistry and Western blotting. RESULTS The eosinophils infiltrating in BALF were reduced remarkably in baicalin-treated asthmatic mice. Baicalin decreased OVA-induced inflammatory cytokines and total serum immunoglobulin E secretion significantly. Moreover, baicalin alleviated the asthmatic pathological changes and substantially suppressed TSLP expression in the lung tissues. CONCLUSION Our study indicates that baicalin attenuates OVA-induced allergic asthma in mice effectively by suppressing type 2 immune responses, which might provide a novel insight into the anti-asthmatic activity of baicalin.
Collapse
Affiliation(s)
- Zhisen Zeng
- Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Key Laboratory of Respiratory Diseases, Xiamen Medical College, Xiamen, China
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Yaoxin Ruan
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, China
| | - Haoran Ying
- Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Key Laboratory of Respiratory Diseases, Xiamen Medical College, Xiamen, China
- Department of Pharmacy, Xiamen Medical College, Xiamen, China
| | - Jie Wang
- Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Key Laboratory of Respiratory Diseases, Xiamen Medical College, Xiamen, China
| | - Huangbin Wang
- Department of Microbiology and Immunology, Xiamen Medical College, Xiamen, China
| | - Shuzhen Chen
- Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Key Laboratory of Respiratory Diseases, Xiamen Medical College, Xiamen, China
- Department of Microbiology and Immunology, Xiamen Medical College, Xiamen, China
| |
Collapse
|
38
|
Kropp C, Tambosco K, Chadi S, Langella P, Claus SP, Martin R. Christensenella minuta protects and restores intestinal barrier in a colitis mouse model by regulating inflammation. NPJ Biofilms Microbiomes 2024; 10:88. [PMID: 39294159 PMCID: PMC11411060 DOI: 10.1038/s41522-024-00540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/23/2024] [Indexed: 09/20/2024] Open
Abstract
Christensenella minuta DSM 22607 has recently been suggested as a potential microbiome-based therapy for inflammatory bowel disease (IBD) because it displays strong anti-inflammatory effects both in vitro and in vivo. Here, we aimed to decipher the mechanism(s) underlying the DSM 22607-mediated beneficial effects on the host in a mouse model of chemically induced acute colitis. We observed that C. minuta plays a key role in the preservation of the epithelial barrier and the management of DNBS-induced inflammation by inhibiting interleukin (IL)-33 and Tumor necrosis factor receptor superfamily member 8 (Tnfrsf8) gene expression. We also showed that DSM 22607 abundance was positively correlated with Akkermansia sp. and Dubosiella sp. and modulated microbial metabolites in the cecum. These results offer new insights into the biological and molecular mechanisms underlying the beneficial effects of C. minuta DSM 22607 by protecting the intestinal barrier integrity and regulating inflammation.
Collapse
Affiliation(s)
- Camille Kropp
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France
- YSOPIA Bioscience, 33076, Bordeaux, France
| | - Kevin Tambosco
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France
| | - Sead Chadi
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France
| | | | - Rebeca Martin
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 68350, Jouy-en-Josas, France.
| |
Collapse
|
39
|
Park JY, Lee JW, Oh ES, Song YN, Kang MJ, Ryu HW, Kim DY, Oh SR, Lee J, Choi J, Kim N, Kim MO, Hong ST, Lee SU. Daphnetin alleviates allergic airway inflammation by inhibiting T-cell activation and subsequent JAK/STAT6 signaling. Eur J Pharmacol 2024; 979:176826. [PMID: 39033840 DOI: 10.1016/j.ejphar.2024.176826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Allergic asthma is a major health burden on society as a chronic respiratory disease characterized by inflammation and muscle tightening around the airways in response to inhaled allergens. Daphne kiusiana Miquel is a medicinal plant that can suppress allergic airway inflammation; however, its specific molecular mechanisms of action are unclear. In this study, we aimed to elucidate the mechanisms by which D. kiusiana inhibits allergic airway inflammation. We evaluated the anti-inflammatory effects of the ethyl acetate (EA) fraction of D. kiusiana and its major compound, daphnetin, on murine T lymphocyte EL4 cells stimulated with phorbol 12-myristate 13-acetate and ionomycin in vitro and on asthmatic mice stimulated with ovalbumin in vivo. The EA fraction and daphnetin inhibited T-helper type 2 (Th2) cytokine secretion, serum immunoglobulin E production, mucus secretion, and inflammatory cell recruitment in vivo. In vitro, daphnetin suppressed intracellular Ca2+ mobilization (a critical regulator of nuclear factor of activated T cells) and functions of the activator protein 1 transcription factor to reduce interleukin (IL)-4 and IL-13 expression. Daphnetin effectively suppressed the IL-4/-13-induced activation of Janus kinase (JAK)/signal transducer and activator of transcription 6 (STAT6) signaling in vitro and in vivo, thereby inhibiting the expression of GATA3 and PDEF, two STAT6-target genes responsible for producing Th2 cytokines and mucins. These findings indicate that daphnetin suppresses allergic airway inflammation by stabilizing intracellular Ca2+ levels and subsequently inactivating the JAK/STAT6/GATA3/PDEF pathway, suggesting that daphnetin is a promising alternative to existing asthma treatments.
Collapse
Affiliation(s)
- Ji-Yoon Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| | - Jae-Won Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Eun Sol Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Yu Na Song
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Myung-Ji Kang
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Doo-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Juhyun Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Jinseon Choi
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Namho Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea; Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| | - Mun-Ock Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea.
| | - Su Ui Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| |
Collapse
|
40
|
McLouth CJ, Maglinger B, Frank JA, Hazelwood HS, Harp JP, Cranford W, Pahwa S, Sheikhi L, Dornbos D, Trout AL, Stowe AM, Fraser JF, Pennypacker KR. The differential proteomic response to ischemic stroke in appalachian subjects treated with mechanical thrombectomy. J Neuroinflammation 2024; 21:205. [PMID: 39154085 PMCID: PMC11330053 DOI: 10.1186/s12974-024-03201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
INTRODUCTION The Appalachia region of North America is known to have significant health disparities, specifically, worse risk factors and outcomes for stroke. Appalachians are more likely to have comorbidities related to stroke, such as diabetes, obesity, and tobacco use, and are often less likely to have stroke interventions, such as mechanical thrombectomy (MT), for emergent large vessel occlusion (ELVO). As our Comprehensive Stroke Center directly serves stroke subjects from both Appalachian and non-Appalachian areas, inflammatory proteomic biomarkers were identified associated with stroke outcomes specific to subjects residing in Appalachia. METHODS There were 81 subjects that met inclusion criteria for this study. These subjects underwent MT for ELVO, and carotid arterial blood samples acquired at time of intervention were sent for proteomic analysis. Samples were processed in accordance with the Blood And Clot Thrombectomy Registry And Collaboration (BACTRAC; clinicaltrials.gov; NCT03153683). Statistical analyses were utilized to examine whether relationships between protein expression and outcomes differed by Appalachian status for functional (NIH Stroke Scale; NIHSS and Modified Rankin Score; mRS), and cognitive outcomes (Montreal Cognitive Assessment; MoCA). RESULTS No significant differences were found in demographic data or co-morbidities when comparing Appalachian to non-Appalachian subjects. However, time from stroke onset to treatment (last known normal) was significantly longer and edema volume significantly higher in patients from Appalachia. Further, when comparing Appalachian to non-Appalachian subjects, there were significant unadjusted differences in the NIHSS functional outcome. A comprehensive analysis of 184 proteins from Olink proteomic (92 Cardiometabolic and 92 Inflammation panels) showed that the association between protein expression outcomes significantly differed by Appalachian status for seven proteins for the NIHSS, two proteins for the MoCA, and three for the mRS. CONCLUSION Our study utilizes an ELVO tissue bank and registry to investigate the intracranial/intravascular proteomic environment occurring at the time of thrombectomy. We found that patients presenting from Appalachian areas have different levels of proteomic expression at the time of MT when compared to patients presenting from non-Appalachian areas. These proteins differentially relate to stroke outcome and could be used as prognostic biomarkers, or as targets for novel therapies. The identification of a disparate proteomic response in Appalachian patients provides initial insight to the biological basis for health disparity. Nevertheless, further investigations through community-based studies are imperative to elucidate the underlying causes of this differential response.
Collapse
Affiliation(s)
- Christopher J McLouth
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Benton Maglinger
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jacqueline A Frank
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | | | - Jordan P Harp
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Will Cranford
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Shivani Pahwa
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Lila Sheikhi
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - David Dornbos
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Amanda L Trout
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Ann M Stowe
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Justin F Fraser
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Keith R Pennypacker
- Department of Neurology, University of Kentucky, Lexington, KY, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
41
|
Imayama I, Eccles JD, Ascoli C, Kudlaty E, Park GY. Body Weight and Allergic Asthma: A Narrative Review. J Clin Med 2024; 13:4801. [PMID: 39200943 PMCID: PMC11355285 DOI: 10.3390/jcm13164801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Obesity is a known risk factor for asthma development, progression, and exacerbation. Nevertheless, the underlying pathophysiological mechanisms explaining how obesity contributes to the development and progression of asthma have yet to be established. Here, we review human studies examining the associations between asthma and obesity, focusing on the literature from the past 10 years. Overall, current evidence suggests that while both asthma and obesity are complex diseases with significant heterogeneity, they both share various features of chronic inflammation. Furthermore, the interactions between asthma and obesity likely involve allergen-specific T helper type 2 (type 2) immune responses, as well as diverse non-type 2 inflammatory pathways. However, despite considerable progress, studies to date have not definitively elucidated the mechanisms that account for the observed association. A large-scale population-based study combined with translational immunological research, including targeted asthma therapies and pharmacological weight loss therapies, may be required to properly dissect the details of obesity-related asthma pathophysiology.
Collapse
Affiliation(s)
- Ikuyo Imayama
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
- StatCare, Knoxville, TN 37919, USA
| | - Jacob D. Eccles
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
| | - Elizabeth Kudlaty
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
| |
Collapse
|
42
|
Wypych-Ślusarska A, Krupa-Kotara K, Oleksiuk K, Głogowska-Ligus J, Słowiński J. Respiratory Status in Children and Exposure to Animal Allergens-The Problem of Reverse Causality in Cross-Sectional Studies. CHILDREN (BASEL, SWITZERLAND) 2024; 11:941. [PMID: 39201876 PMCID: PMC11353102 DOI: 10.3390/children11080941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024]
Abstract
BACKGROUND Some epidemiological studies suggest that early exposure to animal allergens during infancy reduces the risk of bronchial asthma in school-age children. However, the observed associations in some cases may be an effect of the study used (epidemiological observational studies, especially a cross-sectional study) and indicate reverse causality. AIM This study aimed to determine the association between exposure to animal allergens and the prevalence of respiratory diseases, including bronchial asthma, considering the potential impact of reverse causality on the observed relationships. MATERIAL AND METHODS An analysis of data from a cross-sectional epidemiological study conducted in 2020 involving 3237 primary school students aged 7-15 years in the Silesian Province (Southern Poland) was carried out. The parents of students completed a questionnaire based on The International Study on Asthma and Allergies in Childhood (ISAAC). The relationship between the occurrence of chronic cough, wheezing, and dyspnea in the last 12 months, night waking due to dyspnea, and asthma in the presence of pets was assessed. Exposure to animal allergens was determined by answering the question, "Are there any furry or feathered animals in the home?" with three response options: "yes; they have been in the past; no" (Scenario 1). For the analyses and to reveal a potential reverse causality effect, the last two response categories regarding pet ownership were combined to form a "no" category in Scenario 2, and the first two answers were combined into a "yes" category in Scenario 3. A chi-square test was used to assess the relationship between variables, and a statistical significance level of p < 0.05 was adopted. RESULTS Chronic cough affected 9.5% of children, wheezing in the last 12 months-9.2%, night waking due to dyspnea-5.8%, dyspnea in the last 12 months-4.8%, bronchial asthma-9.2%. Analysis considering the category of having or not having pets (yes vs. no) showed that bronchial asthma was statistically significantly more common in children who did not have pets at home (10.9% vs. 7.9%, p = 0.002). A similar situation was observed for wheezing in the past 12 months (10.7% vs. 8.1%; p = 0.01) and nocturnal awakening due to dyspnea (6.8% vs. 5.1%, p = 0.03). No statistically significant differences were observed for the other symptoms. Analysis by time of pet ownership (a. present; b. present but in the past; c. not present) highlighted similar relationships. Asthma (a. 7.7% vs. b. 13.4% vs. c. 7.7%; p = 0.004), wheezing in the past 12 months (a. 8.1% vs. b. 8.9% vs. c. 10.9%, p = 0.03) and night waking (a. 5.0% vs. b. 4.5% vs. c. 7.1%; p = 0.04) were more common in children without pets and those who had owned pets in the past. The highest proportion of children with asthma was in homes where pets were present in the past. CONCLUSIONS Analyses indicating a relationship between a higher prevalence of asthma and some respiratory symptoms, and the absence of pets cannot be considered as a casual association. The analysis conducted did not reveal a reverse causality effect. The results of observational epidemiological studies, especially a cross-sectional study, should always be interpreted with caution, considering possible distortions and conclusions drawn.
Collapse
Affiliation(s)
| | - Karolina Krupa-Kotara
- Department of Epidemiology, Faculty of Public Health in Bytom, Medical University of Silesia, 40-055 Katowice, Poland; (A.W.-Ś.); (K.O.); (J.G.-L.); (J.S.)
| | | | | | | |
Collapse
|
43
|
Wang L, Huang FY, Dai SZ, Fu Y, Zhou X, Wang CC, Tan GH, Li Q. Progesterone modulates the immune microenvironment to suppress ovalbumin-induced airway inflammation by inhibiting NETosis. Sci Rep 2024; 14:17241. [PMID: 39060348 PMCID: PMC11282239 DOI: 10.1038/s41598-024-66439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Studies have demonstrated that prior to puberty, girls have a lower incidence and severity of asthma symptoms compared to boys. This study aimed to explore the role of progesterone (P4), a sex hormone, in reducing inflammation and altering the immune microenvironment in a mouse model of allergic asthma induced by OVA. Female BALB/c mice with or without ovariectomy to remove the influence of sex hormones were used for the investigations. Serum, bronchoalveolar lavage fluid (BALF), and lung tissue samples were collected for analysis. The results indicated that P4 treatment was effective in decreasing inflammation and mucus secretion in the lungs of OVA-induced allergic asthma mice. P4 treatment also reduced the influx of inflammatory cells into the BALF and increased the levels of Th1 and Th17 cytokines while decreasing the levels of Th2 and Treg cytokines in both BALF and lung microenvironment CD45+ T cells. Furthermore, P4 inhibited the infiltration of inflammatory cells into the lungs, suppressed NETosis, and reduced the number of pulmonary CD4+ T cells while increasing the number of regulatory T cells. The neutrophil elastase inhibitor GW311616A also suppressed airway inflammation and mucus production and modified the secretion of immune Th1, Th2, Th17, and Treg cytokines in lung CD45+ immune cells. These changes led to an alteration of the immunological milieu with increased Th1 and Th17 cells, accompanied by decreased Th2, Treg, and CD44+ T cells, similar to the effects of P4 treatment. Treatment with P4 inhibited NETosis by suppressing the p38 pathway activation, leading to reduced reactive oxygen species production. Moreover, P4 treatment hindered the release of double-stranded DNA during NETosis, thereby influencing the immune microenvironment in the lungs. These findings suggest that P4 treatment may be beneficial in reducing inflammation associated with allergic asthma by modulating the immune microenvironment. In conclusion, this research indicates the potential of P4 as a therapeutic agent for ameliorating inflammation in OVA-induced allergic asthma mice.
Collapse
Affiliation(s)
- Lin Wang
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Feng-Ying Huang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China.
| | - Shu-Zhen Dai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Yongshu Fu
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Cai-Chun Wang
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| | - Guang-Hong Tan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, China.
| | - Qi Li
- Department of Respiratory Medicine, Hainan Province Clinical Medical Center of Respiratory Disease, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| |
Collapse
|
44
|
Li W, Wang X, An H. Linkage of serum ITIH4 with Th2 signature cytokine, inflammation, exacerbation risk and severity in childhood asthma. Biomark Med 2024; 18:593-602. [PMID: 39011671 PMCID: PMC11370966 DOI: 10.1080/17520363.2024.2366149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/13/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: ITIH4 has anti-inflammatory properties toward eosinophilic/neutrophilic inflammation. This study aimed to explore clinical value of ITIH4 in childhood asthma.Materials & methods: Serum ITIH4 and inflammatory cytokines were determined in 120 childhood asthma patients by enzyme-linked immunosorbent assay.Results: In the entire and acute exacerbation patients, ITIH4 positively associated with IFN-γ, but negatively related to proinflammatory cytokines. ITIH4 was lowest in patients with acute exacerbation, followed by chronic persistent, and highest in clinical remission. By receiver-operating characteristic analysis, ITIH4 potentially estimated acute exacerbation asthma risk. Moreover, ITIH4 negatively related to exacerbation severity in acute exacerbation patients.Conclusion: Serum ITIH4 negatively links with Th2 cell signature cytokine, proinflammatory cytokines, exacerbation risk and severity in childhood asthma.
Collapse
Affiliation(s)
- Weina Li
- Second Department of Pediatrics, Xingtai People’s Hospital, Xingtai, 054001, Hebei, China
| | - Xiaoxue Wang
- Second Department of Pediatrics, Xingtai People’s Hospital, Xingtai, 054001, Hebei, China
| | - Hong An
- Second Department of Pediatrics, Xingtai People’s Hospital, Xingtai, 054001, Hebei, China
| |
Collapse
|
45
|
Akinyemi O, Weldeslase T, Odusanya E, Fasokun M, Agboola B, Andine T, Ayeni E, Michael M, Hughes K. The relationship between neighborhood economic deprivation and asthma-associated emergency department visits in Maryland. FRONTIERS IN ALLERGY 2024; 5:1381184. [PMID: 38903705 PMCID: PMC11188351 DOI: 10.3389/falgy.2024.1381184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Background Asthma represents a substantial public health challenge in the United States, affecting over 25 million adults. This study investigates the impact of neighborhood economic deprivation on asthma-associated Emergency Department (ED) visits in Maryland, using the Distressed Communities Index (DCI) for analysis. Methods A retrospective analysis of Maryland's Emergency Department Databases from January 2018 to December 2020 was conducted, focusing on asthma-associated ED visits. Results The study involved 185,317 ED visits, majority of which were females (56.3%) and non-Hispanic whites (65.2%). A significant association was found between increased neighborhood socioeconomic deprivation and asthma-related ED visits. The poorest neighborhoods showed the highest rates of such visits. Compared to prosperous areas, neighborhoods classified from Comfortable to Distressed had progressively higher odds for asthma-related ED visits (Comfortable: OR = 1.14, Distressed OR = 1.65). Other significant asthma predictors included obesity, female gender, tobacco smoking, and older age. Conclusion There is a substantive association between higher asthma-related ED visits and high neighborhood economic deprivation, underscoring the impact of socioeconomic factors on health outcomes. Public health implications Addressing healthcare disparities and improving access to care in economically distressed neighborhoods is crucial. Targeted interventions, such as community health clinics and asthma education programs, can help mitigate the impact of neighborhood disadvantage.
Collapse
Affiliation(s)
- Oluwasegun Akinyemi
- Department of Surgery Outcomes Research Center, Howard University College of Medicine, Washington, DC, United States
| | - Terhas Weldeslase
- Department of Surgery Outcomes Research Center, Howard University College of Medicine, Washington, DC, United States
| | - Eunice Odusanya
- Department of Surgery Outcomes Research Center, Howard University College of Medicine, Washington, DC, United States
| | - Mojisola Fasokun
- Department of Epidemiology, University of Alabama, Birmingham, AL, United States
| | - Bukola Agboola
- Maryland Institute for Applied Environmental Health, University of Maryland, College Park, MD, United States
| | - Tsion Andine
- Department of Surgery Outcomes Research Center, Howard University College of Medicine, Washington, DC, United States
| | - Esther Ayeni
- Department of Geography and Meteorology, Ball State University, Muncie, IN, United States
| | - Miriam Michael
- Department of Internal Medicine, Howard University College of Medicine, Washington, DC, United States
| | - Kakra Hughes
- Department of Surgery, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
46
|
Zhou Y, Chen B, Fu Y, Wan C, Li H, Wang L, Huang X, Wu Z, Li G, Xiong L, Qin D. Cang-ai volatile oil alleviates nasal inflammation via Th1/Th2 cell imbalance regulation in a rat model of ovalbumin-induced allergic rhinitis. Front Pharmacol 2024; 15:1332036. [PMID: 38835658 PMCID: PMC11148258 DOI: 10.3389/fphar.2024.1332036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
We previously revealed that Cang-ai volatile oil (CAVO) regulates T-cell activity, enhancing the immune response in people with chronic respiratory diseases. However, the effects of CAVO on allergic rhinitis (AR) have not been investigated. Herein, we established an ovalbumin (OVA)-induced AR rat model to determine these effects. Sprague-Dawley (SD) rats were exposed to OVA for 3 weeks. CAVO or loratadine (positive control) was given orally once daily for 2 weeks to OVA-exposed rats. Behavior modeling nasal allergies was observed. Nasal mucosa, serum, and spleen samples of AR rats were analyzed. CAVO treatment significantly reduced the number of nose rubs and sneezes, and ameliorated several hallmarks of nasal mucosa tissue remodeling: inflammation, eosinophilic infiltration, goblet cell metaplasia, and mast cell hyperplasia. CAVO administration markedly upregulated expressions of interferon-γ, interleukin (IL)-2, and IL-12, and downregulated expressions of serum tumor necrosis factor-α, IL-4, IL-5, IL-6, IL-13, immunoglobulin-E, and histamine. CAVO therapy also increased production of IFN-γ and T-helper type 1 (Th1)-specific T-box transcription factor (T-bet) of the cluster of differentiation-4+ T-cells in splenic lymphocytes, and protein and mRNA expressions of T-bet in nasal mucosa. In contrast, levels of the Th2 cytokine IL-4 and Th2-specific transcription factor GATA binding protein-3 were suppressed by CAVO. These cumulative findings demonstrate that CAVO therapy can alleviate AR by regulating the balance between Th1 and Th2 cells.
Collapse
Affiliation(s)
- Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Bojun Chen
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Yi Fu
- The Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Chunping Wan
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huayan Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Lin Wang
- School of Pharmacy, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhao Wu
- School of Pharmacy, Yunnan University of Chinese Medicine, Kunming, China
| | - Gang Li
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Lei Xiong
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
47
|
Fang Q, Wu W, Xiao Z, Zeng D, Liang R, Wang J, Yuan J, Su W, Xu X, Zheng Y, Lai T, Sun J, Fu Q, Zheng SG. Gingival-derived mesenchymal stem cells alleviate allergic asthma inflammation via HGF in animal models. iScience 2024; 27:109818. [PMID: 38766356 PMCID: PMC11099335 DOI: 10.1016/j.isci.2024.109818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Allergic asthma is a chronic non-communicable disease characterized by lung tissue inflammation. Current treatments can alleviate the clinical symptoms to some extent, but there is still no cure. Recently, the transplantation of mesenchymal stem cells (MSCs) has emerged as a potential approach for treating allergic asthma. Gingival-derived mesenchymal stem cells (GMSCs), a type of MSC recently studied, have shown significant therapeutic effects in various experimental models of autoimmune diseases. However, their application in allergic diseases has yet to be fully elucidated. In this study, using an OVA-induced allergic asthma model, we demonstrated that GMSCs decrease CD11b+CD11c+ proinflammatory dendritic cells (DCs), reduce Th2 cells differentiation, and thus effectively diminish eosinophils infiltration. We also identified that the core functional factor, hepatocyte growth factor (HGF) secreted by GMSCs, mediated its effects in relieving airway inflammation. Taken together, our findings indicate GMSCs as a potential therapy for allergic asthma and other related diseases.
Collapse
Affiliation(s)
- Qiannan Fang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Wenbin Wu
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zexiu Xiao
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Donglan Zeng
- Department of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rongzhen Liang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
| | - Julie Wang
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Jia Yuan
- Division of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Zheng
- Department of Dermatology Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianwen Lai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jianbo Sun
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qingling Fu
- Otorhinolaryngology Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Song Guo Zheng
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiaotong University School of Medicine Affiliated Songjiang Hospital, Shanghai, China
| |
Collapse
|
48
|
Abdelmawgood IA, Kotb MA, Ashry H, Ebeed BW, Mahana NA, Mohamed AS, Eid JI, Ramadan MA, Rabie NS, Mohamed MY, Saed NT, Yasser N, Essam D, Zaki YY, Saeed S, Mahmoud A, Eladawy MM, Badr AM. β-glucan mitigates ovalbumin-induced airway inflammation by preventing oxidative stress and CD8 + T cell infiltration. Int Immunopharmacol 2024; 132:111985. [PMID: 38603862 DOI: 10.1016/j.intimp.2024.111985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Bronchial asthma is a severe respiratory condition characterized by airway inflammation, remodeling, and oxidative stress. β-Glucan (BG) is a polysaccharide found in fungal cell walls with powerful immunomodulatory properties. This study examined and clarified the mechanisms behind BG's ameliorativeactivitiesin an allergic asthma animal model. METHOD BG was extracted from Chaga mushroom and characterized using FT-IR, UV-visible, zeta potential, and 1H NMR analysis. The mice were divided into five groups, including control, untreated asthmatic, dexamethasone (Dexa)-treated (1 mg/kg), and BG (30 and 100 mg/kg)-treated groups. RESULTS BG treatment reduced nasal scratching behavior, airway-infiltrating inflammatory cells, and serum levels of IgE significantly. Additionally, BG attenuated oxidative stress biomarkers by lowering malonaldehyde (MDA) concentrations and increasing the levels of reduced glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT). Immunohistochemical and flow cytometric analyses have confirmed the suppressive effect of BG on the percentage of airway-infiltrating cytotoxic CD8+ T cells. CONCLUSION The findings revealed the role of CD8+ T cells in the pathogenesis of asthma and the role of BG as a potential therapeutic agent for asthma management through the suppression of airway inflammation and oxidative stress.
Collapse
Affiliation(s)
| | - Mohamed A Kotb
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Hamid Ashry
- Biochemistry Branch, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Bassam W Ebeed
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Noha A Mahana
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Jehane I Eid
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Marwa A Ramadan
- Department of Laser Application in Metrology, Photochemistry, and Agriculture National Institute of Laser-Enhanced Science (NILES), Cairo University, Giza, Egypt
| | - Nahla S Rabie
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Mariam Y Mohamed
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Nermeen Th Saed
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Nada Yasser
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Dina Essam
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Youssef Y Zaki
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Samar Saeed
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Asmaa Mahmoud
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Marwan M Eladawy
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Abeer Mahmoud Badr
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| |
Collapse
|
49
|
Jiang YZ, Huang XR, Chang J, Zhou Y, Huang XT. SIRT1: An Intermediator of Key Pathways Regulating Pulmonary Diseases. J Transl Med 2024; 104:102044. [PMID: 38452903 DOI: 10.1016/j.labinv.2024.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Silent information regulator type-1 (SIRT1), a nicotinamide adenine dinucleotide+-dependent deacetylase, is a member of the sirtuins family and has unique protein deacetylase activity. SIRT1 participates in physiological as well as pathophysiological processes by targeting a wide range of protein substrates and signalings. In this review, we described the latest progress of SIRT1 in pulmonary diseases. We have introduced the basic information and summarized the prominent role of SIRT1 in several lung diseases, such as acute lung injury, acute respiratory distress syndrome, chronic obstructive pulmonary disease, lung cancer, and aging-related diseases.
Collapse
Affiliation(s)
- Yi-Zhu Jiang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xin-Ran Huang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Chang
- Xiangya Nursing School, Central South University, Changsha, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiao-Ting Huang
- Xiangya Nursing School, Central South University, Changsha, China.
| |
Collapse
|
50
|
Bhat AA, Afzal M, Goyal A, Gupta G, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Shahwan M, Paudel KR, Ali H, Sahu D, Prasher P, Singh SK, Dua K. The impact of formaldehyde exposure on lung inflammatory disorders: Insights into asthma, bronchitis, and pulmonary fibrosis. Chem Biol Interact 2024; 394:111002. [PMID: 38604395 DOI: 10.1016/j.cbi.2024.111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Lung inflammatory disorders are a major global health burden, impacting millions of people and raising rates of morbidity and death across many demographic groups. An industrial chemical and common environmental contaminant, formaldehyde (FA) presents serious health concerns to the respiratory system, including the onset and aggravation of lung inflammatory disorders. Epidemiological studies have shown significant associations between FA exposure levels and the incidence and severity of several respiratory diseases. FA causes inflammation in the respiratory tract via immunological activation, oxidative stress, and airway remodelling, aggravating pre-existing pulmonary inflammation and compromising lung function. Additionally, FA functions as a respiratory sensitizer, causing allergic responses and hypersensitivity pneumonitis in sensitive people. Understanding the complicated processes behind formaldehyde-induced lung inflammation is critical for directing targeted strategies aimed at minimizing environmental exposures and alleviating the burden of formaldehyde-related lung illnesses on global respiratory health. This abstract explores the intricate relationship between FA exposure and lung inflammatory diseases, including asthma, bronchitis, allergic inflammation, lung injury and pulmonary fibrosis.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2050, Australia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Dipak Sahu
- Department of Pharmacology, Amity University, Raipur, Chhattisgarh, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|