1
|
Tseng CEJ, Guma E, McDougle CJ, Hooker JM, Zürcher NR. Regional skull translocator protein elevation in autistic adults detected by PET-MRI. Brain Behav Immun 2025; 126:70-79. [PMID: 39904469 DOI: 10.1016/j.bbi.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025] Open
Abstract
Immune processes have been implicated in the pathophysiology of autism spectrum disorder (ASD). Brain borders, such as the skull, have recently been highlighted as sites where neuro-immune interactions occur with key consequences for brain immunity. Translocator protein (TSPO), a mitochondrial protein involved in immune functions, was measured in the skull using [11C]PBR28 positron emission tomography-magnetic resonance imaging (PET-MRI) in 38 autistic adults (26 males, 12 females) and 29 age-and sex-matched healthy controls (19 males, 10 females). [11C]PBR28 uptake relative to a pseudo-reference region assessed using standardized uptake value ratio (SUVR) revealed elevated TSPO in autistic adults in frontal and temporal skull. We did not observe an association between [11C]PBR28 uptake in total or regional skull areas and autism symptom severity. C-reactive protein levels were positively associated with [11C]PBR28 uptake in the total skull across participants. Lastly, [11C]PBR28 uptake in the total skull was stable across a 4-month period. This work indicates regional TSPO elevations in the skull in autistic adults, which may suggest immune involvement.
Collapse
Affiliation(s)
- Chieh-En Jane Tseng
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA
| | - Elisa Guma
- Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Christopher J McDougle
- Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Jacob M Hooker
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Nicole R Zürcher
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA.
| |
Collapse
|
2
|
Dell’Osso L, Bonelli C, Giovannoni F, Poli F, Anastasio L, Cerofolini G, Nardi B, Cremone IM, Pini S, Carpita B. Available Treatments for Autism Spectrum Disorder: From Old Strategies to New Options. Pharmaceuticals (Basel) 2025; 18:324. [PMID: 40143102 PMCID: PMC11944800 DOI: 10.3390/ph18030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 03/28/2025] Open
Abstract
Autism spectrum disorder (ASD) is a condition that is gaining increasing interest in research and clinical fields. Due to the improvement of screening programs and diagnostic procedures, an increasing number of cases are reaching clinical attention. Despite this, the available pharmacological options for treating ASD-related symptoms are still very limited, and while a wide number of studies are focused on children or adolescents, there is a need to increase research about the treatment of ASD in adult subjects. Given this framework, this work aims to review the available literature about pharmacological treatments for ASD, from older strategies to possible new therapeutic targets for this condition, which are often poorly responsive to available resources. The literature, besides confirming the efficacy of the approved drugs for ASD, shows a lack of adequate research for several psychopharmacological treatments despite possible promising results that need to be further investigated.
Collapse
Affiliation(s)
| | - Chiara Bonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 67 Via Roma, 56126 Pisa, Italy; (L.D.); (F.G.); (F.P.); (L.A.); (G.C.); (B.N.); (I.M.C.); (S.P.); (B.C.)
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Vigil-Pérez A, Blázquez A, Garcia-Delgar B, Ortiz AE, Borràs R, Morer A, Escalona RC, Lázaro L. Phenomenology of repetitive and restrictive behaviors and sensory phenomena in neurodevelopmental disorders: an exploratory study. BMC Psychiatry 2025; 25:163. [PMID: 39994553 PMCID: PMC11849297 DOI: 10.1186/s12888-025-06569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Repetitive and restrictive behaviors (RRB) include simple motor stereotypes, tics and complex ritualized and rigid behaviors that are core symptoms in neurodevelopmental disorders such as obsessive-compulsive disorder (OCD), Tourette syndrome (TS) or autism spectrum disorder (ASD). Sensory phenomena (SP) are uncomfortable feelings, including bodily sensations, sense of inner tension, "just-right" perceptions, feelings of incompleteness, or "urge-only" phenomena, which have been described to precede, trigger, or accompany RRB. In such clinical contexts RRB and SP may be considered common variables that affect multiple aspects of daily functioning and are treatment targets. OBJECTIVE This study aims to further understand RRB and SP phenomenology in children and adolescents diagnosed with OCD, TS or ASD and identify whether specific RRB or SP can distinguish these groups. METHODS We assessed RRB and SP in participants aged between 6 and 17 with a main diagnosis of OCD (n = 23), TS (n = 19), or ASD (n = 21) with the Repetitive Behavior Scale-Revised (RBS-R) and The University of Sao Paulo-Sensory Phenomena Scale (USP-SPS). RESULTS The RBS-R mean was 17.3 ± 14.9 with no group differences for total RBS-R symptom severity, except for the routine subscale (OCD > ASD, p = 0.03). Ninety percent of participants showed at least one type of SP on the USP-SPS with a mean total severity of 5.3 ± 3.8, with no statistical differences between groups. The most frequent SP subtype was physical sensations (68.4%). CONCLUSION RRB and SP are transdiagnostic features in neurodevelopmental disorders and the RBS-R and the USP-SPS might be useful in their assessment and treatment plan.
Collapse
Affiliation(s)
- A Vigil-Pérez
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic de Neurociències, Hospital Clínic de Barcelona, Villarroel, 170, Staircase 11 - Floor 3, Barcelona, 08036, Spain.
- Fundació de Recerca Clínic Barcelona-Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
| | - A Blázquez
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic de Neurociències, Hospital Clínic de Barcelona, Villarroel, 170, Staircase 11 - Floor 3, Barcelona, 08036, Spain
- Fundació de Recerca Clínic Barcelona-Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - B Garcia-Delgar
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic de Neurociències, Hospital Clínic de Barcelona, Villarroel, 170, Staircase 11 - Floor 3, Barcelona, 08036, Spain
- Fundació de Recerca Clínic Barcelona-Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - A E Ortiz
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic de Neurociències, Hospital Clínic de Barcelona, Villarroel, 170, Staircase 11 - Floor 3, Barcelona, 08036, Spain
- Fundació de Recerca Clínic Barcelona-Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Departament of Medicine, University of Barcelona, Barcelona, Spain
| | - R Borràs
- Fundació de Recerca Clínic Barcelona-Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - A Morer
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic de Neurociències, Hospital Clínic de Barcelona, Villarroel, 170, Staircase 11 - Floor 3, Barcelona, 08036, Spain
- Fundació de Recerca Clínic Barcelona-Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Departament of Medicine, University of Barcelona, Barcelona, Spain
- Fundació de Recerca Clínic Barcelona-Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - RCalvo Escalona
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic de Neurociències, Hospital Clínic de Barcelona, Villarroel, 170, Staircase 11 - Floor 3, Barcelona, 08036, Spain
- Fundació de Recerca Clínic Barcelona-Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Departament of Medicine, University of Barcelona, Barcelona, Spain
- Fundació de Recerca Clínic Barcelona-Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - L Lázaro
- Department of Child and Adolescent Psychiatry and Psychology, Institut Clinic de Neurociències, Hospital Clínic de Barcelona, Villarroel, 170, Staircase 11 - Floor 3, Barcelona, 08036, Spain
- Fundació de Recerca Clínic Barcelona-Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Departament of Medicine, University of Barcelona, Barcelona, Spain
- Fundació de Recerca Clínic Barcelona-Institut d´Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
4
|
Drehmer I, Santos-Terra J, Gottfried C, Deckmann I. mTOR signaling pathway as a pathophysiologic mechanism in preclinical models of autism spectrum disorder. Neuroscience 2024; 563:33-42. [PMID: 39481829 DOI: 10.1016/j.neuroscience.2024.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent multifactorial disorder characterized by social deficits and stereotypies. Despite extensive research efforts, the etiology of ASD remains poorly understood. However, studies using preclinical models have identified the mechanistic target of rapamycin kinase (mTOR) signaling pathway as a key player in ASD-related features. This review examines genetic and environmental models of ASD, focusing on their association with the mTOR pathway. We organize findings on alterations within this pathway, providing insights about the potential mechanisms involved in the onset and maintenance of ASD symptoms. Our analysis highlights the central role of mTOR hyperactivation in disrupting autophagic processes, neural organization, and neurotransmitter pathways, which collectively contribute to ASD phenotypes. The review also discusses the therapeutic potential of mTOR pathway inhibitors, such as rapamycin, in mitigating ASD characteristics. These insights underscore the importance of the mTOR pathway as a target for future research and therapeutic intervention in ASD. This review innovates by bringing the convergence of disrupted mTOR signaling in preclinical models and clinical data associated with ASD.
Collapse
Affiliation(s)
- Isabela Drehmer
- Translational Research Group on Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Brazil; Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, Brazil; Psychiatry Molecular Laboratory, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Júlio Santos-Terra
- Translational Research Group on Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Brazil; Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, Brazil; Psychiatry Molecular Laboratory, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carmem Gottfried
- Translational Research Group on Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Brazil; Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, Brazil; Psychiatry Molecular Laboratory, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Iohanna Deckmann
- Translational Research Group on Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Brazil; Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, Brazil; Psychiatry Molecular Laboratory, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
5
|
Calaprice D, Terreri R, Whitty C, Whitty R, Tona J. The Flip Side of the Coin: Giftedness in Pediatric Acute-Onset Neuropsychiatric Syndrome. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1524. [PMID: 39767953 PMCID: PMC11726715 DOI: 10.3390/children11121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025]
Abstract
Background/Objectives: Individuals with Pediatric Acute-onset Neuropsychiatric Syndrome (PANS), an immune-modulated disorder, experience exacerbation-related neuropsychiatric symptoms, functional impairments, and high rates of developmental diagnosis. The literature describes links between giftedness and mental illness, and giftedness and autoimmune disorders. We sought to explore rates of giftedness among children with PANS as perceived by their caregivers, and to examine whether giftedness was related to PANS symptom severity, persistence, or duration. Methods: Data were extracted from a larger, 146-item survey, with 680 respondents meeting inclusion criteria of being a parent/guardian of a child with PANS and answering questions regarding perceived giftedness in empathy, social skills, verbal ability, reading, memory, math, creativity, or "other." Results: In all, 604 respondents indicated some type of giftedness; the categories of giftedness were each endorsed by 30-57% of respondents. We found no significant associations between giftedness and severity of worst symptoms, persistence of symptoms, or length of time since symptom onset, once Bonferonni corrections were applied. Significantly more females than males were identified as gifted in creativity, but no other sex-related differences were seen. Thematic analysis of optional comments revealed three themes: (1) Elaboration on Types of Giftedness; (2) Objective Basis for Perceptions of Giftedness; and (3) Impact of PANS on Giftedness. Conclusions: The rate of giftedness reported by parents of PANS subjects in this study is much higher than would be expected in the general population, even when adjusting generously for potential overestimation. This study of the "flip side" of PANS should serve as impetus for future studies regarding giftedness in this population; a robust finding of exceptionally high rates of giftedness would have implications for diagnosis, interpretation of symptoms (for example, perfectionism and social challenges) and disease management.
Collapse
Affiliation(s)
| | - Ryan Terreri
- University of California, Los Angeles, CA 90095, USA;
| | - Christopher Whitty
- Thornton School of Music, University of Southern California, Los Angeles, CA 90007, USA;
| | - Ryan Whitty
- Department of Computer Science, University of California, Berkeley, CA 94720, USA;
| | - Janice Tona
- Department of Rehabilitation Science, University at Buffalo, Buffalo, NY 14214, USA;
| |
Collapse
|
6
|
Ltaief SM, Nour-Eldine W, Manaph NPA, Tan TM, Anuar ND, Bensmail I, George J, Abdesselem HB, Al-Shammari AR. Dysregulated plasma autoantibodies are associated with B cell dysfunction in young Arab children with autism spectrum disorder in Qatar. Autism Res 2024; 17:1974-1993. [PMID: 39315457 DOI: 10.1002/aur.3235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and communication, as well as the occurrence of stereotyped and repetitive behaviors. Previous studies have provided solid evidence of dysregulated immune system in ASD; however, limited studies have investigated autoantibody profiles in individuals with ASD. This study aims to screen plasma autoantibodies in a well-defined cohort of young children with ASD (n = 100) and their matched controls (n = 60) utilizing a high-throughput KoRectly Expressed (KREX) i-Ome protein-array technology. We identified differential protein expression of 16 autoantibodies in ASD, which were correlated with differential gene expression of these markers in independent ASD cohorts. Meanwhile, we identified a distinct list of 33 autoantibodies associated with ASD severity; several of which were correlated with maternal age and birth weight in ASD. In addition, we found dysregulated numbers of circulating B cells and activated HLADR+ B cells in ASD, which were correlated with altered levels of several autoantibodies. Further in-depth analysis of B cell subpopulations revealed an increased frequency of activated naïve B cells in ASD, as well as an association of resting naïve B cells and transitional B cells with ASD severity. Pathway enrichment analysis revealed disrupted MAPK signaling in ASD, suggesting a potential relevance of this pathway to altered autoantibodies and B cell dysfunction in ASD. Finally, we found that a combination of eight autoantibodies associated with ASD severity showed an area under the curve (ROC-AUC) of 0.937 (95% CI = 0.890, 0.983; p < 0.001), which demonstrated the diagnostic accuracy of the eight-marker signature in the severity classification of ASD cases. Overall, this study determined dysregulated autoantibody profiles and B cell dysfunction in children with ASD and identified an eight-autoantibody panel for ASD severity classification.
Collapse
Affiliation(s)
- Samia M Ltaief
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Wared Nour-Eldine
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Ti-Myen Tan
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Nur Diana Anuar
- Sengenics Corporation, Level M, Plaza Zurich, Damansara Heights, Kuala Lumpur, Malaysia
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jilbin George
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Houari B Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Abeer R Al-Shammari
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
7
|
Camussi D, Naef V, Brogi L, Della Vecchia S, Marchese M, Nicoletti F, Santorelli FM, Licitra R. Delving into the Complexity of Valproate-Induced Autism Spectrum Disorder: The Use of Zebrafish Models. Cells 2024; 13:1349. [PMID: 39195239 PMCID: PMC11487397 DOI: 10.3390/cells13161349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental condition with several identified risk factors, both genetic and non-genetic. Among these, prenatal exposure to valproic acid (VPA) has been extensively associated with the development of the disorder. The zebrafish, a cost- and time-effective model, is useful for studying ASD features. Using validated VPA-induced ASD zebrafish models, we aimed to provide new insights into VPA exposure effects during embryonic development and to identify new potential biomarkers associated with ASD-like features. Dose-response analyses were performed in vivo to study larval phenotypes and mechanisms underlying neuroinflammation, mitochondrial dysfunction, oxidative stress, microglial cell status, and motor behaviour. Wild-type and transgenic Tg(mpeg1:EGFP) zebrafish were water-exposed to VPA doses (5 to 500 µM) from 6 to 120 h post-fertilisation (hpf). Embryos and larvae were monitored daily to assess survival and hatching rates, and numerous analyses and tests were conducted from 24 to 120 hpf. VPA doses higher than 50 µM worsened survival and hatching rates, while doses of 25 µM or more altered morphology, microglial status, and larval behaviours. VPA 50 µM also affected mRNA expression of inflammatory cytokines and neurogenesis-related genes, mitochondrial respiration, and reactive oxygen species accumulation. The study confirmed that VPA alters brain homeostasis, synaptic interconnections, and neurogenesis-related signalling pathways, contributing to ASD aetiopathogenesis. Further studies are essential to identify novel ASD biomarkers for developing new drug targets and tailored therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Diletta Camussi
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Valentina Naef
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Letizia Brogi
- Bio@SNS, Department of Neurosciences, Scuola Normale Superiore, 56126 Pisa, Italy;
| | - Stefania Della Vecchia
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Maria Marchese
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology Vittorio Erspamer, “La Sapienza” University of Rome, 00185 Rome, Italy;
- IRCSS Neuromed, “La Sapienza” University of Rome, 86077 Pozzilli, Italy
| | - Filippo M. Santorelli
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
| | - Rosario Licitra
- Department of Neurobiology and Molecular Medicine, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (D.C.); (V.N.); (S.D.V.); (M.M.)
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
8
|
Salemi M, Schillaci FA, Lanza G, Marchese G, Salluzzo MG, Cordella A, Caniglia S, Bruccheri MG, Truda A, Greco D, Ferri R, Romano C. Transcriptome Study in Sicilian Patients with Autism Spectrum Disorder. Biomedicines 2024; 12:1402. [PMID: 39061976 PMCID: PMC11274004 DOI: 10.3390/biomedicines12071402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
ASD is a complex condition primarily rooted in genetics, although influenced by environmental, prenatal, and perinatal risk factors, ultimately leading to genetic and epigenetic alterations. These mechanisms may manifest as inflammatory, oxidative stress, hypoxic, or ischemic damage. To elucidate potential variances in gene expression in ASD, a transcriptome analysis of peripheral blood mononuclear cells was conducted via RNA-seq on 12 ASD patients and 13 healthy controls, all of Sicilian ancestry to minimize environmental confounds. A total of 733 different statistically significant genes were identified between the two cohorts. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) terms were employed to explore the pathways influenced by differentially expressed mRNAs. GSEA revealed GO pathways strongly associated with ASD, namely the GO Biological Process term "Response to Oxygen-Containing Compound". Additionally, the GO Cellular Component pathway "Mitochondrion" stood out among other pathways, with differentially expressed genes predominantly affiliated with this specific pathway, implicating the involvement of different mitochondrial functions in ASD. Among the differentially expressed genes, FPR2 was particularly highlighted, belonging to three GO pathways. FPR2 can modulate pro-inflammatory responses, with its intracellular cascades triggering the activation of several kinases, thus suggesting its potential utility as a biomarker of pro-inflammatory processes in ASD.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Francesca A. Schillaci
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Giuseppe Lanza
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
- Department of Surgery and Medical—Surgical Specialties, University of Catania, 95124 Catania, Italy
| | - Giovanna Marchese
- Genomix4Life S.r.l., 84081 Baronissi, Italy; (G.M.); (A.C.); (A.T.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Angela Cordella
- Genomix4Life S.r.l., 84081 Baronissi, Italy; (G.M.); (A.C.); (A.T.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Salvatore Caniglia
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Maria Grazia Bruccheri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Anna Truda
- Genomix4Life S.r.l., 84081 Baronissi, Italy; (G.M.); (A.C.); (A.T.)
- Genome Research Center for Health—CRGS, 84081 Baronissi, Italy
| | - Donatella Greco
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
| | - Corrado Romano
- Oasi Research Institute—IRCCS, 94018 Troina, Italy; (F.A.S.); (G.L.); (M.G.S.); (S.C.); (M.G.B.); (D.G.); (R.F.); (C.R.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| |
Collapse
|
9
|
de Groot DMG, Linders L, Kayser R, Nederlof R, de Esch C, Slieker RC, Kuper CF, Wolterbeek A, de Groot VJ, Veltien A, Heerschap A, van Waarde A, Dierckx RAJO, de Vries EFJ. Perinatal exposure to the immune-suppressant di-n-octyltin dichloride affects brain development in rats. Toxicol Mech Methods 2024; 34:283-299. [PMID: 37946400 DOI: 10.1080/15376516.2023.2281610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Disruption of the immune system during embryonic brain development by environmental chemicals was proposed as a possible cause of neurodevelopmental disorders. We previously found adverse effects of di-n-octyltin dichloride (DOTC) on maternal and developing immune systems of rats in an extended one-generation reproductive toxicity study according to the OECD 443 test guideline. We hypothesize that the DOTC-induced changes in the immune system can affect neurodevelopment. Therefore, we used in-vivo MRI and PET imaging and genomics, in addition to behavioral testing and neuropathology as proposed in OECD test guideline 443, to investigate the effect of DOTC on structural and functional brain development. Male rats were exposed to DOTC (0, 3, 10, or 30 mg/kg of diet) from 2 weeks prior to mating of the F0-generation until sacrifice of F1-animals. The brains of rats, exposed to DOTC showed a transiently enlarged volume of specific brain regions (MRI), altered specific gravity, and transient hyper-metabolism ([18F]FDG PET). The alterations in brain development concurred with hyper-responsiveness in auditory startle response and slight hyperactivity in young adult animals. Genomics identified altered transcription of key regulators involved in neurodevelopment and neural function (e.g. Nrgrn, Shank3, Igf1r, Cck, Apba2, Foxp2); and regulators involved in cell size, cell proliferation, and organ development, especially immune system development and functioning (e.g. LOC679869, Itga11, Arhgap5, Cd47, Dlg1, Gas6, Cml5, Mef2c). The results suggest the involvement of immunotoxicity in the impairment of the nervous system by DOTC and support the hypothesis of a close connection between the immune and nervous systems in brain development.
Collapse
Affiliation(s)
- Didima M G de Groot
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Louisa Linders
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Reinier Kayser
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Rianne Nederlof
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Celine de Esch
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Roderick C Slieker
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - C Frieke Kuper
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Andre Wolterbeek
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - V Jeroen de Groot
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Andor Veltien
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Takada R, Toritsuka M, Yamauchi T, Ishida R, Kayashima Y, Nishi Y, Ishikawa M, Yamamuro K, Ikehara M, Komori T, Noriyama Y, Kamikawa K, Saito Y, Okano H, Makinodan M. Granulocyte macrophage colony-stimulating factor-induced macrophages of individuals with autism spectrum disorder adversely affect neuronal dendrites through the secretion of pro-inflammatory cytokines. Mol Autism 2024; 15:10. [PMID: 38383466 PMCID: PMC10882766 DOI: 10.1186/s13229-024-00589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND A growing body of evidence suggests that immune dysfunction and inflammation in the peripheral tissues as well as the central nervous system are associated with the neurodevelopmental deficits observed in autism spectrum disorder (ASD). Elevated expression of pro-inflammatory cytokines in the plasma, serum, and peripheral blood mononuclear cells of ASD has been reported. These cytokine expression levels are associated with the severity of behavioral impairments and symptoms in ASD. In a prior study, our group reported that tumor necrosis factor-α (TNF-α) expression in granulocyte-macrophage colony-stimulating factor-induced macrophages (GM-CSF MΦ) and the TNF-α expression ratio in GM-CSF MΦ/M-CSF MΦ (macrophage colony-stimulating factor-induced macrophages) was markedly higher in individuals with ASD than in typically developed (TD) individuals. However, the mechanisms of how the macrophages and the highly expressed cytokines affect neurons remain to be addressed. METHODS To elucidate the effect of macrophages on human neurons, we used a co-culture system of control human-induced pluripotent stem cell-derived neurons and differentiated macrophages obtained from the peripheral blood mononuclear cells of five TD individuals and five individuals with ASD. All participants were male and ethnically Japanese. RESULTS Our results of co-culture experiments showed that GM-CSF MΦ affect the dendritic outgrowth of neurons through the secretion of pro-inflammatory cytokines, interleukin-1α and TNF-α. Macrophages derived from individuals with ASD exerted more severe effects than those derived from TD individuals. LIMITATIONS The main limitations of our study were the small sample size with a gender bias toward males, the use of artificially polarized macrophages, and the inability to directly observe the interaction between neurons and macrophages from the same individuals. CONCLUSIONS Our co-culture system revealed the non-cell autonomous adverse effects of GM-CSF MΦ in individuals with ASD on neurons, mediated by interleukin-1α and TNF-α. These results may support the immune dysfunction hypothesis of ASD, providing new insights into its pathology.
Collapse
Affiliation(s)
- Ryohei Takada
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan.
| | - Takahira Yamauchi
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yoshinori Kayashima
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yuki Nishi
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Minobu Ikehara
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Takashi Komori
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yuki Noriyama
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Kohei Kamikawa
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
- Osaka Psychiatric Research Center, 3-16-21 Miyanosaka, Hirakata City, Osaka, 573-0022, Japan
| |
Collapse
|
11
|
Nour-Eldine W, Manaph NPA, Ltaief SM, Abdel Aati N, Mansoori MH, Al Abdulla S, Al-Shammari AR. Discovery of a novel cytokine signature for the diagnosis of autism spectrum disorder in young Arab children in Qatar. Front Psychiatry 2024; 15:1333534. [PMID: 38414501 PMCID: PMC10896998 DOI: 10.3389/fpsyt.2024.1333534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by impaired social interaction and communication and the occurrence of stereotyped and repetitive behaviors. Several studies have reported altered cytokine profiles in ASD and hence may serve as potential diagnostic biomarkers of the disorder. This study aims to identify diagnostic biomarkers for ASD in a well-defined study cohort in Qatar. Methods We measured the protein levels of 45 cytokines in the plasma samples of age- and gender-matched children (2-4 years) with ASD (n = 100) and controls (n = 60) using a Luminex multiplex assay. We compared the differences in the levels of these cytokines between the two study groups and then fitted the significantly altered cytokines into a logistic regression model to examine their diagnostic potential for ASD. Results We found elevated levels of IFN-γ, FGF-2, IL-1RA, and IL-13 and reduced levels of eotaxin, HGF, IL-1 alpha, IL-22, IL-9, MCP-1, SCF, SDF-1 alpha, VEGFA, and IP-10 in the plasma of children with ASD compared to controls. Furthermore, we observed that elevated levels of IFN-γ (odds ratio (OR) = 1.823; 95% (confidence interval) CI = 1.206, 2.755; p = 0.004) and FGF-2 (OR = 2.528; 95% CI = 1.457, 4.385; p < 0.001) were significantly associated with increased odds of ASD, whereas reduced levels of eotaxin (OR = 0.350; 95% CI = 0.160, 0.765; p = 0.008) and HGF (OR = 0.220; 95% CI = 0.070, 0.696; p = 0.010) were significantly associated with lower odds of ASD relative to controls. The combination of these four cytokines revealed an area under the curve (ROC-AUC) of 0.829 (95% CI = 0.767, 0.891; p < 0.001), which demonstrates the diagnostic accuracy of the four-cytokine signature. Conclusions Our results identified a panel of cytokines that could discriminate between children with ASD and controls in Qatar. In addition, our findings support the predominance of a Th1 immune phenotype in ASD children and emphasize the need to validate these results in larger populations.
Collapse
Affiliation(s)
- Wared Nour-Eldine
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | | - Samia M Ltaief
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nazim Abdel Aati
- Child Development Center, Rumailah Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | - Samya Al Abdulla
- Department of Operations, Primary Health Care Corporation, Doha, Qatar
| | - Abeer R Al-Shammari
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
12
|
Schwingel GB, Fontes-Dutra M, Ramos B, Riesgo R, Bambini-Junior V, Gottfried C. Preventive effects of resveratrol against early-life impairments in the animal model of autism induced by valproic acid. IBRO Neurosci Rep 2023; 15:242-251. [PMID: 37841088 PMCID: PMC10570715 DOI: 10.1016/j.ibneur.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/02/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Background Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by social interaction deficits and repetitive/stereotyped behaviors. Its prevalence is increasing, affecting one in 36 children in the United States. The valproic acid (VPA) induced animal model of ASD is a reliable method for investigating cellular, molecular, and behavioral aspects related to the disorder. Trans-Resveratrol (RSV), a polyphenol with anti-inflammatory and antioxidant effects studied in various diseases, has recently demonstrated the ability to prevent cellular, molecular, sensory, and social deficits in the VPA model. In this study, we examined the effects of prenatal exposure to VPA and the potential preventive effects of RSV on the offspring. Method We monitored gestational weight from embryonic day 6.5 until 18.5 and assessed the onset of developmental milestones and morphometric parameters in litters. The generalized estimating equations (GEE) were used to analyze longitudinal data. Results Exposure to VPA during rat pregnancy resulted in abnormal weight gain fold-changes on embryonic days 13.5 and 18.5, followed by fewer animals per litter. Additionally, we discovered a positive correlation between weight variation during E15.5-E18.5 and the number of rat pups in the VPA group. Conclusion VPA exposure led to slight length deficiencies and delays in the onset of developmental milestones. Interestingly, the prenatal RSV treatment not only prevented most of these delays but also led to the early onset of certain milestones and improved morphometric characteristics in the offspring. In summary, our findings suggest that RSV may have potential as a therapeutic intervention to protect against the negative effects of prenatal VPA exposure, highlighting its importance in future studies of prenatal neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil
- Autism Wellbeing and Research Development (AWARD) Initiative, BR-UK-CA, Brazil
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil
- Autism Wellbeing and Research Development (AWARD) Initiative, BR-UK-CA, Brazil
| | - Bárbara Ramos
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil
- Autism Wellbeing and Research Development (AWARD) Initiative, BR-UK-CA, Brazil
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre (HCPA), Brazil
| | - Victorio Bambini-Junior
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil
- Autism Wellbeing and Research Development (AWARD) Initiative, BR-UK-CA, Brazil
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil
- Autism Wellbeing and Research Development (AWARD) Initiative, BR-UK-CA, Brazil
| |
Collapse
|
13
|
Ferencova N, Visnovcova Z, Ondrejka I, Hrtanek I, Bujnakova I, Kovacova V, Macejova A, Tonhajzerova I. Peripheral Inflammatory Markers in Autism Spectrum Disorder and Attention Deficit/Hyperactivity Disorder at Adolescent Age. Int J Mol Sci 2023; 24:11710. [PMID: 37511467 PMCID: PMC10380731 DOI: 10.3390/ijms241411710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) are associated with immune dysregulation. We aimed to estimate the pro- and anti-inflammatory activity/balance in ASD and ADHD patients at a little-studied adolescent age with respect to sex. We evaluated 20 ASD patients (5 girls, average age: 12.4 ± 1.9 y), 20 ADHD patients (5 girls, average age: 13.4 ± 1.8 y), and 20 age- and gender-matched controls (average age: 13.2 ± 1.9 y). The evaluated parameters included (1) white blood cells (WBCs), neutrophils, monocytes, lymphocytes, platelets, platelet distribution width (PDW), mean platelet volume, and derived ratios, as well as (2) cytokines-interferon-gamma, interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10, tumor necrosis factor-alpha (TNF-α), and derived profiles and ratios. ASD adolescents showed higher levels of WBC, monocytes, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, and IL-10, macrophages (M)1 profile, and anti-inflammatory profile than the controls, with ASD males showing higher monocytes, IL-6 and IL-10, anti-inflammatory profile, and a lower T-helper (Th)1/Th2+T-regulatory cell ratio than control males. The ADHD adolescents showed higher levels of PDW, IL-1β and IL-6, TNF-α, M1 profile, proinflammatory profile, and pro-/anti-inflammatory ratio than the controls, with ADHD females showing a higher TNF-α and pro-/anti-inflammatory ratio than the control females and ADHD males showing higher levels of IL-1β and IL-6, TNF-α, and M1 profile than the control males. Immune dysregulation appeared to be different for both neurodevelopmental disorders in adolescence.
Collapse
Affiliation(s)
- Nikola Ferencova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Zuzana Visnovcova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Igor Ondrejka
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Igor Hrtanek
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Iveta Bujnakova
- Society to Help People with Autism (SPOSA-Turiec), 03601 Martin, Slovakia
| | - Veronika Kovacova
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Andrea Macejova
- Psychiatric Clinic, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital Martin, 03601 Martin, Slovakia
| | - Ingrid Tonhajzerova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
14
|
Inge Schytz Andersen-Civil A, Anjan Sawale R, Claude Vanwalleghem G. Zebrafish (Danio rerio) as a translational model for neuro-immune interactions in the enteric nervous system in autism spectrum disorders. Brain Behav Immun 2023:S0889-1591(23)00142-3. [PMID: 37301234 DOI: 10.1016/j.bbi.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/28/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Autism spectrum disorders (ASD) affect about 1% of the population and are strongly associated with gastrointestinal diseases creating shortcomings in quality of life. Multiple factors contribute to the development of ASD and although neurodevelopmental deficits are central, the pathogenesis of the condition is complex and the high prevalence of intestinal disorders is poorly understood. In agreement with the prominent research establishing clear bidirectional interactions between the gut and the brain, several studies have made it evident that such a relation also exists in ASD. Thus, dysregulation of the gut microbiota and gut barrier integrity may play an important role in ASD. However, only limited research has investigated how the enteric nervous system (ENS) and intestinal mucosal immune factors may impact on the development of ASD-related intestinal disorders. This review focuses on the mechanistic studies that elucidate the regulation and interactions between enteric immune cells, residing gut microbiota and the ENS in models of ASD. Especially the multifaceted properties and applicability of zebrafish (Danio rerio) for the study of ASD pathogenesis are assessed in comparison to studies conducted in rodent models and humans. Advances in molecular techniques and in vivo imaging, combined with genetic manipulation and generation of germ-free animals in a controlled environment, appear to make zebrafish an underestimated model of choice for the study of ASD. Finally, we establish the research gaps that remain to be explored to further our understanding of the complexity of ASD pathogenesis and associated mechanisms that may lead to intestinal disorders.
Collapse
Affiliation(s)
- Audrey Inge Schytz Andersen-Civil
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.
| | - Rajlakshmi Anjan Sawale
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Gilles Claude Vanwalleghem
- Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Kaminski VDL, Michita RT, Ellwanger JH, Veit TD, Schuch JB, Riesgo RDS, Roman T, Chies JAB. Exploring potential impacts of pregnancy-related maternal immune activation and extracellular vesicles on immune alterations observed in autism spectrum disorder. Heliyon 2023; 9:e15593. [PMID: 37305482 PMCID: PMC10256833 DOI: 10.1016/j.heliyon.2023.e15593] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 06/13/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a set of neurodevelopmental disorders usually observed in early life, with impacts on behavioral and social skills. Incidence of ASD has been dramatically increasing worldwide, possibly due to increase in awareness/diagnosis as well as to genetic and environmental triggers. Currently, it is estimated that ∼1% of the world population presents ASD symptoms. In addition to its genetic background, environmental and immune-related factors also influence the ASD etiology. In this context, maternal immune activation (MIA) has recently been suggested as a component potentially involved in ASD development. In addition, extracellular vesicles (EVs) are abundant at the maternal-fetal interface and are actively involved in the immunoregulation required for a healthy pregnancy. Considering that alterations in concentration and content of EVs have also been associated with ASD, this article raises a debate about the potential roles of EVs in the processes surrounding MIA. This represents the major differential of the present review compared to other ASD studies. To support the suggested correlations and hypotheses, findings regarding the roles of EVs during pregnancy and potential influences on ASD are discussed, along with a review and update concerning the participation of infections, cytokine unbalances, overweight and obesity, maternal anti-fetal brain antibodies, maternal fever, gestational diabetes, preeclampsia, labor type and microbiota unbalances in MIA and ASD.
Collapse
Affiliation(s)
- Valéria de Lima Kaminski
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Imunologia Aplicada, Instituto de Ciência e Tecnologia - ICT, Universidade Federal de São Paulo - UNIFESP, São José dos Campos, São Paulo, Brazil
| | - Rafael Tomoya Michita
- Laboratório de Genética Molecular Humana, Universidade Luterana do Brasil - ULBRA, Canoas, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Degani Veit
- Instituto de Ciências Básicas da Saúde, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jaqueline Bohrer Schuch
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rudimar dos Santos Riesgo
- Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tatiana Roman
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul – UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
16
|
Aldossari AA, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Ayadhi LY, Alanazi MM, Shahid M, Alwetaid MY, Hussein MH, Ahmad SF. Upregulation of Inflammatory Mediators in Peripheral Blood CD40 + Cells in Children with Autism Spectrum Disorder. Int J Mol Sci 2023; 24:ijms24087475. [PMID: 37108638 PMCID: PMC10138695 DOI: 10.3390/ijms24087475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common and severe neurodevelopmental disorder in early childhood, defined as social and communication deficits and repetitive and stereotypic behaviours. The aetiology is unknown in most cases. However, several studies have identified immune dysregulation as potentially promoting ASD. Among the numerous immunological findings in ASD, reports of increased pro-inflammatory markers remain the most consistently observed. C-C chemokine receptor type 1 (CCR1) activation is pro-inflammatory in several neurological disorders. Previous evidence has implied that the expression of chemokine receptors, inflammatory mediators, and transcription factors play a pivotal role in several neuroinflammatory disorders. There have also been reports on the association between increased levels of proinflammatory cytokines and ASD. In this study, we aimed to investigate the possible involvement of CCR1, inflammatory mediators, and transcription factor expression in CD40+ cells in ASD compared to typically developing controls (TDC). Flow cytometry analysis was used to determine the levels of CCR1-, IFN-γ-, T-box transcription factor (T-bet-), IL-17A-, retinoid-related orphan receptor gamma t (RORγt-), IL-22- and TNF-α-expressing CD40 cells in PBMCs in children with ASD and the TDC group. We further examined the mRNA and protein expression levels of CCR1 using real-time PCR and western blot analysis. Our results revealed that children with ASD had significantly increased numbers of CD40+CCR1+, CD40+IFN-γ+, CD40+T-bet+, CD40+IL-17A+, CD40+RORγt+, CD4+IL-22+, and CD40+TNF-α+ cells compared with the TDC group. Furthermore, children with ASD had higher CCR1 mRNA and protein expression levels than those in the TDC group. These results indicate that CCR1, inflammatory mediators, and transcription factors expressed in CD40 cells play vital roles in disease progression.
Collapse
Affiliation(s)
- Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Amestoy A, Baudrillard C, Briot K, Pizano A, Bouvard M, Lai MC. Steroid hormone pathways, vitamin D and autism: a systematic review. J Neural Transm (Vienna) 2023; 130:207-241. [PMID: 36752873 DOI: 10.1007/s00702-022-02582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/23/2022] [Indexed: 02/09/2023]
Abstract
The origins of the male preponderance in autism incidence remain unclear. The idea that perinatal factors associated with sex differentiation (e.g., steroid hormone pathways) may increase the possibility of the emergence of autism is complementary to the hypothesis that female individuals are intrinsically less likely to develop autism. Empirical evidence for the mechanistic roles of in utero steroid hormones in autism etiology is accumulating but inconsistent. We conducted a systematic review using rigorous criteria for the measurements of steroids and vitamin D exposure, to summarize the potential contributing roles of prenatal and early postnatal steroids and vitamin D alterations to the emergence of autism. We searched PubMed, PsychInfo, Scopus, and included 22 studies for qualitative synthesis. Among them, six studies examined the association of autism diagnoses in offspring and levels of steroids and precursor steroid hormones in the fetal environment, eight studies examined the associations between autism and maternal and fetal blood vitamin D levels during pregnancy and at birth, and eight studies examined the associations between offspring autism diagnoses and maternal hyperandrogenemia diagnosed before pregnancy. We identified promising and complex results regarding the relations between steroid metabolism and autism. The interpretation of findings was limited by the mostly observational study designs, insufficient investigation of the effects of offspring sex, confounders and their cumulative effects on the development of the child, and unclear impact of the timing of steroids exposure and their effects on fetal neurodevelopment.
Collapse
Affiliation(s)
- Anouck Amestoy
- Aquitaine Institute for Cognitive and Integrative Neuroscience, UMR 5287, University of Bordeaux, CNRS, INCIA, Bordeaux, France.
- Centre Hospitalier Charles-Perrens, Pôle Universitaire de Psychiatrie de L'enfant Et de L'adolescent, Bordeaux Cedex, France.
| | - Claire Baudrillard
- Centre Hospitalier Charles-Perrens, Pôle Universitaire de Psychiatrie de L'enfant Et de L'adolescent, Bordeaux Cedex, France
| | - Kellen Briot
- Centre Hospitalier Charles-Perrens, Pôle Universitaire de Psychiatrie de L'enfant Et de L'adolescent, Bordeaux Cedex, France
| | - Adrien Pizano
- Centre Hospitalier Charles-Perrens, Pôle Universitaire de Psychiatrie de L'enfant Et de L'adolescent, Bordeaux Cedex, France
| | - Manuel Bouvard
- Aquitaine Institute for Cognitive and Integrative Neuroscience, UMR 5287, University of Bordeaux, CNRS, INCIA, Bordeaux, France
- Centre Hospitalier Charles-Perrens, Pôle Universitaire de Psychiatrie de L'enfant Et de L'adolescent, Bordeaux Cedex, France
| | - Meng-Chuan Lai
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Psychiatry and Autism Research Unit, The Hospital for Sick Children, Toronto, Canada
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
18
|
Hussein AM, Mahmoud SA, Elazab KM, Abouelnaga AF, Abass M, Mosa AAH, Hussein MAM, Elsayed MEG. Possible Mechanisms of the Neuroprotective Actions of Date Palm Fruits Aqueous Extracts against Valproic Acid-Induced Autism in Rats. Curr Issues Mol Biol 2023; 45:1627-1643. [PMID: 36826050 PMCID: PMC9954972 DOI: 10.3390/cimb45020105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
The current study aimed to determine how palm date aqueous fruit extracts (AFE) affected the autistic-like behaviors brought on by valproic acid (VPA) injection, as well as any potential contributions from Sirt-1, oxidative stress, apoptosis, and autophagy. The pregnant Sprague Dawley females were treated with VPA at 12.5th gestation day and pregnant females and their offspring were treated with AFE orally at doses of 4 mg/Kg by gastric gavage for 45 days after birth. The elevated plus-T maze, water maze, and rotarod tests were used to examine autism-like behaviors. At the end of the study, the expression of Nrf2, heme oxygenase (HO-1), Sirt-1, caspase-3 (a marker of apoptosis), LC3 (a marker of autophagy), and NFκB (inflammatory cytokines) were evaluated along with the oxidative stress in brain tissues and the histological changes in the cerebellum and hippocampus. The neurobehavioral assessments significantly declined due to VPA, which also significantly increased oxidative stress in the brain tissues and significantly decreased Nrf2 and HO-1 expression. Additionally, VPA administration caused significant increase in the expression of caspase-3 in the cerebellar cortex, not in the hippocampus; LC3 and NFκB in the hippocampus, not in the cerebellar cortex; and significant reduction in the expression of Sirt-1 in the hippocampus, not in the cerebellum. On the other hand, AFE treatment significantly improved the neurobehavioral changes as well as it improved significantly the oxidative stress and the expression of LC3, NFκB, NrF2, HO-1, and Sirt-1 in the cerebellum and hippocampus. Conclusions: AFE administration might improve the autistic-like symptoms induced by VPA in rats via attenuation of the oxidative stress, upregulation of Nrf2 and HO-1, Sirt-1 and LC3 expression with downregulation of caspase-3, and NFκB expression in the cerebellum and hippocampus.
Collapse
Affiliation(s)
- Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | | | | | - Ahmed F. Abouelnaga
- Department of Animal Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Marwa Abass
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed A. H. Mosa
- Department of Neurology, Faculty of Medicine, Delta University for Science and Technology, Gamasa 11152, Egypt
| | | | - Mohamed E. G. Elsayed
- Department of Psychiatry and Psychotherapy III, University of Ulm, 89075 Ulm, Germany
- Department of Psychiatry, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
19
|
Almandil NB, Alismail MA, Alsuwat HS, AlSulaiman A, AbdulAzeez S, Borgio JF. Exome-wide analysis identify multiple variations in olfactory receptor genes ( OR12D2 and OR5V1) associated with autism spectrum disorder in Saudi females. Front Med (Lausanne) 2023; 10:1051039. [PMID: 36817779 PMCID: PMC9928728 DOI: 10.3389/fmed.2023.1051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Background Autism Spectrum Disorder (ASD) is a multifactorial, neurodevelopmental disorder, characterized by deficits in communication, restricted and repetitive behaviors. ASD is highly heritable in Saudi Arabia; indecencies of affected individuals are increasing. Objectives To identify the most significant genes and SNPs associated with the increased risk of ASD in Saudi females to give an insight for early diagnosis. Methods Pilot case-control study mostly emphasized on the significant SNPs and haplotypes contributing to Saudi females with ASD patients (n = 22) compared to controls (n = 51) without ASD. With the use of allelic association analysis tools, 243,345 SNPs were studied systematically and classified according to their significant association. The significant SNPs and their genes were selected for further investigation for mapping of ASD candidate causal variants and functional impact. Results In females, five risk SNPs at p ≤ 2.32 × 10-05 was identified in association with autism. The most significant exonic variants at chromosome 6p22.1 with olfactory receptor genes (OR12D2 and OR5V1) clustered with high linkage disequilibrium through haplotyping analysis. Comparison between highly associated genes (56 genes) of male and female autistic patients with female autistic samples revealed that 39 genes are unique biomarkers for Saudi females with ASD. Conclusion Multiple variations in olfactory receptor genes (OR5V1 and OR12D2) and single variations on SPHK1, PLCL2, AKAP9 and LOC107984893 genes are contributing to ASD in females of Arab origin. Accumulation of these multiple predisposed coding SNPs can increase the possibility of developing ASD in Saudi females.
Collapse
Affiliation(s)
- Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia,*Correspondence: Noor B Almandil,
| | - Maram Adnan Alismail
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia,College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hind Saleh Alsuwat
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdulla AlSulaiman
- Department of Neurology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
20
|
Artık A, Kocaman O, Kara H, Tuncer SÇ. Galectin-3 levels in school aged children with autism spectrum disorder. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2022; 69:757-761. [PMID: 37547549 PMCID: PMC10402832 DOI: 10.1080/20473869.2022.2150035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 08/08/2023]
Abstract
Objective: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with underlying pathogenesis and etiological factors not fully understood. We assumed that galectin-3, which is also linked with inflammatory responses, may be central to the ethiopathogenesis of ASD. Method: The current study consisted of 33 psychotropic medication-naive children with ASD and 32 control subjects. The Schedule for Affective Disorders and Schizophrenia for School-Aged Children, Present and Lifetime Version-DSM-5 (K-SADS-PL-DSM-5) was used to screen healthy controls for psychiatric disorders by a psychiatrist after a physical examination by a pediatrician. The clinical severity of the ASD symptoms has been assessed by the Childhood Autism Rating Scale (CARS). Venous blood samples were collected and serum galectin-3 levels were measured. Results: When the ASD and control groups are compared, the mean galectin-3 level is 417.77 (SD = 200.20) in the ASD group and 243.08 (SD = 64.65) in the control group, and there is a statistically significant difference between the groups (p < 0.001). When examining whether there is a correlation between galectin-3 levels and CARS total scores, no statistically significant correlation was found between them (r = 0.015, p = 0.933). Discussion: In this study, we examined whether serum galectin-3 levels have a relation with ASD in childhood or not. Our findings have indicated that the children with ASD have higher serum galectin-3 levels compared to the controls. However, no significant relationship has been found between serum galectin-3 levels and ASD symptom severity.
Collapse
Affiliation(s)
- Abdülbaki Artık
- Child and Adolescent Mental Health Department, Faculty of Medicine, Uşak University, Uşak, Turkey
| | - Orhan Kocaman
- Child and Adolescent Mental Health Department, Faculty of Medicine, Kütahya University, Kütahya, Turkey
| | - Halil Kara
- Child and Adolescent Mental Health Department, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Sibel Çiğdem Tuncer
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
21
|
Artık A, Öztelcan Gündüz B, Mızrak S, Işık Ü. Increased serum levels of tumour necrosis factor-like weak inducer of apoptosis in children with autism spectrum disorder. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2022; 69:611-616. [PMID: 37346259 PMCID: PMC10281418 DOI: 10.1080/20473869.2022.2143033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/10/2022] [Accepted: 10/30/2022] [Indexed: 06/23/2023]
Abstract
Introduction: A previous study has evaluated the association between serum tumour necrosis factor-like weak apoptosis inducer (TWEAK) levels and autism spectrum disorder (ASD). In line with this investigation, the present study aimed to measure serum TWEAK levels to determine whether their eventual alteration might have etiopathogenetic significance in children with ASD. Methods: A total of 40 treatment-naive children with ASD and 40 healthy children as controls were included in the present study. The Schedule for Affective Disorders and Schizophrenia for School-Aged Children-Present and Lifetime Version, DSM-5 was used by a psychiatrist to screen the healthy controls for psychiatric disorders after a physical examination by a paediatrician. The clinical severity of the ASD symptoms was assessed by the Childhood Autism Rating Scale. Venous blood samples were collected, and serum TWEAK levels were measured. Results: This study included 80 children in total, with 40 (50.0%) in the patient group and 40 (50.0%) in the healthy control group. Thirty four (85.0%) of the participants in the patient group, and 31 (77.5%) in the healthy control group, were male, and the remainder were female. The distribution of the gender ratio was statistically similar between groups (p = 0.568). The volunteers were between 36 and 59 months old. The average age in the patient group was 46.0 ± 6.5, while that in the healthy control group was 45.2 ± 6.7. The ages were also statistically similar between groups (p = 0.615). The TWEAK values of the patient group were found to be statistically higher than those of the healthy control group (p < 0.001). Discussion: This study examined whether serum TWEAK levels were related to ASD in childhood. Our findings indicate that children with ASD have higher TWEAK levels when compared to other children. The findings further indicate that serum TWEAK levels could be related to ASD etiopathogenesis independent of ASD symptom severity.
Collapse
Affiliation(s)
- Abdülbaki Artık
- Faculty of Medicine, Child and Adolescent Mental Health Department, Uşak University, Ankara, Turkey
| | | | - Soycan Mızrak
- Faculty of Medicine, Department of Medical Biochemistry, Uşak University, Ankara, Turkey
| | - Ümit Işık
- Faculty of Medicine, Child and Adolescent Mental Health Department, Süleyman Demirel University, Ankara, Turkey
| |
Collapse
|
22
|
Nour-Eldine W, Ltaief SM, Abdul Manaph NP, Al-Shammari AR. In search of immune cellular sources of abnormal cytokines in the blood in autism spectrum disorder: A systematic review of case-control studies. Front Immunol 2022; 13:950275. [PMID: 36268027 PMCID: PMC9578337 DOI: 10.3389/fimmu.2022.950275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
Abnormal cytokine levels in circulating blood have been repeatedly reported in autism; however, the underlying cause remains unclear. This systematic review aimed to investigate cytokine levels in peripheral blood compartments and identify their potential immune cellular sources in subjects with autism through comparison with controls. We conducted an electronic database search (PubMed, Scopus, ProQuest Central, Ovid, SAGE Journals, and Wiley Online Library) from inception (no time limits) to July 9, 2020, and identified 75 relevant articles. Our qualitative data synthesis focused on results consistently described in at least three independent studies, and we reported the results according to the PRISMA protocol. We found that compared with controls, in subjects with autism, cytokines IL-6, IL-17, TNF-α, and IL-1β increased in the plasma and serum. We also identified monocytes, neutrophils, and CD4+ T cells as potential sources of these elevated cytokines in autism. Cytokines IFN-γ, TGF-β, RANTES, and IL-8 were increased in the plasma/serum of subjects with autism, and IFN-γ was likely produced by CD4+ T cells and natural killer (NK) cells, although conflicting evidence is present for IFN-γ and TGF-β. Other cytokines-IL-13, IL-10, IL-5, and IL-4-were found to be unaltered in the plasma/serum and post-stimulated blood immune cells in autistic individuals as compared with controls. The frequencies of T cells, monocytes, B cells, and NK cells were unchanged in subjects with autism as opposed to controls, suggesting that abnormal cytokines were unlikely due to altered cell numbers but might be due to altered functioning of these cells in autism. Our results support existing studies of abnormal cytokines in autism and provide comprehensive evidence of potential cellular sources of these altered cytokines in the context of autism. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020205224, identifier [CRD42020205224].
Collapse
Affiliation(s)
| | | | | | - Abeer R. Al-Shammari
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
23
|
Angrand L, Masson JD, Rubio-Casillas A, Nosten-Bertrand M, Crépeaux G. Inflammation and Autophagy: A Convergent Point between Autism Spectrum Disorder (ASD)-Related Genetic and Environmental Factors: Focus on Aluminum Adjuvants. TOXICS 2022; 10:toxics10090518. [PMID: 36136483 PMCID: PMC9502677 DOI: 10.3390/toxics10090518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 05/10/2023]
Abstract
Autism spectrum disorder (ASD), schizophrenia, and bipolar disorder are genetically complex and heterogeneous neurodevelopmental disorders (NDDs) resulting from genetic factors and gene-environment (GxE) interactions for which onset occurs in early brain development. Recent progress highlights the link between ASD and (i) immunogenetics, neurodevelopment, and inflammation, and (ii) impairments of autophagy, a crucial neurodevelopmental process involved in synaptic pruning. Among various environmental factors causing risk for ASD, aluminum (Al)-containing vaccines injected during critical periods have received special attention and triggered relevant scientific questions. The aim of this review is to discuss the current knowledge on the role of early inflammation, immune and autophagy dysfunction in ASD as well as preclinical studies which question Al adjuvant impacts on brain and immune maturation. We highlight the most recent breakthroughs and the lack of epidemiological, pharmacokinetic and pharmacodynamic data constituting a "scientific gap". We propose additional research, such as genetic studies that could contribute to identify populations at genetic risk, improving diagnosis, and potentially the development of new therapeutic tools.
Collapse
Affiliation(s)
- Loïc Angrand
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
- INSERM UMR-S 1270, 75005 Paris, France;
- Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Jean-Daniel Masson
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
| | - Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán 48900, Jalisco, Mexico;
- Autlán Regional Hospital, Health Secretariat, Autlán 48900, Jalisco, Mexico
| | - Marika Nosten-Bertrand
- INSERM UMR-S 1270, 75005 Paris, France;
- Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
| | - Guillemette Crépeaux
- Univ Paris Est Créteil, INSERM, IMRB, F-94010 Créteil, France; (L.A.); (J.-D.M.)
- Ecole Nationale Vétérinaire d’Alfort IMRB, F-94700 Maisons-Alfort, France
- Correspondence:
| |
Collapse
|
24
|
Lim S, Lee S. Chemical Modulators for Targeting Autism Spectrum Disorders: From Bench to Clinic. Molecules 2022; 27:molecules27165088. [PMID: 36014340 PMCID: PMC9414776 DOI: 10.3390/molecules27165088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by diverse behavioral symptoms such as repetitive behaviors, social deficits, anxiety, hyperactivity, and irritability. Despite their increasing incidence, the specific pathological mechanisms of ASD are still unknown, and the degree and types of symptoms that vary from patient to patient make it difficult to develop drugs that target the core symptoms of ASD. Although various atypical antipsychotics and antidepressants have been applied to regulate ASD symptoms, these drugs can only alleviate the symptoms and do not target the major causes. Therefore, development of novel drugs targeting factors directly related to the onset of ASD is required. Among the various factors related to the onset of ASD, several chemical modulators to treat ASD, focused on serotonin (5-hydroxytryptamine, 5-HT) and glutamate receptors, microbial metabolites, and inflammatory cytokines, are explored in this study. In particular, we focus on the chemical drugs that have improved various aspects of ASD symptoms in animal models and in clinical trials for various ages of patients with ASD.
Collapse
Affiliation(s)
- Songhyun Lim
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Sanghee Lee
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-958-5138
| |
Collapse
|
25
|
Sachdeva P, Mehdi I, Kaith R, Ahmad F, Anwar MS. Potential natural products for the management of autism spectrum disorder. IBRAIN 2022; 8:365-376. [PMID: 37786737 PMCID: PMC10528773 DOI: 10.1002/ibra.12050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 10/04/2023]
Abstract
Autism in a broader sense is a neurodevelopmental disorder, which frequently occurs during early childhood and can last for a lifetime. This condition is primarily defined by difficulties with social engagement, with individuals displaying repetitive and stereotyped behaviors. Numerous neuroanatomical investigations on autistic children have revealed that their brains grow atypically, resulting in atypical neurogenesis, neuronal migration, maturation, differentiation, and degeneration. Special education programs, speech therapy, and occupational therapy have all been used to address autism-related behavioral problems. While widely prescribed antidepressant drugs, antipsychotics, anticonvulsants, and stimulants have demonstrated response in autistic individuals. However, these medications do not fully reverse the core symptoms associated with autism spectrum disorder (ASD). The adverse reactions of ASD medicines and an increased risk of developing various other problems, such as obesity, dyslipidemia, diabetes mellitus, and thyroid disorders, prompted the researchers to investigate herbal medicines for the treatment of autistic individuals. Clinical trials are now being done to establish the efficacy of alternative techniques based on natural substances and to understand better the context in which they may be used to treat autism. This review of literature will look at crucial natural compounds derived from animals and plants that have shown promise as safe and effective autism treatment strategies.
Collapse
Affiliation(s)
- Punya Sachdeva
- Amity Institute of Neuropsychology and NeurosciencesAmity UniversityNoidaUttar PradeshIndia
| | - Intizaar Mehdi
- School of Studies in NeuroscienceJiwaji UniversityGwaliorMadhya PradeshIndia
| | - Rohit Kaith
- School of Studies in NeuroscienceJiwaji UniversityGwaliorMadhya PradeshIndia
| | - Faizan Ahmad
- Department of Medical Elementology and ToxicologyJamia Hamdard UniversityDelhiIndia
| | - Md Sheeraz Anwar
- Department of PsychologyUniversity of CampaniaLuigi VanvitelliCasertaItaly
| |
Collapse
|
26
|
Lim HK, Yoon JH, Song M. Autism Spectrum Disorder Genes: Disease-Related Networks and Compensatory Strategies. Front Mol Neurosci 2022; 15:922840. [PMID: 35726297 PMCID: PMC9206533 DOI: 10.3389/fnmol.2022.922840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
The mammalian brain comprises structurally and functionally distinct regions. Each of these regions has characteristic molecular mechanisms that mediate higher-order tasks, such as memory, learning, emotion, impulse, and motor control. Many genes are involved in neuronal signaling and contribute to normal brain development. Dysfunction of essential components of neural signals leads to various types of brain disorders. Autism spectrum disorder is a neurodevelopmental disorder characterized by social deficits, communication challenges, and compulsive repetitive behaviors. Long-term genetic studies have uncovered key genes associated with autism spectrum disorder, such as SH3 and multiple ankyrin repeat domains 3, methyl-CpG binding protein 2, neurexin 1, and chromodomain helicase DNA binding protein 8. In addition, disease-associated networks have been identified using animal models, and the understanding of the impact of these genes on disease susceptibility and compensation is deepening. In this review, we examine rescue strategies using key models of autism spectrum disorder.
Collapse
Affiliation(s)
- Hye Kyung Lim
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
27
|
Nadeem A, Ahmad SF, Al-Harbi NO, Al-Ayadhi LY, Sarawi W, Attia SM, Bakheet SA, Alqarni SA, Ali N, AsSobeai HM. Imbalance in pro-inflammatory and anti-inflammatory cytokines milieu in B cells of children with autism. Mol Immunol 2021; 141:297-304. [PMID: 34915269 DOI: 10.1016/j.molimm.2021.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
B cells play multiple roles in preservation of healthy immune system including management of immune responses by expression of pro- and anti-inflammatory cytokines. Several earlier studies have documented that B cells express both pro-inflammatory cytokines such as IL-6, TNF-α as well as anti-inflammatory cytokines such as IL-10. However, it is yet to be examined whether these pro-/anti-inflammatory cytokines are expressed in B cells of children with autism spectrum disorder (ASD). Pathophysiology of ASD begins in early childhood and is characterized by repetitive/restricted behavioral patterns, and dysfunction in communal/communication skills. ASD pathophysiology also has a strong component of immune dysfunction which has been highlighted in numerous earlier publications. In this study, we specifically explored pro-/anti-inflammatory cytokines (IL-6, IL-17A, IFN-γ, TNF-α, IL-10) in B cells of ASD subjects and compared them typically developing control (TDC) children. Present study shows that inflammatory cytokines such as IL-6 and TNF-α are elevated in B cells of ASD subjects, while anti-inflammatory cytokine, IL-10 is decreased in ASD group when compared to TDC group. Further, TLR4 activation by its ligand, lipopolysaccharide (LPS) further upregulates inflammatory potential of B cells from ASD group by increasing IL-6 expression, whereas LPS has no significant effect on IL-10 expression in ASD group. Furthermore, LPS-induced inflammatory signaling of IL-6 in B cells of ASD subjects was partially mitigated by the pretreatment with NF-kB inhibitor. Present study propounds the idea that B cells could be crucial players in causing immune dysfunction in ASD subjects through an imbalance in expression of pro-/anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Wedad Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Homood M AsSobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
De Giacomo A, Gargano CD, Simone M, Petruzzelli MG, Pedaci C, Giambersio D, Margari L, Ruggieri M. B and T Immunoregulation: A New Insight of B Regulatory Lymphocytes in Autism Spectrum Disorder. Front Neurosci 2021; 15:732611. [PMID: 34776843 PMCID: PMC8581677 DOI: 10.3389/fnins.2021.732611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction: Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by a complex pathogenesis, by impairment social communication and interaction, and may also manifest repetitive patterns of behavior. Many studies have recognized an alteration of the immune response as a major etiological component in ASDs. Despite this, it is still unclear the variation of the function of the immune response. Aim: Our aim is to investigate the levels of immunological markers in peripheral blood of children with ASD such as: regulatory B and T cells, memory B and natural killer (NK) cells. Materials and Methods: We assessed various subsets of immune cells in peripheral blood (regulatory B and T cells, B-cell memory and natural killer cells) by multi-parametric flow cytometric analysis in 26 ASD children compared to 16 healthy controls (HCs) who matched age and gender. Results: No significant difference was observed between B-cell memory and NK cells in ASDs and HCs. Instead, regulatory B cells and T cells were decreased (p < 0.05) in ASD subjects when compared to HCs. Discussion: Regulatory B and T cells have a strategic role in maintaining the immune homeostasis. Their functions have been associated with the development of multiple pathologies especially in autoimmune diseases. According to our study, the immunological imbalance of regulatory B and T cells may play a pivotal role in the evolution of the disease, as immune deficiencies could be related to the severity of the ongoing disorder.
Collapse
Affiliation(s)
- Andrea De Giacomo
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Concetta Domenica Gargano
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Marta Simone
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Giuseppina Petruzzelli
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Chiara Pedaci
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Donatella Giambersio
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Lucia Margari
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maddalena Ruggieri
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
29
|
Santos-Terra J, Deckmann I, Schwingel GB, Paz AVC, Gama CS, Bambini-Junior V, Fontes-Dutra M, Gottfried C. Resveratrol prevents long-term structural hippocampal alterations and modulates interneuron organization in an animal model of ASD. Brain Res 2021; 1768:147593. [PMID: 34331907 DOI: 10.1016/j.brainres.2021.147593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 02/07/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impairments in both communication and social interaction, besides repetitive or stereotyped behavior. Although the etiology is unknown, environmental factors such as valproic acid (VPA) increase the risk of ASD onset. Resveratrol (RSV), a neuroprotective molecule, has been shown to counteract the effects of intrauterine exposure to VPA. We aimed to evaluate histological parameters related to hippocampal morphology and to the distribution of parvalbumin- (PV), calbindin- (CB), and somatostatin-positive (SOM) interneurons sub-populations, in addition to evaluate the total/phosphorylation levels of PTEN, AKT, GSK3β and total CK2 in the animal model of autism induced by VPA, as well as addressing the potential protective effect of RSV. On postnatal day 120, histological analysis showed a loss in total neurons in the dentate gyrus (DG) and decreased CB+ neurons in DG and CA1 in VPA animals, both prevented by RSV. In addition, PV+ neurons were diminished in CA1, CA2, and CA3, and SOM+ were interestingly increased in DG (prevented by RSV) and decreased in CA1 and CA2. A hippocampal lesion similar to sclerosis was also observed in the samples from the VPA group. Besides that, VPA reduced AKT and PTEN immunocontent, and VPA increased CK2 immunocontent. Thus, this work demonstrated long-term effects of prenatal exposure to ASD in different sub-populations of interneurons, structural damage of hippocampus, and also alteration in proteins associated with pivotal cell signaling pathways, highlighting the role of RSV as a tool for understanding the pathophysiology of ASD.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil.
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil
| | - André Vinicius Contri Paz
- Laboratory of Molecular Psychiatry, National Science and Technology Institute for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | - Clarissa S Gama
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Laboratory of Molecular Psychiatry, National Science and Technology Institute for Translational Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Postgraduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil; School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders-GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Brazil; Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Brazil.
| |
Collapse
|
30
|
Krenn V, Bosone C, Burkard TR, Spanier J, Kalinke U, Calistri A, Salata C, Rilo Christoff R, Pestana Garcez P, Mirazimi A, Knoblich JA. Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell 2021; 28:1362-1379.e7. [PMID: 33838105 PMCID: PMC7611471 DOI: 10.1016/j.stem.2021.03.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/07/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Viral infection in early pregnancy is a major cause of microcephaly. However, how distinct viruses impair human brain development remains poorly understood. Here we use human brain organoids to study the mechanisms underlying microcephaly caused by Zika virus (ZIKV) and herpes simplex virus (HSV-1). We find that both viruses efficiently replicate in brain organoids and attenuate their growth by causing cell death. However, transcriptional profiling reveals that ZIKV and HSV-1 elicit distinct cellular responses and that HSV-1 uniquely impairs neuroepithelial identity. Furthermore, we demonstrate that, although both viruses fail to potently induce the type I interferon system, the organoid defects caused by their infection can be rescued by distinct type I interferons. These phenotypes are not seen in 2D cultures, highlighting the superiority of brain organoids in modeling viral infections. These results uncover virus-specific mechanisms and complex cellular immune defenses associated with virus-induced microcephaly.
Collapse
Affiliation(s)
- Veronica Krenn
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Camilla Bosone
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hanover Medical School, Hanover 30625, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hanover Medical School, Hanover 30625, Germany; Cluster of Excellence - Resolving Infection Susceptibility (RESIST), Hanover Medical School, Hanover 30625, Germany
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Raissa Rilo Christoff
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Patricia Pestana Garcez
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ali Mirazimi
- Department of Laboratory Medicine (LABMED), Karolinska Institute, Stockholm 17177, Sweden; National Veterinary Institute, Uppsala 75189, Sweden
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria; Medical University of Vienna, Vienna 1030, Austria.
| |
Collapse
|
31
|
Santos-Terra J, Deckmann I, Fontes-Dutra M, Schwingel GB, Bambini-Junior V, Gottfried C. Transcription factors in neurodevelopmental and associated psychiatric disorders: A potential convergence for genetic and environmental risk factors. Int J Dev Neurosci 2021; 81:545-578. [PMID: 34240460 DOI: 10.1002/jdn.10141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous and highly prevalent group of psychiatric conditions marked by impairments in the nervous system. Their onset occurs during gestation, and the alterations are observed throughout the postnatal life. Although many genetic and environmental risk factors have been described in this context, the interactions between them challenge the understanding of the pathways associated with NDDs. Transcription factors (TFs)-a group of over 1,600 proteins that can interact with DNA, regulating gene expression through modulation of RNA synthesis-represent a point of convergence for different risk factors. In addition, TFs organize critical processes like angiogenesis, blood-brain barrier formation, myelination, neuronal migration, immune activation, and many others in a time and location-dependent way. In this review, we summarize important TF alterations in NDD and associated disorders, along with specific impairments observed in animal models, and, finally, establish hypotheses to explain how these proteins may be critical mediators in the context of genome-environment interactions.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| |
Collapse
|
32
|
Deckmann I, Santos-Terra J, Fontes-Dutra M, Körbes-Rockenbach M, Bauer-Negrini G, Schwingel GB, Riesgo R, Bambini-Junior V, Gottfried C. Resveratrol prevents brain edema, blood-brain barrier permeability, and altered aquaporin profile in autism animal model. Int J Dev Neurosci 2021; 81:579-604. [PMID: 34196408 DOI: 10.1002/jdn.10137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder can present a plethora of clinical conditions associated with the disorder, such as greater brain volume in the first years of life in a significant percentage of patients. We aimed to evaluate the brain water content, the blood-brain barrier permeability, and the expression of aquaporin 1 and 4, and GFAP in a valproic acid-animal model, assessing the effect of resveratrol. On postnatal day 30, Wistar rats of the valproic acid group showed greater permeability of the blood-brain barrier to the Evans blue dye and a higher proportion of brain water volume, prevented both by resveratrol. Prenatal exposition to valproic acid diminished aquaporin 1 in the choroid plexus, in the primary somatosensory area, in the amygdala region, and in the medial prefrontal cortex, reduced aquaporin 4 in medial prefrontal cortex and increased aquaporin 4 levels in primary somatosensory area (with resveratrol prevention). Valproic acid exposition also increased the number of astrocytes and GFAP fluorescence in both primary somatosensory area and medial prefrontal cortex. In medial prefrontal cortex, resveratrol prevented the increased fluorescence. Finally, there was an effect of resveratrol per se on the number of astrocytes and GFAP fluorescence in the amygdala region and in the hippocampus. Thus, this work demonstrates significant changes in blood-brain barrier permeability, edema formation, distribution of aquaporin 1 and 4, in addition to astrocytes profile in the animal model of autism, as well as the use of resveratrol as a tool to investigate the mechanisms involved in the pathophysiology of autism spectrum disorder.
Collapse
Affiliation(s)
- Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Marília Körbes-Rockenbach
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil
| | - Guilherme Bauer-Negrini
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| | - Rudimar Riesgo
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK.,Department of Pediatrics, Child Neurology Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorder - GETTEA, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology in Neuroimmunomodulation - INCT-NIM, Porto Alegre, Brazil.,Autism Wellbeing and Research Development - AWARD - Initiative BR-UK-CA, University of Central Lancashire, Preston, UK
| |
Collapse
|
33
|
Izvolskaia M, Sharova V, Zakharova L. Perinatal Inflammation Reprograms Neuroendocrine, Immune, and Reproductive Functions: Profile of Cytokine Biomarkers. Inflammation 2021; 43:1175-1183. [PMID: 32279161 DOI: 10.1007/s10753-020-01220-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Viral and bacterial infections causing systemic inflammation are significant risk factors for developing body. Inflammatory processes can alter physiological levels of regulatory factors and interfere with developmental mechanisms. The brain is the main target for the negative impact of inflammatory products during critical ontogenetic periods. Subsequently, the risks of various neuropsychiatric diseases such as Alzheimer's and Parkinson's diseases, schizophrenia, and depression are increased in the offspring. Inflammation-induced physiological disturbances can cause immune and behavioral disorders, reproductive deficiencies, and infertility. The influence of maternal immune stress is mediated by the regulation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, monocyte chemotactic protein 1, leukemia-inhibiting factor, and tumor necrosis factor-alpha secretion in the maternal-fetal system. The increasing number of patients with neuronal and reproductive disorders substantiates the identification of biomarkers for these disorders targeted at their therapy.
Collapse
Affiliation(s)
- Marina Izvolskaia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Viktoriya Sharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| | - Liudmila Zakharova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| |
Collapse
|
34
|
Baranova J, Dragunas G, Botellho MCS, Ayub ALP, Bueno-Alves R, Alencar RR, Papaiz DD, Sogayar MC, Ulrich H, Correa RG. Autism Spectrum Disorder: Signaling Pathways and Prospective Therapeutic Targets. Cell Mol Neurobiol 2021; 41:619-649. [PMID: 32468442 PMCID: PMC11448616 DOI: 10.1007/s10571-020-00882-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022]
Abstract
The Autism Spectrum Disorder (ASD) consists of a prevalent and heterogeneous group of neurodevelopmental diseases representing a severe burden to affected individuals and their caretakers. Despite substantial improvement towards understanding of ASD etiology and pathogenesis, as well as increased social awareness and more intensive research, no effective drugs have been successfully developed to resolve the main and most cumbersome ASD symptoms. Hence, finding better treatments, which may act as "disease-modifying" agents, and novel biomarkers for earlier ASD diagnosis and disease stage determination are needed. Diverse mutations of core components and consequent malfunctions of several cell signaling pathways have already been found in ASD by a series of experimental platforms, including genetic associations analyses and studies utilizing pre-clinical animal models and patient samples. These signaling cascades govern a broad range of neurological features such as neuronal development, neurotransmission, metabolism, and homeostasis, as well as immune regulation and inflammation. Here, we review the current knowledge on signaling pathways which are commonly disrupted in ASD and autism-related conditions. As such, we further propose ways to translate these findings into the development of genetic and biochemical clinical tests for early autism detection. Moreover, we highlight some putative druggable targets along these pathways, which, upon further research efforts, may evolve into novel therapeutic interventions for certain ASD conditions. Lastly, we also refer to the crosstalk among these major signaling cascades as well as their putative implications in therapeutics. Based on this collective information, we believe that a timely and accurate modulation of these prominent pathways may shape the neurodevelopment and neuro-immune regulation of homeostatic patterns and, hopefully, rescue some (if not all) ASD phenotypes.
Collapse
Affiliation(s)
- Juliana Baranova
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Guilherme Dragunas
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Mayara C S Botellho
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Ana Luisa P Ayub
- Department of Pharmacology, Federal University of São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Rebeca Bueno-Alves
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Rebeca R Alencar
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Debora D Papaiz
- Department of Pharmacology, Federal University of São Paulo, Rua Pedro de Toledo 669, Vila Clementino, São Paulo, SP, 04039-032, Brazil
| | - Mari C Sogayar
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
- Cell and Molecular Therapy Center, School of Medicine, University of São Paulo, Rua Pangaré 100 (Edifício NUCEL), Butantã, São Paulo, SP, 05360-130, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Avenida Professor Lineu Prestes 748, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Ricardo G Correa
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
35
|
Emerging mechanisms of valproic acid-induced neurotoxic events in autism and its implications for pharmacological treatment. Biomed Pharmacother 2021; 137:111322. [PMID: 33761592 DOI: 10.1016/j.biopha.2021.111322] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a sort of mental disorder marked by deficits in cognitive and communication abilities. To date no effective cure for this pernicious disease has been available. Valproic acid (VPA) is a broad-spectrum, antiepileptic drug, and it is also a potent teratogen. Epidemiological studies have shown that children exposed to VPA are at higher risk for ASD during the first trimester of their gestational development. Several animal and human studies have demonstrated important behavioral impairments and morphological changes in the brain following VPA treatment. However, the mechanism of VPA exposure-induced ASD remains unclear. Several factors are involved in the pathological phase of ASD, including aberrant excitation/inhibition of synaptic transmission, neuroinflammation, diminished neurogenesis, oxidative stress, etc. In this review, we aim to outline the current knowledge of the critical pathophysiological mechanisms underlying VPA exposure-induced ASD. This review will give insight toward understanding the complex nature of VPA-induced neuronal toxicity and exploring a new path toward the development of novel pharmacological treatment against ASD.
Collapse
|
36
|
Loss CM, Teodoro L, Rodrigues GD, Moreira LR, Peres FF, Zuardi AW, Crippa JA, Hallak JEC, Abílio VC. Is Cannabidiol During Neurodevelopment a Promising Therapy for Schizophrenia and Autism Spectrum Disorders? Front Pharmacol 2021; 11:635763. [PMID: 33613289 PMCID: PMC7890086 DOI: 10.3389/fphar.2020.635763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 01/22/2023] Open
Abstract
Schizophrenia and autism spectrum disorders (ASD) are psychiatric neurodevelopmental disorders that cause high levels of functional disabilities. Also, the currently available therapies for these disorders are limited. Therefore, the search for treatments that could be beneficial for the altered course of the neurodevelopment associated with these disorders is paramount. Preclinical and clinical evidence points to cannabidiol (CBD) as a promising strategy. In this review, we discuss clinical and preclinical studies on schizophrenia and ASD investigating the behavioral, molecular, and functional effects of chronic treatment with CBD (and with cannabidivarin for ASD) during neurodevelopment. In summary, the results point to CBD's beneficial potential for the progression of these disorders supporting further investigations to strengthen its use.
Collapse
Affiliation(s)
- Cássio Morais Loss
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Lucas Teodoro
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gabriela Doná Rodrigues
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas Roberto Moreira
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fiel Peres
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| | - Antonio Waldo Zuardi
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - José Alexandre Crippa
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jaime Eduardo Cecilio Hallak
- National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil.,Department of Neuroscience and Behavior, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Costhek Abílio
- Molecular and Behavioral Neuroscience Laboratory, Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq/CAPES/FAPESP), Ribeirão Preto, Brazil
| |
Collapse
|
37
|
Santi L, Riesgo RS, Quincozes-Santos A, Schuler-Faccini L, Tureta EF, Rosa RL, Berger M, Oliveira ACC, Beltrão-Braga PCB, Souza DO, Guimarães JA, Beys-da-Silva WO. Zika Virus Infection Associated with Autism Spectrum Disorder: A Case Report. Neuroimmunomodulation 2021; 28:229-232. [PMID: 34082423 DOI: 10.1159/000516560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The aim of this case was to investigate the association of the Zika virus infection in utero with the autism spectrum disorder (ASD) as clinical outcome that presented no congenital anomalies. METHODS ASD was diagnosed in the second year of life by different child neurologists and confirmed by DSM-5 and ASQ. After that, an extensive clinical, epidemiological, and genetic evaluations were performed, with main known ASD causes ruled out. RESULTS An extensive laboratorial search was done, with normal findings. SNP array identified no pathogenic variants. Normal neuroimaging and EEG findings were also obtained. ZIKV (Zika virus) IgG was positive, while IgM was negative. Other congenital infections were negative. The exome sequencing did not reveal any pathogenic variant in genes related to ASD. CONCLUSION Accordingly, this report firstly associates ZIKV exposure to ASD.
Collapse
Affiliation(s)
- Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Rudimar S Riesgo
- Unidade de Neurologia Infantil e Grupo Translacional de Autismo, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - André Quincozes-Santos
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lavínia Schuler-Faccini
- Serviço de Informação Teratogênica Brasileira, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Emanuela F Tureta
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael L Rosa
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Markus Berger
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | - Diogo O Souza
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jorge A Guimarães
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Walter O Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
38
|
Sharma AK, Gokulchandran N, Kulkarni PP, Sane HM, Sharma R, Jose A, Badhe PB. Cell transplantation as a novel therapeutic strategy for autism spectrum disorders: a clinical study. AMERICAN JOURNAL OF STEM CELLS 2020; 9:89-100. [PMID: 33489466 PMCID: PMC7811933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/25/2019] [Indexed: 06/12/2023]
Abstract
BACKGROUND Autism spectrum disorders [ASD] is a lifelong disability mainly affecting the development, communication, social interaction and behavior of an individual. Cell transplantation is emerging as a potential therapeutic strategy for ASD. Our previously published proof of concept study showed beneficial effects of cell transplantation in ASD. This study shows effect of cell transplantation in a larger sample size of ASD patients. METHODS 254 patients diagnosed with ASD on DSM V criteria were enrolled in this open label non-randomized study. The intervention included intrathecal transplantation of autologous bone marrow mononuclear cells and neurorehabilitation. On mean follow up of 7.50 months, percentage analysis was performed on all symptomatic changes. Changes in outcome measures, Indian Scale for Assessment of Autism [ISAA] and Childhood Autism Rating Scale [CARS], were analyzed statistically using Wilcoxon Signed-Rank Test. Comparative analysis of Positron Emission Tomography [PET CT] scan brain, performed before and 6 months after intervention, was done in 86 patients to monitor the outcome at cellular level. Change in the standardized uptake values was statistically evaluated using T-Test [P≤0.05]. RESULTS Improvements were observed in eye contact, attention and concentration, hyperactivity, sitting tolerance, social interaction, stereotypical behavior, aggressiveness, communication, speech, command following and self-stimulatory behavior. Statistically significant improvement was observed in scores of ISAA and CARS after intervention. A significantly better outcome of the intervention was found in patients at younger age and with shorter duration of disease [<5 years from time of diagnosis]. 86 patients who underwent a repeat PET CT scan showed improved brain metabolism after intervention in areas which correlated to the symptomatic changes. No major procedure related adverse events were recorded. However, 5 patients, with history of seizure and abnormal EEG, had an episode of seizure which was managed using medications. Outcome of intervention in these patients was not affected by seizures as improvements were observed in them. CONCLUSION The results of this study indicate that autologous bone marrow mononuclear cells in combination with neurorehabilitation are a safe and effective treatment modality for ASD. It improves the quality of life of patients and helps them to integrate in mainstream lifestyle.
Collapse
Affiliation(s)
- Alok K Sharma
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine InstituteMumbai, India
| | - Nandini Gokulchandran
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine InstituteMumbai, India
| | - Pooja P Kulkarni
- Department of Research & Development, NeuroGen Brain & Spine InstituteMumbai, India
| | - Hemangi M Sane
- Department of Research & Development, NeuroGen Brain & Spine InstituteMumbai, India
| | - Ridhima Sharma
- Department of Neurorehabilitation, NeuroGen Brain & Spine InstituteMumbai, India
| | - Alitta Jose
- Department of Research & Development, NeuroGen Brain & Spine InstituteMumbai, India
| | - Prerna B Badhe
- Department of Regenerative Laboratory Services, NeuroGen Brain & Spine InstituteMumbai, India
| |
Collapse
|
39
|
Mizuno S, Hirota JN, Ishii C, Iwasaki H, Sano Y, Furuichi T. Comprehensive Profiling of Gene Expression in the Cerebral Cortex and Striatum of BTBRTF/ArtRbrc Mice Compared to C57BL/6J Mice. Front Cell Neurosci 2020; 14:595607. [PMID: 33362469 PMCID: PMC7758463 DOI: 10.3389/fncel.2020.595607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Mouse line BTBR T+ Iptr3tf/J (hereafter referred as to BTBR/J) is a mouse strain that shows lower sociability compared to the C57BL/6J mouse strain (B6) and thus is often utilized as a model for autism spectrum disorder (ASD). In this study, we utilized another subline, BTBRTF/ArtRbrc (hereafter referred as to BTBR/R), and analyzed the associated brain transcriptome compared to B6 mice using microarray analysis, quantitative RT-PCR analysis, various bioinformatics analyses, and in situ hybridization. We focused on the cerebral cortex and the striatum, both of which are thought to be brain circuits associated with ASD symptoms. The transcriptome profiling identified 1,280 differentially expressed genes (DEGs; 974 downregulated and 306 upregulated genes, including 498 non-coding RNAs [ncRNAs]) in BTBR/R mice compared to B6 mice. Among these DEGs, 53 genes were consistent with ASD-related genes already established. Gene Ontology (GO) enrichment analysis highlighted 78 annotations (GO terms) including DNA/chromatin regulation, transcriptional/translational regulation, intercellular signaling, metabolism, immune signaling, and neurotransmitter/synaptic transmission-related terms. RNA interaction analysis revealed novel RNA–RNA networks, including 227 ASD-related genes. Weighted correlation network analysis highlighted 10 enriched modules including DNA/chromatin regulation, neurotransmitter/synaptic transmission, and transcriptional/translational regulation. Finally, the behavioral analyses showed that, compared to B6 mice, BTBR/R mice have mild but significant deficits in social novelty recognition and repetitive behavior. In addition, the BTBR/R data were comprehensively compared with those reported in the previous studies of human subjects with ASD as well as ASD animal models, including BTBR/J mice. Our results allow us to propose potentially important genes, ncRNAs, and RNA interactions. Analysis of the altered brain transcriptome data of the BTBR/R and BTBR/J sublines can contribute to the understanding of the genetic underpinnings of autism susceptibility.
Collapse
Affiliation(s)
- Shota Mizuno
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Jun-Na Hirota
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Chiaki Ishii
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Hirohide Iwasaki
- Department of Anatomy, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| |
Collapse
|
40
|
|
41
|
Natural Antioxidants: A Novel Therapeutic Approach to Autism Spectrum Disorders? Antioxidants (Basel) 2020; 9:antiox9121186. [PMID: 33256243 PMCID: PMC7761361 DOI: 10.3390/antiox9121186] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental syndromes with both genetic and environmental origins. Several recent studies have shown that inflammation and oxidative stress may play a key role in supporting the pathogenesis and the severity of ASD. Thus, the administration of anti-inflammatory and antioxidant molecules may represent a promising strategy to counteract pathological behaviors in ASD patients. In the current review, results from recent literature showing how natural antioxidants may be beneficial in the context of ASD will be discussed. Interestingly, many antioxidant molecules available in nature show anti-inflammatory activity. Thus, after introducing ASD and the role of the vitamin E/vitamin C/glutathione network in scavenging intracellular reactive oxygen species (ROS) and the impairments observed with ASD, we discuss the concept of functional food and nutraceutical compounds. Furthermore, the effects of well-known nutraceutical compounds on ASD individuals and animal models of ASD are summarized. Finally, the importance of nutraceutical compounds as support therapy useful in reducing the symptoms in autistic people is discussed.
Collapse
|
42
|
Neonatal immune challenge induces female-specific changes in social behavior and somatostatin cell number. Brain Behav Immun 2020; 90:332-345. [PMID: 32860938 PMCID: PMC7556772 DOI: 10.1016/j.bbi.2020.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022] Open
Abstract
Decreases in social behavior are a hallmark aspect of acute "sickness behavior" in response to infection. However, immune insults that occur during the perinatal period may have long-lasting consequences for adult social behavior by impacting the developmental organization of underlying neural circuits. Microglia, the resident immune cells of the central nervous system, are sensitive to immune stimulation and play a critical role in the developmental sculpting of neural circuits, making them likely mediators of this process. Here, we investigated the impact of a postnatal day (PND) 4 lipopolysaccharide (LPS) challenge on social behavior in adult mice. Somewhat surprisingly, neonatal LPS treatment decreased sociability in adult female, but not male mice. LPS-treated females also displayed reduced social interaction and social memory in a social discrimination task as compared to saline-treated females. Somatostatin (SST) interneurons within the anterior cingulate cortex (ACC) have recently been suggested to modulate a variety of social behaviors. Interestingly, the female-specific changes in social behavior observed here were accompanied by an increase in SST interneuron number in the ACC. Finally, these changes in social behavior and SST cell number do not appear to depend on microglial inflammatory signaling, because microglia-specific genetic knock-down of myeloid differentiation response protein 88 (MyD88; the removal of which prevents LPS from increasing proinflammatory cytokines such as TNFα and IL-1β) did not prevent these LPS-induced changes. This study provides novel evidence for enduring effects of neonatal immune activation on social behavior and SST interneurons in females, largely independent of microglial inflammatory signaling.
Collapse
|
43
|
Al-Harbi NO, Nadeem A, Ahmad SF, AL-Ayadhi LY, Al-Harbi MM, As Sobeai HM, Ibrahim KE, Bakheet SA. Elevated expression of toll-like receptor 4 is associated with NADPH oxidase-induced oxidative stress in B cells of children with autism. Int Immunopharmacol 2020; 84:106555. [DOI: 10.1016/j.intimp.2020.106555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022]
|
44
|
Pacheva I, Ivanov I. Targeted Biomedical Treatment for Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4430-4453. [PMID: 31801452 DOI: 10.2174/1381612825666191205091312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND A diagnosis of autism spectrum disorders (ASD) represents presentations with impairment in communication and behaviour that vary considerably in their clinical manifestations and etiology as well as in their likely pathophysiology. A growing body of data indicates that the deleterious effect of oxidative stress, mitochondrial dysfunction, immune dysregulation and neuroinflammation, as well as their interconnections are important aspects of the pathophysiology of ASD. Glutathione deficiency decreases the mitochondrial protection against oxidants and tumor necrosis factor (TNF)-α; immune dysregulation and inflammation inhibit mitochondrial function through TNF-α; autoantibodies against the folate receptors underpin cerebral folate deficiency, resulting in disturbed methylation, and mitochondrial dysfunction. Such pathophysiological processes can arise from environmental and epigenetic factors as well as their combined interactions, such as environmental toxicant exposures in individuals with (epi)genetically impaired detoxification. The emerging evidence on biochemical alterations in ASD is forming the basis for treatments aimed to target its biological underpinnings, which is of some importance, given the uncertain and slow effects of the various educational interventions most commonly used. METHODS Literature-based review of the biomedical treatment options for ASD that are derived from established pathophysiological processes. RESULTS Most proposed biomedical treatments show significant clinical utility only in ASD subgroups, with specified pre-treatment biomarkers that are ameliorated by the specified treatment. For example, folinic acid supplementation has positive effects in ASD patients with identified folate receptor autoantibodies, whilst the clinical utility of methylcobalamine is apparent in ASD patients with impaired methylation capacity. Mitochondrial modulating cofactors should be considered when mitochondrial dysfunction is evident, although further research is required to identify the most appropriate single or combined treatment. Multivitamins/multiminerals formulas, as well as biotin, seem appropriate following the identification of metabolic abnormalities, with doses tapered to individual requirements. A promising area, requiring further investigations, is the utilization of antipurinergic therapies, such as low dose suramin. CONCLUSION The assessment and identification of relevant physiological alterations and targeted intervention are more likely to produce positive treatment outcomes. As such, current evidence indicates the utility of an approach based on personalized and evidence-based medicine, rather than treatment targeted to all that may not always be beneficial (primum non nocere).
Collapse
Affiliation(s)
- Iliyana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv 4002, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv 4002, Bulgaria
| |
Collapse
|
45
|
Raony Í, de Figueiredo CS, Pandolfo P, Giestal-de-Araujo E, Oliveira-Silva Bomfim P, Savino W. Psycho-Neuroendocrine-Immune Interactions in COVID-19: Potential Impacts on Mental Health. Front Immunol 2020; 11:1170. [PMID: 32574266 PMCID: PMC7267025 DOI: 10.3389/fimmu.2020.01170] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The impacts of the disease may be beyond the respiratory system, also affecting mental health. Several factors may be involved in the association between COVID-19 and psychiatric outcomes, such as fear inherent in the pandemic, adverse effects of treatments, as well as financial stress, and social isolation. Herein we discuss the growing evidence suggesting that the relationship between SARS-CoV-2 and host may also trigger changes in brain and behavior. Based on the similarity of SARS-CoV-2 with other coronaviruses, it is conceivable that changes in endocrine and immune response in the periphery or in the central nervous system may be involved in the association between SARS-CoV-2 infection and impaired mental health. This is likely to be further enhanced, since millions of people worldwide are isolated in quarantine to minimize the transmission of SARS-CoV-2 and social isolation can also lead to neuroendocrine-immune changes. Accordingly, we highlight here the hypothesis that neuroendocrine-immune interactions may be involved in negative impacts of SARS-CoV-2 infection and social isolation on psychiatric issues.
Collapse
Affiliation(s)
- Ícaro Raony
- School of Medicine, Federal Fluminense University, Niterói, Brazil.,Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, Brazil
| | - Camila Saggioro de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, Brazil
| | - Pablo Pandolfo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, Brazil
| | - Elizabeth Giestal-de-Araujo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Priscilla Oliveira-Silva Bomfim
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Carroll L, Braeutigam S, Dawes JM, Krsnik Z, Kostovic I, Coutinho E, Dewing JM, Horton CA, Gomez-Nicola D, Menassa DA. Autism Spectrum Disorders: Multiple Routes to, and Multiple Consequences of, Abnormal Synaptic Function and Connectivity. Neuroscientist 2020; 27:10-29. [PMID: 32441222 PMCID: PMC7804368 DOI: 10.1177/1073858420921378] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of
neurodevelopmental disorders of genetic and environmental etiologies.
Some ASD cases are syndromic: associated with clinically defined
patterns of somatic abnormalities and a neurobehavioral phenotype
(e.g., Fragile X syndrome). Many cases, however, are idiopathic or
non-syndromic. Such disorders present themselves during the early
postnatal period when language, speech, and personality start to
develop. ASDs manifest by deficits in social communication and
interaction, restricted and repetitive patterns of behavior across
multiple contexts, sensory abnormalities across multiple modalities
and comorbidities, such as epilepsy among many others. ASDs are
disorders of connectivity, as synaptic dysfunction is common to both
syndromic and idiopathic forms. While multiple theories have been
proposed, particularly in idiopathic ASDs, none address why certain
brain areas (e.g., frontotemporal) appear more vulnerable than others
or identify factors that may affect phenotypic specificity. In this
hypothesis article, we identify possible routes leading to, and the
consequences of, altered connectivity and review the evidence of
central and peripheral synaptic dysfunction in ASDs. We postulate that
phenotypic specificity could arise from aberrant experience-dependent
plasticity mechanisms in frontal brain areas and peripheral sensory
networks and propose why the vulnerability of these areas could be
part of a model to unify preexisting pathophysiological theories.
Collapse
Affiliation(s)
- Liam Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, Oxfordshire, UK
| | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivica Kostovic
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ester Coutinho
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Jennifer M Dewing
- Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Christopher A Horton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, UK
| | - Diego Gomez-Nicola
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - David A Menassa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK.,Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
47
|
Pangrazzi L, Balasco L, Bozzi Y. Oxidative Stress and Immune System Dysfunction in Autism Spectrum Disorders. Int J Mol Sci 2020; 21:ijms21093293. [PMID: 32384730 PMCID: PMC7247582 DOI: 10.3390/ijms21093293] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) represent a group of neurodevelopmental disorders associated with social and behavioral impairments. Although dysfunctions in several signaling pathways have been associated with ASDs, very few molecules have been identified as potentially effective drug targets in the clinic. Classically, research in the ASD field has focused on the characterization of pathways involved in neural development and synaptic plasticity, which support the pathogenesis of this group of diseases. More recently, immune system dysfunctions have been observed in ASD. In addition, high levels of reactive oxygen species (ROS), which cause oxidative stress, are present in ASD patients. In this review, we will describe the major alterations in the expression of genes coding for enzymes involved in the ROS scavenging system, in both ASD patients and ASD mouse models. In addition, we will discuss, in the context of the most recent literature, the possibility that oxidative stress, inflammation and immune system dysfunction may be connected to, and altogether support, the pathogenesis and/or severity of ASD. Finally, we will discuss the possibility of novel treatments aimed at counteracting the interplay between ROS and inflammation in people with ASD.
Collapse
|
48
|
Differential regulation of Nrf2 is linked to elevated inflammation and nitrative stress in monocytes of children with autism. Psychoneuroendocrinology 2020; 113:104554. [PMID: 31884317 DOI: 10.1016/j.psyneuen.2019.104554] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
Abstract
Autism spectrum disorder (ASD) is a very complex neurodevelopmental disorder characterized by deficits in social and communication skills. Innate immune cells like monocytes are believed to play a cardinal role in neuroimmune inflammation and nitrative stress. On the other hand, Nrf2, a basic leucine zipper transcription factor plays a significant role in protecting the immune cells against inflammation and oxidants. However, its role in monocytes of ASD children and typically developing control (TDC) children has not been elucidated in relation with inflammation and nitrative stress. Therefore, this study was undertaken to evaluate Nrf2 expression/activity along with parameters of inflammation (NFkB, IL-6, IL-1β) and nitrative stress (iNOS, nitrotyrosine) in monocytes of ASD/TDC children. Further, sulforaphane (SFN) was utilized as an Nrf2 activator to assess its effect on above said inflammatory and nitrative stress parameters. Our study shows that monocytes of ASD subjects have decreased Nrf2 expression/activity along with increased inflammation and nitrative stress. Further, monocytes from ASD have deficiency in induction of Nrf2 activity upon stimulation with LPS. However, activation of Nrf2 in vitro by SFN reverses LPS-induced effects on inflammation in monocytes by reduction in NFkB signaling. Further, treatment with SFN also reverses LPS-induced effects on nitrative stress (iNOS, nitrotyrosine) in monocytes of ASD subjects. This study propounds the idea that SFN protects against nitrative stress and inflammation by downregulating oxidative stress and inflammation through blockade of NFkB signaling in autistic children. This may be the reason behind reported ameliorative effects of SFN in ASD subjects.
Collapse
|
49
|
Lopes PC, Carlitz EHD, Kindel M, König B. Immune-Endocrine Links to Gregariousness in Wild House Mice. Front Behav Neurosci 2020; 14:10. [PMID: 32116590 PMCID: PMC7013108 DOI: 10.3389/fnbeh.2020.00010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Social interactions are critically important for survival and impact overall-health, but also impose costs on animals, such as exposure to contagious agents. The immune system can play a critical role in modulating social behavior when animals are sick, as has been demonstrated within the context of “sickness behaviors.” Can immune molecules affect or be affected by social interactions even when animals are not sick, therefore serving a role in mediating pathogen exposure? We tested whether markers of immune function in both the blood and the brain are associated with gregariousness, quantified as number of animals interacted with per day. To do this, we used remote tracking of social interactions of a wild population of house mice (Mus musculus domesticus) to categorize animals in terms of gregariousness. Blood, hair, brain and other tissue samples from animals with extreme gregariousness phenotypes were collected. We then tested whether the levels of three important cytokines (TNF-α, IFN-γ and IL-1β) in the serum, cortex and hypothalamus of these animals could be explained by the gregariousness phenotype and/or sex of the mice. Using the hair as a long-term quantification of steroid hormones, we also tested whether corticosterone, progesterone and testosterone differed by social phenotype. We found main effects of gregariousness and sex on the serum levels of TNF-α, but not on IFN-γ or IL-1β. Brain gene expression levels were not different between phenotypes. All hair steroids tended to be elevated in animals of high gregariousness phenotype, independent of sex. In sum, elements of the immune system may be associated with gregariousness, even outside of major disease events. These results extend our knowledge of the role that immune signals have in contributing to the regulation of social behaviors outside periods of illness.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Esther H D Carlitz
- Department of Psychology, Biological Psychology, Technical University of Dresden, Dresden, Germany
| | - Morgan Kindel
- Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Barbara König
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Alessio N, Brigida AL, Peluso G, Antonucci N, Galderisi U, Siniscalco D. Stem Cell-Derived Exosomes in Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:944. [PMID: 32033002 PMCID: PMC7037429 DOI: 10.3390/ijerph17030944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 02/06/2023]
Abstract
Neurodevelopmental lifelong pathologies defined by problems with social interaction, communication capacity and presence of repetitive/stereotyped clusters of behavior and interests are grouped under the definition of autism spectrum disorder (ASD). ASD prevalence is still increasing, indicating the need to identify specific biomarkers and novel pharmacotherapies. Neuroinflammation and neuro-immune cross-talk dysregulation are specific hallmarks of ASD, offering the possibility of treating these disorders by stem cell therapy. Indeed, cellular strategies have been postulated, proposed and applied to ASD. However, less is known about the molecular action mechanisms of stem cells. As a possibility, the positive and restorative effects mediated by stem cells could be due to their paracrine activity, by which stem cells produce and release several ameliorative and anti-inflammatory molecules. Among the secreted complex tools, exosomes are sub-organelles, enriched by RNA and proteins, that provide cell-to-cell communication. Exosomes could be the mediators of many stem cell-associated therapeutic activities. This review article describes the potential role of exosomes in alleviating ASD symptoms.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology. University of Campania “Luigi Vanvitelli”, via S. Maria di Costantinopoli 16, 80138 Naples, Italy; (N.A.); (U.G.)
| | | | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy, (CNR), via P. Castellino 111, 80131 Naples, Italy;
| | - Nicola Antonucci
- Biomedical Centre for Autism Research and Therapy, 70126 Bari, Italy;
| | - Umberto Galderisi
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology. University of Campania “Luigi Vanvitelli”, via S. Maria di Costantinopoli 16, 80138 Naples, Italy; (N.A.); (U.G.)
| | - Dario Siniscalco
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology. University of Campania “Luigi Vanvitelli”, via S. Maria di Costantinopoli 16, 80138 Naples, Italy; (N.A.); (U.G.)
- Centre for Autism—La Forza del Silenzio, 81036 Caserta, Italy
| |
Collapse
|