1
|
Nguyen HTT, Lindahl JF, Bett B, Nguyen-Viet H, Lâm S, Nguyen-Tien T, Unger F, Dang-Xuan S, Bui TX, Le HT, Lundkvist Å, Ling J, Lee HS. Understanding zoonotic pathogens and risk factors from wildlife in Southeast Asia: a systematic literature review. Vet Q 2025; 45:1-17. [PMID: 40059837 PMCID: PMC11894755 DOI: 10.1080/01652176.2025.2475990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
The COVID-19 pandemic has demonstrated the significance of the human-animal interface in the emergence of zoonotic diseases, with wildlife serving as an important source of infection. A better understanding of the specific pathogens and mechanisms involved is vital to prepare against future outbreaks, especially in Southeast Asia, a hotspot for zoonotic diseases. This paper reviews the published literature on wildlife zoonoses in this region from 2012 to 2022. The results show a diverse range of potential zoonotic pathogens and the widespread occurrence of zoonotic diseases from wildlife. Drivers of zoonotic pathogen spillover include (i) environmental factors (e.g. animal habitat disruption, environmental conditions, exposure to contaminated water/food/soil), (ii) animal factors (e.g. movement patterns, age-related susceptibility), (iii) human factors (e.g. lack of awareness, poor hygiene practices, age, gender and income) and (iv) human-animal-environmental interface factors (e.g. close contact between humans and animals, exposure through visiting animals and presence of vectors). The diverse drivers of zoonoses in Southeast Asia put its communities at risk for infection. To mitigate these risks, global health efforts should consider adopting a One Health approach to foster collaboration across human, animal, and wildlife health sectors. This could involve educating communities on safe animal interactions and improving disease surveillance.
Collapse
Affiliation(s)
- Ha Thi Thanh Nguyen
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
| | - Johanna F Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- International Livestock Research Institute, Hanoi, Vietnam
- Swedish Veterinary Agency, Uppsala, Sweden
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Steven Lâm
- International Livestock Research Institute, Nairobi, Kenya
| | | | - Fred Unger
- International Livestock Research Institute, Hanoi, Vietnam
| | - Sinh Dang-Xuan
- International Livestock Research Institute, Hanoi, Vietnam
| | - Thanh Xuan Bui
- Ho Chi Minh City Department of Health, Ho Chi Minh Center for Diseases Control, Ho Chi Minh, Vietnam
| | - Hien Thanh Le
- Ho Chi Minh City University of Agriculture and Forestry, Ho Chi Minh, Vietnam
| | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jiaxin Ling
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Hu Suk Lee
- International Livestock Research Institute, Hanoi, Vietnam
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Braga CM, da Silva SP, Neto JPN, Medeiros DBDA, Cruz ACR, Nascimento BLSD, Pinheiro LRS, Martins LC. Viral metagenomics of hematophagous insects collected in the Carajas mining complex, Pará State, Brazil. Acta Trop 2025; 263:107551. [PMID: 39938727 DOI: 10.1016/j.actatropica.2025.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Hematophagous insects are vectors of viruses that cause diseases in humans and animals worldwide. Mosquitoes (Culicidae), biting midges (Ceratopogonidae), and sandflies (Psychodidae) were collected in three municipalities (Marabá, Canaã dos Carajás, and Curionópolis) in the state of Pará, Brazil, in 2019. Morphological keys were used for the taxonomic identification of insect species. High-throughput sequencing and metagenomic analysis were employed to characterize the viromes of the hematophagous insects. We characterized the virome of 839 insects grouped into 14 pools. A total of 729 million paired reads were generated, with 12 million viral sequences (3 % of the reads). The families Reoviridae, Myoviridae, Retroviridae, and Poxviridae were found in all samples of this study. Phylogenies of RNA-dependent RNA polymerase (RdRp) from viruses of the families Chuviridae, Dicistroviridae, Flaviviridae, Iflaviridae, Mesoniviridae, Phenuiviridae, and Rhabdoviridae were performed. In this study, the first isolation of the Guaico Culex Virus (GCXV) in the northern region of Brazil was obtained from a pool of Culex (Melanoconion) spp. mosquitoes collected in Curionópolis. The data obtained in this study demonstrate that the Carajás region has an ecosystem rich in viruses. Additional studies are needed to understand the dynamics of viruses in vectors, vertebrates, and the human population in the region.
Collapse
Affiliation(s)
- Camila Margalho Braga
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil; Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém 66087-662, Brazil.
| | - Sandro Patroca da Silva
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil
| | - Joaquim Pinto Nunes Neto
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil
| | | | - Ana Cecília Ribeiro Cruz
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil
| | | | | | - Lívia Carício Martins
- Evandro Chagas Institute, Department of Arbovirology and Hemorrhagic Fevers, Ananindeua, 67030-000, PA, Brazil
| |
Collapse
|
3
|
Gladysheva A, Osinkina I, Radchenko N, Alkhireenko D, Agafonov A. Tertiary Structures of Haseki Tick Virus Nonstructural Proteins Are Similar to Those of Orthoflaviviruses. Int J Mol Sci 2024; 25:13654. [PMID: 39769413 PMCID: PMC11678601 DOI: 10.3390/ijms252413654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Currently, a large number of novel tick-borne viruses potentially pathogenic to humans are discovered. Studying many of them by classical methods of virology is difficult due to the absence of live viral particles or a sufficient amount of their genetic material. In this case, the use of modern methods of bioinformatics and synthetic and structural biology can help. Haseki tick virus (HSTV) is a recently discovered tick-borne unclassified ssRNA(+) virus. HSTV-positive patients experienced fever and an elevated temperature. However, at the moment, there is no information on the tertiary structure and functions of its proteins. In this work, we used AlphaFold 3 and other bioinformatic tools for the annotation of HSTV nonstructural proteins, based on the principle that the tertiary structure of a protein is inextricably linked with its molecular function. We were the first to obtain models of tertiary structures and describe the putative functions of HSTV nonstructural proteins (NS3 helicase, NS3 protease, NS5 RNA-dependent RNA-polymerase, and NS5 methyltransferase), which play a key role in viral genome replication. Our results may help in further taxonomic identification of HSTV and the development of direct-acting antiviral drugs, POC tests, and vaccines.
Collapse
Affiliation(s)
- Anastasia Gladysheva
- State Research Center of Virology and Biotechnology “Vector”, 630559 Kol’tsovo, Russia; (I.O.); (N.R.); (D.A.); (A.A.)
| | - Irina Osinkina
- State Research Center of Virology and Biotechnology “Vector”, 630559 Kol’tsovo, Russia; (I.O.); (N.R.); (D.A.); (A.A.)
| | - Nikita Radchenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Kol’tsovo, Russia; (I.O.); (N.R.); (D.A.); (A.A.)
- Natural Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Daria Alkhireenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Kol’tsovo, Russia; (I.O.); (N.R.); (D.A.); (A.A.)
- Natural Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexander Agafonov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Kol’tsovo, Russia; (I.O.); (N.R.); (D.A.); (A.A.)
| |
Collapse
|
4
|
Molina-Hoyos K, Montoya-Ruíz C, Aguilar PV, Pérez-Doria A, Díaz FJ, Rodas JD. Virome analyses of Amblyomma cajennense and Rhipicephalus microplus ticks collected in Colombia. Acta Trop 2024; 253:107158. [PMID: 38402921 PMCID: PMC11781606 DOI: 10.1016/j.actatropica.2024.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Tick-borne viruses (TBV) have gained public health relevance in recent years due to the recognition of human-associated fatal cases and the increase in tick-borne disease and transmission. However, many tick species have not been studied for their potential to transmit pathogenic viruses, especially those found in Latin America. To gain better understanding of the tick virome, we conducted targeted amplification using broadly-reactive consensus-degenerate pan-viral targeting viruses from the genera Flavivirus, Bandavirus, Uukuvirus, and Orthonairovirus genus. Additionally, we conducted unbiased metagenomic analyses to investigate the presence of viral RNA sequences in Amblyomma cajennense, A. patinoi and Rhipicephalus microplus ticks collected from a horse slaughter plant in Medellín, Colombia. While no viral products were detected by PCR, results of the metagenomic analyses revealed the presence of viral genomes belonging to the genera Phlebovirus, Bandavirus, and Uukuvirus, including Lihan Tick Virus (LTV), which was previously reported in Rhipicephalus microplus from Colombia. Overall, the results emphasized the enormous utility of the next-generation sequencing in identifying virus genetic diversity presents in ticks and other species of vectors and reservoirs.
Collapse
Affiliation(s)
- Katterine Molina-Hoyos
- Grupo de Investigación en Ciencias Veterinarias Centauro, Universidad de Antioquia, Medellín, Colombia
| | - Carolina Montoya-Ruíz
- Grupo de investigación en Biotecnología Animal, Global Health Institute One-Health Colombia, Universidad Nacional de Colombia sede Medellín, Colombia.
| | - Patricia V Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | | | - Francisco J Díaz
- Grupo Inmunovirología, Universidad de Antioquia, Medellín, Colombia
| | - Juan D Rodas
- Grupo de Investigación en Ciencias Veterinarias Centauro, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
5
|
Lin Y, Pascall DJ. Characterisation of putative novel tick viruses and zoonotic risk prediction. Ecol Evol 2024; 14:e10814. [PMID: 38259958 PMCID: PMC10800298 DOI: 10.1002/ece3.10814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Tick-associated viruses remain a substantial zoonotic risk worldwide, so knowledge of the diversity of tick viruses has potential health consequences. Despite their importance, large amounts of sequences in public data sets from tick meta-genomic and -transcriptomic projects remain unannotated, sequence data that could contain undocumented viruses. Through data mining and bioinformatic analysis of more than 37,800 public meta-genomic and -transcriptomic data sets, we found 83 unannotated contigs exhibiting high identity with known tick viruses. These putative viral contigs were classified into three RNA viral families (Alphatetraviridae, Orthomyxoviridae and Chuviridae) and one DNA viral family (Asfarviridae). After manual checking of quality and dissimilarity towards other sequences in the data set, these 83 contigs were reduced to five contigs in the Alphatetraviridae from four putative viruses, four in the Orthomyxoviridae from two putative viruses and one in the Chuviridae which clustered with known tick-associated viruses, forming a separate clade within the viral families. We further attempted to assess which previously known tick viruses likely represent zoonotic risks and thus deserve further investigation. We ranked the human infection potential of 133 known tick-associated viruses using a genome composition-based machine learning model. We found five high-risk tick-associated viruses (Langat virus, Lonestar tick chuvirus 1, Grotenhout virus, Taggert virus and Johnston Atoll virus) that have not been known to infect human and two viral families (Nairoviridae and Phenuiviridae) that contain a large proportion of potential zoonotic tick-associated viruses. This adds to the knowledge of tick virus diversity and highlights the importance of surveillance of newly emerging tick-associated diseases.
Collapse
Affiliation(s)
- Yuting Lin
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
- Royal Veterinary CollegeUniversity of LondonLondonUK
| | | |
Collapse
|
6
|
Wang J, Wang J, Kuang G, Wu W, Yang L, Yang W, Pan H, Han X, Yang T, Shi M, Feng Y. Meta-transcriptomics for the diversity of tick-borne virus in Nujiang, Yunnan Province. Front Cell Infect Microbiol 2023; 13:1283019. [PMID: 38179426 PMCID: PMC10766107 DOI: 10.3389/fcimb.2023.1283019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Ticks, an arthropod known for transmitting various pathogens such as viruses, bacteria, and fungi, pose a perpetual public health concern. A total of 2,570 ticks collected from Nujiang Prefecture in Yunnan Province between 2017 and 2022 were included in the study. Through the meta-transcriptomic sequencing of four locally distributed tick species, we identified 13 RNA viruses belonging to eight viral families, namely, Phenuiviridae, Nairoviridae, Peribunyaviridae, Flaviviridae, Chuviridae, Rhabdoviridae, Orthomyxoviridae, and Totiviridae. The most prevalent viruses were members of the order Bunyavirales, including three of Phenuiviridae, two were classified as Peribunyaviridae, and one was associated with Nairoviridae. However, whether they pose a threat to human health still remains unclear. Indeed, this study revealed the genetic diversity of tick species and tick-borne viruses in Nujiang Prefecture based on COI gene and tick-borne virus research. These data clarified the genetic evolution of some RNA viruses and furthered our understanding of the distribution pattern of tick-borne pathogens, highlighting the importance and necessity of monitoring tick-borne pathogens.
Collapse
Affiliation(s)
- Juan Wang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Jing Wang
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Sun Yat-sen University, Shenzhen, China
| | - Guopeng Kuang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Weichen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Sun Yat-sen University, Shenzhen, China
| | - Lifen Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Weihong Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Hong Pan
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Xi Han
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Tian Yang
- School of Public Health, Dali University, Dali, China
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yun Feng
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
- School of Public Health, Dali University, Dali, China
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
7
|
Dezordi FZ, Coutinho GB, Dias YJM, Wallau GL. Ancient origin of Jingchuvirales derived glycoproteins integrated in arthropod genomes. Genet Mol Biol 2023; 46:e20220218. [PMID: 37036390 PMCID: PMC10084718 DOI: 10.1590/1678-4685-gmb-2022-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/11/2023] [Indexed: 04/11/2023] Open
Abstract
Endogenous virus elements (EVEs) are viral-derived sequences integrated into their host genomes. EVEs of the Jingchuvirales order were detected in a wide range of insect genomes covering several distantly related families. Moreover, Jingchuvirales-derived glycoproteins were recently associated by our group with the origin of a putative new retrovirus based on a glycoprotein captured by a mosquito retrotransposon. But, except for mosquitoes, there is a lack of a more detailed understanding of the endogenization mechanism, timing, and frequency per Jingchuvirales viral lineages. Here we screened Jingchuvirales glycoprotein-derived EVEs (Jg-EVEs) in eukaryotic genomes. We found six distinct endogenization events of Jg-EVEs, that belong to two out of five known Jingchuvirales families (Chuviridae and Natareviridae). For seven arthropod families bearing Jg-EVEs there is no register of bona fide circulating chuvirus infection. Hence, our results show that Jingchuvirales viruses infected or still infect these host families. Although we found abundant evidence of LTR-Gypsy retrotransposons fragments associated with the glycoprotein in Hymenoptera and other insect orders, our results show that the widespread distribution of Jingchuvirales glycoproteins in extant Arhtropods is a result of multiple ancient endogenization events and that these virus fossils are being vertically inherited in Arthropods genomes for millions of years.
Collapse
Affiliation(s)
- Filipe Zimmer Dezordi
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Núcleo de Bioinformática, Recife, PE, Brazil
| | - Gutembergmann Batista Coutinho
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Universidade Federal de Pernambuco, Centro de Biociências, Recife, PE, Brazil
| | - Yago José Mariz Dias
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Núcleo de Bioinformática, Recife, PE, Brazil
- Universidade Federal de Pernambuco, Centro de Biociências, Recife, PE, Brazil
| | - Gabriel Luz Wallau
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Departamento de Entomologia, Recife, PE, Brazil
- Fundação Oswaldo Cruz (FIOCRUZ), Instituto Aggeu Magalhães (IAM), Núcleo de Bioinformática, Recife, PE, Brazil
- WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Department of Arbovirology, Hamburg, Germany
| |
Collapse
|
8
|
Fereidouni M, Apanaskevich DA, Pecor DB, Pshenichnaya NY, Abuova GN, Tishkova FH, Bumburidi Y, Zeng X, Kuhn JH, Keshtkar-Jahromi M. Crimean-Congo hemorrhagic fever virus in Central, Eastern, and South-eastern Asia. Virol Sin 2023; 38:171-183. [PMID: 36669701 PMCID: PMC10926685 DOI: 10.1016/j.virs.2023.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF), caused by Crimean-Congo hemorrhagic fever virus (CCHFV), is endemic in Africa, Asia, and Europe, but CCHF epidemiology and epizootiology is only rudimentarily defined for most regions. Here we summarize what is known about CCHF in Central, Eastern, and South-eastern Asia. Searching multiple international and country-specific databases using a One Health approach, we defined disease risk and burden through identification of CCHF cases, anti-CCHFV antibody prevalence, and CCHFV isolation from vector ticks. We identified 2313 CCHF cases that occurred in 1944-2021 in the three examined regions. Central Asian countries reported the majority of cases (2,026). In Eastern Asia, China was the only country that reported CCHF cases (287). In South-eastern Asia, no cases were reported. Next, we leveraged our previously established classification scheme to assign countries to five CCHF evidence levels. Six countries (China, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan) were assigned to level 1 or level 2 based on CCHF case reports and the maturity of the countries' surveillance systems. Two countries (Mongolia and Myanmar) were assigned to level 3 due to evidence of CCHFV circulation in the absence of reported CCHF cases. Thirteen countries in Eastern and South-eastern Asia were categorized in levels 4 and 5 based on prevalence of CCHFV vector ticks. Collectively, this paper describes the past and present status of CCHF reporting to inform international and local public-health agencies to strengthen or establish CCHFV surveillance systems and address shortcomings.
Collapse
Affiliation(s)
- Mohammad Fereidouni
- Jahrom University of Medical Sciences (دانشگاه علوم پزشكي خدمات بهداشتی درمانی جهرم), Jahrom, Fars Province, 74148-46199, Iran
| | - Dmitry A Apanaskevich
- U.S. National Tick Collection, The James H. Oliver Jr. Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA 30458, USA; Zoological Institute of Russian Academy of Sciences (Зоологический институт Российской академии наук), 199034, St. Petersburg, Russia
| | - David B Pecor
- Walter Reed Biosystematics Unit, Department of Entomology, Smithsonian Institution, Suitland, MD 20746-2863, USA; One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Natalia Yu Pshenichnaya
- Central Research Institute of Epidemiology (Центральный научно-исследовательский институт эпидемиологии), 111123, Moscow, Russia
| | - Gulzhan N Abuova
- South Kazakhstan Medical Academy (Оңтүстік Қазақстан медицина академиясы), Shymkent, 160016, Kazakhstan
| | - Farida H Tishkova
- Tajik Science and Research Institute of Preventive Medicine (Институти илмй-тадкикотии тибби профилактикии Тоцикистон), 734025 Dushanbe, Tajikistan
| | - Yekaterina Bumburidi
- Central Asian Office, Centers for Disease Control and Prevention, Almaty, 050010, Kazakhstan
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| | - Maryam Keshtkar-Jahromi
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Kartashov MY, Gladysheva AV, Shvalov AN, Tupota NL, Chernikova AA, Ternovoi VA, Loktev VB. Novel Flavi-like virus in ixodid ticks and patients in Russia. Ticks Tick Borne Dis 2023; 14:102101. [PMID: 36529011 DOI: 10.1016/j.ttbdis.2022.102101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Novel Haseki tick virus (HSTV) was detected in ixodid ticks and patients in the Asian part of Russia. Sequencing of the genome fragments corresponding whole polyprotein and viral RdRp demonstrated that HSTV is genetically close to unclassified Flavi-like viruses. Phylogenetic analysis of HSTV sequences showed that these viruses were close to Bole tick virus 4 (BLTV 4), which was detected early in Asia, Europe, Africa and the Caribbean region. The organization of the genome predicts that HSTV and BLTV 4 may also be classified as putative new genera within Flaviviridae with enlarged Flavi-like positive-sense ssRNA viral genomes. Cases of HSTV putative human incidents after Ixodes persulcatus attack were discovered in hospital patients with tick-borne infections in Vladivostok (Russia). The illness was associated with 3-5 days of fever, accompanied by acute respiratory lesions. Mixed human tick-borne infections (TBIs) were also detected for these patients as dual or triple coinfections for tick-borne encephalitis virus, Borrelia spp., Anaplasma spp., and HSTV. Thus, it is necessary to study HSTV antibody tests, virus isolation, and surveillance for HSTV sequences in different species of ticks, different geographical regions and patients after tick attacks.
Collapse
Affiliation(s)
- Mikhail Y Kartashov
- State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| | - Anastasia V Gladysheva
- State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| | - Alexander N Shvalov
- State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| | - Natalya L Tupota
- State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| | - Anastasia A Chernikova
- Center of Prevention and Control for AIDS and Infectious Diseases, Vladivostok, Russia; Far Eastern Federal University, Vladivostok, Russia
| | - Vladimir A Ternovoi
- State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia
| | - Valery B Loktev
- State Research Center for Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing of Russia, World-Class Genomic Research Center for Biological Safety and Technological Independence, Koltsovo, Novosibirsk Region, Russia.
| |
Collapse
|
10
|
Yang Z, Wang H, Yang S, Wang X, Shen Q, Ji L, Zeng J, Zhang W, Gong H, Shan T. Virome diversity of ticks feeding on domestic mammals in China. Virol Sin 2023; 38:208-221. [PMID: 36781125 PMCID: PMC10176445 DOI: 10.1016/j.virs.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
Ticks are considered the second most common pathogen vectors transmitting a broad range of vital human and veterinary viruses. From 2017 to 2018, 640 ticks were collected in eight different provinces in central and western China. Six species were detected, including H.longicornis, De.everestianus, Rh.microplus, Rh.turanicus, Rh.sanguineous, and Hy.asiaticum. Sixty-four viral metagenomic libraries were constructed on the MiSeq Illumina platform, resulting in 13.44 G (5.88 × 107) of 250-bp-end reads, in which 2,437,941 are viral reads. We found 27 nearly complete genome sequences, including 16 genome sequences encoding entire protein-coding regions (lack of 3' or 5' end non-coding regions) and complete viral genomes, distributed in the arboviral family (Chuviridae, Rhabdoviridae, Nairoviridae, Phenuiviridae, Flaviviridae, Iflaviridae) as well as Parvoviridae and Polyomaviridae that cause disease in mammals and even humans. In addition, 13 virus sequences found in Chuviridae, Nairoviridae, Flaviviridae, Iflaviridae, Hepeviridae, Parvoviridae, and Polyomaviridae were identified as belonging to a new virus species in the identified viral genera. Besides, an epidemiological survey shows a high prevalence (9.38% and 15.63%) of two viruses (Ovine Copiparvovirus and Bovine parvovirus 2) in the tick cohort.
Collapse
Affiliation(s)
- Zijun Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China; Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hao Wang
- Department of Clinical Laboratory, Huai'an Hospital, Xuzhou Medical University, Huai'an, 223002, China
| | - Shixing Yang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaochun Wang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Quan Shen
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Likai Ji
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jian Zeng
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| | - Haiyan Gong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
11
|
A Search for Tick-Associated, Bronnoya-like Virus Spillover into Sheep. Microorganisms 2023; 11:microorganisms11010209. [PMID: 36677501 PMCID: PMC9865699 DOI: 10.3390/microorganisms11010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Tick-borne diseases are responsible for many vector-borne diseases within Europe. Recently, novel viruses belonging to a new viral family of the order Bunyavirales were discovered in numerous tick species. In this study, we used metatranscriptomics to detect the virome, including novel viruses, associated with Ixodes ricinus collected from Romania and France. A bunyavirus-like virus related to the Bronnoya virus was identified for the first time in these regions. It presents a high level of amino-acid conservation with Bronnoya-related viruses identified in I. ricinus ticks from Norway and Croatia and with the Ixodes scapularis bunyavirus isolated from a tick cell line in Japan in 2014. Phylogenetic analyses revealed that the Bronnoya viruses' sub-clade is distinct from several Bunyavirales families, suggesting that it could constitute a novel family within the order. To determine if Bronnoya viruses could constitute novel tick-borne arboviruses, a Luciferase immunoprecipitation assay for detecting antibodies in the viral glycoprotein of the Romanian Bronnoya virus was used to screen sera from small ruminants exposed to tick bites. No positive serum was detected, suggesting that this virus is probably not able to infect small ruminants. This study represents the first serological investigation of mammalian infections with a Bronnoya-like virus and an initial step in the identification of potential new emergences of tick-borne arboviruses.
Collapse
|
12
|
Liu Z, Li L, Xu W, Yuan Y, Liang X, Zhang L, Wei Z, Sui L, Zhao Y, Cui Y, Yin Q, Li D, Li Q, Hou Z, Wei F, Liu Q, Wang Z. Extensive diversity of RNA viruses in ticks revealed by metagenomics in northeastern China. PLoS Negl Trop Dis 2022; 16:e0011017. [PMID: 36542659 PMCID: PMC9836300 DOI: 10.1371/journal.pntd.0011017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/12/2023] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ticks act as important vectors of infectious agents, and several emerging tick-borne viruses have recently been identified to be associated with human diseases in northeastern China. However, little is known about the tick virome in northeastern China. METHODS Ticks collected from April 2020 to July 2021 were pooled for metagenomic analysis to investigate the virome diversity in northeastern China. RESULTS In total, 22 RNA viruses were identified, including four each in the Nairoviridae and Phenuiviridae families, three each in the Flaviviridae, Rhabdoviridae, and Solemoviridae families, two in the Chuviridae family, and one each in the Partitiviridae, Tombusviridae families and an unclassified virus. Of these, eight viruses were of novel species, belonging to the Nairoviridae (Ji'an nairovirus and Yichun nairovirus), Phenuiviridae (Mudanjiang phlebovirus), Rhabdoviridae (Tahe rhabdovirus 1-3), Chuviridae (Yichun mivirus), and Tombusviridae (Yichun tombus-like virus) families, and five members were established human pathogens, including Alongshan virus, tick-borne encephalitis virus, Songling virus, Beiji nairovirus, and Nuomin virus. I. persulcatus ticks had significant higher number of viral species than H. japonica, H. concinna, and D. silvarum ticks. Significant differences in tick viromes were observed among Daxing'an, Xiaoxing'an and Changbai mountains. CONCLUSIONS These findings showed an extensive diversity of RNA viruses in ticks in northeastern China, revealing potential public health threats from the emerging tick-borne viruses. Further studies are needed to explain the natural circulation and pathogenicity of these viruses.
Collapse
Affiliation(s)
- Ziyan Liu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Liang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Wenbo Xu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yongxu Yuan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Xiaojie Liang
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Li Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Zhengkai Wei
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People’s Republic of China
| | - Liyan Sui
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yinghua Zhao
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Yanyan Cui
- College of Food Science and Engineering, Tonghua Normal University, Tonghua, Jilin Province, People’s Republic of China
| | - Qing Yin
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
| | - Dajun Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Feng Wei
- Laboratory of Pathogen Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Quan Liu
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, People’s Republic of China
| | - Zedong Wang
- Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin Province, People’s Republic of China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
13
|
Kuhn JH, Adkins S, Alkhovsky SV, Avšič-Županc T, Ayllón MA, Bahl J, Balkema-Buschmann A, Ballinger MJ, Bandte M, Beer M, Bejerman N, Bergeron É, Biedenkopf N, Bigarré L, Blair CD, Blasdell KR, Bradfute SB, Briese T, Brown PA, Bruggmann R, Buchholz UJ, Buchmeier MJ, Bukreyev A, Burt F, Büttner C, Calisher CH, Candresse T, Carson J, Casas I, Chandran K, Charrel RN, Chiaki Y, Crane A, Crane M, Dacheux L, Bó ED, de la Torre JC, de Lamballerie X, de Souza WM, de Swart RL, Dheilly NM, Di Paola N, Di Serio F, Dietzgen RG, Digiaro M, Drexler JF, Duprex WP, Dürrwald R, Easton AJ, Elbeaino T, Ergünay K, Feng G, Feuvrier C, Firth AE, Fooks AR, Formenty PBH, Freitas-Astúa J, Gago-Zachert S, García ML, García-Sastre A, Garrison AR, Godwin SE, Gonzalez JPJ, de Bellocq JG, Griffiths A, Groschup MH, Günther S, Hammond J, Hepojoki J, Hierweger MM, Hongō S, Horie M, Horikawa H, Hughes HR, Hume AJ, Hyndman TH, Jiāng D, Jonson GB, Junglen S, Kadono F, Karlin DG, Klempa B, Klingström J, Koch MC, Kondō H, Koonin EV, Krásová J, Krupovic M, Kubota K, Kuzmin IV, Laenen L, Lambert AJ, Lǐ J, Li JM, Lieffrig F, Lukashevich IS, Luo D, Maes P, Marklewitz M, Marshall SH, et alKuhn JH, Adkins S, Alkhovsky SV, Avšič-Županc T, Ayllón MA, Bahl J, Balkema-Buschmann A, Ballinger MJ, Bandte M, Beer M, Bejerman N, Bergeron É, Biedenkopf N, Bigarré L, Blair CD, Blasdell KR, Bradfute SB, Briese T, Brown PA, Bruggmann R, Buchholz UJ, Buchmeier MJ, Bukreyev A, Burt F, Büttner C, Calisher CH, Candresse T, Carson J, Casas I, Chandran K, Charrel RN, Chiaki Y, Crane A, Crane M, Dacheux L, Bó ED, de la Torre JC, de Lamballerie X, de Souza WM, de Swart RL, Dheilly NM, Di Paola N, Di Serio F, Dietzgen RG, Digiaro M, Drexler JF, Duprex WP, Dürrwald R, Easton AJ, Elbeaino T, Ergünay K, Feng G, Feuvrier C, Firth AE, Fooks AR, Formenty PBH, Freitas-Astúa J, Gago-Zachert S, García ML, García-Sastre A, Garrison AR, Godwin SE, Gonzalez JPJ, de Bellocq JG, Griffiths A, Groschup MH, Günther S, Hammond J, Hepojoki J, Hierweger MM, Hongō S, Horie M, Horikawa H, Hughes HR, Hume AJ, Hyndman TH, Jiāng D, Jonson GB, Junglen S, Kadono F, Karlin DG, Klempa B, Klingström J, Koch MC, Kondō H, Koonin EV, Krásová J, Krupovic M, Kubota K, Kuzmin IV, Laenen L, Lambert AJ, Lǐ J, Li JM, Lieffrig F, Lukashevich IS, Luo D, Maes P, Marklewitz M, Marshall SH, Marzano SYL, McCauley JW, Mirazimi A, Mohr PG, Moody NJG, Morita Y, Morrison RN, Mühlberger E, Naidu R, Natsuaki T, Navarro JA, Neriya Y, Netesov SV, Neumann G, Nowotny N, Ochoa-Corona FM, Palacios G, Pallandre L, Pallás V, Papa A, Paraskevopoulou S, Parrish CR, Pauvolid-Corrêa A, Pawęska JT, Pérez DR, Pfaff F, Plemper RK, Postler TS, Pozet F, Radoshitzky SR, Ramos-González PL, Rehanek M, Resende RO, Reyes CA, Romanowski V, Rubbenstroth D, Rubino L, Rumbou A, Runstadler JA, Rupp M, Sabanadzovic S, Sasaya T, Schmidt-Posthaus H, Schwemmle M, Seuberlich T, Sharpe SR, Shi M, Sironi M, Smither S, Song JW, Spann KM, Spengler JR, Stenglein MD, Takada A, Tesh RB, Těšíková J, Thornburg NJ, Tischler ND, Tomitaka Y, Tomonaga K, Tordo N, Tsunekawa K, Turina M, Tzanetakis IE, Vaira AM, van den Hoogen B, Vanmechelen B, Vasilakis N, Verbeek M, von Bargen S, Wada J, Wahl V, Walker PJ, Whitfield AE, Williams JV, Wolf YI, Yamasaki J, Yanagisawa H, Ye G, Zhang YZ, Økland AL. 2022 taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch Virol 2022; 167:2857-2906. [PMID: 36437428 PMCID: PMC9847503 DOI: 10.1007/s00705-022-05546-z] [Show More Authors] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.
Collapse
Affiliation(s)
- Jens H Kuhn
- Integrated Research Facility at Fort Detrick (IRF-Frederick), National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Fort Detrick, Frederick, MD, USA.
| | - Scott Adkins
- United States Department of Agriculture, Agricultural Research Service, US Horticultural Research Laboratory, Fort Pierce, FL, USA
| | - Sergey V Alkhovsky
- D.I. Ivanovsky Institute of Virology of N.F. Gamaleya National Center on Epidemiology and Microbiology of Ministry of Health of Russian Federation, Moscow, Russia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, Department of Epidemiology and Biostatistics, Insitute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Greifswald, Germany
| | - Matthew J Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi State, Starkville, MS, USA
| | - Martina Bandte
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | - Éric Bergeron
- Division of High-Consequence Pathogens and Pathology, Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Laurent Bigarré
- French Agency for Food, Environmental and Occupational Heath Safety ANSES, Laboratory of Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Carol D Blair
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kim R Blasdell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Steven B Bradfute
- University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Thomas Briese
- Center for Infection and Immunity, and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Paul A Brown
- French Agency for Food, Environmental and Occupational Heath Safety ANSES, Laboratory of Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Alexander Bukreyev
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Felicity Burt
- Division of Virology, National Health Laboratory Service and Division of Virology, University of the Free State, Bloemfontein, Republic of South Africa
| | - Carmen Büttner
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | - Jeremy Carson
- Centre for Aquatic Animal Health and Vaccines, Department of Natural Resources and Environment Tasmania, Launceston, TAS, Australia
| | - Inmaculada Casas
- Respiratory Virus and Influenza Unit, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rémi N Charrel
- Unité des Virus Emergents (Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Yuya Chiaki
- Division of Fruit Tree and Tea Pest Control Research, Institute for Plant Protection, NARO, Tsukuba, Ibaraki, Japan
| | - Anya Crane
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Mark Crane
- CSIRO Australian Centre for Disease Preparedness, East Geelong, VIC, Australia
| | - Laurent Dacheux
- Institut Pasteur, Université Paris Cité, Unit Lyssavirus Epidemiology and Neuropathology, National Reference Center for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Paris, France
| | - Elena Dal Bó
- CIDEFI. Facultad de Ciencias Agrarias y Forestales, Universidad de La Plata, La Plata, Argentina
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology IMM-6, The Scripps Research Institute, La Jolla, CA, USA
| | - Xavier de Lamballerie
- Unité des Virus Emergents (Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - William M de Souza
- World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rik L de Swart
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Nolwenn M Dheilly
- UMR 1161 Virology ANSES/INRAE/ENVA, ANSES Animal Health Laboratory, Maisons-Alfort, France
| | - Nicholas Di Paola
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Michele Digiaro
- CIHEAM, Istituto Agronomico Mediterraneo di Bari, Valenzano, Italy
| | - J Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - W Paul Duprex
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Andrew J Easton
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Toufic Elbeaino
- CIHEAM, Istituto Agronomico Mediterraneo di Bari, Valenzano, Italy
| | - Koray Ergünay
- Department of Medical Microbiology, Virology Unit, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution, Museum Support Center, Suitland, MD, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA
- Department of Entomology, Smithsonian Institution-National Museum of Natural History (NMNH), Washington, DC, USA
| | - Guozhong Feng
- China National Rice Research Institute, Hangzhou, China
| | | | - Andrew E Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - María Laura García
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, CONICET UNLP, La Plata, Argentina
| | | | - Aura R Garrison
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Scott E Godwin
- Centre for Aquatic Animal Health and Vaccines, Department of Natural Resources and Environment Tasmania, Launceston, TAS, Australia
| | - Jean-Paul J Gonzalez
- Department of Microbiology and Immunology, Division of Biomedical Graduate Research Organization, School of Medicine, Georgetown University, Washington, DC, USA
| | | | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Stephan Günther
- Department of Virology, WHO Collaborating Centre for Arboviruses and Hemorrhagic Fever Reference and Research, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - John Hammond
- United States Department of Agriculture, Agricultural Research Service, USNA, Floral and Nursery Plants Research Unit, Beltsville, MD, USA
| | - Jussi Hepojoki
- Department of Virology, University of Helsinki, Medicum, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Melanie M Hierweger
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Seiji Hongō
- Department of Infectious Diseases, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Masayuki Horie
- Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Izumisano, Osaka, Japan
| | | | - Holly R Hughes
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Adam J Hume
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
- Center for Emerging Infectious Diseases Policy and Research, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Timothy H Hyndman
- School of Veterinary Medicine, Murdoch University, Murdoch, WA, Australia
| | - Dàohóng Jiāng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Gilda B Jonson
- International Rice Research Institute, College, Los Baños, 4032, Laguna, Philippines
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fujio Kadono
- Clinical Plant Science Center, Hosei University, Tokyo, Japan
| | - David G Karlin
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jonas Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Michel C Koch
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hideki Kondō
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jarmila Krásová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Kenji Kubota
- Institute for Plant Protection, NARO, Tsukuba, Ibaraki, Japan
| | - Ivan V Kuzmin
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lies Laenen
- KU Leuven, Rega Institute, Zoonotic Infectious Diseases unit, Leuven, Belgium
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Amy J Lambert
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Jiànróng Lǐ
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jun-Min Li
- Institute of Plant Virology, Ningbo University, Ningbo, China
| | | | - Igor S Lukashevich
- Department of Pharmacology and Toxicology, School of Medicine, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Dongsheng Luo
- Institut Pasteur, Université Paris Cité, Unit Lyssavirus Epidemiology and Neuropathology, Paris, France
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Piet Maes
- KU Leuven, Rega Institute, Zoonotic Infectious Diseases unit, Leuven, Belgium
| | | | - Sergio H Marshall
- Instituto de Biología-Laboratorio de Genética Molecular-Campus Curauma, Valparaíso, Chile
| | - Shin-Yi L Marzano
- United States Department of Agriculture, Agricultural Research Service, Toledo, OH, USA
| | - John W McCauley
- Worldwide Influenza Centre, Francis Crick Institute, London, UK
| | | | - Peter G Mohr
- CSIRO Australian Centre for Disease Preparedness, East Geelong, VIC, Australia
| | - Nick J G Moody
- CSIRO Australian Centre for Disease Preparedness, East Geelong, VIC, Australia
| | | | - Richard N Morrison
- Centre for Aquatic Animal Health and Vaccines, Department of Natural Resources and Environment Tasmania, Launceston, TAS, Australia
| | - Elke Mühlberger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, USA
| | - Rayapati Naidu
- Department of Plant Pathology, Irrigated Agricultural Research and Extension Center, Washington State University, Prosser, WA, USA
| | | | - José A Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Yutaro Neriya
- School of Agriculture, Utsunomiya University, Utsunomiya, Japan
| | - Sergey V Netesov
- Novosibirsk State University, Novosibirsk, Novosibirsk Oblast, Russia
| | - Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, USA
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Francisco M Ochoa-Corona
- Institute for Biosecurity and Microbial Forensics. Stillwater, Oklahoma State University, Oklahoma, USA
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurane Pallandre
- French Agency for Food, Environmental and Occupational Heath Safety ANSES, Laboratory of Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidat Politècnica de Valencia, Valencia, Spain
| | - Anna Papa
- National Reference Centre for Arboviruses and Haemorrhagic Fever viruses, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Paraskevopoulou
- Methods Development and Research Infrastructure, Bioinformatics and Systems Biology, Robert Koch Institute, Berlin, Germany
| | - Colin R Parrish
- College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | | | - Janusz T Pawęska
- Center for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham-Johannesburg, Gauteng, South Africa
| | - Daniel R Pérez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Richard K Plemper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas S Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | | | - Marius Rehanek
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Renato O Resende
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Carina A Reyes
- Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, Facultad de Ciencias Exactas, Unversidad Nacional de La Plata, Buenos Aires, Argentina
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, Facultad de Ciencias Exactas, Unversidad Nacional de La Plata, Buenos Aires, Argentina
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Luisa Rubino
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | - Artemis Rumbou
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jonathan A Runstadler
- Department of Infectious Disease & Global Health, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Melanie Rupp
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA
| | - Takahide Sasaya
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Heike Schmidt-Posthaus
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Martin Schwemmle
- Faculty of Medicine, University Medical Center-University Freiburg, Freiburg, Germany
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stephen R Sharpe
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | - Mang Shi
- Sun Yat-sen University, Shenzhen, China
| | - Manuela Sironi
- Bioinformatics Unit, Scientific Institute IRCCS "E. Medea", Bosisio Parini, Italy
| | - Sophie Smither
- CBR Division, Dstl, Porton Down, Salisbury, Wiltshire, UK
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kirsten M Spann
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark D Stenglein
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Robert B Tesh
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jana Těšíková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Nicole D Tischler
- Laboratorio de Virología Molecular, Centro Ciencia & Vida, Fundación Ciencia & Vida and Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Yasuhiro Tomitaka
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Keizō Tomonaga
- Institute for Life and Medical Sciences (LiMe), Kyoto University, Kyoto, Japan
| | - Noël Tordo
- Institut Pasteur de Guinée, BP 4416, Conakry, Guinea
| | | | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Italy
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR, USA
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Torino, Italy
| | - Bernadette van den Hoogen
- Department of Viroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Bert Vanmechelen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Nikos Vasilakis
- The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Martin Verbeek
- Wageningen University and Research, Biointeractions and Plant Health, Wageningen, The Netherlands
| | - Susanne von Bargen
- Division Phytomedicine, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, USA
| | - Victoria Wahl
- National Biodefense Analysis and Countermeasures Center, Fort Detrick, Frederick, MD, USA
| | - Peter J Walker
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - John V Williams
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Junki Yamasaki
- Environmental Agriculture Promotion Division, Department of Agricultural Development, Kochi Prefectural Government, Kochi, Kochi, Japan
| | | | - Gongyin Ye
- Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yong-Zhen Zhang
- National Institute for Communicable Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | | |
Collapse
|
14
|
Microseek: A Protein-Based Metagenomic Pipeline for Virus Diagnostic and Discovery. Viruses 2022; 14:v14091990. [PMID: 36146797 PMCID: PMC9500916 DOI: 10.3390/v14091990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
We present Microseek, a pipeline for virus identification and discovery based on RVDB-prot, a comprehensive, curated and regularly updated database of viral proteins. Microseek analyzes metagenomic Next Generation Sequencing (mNGS) raw data by performing quality steps, de novo assembly, and by scoring the Lowest Common Ancestor (LCA) from translated reads and contigs. Microseek runs on a local computer. The outcome of the pipeline is displayed through a user-friendly and dynamic graphical interface. Based on two representative mNGS datasets derived from human tissue and plasma specimens, we illustrate how Microseek works, and we report its performances. In silico spikes of known viral sequences, but also spikes of fake Neopneumovirus viral sequences generated with variable evolutionary distances from known members of the Pneumoviridae family, were used. Results were compared to Chan Zuckerberg ID (CZ ID), a reference cloud-based mNGS pipeline. We show that Microseek reliably identifies known viral sequences and performs well for the detection of distant pseudoviral sequences, especially in complex samples such as in human plasma, while minimizing non-relevant hits.
Collapse
|
15
|
Guo L, Ma J, Lin J, Chen M, Liu W, Zha J, Jin Q, Hong H, Huang W, Zhang L, Zhang K, Wei Z, Liu Q. Virome of Rhipicephalus ticks by metagenomic analysis in Guangdong, southern China. Front Microbiol 2022; 13:966735. [PMID: 36033874 PMCID: PMC9403862 DOI: 10.3389/fmicb.2022.966735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Tick-borne viruses (TBVs) have increasingly caused a global public health concern. This study collected Rhipicephalus ticks in Guangdong, southern China to identify RNA viruses. Meta-transcriptome analysis revealed the virome in Rhipicephalus ticks, resulting in the discovery of 10 viruses, including Lihan tick virus, Brown dog tick phlebovirus 1 and 2 in the family Phenuiviridae, Mivirus and Wuhan tick virus 2 in the family Chuviridae, Wuhan tick virus 1 in the family Rhabdoviridae, bovine hepacivirus in the family Flaviviridae, Guangdong tick quaranjavirus (GTQV) in the family Orthomyxoviridae, Guangdong tick orbivirus (GTOV) in the family Reoviridae, and Guangdong tick Manly virus (GTMV) of an unclassified family. Phylogenetic analysis showed that most of these TBVs were genetically related to the strains in countries outside China, and GTQV, GTOV, and GTMV may represent novel viral species. These findings provided evidence of the long-distance spread of these TBVs in Guangdong, southern China, suggesting the necessity and importance of TBV surveillance.
Collapse
Affiliation(s)
- Luanying Guo
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Jun Ma
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Junwei Lin
- Jieyang Animal Health Supervision Institute, Jieyang, China
| | - Meiyi Chen
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Wei Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Jin Zha
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Qinqin Jin
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Hongrong Hong
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Weinan Huang
- Agricultural and Rural Bureau of Huilai County, Jieyang, China
| | - Li Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ketong Zhang
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zhengkai Wei
- School of Life Sciences and Engineering, Foshan University, Foshan, China
- Zhengkai Wei,
| | - Quan Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
- Center for Infectious Diseases and Pathogen Biology, International Center of Future Science, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
- *Correspondence: Quan Liu,
| |
Collapse
|
16
|
Virome of Ixodes ricinus, Dermacentor reticulatus, and Haemaphysalis concinna Ticks from Croatia. Viruses 2022; 14:v14050929. [PMID: 35632671 PMCID: PMC9146755 DOI: 10.3390/v14050929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Tick-borne diseases are a serious threat to both public and veterinary health. In this study, we used high-throughput sequencing to characterize the virome of three tick species implicated in the spread of vector-borne disease throughout Croatia. Ten viruses were identified, including seven potential novel species within the viral families Flaviviridae, Nyamiviridae, Rhabdoviridae, Peribunyaviridae, Phenuiviridae, and Nairoviridae.
Collapse
|
17
|
Bratuleanu BE, Temmam S, Munier S, Chrétien D, Bigot T, van der Werf S, Savuta G, Eloit M. Detection of Phenuiviridae, Chuviridae Members, and a Novel Quaranjavirus in Hard Ticks From Danube Delta. Front Vet Sci 2022; 9:863814. [PMID: 35498749 PMCID: PMC9044029 DOI: 10.3389/fvets.2022.863814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ticks are involved in the transmission of various pathogens and several tick-borne diseases cause significant problems for the health of humans and livestock. The members of the Quaranjavirus genus are mainly associated with argas ticks but recent studies demonstrated the presence of novel quaranjaviruses-like in ixodid ticks. In 2020, 169 Rhipicephalus sanguineus ticks were collected in Southern Romania from small ruminants and analyzed by high-throughput transcriptome sequencing. Among the viral families that infect Romanian ticks, we have identified sequences from Phenuiviridae (Brown dog tick phlebovirus 1 [BDTPV1] and Brown dog tick phlebovirus 2 [BDTPV2]) and Chuviridae families (Cataloi mivirus [CTMV]), and numerous sequences from a new quaranjavirus-like, tentatively named Cataloi tick quaranjavirus (CTQV). Phylogenetic analyses performed on the five segments show that CTQV is phylogenetically positioned within a clade that encompasses Ixodidae-borne viruses associated with iguanas, small ruminants, seabirds, and penguins distributed across different geographical areas. Furthermore, CTQV is positioned differently depending on the segment considered. This is the first report on the detection of a quaranjavirus-like in Eastern Europe. Further investigations are needed to discern its infectivity and pathogenicity against vertebrates.
Collapse
Affiliation(s)
- Bianca Elena Bratuleanu
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety (ROVETEMERG), “Ion Ionescu de la Brad”, University of Life Sciences, Iasi, Romania
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Institut Pasteur, OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
| | - Sandie Munier
- Institut Pasteur, Molecular Genetics of RNA Viruses Unit, CNRS UMR 3569, Université de Paris, Paris, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Institut Pasteur, OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
| | - Thomas Bigot
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, Molecular Genetics of RNA Viruses Unit, CNRS UMR 3569, Université de Paris, Paris, France
- Institut Pasteur, National Reference Center for Respiratory Viruses, Paris, France
| | - Gheorghe Savuta
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety (ROVETEMERG), “Ion Ionescu de la Brad”, University of Life Sciences, Iasi, Romania
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Institut Pasteur, OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
- Alfort National Veterinary School, Maisons-Alfort, France
- *Correspondence: Marc Eloit
| |
Collapse
|
18
|
Xu L, Guo M, Hu B, Zhou H, Yang W, Hui L, Huang R, Zhan J, Shi W, Wu Y. Tick virome diversity in Hubei Province, China, and the influence of host ecology. Virus Evol 2021; 7:veab089. [PMID: 34804590 PMCID: PMC8599308 DOI: 10.1093/ve/veab089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Ticks are important vector hosts of pathogens which cause human and animal
diseases worldwide. Diverse viruses have been discovered in ticks; however,
little is known about the ecological factors that affect the tick virome
composition and evolution. Herein, we employed RNA sequencing to study the
virome diversity of the Haemaphysalis longicornis and
Rhipicephalus microplus ticks sampled in Hubei Province in
China. Twelve RNA viruses with complete genomes were identified, which belonged
to six viral families: Flaviviridae, Matonaviridae, Peribunyaviridae,
Nairoviridae, Phenuiviridae, and Rhabdoviridae.
These viruses showed great diversity in their genome organization and evolution,
four of which were proposed to be novel species. The virome diversity and
abundance of R. microplus ticks fed on cattle were evidently
high. Further ecological analyses suggested that host species and feeding status
may be key factors affecting the tick virome structure. This study described a
number of novel viral species and variants from ticks and, more importantly,
provided insights into the ecological factors shaping the virome structures of
ticks, although it clearly warrants further investigation.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Moujian Guo
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271000, China
| | - Wei Yang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Lixia Hui
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Rui Huang
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jianbo Zhan
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Weifeng Shi
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian 271016, China
| | - Ying Wu
- State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
19
|
Novel phlebovirus-like-AYUT and Stenotrophomonas maltophilia bacterial co-infection in a Rhipicephalus sanguineus s.l. tick. Vet Res Commun 2021; 46:277-282. [PMID: 34725749 PMCID: PMC8560361 DOI: 10.1007/s11259-021-09855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/25/2021] [Indexed: 11/05/2022]
Abstract
Tick-borne viruses and bacteria that can cause diseases of animals and humans have high impact and are of concern as significant threats to human health worldwide. In this research, we screened microorganisms related to those pathogens in ticks from dogs, a cat, and a cow. The techniques used were PCR, DNA sequencing and phylogenetic analysis to detect and classify the microorganisms [Flavivirus, severe fever with thrombocytopenia syndrome virus (SFTSV), Phlebovirus, Coronavirus, Canine Parvovirus, eubacteria, Coxiella and Rickettsia]. A novel virus named Phlebovirus-like-AYUT and Stenotrophomonas maltophilia bacteria were found in one individual tick (Rhipicephalus sanguineus s.l.) from a dog. All tick samples were negative for Rickettsia, while 9/21 (42.9 %) were positive for Coxiella bacteria. The novel virus “Phlebovirus-like-AYUT” (the name derives from Phra Nakhon Si Ayutthaya Province in Thailand) was resolved by phylogenetic analysis of the partial L segment by maximum likelihood (ML) method using MEGA X. The phylogenetic tree also indicated that the virus was related to Phlebovirus in brown dog ticks reported in Trinidad and Tobago. In contrast, Phlebovirus-like-AYUT was in a distinct clade from Lihan tick Phlebovirus-Thailand (LTPV), which was previously found in cow ticks, Rhipicephalus microplus, in Nan Province, Thailand. This study reports the Stenotrophomonas maltophilia bacterium with a novel Phlebovirus-like-AYUT in a brown dog tick. The roles of this bacterium in a virus-positive tick or in viral transmission from animal host requires further investigation.
Collapse
|
20
|
Virome analysis of three Ixodidae ticks species from Colombia: A potential strategy for discovering and surveying tick-borne viruses. INFECTION GENETICS AND EVOLUTION 2021; 96:105103. [PMID: 34619391 DOI: 10.1016/j.meegid.2021.105103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/28/2022]
Abstract
Ticks are a group of obligate blood-sucking ectoparasites that play a critical role in transmitting several important zoonotic pathogens that can infect animals and humans. Viruses are part of the tick microbiome and are involved in the transmission of important diseases. Furthermore, the little information on these as etiological agents of zoonoses suggests the need to study these microorganisms. For this reason, in this study, we sought to characterize the virome in Rhipicephalus microplus, Dermacentor nitens, and Rhipicephalus sanguineus s.l., which were collected from different domestic animals in Antioquia, Colombia. RNA sequencing was used for virome characterization in these three tick species, using RNA-dependent polymerase as a marker gene. Forty-eight sequences corresponding to 14 different viruses were identified, some of which were previously identified in the tick's virome. Overall, these data indicate that ticks from domestic animals in cattle farms harbor a wide viral diversity at the local scale. Thus, the metatranscriptomic approach provides important baseline information for monitoring the tick virome and to develop future studies on their biology, host-virus interactions, host range, worldwide distribution, and finally, their potential role as emerging vector-borne agents.
Collapse
|
21
|
Pérez-Sautu U, Wiley MR, Prieto K, Chitty JA, Haddow AD, Sánchez-Lockhart M, Klein TA, Kim HC, Chong ST, Kim YJ, Choi BS, Palacios GF. Novel viruses in hard ticks collected in the Republic of Korea unveiled by metagenomic high-throughput sequencing analysis. Ticks Tick Borne Dis 2021; 12:101820. [PMID: 34555711 DOI: 10.1016/j.ttbdis.2021.101820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022]
Abstract
Ticks are vectors of a wide range of zoonotic viruses of medical and veterinary importance. Recently, metagenomics studies demonstrated that they are also the source of potentially pathogenic novel viruses. During the period from 2015 to 2017, questing ticks were collected by dragging the vegetation from geographically distant locations in the Republic of Korea (ROK) and a target-independent high-throughput sequencing method was utilized to study their virome. A total of seven viruses, including six putative novel viral entities, were identified. Genomic analysis showed that the novel viruses were most closely related to members in the orders Jingchuvirales and Bunyavirales. Phylogenetic reconstruction showed that the Bunyavirales-like viruses grouped in the same clade with other viruses within the Nairovirus and Phlebovirus genera, while the novel Jingchuvirales-like virus grouped together with other viruses within the family Chuviridae. Real-time RT-PCR was used to determine the geographic distribution and prevalence of these viruses in adult ticks. These novel viruses have a wide geographic distribution in the ROK with prevalences ranging from 2% to 18%. Our study expands the knowledge about the composition of the tick virome and highlights the wide diversity of viruses they harbor in the ROK. The discovery of novel viruses associated with ticks in the ROK highlights the need for an active tick-borne disease surveillance program to identify possible reservoirs of putative novel human pathogens.
Collapse
Affiliation(s)
- Unai Pérez-Sautu
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA.
| | - Michael R Wiley
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; College of Public Health, University of Nebraska Medical Center, Omaha, 68198, Nebraska, USA
| | - Karla Prieto
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; College of Public Health, University of Nebraska Medical Center, Omaha, 68198, Nebraska, USA
| | - Joseph A Chitty
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA
| | - Andrew D Haddow
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, 30144, Georgia, USA
| | - Mariano Sánchez-Lockhart
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA; Department of Pathology & Microbiology, University of Nebraska Medical Centre, Omaha, 68198, Nebraska, USA
| | - Terry A Klein
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea /65(th) Medical Brigade, Unit 15281, APO AP 96271, USA
| | - Heung-Chul Kim
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea /65(th) Medical Brigade, Unit 15281, APO AP 96271, USA
| | - Sung-Tae Chong
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea /65(th) Medical Brigade, Unit 15281, APO AP 96271, USA
| | - Yu-Jin Kim
- Army Headquarters, Gyeryong-si, 32800, Republic of Korea
| | | | - Gustavo F Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, 21702, Maryland, USA
| |
Collapse
|
22
|
Tokarz R, Lipkin WI. Discovery and Surveillance of Tick-Borne Pathogens. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1525-1535. [PMID: 33313662 PMCID: PMC8285023 DOI: 10.1093/jme/tjaa269] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 05/06/2023]
Abstract
Within the past 30 yr molecular assays have largely supplanted classical methods for detection of tick-borne agents. Enhancements provided by molecular assays, including speed, throughput, sensitivity, and specificity, have resulted in a rapid increase in the number of newly characterized tick-borne agents. The use of unbiased high throughput sequencing has enabled the prompt identification of new pathogens and the examination of tick microbiomes. These efforts have led to the identification of hundreds of new tick-borne agents in the last decade alone. However, little is currently known about the majority of these agents beyond their phylogenetic classification. Our article outlines the primary methods involved in tick-borne agent discovery and the current status of our understanding of tick-borne agent diversity.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
- Corresponding author, e-mail:
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
23
|
Sommers P, Chatterjee A, Varsani A, Trubl G. Integrating Viral Metagenomics into an Ecological Framework. Annu Rev Virol 2021; 8:133-158. [PMID: 34033501 DOI: 10.1146/annurev-virology-010421-053015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral metagenomics has expanded our knowledge of the ecology of uncultured viruses, within both environmental (e.g., terrestrial and aquatic) and host-associated (e.g., plants and animals, including humans) contexts. Here, we emphasize the implementation of an ecological framework in viral metagenomic studies to address questions in virology rarely considered ecological, which can change our perception of viruses and how they interact with their surroundings. An ecological framework explicitly considers diverse variants of viruses in populations that make up communities of interacting viruses, with ecosystem-level effects. It provides a structure for the study of the diversity, distributions, dynamics, and interactions of viruses with one another, hosts, and the ecosystem, including interactions with abiotic factors. An ecological framework in viral metagenomics stands poised to broadly expand our knowledge in basic and applied virology. We highlight specific fundamental research needs to capitalize on its potential and advance the field. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pacifica Sommers
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Anushila Chatterjee
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA; .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
24
|
Sameroff S, Tokarz R, Jain K, Oleynik A, Carrington CVF, Lipkin WI, Oura CAL. Novel quaranjavirus and other viral sequences identified from ticks parasitizing hunted wildlife in Trinidad and Tobago. Ticks Tick Borne Dis 2021; 12:101730. [PMID: 33957484 DOI: 10.1016/j.ttbdis.2021.101730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
Hunters are at a higher risk for exposure to zoonotic pathogens due to their close interactions with wildlife and arthropod vectors. In this study, high throughput sequencing was used to explore the viromes of two tick species, Amblyomma dissimile and Haemaphysalis juxtakochi, removed from hunted wildlife in Trinidad and Tobago. We identified sequences from 3 new viral species, from the viral families Orthomyxoviridae, Chuviridae and Tetraviridae in A. dissimile.
Collapse
Affiliation(s)
- Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, United States; School of Veterinary Medicine, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, United States; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, United States
| | - Alexandra Oleynik
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, United States
| | - Christine V F Carrington
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, United States
| | - Christopher A L Oura
- School of Veterinary Medicine, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
25
|
Bratuleanu BE, Temmam S, Chrétien D, Regnault B, Pérot P, Bouchier C, Bigot T, Savuța G, Eloit M. The virome of Rhipicephalus, Dermacentor and Haemaphysalis ticks from Eastern Romania includes novel viruses with potential relevance for public health. Transbound Emerg Dis 2021; 69:1387-1403. [PMID: 33840161 DOI: 10.1111/tbed.14105] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022]
Abstract
Ticks are involved in the transmission of various pathogens and several tick-borne diseases cause significant problems for the health of humans and livestock. The composition of viral communities in ticks and their interactions with pathogens, is poorly understood, particularly in Eastern Europe, an area that represents a major hub for animal-arthropod vectors exchanges (e.g., via bird migrations). The aim of this study was to describe the virome of Dermacentor sp., Rhipicephalus sp. and Haemaphysalis sp. ticks collected from relatively little studied regions of Romania (Iasi and Tulcea counties) located at the intersection of various biotopes, countries and routes of migrations. We also focused the study on viruses that could potentially have relevance for human and animal health. In 2019, more than 500 ticks were collected from the vegetation and from small ruminants and analysed by high-throughput transcriptome sequencing. Among the viral communities infecting Romanian ticks, viruses belonging to the Flaviviridae, Phenuiviridae and Nairoviridae families were identified and full genomes were derived. Phylogenetic analyses placed them in clades where mammalian isolates are found, suggesting that these viruses could constitute novel arboviruses. The characterization of these communities increase the knowledge of the diversity of viruses in Eastern Europe and provides a basis for further studies about the interrelationship between ticks and tick-borne viruses.
Collapse
Affiliation(s)
- Bianca Elena Bratuleanu
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety (ROVETEMERG), "Ion Ionescu de la Brad", University of Agricultural Sciences and Veterinary Medicine, Iasi, Romania
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France
| | - Béatrice Regnault
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France
| | - Philippe Pérot
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France
| | | | - Thomas Bigot
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Gheorghe Savuța
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety (ROVETEMERG), "Ion Ionescu de la Brad", University of Agricultural Sciences and Veterinary Medicine, Iasi, Romania
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France.,Department of Pharmaceutical and Biological Sciences, Alfort National Veterinary School, Maisons-Alfort, France
| |
Collapse
|
26
|
Buczek A, Pilch J, Buczek W. Tick Preventive Behaviors and Practices Adopted by Medical Students from Poland, Germany, and Thailand in Relation to Socio-Demographic Conditions and Their Knowledge of Ticks and Tick-Borne Diseases. INSECTS 2020; 11:insects11120863. [PMID: 33287425 PMCID: PMC7761883 DOI: 10.3390/insects11120863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/30/2022]
Abstract
Given the high medical importance of ticks, we analyzed the most common preventive behaviors and practices adopted by medical students from Poland, Germany, and Thailand, and the level of their knowledge of ticks and tick-borne diseases. A survey consisting of 19 questions was conducted among 636 randomly selected students. The study showed that the Polish and German students preferred inspection of the body on their return home (86.9% and 63.5%, respectively) and wearing protective clothes (79.8% and 32.3%, respectively) as part of prophylaxis. The Thai students most often chose wearing protective clothes (54.7%) and preventive behavior in tick habitats (42.7%). Approximately 7% of the Polish medical students and as many as 22% of the German and Thai respondents did not use any means of prevention. Our analyses suggest that the use of preventive methods and respondents' behaviors depend on socio-demographic factors and the level of health education. The insufficient practical implementation of tick prevention measures by the medical students suggests a need for verification of health education programs in schools as well as effective popularization and educational activities. It is also necessary to develop a public health protection strategy against the effects of tick bites.
Collapse
|
27
|
Temmam S, Barbarino A, Maso D, Behillil S, Enouf V, Huon C, Jaraud A, Chevallier L, Backovic M, Pérot P, Verwaerde P, Tiret L, van der Werf S, Eloit M. Absence of SARS-CoV-2 infection in cats and dogs in close contact with a cluster of COVID-19 patients in a veterinary campus. One Health 2020; 10:100164. [PMID: 32904469 PMCID: PMC7455794 DOI: 10.1016/j.onehlt.2020.100164] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/03/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China, in 2019, is responsible for the COVID-19 pandemic. It is now accepted that the wild fauna, probably bats, constitute the initial reservoir of the virus, but little is known about the role pets can play in the spread of the disease in human communities, knowing the ability of SARS-CoV-2 to infect some domestic animals. In this cross-sectional study, we tested the antibody response in a cluster of 21 domestic pets (9 cats and 12 dogs) living in close contact with their owners (belonging to a veterinary community of 20 students) in which two students tested positive for COVID-19 and several others (n = 11/18) consecutively showed clinical signs (fever, cough, anosmia, etc.) compatible with COVID-19 infection. Although a few pets presented many clinical signs indicative for a coronavirus infection, no antibodies against SARS-CoV-2 were detectable in their blood one month after the index case was reported, using an immunoprecipitation assay. These original data can serve a better evaluation of the host range of SARS-CoV-2 in natural environment exposure conditions.
Collapse
Affiliation(s)
- Sarah Temmam
- Institut Pasteur, Pathogen Discovery Laboratory, Paris, France
- Institut Pasteur, The OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
| | - Alix Barbarino
- École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Djérène Maso
- École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Sylvie Behillil
- Institut Pasteur, National Reference Center for Respiratory Viruses, Molecular Genetics of RNA Viruses, CNRS-UMR 3569, Univ Paris, Paris, France
| | - Vincent Enouf
- Institut Pasteur, National Reference Center for Respiratory Viruses, Molecular Genetics of RNA Viruses, CNRS-UMR 3569, Univ Paris, Paris, France
| | - Christèle Huon
- Institut Pasteur, Pathogen Discovery Laboratory, Paris, France
| | - Ambre Jaraud
- École nationale vétérinaire d'Alfort, Maisons-Alfort, France
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- EFS, IMRB, Creteil, France
| | - Lucie Chevallier
- École nationale vétérinaire d'Alfort, Maisons-Alfort, France
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- EFS, IMRB, Creteil, France
| | - Marija Backovic
- Institut Pasteur, Unité de Virologie Structurale - CNRS, UMR3569, Paris, France
| | - Philippe Pérot
- Institut Pasteur, Pathogen Discovery Laboratory, Paris, France
- Institut Pasteur, The OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
| | - Patrick Verwaerde
- École nationale vétérinaire d'Alfort, Maisons-Alfort, France
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Laurent Tiret
- École nationale vétérinaire d'Alfort, Maisons-Alfort, France
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
- EFS, IMRB, Creteil, France
| | - Sylvie van der Werf
- Institut Pasteur, National Reference Center for Respiratory Viruses, Molecular Genetics of RNA Viruses, CNRS-UMR 3569, Univ Paris, Paris, France
| | - Marc Eloit
- Institut Pasteur, Pathogen Discovery Laboratory, Paris, France
- Institut Pasteur, The OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
- École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
28
|
Thekke-Veetil T, Lagos-Kutz D, McCoppin NK, Hartman GL, Ju HK, Lim HS, Domier LL. Soybean Thrips (Thysanoptera: Thripidae) Harbor Highly Diverse Populations of Arthropod, Fungal and Plant Viruses. Viruses 2020; 12:E1376. [PMID: 33271916 PMCID: PMC7761488 DOI: 10.3390/v12121376] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/21/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022] Open
Abstract
Soybean thrips (Neohydatothrips variabilis) are one of the most efficient vectors of soybean vein necrosis virus, which can cause severe necrotic symptoms in sensitive soybean plants. To determine which other viruses are associated with soybean thrips, the metatranscriptome of soybean thrips, collected by the Midwest Suction Trap Network during 2018, was analyzed. Contigs assembled from the data revealed a remarkable diversity of virus-like sequences. Of the 181 virus-like sequences identified, 155 were novel and associated primarily with taxa of arthropod-infecting viruses, but sequences similar to plant and fungus-infecting viruses were also identified. The novel viruses were predicted to have positive-sense RNA, negative-stranded RNA, double-stranded RNA, and single-stranded DNA genomes. The assembled sequences included 100 contigs that represented at least 95% coverage of a virus genome or genome segment. Sequences represented 12 previously described arthropod viruses including eight viruses reported from Hubei Province in China, and 12 plant virus sequences of which six have been previously described. The presence of diverse populations of plant viruses within soybean thrips suggests they feed on and acquire viruses from multiple host plant species that could be transmitted to soybean. Assessment of the virome of soybean thrips provides, for the first time, information on the diversity of viruses present in thrips.
Collapse
Affiliation(s)
| | - Doris Lagos-Kutz
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; (D.L.-K.); (N.K.M.); (G.L.H.)
| | - Nancy K. McCoppin
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; (D.L.-K.); (N.K.M.); (G.L.H.)
| | - Glen L. Hartman
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; (D.L.-K.); (N.K.M.); (G.L.H.)
| | - Hye-Kyoung Ju
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 300-010, Korea; (H.-K.J.); (H.-S.L.)
| | - Hyoun-Sub Lim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 300-010, Korea; (H.-K.J.); (H.-S.L.)
| | - Leslie. L. Domier
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL 61801, USA; (D.L.-K.); (N.K.M.); (G.L.H.)
| |
Collapse
|
29
|
Grzelak L, Temmam S, Planchais C, Demeret C, Tondeur L, Huon C, Guivel-Benhassine F, Staropoli I, Chazal M, Dufloo J, Planas D, Buchrieser J, Rajah MM, Robinot R, Porrot F, Albert M, Chen KY, Crescenzo-Chaigne B, Donati F, Anna F, Souque P, Gransagne M, Bellalou J, Nowakowski M, Backovic M, Bouadma L, Le Fevre L, Le Hingrat Q, Descamps D, Pourbaix A, Laouénan C, Ghosn J, Yazdanpanah Y, Besombes C, Jolly N, Pellerin-Fernandes S, Cheny O, Ungeheuer MN, Mellon G, Morel P, Rolland S, Rey FA, Behillil S, Enouf V, Lemaitre A, Créach MA, Petres S, Escriou N, Charneau P, Fontanet A, Hoen B, Bruel T, Eloit M, Mouquet H, Schwartz O, van der Werf S. A comparison of four serological assays for detecting anti-SARS-CoV-2 antibodies in human serum samples from different populations. Sci Transl Med 2020; 12:eabc3103. [PMID: 32817357 PMCID: PMC7665313 DOI: 10.1126/scitranslmed.abc3103] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
It is of paramount importance to evaluate the prevalence of both asymptomatic and symptomatic cases of SARS-CoV-2 infection and their differing antibody response profiles. Here, we performed a pilot study of four serological assays to assess the amounts of anti-SARS-CoV-2 antibodies in serum samples obtained from 491 healthy individuals before the SARS-CoV-2 pandemic, 51 individuals hospitalized with COVID-19, 209 suspected cases of COVID-19 with mild symptoms, and 200 healthy blood donors. We used two ELISA assays that recognized the full-length nucleoprotein (N) or trimeric spike (S) protein ectodomain of SARS-CoV-2. In addition, we developed the S-Flow assay that recognized the S protein expressed at the cell surface using flow cytometry, and the luciferase immunoprecipitation system (LIPS) assay that recognized diverse SARS-CoV-2 antigens including the S1 domain and the carboxyl-terminal domain of N by immunoprecipitation. We obtained similar results with the four serological assays. Differences in sensitivity were attributed to the technique and the antigen used. High anti-SARS-CoV-2 antibody titers were associated with neutralization activity, which was assessed using infectious SARS-CoV-2 or lentiviral-S pseudotype virus. In hospitalized patients with COVID-19, seroconversion and virus neutralization occurred between 5 and 14 days after symptom onset, confirming previous studies. Seropositivity was detected in 32% of mildly symptomatic individuals within 15 days of symptom onset and in 3% of healthy blood donors. The four antibody assays that we used enabled a broad evaluation of SARS-CoV-2 seroprevalence and antibody profiling in different subpopulations within one region.
Collapse
Affiliation(s)
- Ludivine Grzelak
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Vaccine Research Institute, Creteil, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, INSERM U1222, Paris, France
| | - Caroline Demeret
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Université de Paris, Paris, France
| | - Laura Tondeur
- Emerging Diseases Epidemiology Unit, Department of Global Health, Institut Pasteur, Paris, France
| | - Christèle Huon
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France
| | - Florence Guivel-Benhassine
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Vaccine Research Institute, Creteil, France
| | - Isabelle Staropoli
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Vaccine Research Institute, Creteil, France
| | - Maxime Chazal
- Department of Virology, Institut Pasteur, Paris, France
| | - Jeremy Dufloo
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Vaccine Research Institute, Creteil, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Delphine Planas
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Vaccine Research Institute, Creteil, France
| | - Julian Buchrieser
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Vaccine Research Institute, Creteil, France
| | - Maaran Michael Rajah
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Vaccine Research Institute, Creteil, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Remy Robinot
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Vaccine Research Institute, Creteil, France
| | - Françoise Porrot
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Vaccine Research Institute, Creteil, France
| | - Mélanie Albert
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Université de Paris, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Kuang-Yu Chen
- RNA Biology of Influenza Virus, Department of Virology, Institut Pasteur, Paris, France
| | - Bernadette Crescenzo-Chaigne
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Université de Paris, Paris, France
| | - Flora Donati
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Université de Paris, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - François Anna
- Pasteur-TheraVectys joined unit, Institut Pasteur, Paris, France
| | - Philippe Souque
- Molecular Virology and Vaccinology Unit, Department of Virology, Institut Pasteur, Paris, France
| | | | - Jacques Bellalou
- Plate-Forme Technologique Production et Purification de Protéines Recombinantes, Institut Pasteur, Paris, France
| | - Mireille Nowakowski
- Plate-Forme Technologique Production et Purification de Protéines Recombinantes, Institut Pasteur, Paris, France
| | - Marija Backovic
- Structural Virology Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Lila Bouadma
- Université of Paris, INSERM UMR 1137 IAME, Paris, France
- Medical and Infectious Diseases Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Bichat-Claude-Bernard University Hospital, Paris, France
| | - Lucie Le Fevre
- Medical and Infectious Diseases Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Bichat-Claude-Bernard University Hospital, Paris, France
| | - Quentin Le Hingrat
- Université of Paris, INSERM UMR 1137 IAME, Paris, France
- Department of Virology, Assistance Publique-Hôpitaux de Paris, Bichat-Claude-Bernard University Hospital, Paris, France
| | - Diane Descamps
- Université of Paris, INSERM UMR 1137 IAME, Paris, France
- Department of Virology, Assistance Publique-Hôpitaux de Paris, Bichat-Claude-Bernard University Hospital, Paris, France
| | - Annabelle Pourbaix
- Department of Infectious Diseases, Assistance Publique-Hôpitaux de Paris, Bichat-Claude-Bernard University Hospital, Paris, France
| | - Cédric Laouénan
- Université of Paris, INSERM UMR 1137 IAME, Paris, France
- Department of Epidemiology, Biostatistics and Clinical Research, Assistance Publique-Hôpitaux de Paris, Bichat-Claude-Bernard University Hospital, INSERM CIC-EC 1425, Paris, France
| | - Jade Ghosn
- Université of Paris, INSERM UMR 1137 IAME, Paris, France
- Department of Infectious Diseases, Assistance Publique-Hôpitaux de Paris, Bichat-Claude-Bernard University Hospital, Paris, France
| | - Yazdan Yazdanpanah
- Université of Paris, INSERM UMR 1137 IAME, Paris, France
- Department of Infectious Diseases, Assistance Publique-Hôpitaux de Paris, Bichat-Claude-Bernard University Hospital, Paris, France
| | - Camille Besombes
- Emerging Diseases Epidemiology Unit, Department of Global Health, Institut Pasteur, Paris, France
| | - Nathalie Jolly
- Investigation Clinique et Accès aux Ressources Biologiques (ICAReB), Center for Translational Research, Institut Pasteur, Paris, France
| | - Sandrine Pellerin-Fernandes
- Investigation Clinique et Accès aux Ressources Biologiques (ICAReB), Center for Translational Research, Institut Pasteur, Paris, France
| | - Olivia Cheny
- Investigation Clinique et Accès aux Ressources Biologiques (ICAReB), Center for Translational Research, Institut Pasteur, Paris, France
| | - Marie-Noëlle Ungeheuer
- Investigation Clinique et Accès aux Ressources Biologiques (ICAReB), Center for Translational Research, Institut Pasteur, Paris, France
| | - Guillaume Mellon
- Unité Coordination du Risque Epidémique et Biologique, AP-HP, Hôpital Necker, Paris, France
| | - Pascal Morel
- Etablissement Français du Sang (EFS), Paris, France
| | - Simon Rolland
- Service de maladies infectieuses, hôpital universitaire Cavale Blanche, Brest, France
- CIC 1417, CIC de vaccinologie Cochin-Pasteur, AP-HP, Hôpital Cochin, Paris, France
| | - Felix A Rey
- Structural Virology Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
| | - Sylvie Behillil
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Université de Paris, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Vincent Enouf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Université de Paris, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| | - Audrey Lemaitre
- Direction alerte et crises, réserve sanitaire, Santé publique France, Saint-Maurice, France
| | - Marie-Aude Créach
- Centre d'épidémiologie et de santé publique des armées, Marseille, France
- Direction Générale de la Santé, Paris, France
| | - Stephane Petres
- Plate-Forme Technologique Production et Purification de Protéines Recombinantes, Institut Pasteur, Paris, France
| | | | - Pierre Charneau
- Pasteur-TheraVectys joined unit, Institut Pasteur, Paris, France
- Molecular Virology and Vaccinology Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Arnaud Fontanet
- Emerging Diseases Epidemiology Unit, Department of Global Health, Institut Pasteur, Paris, France
- PACRI Unit, Conservatoire National des Arts et Métiers, Paris, France
| | - Bruno Hoen
- Direction de la recherche médicale, Institut Pasteur, Paris, France
| | - Timothée Bruel
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Vaccine Research Institute, Creteil, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Department of Virology, Institut Pasteur, Paris, France.
- National Veterinary School of Alfort, Maisons-Alfort, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, INSERM U1222, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France.
- Vaccine Research Institute, Creteil, France
| | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, CNRS UMR 3569, Paris, France
- Université de Paris, Paris, France
- National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
| |
Collapse
|
30
|
Birnberg L, Temmam S, Aranda C, Correa-Fiz F, Talavera S, Bigot T, Eloit M, Busquets N. Viromics on Honey-Baited FTA Cards as a New Tool for the Detection of Circulating Viruses in Mosquitoes. Viruses 2020; 12:E274. [PMID: 32121402 PMCID: PMC7150749 DOI: 10.3390/v12030274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 01/10/2023] Open
Abstract
Worldwide, emerging and re-emerging infectious diseases (EIDs) are a major burden on public and animal health. Arthropod vectors, with mosquitoes being the main contributors of global disease, transmit more than 70% of the recognized EIDs. To assess new alternatives for arthropod-borne viral diseases surveillance, and for the detection of new viruses, honey-baited Flinders Technology Associates (FTA) cards were used as sugar bait in mosquito traps during entomological surveys at the Llobregat River Delta (Catalonia, Spain). Next generation sequencing (NGS) metagenomics analysis was applied on honey-baited FTA cards, which had been exposed to field-captured mosquitoes to characterize their associated virome. Arthropod- and plant-infecting viruses governed the virome profile on FTA cards. Twelve near-complete viral genomes were successfully obtained, suggesting good quality preservation of viral RNAs. Mosquito pools linked to the FTA cards were screened for the detection of mosquito-associated viruses by specific RT-PCRs to confirm the presence of these viruses. The circulation of viruses related to Alphamesonivirus, Quaranjavirus and unclassified Bunyavirales was detected in mosquitoes, and phylogenetic analyses revealed their similarities to viruses previously reported in other continents. To the best our knowledge, our findings constitute the first distribution record of these viruses in European mosquitoes and the first hint of insect-specific viruses in mosquitoes' saliva in field conditions, demonstrating the feasibility of this approach to monitor the transmissible fraction of the mosquitoes' virome. In conclusion, this pilot viromics study on honey-baited FTA cards was shown to be a valid approach for the detection of viruses circulating in mosquitoes, thereby setting up an alternative tool for arbovirus surveillance and control programs.
Collapse
Affiliation(s)
- Lotty Birnberg
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
| | - Sarah Temmam
- Institut Pasteur, Pathogen Discovery Laboratory, 75015 Paris, France; (S.T.); (T.B.); (M.E.)
| | - Carles Aranda
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
- Servei de Control de Mosquits del Consell Comarcal del Baix Llobregat, 08820 Barcelona, Spain
| | - Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
| | - Sandra Talavera
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
| | - Thomas Bigot
- Institut Pasteur, Pathogen Discovery Laboratory, 75015 Paris, France; (S.T.); (T.B.); (M.E.)
- Institut Pasteur – Bioinformatics and Biostatistics Hub—Computational Biology department, Institut Pasteur, USR 3756 CNRS—75015 Paris, France
| | - Marc Eloit
- Institut Pasteur, Pathogen Discovery Laboratory, 75015 Paris, France; (S.T.); (T.B.); (M.E.)
- National Veterinary School of Alfort, Paris-Est University, 94704 CEDEX, Maisons-Alfort, France
| | - Núria Busquets
- Centre de Recerca en Sanitat Animal (CReSA), Institut de recerca en Tecnologies Agroalimentaries (IRTA), 08193 Barcelona, Spain; (L.B.); (C.A.); (F.C.-F.); (S.T.)
| |
Collapse
|
31
|
Gondard M, Temmam S, Devillers E, Pinarello V, Bigot T, Chrétien D, Aprelon R, Vayssier-Taussat M, Albina E, Eloit M, Moutailler S. RNA Viruses of Amblyomma variegatum and Rhipicephalus microplus and Cattle Susceptibility in the French Antilles. Viruses 2020; 12:E144. [PMID: 31991915 PMCID: PMC7077237 DOI: 10.3390/v12020144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Ticks transmit a wide variety of pathogens including bacteria, parasites and viruses. Over the last decade, numerous novel viruses have been described in arthropods, including ticks, and their characterization has provided new insights into RNA virus diversity and evolution. However, little is known about their ability to infect vertebrates. As very few studies have described the diversity of viruses present in ticks from the Caribbean, we implemented an RNA-sequencing approach on Amblyomma variegatum and Rhipicephalus microplus ticks collected from cattle in Guadeloupe and Martinique. Among the viral communities infecting Caribbean ticks, we selected four viruses belonging to the Chuviridae, Phenuiviridae and Flaviviridae families for further characterization and designing antibody screening tests. While viral prevalence in individual tick samples revealed high infection rates, suggesting a high level of exposure of Caribbean cattle to these viruses, no seropositive animals were detected. These results suggest that the Chuviridae- and Phenuiviridae-related viruses identified in the present study are more likely tick endosymbionts, raising the question of the epidemiological significance of their occurrence in ticks, especially regarding their possible impact on tick biology and vector capacity. The characterization of these viruses might open the door to new ways of preventing and controlling tick-borne diseases.
Collapse
Affiliation(s)
- Mathilde Gondard
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.G.); (E.D.)
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France; (V.P.); (R.A.); (E.A.)
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Inserm U1117, Biology of Infection Unit, Institut Pasteur, 75015 Paris, France; (S.T.); (T.B.); (D.C.)
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.G.); (E.D.)
| | - Valérie Pinarello
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France; (V.P.); (R.A.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, 34000 Montpellier, France
| | - Thomas Bigot
- Pathogen Discovery Laboratory, Inserm U1117, Biology of Infection Unit, Institut Pasteur, 75015 Paris, France; (S.T.); (T.B.); (D.C.)
- Bioinformatics and Biostatistics Hub, Computational Biology Department, Institut Pasteur, USR 3756 CNRS, 75015 Paris, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Inserm U1117, Biology of Infection Unit, Institut Pasteur, 75015 Paris, France; (S.T.); (T.B.); (D.C.)
| | - Rosalie Aprelon
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France; (V.P.); (R.A.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, 34000 Montpellier, France
| | - Muriel Vayssier-Taussat
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.G.); (E.D.)
| | - Emmanuel Albina
- CIRAD, UMR ASTRE, F-97170 Petit-Bourg, Guadeloupe, France; (V.P.); (R.A.); (E.A.)
- ASTRE, University Montpellier, CIRAD, INRAE, 34000 Montpellier, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Inserm U1117, Biology of Infection Unit, Institut Pasteur, 75015 Paris, France; (S.T.); (T.B.); (D.C.)
- National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, 94704 Cedex, France
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, 94700 Maisons-Alfort, France; (M.G.); (E.D.)
| |
Collapse
|
32
|
Ergünay K. Revisiting new tick-associated viruses: what comes next? Future Virol 2020. [DOI: 10.2217/fvl-2019-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tick-borne viral infections continue to cause diseases with considerable impact on humans, livestock, companion animals and wildlife. Many lack specific therapeutics and vaccines are available for only a few. Tick-borne viruses will continue to emerge, facilitated by anthroponotic factors related to the modern lifestyle. We persistently identify and are obliged to cope with new examples of emerging tick-borne viral diseases and novel viruses today. Many new strains have been detected in vertebrates and arthropods, some causing severe diseases likely to challenge public and veterinary health. This manuscript aims to provide a narrative overview of recently-described tick-associated viruses, with perspectives on changing paradigms in identification, screening and control.
Collapse
Affiliation(s)
- Koray Ergünay
- Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Virology Unit, Ankara 06100, Turkey
| |
Collapse
|
33
|
Temmam S, Bigot T, Chrétien D, Gondard M, Pérot P, Pommelet V, Dufour E, Petres S, Devillers E, Hoem T, Pinarello V, Hul V, Vongphayloth K, Hertz JC, Loiseau I, Dumarest M, Duong V, Vayssier-Taussat M, Grandadam M, Albina E, Dussart P, Moutailler S, Cappelle J, Brey PT, Eloit M. Insights into the Host Range, Genetic Diversity, and Geographical Distribution of Jingmenviruses. mSphere 2019; 4:e00645-19. [PMID: 31694898 PMCID: PMC6835211 DOI: 10.1128/msphere.00645-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022] Open
Abstract
Jingmenvirus is a recently identified group of segmented RNA viruses phylogenetically linked with unsegmented Flaviviridae viruses. Primarily identified in various tick genera originating in China, Jingmenvirus geographical distribution has rapidly expanded to cover Africa, South America, Caribbean, and Europe. The identification of Jingmen-related viruses in various mammals, including febrile humans, opens the possibility that Jingmenviruses may be novel tick-borne arboviruses. In this study, we aimed at increasing knowledge of the host range, genetic diversity, and geographical distribution of Jingmenviruses by reporting for the first time the identification of Jingmenviruses associated with Rhipicephalus microplus ticks originating in the French Antilles (Guadeloupe and Martinique islands), with Amblyomma testudinarium ticks in Lao PDR, and with Ixodes ricinus ticks in metropolitan France, and from urine of Pteropus lylei bats in Cambodia. Analyses of the relationships between the different Jingmenvirus genomes resulted in the identification of three main phylogenic subclades, each of them containing both tick-borne and mammal-borne strains, reinforcing the idea that Jingmenviruses may be considered as tick-borne arboviruses. Finally, we estimated the prevalence of Jingmenvirus-like infection using luciferase immunoprecipitation assay screening (LIPS) of asymptomatic humans and cattle highly exposed to tick bites. Among 70 French human, 153 Laotian human, and 200 Caribbean cattle sera tested, only one French human serum was found (slightly) positive, suggesting that the prevalence of Jingmenvirus human and cattle infections in these areas is probably low.IMPORTANCE Several arboviruses emerging as new pathogens for humans and domestic animals have recently raised public health concern and increased interest in the study of their host range and in detection of spillover events. Recently, a new group of segmented Flaviviridae-related viruses, the Jingmenviruses, has been identified worldwide in many invertebrate and vertebrate hosts, pointing out the issue of whether they belong to the arbovirus group. The study presented here combined whole-genome sequencing of three tick-borne Jingmenviruses and one bat-borne Jingmenvirus with comprehensive phylogenetic analyses and high-throughput serological screening of human and cattle populations exposed to these viruses to contribute to the knowledge of Jingmenvirus host range, geographical distribution, and mammalian exposure.
Collapse
Affiliation(s)
- Sarah Temmam
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Thomas Bigot
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- Institut Pasteur-Bioinformatics and Biostatistics Hub-Computational Biology Department, USR 3756 CNRS, Institut Pasteur, Paris, France
| | - Delphine Chrétien
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Mathilde Gondard
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Philippe Pérot
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Virginie Pommelet
- Institut Pasteur du Laos, Vientiane, Lao People's Democratic Republic
| | - Evelyne Dufour
- Institut Pasteur, Production and Purification of Recombinant Proteins Technological Platform-C2RT, Institut Pasteur, Paris, France
| | - Stéphane Petres
- Institut Pasteur, Production and Purification of Recombinant Proteins Technological Platform-C2RT, Institut Pasteur, Paris, France
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Thavry Hoem
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Valérie Pinarello
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
| | - Vibol Hul
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | | | | | - Irène Loiseau
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Marine Dumarest
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - Veasna Duong
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Muriel Vayssier-Taussat
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Marc Grandadam
- Institut Pasteur du Laos, Vientiane, Lao People's Democratic Republic
| | - Emmanuel Albina
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Julien Cappelle
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, Montpellier, France
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- UMR EpiA, INRA, VetAgro Sup, Marcy l'Etoile, France
| | - Paul T Brey
- Institut Pasteur du Laos, Vientiane, Lao People's Democratic Republic
| | - Marc Eloit
- Institut Pasteur, Biology of Infection Unit, Inserm U1117, Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
- National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, France
| |
Collapse
|