1
|
Pillaiyar T, Laufer S. A patent review of CXCR7 modulators (2019-present). Expert Opin Ther Pat 2025:1-27. [PMID: 40122070 DOI: 10.1080/13543776.2025.2477475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/13/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Atypical chemokine receptor 3 (ACKR3) (formerly CXCR7) regulates various biological processes through its ligands and is closely associated with numerous diseases, including inflammation, cancer, cardiovascular diseases (CVDs), pain, and neurological disorders. Therefore, ACKR3 has emerged as a potential target for disease treatment. AREAS COVERED This review summarizes the ACKR3 modulators published in patents from 2019 to 2024 using data from Google Patents, the European Patent Office, and the World Intellectual Property Organization's online databases. This includes information on their chemical structures, syntheses, activities, and developmental stages. EXPERT OPINION ACKR3 agonists gained traction as a treatment for cardiovascular and pain conditions. WW-12, which was derived from the chemical modifications of conolidine, became a novel small-molecule pain modulator by activating ACKR3, which in turn boosted endogenous opioid peptides for the classical opioid receptors.ACKR3 antagonist ACT-1004-1239 from Idorsia Pharmaceuticals Ltd. has demonstrated the ability to treat cancer, acute lung injury/ARDS, and autoimmune diseases, including multiple sclerosis. The outcomes of these clinical trials will direct the development and indications of future ACKR3 modulators.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, Tübingen, Germany
- iFIT Cluster of Excellence (EXC 2180) "Image-guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Sarallah R, Jahani S, Soltani Khaboushan A, Moaveni AK, Amiri M, Majidi Zolbin M. The role of CXCL12/CXCR4/CXCR7 axis in cognitive impairment associated with neurodegenerative diseases. Brain Behav Immun Health 2025; 43:100932. [PMID: 39834554 PMCID: PMC11743895 DOI: 10.1016/j.bbih.2024.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/03/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS), are characterized by progressive neuronal loss and cognitive impairment (CI). The: Cysteine-X-cysteine chemokine ligand 12(CXCL12)/CXC chemokine receptor type 4 (CXCR4)/CXC chemokine receptor type 7 (CXCR7) axis has emerged as a critical molecular pathway in the development of CI in these disorders. This review explores the role of this axis in the pathogenesis of CI across these neurodegenerative diseases, synthesizing current evidence and its implications for targeted therapies. In AD, dysregulation of this axis contributes to amyloid-β accumulation and tau hyperphosphorylation, leading to synaptic dysfunction and cognitive decline. PD studies reveal that CXCL12/CXCR4 signaling influences dopaminergic neuron survival and microglial activation, affecting cognitive function. In MS, the axis modulates neuroinflammation and demyelination processes, impacting cognitive performance. ALS research indicates that the CXCL12/CXCR4/CXCR7 pathway is involved in motor neuron degeneration and associated cognitive deficits. Across these diseases, the axis influences neuroinflammation, synaptic plasticity, and neuronal survival through various signaling cascades, including PI3K/AKT, MAPK, and JAK/STAT pathways. Emerging evidence suggests that modulating this axis could provide neuroprotective effects and potentially alleviate cognitive symptoms. This review highlights the potential of the CXCL12/CXCR4/CXCR7 axis as a therapeutic target for addressing CI in neurodegenerative diseases. It also underscores the need for further research to fully elucidate its role and develop effective interventions, potentially leading to improved clinical management strategies for these devastating disorders.
Collapse
Affiliation(s)
| | - Shima Jahani
- MS Research Center Neuroscience Institute, Tehran University of Medical Science, Iran
| | - Alireza Soltani Khaboushan
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Kian Moaveni
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Amiri
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhao C, Taliento AE, Belkin EM, Fearns R, Lerou PH, Ai X, Bai Y. Infant RSV infection desensitizes β2-adrenergic receptor via CXCL11-CXCR7 signaling in airway smooth muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632772. [PMID: 39868223 PMCID: PMC11761401 DOI: 10.1101/2025.01.13.632772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Rationale Airflow obstruction refractory to β2 adrenergic receptor (β2AR) agonists is an important clinical feature of infant respiratory syncytial virus (RSV) bronchiolitis, with limited treatment options. This resistance is often linked to poor drug delivery and potential viral infection of airway smooth muscle cells (ASMCs). Whether RSV inflammation causes β2AR desensitization in infant ASMCs is unknown. Objectives To investigate the interaction of RSV inflammation with the β2AR signaling pathway in infant ASMCs. Methods Infant precision-cut lung slices (PCLSs) and mouse pup models of RSV infection were subjected to airway physiological assays. Virus-free, conditioned media from RSV-infected infant bronchial epithelial cells in air-liquid interface (ALI) culture and nasopharyngeal aspirates (NPA) from infants with severe RSV bronchiolitis were collected and applied to infant PCLSs and ASMCs. Cytokines in these samples were profiled and assessed for the effects on β2AR expression, cell surface distribution, and relaxant function in ASMCs. Measurements and Main Results Conditioned media and NPA induced similar resistance to β2AR agonists in ASMCs as RSV infection. Cytokine profiling identified CXCL11 as one of the most elevated signals following RSV infection. CXCL11 activated its receptor CXCR7 in a complex with β2AR in ASMCs to promote β2AR phosphorylation, internalization, and degradation. Blockade of CXCR7 partially restored airway relaxation in response to β2AR agonists in infant PCLSs and mouse pup models of RSV infection. Conclusions The CXCL11-CXCR7 pathway plays a critical role in β2AR desensitization in ASMCs during RSV infection and represents a potential therapeutic target in alleviating airflow obstruction in infant RSV bronchiolitis.
Collapse
|
4
|
Meng P, Liu C, Li J, Fang P, Yang B, Sun W, Zhang Y. CXC chemokine receptor 7 ameliorates renal fibrosis by inhibiting β-catenin signaling and epithelial-to-mesenchymal transition in tubular epithelial cells. Ren Fail 2024; 46:2300727. [PMID: 38189094 PMCID: PMC10776045 DOI: 10.1080/0886022x.2023.2300727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
Renal fibrosis is a common feature of various chronic kidney diseases. However, the underlying mechanism remains poorly understood. The CXC chemokine receptor (CXCR) family plays a role in renal fibrosis; however, the detailed mechanisms have not been elucidated. In this study, we investigated the potential role of CXCR7 in mediating renal fibrosis. CXCR7 expression is decreased in unilateral ischemia-reperfusion injury (UIRI) and unilateral ureteral obstruction mouse models. Furthermore, CXCR7 was specifically expressed primarily in the Lotus Tetragonolobus Lectin-expressing segment of tubules, was slightly expressed in the peanut agglutinin-expressing segment, and was barely expressed in the Dolichos biflorus agglutinin-expressing segment. Administration of pFlag-CXCR7, an overexpression plasmid for CXCR7, significantly inhibited the activation of β-catenin signaling and protected against the progression of epithelial-to-mesenchymal transition (EMT) and renal fibrosis in a UIRI mouse model. Using cultured HKC-8 cells, we found that CXCR7 significantly downregulated the expression of active β-catenin and fibrosis-related markers, including fibronectin, Collagen I, and α-SMA. Furthermore, CXCR7 significantly attenuated TGF-β1-induced changes in β-catenin signaling, EMT and fibrosis. These results suggest that CXCR7 plays a crucial role in inhibiting the activation of β-catenin signaling and the progression of EMT and renal fibrosis. Thus, CXCR7 could be a novel therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Ping Meng
- Department of Central Laboratory, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Chunli Liu
- Department of Central Laboratory, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Jingchun Li
- Department of Central Laboratory, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Ping Fang
- Department of Laboratory Medicine, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Bo Yang
- Department of Clinical Nutrition, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Wei Sun
- Department of Central Laboratory, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Yunfang Zhang
- Department of Nephrology, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| |
Collapse
|
5
|
Ren Y, Tian J, Shi W, Feng J, Liu Y, Kang H, He Y. Evaluation of ocular surface inflammation and systemic conditions in patients with systemic lupus erythematosus: a cross-sectional study. BMC Ophthalmol 2024; 24:492. [PMID: 39533209 PMCID: PMC11556210 DOI: 10.1186/s12886-024-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE The cross-sectional study was designed to evaluate the association of ocular surface inflammation with systemic conditions in patients with systemic lupus erythematosus (SLE). METHODS The study enrolled 30 SLE patients and 30 controls. Ocular symptoms were evaluated using the Ocular Surface Disease Index (OSDI) questionnaire. Tear samples from all participants were collected for tear multi-cytokine and chemokine concentration analysis. All participants were assessed for dry eye disease (DED), including Schirmer I test, tear break-up time (TBUT), corneal fluorescein staining (CFS), meibomian gland secretion (MGS), lid-parallel conjunctival folds (LIPCOF), corneal clarity, and symblepharon. Besides, all participants were also examined for conjunctival impression cytology to measure the density of conjunctival goblet cells (CGCs). The peripheral blood indicators from SLE patients were also collected to measure the SLE-associated autoantibody specificities and systemic inflammatory indicators. Pearson and Spearman's analysis were uesd to examine the correlation between tear cytokines, CGCs, DED-related indicators, and systemic conditions. RESULTS The two groups were matched for age and gender in this study. 36.67% of eyes (11 in 30) of SLE patients and 13.33% of eyes (4 in 30) of controls were diagnosed with DED. OSDI scores, abnormal TBUT percentages, CFS percentages, and DED grading were all higher in SLE patients than in control group, while density of CGCs was lower. There were no significant differences in Schirmer I test, MGS, LIPCOF, corneal clarity, and symblepharon between SLE patients and controls. The levels of tear chemokine (C-X-C motif) ligand 11 (CXCL11) and cytokine interleukin-7 (IL-7) in patients with SLE were significantly higher than those in control group. Moreover, among SLE patients, the severity of DED and the level of tear chemokine CXCL11 were significantly positively correlated with SLE-associated autoantibody specificities. CONCLUSION Dry eye and tear cytokines and chemokines-mediated ocular surface inflammation persist in SLE patients and are associated with systemic conditions. Therefore, it is necessary for patients with SLE to combine systemic and ocular assessments.
Collapse
Affiliation(s)
- Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jing Tian
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jianing Feng
- Xi'an People's Hospital (Xi'an Fourth Hospital), Shaanxi Eye Hospital, Northwest University Affiliated People's Hospital, Xi'an, Shaanxi Province, China
| | - Yingyi Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yan He
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmic and Visual Science Key Laboratory, Beijing, China.
| |
Collapse
|
6
|
Wang BH, Robert R, Marques FZ, Rajapakse N, Kiriazis H, Mackay CR, Kaye DM. Chemokine receptor CXCR7 antagonism ameliorates cardiac and renal fibrosis induced by mineralocorticoid excess. Sci Rep 2024; 14:26985. [PMID: 39505939 PMCID: PMC11541864 DOI: 10.1038/s41598-024-75789-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Cardiorenal fibrosis is a common feature of chronic cardiovascular disease and recent data suggests that cytokines and chemokines may also drive fibrosis. Here we tested the hypothesis that CXCR7, a highly conserved chemokine receptor, contributes to cardiac and renal fibrosis. We generated an anti-mouse CXCR7-specific monoclonal antibody (CXCR7 mAb) and tested its anti-fibrotic actions in cardiorenal fibrosis induced using the deoxycorticosterone acetate/uni-nephrectomy (DOCA-UNX) model. CXCR7 mAb treatment (10 mg/kg, twice weekly for 6 weeks) significantly attenuated the development of cardiac and renal fibrosis, and reduced fibrotic and inflammatory gene expression levels, in the absence of an effect on blood pressure. Immunohistochemical analysis demonstrated an increase in the vascular expression of CXCR7 in DOCA-UNX-treated mice. This study demonstrated that a CXCR7 mediated pathway plays a significant role in cardiac and renal fibrosis induced by DOCA-UNX treatment. Accordingly, antagonism of CXCR7 may provide a therapeutic opportunity to mitigate against fibrosis in the setting of mineralocorticoid excess.
Collapse
Affiliation(s)
- Bing H Wang
- Heart Failure Research Group, Baker Heart and Diabetes Institute, St Kilda Rd Central, PO Box 6492, Melbourne, VIC, 8008, Australia
- Biomarker Discovery, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Remy Robert
- Department of Physiology, Biodiscovery Research Institute, Faculty of Medicine, Nursing and Health Services, Monash University, Clayton, VIC, Australia
| | - Francine Z Marques
- Heart Failure Research Group, Baker Heart and Diabetes Institute, St Kilda Rd Central, PO Box 6492, Melbourne, VIC, 8008, Australia
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Niwanthi Rajapakse
- Heart Failure Research Group, Baker Heart and Diabetes Institute, St Kilda Rd Central, PO Box 6492, Melbourne, VIC, 8008, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Helen Kiriazis
- Preclinical Cardiology, Microsurgery, and Imaging Platform, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Charles R Mackay
- Department of Physiology, Biodiscovery Research Institute, Faculty of Medicine, Nursing and Health Services, Monash University, Clayton, VIC, Australia.
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, St Kilda Rd Central, PO Box 6492, Melbourne, VIC, 8008, Australia.
- Monash-Alfred-Baker Centre for Cardiovascular Research, Faculty of Medicine, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Corsaro A, Tremonti B, Bajetto A, Barbieri F, Thellung S, Florio T. Chemokine signaling in tumors: potential role of CXC chemokines and their receptors as glioblastoma therapeutic targets. Expert Opin Ther Targets 2024; 28:937-952. [PMID: 39582130 DOI: 10.1080/14728222.2024.2433130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Glioblastoma is the most aggressive brain tumor, typically associated with poor prognosis. Its treatment is challenging due to the peculiar glioblastoma cell biology and its microenvironment complexity. Specifically, a small fraction of glioma stem cells within the tumor mass drives tumor growth and invasiveness by hijacking brain resident and immune cells. This process also involves modification of extracellular matrix components, such as collagen and glycoproteins, where the secretion of soluble mediators, particularly CXC chemokines, plays a significant role. AREAS COVERED We analyze the critical role of chemokines in glioblastoma tumorigenesis, proliferation, angiogenesis, tumor progression, and brain parenchyma invasiveness. Recent evidence highlights how chemokines and their receptors impact glioblastoma biology and represent potential therapeutic targets. Several studies show that chemokines modulate glioblastoma development by acting on glioma stem cell proliferation and self-renewal, promoting vasculogenic mimicry, and altering the extracellular matrix to facilitate tumor invasiveness. EXPERT OPINION There is clear evidence supporting CXC receptors (such as CXCR1, 2, 3, 4, and ACKR3/CXCR7) and their signaling pathways as promising pharmacological targets. This in-depth review of chemokine roles in glioblastoma development provides a critical evaluation of the possible clinical translation of innovative compounds targeting these ligand/receptor systems, leading to improved therapeutic outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Beatrice Tremonti
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Adriana Bajetto
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| |
Collapse
|
8
|
Araujo David B, Atif J, Vargas E Silva Castanheira F, Yasmin T, Guillot A, Ait Ahmed Y, Peiseler M, Hommes JW, Salm L, Brundler MA, Surewaard BGJ, Elhenawy W, MacParland S, Ginhoux F, McCoy K, Kubes P. Kupffer cell reverse migration into the liver sinusoids mitigates neonatal sepsis and meningitis. Sci Immunol 2024; 9:eadq9704. [PMID: 39485859 DOI: 10.1126/sciimmunol.adq9704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
In adults, liver-resident macrophages, or Kupffer cells (KCs), reside in the sinusoids and sterilize circulating blood by capturing rapidly flowing microbes. We developed quantitative intravital imaging of 1-day-old mice combined with transcriptomics, genetic manipulation, and in vivo infection assays to interrogate increased susceptibility of newborns to bloodstream infections. Whereas 1-day-old KCs were better at catching Escherichia coli in vitro, we uncovered a critical 1-week window postpartum when KCs have limited access to blood and must translocate from liver parenchyma into the sinusoids. KC migration was independent of the microbiome but depended on macrophage migration inhibitory factor, its receptor CD74, and the adhesion molecule CD44. On the basis of our findings, we propose a model of progenitor macrophage seeding of the liver sinusoids via a reverse transmigration process from liver parenchyma. These results also illustrate the importance of developing newborn mouse models to understand newborn immunity and disease.
Collapse
Affiliation(s)
- Bruna Araujo David
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jawairia Atif
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Fernanda Vargas E Silva Castanheira
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Tamanna Yasmin
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Yeni Ait Ahmed
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Moritz Peiseler
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
- Berlin Institute of Health (BIH), Berlin 10178, Germany
| | - Josefien W Hommes
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Lilian Salm
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Marie-Anne Brundler
- Department of Pathology and Laboratory Medicine and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Bas G J Surewaard
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Wael Elhenawy
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Antimicrobial Resistance, One Health Consortium, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Striving for Pandemic Preparedness, Alberta Research Consortium, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Sonya MacParland
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A(∗)STAR), Singapore 138648, Singapore
- Gustave Roussy Cancer Campus, Villejuif 94800, France
| | - Kathy McCoy
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Paul Kubes
- Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Biomedical and Molecular Science, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
9
|
Hass R, von der Ohe J, Luo T. Human mesenchymal stroma/stem-like cell-derived taxol-loaded EVs/exosomes transfer anti-tumor microRNA signatures and express enhanced SDF-1-mediated tumor tropism. Cell Commun Signal 2024; 22:506. [PMID: 39420354 PMCID: PMC11488203 DOI: 10.1186/s12964-024-01886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The release of extracellular vesicles (EVs) including exosomes from human mesenchymal stroma/stem-like cells (MSC) represents valuable cell-free carriers for the delivery of regenerative and medicinal compounds. METHODS EVs/exosomes were isolated by differential centrifugation from four individual MSC as controls and after treatment with a sub-lethal concentration of 10 mM taxol for 24 h, respectively. The isolated EVs/exosomes were characterized and quantified by nano-tracking-analysis and by Western blots. MicroRNAs (miRs) were isolated from the different EVs/exosome populations and expression levels were quantified by qPCR using 1246 miR templates. Cytotoxic effects of the different MSC-derived taxol-loaded EVs/exosomes were determined in five different GFP-transduced cancer cell lines and quantified by a fluoroscan assay with a GFP-detecting fluorimeter. The presence of stroma cell-derived factor 1 (SDF-1) in MSC-derived EVs/exosomes and its enhanced expression in the vesicles after taxol treatment of MSC was quantified by a specific ELISA. RESULTS EVs/exosomes isolated from four individual taxol-treated MSC displayed a larger size and higher yields as the control EVs/exosomes and were used as anti-tumor therapeutic vehicles. Application of each of the four MSC-derived taxol-loaded EVs/exosome populations revealed significant cytotoxic effects in cell lines of five different tumor entities (carcinomas of lung, breast, ovar, colon, astrocytoma) in a concentration-dependent manner. Expression analysis of 1246 miRs in these taxol-loaded EVs/exosomes as compared to the corresponding MSC-derived control EVs/exosomes unraveled a taxol-mediated up-regulation of 11 miRs with predominantly anti-tumorigenic properties. Moreover, various constitutively expressed protein levels were unanimously altered in the MSC cultures. Taxol treatment of the different MSC revealed an up-regulation of tetraspanins and a 2.2-fold to 5.4-fold increased expression of SDF-1 among others. Treatment of cancer cells with MSC-derived taxol-loaded EVs/exosomes in the presence of a neutralizing SDF-1 antibody significantly abolished the cytotoxic effects between 20.3% and 27%. CONCLUSIONS These findings suggested a taxol-mediated increase of anti-cancer properties in MSC that enhance the tropism of derived EVs/exosomes to tumors, thereby specifically focusing the therapeutic effects of the delivered products.
Collapse
Affiliation(s)
- Ralf Hass
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, 30625, Hannover, Germany.
| | - Juliane von der Ohe
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, 30625, Hannover, Germany
| | - Tianjiao Luo
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, 30625, Hannover, Germany
| |
Collapse
|
10
|
Robles-Hernández JSL, Medina DI, Aguirre-Hurtado K, Bosquez M, Salcedo R, Miralrio A. AI-assisted models to predict chemotherapy drugs modified with C 60 fullerene derivatives. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1170-1188. [PMID: 39319207 PMCID: PMC11420546 DOI: 10.3762/bjnano.15.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
Employing quantitative structure-activity relationship (QSAR)/ quantitative structure-property relationship (QSPR) models, this study explores the application of fullerene derivatives as nanocarriers for breast cancer chemotherapy drugs. Isolated drugs and two drug-fullerene complexes (i.e., drug-pristine C60 fullerene and drug-carboxyfullerene C60-COOH) were investigated with the protein CXCR7 as the molecular docking target. The research involved over 30 drugs and employed Pearson's hard-soft acid-base theory and common QSAR/QSPR descriptors to build predictive models for the docking scores. Energetic descriptors were computed using quantum chemistry at the density functional-based tight binding DFTB3 level. The results indicate that drug-fullerene complexes interact more with CXCR7 than isolated drugs. Specific binding sites were identified, with varying locations for each drug complex. Predictive models, developed using multiple linear regression and IBM Watson artificial intelligence (AI), achieved mean absolute percentage errors below 12%, driven by AI-identified key variables. The predictive models included mainly quantitative descriptors collected from datasets as well as computed ones. In addition, a water-soluble fullerene was used to compare results obtained by DFTB3 with a conventional density functional theory approach. These findings promise to enhance breast cancer chemotherapy by leveraging fullerene-based drug nanocarriers.
Collapse
Affiliation(s)
| | - Dora Iliana Medina
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Katerin Aguirre-Hurtado
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Marlene Bosquez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Roberto Salcedo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Alan Miralrio
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| |
Collapse
|
11
|
Chaudary N, Hill RP, Milosevic M. Targeting the CXCL12/CXCR4 pathway to reduce radiation treatment side effects. Radiother Oncol 2024; 194:110194. [PMID: 38447871 DOI: 10.1016/j.radonc.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
High precision, image-guided radiotherapy (RT) has increased the therapeutic ratio, enabling higher tumor and lower normal tissue doses, leading to improved patient outcomes. Nevertheless, some patients remain at risk of developing serious side effects.In many clinical situations, the radiation tolerance of normal tissues close to the target volume limits the dose that can safely be delivered and thus the potential for tumor control and cure. This is particularly so in patients being re-treated for tumor progression or a second primary tumor within a previous irradiated volume, scenarios that are becoming more frequent in clinical practice.Various normal tissue 'radioprotective' drugs with the potential to reduce side effects have been studied previously. Unfortunately, most have failed to impact clinical practice because of lack of therapeutic efficacy, concern about concurrent tumor protection or excessive drug-related toxicity. This review highlights the evidence indicating that targeting the CXCL12/CXCR4 pathway can mitigate acute and late RT-induced injury and reduce treatment side effects in a manner that overcomes these previous translational challenges. Pre-clinical studies involving a broad range of normal tissues commonly affected in clinical practice, including skin, lung, the gastrointestinal tract and brain, have shown that CXCL12 signalling is upregulated by RT and attracts CXCR4-expressing inflammatory cells that exacerbate acute tissue injury and late fibrosis. These studies also provide convincing evidence that inhibition of CXCL12/CXCR4 signalling during or after RT can reduce or prevent RT side effects, warranting further evaluation in clinical studies. Greater dialogue with the pharmaceutical industry is needed to prioritize the development and availability of CXCL12/CXCR4 inhibitors for future RT studies.
Collapse
Affiliation(s)
- Naz Chaudary
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Richard P Hill
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Milosevic
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Zarca AM, Adlere I, Viciano CP, Arimont-Segura M, Meyrath M, Simon IA, Bebelman JP, Laan D, Custers HGJ, Janssen E, Versteegh KL, Buzink MCML, Nesheva DN, Bosma R, de Esch IJP, Vischer HF, Wijtmans M, Szpakowska M, Chevigné A, Hoffmann C, de Graaf C, Zarzycka BA, Windhorst AD, Smit MJ, Leurs R. Pharmacological Characterization and Radiolabeling of VUF15485, a High-Affinity Small-Molecule Agonist for the Atypical Chemokine Receptor ACKR3. Mol Pharmacol 2024; 105:301-312. [PMID: 38346795 DOI: 10.1124/molpharm.123.000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/16/2024] [Indexed: 03/16/2024] Open
Abstract
Atypical chemokine receptor 3 (ACKR3), formerly referred to as CXCR7, is considered to be an interesting drug target. In this study, we report on the synthesis, pharmacological characterization and radiolabeling of VUF15485, a new ACKR3 small-molecule agonist, that will serve as an important new tool to study this β-arrestin-biased chemokine receptor. VUF15485 binds with nanomolar affinity (pIC50 = 8.3) to human ACKR3, as measured in [125I]CXCL12 competition binding experiments. Moreover, in a bioluminescence resonance energy transfer-based β-arrestin2 recruitment assay VUF15485 acts as a potent ACKR3 agonist (pEC50 = 7.6) and shows a similar extent of receptor activation compared with CXCL12 when using a newly developed, fluorescence resonance energy transfer-based ACKR3 conformational sensor. Moreover, the ACKR3 agonist VUF15485, tested against a (atypical) chemokine receptor panel (agonist and antagonist mode), proves to be selective for ACKR3. VUF15485 labeled with tritium at one of its methoxy groups ([3H]VUF15485), binds ACKR3 saturably and with high affinity (K d = 8.2 nM). Additionally, [3H]VUF15485 shows rapid binding kinetics and consequently a short residence time (<2 minutes) for binding to ACKR3. The selectivity of [3H]VUF15485 for ACKR3, was confirmed by binding studies, whereupon CXCR3, CXCR4, and ACKR3 small-molecule ligands were competed for binding against the radiolabeled agonist. Interestingly, the chemokine ligands CXCL11 and CXCL12 are not able to displace the binding of [3H]VUF15485 to ACKR3. The radiolabeled VUF15485 was subsequently used to evaluate its binding pocket. Site-directed mutagenesis and docking studies using a recently solved cryo-EM structure propose that VUF15485 binds in the major and the minor binding pocket of ACKR3. SIGNIFICANCE STATEMENT: The atypical chemokine receptor atypical chemokine receptor 3 (ACKR3) is considered an interesting drug target in relation to cancer and multiple sclerosis. The study reports on new chemical biology tools for ACKR3, i.e., a new agonist that can also be radiolabeled and a new ACKR3 conformational sensor, that both can be used to directly study the interaction of ACKR3 ligands with the G protein-coupled receptor.
Collapse
Affiliation(s)
- Aurelien M Zarca
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Ilze Adlere
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Cristina P Viciano
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Marta Arimont-Segura
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Max Meyrath
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Icaro A Simon
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Jan Paul Bebelman
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Dennis Laan
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Hans G J Custers
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Elwin Janssen
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Kobus L Versteegh
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Maurice C M L Buzink
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Desislava N Nesheva
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Reggie Bosma
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Iwan J P de Esch
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Henry F Vischer
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Maikel Wijtmans
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Martyna Szpakowska
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Andy Chevigné
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Carsten Hoffmann
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Chris de Graaf
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Barbara A Zarzycka
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Albert D Windhorst
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Martine J Smit
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| | - Rob Leurs
- Department of Medicinal Chemistry (A.M.Z., M.A.-S., I.A.S., J.P.B., H.G.J.C., K.L.V., M.C.M.L.B., D.N.N., R.B., I.J.P.dE., H.F.V., M.W., C.dG., B.A.Z., M.J.S., R.L.) and Department of Chemistry & Pharmaceutical Sciences (E.J.), Amsterdam Institute for Molecular Life Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV Amsterdam, Netherlands; Griffin Discoveries BV, Amsterdam, Netherlands (I.A., I.J.P.dE., R.L.); Bio-Imaging-Center/Rudolf-Virchow-Zentrum, Institut für Pharmakologie, Versbacher Strasse 9, 97078 Würzburg, Germany (C.P.V., C.H.); Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Friedrich Schiller University Jena, Jena, Germany (C.P.V., C.H.); Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg (M.M., M.S., A.C.); and Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, Netherlands (D.L., A.D.W.)
| |
Collapse
|
13
|
Klaver D, Gander H, Frena B, Amato M, Thurnher M. Crosstalk between purinergic receptor P2Y 11 and chemokine receptor CXCR7 is regulated by CXCR4 in human macrophages. Cell Mol Life Sci 2024; 81:132. [PMID: 38472446 DOI: 10.1007/s00018-024-05158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 03/14/2024]
Abstract
P2Y11 is a G protein-coupled ATP receptor that activates IL-1 receptor (IL-1R) in a cyclic AMP dependent manner. In human macrophages, P2Y11/IL-1R crosstalk with CCL20 as a prime target is controlled by phosphodiesterase 4 (PDE4), which mediates breakdown of cyclic AMP. Here, we used gene expression analysis to identify activation of CXCR4 and CXCR7 as a hallmark of P2Y11 signaling. We found that PDE4 inhibition with rolipram boosts P2Y11/IL-1R-induced upregulation of CXCR7 expression and CCL20 production in an epidermal growth factor receptor dependent manner. Using an astrocytoma cell line, naturally expressing CXCR7 but lacking CXCR4, P2Y11/IL-1R activation effectively induced and CXCR7 agonist TC14012 enhanced CCL20 production even in the absence of PDE4 inhibition. Moreover, CXCR7 depletion by RNA interference suppressed CCL20 production. In macrophages, the simultaneous activation of P2Y11 and CXCR7 by their respective agonists was sufficient to induce CCL20 production with no need of PDE4 inhibition, as CXCR7 activation increased its own and eliminated CXCR4 expression. Finally, analysis of multiple CCL chemokines in the macrophage secretome revealed that CXCR4 inactivation and CXCR7 activation selectively enhanced P2Y11/IL-1R-mediated secretion of CCL20. Altogether, our data establish CXCR7 as an integral component of the P2Y11/IL-1R-initiated signaling cascade and CXCR4-associated PDE4 as a regulatory checkpoint.
Collapse
Affiliation(s)
- Dominik Klaver
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, Innsbruck, 6020, Austria
| | - Hubert Gander
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, Innsbruck, 6020, Austria
| | - Beatrice Frena
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, Innsbruck, 6020, Austria
| | - Marco Amato
- Central Institute for Blood Transfusion & Department of Immunology (ZIB), Tirol Kliniken GmbH, Innsbruck, Austria
| | - Martin Thurnher
- Immunotherapy Unit, Department of Urology, Medical University of Innsbruck, Innrain 66a, Innsbruck, 6020, Austria.
| |
Collapse
|
14
|
Jarmula J, Lee J, Lauko A, Rajappa P, Grabowski MM, Dhawan A, Chen P, Bucala R, Vogelbaum MA, Lathia JD. Macrophage migration inhibitory factor as a therapeutic target in neuro-oncology: A review. Neurooncol Adv 2024; 6:vdae142. [PMID: 39233830 PMCID: PMC11372298 DOI: 10.1093/noajnl/vdae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Primary central nervous system (CNS) tumors affect tens of thousands of patients each year, and there is a significant need for new treatments. Macrophage migration inhibitory factor (MIF) is a cytokine implicated in multiple tumorigenic processes such as cell proliferation, vascularization, and immune evasion and is therefore a promising therapeutic target in primary CNS tumors. There are several MIF-directed treatments available, including small-molecule inhibitors, peptide drugs, and monoclonal antibodies. However, only a small number of these drugs have been tested in preclinical models of primary CNS tumors, and even fewer have been studied in patients. Moreover, the brain has unique therapeutic requirements that further make effective targeting challenging. In this review, we summarize the latest functions of MIF in primary CNS tumor initiation and progression. We also discuss advances in MIF therapeutic development and ongoing preclinical studies and clinical trials. Finally, we discuss potential future MIF therapies and the strategies required for successful clinical translation.
Collapse
Affiliation(s)
- Jakub Jarmula
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam Lauko
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Prajwal Rajappa
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Matthew M Grabowski
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrew Dhawan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Peiwen Chen
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richard Bucala
- Section of Rheumatology, Allergy, and Immunology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Justin D Lathia
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
15
|
O'Neill KM, Grieve DJ. Targeted Mobilisation of Endogenous Endothelial Progenitor Cells - an Alternate Approach to Allogeneic Therapy for Ischaemic Cardiovasular Disease? Cardiovasc Drugs Ther 2023; 37:839-841. [PMID: 37133551 DOI: 10.1007/s10557-023-07462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Karla M O'Neill
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7AE, UK.
| |
Collapse
|
16
|
Zhao J, Wang C, Fan R, Liu X, Zhang W. A prognostic model based on clusters of molecules related to epithelial-mesenchymal transition for idiopathic pulmonary fibrosis. Front Genet 2023; 13:1109903. [PMID: 36685840 PMCID: PMC9853015 DOI: 10.3389/fgene.2022.1109903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Most patients with idiopathic pulmonary fibrosis (IPF) have poor prognosis; Effective predictive models for these patients are currently lacking. Epithelial-mesenchymal transition (EMT) often occurs during idiopathic pulmonary fibrosis development, and is closely related to multiple pathways and biological processes. It is thus necessary for clinicians to find prognostic biomarkers with high accuracy and specificity from the perspective of Epithelial-mesenchymal transition. Methods: Data were obtained from the Gene Expression Omnibus database. Using consensus clustering, patients were grouped based on Epithelial-mesenchymal transition-related genes. Next, functional enrichment analysis was performed on the results of consensus clustering using gene set variation analysis. The gene modules associated with Epithelial-mesenchymal transition were obtained through weighted gene co-expression network analysis. Prognosis-related genes were screened via least absolute shrinkage and selection operator (LASSO) regression analysis. The model was then evaluated and validated using survival analysis and time-dependent receiver operating characteristic (ROC) analysis. Results: A total of 239 Epithelial-mesenchymal transition-related genes were obtained from patients with idiopathic pulmonary fibrosis. Six genes with strong prognostic associations (C-X-C chemokine receptor type 7 [CXCR7], heparan sulfate-glucosamine 3-sulfotransferase 1 [HS3ST1], matrix metallopeptidase 25 [MMP25], murine retrovirus integration site 1 [MRVI1], transmembrane four L6 family member 1 [TM4SF1], and tyrosylprotein sulfotransferase 1 [TPST1]) were identified via least absolute shrinkage and selection operator and Cox regression analyses. A prognostic model was then constructed based on the selected genes. Survival analysis showed that patients with high-risk scores had worse prognosis based on the training set [hazard ratio (HR) = 7.31, p < .001] and validation set (HR = 2.85, p = .017). The time-dependent receiver operating characteristic analysis showed that the area under the curve (AUC) values in the training set were .872, .905, and .868 for 1-, 2-, and 3-year overall survival rates, respectively. Moreover, the area under the curve values in the validation set were .814, .814, and .808 for 1-, 2-, and 3-year overall survival rates, respectively. Conclusion: The independent prognostic model constructed from six Epithelial-mesenchymal transition-related genes provides bioinformatics guidance to identify additional prognostic markers for idiopathic pulmonary fibrosis in the future.
Collapse
Affiliation(s)
- Jiarui Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Can Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rui Fan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiangyang Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Wei Zhang,
| |
Collapse
|
17
|
Abstract
Despite advancement in therapeutic options, Non-Small Cell lung cancer (NSCLC) remains a lethal disease mostly due to late diagnosis at metastatic phase and drug resistance. Bone is one of the more frequent sites for NSCLC metastatization. A defined subset of cancer stem cells (CSCs) that possess motile properties, mesenchymal features and tumor initiation potential are defined as metastasis initiating cells (MICs). A better understanding of the mechanisms supporting MIC dissemination and interaction with bone microenvironment is fundamental to design novel rational therapeutic option for long lasting efficient treatment of NSCLC. In this review we will summarize findings about bone metastatic process initiated by NSCLC MICs. We will review how MICs can reach bone and interact with its microenvironment that supports their extravasation, seeding, dormancy/proliferation. The role of different cell types inside the bone metastatic niche, such as endothelial cells, bone cells, hematopoietic stem cells and immune cells will be discussed in regards of their impact in dictating the success of metastasis establishment by MICs. Finally, novel therapeutic options to target NSCLC MIC-induced bone metastases, increasing the survival of patients, will be presented.
Collapse
|
18
|
Bayrak A, Mohr F, Kolb K, Szpakowska M, Shevchenko E, Dicenta V, Rohlfing AK, Kudolo M, Pantsar T, Günther M, Kaczor AA, Poso A, Chevigné A, Pillaiyar T, Gawaz M, Laufer SA. Discovery and Development of First-in-Class ACKR3/CXCR7 Superagonists for Platelet Degranulation Modulation. J Med Chem 2022; 65:13365-13384. [PMID: 36150079 DOI: 10.1021/acs.jmedchem.2c01198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The atypical chemokine receptor 3 (ACKR3), formerly known as CXC-chemokine receptor 7 (CXCR7), has been postulated to regulate platelet function and thrombus formation. Herein, we report the discovery and development of first-in-class ACKR3 agonists, which demonstrated superagonistic properties with Emax values of up to 160% compared to the endogenous reference ligand CXCL12 in a β-arrestin recruitment assay. Initial in silico screening using an ACKR3 homology model identified two hits, C10 (EC50 19.1 μM) and C11 (EC50 = 11.4 μM). Based on these hits, extensive structure-activity relationship studies were conducted by synthesis and testing of derivatives. It resulted in the identification of the novel thiadiazolopyrimidinone-based compounds 26 (LN5972, EC50 = 3.4 μM) and 27 (LN6023, EC50 = 3.5 μM). These compounds are selective for ACKR3 versus CXCR4 and show metabolic stability. In a platelet degranulation assay, these agonists effectively reduced P-selectin expression by up to 97%, suggesting potential candidates for the treatment of platelet-mediated thrombosis.
Collapse
Affiliation(s)
- Alp Bayrak
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Florian Mohr
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Kyra Kolb
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg
| | - Ekaterina Shevchenko
- Department of Internal Medicine VIII, Oncology and Pneumology, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Valerie Dicenta
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Mark Kudolo
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tatu Pantsar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,School of Pharmacy, University of Eastern Finland, P.O. BOX 1627, 70211 Kuopio, Finland
| | - Marcel Günther
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Agnieszka A Kaczor
- School of Pharmacy, University of Eastern Finland, P.O. BOX 1627, 70211 Kuopio, Finland.,Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, P.O. BOX 1627, 70211 Kuopio, Finland.,Department of Internal Medicine VIII, Oncology and Pneumology, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health (LIH), L-4354 Esch-sur-Alzette, Luxembourg
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Tübingen, Otfried-Müller-Strasse 10, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
19
|
DiNatale A, Castelli MS, Nash B, Meucci O, Fatatis A. Regulation of Tumor and Metastasis Initiation by Chemokine Receptors. J Cancer 2022; 13:3160-3176. [PMID: 36118530 PMCID: PMC9475358 DOI: 10.7150/jca.72331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor-initiating cells (TICs) are a rare sub-population of cells within the bulk of a tumor that are major contributors to tumor initiation, metastasis, and chemoresistance. TICs have a stem-cell-like phenotype that is dictated by the expression of master regulator transcription factors, including OCT4, NANOG, and SOX2. These transcription factors are expressed via activation of multiple signaling pathways that drive cancer initiation and progression. Importantly, these same signaling pathways can be activated by select chemokine receptors. Chemokine receptors are increasingly being revealed as major drivers of the TIC phenotype, as their signaling can lead to activation of stemness-controlling transcription factors. Additionally, the cell surface expression of chemokine receptors provides a unique therapeutic target to disrupt signaling pathways that control the expression of master regulator transcription factors and the TIC phenotype. This review summarizes the master regulator transcription factors known to dictate the TIC phenotype, along with the complex signaling pathways that can mediate their expression and the chemokine receptors that are most upstream of this phenotype.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Present Address: Janssen Oncology, Spring House, PA, USA
| | - Maria Sofia Castelli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Present address: Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Program in Immune Cell Regulation & Targeting, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Program in Translational and Cellular Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
20
|
Hopkins BE, Masuho I, Ren D, Iyamu ID, Lv W, Malik N, Martemyanov KA, Schiltz GE, Miller RJ. Effects of Small Molecule Ligands on ACKR3 Receptors. Mol Pharmacol 2022; 102:128-138. [PMID: 35809897 PMCID: PMC9393849 DOI: 10.1124/molpharm.121.000295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Chemokines such as stromal derived factor 1 and their G protein coupled receptors are well-known regulators of the development and functions of numerous tissues. C-X-C motif chemokine ligand 12 (CXCL12) has two receptors: C-X-C chemokine motif receptor 4 (CXCR4) and atypical chemokine receptor 3 (ACKR3). ACKR3 has been described as an atypical "biased" receptor because it does not appear to signal through G proteins and, instead, signals solely through the β-arrestin pathway. In support of this conclusion, we have shown that ACKR3 is unable to signal through any of the known mammalian G α isoforms and have generated a comprehensive map of the G α activation by CXCL12/CXCR4. We also synthesized a series of small molecule ligands which acted as selective agonists for ACKR3 as assessed by their ability to recruit β-arrestin to the receptor. Using select point mutations, we studied the molecular characteristics that determine the ability of small molecules to activate ACKR3 receptors, revealing a key role for the deeper binding pocket composed of residues in the transmembrane domains of ACKR3. The development of more selective ACKR3 ligands should allow us to better appreciate the unique roles of ACKR3 in the CXCL12/CXCR4/ACKR3-signaling axis and better understand the structural determinants for ACKR3 activation. SIGNIFICANCE STATEMENT: We are interested in the signaling produced by the G protein coupled receptor atypical chemokine receptor 3 (ACKR3), which signals atypically. In this study, novel selective ligands for ACKR3 were discovered and the site of interactions between these small molecules and ACKR3 was defined. This work will help to better understand the unique signaling roles of ACKR3.
Collapse
Affiliation(s)
- Brittany E Hopkins
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Ikuo Masuho
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Dongjun Ren
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Iredia D Iyamu
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Wei Lv
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Neha Malik
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Kirill A Martemyanov
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Gary E Schiltz
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| | - Richard J Miller
- Department of Pharmacology (B.E.H., D.R., G.E.S., R.J.M.) and Robert H. Lurie Comprehensive Cancer Center (G.E.S.), Northwestern University, Chicago Illinois; Department of Chemistry (G.E.S.) and Center for Molecular Innovation and Drug Discovery (I.D.I., W.L., N.M., G.E.S.), Northwestern University, Evanston Illinois; and Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, Florida (I.M., K.A.M.)
| |
Collapse
|
21
|
MALAT1 accelerates proliferation and inflammation and suppresses apoptosis of endometrial stromal cells via the microRNA-142-3p/CXCR7 axis. Reprod Biol 2022; 22:100675. [PMID: 35901619 DOI: 10.1016/j.repbio.2022.100675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 12/16/2022]
Abstract
MALAT1, microRNA (miR)-142-3p, and CXCR7 are critical molecules mediating endometriosis progression, and their correlation in endometriosis has been barely discussed. Thus, this research sought to survey the impact of MALAT1 on endometrial stromal cell (ESC) proliferation, apoptosis, and inflammation via miR-142-3p/CXCR7 axis to promote explorations on endometriosis. In endometrial tissues and ESCs, CXCR7 expression was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis and miR-142-3p and MALAT1 expression by qRT-PCR. Then, ESC proliferation was assessed by CCK-8 and EdU labeling assays, apoptosis by flow cytometry, and levels of inflammatory factors tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in ESC supernatant by enzyme linked immunosorbent assay. The interactions among CXCR7, miR-142-3p, and MALAT1 were evaluated by dual luciferase reporter gene, RNA pull-down, and Argonaute 2- RNA immunoprecipitation assays. At last, the relevance of miR-142-3p to MALAT1 and that of miR-142-3p to CXCR7 in ectopic endometrial tissues were analyzed using Pearson correlation analysis. CXCR7 and MALAT1 were overexpressed whilst miR-142-3p was lowly expressed in ectopic endometrial tissues. CXCR7 silencing or miR-142-3p overexpression reduced proliferative ability and enhanced apoptosis rate in ESCs and decreased TNF-α, IL-1β, and IL-6 levels in cell supernatant. miR-142-3p negatively targeted CXCR7 while MALAT1 negatively targeted miR-142-3p. However, MALAT1 silencing diminished ESC proliferation and TNF-α, IL-1β, and IL-6 levels in ESC supernatant and elevated ESC apoptosis, which was counterweighed by inhibiting miR-142-3p. Conclusively, MALAT1 promoted ESC proliferation and inflammatory factor expression and inhibited ESC apoptosis via miR-142-3p/CXCR axis.
Collapse
|
22
|
Cao P, Yang M, Chang C, Wu H, Lu Q. Germinal Center-Related G Protein-Coupled Receptors in Antibody-Mediated Autoimmune Skin Diseases: from Basic Research to Clinical Trials. Clin Rev Allergy Immunol 2022; 63:357-370. [PMID: 35674978 DOI: 10.1007/s12016-022-08936-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
Germinal center (GC) reaction greatly contributes to the humoral immune response, which begins in lymph nodes or other secondary lymphoid organs after follicular B cells are activated by T-dependent antigens. The GCs then serve as a platform for follicular B cells to complete clonal expansion and somatic hypermutation and then interact with follicular dendritic cells (FDC) and follicular helper T cells (Tfh). Through the interaction between the immune cells, significant processes of the humoral immune response are accomplished, such as antibody affinity maturation, class switching, and production of memory B cells and plasma cells. Cell positioning during the GC reaction is mainly mediated by the chemokine receptors and lipid receptors, which both belong to G protein-coupled receptors (GPCRs) family. There are some orphan GPCRs whose endogenous ligands are unclear yet contribute to the regulation of GC reaction as well. This review will give an introduction on the ligands and functions of two types of GC-relating GPCRs-chemokine receptors like CXCR4 and CXCR5, as well as emerging de-orphanized GPCRs like GPR183, GPR174, and P2RY8. The roles these GPCRs play in several antibody-mediated autoimmune skin diseases will be also discussed, including systemic lupus erythematosus (SLE), pemphigus, scleroderma, and dermatomyositis. Besides, GPCRs are excellent drug targets due to the unique structure and vital functions. Therefore, this review is aimed at providing readers with a focused knowledge about the role that GPCRs play in GC reaction, as well as in provoking the development of GPCR-targeting agents for immune-mediated diseases besides autoimmune diseases.
Collapse
Affiliation(s)
- Pengpeng Cao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China. .,Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China. .,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China. .,Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
23
|
Guo J, Tong CY, Shi JG, Li XJ. C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif chemokine receptor 7(CXCR7) regulates epithelial-mesenchymal transition process and promotes the metastasis of esophageal cancer by activating signal transducer and activator of transcription 3 (STAT3) pathway. Bioengineered 2022; 13:7425-7438. [PMID: 35264069 PMCID: PMC8973702 DOI: 10.1080/21655979.2022.2048984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/14/2022] Open
Abstract
Esophageal cancer is a malignant tumor of the digestive system that is prone to metastasis. Chemokines and their receptors act an essential role in the occurrence and development of tumors. Here, we investigated the regulatory mechanism of CXCL12/CXCR7 in the growth and metastasis of esophageal cancer. CXCR7 was found highly expressed in clinical tissues and cells of esophageal cancer. Knockdown of CXCR7 inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process of esophageal cancer cells. The knockdown of chemokine CXCL12 also inhibited the expression of EMT-related proteins and the mesenchymal morphology changes of esophageal cancer cells, but the knockdown of C-X-C motif chemokine receptor 4 (CXCR4) had no such effect. Furthermore, the knockdown of CXCR7 attenuated the enhanced EMT process induced by CXCL12 overexpression, while the knockdown of CXCR4 cannot inhibit this process. In addition, overexpressed CXCL12/CXCR7 activated the downstream STAT3 pathway, but had little effect on the extracellular regulated protein kinase (ERK) or serine-threonine kinase (AKT) pathways. Inhibition of the STAT3 pathway using AZD9150 weakened the accelerated effects of CXCL12/CXCR7 on the growth and metastasis of esophageal cancer in vitro and in vivo. In conclusion, our research revealed that CXCL12/CXCR7 regulates EMT and other malignant processes by activating the STAT3 pathway to accelerate the growth and metastasis of esophageal cancer.
Collapse
Affiliation(s)
- Jing Guo
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang province, China
| | - Chang-Yong Tong
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang province, China
| | - Jian-Guang Shi
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang province, China
| | - Xin-Jian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang province, China
| |
Collapse
|
24
|
Atypical Roles of the Chemokine Receptor ACKR3/CXCR7 in Platelet Pathophysiology. Cells 2022; 11:cells11020213. [PMID: 35053329 PMCID: PMC8773869 DOI: 10.3390/cells11020213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/23/2022] Open
Abstract
The manifold actions of the pro-inflammatory and regenerative chemokine CXCL12/SDF-1α are executed through the canonical GProteinCoupledReceptor CXCR4, and the non-canonical ACKR3/CXCR7. Platelets express CXCR4, ACKR3/CXCR7, and are a vital source of CXCL12/SDF-1α themselves. In recent years, a regulatory impact of the CXCL12-CXCR4-CXCR7 axis on platelet biogenesis, i.e., megakaryopoiesis, thrombotic and thrombo-inflammatory actions have been revealed through experimental and clinical studies. Platelet surface expression of ACKR3/CXCR7 is significantly enhanced following myocardial infarction (MI) in acute coronary syndrome (ACS) patients, and is also associated with improved functional recovery and prognosis. The therapeutic implications of ACKR3/CXCR7 in myocardial regeneration and improved recovery following an ischemic episode, are well documented. Cardiomyocytes, cardiac-fibroblasts, endothelial lining of the blood vessels perfusing the heart, besides infiltrating platelets and monocytes, all express ACKR3/CXCR7. This review recapitulates ligand induced differential trafficking of platelet CXCR4-ACKR3/CXCR7 affecting their surface availability, and in regulating thrombo-inflammatory platelet functions and survival through CXCR4 or ACKR3/CXCR7. It emphasizes the pro-thrombotic influence of CXCL12/SDF-1α exerted through CXCR4, as opposed to the anti-thrombotic impact of ACKR3/CXCR7. Offering an innovative translational perspective, this review also discusses the advantages and challenges of utilizing ACKR3/CXCR7 as a potential anti-thrombotic strategy in platelet-associated cardiovascular disorders, particularly in coronary artery disease (CAD) patients post-MI.
Collapse
|
25
|
Endothelial ACKR3 drives atherosclerosis by promoting immune cell adhesion to vascular endothelium. Basic Res Cardiol 2022; 117:30. [PMID: 35674847 PMCID: PMC9177477 DOI: 10.1007/s00395-022-00937-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/31/2023]
Abstract
Atherosclerosis is the foundation of potentially fatal cardiovascular diseases and it is characterized by plaque formation in large arteries. Current treatments aimed at reducing atherosclerotic risk factors still allow room for a large residual risk; therefore, novel therapeutic candidates targeting inflammation are needed. The endothelium is the starting point of vascular inflammation underlying atherosclerosis and we could previously demonstrate that the chemokine axis CXCL12-CXCR4 plays an important role in disease development. However, the role of ACKR3, the alternative and higher affinity receptor for CXCL12 remained to be elucidated. We studied the role of arterial ACKR3 in atherosclerosis using western diet-fed Apoe-/- mice lacking Ackr3 in arterial endothelial as well as smooth muscle cells. We show for the first time that arterial endothelial deficiency of ACKR3 attenuates atherosclerosis as a result of diminished arterial adhesion as well as invasion of immune cells. ACKR3 silencing in inflamed human coronary artery endothelial cells decreased adhesion molecule expression, establishing an initial human validation of ACKR3's role in endothelial adhesion. Concomitantly, ACKR3 silencing downregulated key mediators in the MAPK pathway, such as ERK1/2, as well as the phosphorylation of the NF-kB p65 subunit. Endothelial cells in atherosclerotic lesions also revealed decreased phospho-NF-kB p65 expression in ACKR3-deficient mice. Lack of smooth muscle cell-specific as well as hematopoietic ACKR3 did not impact atherosclerosis in mice. Collectively, our findings indicate that arterial endothelial ACKR3 fuels atherosclerosis by mediating endothelium-immune cell adhesion, most likely through inflammatory MAPK and NF-kB pathways.
Collapse
|
26
|
Platelet ACKR3/CXCR7 Favors Anti-Platelet Lipids over an Atherothrombotic Lipidome and Regulates Thrombo-inflammation. Blood 2021; 139:1722-1742. [PMID: 34905596 DOI: 10.1182/blood.2021013097] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Platelet ACKR3/CXCR7 surface expression is enhanced and influences prognosis in coronary artery disease-(CAD) patients, who exhibit a distinct atherothrombotic platelet lipidome. Current investigation validates the potential of ACKR3/CXCR7 in regulating thrombo-inflammatory response, through its impact on the platelet lipidome. CAD patients-(n=230) with enhanced platelet-ACKR3/CXCR7 expression exhibited reduced aggregation. Pharmacological CXCR7-agonist-(VUF11207) significantly reduced pro-thrombotic platelet response in blood from ACS patients-(n=11) ex vivo. CXCR7-agonist administration reduced thrombotic functions and thrombo-inflammatory platelet-leukocyte interactions post myocardial infarction-(MI) and arterial injury in vivo. ACKR3/CXCR7-ligation did not affect surface availability of GPIbα, GPV, GPVI, GPIX, αv-integrin, β3-integrin, coagulation profile-(APTT, PT), bleeding time, plasma-dependent thrombin generation-(thrombinoscopy) or clot formation-(thromboelastography), but counteracted activation-induced phosphatidylserine exposure and procoagulant platelet-assisted thrombin generation. Targeted-(micro-UHPLC-ESI-QTrap-MS/MS) and untargeted-(UHPLC-ESI-QTOF-MS/MS) lipidomics analysis revealed that ACKR3/CXCR7-ligation favored generation of anti-thrombotic lipids-(dihomo-γ-linolenic acid-DGLA, 12-hydroxyeicosatrienoic acid-12-HETrE) over cyclooxygenase-COX-1-(thromboxane-TxA2), or 12-lipoxygenase-LOX-(12-HETE) metabolized pro-thrombotic, and phospholipase derived atherogenic-(lysophosphatidylcholine-LPC) lipids, in healthy subjects and CAD patients, contrary to anti-platelet therapy. Through 12-HETrE, ACKR3/CXCR7-ligation coordinated with Gαs-coupled prostacyclin receptor-(IP) to trigger cAMP-PKA mediated platelet inhibition. ACKR3/CXCR7-ligation reduced generation of lipid agonists-(arachidonic acid-AA,TxA2), lipid signaling intermediates-(lyophosphatidylinositol-LPI, diacylglycerol-DG), which affected calcium mobilization, intracellular signaling, consequently platelet interaction with physiological matrices and thrombo-inflammatory secretion-(IL1β,IFN-γ,TGF-β,IL-8), emphasizing its functional dichotomy from pro-thrombotic CXCR4. Moreover, CXCR7-agonist regulated heparin-induced thrombocytopenia-(HIT)-sera/IgG-induced platelet and neutrophil activation, heparin induced platelet aggregation-(HIPA), generation of COX-1-(TxA2), 12-LOX-(12-HETE) derived thrombo-inflammatory lipids, platelet-neutrophil aggregate formation, and thrombo-inflammatory secretion (sCD40L, IL-1β, IFN-γ, TNF-α, sP-selectin, IL-8, tissue factor-TF) ex vivo. Therefore, ACKR3/CXCR7 may offer a novel therapeutic strategy in acute/chronic thrombo-inflammation exaggerated cardiovascular pathologies, and CAD.
Collapse
|
27
|
Murad HAS, Rafeeq MM, Alqurashi TMA. Role and implications of the CXCL12/CXCR4/CXCR7 axis in atherosclerosis: still a debate. Ann Med 2021; 53:1598-1612. [PMID: 34494495 PMCID: PMC8439212 DOI: 10.1080/07853890.2021.1974084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is one of the leading causes of mortality and morbidity worldwide. Chemokines and their receptors are implicated in the pathogenesis of atherosclerosis. CXCL12 is a member of the chemokine family exerting a myriad role in atherosclerosis through its classical CXCR4 and atypical ACKR3 (CXCR7) receptors. The modulatory and regulatory functional spectrum of CXCL12/CXCR4/ACKR3 axis in atherosclerosis spans from proatherogenic, prothrombotic and proinflammatory to atheroprotective, plaque stabilizer and dyslipidemia rectifier. This diverse continuum is executed in a wide range of biological units including endothelial cells (ECs), progenitor cells, macrophages, monocytes, platelets, lymphocytes, neutrophils and vascular smooth muscle cells (VSMCs) through complex heterogeneous and homogenous coupling of CXCR4 and ACKR3 receptors, employing different downstream signalling pathways, which often cross-talk among themselves and with other signalling interactomes. Hence, a better understanding of this structural and functional heterogeneity and complex phenomenon involving CXCL12/CXCR4/ACKR3 axis in atherosclerosis would not only help in formulation of novel therapeutics, but also in elucidation of the CXCL12 ligand and its receptors, as possible diagnostic and prognostic biomarkers.Key messagesThe role of CXCL12 per se is proatherogenic in atherosclerosis development and progression.The CXCL12 receptors, CXCR4 and ACKR3 perform both proatherogenic and athero-protective functions in various cell typesDue to functional heterogeneity and cross talk of CXCR4 and ACKR3 at receptor level and downstream pathways, regional boosting with specific temporal and spatial modulators of CXCL12, CXCR4 and ACKR3 need to be explored.
Collapse
Affiliation(s)
- Hussam A. S. Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Misbahuddin M. Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Thamer M. A. Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| |
Collapse
|
28
|
Ehrlich AT, Semache M, Couvineau P, Wojcik S, Kobayashi H, Thelen M, Gross F, Hogue M, Le Gouill C, Darcq E, Bouvier M, Kieffer BL. Ackr3-Venus knock-in mouse lights up brain vasculature. Mol Brain 2021; 14:151. [PMID: 34583741 PMCID: PMC8477500 DOI: 10.1186/s13041-021-00862-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/17/2021] [Indexed: 01/09/2023] Open
Abstract
The atypical chemokine receptor 3, ACKR3, is a G protein-coupled receptor, which does not couple to G proteins but recruits βarrestins. At present, ACKR3 is considered a target for cancer and cardiovascular disorders, but less is known about the potential of ACKR3 as a target for brain disease. Further, mouse lines have been created to identify cells expressing the receptor, but there is no tool to visualize and study the receptor itself under physiological conditions. Here, we engineered a knock-in (KI) mouse expressing a functional ACKR3-Venus fusion protein to directly detect the receptor, particularly in the adult brain. In HEK-293 cells, native and fused receptors showed similar membrane expression, ligand induced trafficking and signaling profiles, indicating that the Venus fusion does not alter receptor signaling. We also found that ACKR3-Venus enables direct real-time monitoring of receptor trafficking using resonance energy transfer. In ACKR3-Venus knock-in mice, we found normal ACKR3 mRNA levels in the brain, suggesting intact gene transcription. We fully mapped receptor expression across 14 peripheral organs and 112 brain areas and found that ACKR3 is primarily localized to the vasculature in these tissues. In the periphery, receptor distribution aligns with previous reports. In the brain there is notable ACKR3 expression in endothelial vascular cells, hippocampal GABAergic interneurons and neuroblast neighboring cells. In conclusion, we have generated Ackr3-Venus knock-in mice with a traceable ACKR3 receptor, which will be a useful tool to the research community for interrogations about ACKR3 biology and related diseases.
Collapse
Affiliation(s)
- Aliza T Ehrlich
- Douglas Research Center, McGill University, Montréal, Canada.
- University of California, San Francisco, USA.
| | - Meriem Semache
- Institute for Research in Immunology and Cancer (IRIC) and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
- Domain Therapeutics North America, Montréal, Québec, H4S 1Z9, Canada
| | - Pierre Couvineau
- Institute for Research in Immunology and Cancer (IRIC) and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Stefan Wojcik
- Douglas Research Center, McGill University, Montréal, Canada
- University of Surrey, Guildford, UK
- Oxford Brookes University, Oxford, UK
| | - Hiroyuki Kobayashi
- Institute for Research in Immunology and Cancer (IRIC) and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Florence Gross
- Institute for Research in Immunology and Cancer (IRIC) and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
- Domain Therapeutics North America, Montréal, Québec, H4S 1Z9, Canada
| | - Mireille Hogue
- Institute for Research in Immunology and Cancer (IRIC) and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer (IRIC) and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Emmanuel Darcq
- Douglas Research Center, McGill University, Montréal, Canada
- INSERM U1114, University of Strasbourg, Strasbourg, France
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC) and Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada.
| | - Brigitte L Kieffer
- Douglas Research Center, McGill University, Montréal, Canada.
- INSERM U1114, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
29
|
Floranović MP, Petrović AR, Veličković LJ. Expression of the CXCR4 and CXCR7 in renal cancers; can "the orphan receptor" predict the mortality? Ann Diagn Pathol 2021; 55:151829. [PMID: 34563828 DOI: 10.1016/j.anndiagpath.2021.151829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/26/2021] [Accepted: 09/05/2021] [Indexed: 02/05/2023]
Abstract
CXCR4 and CXCR7 are chemokine receptors that bind with chemokine CXCL12 and influence various physiological and pathological processes. In renal cell carcinoma, their expression has been mostly associated with tumour aggressiveness. However, there are some contradictory results regarding the localization of immunohistochemical staining and predictive potential of these markers. The expression of CXCR4 and CXCR7 was immunohistochemicaly analyzed in 98 tumour samples, including 85 clear cell type (ccRCC) and 13 papillary type (pRCC). Depending on the staining localization (cytoplasmatic or membranous), intensity and percentage of stained cells, histoscores were calculated, and their association with clinicopathological parameters was analyzed. PRCC was associated with both CXCR7 and CXCR4 cytoplasmatic expression. We have also found that higher CXCR7 expression can be expected in tumours of greater size. In our study, mortality could be predicted by membranous CXCR7 histoscore, tumour size and pRCC type. With each centimetre in tumour size, survival decreases 1.2 times. CXCR7M histoscore higher by 50 units was associated with 1.5 greater risk of mortality. Neither membranous nor cytoplasmatic CXCR4 histoscore was found to be mortality predictor. Our data showed that CXCR7 could be considered as a valid prognostic marker regarding survival of RCC patients.
Collapse
Affiliation(s)
- Milena Potić Floranović
- Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Zoran Đinđić Boulevard 81, 18000 Niš, Serbia.
| | - Ana Ristić Petrović
- Pathology and Pathological Anatomy Center - Clinical Center of Niš, Zoran Đinđić Boulevard 48, 18000 Niš, Serbia
| | - Ljubinka Janković Veličković
- Pathology and Pathological Anatomy Center - Clinical Center of Niš, Zoran Đinđić Boulevard 48, 18000 Niš, Serbia
| |
Collapse
|
30
|
Luyao H, Luesch H, Uy M. GPCR Pharmacological Profiling of Aaptamine from the Philippine Sponge Stylissa sp. Extends Its Therapeutic Potential for Noncommunicable Diseases. Molecules 2021; 26:molecules26185618. [PMID: 34577088 PMCID: PMC8466755 DOI: 10.3390/molecules26185618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/05/2022] Open
Abstract
We report the first isolation of the alkaloid aaptamine from the Philippine marine sponge Stylissa sp. Aaptamine possessed weak antiproliferative activity against HCT116 colon cancer cells and inhibited the proteasome in vitro at 50 µM. These activities may be functionally linked. Due to its known, more potent activity on certain G-protein coupled receptors (GPCRs), including α-adrenergic and δ-opioid receptors, the compound was profiled more broadly at sub-growth inhibitory concentrations against a panel of 168 GPCRs to potentially reveal additional targets and therapeutic opportunities. GPCRs represent the largest class of drug targets. The primary screen at 20 µM using the β-arrestin functional assay identified the antagonist, agonist, and potentiators of agonist activity of aaptamine. Dose-response analysis validated the α-adrenoreceptor antagonist activity of aaptamine (ADRA2C, IC50 11.9 µM) and revealed the even more potent antagonism of the β-adrenoreceptor (ADRB2, IC50 0.20 µM) and dopamine receptor D4 (DRD4, IC50 6.9 µM). Additionally, aaptamine showed agonist activity on selected chemokine receptors, by itself (CXCR7, EC50 6.2 µM; CCR1, EC50 11.8 µM) or as a potentiator of agonist activity (CXCR3, EC50 31.8 µM; CCR3, EC50 16.2 µM). These GPCRs play a critical role in the treatment of cardiovascular disease, diabetes, cancer, and neurological disorders. The results of this study may thus provide novel preventive and therapeutic strategies for noncommunicable diseases (NCDs).
Collapse
Affiliation(s)
- Harmie Luyao
- Department of Chemistry, Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines;
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery, and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery, and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
- Correspondence: (H.L.); (M.U.)
| | - Mylene Uy
- Department of Chemistry, Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines;
- Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University—Iligan Institute of Technology, Iligan City 9200, Philippines
- Correspondence: (H.L.); (M.U.)
| |
Collapse
|
31
|
Liu P, Sun H, Zhou X, Wang Q, Gao F, Fu Y, Li T, Wang Y, Li Y, Fan B, Li X, Jiang T, Qin X, Zheng Q. CXCL12/CXCR4 axis as a key mediator in atrial fibrillation via bioinformatics analysis and functional identification. Cell Death Dis 2021; 12:813. [PMID: 34453039 PMCID: PMC8397768 DOI: 10.1038/s41419-021-04109-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation (AF) is an increasingly prevalent arrhythmia with significant health and socioeconomic impact. The underlying mechanism of AF is still not well understood. In this study, we sought to identify hub genes involved in AF, and explored their functions and underlying mechanisms based on bioinformatics analysis. Five microarray datasets in GEO were used to identify the differentially expressed genes (DEGs) by Robust Rank Aggregation (RRA), and hub genes were screened out using protein-protein interaction (PPI) network. AF model was established using a mixture of acetylcholine and calcium chloride (Ach-CaCl2) by tail vein injection. We totally got 35 robust DEGs that mainly involve in extracellular matrix formation, leukocyte transendothelial migration, and chemokine signaling pathway. Among these DEGs, we identified three hub genes involved in AF, of which CXCL12/CXCR4 axis significantly upregulated in AF patients stands out as one of the most potent targets for AF prevention, and its effect on AF pathogenesis and underlying mechanisms were investigated in vivo subsequently with the specific CXCR4 antagonist AMD3100 (6 mg/kg). Our results demonstrated an elevated transcription and translation of CXCL12/CXCR4 axis in AF patients and mice, accompanied with the anabatic atrial inflammation and fibrosis, thereby providing the substrate for AF maintenance. Blocking its signaling via AMD3100 administration in AF model mice reduced AF inducibility and duration, partly ascribed to decreased atrial inflammation and structural remodeling. Mechanistically, these effects were achieved by reducing the recruitment of CD3+ T lymphocytes and F4/80+ macrophages, and suppressing the hyperactivation of ERK1/2 and AKT/mTOR signaling in atria of AF model mice. In conclusion, this study provides new evidence that antagonizing CXCR4 prevents the development of AF, and suggests that CXCL12/CXCR4 axis may be a potential therapeutic target for AF.
Collapse
Affiliation(s)
- Peng Liu
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongke Sun
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhou
- Department of Cardiology, The First Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiaozhu Wang
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Gao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuping Fu
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixin Wang
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingqi Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Boyuan Fan
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tiannan Jiang
- Department of Internal Medicine, Health Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinghua Qin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
32
|
Márquez AB, van der Vorst EPC, Maas SL. Key Chemokine Pathways in Atherosclerosis and Their Therapeutic Potential. J Clin Med 2021; 10:3825. [PMID: 34501271 PMCID: PMC8432216 DOI: 10.3390/jcm10173825] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
The search to improve therapies to prevent or treat cardiovascular diseases (CVDs) rages on, as CVDs remain a leading cause of death worldwide. Here, the main cause of CVDs, atherosclerosis, and its prevention, take center stage. Chemokines and their receptors have long been known to play an important role in the pathophysiological development of atherosclerosis. Their role extends from the initiation to the progression, and even the potential regression of atherosclerotic lesions. These important regulators in atherosclerosis are therefore an obvious target in the development of therapeutic strategies. A plethora of preclinical studies have assessed various possibilities for targeting chemokine signaling via various approaches, including competitive ligands and microRNAs, which have shown promising results in ameliorating atherosclerosis. Developments in the field also include detailed imaging with tracers that target specific chemokine receptors. Lastly, clinical trials revealed the potential of various therapies but still require further investigation before commencing clinical use. Although there is still a lot to be learned and investigated, it is clear that chemokines and their receptors present attractive yet extremely complex therapeutic targets. Therefore, this review will serve to provide a general overview of the connection between various chemokines and their receptors with atherosclerosis. The different developments, including mouse models and clinical trials that tackle this complex interplay will also be explored.
Collapse
Affiliation(s)
- Andrea Bonnin Márquez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
33
|
Induction of the CD24 Surface Antigen in Primary Undifferentiated Human Adipose Progenitor Cells by the Hedgehog Signaling Pathway. Biologics 2021. [DOI: 10.3390/biologics1020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the murine model system of adipogenesis, the CD24 cell surface protein represents a valuable marker to label undifferentiated adipose progenitor cells. Indeed, when injected into the residual fat pads of lipodystrophic mice, these CD24 positive cells reconstitute a normal white adipose tissue (WAT) depot. Unluckily, similar studies in humans are rare and incomplete. This is because it is impossible to obtain large numbers of primary CD24 positive human adipose stem cells (hASCs). This study shows that primary hASCs start to express the glycosylphosphatidylinositol (GPI)-anchored CD24 protein when cultured with a chemically defined medium supplemented with molecules that activate the Hedgehog (Hh) signaling pathway. Therefore, this in vitro system may help understand the biology and role in adipogenesis of the CD24-positive hASCs. The induced cells’ phenotype was studied by flow cytometry, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) techniques, and their secretion profile. The results show that CD24 positive cells are early undifferentiated progenitors expressing molecules related to the angiogenic pathway.
Collapse
|
34
|
Britton C, Poznansky MC, Reeves P. Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: Implications for therapeutic interventions in cancer and immune-mediated diseases. FASEB J 2021; 35:e21260. [PMID: 33715207 DOI: 10.1096/fj.202001273r] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Historically the chemokine receptor CXCR4 and its canonical ligand CXCL12 are associated with the bone marrow niche and hematopoiesis. However, CXCL12 exhibits broad tissue expression including brain, thymus, heart, lung, liver, kidney, spleen, and bone marrow. CXCR4 can be considered as a node which is integrating and transducing inputs from a range of ligand-receptor interactions into a responsive and divergent network of intracellular signaling pathways that impact multiple cellular processes such as proliferation, migration, and stress resistance. Dysregulation of the CXCR4/CXCL12 axis and consequent fundamental cellular processes, are associated with a panoply of disease. This review frames the polyfunctionality of the receptor at a molecular, physiological, and pathophysiological levels. Transitioning our perspective of this axis from a single gene/protein:single function model to a polyfunctional signaling cascade highlights the potential for finer therapeutic intervention and cautions against a reductionist approach.
Collapse
Affiliation(s)
- C Britton
- Vaccine and Immunotherapy Center, Boston, MA, USA
| | | | - P Reeves
- Vaccine and Immunotherapy Center, Boston, MA, USA.,Department of Medicine, Imperial College School of Medicine, London, England
| |
Collapse
|
35
|
Expression and prognostic value of CXCL12/CXCR4/CXCR7 axis in clear cell renal cell carcinoma. Clin Exp Nephrol 2021; 25:1057-1069. [PMID: 34109508 DOI: 10.1007/s10157-021-02081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND CXCL12 or stromal-derived factor-1 is a chemokine that binds to two receptors CXCR4 and CXCR7 and takes part in both physiological and pathological cell functions. The disruption of the CXCL12/CXCR4/CXCR7 chemokine axis is seen in various types of cancers. METHODS We have immunohistochemically analyzed the expression of CXCL12 and its receptors in clear cell renal cell carcinoma patients. The study included 85 tissue samples. Since samples exhibited heterogeneity of expression intensity and staining localization (cytoplasmatic and membranous), histoscores were calculated, and their associations with clinicopathological parameters were analyzed. RESULTS Both cytoplasmatic CXCR7 and CXCL12 histoscores were associated with greater tumour size, while CXCL12 staining was associated with a higher grade as well. Mortality was associated with tumour size and both membranous and cytoplasmatic CXCL12 histoscores. With each centimetre in tumour size, survival decreases 1.3 times, while CXCL12C histoscore higher than 73 was associated with 2.3 greater risk of mortality. CXCR4 histoscore could only be predicted by female gender and neither cytoplasmatic nor membranous CXCR4 expression was found to be a mortality predictor. CONCLUSION Our data suggest that regarding overall survival, CXCL12 could be considered a valuable prognostic marker.
Collapse
|
36
|
Wang S, Mobasheri A, Zhang Y, Wang Y, Dai T, Zhang Z. Exogenous stromal cell-derived factor-1 (SDF-1) suppresses the NLRP3 inflammasome and inhibits pyroptosis in synoviocytes from osteoarthritic joints via activation of the AMPK signaling pathway. Inflammopharmacology 2021; 29:695-704. [PMID: 34085175 PMCID: PMC8233244 DOI: 10.1007/s10787-021-00814-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/24/2021] [Indexed: 01/21/2023]
Abstract
Objective NLRP3 inflammasome may play a key role in OA pathogenesis. Stromal cell-derived factor-1 (SDF-1) is a homeostatic CXC chemokine. Since the role of SDF-1 in OA has not been explored, this study aimed to examine the effect of SDF-1 on NLRP3 inflammasome and pyroptosis in synoviocytes from OA joints. Materials and methods Human synovium was obtained from OA patients for isolation of primary synoviocytes and a murine model of collagenase-induced OA was established for testing intra-articular injections of SDF-1. Immunoblotting assays were used to examine the effects and underlying mechanism of action of SDF-1 on NLRP3 inflammasome and synoviocyte pyroptosis in synoviocytes. Inhibitors of AMPK and PI3K–mTOR were utilized to investigate the key signaling pathways involved in SDF-1-mediated OA inflammasome formation and pyroptosis. Results Synoviocytes from OA joints exhibited significantly higher expression of NLRP3 inflammasome and biomarkers of synoviocyte pyroptosis relative to healthy individuals. This was confirmed in the collagenase-induced OA model, where OA synoviocytes had a significantly lower SDF-1 expression than healthy ones. SDF-1 treatment in synoviocytes of OA patients and collagenase-induced OA led to significant downregulation in the expression of NLRP3 inflammasome and synoviocyte pyroptosis biomarkers. Inhibition of the AMPK signaling pathway significantly suppressed the inhibitory effect of SDF-1 on NLRP3 inflammasome expression of OA synoviocytes. However, blocking the SDF-1-activated PI3K–mTOR signaling pathway could still suppress the expression of NLRP3 inflammasome and synoviocyte pyroptosis biomarkers. Conclusions SDF-1 ameliorates NLRP3 inflammasome and pyroptosis in OA synoviocytes through activation of the AMPK signaling pathway. Therefore, SDF-1 may be a novel therapeutic target for OA. Supplementary Information The online version contains supplementary material available at 10.1007/s10787-021-00814-x.
Collapse
Affiliation(s)
- Shuya Wang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China
| | - Ali Mobasheri
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, PO Box 5000, 90014, Oulu, Finland. .,Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406, Vilnius, Lithuania. .,Department of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA, Utrecht, The Netherlands.
| | - Yue Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China
| | - Yanli Wang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China
| | - Tianqi Dai
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng St, Harbin, 150001, China.
| |
Collapse
|
37
|
Saxena S, Singh RK. Chemokines orchestrate tumor cells and the microenvironment to achieve metastatic heterogeneity. Cancer Metastasis Rev 2021; 40:447-476. [PMID: 33959849 PMCID: PMC9863248 DOI: 10.1007/s10555-021-09970-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/22/2021] [Indexed: 01/26/2023]
Abstract
Chemokines, a subfamily of the cell cytokines, are low molecular weight proteins known to induce chemotaxis in leukocytes in response to inflammatory and pathogenic signals. A plethora of literature demonstrates that chemokines and their receptors regulate tumor progression and metastasis. With these diverse functionalities, chemokines act as a fundamental link between the tumor cells and their microenvironment. Recent studies demonstrate that the biology of chemokines and their receptor in metastasis is complex as numerous chemokines are involved in regulating site-specific tumor growth and metastasis. Successful treatment of disseminated cancer is a significant challenge. The most crucial problem for treating metastatic cancer is developing therapy regimes capable of overcoming heterogeneity problems within primary tumors and among metastases and within metastases (intralesional). This heterogeneity of malignant tumor cells can be related to metastatic potential, response to chemotherapy or specific immunotherapy, and many other factors. In this review, we have emphasized the role of chemokines in the process of metastasis and metastatic heterogeneity. Individual chemokines may not express the full potential to address metastatic heterogeneity, but chemokine networks need exploration. Understanding the interplay between chemokine-chemokine receptor networks between the tumor cells and their microenvironment is a novel approach to overcome the problem of metastatic heterogeneity. Recent advances in the understanding of chemokine networks pave the way for developing a potential targeted therapeutic strategy to treat metastatic cancer.
Collapse
Affiliation(s)
- Sugandha Saxena
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
| |
Collapse
|
38
|
Wei ST, Huang YC, Chiang JY, Lin CC, Lin YJ, Shyu WC, Chen HC, Hsieh CH. Gain of CXCR7 function with mesenchymal stem cell therapy ameliorates experimental arthritis via enhancing tissue regeneration and immunomodulation. Stem Cell Res Ther 2021; 12:314. [PMID: 34051857 PMCID: PMC8164772 DOI: 10.1186/s13287-021-02402-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/19/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The major barriers to mesenchymal stem cell (MSC) therapy in rheumatoid arthritis (RA) are a low extent of tissue regeneration and insufficient immunomodulation after cell transplantation. In addition, the role of C-X-C chemokine receptor type 7 (CXCR7) and its mechanism of action in MSC-mediated osteogenic or chondrogenic differentiation and immunomodulation are unclear. METHODS Gain of CXCR7 function on human MSCs was carried out by lentiviral vector-mediated CXCR7 overexpression or CXCR7 agonist, TC14012. These cells were determined the role and potential mechanisms for CXCR7-regulated MSC differentiation and immunomodulation using cellular and molecular assays. The therapeutic benefits in RA were investigated in rats with collagen-induced arthritis (CIA). RESULTS CXCR7 was upregulated in MSCs during the induction of osteogenic or chondrogenic differentiation. Blockage of CXCR7 function inhibited osteogenic or chondrogenic differentiation of MSCs whereas gain of CXCR7 function had the opposite effects. Besides, MSCs with CXCR7 gain-of-function facilitated macrophage apoptosis and regulatory T cell differentiation in a co-culture system. Gain of CXCR7 function also promoted the production of anti-inflammatory soluble factors. A gene expression profiling assay and signaling reporter assays revealed that CXCR7 could regulate several candidate genes related to the PPAR, WNT, Hedgehog or Notch pathways, and their signaling activities, which are known to control cell differentiation and immunomodulation. Finally, MSCs with CXCR7 gain-of-function significantly reduced the articular index scores, ankle circumference, radiographic scores, histologic scores, and inflammation in rats with CIA compared with control MSCs. CONCLUSIONS CXCR7 promotes the osteogenic and chondrogenic differentiation of MSCs and MSC-mediated immunomodulation by regulating several signaling pathways and anti-inflammatory soluble factors. MSCs with CXCR7 gain-of-function significantly ameliorate arthritic symptoms in a CIA model.
Collapse
Affiliation(s)
- Sung-Tai Wei
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Neurosurgery, China Medical University and Hospital, Taichung, Taiwan
| | - Yen-Chih Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Medical Imaging, China Medical University and Hospital, Taichung, Taiwan
| | - Jung-Ying Chiang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Neurosurgery, China Medical University and Hospital, Taichung, Taiwan
| | - Chia-Ching Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Jung Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Woei-Cherng Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hui-Chen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chia-Hung Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan. .,Department of Biomedical Informatics, Asia University, Taichung, Taiwan.
| |
Collapse
|
39
|
Radice E, Ameti R, Melgrati S, Foglierini M, Antonello P, Stahl RAK, Thelen S, Jarrossay D, Thelen M. Marginal Zone Formation Requires ACKR3 Expression on B Cells. Cell Rep 2021; 32:107951. [PMID: 32755592 DOI: 10.1016/j.celrep.2020.107951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/12/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022] Open
Abstract
The marginal zone (MZ) contributes to the highly organized spleen microarchitecture. We show that expression of atypical chemokine receptor 3 (ACKR3) defines two equal-sized populations of mouse MZ B cells (MZBs). ACKR3 is required for development of a functional MZ and for positioning of MZBs. Deletion of ACKR3 on B cells distorts the MZ, and MZBs fail to deliver antigens to follicles, reducing humoral responses. Reconstitution of MZ-deficient CD19ko mice shows that ACKR3- MZBs can differentiate into ACKR3+ MZBs, but not vice versa. The lack of a MZ is rescued by adoptive transfer of ACKR3-sufficient, and less by ACKR3-deficient, follicular B cells (FoBs); hence, ACKR3 expression is crucial for establishment of the MZ. The inability of CD19ko mice to respond to T-independent antigen is rescued when ACKR3-proficient, but not ACKR3-deficient, FoBs are transferred. Accordingly, ACKR3-deficient FoBs are able to reconstitute the MZ if the niche is pre-established by ACKR3-proficient MZBs.
Collapse
Affiliation(s)
- Egle Radice
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, University of Bern, 3012 Bern, Switzerland
| | - Rafet Ameti
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, University of Bern, 3012 Bern, Switzerland
| | - Serena Melgrati
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, University of Bern, 3012 Bern, Switzerland
| | - Mathilde Foglierini
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Paola Antonello
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland; Graduate School of Cellular and Molecular Sciences, University of Bern, 3012 Bern, Switzerland
| | - Rolf A K Stahl
- III Medizinische Klinik, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sylvia Thelen
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - David Jarrossay
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Marcus Thelen
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland.
| |
Collapse
|
40
|
Sigmund EC, Baur L, Schineis P, Arasa J, Collado-Diaz V, Vranova M, Stahl RAK, Thelen M, Halin C. Lymphatic endothelial-cell expressed ACKR3 is dispensable for postnatal lymphangiogenesis and lymphatic drainage function in mice. PLoS One 2021; 16:e0249068. [PMID: 33857173 PMCID: PMC8049313 DOI: 10.1371/journal.pone.0249068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Atypical chemokine receptor ACKR3 (formerly CXCR7) is a scavenging receptor that has recently been implicated in murine lymphatic development. Specifically, ACKR3-deficiency was shown to result in lymphatic hyperplasia and lymphedema, in addition to cardiac hyperplasia and cardiac valve defects leading to embryonic lethality. The lymphatic phenotype was attributed to a lymphatic endothelial cell (LEC)-intrinsic scavenging function of ACKR3 for the vascular peptide hormone adrenomedullin (AM), which is also important during postnatal lymphangiogenesis. In this study, we investigated the expression of ACKR3 in the lymphatic vasculature of adult mice and its function in postnatal lymphatic development and function. We show that ACKR3 is widely expressed in mature lymphatics and that it exerts chemokine-scavenging activity in cultured murine skin-derived LECs. To investigate the role of LEC-expressed ACKR3 in postnatal lymphangiogenesis and function during adulthood, we generated and validated a lymphatic-specific, inducible ACKR3 knockout mouse. Surprisingly, in contrast to the reported involvement of ACKR3 in lymphatic development, our analyses revealed no contribution of LEC-expressed ACKR3 to postnatal lymphangiogenesis, lymphatic morphology and drainage function.
Collapse
Affiliation(s)
- Elena C. Sigmund
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Lilian Baur
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Philipp Schineis
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jorge Arasa
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Martina Vranova
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Marcus Thelen
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
41
|
Adipocyte-Specific ACKR3 Regulates Lipid Levels in Adipose Tissue. Biomedicines 2021; 9:biomedicines9040394. [PMID: 33917642 PMCID: PMC8067615 DOI: 10.3390/biomedicines9040394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/06/2023] Open
Abstract
Dysfunctional adipose tissue (AT) may contribute to the pathology of several metabolic diseases through altered lipid metabolism, insulin resistance, and inflammation. Atypical chemokine receptor 3 (ACKR3) expression was shown to increase in AT during obesity, and its ubiquitous elimination caused hyperlipidemia in mice. Although these findings point towards a role of ACKR3 in the regulation of lipid levels, the role of adipocyte-specific ACKR3 has not yet been studied exclusively in this context. In this study, we established adipocyte- and hepatocyte-specific knockouts of Ackr3 in ApoE-deficient mice in order to determine its impact on lipid levels under hyperlipidemic conditions. We show for the first time that adipocyte-specific deletion of Ackr3 results in reduced AT triglyceride and cholesterol content in ApoE-deficient mice, which coincides with increased peroxisome proliferator-activated receptor-γ (PPAR-γ) and increased Angptl4 expression. The role of adipocyte ACKR3 in lipid handling seems to be tissue-specific as hepatocyte ACKR3 deficiency did not demonstrate comparable effects. In summary, adipocyte-specific ACKR3 seems to regulate AT lipid levels in hyperlipidemic Apoe−/− mice, which may therefore be a significant determinant of AT health. Further studies are needed to explore the potential systemic or metabolic effects that adipocyte ACKR3 might have in associated disease models.
Collapse
|
42
|
Goto M, Shibahara Y, Baciu C, Allison F, Yeung JC, Darling GE, Liu M. Prognostic Impact of CXCR7 and CXCL12 Expression in Patients with Esophageal Adenocarcinoma. Ann Surg Oncol 2021; 28:4943-4951. [PMID: 33709176 DOI: 10.1245/s10434-021-09775-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chemokines are major regulators of cell trafficking and adhesion. The chemokine CXCL12 and its receptors, CXCR4 and CXCR7, have been reported as biomarkers in various cancers, including esophageal cancer; however, there are few studies in esophageal adenocarcinoma (EAC). In this study, we investigated the relationship between expression of CXCL12, CXCR4, and CXCR7, and prognosis in patients with EAC. METHODS This study examined 55 patients with EAC who were treated in Toronto General Hospital from 2001 to 2010. Tissue microarray immunohistochemistry was used to evaluate the expression of CXCL12, CXCR4, and CXCR7. Evaluation of immunohistochemistry was performed by a pathologist without knowledge of patients' information and results were compared with the patients' clinicopathological features and survival. RESULTS High CXCR7 expression was significantly associated with lymphatic invasion (present vs absent, P = 0.005) and higher number of lymph node metastases (pN0-1 vs pN2-3, P = 0.0014). Patients with high CXCR7 expression (n = 23) were associated with worse overall (OS) and disease-free survival (DFS) (P = 0.0221, P = 0.0090, respectively), and patients with high CXCL12 (n = 24) tended to have worse OS and DFS (P = 0.1091, P = 0.1477, respectively). High expression of both CXCR7 and CXCL12 was an independent prognostic factor for OS and DFS on multivariate analysis (HR = 0.3, 95% CI: 0.1-0.9, P = 0.0246, HR = 0.3, 95% CI: 0.1-0.8, P = 0.0134, respectively). CONCLUSIONS High CXCR7 expression was associated with poor prognosis in patients with EAC, and high expression of CXCR7 with its ligand CXCL12 had a stronger association with prognosis. Further study of this potential biomarker using whole tissue samples and a larger sample size is warranted.
Collapse
Affiliation(s)
- Masakazu Goto
- Department of Thoracic, Endocrine Surgery and Oncology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Yukiko Shibahara
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Pathology, University Health Network, Toronto, Canada
| | - Cristina Baciu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Frances Allison
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Jonathan C Yeung
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Gail E Darling
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada. .,Departments of Surgery, Medicine, and Physiology, Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
43
|
Differential Involvement of ACKR3 C-Tail in β-Arrestin Recruitment, Trafficking and Internalization. Cells 2021; 10:cells10030618. [PMID: 33799570 PMCID: PMC8002179 DOI: 10.3390/cells10030618] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The atypical chemokine receptor 3 (ACKR3) belongs to the superfamily of G protein-coupled receptors (GPCRs). Unlike classical GPCRs, this receptor does not activate G proteins in most cell types but recruits β-arrestins upon activation. ACKR3 plays an important role in cancer and vascular diseases. As recruitment of β-arrestins is triggered by phosphorylation of the C-terminal tail of GPCRs, we studied the role of different potential phosphorylation sites within the ACKR3 C-tail to further delineate the molecular mechanism of internalization and trafficking of this GPCR. Methods: We used various bioluminescence and fluorescence resonance energy transfer-based sensors and techniques in Human Embryonic Kidney (HEK) 293T cells expressing WT or phosphorylation site mutants of ACKR3 to measure CXCL12-induced recruitment of β-arrestins and G-protein-coupled receptor kinases (GRKs), receptor internalization and trafficking. Results: Upon CXCL12 stimulation, ACKR3 recruits both β-arrestin 1 and 2 with equivalent kinetic profiles. We identified interactions with GRK2, 3 and 5, with GRK2 and 3 being important for β-arrestin recruitment. Upon activation, ACKR3 internalizes and recycles back to the cell membrane. We demonstrate that β-arrestin recruitment to the receptor is mainly determined by a single cluster of phosphorylated residues on the C-tail of ACKR3, and that residue T352 and in part S355 are important residues for β-arrestin1 recruitment. Phosphorylation of the C-tail appears essential for ligand-induced internalization and important for differential β-arrestin recruitment. GRK2 and 3 play a key role in receptor internalization. Moreover, ACKR3 can still internalize when β-arrestin recruitment is impaired or in the absence of β-arrestins, using alternative internalization pathways. Our data indicate that distinct residues within the C-tail of ACKR3 differentially regulate CXCL12-induced β-arrestin recruitment, ACKR3 trafficking and internalization.
Collapse
|
44
|
Curran CS, Kopp JB. PD-1 immunobiology in glomerulonephritis and renal cell carcinoma. BMC Nephrol 2021; 22:80. [PMID: 33676416 PMCID: PMC7936245 DOI: 10.1186/s12882-021-02257-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Programmed cell death protein (PD)-1 receptors and ligands on immune cells and kidney parenchymal cells help maintain immunological homeostasis in the kidney. Dysregulated PD-1:PD-L1 binding interactions occur during the pathogenesis of glomerulopathies and renal cell carcinoma (RCC). The regulation of these molecules in the kidney is important to PD-1/PD-L1 immunotherapies that treat RCC and may induce glomerulopathies as an adverse event. METHODS The expression and function of PD-1 molecules on immune and kidney parenchymal cells were reviewed in the healthy kidney, PD-1 immunotherapy-induced nephrotoxicity, glomerulopathies and RCC. RESULTS PD-1 and/or its ligands are expressed on kidney macrophages, dendritic cells, lymphocytes, and renal proximal tubule epithelial cells. Vitamin D3, glutathione and AMP-activated protein kinase (AMPK) regulate hypoxic cell signals involved in the expression and function of PD-1 molecules. These pathways are altered in kidney disease and are linked to the production of vascular endothelial growth factor, erythropoietin, adiponectin, interleukin (IL)-18, IL-23, and chemokines that bind CXCR3, CXCR4, and/or CXCR7. These factors are differentially produced in glomerulonephritis and RCC and may be important biomarkers in patients that receive PD-1 therapies and/or develop glomerulonephritis as an adverse event CONCLUSION: By comparing the functions of the PD-1 axis in glomerulopathies and RCC, we identified similar chemokines involved in the recruitment of immune cells and distinct mediators in T cell differentiation. The expression and function of PD-1 and PD-1 ligands in diseased tissue and particularly on double-negative T cells and parenchymal kidney cells needs continued exploration. The possible regulation of the PD-1 axis by vitamin D3, glutathione and/or AMPK cell signals may be important to kidney disease and the PD-1 immunotherapeutic response.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, NIH, BG 10 RM 2C135, 10 Center Drive, Bethesda, MD, 20814, USA.
| | | |
Collapse
|
45
|
Pouzol L, Baumlin N, Sassi A, Tunis M, Marrie J, Vezzali E, Farine H, Mentzel U, Martinic MM. ACT-1004-1239, a first-in-class CXCR7 antagonist with both immunomodulatory and promyelinating effects for the treatment of inflammatory demyelinating diseases. FASEB J 2021; 35:e21431. [PMID: 33595155 DOI: 10.1096/fj.202002465r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
Current strategies for the treatment of demyelinating diseases such as multiple sclerosis (MS) are based on anti-inflammatory or immunomodulatory drugs. Those drugs have the potential to reduce the frequency of new lesions but do not directly promote remyelination in the damaged central nervous system (CNS). Targeting CXCR7 (ACKR3) has been postulated as a potential therapeutic approach in demyelinating diseases, leading to both immunomodulation by reducing leukocyte infiltrates and promyelination by enhancing myelin repair. ACT-1004-1239 is a potent, selective, insurmountable, and orally available first-in-class CXCR7 receptor antagonist. The effect of ACT-1004-1239 was evaluated in the myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) and the cuprizone-induced demyelination mouse models. In addition, ACT-1004-1239 was assessed in a rat oligodendrocyte precursor cell (OPC) differentiation assay in vitro. In the MOG-induced EAE model, ACT-1004-1239 treatment (10-100 mg/kg, twice daily, orally) showed a significant dose-dependent reduction in disease clinical scores, resulting in increased survival. At the highest dose tested (100 mg/kg, twice daily), ACT-1004-1239 delayed disease onset and significantly reduced immune cell infiltrates into the CNS and plasma neurofilament light chain concentration. Treatment with ACT-1004-1239 dose-dependently increased plasma CXCL12 concentration, which correlated with a reduction of the cumulative disease score. Furthermore, in the cuprizone model, ACT-1004-1239 treatment significantly increased the number of mature myelinating oligodendrocytes and enhanced myelination in vivo. In vitro, ACT-1004-1239 promoted the maturation of OPCs into myelinating oligodendrocytes. These results provide evidence that ACT-1004-1239 both reduces neuroinflammation and enhances myelin repair substantiating the rationale to explore its therapeutic potential in a clinical setting.
Collapse
Affiliation(s)
| | | | - Anna Sassi
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Mélanie Tunis
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Julia Marrie
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | - Hervé Farine
- Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | | |
Collapse
|
46
|
Puchert M, Koch C, Zieger K, Engele J. Identification of CXCL11 as part of chemokine network controlling skeletal muscle development. Cell Tissue Res 2021; 384:499-511. [PMID: 33502606 PMCID: PMC8141492 DOI: 10.1007/s00441-020-03398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022]
Abstract
The chemokine, CXCL12, and its receptors, CXCR4 and CXCR7, play pivotal roles during development and maintenance of limb muscles. CXCR7 additionally binds CXCL11, which uses CXCR3 as its prime receptor. Based on this cross-talk, we investigate whether CXCL11 would likewise affect development and/or function of skeletal muscles. Western blotting and immunolabelling demonstrated the developmentally restricted expression of CXCL11 in rat limb muscles, which was contrasted by the continuous expression of its receptors in proliferating and differentiating C2C12 cells as well as in late embryonic to adult rat limb muscle fibres. Consistent with a prime role in muscle formation, functional studies identified CXCL11 as a potent chemoattractant for undifferentiated C2C12 cells and further showed that CXCL11 does neither affect myoblast proliferation and differentiation nor metabolic/catabolic pathways in formed myotubes. The use of selective receptor antagonists unravelled complementary effects of CXCL11 and CXCL12 on C2C12 cell migration, which either require CXCR3/CXCR7 or CXCR4, respectively. Our findings provide new insights into the chemokine network controlling skeletal muscle development and function and, thus, might provide a base for future therapies of muscular diseases.
Collapse
Affiliation(s)
- Malte Puchert
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr.13, 04103, Leipzig, Germany
| | - Christian Koch
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr.13, 04103, Leipzig, Germany
| | - Konstanze Zieger
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr.13, 04103, Leipzig, Germany
| | - Jürgen Engele
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr.13, 04103, Leipzig, Germany.
| |
Collapse
|
47
|
Huynh C, Henrich A, Strasser DS, Boof ML, Al-Ibrahim M, Meyer Zu Schwabedissen HE, Dingemanse J, Ufer M. A Multipurpose First-in-Human Study With the Novel CXCR7 Antagonist ACT-1004-1239 Using CXCL12 Plasma Concentrations as Target Engagement Biomarker. Clin Pharmacol Ther 2021; 109:1648-1659. [PMID: 33406277 DOI: 10.1002/cpt.2154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/04/2020] [Indexed: 11/09/2022]
Abstract
The C-X-C chemokine receptor 7 (CXCR7) has evolved as a promising, druggable target mainly in the immunology and oncology fields modulating plasma concentrations of its ligands CXCL11 and CXCL12 through receptor-mediated internalization. This "scavenging" activity creates concentration gradients of these ligands between blood vessels and tissues that drive directional cell migration. This randomized, double-blind, placebo-controlled first-in-human study assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of ACT-1004-1239, a first-in-class drug candidate small-molecule CXCR7 antagonist. Food effect and absolute bioavailability assessments were also integrated in this multipurpose study. Healthy male subjects received single ascending oral doses of ACT-1004-1239 (n = 36) or placebo (n = 12). At each of six dose levels (1-200 mg), repeated blood sampling was done over 144 hours for pharmacokinetic/pharmacodynamic assessments using CXCL11 and CXCL12 as biomarkers of target engagement. ACT-1004-1239 was safe and well tolerated up to the highest tested dose of 200 mg. CXCL12 plasma concentrations dose-dependently increased and more than doubled compared with baseline, indicating target engagement, whereas CXCL11 concentrations remained unchanged. An indirect-response pharmacokinetic/pharmacodynamic model well described the relationship between ACT-1004-1239 and CXCL12 concentrations across the full dose range, supporting once-daily dosing for future clinical studies. At doses ≥ 10 mg, time to reach maximum plasma concentration ranged from 1.3 to 3.0 hours and terminal elimination half-life from 17.8 to 23.6 hours. The exposure increase across the dose range was essentially dose-proportional and no relevant food effect on pharmacokinetics was determined. The absolute bioavailability was 53.0% based on radioactivity data after oral vs. intravenous 14 C-radiolabeled microtracer administration of ACT-1004-1239. Overall, these comprehensive data support further clinical development of ACT-1004-1239.
Collapse
Affiliation(s)
- Christine Huynh
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland.,University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | - Mike Ufer
- Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
48
|
Richard-Bildstein S, Aissaoui H, Pothier J, Schäfer G, Gnerre C, Lindenberg E, Lehembre F, Pouzol L, Guerry P. Discovery of the Potent, Selective, Orally Available CXCR7 Antagonist ACT-1004-1239. J Med Chem 2020; 63:15864-15882. [PMID: 33314938 DOI: 10.1021/acs.jmedchem.0c01588] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chemokine receptor CXCR7, also known as ACKR3, is a seven-transmembrane G-protein-coupled receptor (GPCR) involved in various pathologies such as neurological diseases, autoimmune diseases, and cancers. By binding and scavenging the chemokines CXCL11 and CXCL12, CXCR7 regulates their extracellular levels. From an original high-throughput screening campaign emerged hit 3 among others. The hit-to-lead optimization led to the discovery of a novel chemotype series exemplified by the trans racemic compound 11i. This series provided CXCR7 antagonists that block CXCL11- and CXCL12-induced ß-arrestin recruitment. Further structural modifications on the trisubstituted piperidine scaffold of 11i yielded compounds with high CXCR7 antagonistic activities and balanced ADMET properties. The effort described herein culminated in the discovery of ACT-1004-1239 (28f). Biological characterization of ACT-1004-1239 demonstrated that it is a potent, insurmountable antagonist. Oral administration of ACT-1004-1239 in mice up to 100 mg/kg led to a dose-dependent increase of plasma CXCL12 concentration.
Collapse
Affiliation(s)
- Sylvia Richard-Bildstein
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - Hamed Aissaoui
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - Julien Pothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - Gabriel Schäfer
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - Carmela Gnerre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - Eleanor Lindenberg
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - François Lehembre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - Laetitia Pouzol
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| | - Philippe Guerry
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, Allschwil CH-4123, Switzerland
| |
Collapse
|
49
|
Shi Y, Riese DJ, Shen J. The Role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer. Front Pharmacol 2020; 11:574667. [PMID: 33363463 PMCID: PMC7753359 DOI: 10.3389/fphar.2020.574667] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022] Open
Abstract
Chemokines are a family of small, secreted cytokines which regulate a variety of cell functions. The C-X-C motif chemokine ligand 12 (CXCL12) binds to C-X-C chemokine receptor type 4 (CXCR4) and C-X-C chemokine receptor type 7 (CXCR7). The interaction of CXCL12 and its receptors subsequently induces downstream signaling pathways with broad effects on chemotaxis, cell proliferation, migration, and gene expression. Accumulating evidence suggests that the CXCL12/CXCR4/CXCR7 axis plays a pivotal role in tumor development, survival, angiogenesis, metastasis, and tumor microenvironment. In addition, this chemokine axis promotes chemoresistance in cancer therapy via complex crosstalk with other pathways. Multiple small molecules targeting CXCR4/CXCR7 have been developed and used for preclinical and clinical cancer treatment. In this review, we describe the roles of the CXCL12/CXCR4/CXCR7 axis in cancer progression and summarize strategies to develop novel targeted cancer therapies.
Collapse
Affiliation(s)
| | | | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| |
Collapse
|
50
|
Zhang L, He H, Zhang M, Wu Y, Xu X, Yang M, Mei L. Assessing the effect and related mechanism of naringenin on the proliferation, osteogenic differentiation and endothelial differentiation of human periodontal ligament stem cells. Biochem Biophys Res Commun 2020; 534:337-342. [PMID: 33250176 DOI: 10.1016/j.bbrc.2020.11.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/29/2022]
Abstract
Naringenin (NAR) is a natural flavonoid which exerts extensive biological activity, including anti-oxidation, anti-inflammation, anti-cancer, immune regulation and so on. However, the effect and mechanism of NAR in the alveolar bone regeneration are still unclear, which limits its clinical use. Hence, we investigated the effects of NAR in the proliferation, osteogenic and endothelial differentiation of human periodontal ligament stem cells (hPDLSCs) and explore the possible mechanism. The results showed that the proper concentrations (100 nM-10 μM) of NAR can promote the proliferation rate, osteogenic and endothelial differentiation of hPDLSCs. And the 1 μM NAR had the best proliferation promoting effect, while the 10 μM NAR had the best ability of promoting osteogenic and endothelial differentiation. NAR also promoted the mRNA expression of SDF-1 in a concentration dependent manner in PDLSCs. After adding the selective CXCR4 antagonist AMD3100, the osteogenic effect of NAR on PDLSCs is slightly enhanced, while the endothelial differentiation effect of NAR on hPDLSCs is attenuated. In summary, these results indicated that NAR promoted the proliferation of hPDLSCs, and promoted endothelial differentiation of hPDLSCs via SDF-1 to activate SDF-1/CXCR4 signaling pathway. However, the mechanism of which SDF-1 related signaling pathway is activated by NAR to enhance the osteogenic differentiation of hPDLSCs still needs to be investigated.
Collapse
Affiliation(s)
- Li Zhang
- Department of Orthodontics, Hospital of Stomatology, Southwest Medical University, Luzhou, 646000, China; Oral&Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, China
| | - Haiyan He
- Department of Orthodontics, Hospital of Stomatology, Southwest Medical University, Luzhou, 646000, China; Oral&Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, China
| | - Min Zhang
- Department of Orthodontics, Hospital of Stomatology, Southwest Medical University, Luzhou, 646000, China; Oral&Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, China
| | - Yujie Wu
- Department of Orthodontics, Hospital of Stomatology, Southwest Medical University, Luzhou, 646000, China; Oral&Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, China
| | - Xiaomei Xu
- Department of Orthodontics, Hospital of Stomatology, Southwest Medical University, Luzhou, 646000, China; Oral&Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, China.
| | - Maohua Yang
- Oral&Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, China
| | - Li Mei
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|