1
|
Tsuchiya H. Treatment of COVID-19-Associated Ageusia and Xerostomia. Oral Dis 2025. [PMID: 39928291 DOI: 10.1111/odi.15282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Affiliation(s)
- Hironori Tsuchiya
- Department of Dental Basic Education, Asahi University School of Dentistry, Mizuho, Japan
| |
Collapse
|
2
|
Bolland W, Marechal I, Petiot C, Porrot F, Guivel-Benhassine F, Brelot A, Casartelli N, Schwartz O, Buchrieser J. SARS-CoV-2 entry and fusion are independent of ACE2 localization to lipid rafts. J Virol 2025; 99:e0182324. [PMID: 39570043 PMCID: PMC11784143 DOI: 10.1128/jvi.01823-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Membrane fusion occurs at the early stages of SARS-CoV-2 replication, during entry of the virus, and later during the formation of multinucleated cells called syncytia. Fusion is mediated by the binding of the viral Spike protein to its receptor ACE2. Lipid rafts are dynamic nanodomains enriched in cholesterol and sphingolipids. Rafts can act as platforms for entry of different viruses by localizing virus receptors, and attachment factors to the same membrane domains. Here, we first demonstrate that cholesterol depletion by methyl-beta-cyclodextrin inhibits Spike-mediated fusion and entry. To further study the role of ACE2 lipid raft localization in SARS-CoV-2 fusion and entry, we designed a GPI-anchored ACE2 construct. Both ACE2 and ACE2-GPI proteins were similarly expressed at the plasma membrane. Through membrane flotation assays, we show that in different cell lines, ACE2-GPI localizes predominantly to raft domains of the plasma membrane while ACE2 is non-raft associated. We then compare the ability of ACE2 and ACE2-GPI to permit SARS-CoV-2 entry, replication, and syncytia formation of different viral variants. We find little difference in the two proteins. Our results demonstrate that SARS-CoV-2 entry and fusion are cholesterol-dependent and raft-independent processes.IMPORTANCERafts are often exploited by viruses and used as platforms to enhance their entry into the cell or spread from cell to cell. The membrane localization of ACE2 and the role of lipid rafts in SARS-CoV-2 entry and cell-to-cell spread are poorly understood. The function of lipid rafts in viral fusion is often studied through their disruption by cholesterol-depleting agents. However, this process may have off-target impacts on viral fusion independently of lipid-raft disruption. Therefore, we created an ACE2 construct that localizes to lipid rafts using a GPI anchor. Conversely, wild-type ACE2 was non-raft associated. We find that the localization of ACE2 to lipid rafts does not modify the fusion dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- William Bolland
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Université Paris Cité, Paris, France
| | - Inès Marechal
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Chloé Petiot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Françoise Porrot
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Anne Brelot
- Dynamic of Host-Pathogen Interactions Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3691, Paris, France
| | - Nicoletta Casartelli
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Julian Buchrieser
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| |
Collapse
|
3
|
Lv L, Luo H, Zhang M, Wu C, Jiang Y, Tong W, Li G, Zhou Y, Li Y, Wang Z, Liu C. Comprehensive transcriptomic analysis identifies cholesterol transport pathway as a therapeutic target of porcine epidemic diarrhea coronavirus. Virus Res 2024; 350:199502. [PMID: 39580000 PMCID: PMC11625352 DOI: 10.1016/j.virusres.2024.199502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly contagious virus that poses a serious threat to the global pig industry. Despite extensive efforts, the mechanism underlying virus entry for PEDV remains elusive. In this study, we first identified PEDV-susceptible and non-susceptible cell lines by using PEDV spike pseudotyped vesicular stomatitis virus. Subsequently, we conducted a comprehensive transcriptomic analysis on these cell lines. Through integrating differential expression gene analysis with weighted gene co-expression network analysis, we identified the key pathways that are correlated with the PEDV entry. Our analysis revealed a strong correlation between cholesterol, sterols, and lipid transport with PEDV entry, suggesting a potential role for cholesterol transport in the PEDV entry. For further investigation, we treated Huh7, Vero and LLC-PK1 cells with a cholesterol transport inhibitor, ezetimibe, and observed a significant inhibition of PEDV entry and subsequent viral replication in these cells. Interestingly, pre-treating Huh7 cells with ezetimibe resulted in an increase in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudoviruses. Moreover, we found that cholesterol could facilitate the entry of PEDV into Huh7 and Vero cells, and this promoting effect can be blocked by ezetimibe. These findings suggest that targeting cholesterol transport specifically inhibits PEDV entry into susceptible cells. Our study offers novel insights into the mechanism of PEDV entry and the development of new therapeutic strategies against this economically important virus.
Collapse
Affiliation(s)
- Lilei Lv
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Huaye Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, Shanghai 200433, PR China
| | - Chuntao Wu
- Office of Academic Research, Dongying Vocational Institute, Dongying 257091, PR China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China
| | - Zhao Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China.
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
4
|
Ghanem L, Essayli D, Kotaich J, Zein MA, Sahebkar A, Eid AH. Phenotypic switch of vascular smooth muscle cells in COVID-19: Role of cholesterol, calcium, and phosphate. J Cell Physiol 2024; 239:e31424. [PMID: 39188012 PMCID: PMC11649971 DOI: 10.1002/jcp.31424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Although the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily manifests as severe respiratory distress, its impact on the cardiovascular system is also notable. Studies reveal that COVID-19 patients often suffer from certain vascular diseases, partly attributed to increased proliferation or altered phenotype of vascular smooth muscle cells (VSMCs). Although the association between COVID-19 and VSMCs is recognized, the precise mechanism underlying SARS-CoV-2's influence on VSMC phenotype remains largely under-reviewed. In this context, while there is a consistent body of literature dissecting the effect of COVID-19 on the cardiovascular system, few reports delve into the potential role of VSMC switching in the pathophysiology associated with COVID-19 and the molecular mechanisms involved therein. This review dissects and critiques the link between COVID-19 and VSMCs, with particular attention to pathways involving cholesterol, calcium, and phosphate. These pathways underpin the interaction between the virus and VSMCs. Such interaction promotes VSMC proliferation, and eventually potentiates vascular calcification as well as worsens prognosis in patients with COVID-19.
Collapse
MESH Headings
- Animals
- Humans
- Calcium/metabolism
- Cell Proliferation
- Cholesterol/metabolism
- COVID-19/metabolism
- COVID-19/pathology
- COVID-19/virology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/virology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/virology
- Phenotype
- Phosphates/metabolism
- SARS-CoV-2/pathogenicity
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Vascular Calcification/virology
Collapse
Affiliation(s)
- Laura Ghanem
- Faculty of Medical SciencesLebanese UniversityHadathLebanon
| | - Dina Essayli
- Faculty of Medical SciencesLebanese UniversityHadathLebanon
| | - Jana Kotaich
- Faculty of Medical SciencesLebanese UniversityHadathLebanon
- MEDICA Research InvestigationBeirutLebanon
| | | | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU HealthQatar UniversityDohaQatar
| |
Collapse
|
5
|
Soares VC, Dias SSG, Santos JC, Bozza PT. Unlocking secrets: lipid metabolism and lipid droplet crucial roles in SARS-CoV-2 infection and the immune response. J Leukoc Biol 2024; 116:1254-1268. [PMID: 39087951 DOI: 10.1093/jleuko/qiae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024] Open
Abstract
Lipid droplets (LDs) are crucial for maintaining lipid and energy homeostasis within cells. LDs are highly dynamic organelles that present a phospholipid monolayer rich in neutral lipids. Additionally, LDs are associated with structural and nonstructural proteins, rapidly mobilizing lipids for various biological processes. Lipids play a pivotal role during viral infection, participating during viral membrane fusion, viral replication, and assembly, endocytosis, and exocytosis. SARS-CoV-2 infection often induces LD accumulation, which is used as a source of energy for the replicative process. These findings suggest that LDs are a hallmark of viral infection, including SARS-CoV-2 infection. Moreover, LDs participate in the inflammatory process and cell signaling, activating pathways related to innate immunity and cell death. Accumulating evidence demonstrates that LD induction by SARS-CoV-2 is a highly coordinated process, aiding replication and evading the immune system, and may contribute to the different cell death process observed in various studies. Nevertheless, recent research in the field of LDs suggests these organelles according to the pathogen and infection conditions may also play roles in immune and inflammatory responses, protecting the host against viral infection. Understanding how SARS-CoV-2 influences LD biogenesis is crucial for developing novel drugs or repurposing existing ones. By targeting host lipid metabolic pathways exploited by the virus, it is possible to impact viral replication and inflammatory responses. This review seeks to discuss and analyze the role of LDs during SARS-CoV-2 infection, specifically emphasizing their involvement in viral replication and the inflammatory response.
Collapse
Affiliation(s)
- Vinicius Cardoso Soares
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Program of Immunology and Inflammation, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Suelen Silva Gomes Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Julia Cunha Santos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| |
Collapse
|
6
|
Cheng M, Zhang R, Li J, Ma W, Li L, Jiang N, Liu B, Wu J, Zheng N, Wu Z. MβCD inhibits SFTSV entry by disrupting lipid raft structure of the host cells. Antiviral Res 2024; 231:106004. [PMID: 39265655 DOI: 10.1016/j.antiviral.2024.106004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), recently named as Dabie bandavirus, belongs to the family Phenuiviridae of the order Bunyavirales, is a newly-identified bunyavirus with a case fatality rate of up to 30%, posing a serious threat to public health. Lipid rafts on plasm membranes are important for the entry of enveloped viruses; however, the role of lipid rafts in bunyavirus entry remains unclear. In this study, we found that methyl-beta-cyclodextrin (MβCD), a drug that disrupts cholesterol in lipid rafts of cell membranes, inhibits SFTSV infection. Additionally, there is a back-complementary effect of SFTSV infection upon the addition of cholesterol. Moreover, the concentration of SFTSV particles in lipid rafts during entry directly indicated the role of lipid rafts as a gateway, whereas MβCD could inhibit SFTSV entry by affecting the structure of lipid rafts. In an in vivo study, MβCD also reduced the susceptibility of mice to SFTSV infection. Our results suggest that SFTSV can interact with Talin1 proteins on lipid rafts to enter host cells by endocytosis of lipid rafts and reveal the potential therapeutic value of MβCD for SFTSV infection.
Collapse
Affiliation(s)
- Min Cheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jianshu Li
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Wenyuan Ma
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Linrun Li
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Bingxin Liu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Jing Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, People's Republic of China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China.
| |
Collapse
|
7
|
Okeke KI, Ahamefule CS, Nnabuife OO, Orabueze IN, Iroegbu CU, Egbe KA, Ike AC. Antiseptics: An expeditious third force in the prevention and management of coronavirus diseases. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100293. [PMID: 39497935 PMCID: PMC11532748 DOI: 10.1016/j.crmicr.2024.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Notably, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and coronavirus disease 2019 (COVID-19) have all had significant negative impact on global health and economy. COVID-19 alone, has resulted to millions of deaths with new cases and mortality still being reported in its various waves. The development and use of vaccines have not stopped the transmission of SARS coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, even among vaccinated individuals. The use of vaccines and curative drugs should be supplemented with adoption of simple hygiene preventive measures in the fight against the spread of the virus, especially for healthcare workers. Several virucidal topical antiseptics, such as povidone-iodine (PVP-I), citrox, cyclodextrins among others, have been demonstrated to be efficacious in the inactivation of SARS-CoV-2 and other coronaviruses in both in vitro and in vivo studies. The strategic application of these virucidal formulations could provide the additional impetus needed to effectively control the spread of the virus. We have here presented a simple dimension towards curtailing the dissemination of COVID-19, and other coronaviruses, through the application of effective oral, nasal and eye antiseptics among patients and medical personnel. We have further discussed the mechanism of action of some of these commonly available virucidal solutions while also highlighting some essential controversies in their use.
Collapse
Affiliation(s)
- Kizito I. Okeke
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Chukwuemeka Samson Ahamefule
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Obianuju O. Nnabuife
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Ibuchukwu N. Orabueze
- Department of Medical Microbiology, University of Nigeria Teaching Hospital Enugu, Enugu State, Nigeria
| | - Christian U. Iroegbu
- Department of Microbiology, Cross River University of Technology, Calabar, Cross River State, Nigeria
| | - Kingsley A. Egbe
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| | - Anthony C. Ike
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001 Enugu State, Nigeria
| |
Collapse
|
8
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and Cholesterol-Lowering Medications in COVID-19-An Unresolved Matter. Int J Mol Sci 2024; 25:10489. [PMID: 39408818 PMCID: PMC11477656 DOI: 10.3390/ijms251910489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause coronavirus disease 2019 (COVID-19), a disease with very heterogeneous symptoms. Dyslipidaemia is prevalent in at least 20% of Europeans, and dyslipidaemia before SARS-CoV-2 infection increases the risk for severe COVID-19 and mortality by 139%. Many reports described reduced serum cholesterol levels in virus-infected patients, in particular in those with severe disease. The liver is the major organ for lipid homeostasis and hepatic dysfunction appears to occur in one in five patients infected with SARS-CoV-2. Thus, SARS-CoV-2 infection, COVID-19 disease severity and liver injury may be related to impaired cholesterol homeostasis. These observations prompted efforts to assess the therapeutic opportunities of cholesterol-lowering medications to reduce COVID-19 severity. The majority of studies implicate statins to have beneficial effects on disease severity and outcome in COVID-19. Proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies have also shown potential to protect against COVID-19. This review describes the relationship between systemic cholesterol levels, liver injury and COVID-19 disease severity. The potential effects of statins and PCSK9 in COVID-19 are summarised. Finally, the relationship between cholesterol and lung function, the first organ to be affected by SARS-CoV-2, is described.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (T.G.); (M.K.L.N.)
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Zhang Y, Zhang TN, Lu YP, Ren LN, Chen ST, Liu L, Wei LP, Chen JM, Huang JN, Mo ML. Increased viperin expression induced by avian infectious bronchitis virus inhibits viral replication by restricting cholesterol synthesis: an in vitro study. Vet Res 2024; 55:116. [PMID: 39334500 PMCID: PMC11429478 DOI: 10.1186/s13567-024-01368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/27/2024] [Indexed: 09/30/2024] Open
Abstract
With the emergence of new variant strains resulting from high mutation rates and genome recombination, avian infectious bronchitis virus (IBV) has caused significant economic losses to the poultry industry worldwide. Little is known about the underlying mechanisms of IBV-host interactions, particularly how IBV utilizes host metabolic pathways for efficient viral replication and transmission. In the present study, the effects of the cell membrane, viral envelope membrane, and viperin-mediated cholesterol synthesis on IBV replication were explored. Our results revealed significant increase in cholesterol levels and the expression of viperin after IBV infection. Acute cholesterol depletion in the cell membrane and viral envelope membrane by treating cells with methyl-β-cyclodextrin (MβCD) obviously inhibited IBV replication; thereafter, replenishment of the cell membrane with cholesterol successfully restored viral replication, and direct addition of exogenous cholesterol to the cell membrane significantly promoted IBV infection during the early stages of infection. In addition, overexpression of viperin effectively suppressed cholesterol synthesis, as well as IBV replication, whereas knockdown of viperin (gene silencing with siRNA targeting viperin, siViperin) significantly increased IBV replication and cholesterol levels, whereas supplementation with exogenous cholesterol to viperin-transfected cells markedly restored viral replication. In conclusion, the increase in viperin induced by IBV infection plays an important role in IBV replication by affecting cholesterol production, providing a theoretical basis for understanding the pathogenesis of IBV and discovering new potential antiviral targets.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Tao-Ni Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yan-Peng Lu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Li-Na Ren
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Sheng-Ting Chen
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ling Liu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lan-Ping Wei
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ji-Ming Chen
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jian-Ni Huang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Mei-Lan Mo
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China.
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530004, China.
| |
Collapse
|
10
|
Shukla A, Singh A, Tripathi S. Perturbed Lipid Metabolism Transduction Pathways in SARS-CoV-2 Infection and Their Possible Treating Nutraceuticals. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:614-626. [PMID: 38805016 DOI: 10.1080/27697061.2024.2359084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
The coronavirus disease 2019 (COVID-19) epidemic has evolved into an international public health concern. Its causing agent was SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), a lipid bilayer encapsulated virus. Lipids have relevance in the host's viral cycle; additionally; viruses have been speculated to manipulate lipid signaling and production to influence the lipidome of host cells. SARS-CoV-2 engages the host lipid pathways for replication, like fatty acid synthesis activation via upregulation of AKT and SREBP pathway and inhibiting lipid catabolism by AMPK and PPAR deactivation. Consequently, lipoprotein levels are altered in most cases, i.e., raised LDL, TG, VLDL levels and reduced HDL levels like a hyperlipidemic state. Apo lipoproteins, a subsiding structural part of lipoproteins, may also impact viral spike protein binding to host cell receptors. In a few studies conducted on COVID-19 patients, maintaining Apo lipoprotein levels has also shown antiviral activity against SARS-CoV-2 infection. It was speculated that several potent hypolipidemic drugs, such as statins, hydroxychloroquine, and metformin, could be used as add-on treatment in COVID-19 management. Nutraceuticals like Garlic, Fenugreek, and vinegar have the potency to lower the lipid capability acting via these pathways. A link between COVID-19 and post-COVID alteration in lipoprotein levels has not yet been fully understood. In this review, we try to look over the possible modifications in lipid metabolism due to SARS-CoV-2 viral exposure, besides the prospect of focusing on the potential of lipid metabolic processes to interrupt the viral cycle.
Collapse
Affiliation(s)
- Amrita Shukla
- Department of Pharmacology, Rameshwaram Institute of Technology and Management, Lucknow, India
| | - Ankita Singh
- Department of Pharmacology, Rameshwaram Institute of Technology and Management, Lucknow, India
| | - Smriti Tripathi
- Department of Pharmacology, Rameshwaram Institute of Technology and Management, Lucknow, India
| |
Collapse
|
11
|
Rajanala K, Upadhyay AK. Vaccines for Respiratory Viruses-COVID and Beyond. Vaccines (Basel) 2024; 12:936. [PMID: 39204059 PMCID: PMC11360283 DOI: 10.3390/vaccines12080936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The COVID-19 (coronavirus disease 2019) pandemic had an extensive impact on global morbidity and mortality. Several other common respiratory viruses, such as the influenza virus and respiratory syncytial virus (RSV), are endemic or epidemic agents causing acute respiratory infections that are easily transmissible and pose a significant threat to communities due to efficient person-to-person transmission. These viruses can undergo antigenic variation through genetic mutations, resulting in the emergence of novel strains or variants, thereby diminishing the effectiveness of current vaccines, and necessitating ongoing monitoring and adjustment of vaccine antigens. As the virus-specific immunity is maintained only for several weeks or months after the infection, there is an emergent need to develop effective and durable vaccines. Additionally, specific populations, such as elderly or immunocompromised individuals, may exhibit reduced immune responses to respiratory viruses, posing significant challenges to develop vaccines that elicit durable and potent immunity. We present a comprehensive review of the molecular mechanisms underlying the pathogenesis and virulence of common respiratory viruses, such as RSV, influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We discuss several vaccine approaches that are under development. A thorough understanding of the current strategies and the challenges encountered during the vaccine development process can lead to the advancement of effective next-generation vaccines.
Collapse
|
12
|
Rani A, Stadler JT, Marsche G. HDL-based therapeutics: A promising frontier in combating viral and bacterial infections. Pharmacol Ther 2024; 260:108684. [PMID: 38964560 DOI: 10.1016/j.pharmthera.2024.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Low levels of high-density lipoprotein (HDL) and impaired HDL functionality have been consistently associated with increased susceptibility to infection and its serious consequences. This has been attributed to the critical role of HDL in maintaining cellular lipid homeostasis, which is essential for the proper functioning of immune and structural cells. HDL, a multifunctional particle, exerts pleiotropic effects in host defense against pathogens. It functions as a natural nanoparticle, capable of sequestering and neutralizing potentially harmful substances like bacterial lipopolysaccharides. HDL possesses antiviral activity, preventing viruses from entering or fusing with host cells, thereby halting their replication cycle. Understanding the complex relationship between HDL and the immune system may reveal innovative targets for developing new treatments to combat infectious diseases and improve patient outcomes. This review aims to emphasize the role of HDL in influencing the course of bacterial and viral infections and its and its therapeutic potential.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Styria, Austria.
| |
Collapse
|
13
|
Chen L, Zhang J, Xu W, Chen J, Tang Y, Xiong S, Li Y, Zhang H, Li M, Liu Z. Cholesterol-rich lysosomes induced by respiratory syncytial virus promote viral replication by blocking autophagy flux. Nat Commun 2024; 15:6311. [PMID: 39060258 PMCID: PMC11282085 DOI: 10.1038/s41467-024-50711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) hijacks cholesterol or autophagy pathways to facilitate optimal replication. However, our understanding of the associated molecular mechanisms remains limited. Here, we show that RSV infection blocks cholesterol transport from lysosomes to the endoplasmic reticulum by downregulating the activity of lysosomal acid lipase, activates the SREBP2-LDLR axis, and promotes uptake and accumulation of exogenous cholesterol in lysosomes. High cholesterol levels impair the VAP-A-binding activity of ORP1L and promote the recruitment of dynein-dynactin, PLEKHM1, or HOPS VPS39 to Rab7-RILP, thereby facilitating minus-end transport of autophagosomes and autolysosome formation. Acidification inhibition and dysfunction of cholesterol-rich lysosomes impair autophagy flux by inhibiting autolysosome degradation, which promotes the accumulation of RSV fusion protein. RSV-F storage is nearly abolished after cholesterol depletion or knockdown of LDLR. Most importantly, the knockout of LDLR effectively inhibits RSV infection in vivo. These findings elucidate the molecular mechanism of how RSV co-regulates lysosomal cholesterol reprogramming and autophagy and reveal LDLR as a novel target for anti-RSV drug development.
Collapse
Affiliation(s)
- Lifeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jingjing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Weibin Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiayi Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Yujun Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Si Xiong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Yaolan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Manmei Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China.
| | - Zhong Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment & College of Pharmacy, Jinan University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Bioengineering Medicine & College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
14
|
Kulma M, Šakanović A, Bedina-Zavec A, Caserman S, Omersa N, Šolinc G, Orehek S, Hafner-Bratkovič I, Kuhar U, Slavec B, Krapež U, Ocepek M, Kobayashi T, Kwiatkowska K, Jerala R, Podobnik M, Anderluh G. Sequestration of membrane cholesterol by cholesterol-binding proteins inhibits SARS-CoV-2 entry into Vero E6 cells. Biochem Biophys Res Commun 2024; 716:149954. [PMID: 38704887 DOI: 10.1016/j.bbrc.2024.149954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Membrane lipids and proteins form dynamic domains crucial for physiological and pathophysiological processes, including viral infection. Many plasma membrane proteins, residing within membrane domains enriched with cholesterol (CHOL) and sphingomyelin (SM), serve as receptors for attachment and entry of viruses into the host cell. Among these, human coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use proteins associated with membrane domains for initial binding and internalization. We hypothesized that the interaction of lipid-binding proteins with CHOL in plasma membrane could sequestrate lipids and thus affect the efficiency of virus entry into host cells, preventing the initial steps of viral infection. We have prepared CHOL-binding proteins with high affinities for lipids in the plasma membrane of mammalian cells. Binding of the perfringolysin O domain four (D4) and its variant D4E458L to membrane CHOL impaired the internalization of the receptor-binding domain of the SARS-CoV-2 spike protein and the pseudovirus complemented with the SARS-CoV-2 spike protein. SARS-CoV-2 replication in Vero E6 cells was also decreased. Overall, our results demonstrate that the integrity of CHOL-rich membrane domains and the accessibility of CHOL in the membrane play an essential role in SARS-CoV-2 cell entry.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Aleksandra Šakanović
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Apolonija Bedina-Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Simon Caserman
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Brigita Slavec
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Matjaž Ocepek
- Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, F-67401, Illkirch, France
| | - Katarzyna Kwiatkowska
- Laboratory of Molecular Membrane Biology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; EN-FIST Centre of Excellence, Trg Osvobodilne Fronte 13, 1000, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal 2024; 22:349. [PMID: 38965547 PMCID: PMC11223399 DOI: 10.1186/s12964-024-01718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.
Collapse
Affiliation(s)
- Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Nada El-Kholy
- Department of Drug Discovery, H. Lee Moffit Cancer Center& Research Institute, Tampa, FL, 33612, USA
- Cancer Chemical Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa E Hussien
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | | | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Mohamed Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt.
| |
Collapse
|
16
|
Bowsher R, Marczylo TH, Gooch K, Bailey A, Wright MD, Marczylo EL. Smoking and vaping alter genes related to mechanisms of SARS-CoV-2 susceptibility and severity: a systematic review and meta-analysis. Eur Respir J 2024; 64:2400133. [PMID: 38991709 PMCID: PMC11269771 DOI: 10.1183/13993003.00133-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Evidence for the impact of smoking on coronavirus disease 2019 (COVID-19) is contradictory, and there is little research on vaping. Here we provide greater clarity on mechanisms perturbed by tobacco cigarette, electronic cigarette and nicotine exposures that may impact the risks of infection and/or disease severity. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the Ovid and Web of Science databases were searched. Study design and exposure-induced gene expression changes were extracted. Each study was quality assessed and higher confidence scores were assigned to genes consistently changed across multiple studies following the same exposure. These genes were used to explore pathways significantly altered following exposure. RESULTS 125 studies provided data on 480 genes altered by exposure to tobacco cigarettes, e-cigarettes, nicotine or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Genes involved in both SARS-CoV-2 viral-entry and inflammation were changed following exposure. Pathway analysis revealed that many of those genes with high confidence scores are involved in common cellular processes relating to hyperinflammatory immune responses. CONCLUSION Exposure to tobacco cigarettes, e-cigarettes or nicotine may therefore impact initial host-pathogen interactions and disease severity. Smokers and vapers of e-cigarettes with nicotine could potentially be at increased risk of SARS-CoV-2 infection, associated cytokine storm, and acute respiratory distress syndrome. However, further research is required, particularly on e-cigarettes, to determine the biological mechanisms involved in perturbation of viral-entry genes and host-pathogen interactions and subsequent responses within the respiratory tract. This will improve our physiological understanding of the impact of smoking and vaping on COVID-19, informing public health advice and providing improved guidance for management of SARS-CoV-2 and other respiratory viruses.
Collapse
Affiliation(s)
- Rachel Bowsher
- Toxicology Department, UK Health Security Agency, Chilton, UK
- Pharmacology Section, St George's University of London, London, UK
| | | | - Karen Gooch
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Salisbury, UK
| | - Alexis Bailey
- Pharmacology Section, St George's University of London, London, UK
| | | | - Emma L Marczylo
- Toxicology Department, UK Health Security Agency, Chilton, UK
| |
Collapse
|
17
|
Ochoa-Ramírez LA, De la Herrán Arita AK, Sanchez-Zazueta JG, Ríos-Burgueño E, Murillo-Llanes J, De Jesús-González LA, Farfan-Morales CN, Cordero-Rivera CD, Del Ángel RM, Romero-Utrilla A, Camberos-Barraza J, Valdez-Flores MA, Camacho-Zamora A, Batiz-Beltrán JC, Angulo-Rojo C, Guadrón-Llanos AM, Picos-Cárdenas VJ, Norzagaray-Valenzuela CD, Rábago-Monzón ÁR, Velarde-Félix JS, Reyes-Ruiz JM, Osuna-Ramos JF. Association between lipid profile and clinical outcomes in COVID-19 patients. Sci Rep 2024; 14:12139. [PMID: 38802549 PMCID: PMC11130121 DOI: 10.1038/s41598-024-62899-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
High-density lipoprotein cholesterol (HDL-c) removes cholesterol, an essential component in lipid rafts, and this cholesterol removal can regulate protein attachment to lipid rafts, modulating their functionality in the immune cell response. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can alter the lipid profile, there is little information on the role of HDL-c and other lipids in prognostic of the coronavirus disease 2019 (COVID-19) in Mexican population. This study aims to evaluate the predictive value of HDL-c and lipid profile on severity and survival of 102 patients infected with SARS-CoV-2 during the COVID-19 first wave. Our findings, derived from univariate and multivariate Cox proportional hazards regression models, highlighted age and hypertension as significant predictors of survival (HR = 1.04, p = 0.012; HR = 2.78, p = 0.027), while gender, diabetes, and obesity showed no significant impact. Triglycerides and HDL-c levels notably influenced mortality, with elevated triglycerides and lower HDL-c associated with higher mortality risk (p = 0.032). This study underscores the importance of lipid profiles alongside traditional risk factors in assessing COVID-19 risk and outcomes. It contributes to the understanding of COVID-19 patient management and emphasizes the need for further investigation into the role of dyslipidemia in influencing COVID-19 prognosis, potentially aiding in refined risk stratification and therapeutic strategies.
Collapse
Affiliation(s)
- Luis Antonio Ochoa-Ramírez
- Hospital General de Culiacán "Bernardo J. Gastelum", Servicios de Salud de Sinaloa, Culiacán, Sinaloa, Mexico
| | | | | | - Efrén Ríos-Burgueño
- Departamento de Anatomía Patológica, Centro de Investigación y Docencia en Ciencias de la Salud, Universidad Autónoma de Sinaloa, Hospital Civil de Culiacán, Culiacán, Mexico
| | - Joel Murillo-Llanes
- Departamento de Investigación del Hospital de la Mujer, Servicios de Salud de Sinaloa, Culiacán, Sinaloa, Mexico
| | | | - Carlos Noe Farfan-Morales
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Ciudad de México, Mexico
| | - Carlos Daniel Cordero-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto politécnico Nacional, Ciudad de México, Mexico
| | - Rosa María Del Ángel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto politécnico Nacional, Ciudad de México, Mexico
| | - Alejandra Romero-Utrilla
- Departamento de Anatomía Patológica, Instituto Mexicano del Seguro Social, Culiacán, Sinaloa, Mexico
| | | | | | | | | | - Carla Angulo-Rojo
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | | | | | | | | | - Jesús Salvador Velarde-Félix
- Hospital General de Culiacán "Bernardo J. Gastelum", Servicios de Salud de Sinaloa, Culiacán, Sinaloa, Mexico
- Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - José Manuel Reyes-Ruiz
- Departamento de Investigación en Salud, Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), Veracruz, Mexico.
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana (UV), Veracruz, Mexico.
| | | |
Collapse
|
18
|
Grewal T, Nguyen MKL, Buechler C. Cholesterol and COVID-19-therapeutic opportunities at the host/virus interface during cell entry. Life Sci Alliance 2024; 7:e202302453. [PMID: 38388172 PMCID: PMC10883773 DOI: 10.26508/lsa.202302453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
The rapid development of vaccines to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has been critical to reduce the severity of COVID-19. However, the continuous emergence of new SARS-CoV-2 subtypes highlights the need to develop additional approaches that oppose viral infections. Targeting host factors that support virus entry, replication, and propagation provide opportunities to lower SARS-CoV-2 infection rates and improve COVID-19 outcome. This includes cellular cholesterol, which is critical for viral spike proteins to capture the host machinery for SARS-CoV-2 cell entry. Once endocytosed, exit of SARS-CoV-2 from the late endosomal/lysosomal compartment occurs in a cholesterol-sensitive manner. In addition, effective release of new viral particles also requires cholesterol. Hence, cholesterol-lowering statins, proprotein convertase subtilisin/kexin type 9 antibodies, and ezetimibe have revealed potential to protect against COVID-19. In addition, pharmacological inhibition of cholesterol exiting late endosomes/lysosomes identified drug candidates, including antifungals, to block SARS-CoV-2 infection. This review describes the multiple roles of cholesterol at the cell surface and endolysosomes for SARS-CoV-2 entry and the potential of drugs targeting cholesterol homeostasis to reduce SARS-CoV-2 infectivity and COVID-19 disease severity.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Mai Khanh Linh Nguyen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
19
|
Elste J, Cast N, Udawatte S, Adhikari K, Payen SH, Verma SC, Shukla D, Swanson-Mungerson M, Tiwari V. Co-Expression of Niemann-Pick Type C1-Like1 (NPC1L1) with ACE2 Receptor Synergistically Enhances SARS-CoV-2 Entry and Fusion. Biomedicines 2024; 12:821. [PMID: 38672177 PMCID: PMC11048565 DOI: 10.3390/biomedicines12040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into human embryonic kidney (HEK293T) cells has been shown to be a cholesterol-rich, lipid raft-dependent process. In this study, we investigated if the presence of a cholesterol uptake receptor Niemann-pick type c1-like1 (NPC1L1) impacts SARS-CoV-2 cell entry. Initially, we utilized reporter-based pseudovirus cell entry assays and a spike (S) glycoprotein-mediated cell-to-cell fusion assay. Using Chinese hamster ovary (CHO-K1) cells, which lack endogenous receptors for SARS-CoV-2 entry, our data showed that the co-expression of NPC1L1 together with the ACE2 receptor synergistically increased SARS-CoV-2 pseudovirus entry even more than the cells expressing ACE-2 receptor alone. Similar results were also found with the HEK293T cells endogenously expressing the ACE2 receptor. Co-cultures of effector cells expressing S glycoprotein together with target cells co-expressing ACE-2 receptor with NPC1L1 significantly promoted quantitative cell-to-cell fusion, including syncytia formation. Finally, we substantiated that an elevated expression of NPC1L1 enhanced entry, whereas the depletion of NPC1L1 resulted in a diminished SARS-CoV-2 entry in HEK293T-ACE2 cells using authentic SARS-CoV-2 virus in contrast to their respective control cells. Collectively, these findings underscore the pivotal role of NPC1L1 in facilitating the cellular entry of SARS-CoV-2. Importance: Niemann-Pick type C1-like1 (NPC1L1) is an endosomal membrane protein that regulates intracellular cholesterol trafficking. This protein has been demonstrated to play a crucial role in the life cycle of several clinically important viruses. Although SARS-CoV-2 exploits cholesterol-rich lipid rafts as part of its viral entry process, the role of NPC1L1 in SARS-CoV-2 entry remains unclear. Our research represents the first-ever demonstration of NPC1L1's involvement in facilitating SARS-CoV-2 entry. The observed role of NPC1L1 in human kidney cells is not only highly intriguing but also quite relevant. This relevance stems from the fact that NPC1L1 exhibits high expression levels in several organs, including the kidneys, and the fact that kidney damages are reported during severe cases of SARS-CoV-2. These findings may help us understand the new functions and mechanisms of NPC1L1 and could contribute to the identification of new antiviral targets.
Collapse
Affiliation(s)
- James Elste
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (N.C.); (M.S.-M.)
| | - Nicole Cast
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (N.C.); (M.S.-M.)
| | - Shalini Udawatte
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA;
| | - Kabita Adhikari
- Department of Microbiology & Immunology, University of Reno, Reno, NV 89557, USA; (K.A.); (S.H.P.); (S.C.V.)
| | - Shannon Harger Payen
- Department of Microbiology & Immunology, University of Reno, Reno, NV 89557, USA; (K.A.); (S.H.P.); (S.C.V.)
| | - Subhash C. Verma
- Department of Microbiology & Immunology, University of Reno, Reno, NV 89557, USA; (K.A.); (S.H.P.); (S.C.V.)
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (N.C.); (M.S.-M.)
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (N.C.); (M.S.-M.)
| |
Collapse
|
20
|
Lu A, Ebright B, Naik A, Tan HL, Cohen NA, Bouteiller JMC, Lazzi G, Louie SG, Humayun MS, Asante I. Hydroxypropyl-Beta Cyclodextrin Barrier Prevents Respiratory Viral Infections: A Preclinical Study. Int J Mol Sci 2024; 25:2061. [PMID: 38396738 PMCID: PMC10888609 DOI: 10.3390/ijms25042061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The emergence and mutation of pathogenic viruses have been occurring at an unprecedented rate in recent decades. The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global public health crisis due to extensive viral transmission. In situ RNA mapping has revealed angiotensin-converting enzyme 2 (ACE2) expression to be highest in the nose and lower in the lung, pointing to nasal susceptibility as a predominant route for infection and the cause of subsequent pulmonary effects. By blocking viral attachment and entry at the nasal airway using a cyclodextrin-based formulation, a preventative therapy can be developed to reduce viral infection at the site of entry. Here, we assess the safety and antiviral efficacy of cyclodextrin-based formulations. From these studies, hydroxypropyl beta-cyclodextrin (HPBCD) and hydroxypropyl gamma-cyclodextrin (HPGCD) were then further evaluated for antiviral effects using SARS-CoV-2 pseudotypes. Efficacy findings were confirmed with SARS-CoV-2 Delta variant infection of Calu-3 cells and using a K18-hACE2 murine model. Intranasal pre-treatment with HPBCD-based formulations reduced viral load and inflammatory signaling in the lung. In vitro efficacy studies were further conducted using lentiviruses, murine hepatitis virus (MHV), and influenza A virus subtype H1N1. These findings suggest HPBCD may be used as an agnostic barrier against transmissible pathogens, including but not limited to SARS-CoV-2.
Collapse
Affiliation(s)
- Angela Lu
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Brandon Ebright
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Aditya Naik
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Hui L. Tan
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.T.); (N.A.C.)
| | - Noam A. Cohen
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.T.); (N.A.C.)
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Jean-Marie C. Bouteiller
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
| | - Gianluca Lazzi
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan G. Louie
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
| | - Mark S. Humayun
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90007, USA; (J.-M.C.B.); (G.L.); (M.S.H.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Isaac Asante
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (A.L.); (B.E.); (A.N.); (S.G.L.)
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
21
|
Li Y, Xiong Z, Jiang WL, Tian D, Zhou H, Hou Q, Xiao L, Zhang M, Huang L, Zhong L, Zhou L, Zeng GG. An innovative viewpoint on the existing and prospectiveness of SR-B1. Curr Probl Cardiol 2024; 49:102226. [PMID: 38040207 DOI: 10.1016/j.cpcardiol.2023.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Scavenger Receptor Class B Type 1 (SR-B1), a receptor protein expressed on the cell membrane, plays a crucial role in the metabolism and transport of cholesterol and other lipids, contributing significantly to the homeostasis of lipid levels within the body. Bibliometric analysis involves the application of mathematical and statistical methods to quantitatively analyze different types of documents. It involves the analysis of structural and temporal trends in scholarly articles, coupled with the identification of subject emphasis and variations. Through a bibliometric analysis, this study examines the historical background, current research trends, and future directions in the exploration of SR-B1. By offering insights into the research status and development of SR-B1, this paper aims to assist researchers in identifying novel pathways and areas of investigation in this field of study. Following the screening process, it can be concluded that research on SR-B1 has consistently remained a topic of significant interest over the past 17 years. Interestingly, SR-B1 has recently garnered attention in areas beyond its traditional research focus, including the field of cancer. The primary objective of this review is to provide a concise and accessible overview of the development process of SR-B1 that can help readers who are not well-versed in SR-B1 research quickly grasp its key aspects. Furthermore, this review aims to offer insights and suggestions to researchers regarding potential future research directions and areas of emphasis relating to SR-B1.
Collapse
Affiliation(s)
- Yonggui Li
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhijie Xiong
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Dandan Tian
- School of Nursing, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Haiyou Zhou
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Qin Hou
- Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Liang Xiao
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Mengjie Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Liubin Huang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Lianping Zhong
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Gastroenterology, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Zhou
- Department of Pathology, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing, China
| | - Guang-Gui Zeng
- The Second Affiliated Hospital, Department of Digestive Internal Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
22
|
Song MS, Lee DK, Lee CY, Park SC, Yang J. Host Subcellular Organelles: Targets of Viral Manipulation. Int J Mol Sci 2024; 25:1638. [PMID: 38338917 PMCID: PMC10855258 DOI: 10.3390/ijms25031638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Viruses have evolved sophisticated mechanisms to manipulate host cell processes and utilize intracellular organelles to facilitate their replication. These complex interactions between viruses and cellular organelles allow them to hijack the cellular machinery and impair homeostasis. Moreover, viral infection alters the cell membrane's structure and composition and induces vesicle formation to facilitate intracellular trafficking of viral components. However, the research focus has predominantly been on the immune response elicited by viruses, often overlooking the significant alterations that viruses induce in cellular organelles. Gaining a deeper understanding of these virus-induced cellular changes is crucial for elucidating the full life cycle of viruses and developing potent antiviral therapies. Exploring virus-induced cellular changes could substantially improve our understanding of viral infection mechanisms.
Collapse
Affiliation(s)
- Min Seok Song
- Department of Physiology and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Dong-Kun Lee
- Department of Physiology and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sang-Cheol Park
- Artificial Intelligence and Robotics Laboratory, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
23
|
Mlinac-Jerkovic K, Kalanj-Bognar S, Heffer M, Blažetić S. Methodological Pitfalls of Investigating Lipid Rafts in the Brain: What Are We Still Missing? Biomolecules 2024; 14:156. [PMID: 38397393 PMCID: PMC10886647 DOI: 10.3390/biom14020156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The purpose of this review is to succinctly examine the methodologies used in lipid raft research in the brain and to highlight the drawbacks of some investigative approaches. Lipid rafts are biochemically and biophysically different from the bulk membrane. A specific lipid environment within membrane domains provides a harbor for distinct raftophilic proteins, all of which in concert create a specialized platform orchestrating various cellular processes. Studying lipid rafts has proved to be arduous due to their elusive nature, mobility, and constant dynamic reorganization to meet the cellular needs. Studying neuronal lipid rafts is particularly cumbersome due to the immensely complex regional molecular architecture of the central nervous system. Biochemical fractionation, performed with or without detergents, is still the most widely used method to isolate lipid rafts. However, the differences in solubilization when various detergents are used has exposed a dire need to find more reliable methods to study particular rafts. Biochemical methods need to be complemented with other approaches such as live-cell microscopy, imaging mass spectrometry, and the development of specific non-invasive fluorescent probes to obtain a more complete image of raft dynamics and to study the spatio-temporal expression of rafts in live cells.
Collapse
Affiliation(s)
| | | | - Marija Heffer
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
24
|
Yagüe Relimpio A, Fink A, Bui DT, Fabritz S, Schröter M, Ruggieri A, Platzman I, Spatz JP. Bottom-up Assembled Synthetic SARS-CoV-2 Miniviruses Reveal Lipid Membrane Affinity of Omicron Variant Spike Glycoprotein. ACS NANO 2023; 17:23913-23923. [PMID: 37976416 PMCID: PMC10722588 DOI: 10.1021/acsnano.3c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The ongoing COVID-19 pandemic has been brought on by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spike glycoprotein (S), which decorates the viral envelope forming a corona, is responsible for the binding to the angiotensin-converting enzyme 2 (ACE2) receptor and initiating the infection. In comparison to previous variants, Omicron S presents additional binding sites as well as a more positive surface charge. These changes hint at additional molecular targets for interactions between virus and cell, such as the cell membrane or proteoglycans on the cell surface. Herein, bottom-up assembled synthetic SARS-CoV-2 miniviruses (MiniVs), with a lipid composition similar to that of infectious particles, are implemented to study and compare the binding properties of Omicron and Alpha variants. Toward this end, a systematic functional screening is performed to study the binding ability of Omicron and Alpha S proteins to ACE2-functionalized and nonfunctionalized planar supported lipid bilayers. Moreover, giant unilamellar vesicles are used as a cell membrane model to perform competitive interaction assays of the two variants. Finally, two cell lines with and without presentation of the ACE2 receptor are used to confirm the binding properties of the Omicron and Alpha MiniVs to the cellular membrane. Altogether, the results reveal a significantly higher affinity of Omicron S toward both the lipid membrane and ACE2 receptor. The research presented here highlights the advantages of creating and using bottom-up assembled SARS-CoV-2 viruses to understand the impact of changes in the affinity of S for ACE2 in infection studies.
Collapse
Affiliation(s)
- Ana Yagüe Relimpio
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Andreas Fink
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Duc Thien Bui
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Sebastian Fabritz
- Department
for Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Martin Schröter
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Alessia Ruggieri
- Heidelberg
University, Medical Faculty, Centre for Integrative Infectious Disease Research (CIID), Department
of Infectious Diseases, Molecular Virology, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Ilia Platzman
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Max
Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, U.K.
| | - Joachim P. Spatz
- Department
for Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Max
Planck-Bristol Center for Minimal Biology, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, U.K.
- Max Planck
School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Dasgupta A, Gangai S, Narayan R, Kapoor S. Mapping the Lipid Signatures in COVID-19 Infection: Diagnostic and Therapeutic Solutions. J Med Chem 2023; 66:14411-14433. [PMID: 37899546 DOI: 10.1021/acs.jmedchem.3c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The COVID-19 pandemic ignited research centered around the identification of robust biomarkers and therapeutic targets. SARS-CoV-2, the virus responsible, hijacks the metabolic machinery of the host cells. It relies on lipids and lipoproteins of host cells for entry, trafficking, immune evasion, viral replication, and exocytosis. The infection causes host cell lipid metabolic remodelling. Targeting lipid-based processes is thus a promising strategy for countering COVID-19. Here, we review the role of lipids in the different steps of the SARS-CoV-2 pathogenesis and identify lipid-centric targetable avenues. We discuss lipidome changes in infected patients and their relevance as potential clinical diagnostic or prognostic biomarkers. We summarize the emerging direct and indirect therapeutic approaches for targeting COVID-19 using lipid-inspired approaches. Given that viral protein-targeted therapies may become less effective due to mutations in emerging SARS-CoV-2 variants, lipid-inspired interventions may provide additional and perhaps better means of combating this and future pandemics.
Collapse
Affiliation(s)
- Aishi Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shon Gangai
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
- School of Interdisciplinary Life Sciences (SILS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
26
|
Santilli F, Fabrizi J, Martellucci S, Santacroce C, Iorio E, Pisanu ME, Chirico M, Lancia L, Pulcini F, Manganelli V, Sorice M, Delle Monache S, Mattei V. Lipid rafts mediate multilineage differentiation of human dental pulp-derived stem cells (DPSCs). Front Cell Dev Biol 2023; 11:1274462. [PMID: 38020931 PMCID: PMC10665896 DOI: 10.3389/fcell.2023.1274462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Cell outer membranes contain glycosphingolipids and protein receptors, which are integrated into glycoprotein domains, known as lipid rafts, which are involved in a variety of cellular processes, including receptor-mediated signal transduction and cellular differentiation process. In this study, we analyzed the lipidic composition of human Dental Pulp-Derived Stem Cells (DPSCs), and the role of lipid rafts during the multilineage differentiation process. The relative quantification of lipid metabolites in the organic fraction of DPSCs, performed by Nuclear Magnetic Resonance (NMR) spectroscopy, showed that mono-unsaturated fatty acids (MUFAs) were the most representative species in the total pool of acyl chains, compared to polyunsatured fatty acids (PUFAs). In addition, the stimulation of DPSCs with different culture media induces a multilineage differentiation process, determining changes in the gangliosides pattern. To understand the functional role of lipid rafts during multilineage differentiation, DPSCs were pretreated with a typical lipid raft affecting agent (MβCD). Subsequently, DPSCs were inducted to differentiate into osteoblast, chondroblast and adipoblast cells with specific media. We observed that raft-affecting agent MβCD prevented AKT activation and the expression of lineage-specific mRNA such as OSX, PPARγ2, and SOX9 during multilineage differentiation. Moreover, this compound significantly prevented the tri-lineage differentiation induced by specific stimuli, indicating that lipid raft integrity is essential for DPSCs differentiation. These results suggest that lipid rafts alteration may affect the signaling pathway activated, preventing multilineage differentiation.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Egidio Iorio
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Elena Pisanu
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Mattea Chirico
- High Resolution NMR Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Loreto Lancia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vincenzo Mattei
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Link Campus University, Rome, Italy
| |
Collapse
|
27
|
Chen F, Matsuda A, Budinger GRS, Sporn PHS, Casalino-Matsuda SM. Hypercapnia increases ACE2 expression and pseudo-SARS-CoV-2 entry in bronchial epithelial cells by augmenting cellular cholesterol. Front Immunol 2023; 14:1251120. [PMID: 37901225 PMCID: PMC10600497 DOI: 10.3389/fimmu.2023.1251120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Patients with chronic lung disease, obesity, and other co-morbid conditions are at increased risk of severe illness and death when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hypercapnia, the elevation of CO2 in blood and tissue, commonly occurs in patients with severe acute and chronic lung disease, including those with pulmonary infections, and is also associated with high mortality risk. We previously reported that hypercapnia increases viral replication and mortality of influenza A virus infection in mice. We have also shown that culture in elevated CO2 upregulates expression of cholesterol synthesis genes in primary human bronchial epithelial cells. Interestingly, factors that increase the cholesterol content of lipid rafts and lipid droplets, platforms for viral entry and assembly, enhance SARS-CoV-2 infection. In the current study, we investigated the effects of hypercapnia on ACE2 expression and entry of SARS-CoV-2 pseudovirus (p-SARS-CoV-2) into airway epithelial cells. We found that hypercapnia increased ACE2 expression and p-SARS-CoV-2 uptake by airway epithelium in mice, and in cultured VERO and human bronchial epithelial cells. Hypercapnia also increased total cellular and lipid raft-associated cholesterol in epithelial cells. Moreover, reducing cholesterol synthesis with inhibitors of sterol regulatory element binding protein 2 (SREBP2) or statins, and depletion of cellular cholesterol, each blocked the hypercapnia-induced increases in ACE2 expression and p-SARS-CoV-2 entry into epithelial cells. Cigarette smoke extract (CSE) also increased ACE2 expression, p-SARS-CoV-2 entry and cholesterol accumulation in epithelial cells, an effect not additive to that of hypercapnia, but also inhibited by statins. These findings reveal a mechanism that may account, in part, for poor clinical outcomes of SARS-CoV-2 infection in patients with advanced lung disease and hypercapnia, and in those who smoke cigarettes. Further, our results suggest the possibility that cholesterol-lowering therapies may be of particular benefit in patients with hypercapnia when exposed to or infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Fei Chen
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aiko Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - G. R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Research Service, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Peter H. S. Sporn
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Research Service, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - S. Marina Casalino-Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
28
|
Chen X, Yang JB, Cao HH, Fang XC, Liu SH, Zou LF, Yu JH, Zuo JP, Zhao W, Lu ZB, Liu JS, Yu LZ. Liang-Ge-San inhibits dengue virus serotype 2 infection by reducing caveolin1-induced cytoplasmic heat shock protein 70 translocation into the plasma membrane. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154977. [PMID: 37506573 DOI: 10.1016/j.phymed.2023.154977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Dengue virus (DENV) is a major public health threat. However, there are no specific therapeutic drugs for DENV. Many Chinese heat-cleaning formulas, such as Liang-Ge-San (LGS), have been frequently used in the virus-induced diseases. The antiviral effect of LGS has not been reported yet. PURPOSE In this study, the effect of LGS on the inhibition of dengue virus serotype 2 (DENV-2) was investigated and the relevant mechanism was explored. METHODS High-performance liquid chromatography was applied to analyze the chemical characterization of LGS. The in vitro antiviral activities of LGS against DENV-2 were evaluated by time-of-drug-addition assay. The binding of heat shock protein 70 (Hsp70) and envelope (E) protein or caveolin1 (Cav1) were analyzed by immunofluorescence and immunoprecipitation assays. Then the role of Cav1 in the anti-DENV-2 effects of LGS was further examined. DENV-2 infected Institute of Cancer Research suckling mice (n = 10) and AG129 mice (n = 8) were used to examine the protective effects of LGS. RESULTS It was found that geniposide, liquiritin, forsythenside A, forsythin, baicalin, baicalein, rhein, and emodin maybe the characteristic components of LGS. LGS inhibited the early stage of DENV-2 infection, decreased the expression levels of viral E and non-structural protein 1 (NS1) proteins. LGS also reduced E protein and Hsp70 binding and attenuated the translocation of Hsp70 from cytoplasm to the cell membrane. Moreover, LGS decreased the binding of Hsp70 to Cav1. Further study showed that the overexpression of Cav1 reversed LGS-mediated E protein and Hsp70 inhibition in the plasma membrane. In the in vivo study, LGS was highly effective in prolonging the survival time, reducing viral loads. CONCLUSION This work demonstrates for the first time that LGS exerts anti-DENV-2 activity in vitro and in vivo. LGS decreases DENV-2-stimulated cytoplasmic Hsp70 translocation into the plasma membrane by Cav1 inhibition, thereby inhibiting the early stage of virus infection. These findings indicate that LGS may be a candidate for the treatment of DENV.
Collapse
Affiliation(s)
- Xi Chen
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Jia-Bin Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Hui-Hui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Xiao-Chuan Fang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Shan-Hong Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Li-Fang Zou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Jian-Hai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Jian-Ping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Zi-Bin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China.
| | - Jun-Shan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China, 510280, PR China.
| | - Lin-Zhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
29
|
Fenizia S, Gaggini M, Vassalle C. The Sphingolipid-Signaling Pathway as a Modulator of Infection by SARS-CoV-2. Curr Issues Mol Biol 2023; 45:7956-7973. [PMID: 37886946 PMCID: PMC10605018 DOI: 10.3390/cimb45100503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Ceramides and other related sphingolipids, important cellular components linked to metabolic homeostasis and cardiometabolic diseases, have been found to be involved in different steps of the SARS-CoV-2 life cycle. Hence, changes in their physiological levels are identified as predictors of COVID-19 severity and prognosis, as well as potential therapeutic targets. In this review, an overview of the SARS-CoV-2 life cycle is given, followed by a description of the sphingolipid metabolism and its role in viral infection, with a particular focus on those steps required to finalize the viral life cycle. Furthermore, the use and development of pharmaceutical strategies to target sphingolipids to prevent and treat severe and long-term symptoms of infectious diseases, particularly COVID-19, are reviewed herein. Finally, research perspectives and current challenges in this research field are highlighted. Although many aspects of sphingolipid metabolism are not fully known, this review aims to highlight how the discovery and use of molecules targeting sphingolipids with reliable and selective properties may offer new therapeutic alternatives to infectious and other diseases, including COVID-19.
Collapse
Affiliation(s)
- Simona Fenizia
- Istituto di Fisiologia Clinica, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Melania Gaggini
- Fondazione CNR-Regione Toscana G. Monasterio, Via Moruzzi 1, 56124 Pisa, Italy
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G. Monasterio, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
30
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
31
|
Matveeva M, Lefebvre M, Chahinian H, Yahi N, Fantini J. Host Membranes as Drivers of Virus Evolution. Viruses 2023; 15:1854. [PMID: 37766261 PMCID: PMC10535233 DOI: 10.3390/v15091854] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The molecular mechanisms controlling the adaptation of viruses to host cells are generally poorly documented. An essential issue to resolve is whether host membranes, and especially lipid rafts, which are usually considered passive gateways for many enveloped viruses, also encode informational guidelines that could determine virus evolution. Due to their enrichment in gangliosides which confer an electronegative surface potential, lipid rafts impose a first control level favoring the selection of viruses with enhanced cationic areas, as illustrated by SARS-CoV-2 variants. Ganglioside clusters attract viral particles in a dynamic electrostatic funnel, the more cationic viruses of a viral population winning the race. However, electrostatic forces account for only a small part of the energy of raft-virus interaction, which depends mainly on the ability of viruses to form a network of hydrogen bonds with raft gangliosides. This fine tuning of virus-ganglioside interactions, which is essential to stabilize the virus on the host membrane, generates a second level of selection pressure driven by a typical induced-fit mechanism. Gangliosides play an active role in this process, wrapping around the virus spikes through a dynamic quicksand-like mechanism. Viruses are thus in an endless race for access to lipid rafts, and they are bound to evolve perpetually, combining speed (electrostatic potential) and precision (fine tuning of amino acids) under the selective pressure of the immune system. Deciphering the host membrane guidelines controlling virus evolution mechanisms may open new avenues for the design of innovative antivirals.
Collapse
Affiliation(s)
| | | | | | | | - Jacques Fantini
- Department of Biology, Faculty of Medicine, University of Aix-Marseille, INSERM UMR_S 1072, 13015 Marseille, France; (M.M.); (M.L.); (H.C.); (N.Y.)
| |
Collapse
|
32
|
Micek A, Bolesławska I, Jagielski P, Konopka K, Waśkiewicz A, Witkowska AM, Przysławski J, Godos J. Association of dietary intake of polyphenols, lignans, and phytosterols with immune-stimulating microbiota and COVID-19 risk in a group of Polish men and women. Front Nutr 2023; 10:1241016. [PMID: 37599696 PMCID: PMC10436747 DOI: 10.3389/fnut.2023.1241016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Objectives Devastating consequences of COVID-19 disease enhanced the role of promoting prevention-focused practices. Among targeted efforts, diet is regarded as one of the potential factors which can affect immune function and optimal nutrition is postulated as the method of augmentation of people's viral resistance. As epidemiological evidence is scarce, the present study aimed to explore the association between dietary intake of total polyphenols, lignans and plant sterols and the abundance of immunomodulatory gut microbiota such as Enterococcus spp. and Escherichia coli and the risk of developing COVID-19 disease. Methods Demographic data, dietary habits, physical activity as well as the composition of body and gut microbiota were analyzed in a sample of 95 young healthy individuals. Dietary polyphenol, lignan and plant sterol intakes have been retrieved based on the amount of food consumed by the participants, the phytochemical content was assessed in laboratory analysis and using available databases. Results For all investigated polyphenols and phytosterols, except campesterol, every unit increase in the tertile of intake category was associated with a decrease in the odds of contracting COVID-19. The risk reduction ranged from several dozen percent to 70 %, depending on the individual plant-based chemical, and after controlling for basic covariates it was statistically significant for secoisolariciresinol (OR = 0.28, 95% CI: 0.11-0.61), total phytosterols (OR = 0.47, 95% CI: 0.22-0.95) and for stigmasterols (OR = 0.34, 95% CI: 0.14-0.72). We found an inverse association between increased β-sitosterol intake and phytosterols in total and the occurrence of Escherichia coli in stool samples outside reference values, with 72% (OR = 0.28, 95% CI: 0.08-0.86) and 66% (OR = 0.34, 95% CI: 0.10-1.08) reduced odds of abnormal level of bacteria for the highest compared with the lowest tertile of phytochemical consumption. Additionally, there was a trend of more frequent presence of Enterococcus spp. at relevant level in people with a higher intake of lariciresinol. Conclusion The beneficial effects of polyphenols and phytosterols should be emphasized and these plant-based compounds should be regarded in the context of their utility as antiviral agents preventing influenza-type infections.
Collapse
Affiliation(s)
- Agnieszka Micek
- Statistical Laboratory, Jagiellonian University Medical College, Cracow, Poland
| | - Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, Poznań, Poland
| | - Paweł Jagielski
- Department of Nutrition and Drug Research, Faculty of Health Sciences, Institute of Public Health, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil Konopka
- Department of Oncology, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Waśkiewicz
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Warszawa, Poland
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Białystok, Poland
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, Poznań, Poland
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
33
|
Ren M, Ma Z, Zhao L, Wang Y, An H, Sun F. Self-Association of ACE-2 with Different RBD Amounts: A Dynamic Simulation Perspective on SARS-CoV-2 Infection. J Chem Inf Model 2023; 63:4423-4432. [PMID: 37382878 DOI: 10.1021/acs.jcim.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Transmissibility of SARS-CoV-2 initially relies on its trimeric Spike-RBDs to tether the ACE-2 on host cells, and enhanced self-association of ACE-2 engaged with Spike facilitates the viral infection. Two primary packing modes of Spike-ACE2 heteroproteins exist potentially due to discrepant amounts of RBDs loading on ACE-2, but the resultant self-association difference is inherently unclear. We used extensive coarse-grained dynamic simulations to characterize the self-association efficiency, the conformation relevance, and the molecular mechanism of ACE-2 with different RBD amounts. It was revealed that the ACE-2 hanging two/full RBDs (Mode-A) rapidly dimerized into the heteroprotein complex in a compact "linear" conformation, while the bare ACE-2 showed weakened self-association and a protein complex. The RBD-tethered ectodomains of ACE-2 presented a more upright conformation relative to the membrane, and the intermolecular ectodomains were predominantly packed by the neck domains, which was obligated to the rapid protein self-association in a compact pattern. Noted is the fact that the ACE-2 tethered by a single RBD (Mode-B) retained considerable self-association efficiency and clustering capability, which unravels the interrelation of ACE-2 colocalization and protein cross-linkage. The molecular perspectives in this study expound the self-association potency of ACE-2 with different RBD amounts and the viral activity implications, which can greatly enhance our comprehension of SARS-CoV-2 infection details.
Collapse
Affiliation(s)
- Meina Ren
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ziyi Ma
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Lina Zhao
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yanjiao Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fude Sun
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
34
|
Uppal S, Postnikova O, Villasmil R, Rogozin IB, Bocharov AV, Eggerman TL, Poliakov E, Redmond TM. Low-Density Lipoprotein Receptor (LDLR) Is Involved in Internalization of Lentiviral Particles Pseudotyped with SARS-CoV-2 Spike Protein in Ocular Cells. Int J Mol Sci 2023; 24:11860. [PMID: 37511618 PMCID: PMC10380832 DOI: 10.3390/ijms241411860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Here, we present evidence that caveolae-mediated endocytosis using LDLR is the pathway for SARS-CoV-2 virus internalization in the ocular cell line ARPE-19. Firstly, we found that, while Angiotensin-converting enzyme 2 (ACE2) is expressed in these cells, blocking ACE2 by antibody treatment did not prevent infection by SARS-CoV-2 spike pseudovirions, nor did antibody blockade of extracellular vimentin and other cholesterol-rich lipid raft proteins. Next, we implicated the role of cholesterol homeostasis in infection by showing that incubating cells with different cyclodextrins and oxysterol 25-hydroxycholesterol (25-HC) inhibits pseudovirion infection of ARPE-19. However, the effect of 25-HC is likely not via cholesterol biosynthesis, as incubation with lovastatin did not appreciably affect infection. Additionally, is it not likely to be an agonistic effect of 25-HC on LXR receptors, as the LXR agonist GW3965 had no significant effect on infection of ARPE-19 cells at up to 5 μM GW3965. We probed the role of endocytic pathways but determined that clathrin-dependent and flotillin-dependent rafts were not involved. Furthermore, 20 µM chlorpromazine, an inhibitor of clathrin-mediated endocytosis (CME), also had little effect. In contrast, anti-dynamin I/II antibodies blocked the entry of SARS-CoV-2 spike pseudovirions, as did dynasore, a noncompetitive inhibitor of dynamin GTPase activity. Additionally, anti-caveolin-1 antibodies significantly blocked spike pseudotyped lentiviral infection of ARPE-19. However, nystatin, a classic inhibitor of caveolae-dependent endocytosis, did not affect infection while indomethacin inhibited only at 10 µM at the 48 h time point. Finally, we found that anti-LDLR antibodies block pseudovirion infection to a similar degree as anti-caveolin-1 and anti-dynamin I/II antibodies, while transfection with LDLR-specific siRNA led to a decrease in spike pseudotyped lentiviral infection, compared to scrambled control siRNAs. Thus, we conclude that SARS-CoV-2 spike pseudovirion infection in ARPE-19 cells is a dynamin-dependent process that is primarily mediated by LDLR.
Collapse
Affiliation(s)
- Sheetal Uppal
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olga Postnikova
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael Villasmil
- Flow Cytometry Core Facility, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | - Thomas L Eggerman
- Clinical Center, National Institutes of Health, Bethesda, MD 20894, USA
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Chen P, Wu M, He Y, Jiang B, He ML. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduct Target Ther 2023; 8:237. [PMID: 37286535 DOI: 10.1038/s41392-023-01510-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty acids, 2-DG, and metformin.
Collapse
Affiliation(s)
- Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Binghua Jiang
- Cell Signaling and Proteomic Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China.
| |
Collapse
|
36
|
Sui B, Chen J, Ge D, Liang F, Wang H. Assembly Characterization of Human Equilibrium Nucleoside Transporter 1 (hENT1) by Inhibitor Probe-Based dSTORM Imaging. Anal Chem 2023. [PMID: 37276019 DOI: 10.1021/acs.analchem.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nucleoside transporters (NTs) play an important role in the metabolism of nucleoside substances and the efficacy of nucleoside drugs. Its spatial information related to biofunctions at the single-molecule level remains unclear, owing to the limitation of the existing labeling methods and traditional imaging methods. Therefore, we synthesize the inhibitor-based fluorescent probe SAENTA-Cy5 and apply direct stochastic optical reconstruction microscopy (dSTORM) to conduct refined observation of human equilibrative nucleoside transporter 1 (hENT1), the most important and famous member of NTs. We first demonstrate the labeling specificity and superiority of SAENTA-Cy5 to the antibody probe. Then, we found different assembly patterns of hENT1 on the apical and basal membranes, which are further investigated to be caused by varying associations of membrane carbohydrates, membrane classical functional domains (lipid rafts), and associated membrane proteins (EpCAM). Our work provides an efficient method for labeling hENT1, which contributes to realize fine observation of NTs. The findings on the assembly features and potential assembly mechanism of hENT1 promote a better understanding of its biofunction, which facilitates further investigations on how NTs work in the metabolism of nucleoside and nucleoside analogues.
Collapse
Affiliation(s)
- Binglin Sui
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Junling Chen
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Dian Ge
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Feng Liang
- Improve-WUST Joint Laboratory of Advanced Technology for Point-of-Care Testing and Precision Medicine, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Street, Wuhan, Hubei 430081, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, 5625 Renmin Street, Changchun, Jilin 130022, China
| |
Collapse
|
37
|
Alhallak I, Paydak H, Mehta JL. Prior Statin vs In-Hospital Statin Usage in Severe COVID-19: Review and Meta-Analysis. Curr Probl Cardiol 2023:101810. [PMID: 37211301 PMCID: PMC10198742 DOI: 10.1016/j.cpcardiol.2023.101810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Studies have shown that statins can decrease COVID-19 mortality in hospitalized patients. This paper evaluates these studies and reviews the possible mechanism of how statins modulate COVID-19 severity. Meta-analysis of 31 retrospective studies demonstrated a reduction in mortality rate among statin users (OR 0.69, 95% CI 0.56-0.86, p =0.0008) (HR 0.83, 95% CI 0.72-0.95, p =0.0078). Meta-analysis of 8 randomized control studies demonstrated a nonsignificant reduction in mortality (OR 0.90, 95% CI 0.69-1.18, p =0.461), including four studies with medications other than statins, and four studies with only statins (OR 0.88, 95% CI 95% CI 0.64-1.21, p =0.423). Prolonged statin usage decreases the extracellular localization of ACE2, along with statins' immunomodulating effects and reduction of oxidative stress, decreases COVID-19 mortality. Hospitalized patients with COVID-19 should continue statin treatment if previously prescribed, and patients should not be started on statins, as they do not seem to provide any mortality benefit.
Collapse
Affiliation(s)
- Iad Alhallak
- Department of Cardiology, University of Arkansas for Medical Sciences and the Veterans Affairs Medical Center, Little Rock, AR 72205, USA
| | - Hakan Paydak
- Department of Cardiology, University of Arkansas for Medical Sciences and the Veterans Affairs Medical Center, Little Rock, AR 72205, USA
| | - Jawahar L Mehta
- Department of Cardiology, University of Arkansas for Medical Sciences and the Veterans Affairs Medical Center, Little Rock, AR 72205, USA.
| |
Collapse
|
38
|
Abstract
The formation of membrane vesicles is a common feature in all eukaryotes. Lipid rafts are the best-studied example of membrane domains for both eukaryotes and prokaryotes, and their existence also is suggested in Archaea membranes. Lipid rafts are involved in the formation of transport vesicles, endocytic vesicles, exocytic vesicles, synaptic vesicles and extracellular vesicles, as well as enveloped viruses. Two mechanisms of how rafts are involved in vesicle formation have been proposed: first, that raft proteins and/or lipids located in lipid rafts associate with coat proteins that form a budding vesicle, and second, vesicle budding is triggered by enzymatic generation of cone-shaped ceramides and inverted cone-shaped lyso-phospholipids. In both cases, induction of curvature is also facilitated by the relaxation of tension in the raft domain. In this Review, we discuss the role of raft-derived vesicles in several intracellular trafficking pathways. We also highlight their role in different pathways of endocytosis, and in the formation of intraluminal vesicles (ILVs) through budding inwards from the multivesicular body (MVB) membrane, because rafts inside MVB membranes are likely to be involved in loading RNA into ILVs. Finally, we discuss the association of glycoproteins with rafts via the glycocalyx.
Collapse
Affiliation(s)
- Karolina Sapoń
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Rafał Mańka
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Teresa Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| | - Tadeusz Janas
- Institute of Biology, University of Opole, Kominka 6, 45-032 Opole, Poland
| |
Collapse
|
39
|
Wing PAC, Schmidt NM, Peters R, Erdmann M, Brown R, Wang H, Swadling L, COVIDsortium Investigators, Newman J, Thakur N, Shionoya K, Morgan SB, Hinks TSC, Watashi K, Bailey D, Hansen SB, Davidson AD, Maini MK, McKeating JA. An ACAT inhibitor suppresses SARS-CoV-2 replication and boosts antiviral T cell activity. PLoS Pathog 2023; 19:e1011323. [PMID: 37134108 PMCID: PMC10202285 DOI: 10.1371/journal.ppat.1011323] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/22/2023] [Accepted: 03/27/2023] [Indexed: 05/04/2023] Open
Abstract
The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 pseudoparticle infection and disrupts the association of ACE2 and GM1 lipid rafts on the cell membrane, perturbing viral attachment. Imaging SARS-CoV-2 RNAs at the single cell level using a viral replicon model identifies the capacity of Avasimibe to limit the establishment of replication complexes required for RNA replication. Genetic studies to transiently silence or overexpress ACAT isoforms confirmed a role for ACAT in SARS-CoV-2 infection. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled during the acute phase of infection. Thus, re-purposing of ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects. Trial registration: NCT04318314.
Collapse
Affiliation(s)
- Peter A. C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nathalie M. Schmidt
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | - Rory Peters
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maximilian Erdmann
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Rachel Brown
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Hao Wang
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, San Diego, California, United States of America
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, San Diego, California, United States of America
| | - Leo Swadling
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | | | | | | | - Kaho Shionoya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Research Centre for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sophie B. Morgan
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy SC Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Research Centre for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Scott B. Hansen
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Mala K. Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | - Jane A. McKeating
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Alboni S, Secco V, Papotti B, Vilella A, Adorni MP, Zimetti F, Schaeffer L, Tascedda F, Zoli M, Leblanc P, Villa E. Hydroxypropyl-β-Cyclodextrin Depletes Membrane Cholesterol and Inhibits SARS-CoV-2 Entry into HEK293T-ACE hi Cells. Pathogens 2023; 12:pathogens12050647. [PMID: 37242317 DOI: 10.3390/pathogens12050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Vaccination has drastically decreased mortality due to coronavirus disease 19 (COVID-19), but not the rate of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Alternative strategies such as inhibition of virus entry by interference with angiotensin-I-converting enzyme 2 (ACE2) receptors could be warranted. Cyclodextrins (CDs) are cyclic oligosaccharides that are able to deplete cholesterol from membrane lipid rafts, causing ACE2 receptors to relocate to areas devoid of lipid rafts. To explore the possibility of reducing SARS-CoV-2 entry, we tested hydroxypropyl-β-cyclodextrin (HPβCD) in a HEK293T-ACE2hi cell line stably overexpressing human ACE2 and Spike-pseudotyped SARS-CoV-2 lentiviral particles. We showed that HPβCD is not toxic to the cells at concentrations up to 5 mM, and that this concentration had no significant effect on cell cycle parameters in any experimental condition tested. Exposure of HEK293T-ACEhi cells to concentrations of HPβCD starting from 2.5 mM to 10 mM showed a concentration-dependent reduction of approximately 50% of the membrane cholesterol content. In addition, incubation of HEK293T-ACEhi cells with HIV-S-CoV-2 pseudotyped particles in the presence of increasing concentrations of HPβCD (from 0.1 to 10 mM) displayed a concentration-dependent effect on SARS-CoV-2 entry efficiency. Significant effects were detected at concentrations at least one order of magnitude lower than the lowest concentration showing toxic effects. These data indicate that HPβCD is a candidate for use as a SARS-CoV-2 prophylactic agent.
Collapse
Affiliation(s)
- Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Antonietta Vilella
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Laurent Schaeffer
- Institut NeuroMyoGène INMG-PGNM Pathophysiologie & Génétique du Neurone et du Muscle, UMR5261, Inserm U1315, 69008 Lyon, France
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34148 Trieste, Italy
| | - Michele Zoli
- Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Pascal Leblanc
- Institut NeuroMyoGène INMG-PGNM Pathophysiologie & Génétique du Neurone et du Muscle, UMR5261, Inserm U1315, 69008 Lyon, France
| | - Erica Villa
- CHIMOMO Department, University of Modena and Reggio Emilia, and Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| |
Collapse
|
41
|
Milusev A, Despont A, Shaw J, Rieben R, Sorvillo N. Inflammatory stimuli induce shedding of heparan sulfate from arterial but not venous porcine endothelial cells leading to differential proinflammatory and procoagulant responses. Sci Rep 2023; 13:4483. [PMID: 36934164 PMCID: PMC10024017 DOI: 10.1038/s41598-023-31396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/10/2023] [Indexed: 03/20/2023] Open
Abstract
Endothelial dysfunction is an early event of vascular injury defined by a proinflammatory and procoagulant endothelial cell (EC) phenotype. Although endothelial glycocalyx disruption is associated with vascular damage, how various inflammatory stimuli affect the glycocalyx and whether arterial and venous cells respond differently is unknown. Using a 3D round-channel microfluidic system we investigated the endothelial glycocalyx, particularly heparan sulfate (HS), on porcine arterial and venous ECs. Heparan sulfate (HS)/glycocalyx expression was observed already under static conditions on venous ECs while it was flow-dependent on arterial cells. Furthermore, analysis of HS/glycocalyx response after stimulation with inflammatory cues revealed that venous, but not arterial ECs, are resistant to HS shedding. This finding was observed also on isolated porcine vessels. Persistence of HS on venous ECs prevented complement deposition and clot formation after stimulation with tumor necrosis factor α or lipopolysaccharide, whereas after xenogeneic activation no glycocalyx-mediated protection was observed. Contrarily, HS shedding on arterial cells, even without an inflammatory insult, was sufficient to induce a proinflammatory and procoagulant phenotype. Our data indicate that the dimorphic response of arterial and venous ECs is partially due to distinct HS/glycocalyx dynamics suggesting that arterial and venous thrombo-inflammatory disorders require targeted therapies.
Collapse
Affiliation(s)
- Anastasia Milusev
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Alain Despont
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland
| | - Jane Shaw
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland
| | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland
| | - Nicoletta Sorvillo
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 24, 3008, Bern, Switzerland.
| |
Collapse
|
42
|
Substantial decrease in SARS-CoV-2 RNA after fixation of cadavers intended for anatomical dissection. Anat Sci Int 2023:10.1007/s12565-023-00707-9. [PMID: 36869879 PMCID: PMC9985082 DOI: 10.1007/s12565-023-00707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 02/19/2023] [Indexed: 03/05/2023]
Abstract
With the onset of the COVID-19 pandemic, a problem arose with classic body donation programmes for obtaining cadavers for anatomical dissections, science and research. The question has emerged whether bodies of individuals who died of COVID-19 or were infected by SARS-CoV-2 could be admitted to Departments of Anatomy. To determine the risk of SARS-CoV-2 transmission to employees or students, the presence and stability of SARS-CoV-2 RNA in cadavers after fixation agents' application and subsequent post-fixation baths over time were examined. The presence of viral RNA in swabs from selected tissues was assessed by the standardized routine RNA isolation protocol and subsequent real-time PCR analysis. To support the results obtained from the tissue swabs, samples of RNA were exposed in vitro to short and long-term exposure to the components of the injection and fixation solutions used for the bodies' conservation. Substantial removal of SARS-CoV-2 RNA was observed in post-mortem tissue following perfusion with 3.5% phenol, 2.2% formaldehyde, 11.8% glycerol and 55% ethanol, and subsequent post-fixation in an ethanol bath. In vitro experiments showed significant effects of formaldehyde on SARS-CoV-2 RNA, while phenol and ethanol showed only negligible effects. We conclude that cadavers subjected to fixation protocols as described here should not pose a considerable risk of SARS-CoV-2 infection while being handled by students and staff and are, therefore, suitable for routine anatomical dissections and teaching.
Collapse
|
43
|
Reyes-Ruiz JM, Manrique-Calvillo C, Martínez-Mier G, Servin-Monroy AO, Mota-García G, DE Maria Lugo-Miranda F, Villegas-Del Angel E, Zarate-Segura P, Bastida-Gonzalez F, Del Angel RM. Encephalitis Associated With SARS-CoV-2 Infection in a Child With Chiari Malformation Type I. In Vivo 2023; 37:933-939. [PMID: 36881093 PMCID: PMC10026637 DOI: 10.21873/invivo.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND/AIM There is increasing evidence that patients infected with SARS-CoV-2 develop neurological manifestations such as encephalitis. The purpose of this article was to present a case of viral encephalitis associated with SARS-CoV-2 in a 14-year-old child with Chiari malformation type I. CASE REPORT The patient manifested frontal headache, nausea, vomiting, skin pallor, right side Babinski sign and was diagnosed with Chiari malformation type I. He was admitted with generalized seizures and suspected encephalitis. Brain inflammation and viral RNA in the cerebrospinal fluid suggested SARS-CoV-2 encephalitis. These findings indicate that the SARS-CoV-2 test in CSF of patients with neurological manifestations, confusion, and fever during the COVID-19 pandemic should be carried out even when there is no evidence of respiratory infection. To our knowledge, this presentation of encephalitis associated with COVID-19 has not yet been reported in a patient with a congenital syndrome such as Chiari malformation type I. CONCLUSION Further clinical data are needed to determine the complications of encephalitis due to SARS-CoV-2 in patients with Chiari malformation type I to standardize diagnosis and treatment.
Collapse
Affiliation(s)
- José Manuel Reyes-Ruiz
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), Veracruz, Mexico
- Facultad de Medicina, Región Veracruz, Universidad Veracruzana (UV), Veracruz, Mexico
| | - Claudia Manrique-Calvillo
- Departamento de Pediatria, Centro Médico Ecatepec del Instituto de Seguridad Social del Estado de México y Municipios (ISSEMyM), Ecatepec de Morelos, Mexico
| | - Gustavo Martínez-Mier
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), Veracruz, Mexico
| | - Arturo Osvaldo Servin-Monroy
- Departamento de Epidemiología, Instituto de Seguridad Social del Estado de México y Municipios (ISSEMyM), Toluca de Lerdo, Mexico
| | - Gilraed Mota-García
- Unidad Médica de Alta Especialidad, Hospital de Especialidades No. 14, Centro Médico Nacional "Adolfo Ruiz Cortines", Instituto Mexicano del Seguro Social (IMSS), Veracruz, Mexico
| | - Flor DE Maria Lugo-Miranda
- Unidad de Medicina Preventiva y Vigilancia Epidemiológica, Centro Médico Ecatepec del Instituto de Seguridad Social del Estado de México y Municipios (ISSEMyM), Ecatepec de Morelos, Mexico
| | | | - Paola Zarate-Segura
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Fernando Bastida-Gonzalez
- Laboratorio de Biología Molecular, Laboratorio Estatal de Salud Pública del Estado de México, Toluca de Lerdo, Mexico;
| | - Rosa Maria Del Angel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
44
|
Abou-Hamdan M, Saleh R, Mani S, Dournaud P, Metifiot M, Blondot ML, Andreola ML, Abdel-Sater F, De Reggi M, Gressens P, Laforge M. Potential antiviral effects of pantethine against SARS-CoV-2. Sci Rep 2023; 13:2237. [PMID: 36754974 PMCID: PMC9906591 DOI: 10.1038/s41598-023-29245-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
SARS-CoV-2 interacts with cellular cholesterol during many stages of its replication cycle. Pantethine was reported to reduce total cholesterol levels and fatty acid synthesis and potentially alter different processes that might be involved in the SARS-CoV-2 replication cycle. Here, we explored the potential antiviral effects of pantethine in two in vitro experimental models of SARS-CoV-2 infection, in Vero E6 cells and in Calu-3a cells. Pantethine reduced the infection of cells by SARS-CoV-2 in both preinfection and postinfection treatment regimens. Accordingly, cellular expression of the viral spike and nucleocapsid proteins was substantially reduced, and we observed a significant reduction in viral copy numbers in the supernatant of cells treated with pantethine. In addition, pantethine inhibited the infection-induced increase in TMPRSS2 and HECT E3 ligase expression in infected cells as well as the increase in antiviral interferon-beta response and inflammatory gene expression in Calu-3a cells. Our results demonstrate that pantethine, which is well tolerated in humans, was very effective in controlling SARS-CoV-2 infection and might represent a new therapeutic drug that can be repurposed for the prevention or treatment of COVID-19 and long COVID syndrome.
Collapse
Affiliation(s)
- M Abou-Hamdan
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France.,Biology Department, Faculty of Sciences (I), Lebanese University, Beirut, Lebanon
| | - R Saleh
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - S Mani
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - P Dournaud
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - M Metifiot
- Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France
| | - M L Blondot
- Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France
| | - M L Andreola
- Université Bordeaux, CNRS, UMR 5234, Microbiologie Fondamentale et Pathogénicité, 33076, Bordeaux, France
| | - F Abdel-Sater
- Biochemistry Department, Faculty of Sciences (I), Lebanese University, Beirut, Lebanon
| | - M De Reggi
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - P Gressens
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France
| | - M Laforge
- NeuroDiderot, Inserm, Université Paris Cité, 48 Boulevard Sérurier, 75019, Paris, France.
| |
Collapse
|
45
|
Crook H, Ramirez A, Hosseini AA, Vavougyios G, Lehmann C, Bruchfeld J, Schneider A, d'Avossa G, Lo Re V, Salmoiraghi A, Mukaetova-Ladinska E, Katshu M, Boneschi FM, Håkansson K, Geerlings M, Pracht E, Ruiz A, Jansen JF, Snyder H, Kivipelto M, Edison P. European Working Group on SARS-CoV-2: Current Understanding, Unknowns, and Recommendations on the Neurological Complications of COVID-19. Brain Connect 2023; 13:178-210. [PMID: 36719785 DOI: 10.1089/brain.2022.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The emergence of COVID-19 was rapidly followed by infection and the deaths of millions of people across the globe. With much of the research and scientific advancement rightly focused on reducing the burden of severe and critical acute COVID-19 infection, the long-term effects endured by those who survived the acute infection has been previously overlooked. Now, an appreciation for the post-COVID-19 condition, including its neurological manifestations, is growing, although there remain many unknowns regarding the aetiology and risk factors of the condition, as well as how to effectively diagnose and treat it. Here, drawing upon the experiences and expertise of the clinicians and academics of the European working group on COVID-19, we have reviewed the current literature to provide a comprehensive overview of the neurological sequalae of the post-COVID-19 condition. In this review, we provide a summary of the neurological symptoms associated with the post-COVID-19 condition, before discussing the possible mechanisms which may underly and manifest these symptoms. Following this, we explore the risk factors for developing neurological symptoms as a result of COVID-19 and the post-COVID-19 condition, as well as how COVID-19 infection may itself be a risk factor for the development of neurological disease in the future. Lastly, we evaluate how the post-COVID condition could be accurately diagnosed and effectively treated, including examples of the current guidelines, clinical outcomes and tools that have been developed to aid in this process, as well as addressing the protection provided by COVID-19 vaccines against post-COVID-19 condition. Overall, this review provides a comprehensive overview of the neurological sequalae of the post-COVID-19 condition.
Collapse
Affiliation(s)
- Harry Crook
- Imperial College London, 4615, Brain Sciences, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Alfredo Ramirez
- University of Cologne, 14309, Department of Psychiatry and Psychotherapy, Koln, Nordrhein-Westfalen, Germany
- University of Bonn, 9374, Department of Neurodegenerative diseases and Geriatric Psychiatry, Bonn, Nordrhein-Westfalen, Germany
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, Department of Psychiatry , San Antonio, Texas, United States
- German Centre for Neurodegenerative Diseases, 172279, Bonn, Nordrhein-Westfalen, Germany;
| | - Akram A Hosseini
- Nottingham University Hospitals NHS Trust, 9820, Department of Neurology, Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland;
| | - Georgios Vavougyios
- University of Cyprus, 54557, Department of Neurology, Nicosia, Nicosia, Cyprus;
| | - Clara Lehmann
- University of Cologne, 14309, Department of Internal Medicine, Koln, Nordrhein-Westfalen, Germany
- University of Cologne, 14309, Center for Molecular Medicine Cologne (CMMC), Koln, Nordrhein-Westfalen, Germany
- German Centre for Infection Research, 459706, Braunschweig, Niedersachsen, Germany;
| | - Judith Bruchfeld
- Karolinska University Hospital, 59562, Department of Infectious Diseases, Stockholm, Sweden;
| | - Anja Schneider
- University Hospital Bonn, 39062, Department of Neurodegenerative diseases and Geriatric Psychiatry, Bonn, Nordrhein-Westfalen, Germany
- German Centre for Neurodegenerative Diseases, 172279, Bonn, Nordrhein-Westfalen, Germany;
| | - Giovanni d'Avossa
- Bangor University, 1506, School of Psychology, Bangor, Gwynedd, United Kingdom of Great Britain and Northern Ireland;
| | | | - Alberto Salmoiraghi
- Betsi Cadwaladr University Health Board, 1507, Bangor, Gwynedd, United Kingdom of Great Britain and Northern Ireland
- Glyndwr University, 8725, Wrexham, Clwyd, United Kingdom of Great Britain and Northern Ireland;
| | - Elizabeta Mukaetova-Ladinska
- University of Leicester, 4488, Neuroscience, Psychology and Behaviour, University Road, Leicester, United Kingdom of Great Britain and Northern Ireland, LE1 7RH;
| | - Mohammad Katshu
- University of Nottingham, 6123, School of Medicine, Nottingham, Nottinghamshire, United Kingdom of Great Britain and Northern Ireland;
| | - Filippo M Boneschi
- University of Milan, 9304, Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milano, Lombardia, Italy;
| | - Krister Håkansson
- Karolinska Institute, 27106, Department of Neurobiology, Care Sciences and Society, Stockholm, Stockholm, Sweden;
| | - Mirjam Geerlings
- Utrecht University, 8125, University Medical Center Utrecht, Utrecht, Utrecht, Netherlands;
| | - Elisabeth Pracht
- University of Cologne, 14309, Department of Psychiatry and Psychotherapy, Koln, Nordrhein-Westfalen, Germany;
| | - Agustín Ruiz
- Universitat Internacional de Catalunya, 16760, Institut Català de Neurociències Aplicades, Barcelona, Catalunya, Spain;
| | - Jacobus Fa Jansen
- Maastricht University Medical Centre+, 199236, Department of Radiology and Nuclear Medicine, Maastricht, Limburg, Netherlands;
| | - Heather Snyder
- Alzheimer's Association, 44027, Chicago, Illinois, United States;
| | - Miia Kivipelto
- Karolinska Institute, 27106, Department of Neurobiology, Care Sciences and Society, Stockholm, Stockholm, Sweden;
| | - Paul Edison
- Imperial College London, 4615, Brain Sciences, Neurology Imaging Unit, 1st Floor, B - Block, Hammersmith Hospital Campus, Du Cane Road, London, United Kingdom of Great Britain and Northern Ireland, SW7 2AZ;
| |
Collapse
|
46
|
Cumhur Cure M, Cure E. Severe acute respiratory syndrome coronavirus 2 may cause liver injury via Na +/H + exchanger. World J Virol 2023; 12:12-21. [PMID: 36743661 PMCID: PMC9896593 DOI: 10.5501/wjv.v12.i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/03/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023] Open
Abstract
The liver has many significant functions, such as detoxification, the urea cycle, gluconeogenesis, and protein synthesis. Systemic diseases, hypoxia, infections, drugs, and toxins can easily affect the liver, which is extremely sensitive to injury. Systemic infection of severe acute respiratory syndrome coronavirus 2 can cause liver damage. The primary regulator of intracellular pH in the liver is the Na+/H+ exchanger (NHE). Physiologically, NHE protects hepatocytes from apoptosis by making the intracellular pH alkaline. Severe acute respiratory syndrome coronavirus 2 increases local angiotensin II levels by binding to angiotensin-converting enzyme 2. In severe cases of coronavirus disease 2019, high angi-otensin II levels may cause NHE overstimulation and lipid accumulation in the liver. NHE overstimulation can lead to hepatocyte death. NHE overstimulation may trigger a cytokine storm by increasing proinflammatory cytokines in the liver. Since the release of proinflammatory cytokines such as interleukin-6 increases with NHE activation, the virus may indirectly cause an increase in fibrinogen and D-dimer levels. NHE overstimulation may cause thrombotic events and systemic damage by increasing fibrinogen levels and cytokine release. Also, NHE overstimulation causes an increase in the urea cycle while inhibiting vitamin D synthesis and gluconeogenesis in the liver. Increasing NHE3 activity leads to Na+ loading, which impairs the containment and fluidity of bile acid. NHE overstimulation can change the gut microbiota composition by disrupting the structure and fluidity of bile acid, thus triggering systemic damage. Unlike other tissues, tumor necrosis factor-alpha and angiotensin II decrease NHE3 activity in the intestine. Thus, increased luminal Na+ leads to diarrhea and cytokine release. Severe acute respiratory syndrome coronavirus 2-induced local and systemic damage can be improved by preventing virus-induced NHE overstimulation in the liver.
Collapse
Affiliation(s)
- Medine Cumhur Cure
- Department of Biochemistry, Private Tanfer Hospital, Istanbul 34394, Turkey
| | - Erkan Cure
- Department of Internal Medicine, Bagcilar Medilife Hospital, Istanbul 34200, Turkey
| |
Collapse
|
47
|
Fantini J, Chahinian H, Yahi N. Convergent Evolution Dynamics of SARS-CoV-2 and HIV Surface Envelope Glycoproteins Driven by Host Cell Surface Receptors and Lipid Rafts: Lessons for the Future. Int J Mol Sci 2023; 24:1923. [PMID: 36768244 PMCID: PMC9915253 DOI: 10.3390/ijms24031923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Although very different, in terms of their genomic organization, their enzymatic proteins, and their structural proteins, HIV and SARS-CoV-2 have an extraordinary evolutionary potential in common. Faced with various selection pressures that may be generated by treatments or immune responses, these RNA viruses demonstrate very high adaptive capacities, which result in the continuous emergence of variants and quasi-species. In this retrospective analysis of viral proteins, ensuring the adhesion of these viruses to the plasma membrane of host cells, we highlight many common points that suggest the convergent mechanisms of evolution. HIV and SARS-CoV-2 first recognize a lipid raft microdomain that acts as a landing strip for viral particles on the host cell surface. In the case of mucosal cells, which are the primary targets of both viruses, these microdomains are enriched in anionic glycolipids (gangliosides) forming a global electronegative field. Both viruses use lipid rafts to surf on the cell surface in search of a protein receptor able to trigger the fusion process. This implies that viral envelope proteins are both geometrically and electrically compatible to the biomolecules they select to invade host cells. In the present study, we identify the surface electrostatic potential as a critical parameter controlling the convergent evolution dynamics of HIV-1 and SARS-CoV-2 surface envelope proteins, and we discuss the impact of this parameter on the phenotypic properties of both viruses. The virological data accumulated since the emergence of HIV in the early 1980s should help us to face present and future virus pandemics.
Collapse
Affiliation(s)
| | | | - Nouara Yahi
- INSERM UMR_S 1072, Aix Marseille University, 13015 Marseille, France
| |
Collapse
|
48
|
Thangavel H, Dhanyalayam D, Lizardo K, Oswal N, Dolgov E, Perlin DS, Nagajyothi JF. Susceptibility of Fat Tissue to SARS-CoV-2 Infection in Female hACE2 Mouse Model. Int J Mol Sci 2023; 24:1314. [PMID: 36674830 PMCID: PMC9863100 DOI: 10.3390/ijms24021314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 12/24/2022] [Indexed: 01/12/2023] Open
Abstract
The coronavirus disease (COVID-19) is a highly contagious viral illness caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 has had a catastrophic effect globally causing millions of deaths worldwide and causing long-lasting health complications in COVID-19 survivors. Recent studies including ours have highlighted that adipose tissue can act as a reservoir where SARS-CoV-2 can persist and cause long-term health problems. Here, we evaluated the effect of SARS-CoV-2 infection on adipose tissue physiology and the pathogenesis of fat loss in a murine COVID-19 model using humanized angiotensin-converting enzyme 2 (hACE2) mice. Since epidemiological studies reported a higher mortality rate of COVID-19 in males than in females, we examined hACE2 mice of both sexes and performed a comparative analysis. Our study revealed for the first time that: (a) viral loads in adipose tissue and the lungs differ between males and females in hACE2 mice; (b) an inverse relationship exists between the viral loads in the lungs and adipose tissue, and it differs between males and females; and (c) CoV-2 infection alters immune signaling and cell death signaling differently in SARS-CoV-2 infected male and female mice. Overall, our data suggest that adipose tissue and loss of fat cells could play important roles in determining susceptibility to CoV-2 infection in a sex-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jyothi F. Nagajyothi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
49
|
Lancemaside A from Codonopsis lanceolata: Studies on Antiviral Activity and Mechanism of Action against SARS-CoV-2 and Its Variants of Concern. Antimicrob Agents Chemother 2022; 66:e0120122. [PMID: 36374087 PMCID: PMC9765103 DOI: 10.1128/aac.01201-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several plant-derived natural products with anti-SARS-CoV-2 activity have been evaluated for the potential to serve as chemotherapeutic agents for the treatment of COVID-19. Codonopsis lanceolata (CL) has long been used as a medicinal herb in East Asian countries to treat inflammatory diseases of the respiratory system but its antiviral activity has not been investigated so far. Here, we showed that CL extract and its active compound lancemaside A (LA) displayed potent inhibitory activity against SARS-CoV-2 infection using a pseudotyped SARS-CoV-2 entry assay system. We demonstrated that this inhibitory effect of LA was due to the alteration of membrane cholesterol and blockade of the membrane fusion between SARS-CoV-2 and host cells by filipin staining and cell-based membrane fusion assays. Our findings also showed that LA, as a membrane fusion blocker, could impede the endosomal entry pathway of SARS-CoV-2 and its variants of concern (VOCs), including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529), in Vero cells with similar of IC50 values ranging from 2.23 to 3.37 μM as well as the TMPRSS2-mediated viral entry pathway in A549 cells overexpressing ACE2 and TMPRSS2 with IC50 value of 3.92 μM. We further demonstrated that LA could prevent the formation of multinucleated syncytia arising from SARS-CoV-2 spike protein-mediated membrane fusion. Altogether, the findings reported here suggested that LA could be a broad-spectrum anti-SARS-CoV-2 therapeutic agent by targeting the fusion of viral envelope with the host cell membrane.
Collapse
|
50
|
Zhou YQ, Wang K, Wang XY, Cui HY, Zhao Y, Zhu P, Chen ZN. SARS-CoV-2 pseudovirus enters the host cells through spike protein-CD147 in an Arf6-dependent manner. Emerg Microbes Infect 2022; 11:1135-1144. [PMID: 35343395 PMCID: PMC9037224 DOI: 10.1080/22221751.2022.2059403] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants is threatening public health around the world. Endocytosis functions as an important way for viral infection, and SARS-CoV-2 bears no exception. However, the specific endocytic mechanism of SARS-CoV-2 remains unknown. In this study, we used endocytic inhibitors to evaluate the role of different endocytic routes in SARS-CoV-2 pseudovirus infection and found that the viral infection was associated with caveolar/lipid raft- and cytoskeleton-mediated endocytosis, but independent of the clathrin-mediated endocytosis and macropinocytosis. Meanwhile, the knockdown of CD147 and Rab5a in Vero E6 and Huh-7 cells inhibited SARS-CoV-2 pseudovirus infection, and the co-localization of spike protein, CD147, and Rab5a was observed in pseudovirus-infected Vero E6 cells, which was weakened by CD147 silencing, illustrating that SARS-CoV-2 pseudovirus entered the host cells via CD147-mediated endocytosis. Additionally, Arf6 silencing markedly inhibited pseudovirus infection in Vero E6 and Huh-7 cells, while little change was observed in CD147 knockout-Vero E6 cells. This finding indicated Arf6-mediated CD147 trafficking plays a vital role in SARS-CoV-2 entry. Taken together, our findings provide new insights into the CD147-Arf6 axis in mediating SARS-CoV-2 pseudovirus entry into the host cells, and further suggest that blockade of this pathway seems to be a feasible approach to prevent the SARS-CoV-2 infection clinically.
Collapse
Affiliation(s)
- Yun-Qi Zhou
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xue-Yan Wang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Hong-Yong Cui
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhi-Nan Chen
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|