1
|
Sobhani E, Arabkhazaeli F, Madani SA. Intraspecific Variations in Biology and Pathogenesis of Two Eimeria maxima Isolates From Distinct Geographic Locations. Vet Med Sci 2025; 11:e70235. [PMID: 40207378 PMCID: PMC11982699 DOI: 10.1002/vms3.70235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/17/2024] [Accepted: 01/17/2025] [Indexed: 04/11/2025] Open
Abstract
Eimeria maxima is one of the seven Eimeria species that infect poultry. Despite being highly immunogenic, this species also displays variability in terms of antigenic characteristics. The objective of this study was to examine the biopathological properties of two distinct Eimeria maxima isolates in Iran. Two mixed field samples, collected from backyard poultry droppings with the highest numbers of Eimeria maxima oocysts, were selected for experimental challenges. The birds were inoculated with an equal number of oocysts, and the biopathological indicators of Eimeria oocysts were evaluated. The findings revealed that the two strains exhibited differences in terms of pathological lesions and intestinal inflammatory reactions on the seventh day post-challenge (p > 0.05). Consequently, it was demonstrated that Eimeria maxima isolates from geographically distant regions possessed biological and pathogenic dissimilarities.
Collapse
Affiliation(s)
- Elham Sobhani
- Department of ParasitologyFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Fatemeh Arabkhazaeli
- Department of ParasitologyFaculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Seyed Ahmad Madani
- Department of Animal and Poultry Health and NutritionFaculty of Veterinary MedicineUniversity of TehranTehranIran
| |
Collapse
|
2
|
Niraula A, Wolc A, Fulton JE, Taylor RL, Dalloul RA. The chicken major histocompatibility complex (MHC-B) and alloantigen systems A, D, E, and I impact resistance to coccidiosis. Poult Sci 2025; 104:105151. [PMID: 40273686 PMCID: PMC12051590 DOI: 10.1016/j.psj.2025.105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Coccidiosis, a major poultry protozoal disease caused by several Eimeria species, compromises gut health causing significant losses. This study assessed the association of haplotypes of the major histocompatibility complex (MHC) and other blood alloantigens found in commercial egg production chickens with resistance to coccidiosis. Pedigreed White Leghorn offspring segregating for the MHC-B region, plus four additional alloantigen systems A (C4BPM), D (CD99), E (FCAMR), and I (RHCE) were tested for differential resistance to coccidiosis in five 26-day (d) trials (n= 235 birds in total). On d 19, all birds were inoculated with a cocktail of E. acervulina, E. maxima, and E. tenella oocysts and allocated to individual cages. Phenotypes evaluated included body weight gain (BWG), feed intake (FI), feed conversion ratio (FCR), gross and microscopic lesion scores (GLS and MLS), and oocyst shedding (oocysts per gram, OPG). Haplotypes of the five blood systems were determined by SNP genotyping. A positive and negative association means an increase and decrease in a phenotypic trait, respectively, with each additional copy (0, 1 or 2) of a given haplotype. Results were considered statistically significant at P ≤ 0.05. The CD99-H01 haplotype association was positive with BWG but negative with FCR. Genotype B21B21 had the highest GLS in the jejunum establishing a positive association between MHC B21 and jejunal GLS. Further, the B12B15 genotype had a lower E. maxima OPG compared with the B12B21 genotype. The I system I-H01 haplotype had a negative association with jejunal and cecal GLS. Duodenal GLS was lower in E-H02/H02 compared to the E-H07/H07 genotype of the E system. Haplotypes B21, blood systems D-H01, E-H02, and I-H01 were associated with improved resistance to coccidiosis. The association of specific haplotypes of the MHC-B and other alloantigen systems D, E, and I with resistance and susceptibility traits during mixed Eimeria infection underscores the need for further investigations of these haplotypes' effects on coccidiosis resistance in commercial lines, validating the inclusion of different blood systems in selection programs.
Collapse
Affiliation(s)
- Abhisek Niraula
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Anna Wolc
- Hy-Line International, Dallas Center, IA 50063, USA; Department of Animal Sciences, Iowa State University, Ames, IA 50010, USA
| | | | - Robert L Taylor
- School of Agriculture and Food Systems, West Virginia University, Morgantown, WV 26506, USA
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
3
|
Valente MJ, Streett H, Turner R, O'Brien C, Fournet V, Jansen A, Dubey JP, Rosenthal BM, Jenkins M, Khan A. Morphological and autofluorescence assessment of oocysts differentiate live from dead coccidian parasites. Int J Parasitol 2025:S0020-7519(25)00065-7. [PMID: 40209889 DOI: 10.1016/j.ijpara.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/02/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
To assess and mitigate foodborne risk, regulatory agencies and produce growers require the means not merely to detect but moreover determine the viability of foodborne eukaryotic pathogens such as Cyclospora cayetanensis. Viability assessment would also aid those employing live attenuated vaccines against coccidiosis, a major problem in poultry production. Therefore, we sought to identify morphological changes differentiating viable from non-viable coccidian oocysts, employing Eimeria acervulina as a tractable model, enabling empirical validation by means of in vivo challenge infections in the natural chicken host. High resolution microscopic examinations identified granular structures that autofluoresce under UV exposure in dead oocysts, greatly intensifying overall autofluorescence in dead oocysts. We harnessed this intensification as a basis to sort live from dead oocysts using a Fluorescence-Activated Cell Sorting (FACS) cell sorter, validating their distinction by documenting infectivity in chickens using the former, and minimal shedding with the latter. Our rapid, sensitive, and robust assay holds promise for application to other species of coccidia, including those important to livestock and public health.
Collapse
Affiliation(s)
- Matthew J Valente
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hannah Streett
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Randi Turner
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Celia O'Brien
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Valsin Fournet
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Andrew Jansen
- Systematic Entomology Laboratory, Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Jitender P Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Benjamin M Rosenthal
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Mark Jenkins
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Asis Khan
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
4
|
Yang J, Wang X, Chen Y, He Y, Li P, Wen X, Wang B. ChangQing compound relieves Eimeria tenella infection symptoms by modulating intestinal probiotic and pathogenic bacteria balance. Vet J 2025; 311:106343. [PMID: 40187631 DOI: 10.1016/j.tvjl.2025.106343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Cecal coccidiosis is a severe and lethal parasitic disease affecting chickens, making the search for effective preventive agents free of contamination and drug resistance crucial for controlling this condition in poultry. Previous studies have demonstrated that the ChangQing compound has significant therapeutic effects against cecal coccidiosis; however, its potential as a preventive measure has yet to be evaluated. In this study, we established an experimental model for the prevention of cecal coccidiosis in chickens using the ChangQing compound for the first time. A comprehensive evaluation was performed on survival rates, relative weight gain, oocyst production, the anticoccidial index (ACI), immune parameters, parasitic tissue pathology, and microbial diversity in cecal contents. Results indicated that the ChangQing compound at a concentration of 5.0 g/L achieved an ACI of 178.10 in the Pre-Exposure Prophylaxis (PrEP) group and 173.12 in the Post-Exposure Prophylaxis (PEP) group. Compared to the positive control group, cecal lesions were reduced, and indices for the spleen, liver, and bursa of Fabricius increased in both experimental groups following ChangQing administration. Furthermore, levels of immune factors, IgA, IgG, and IgM significantly elevated. The abundance of beneficial bacteria, including Lactobacillus, Bacteroides, and Alistipes, increased in the 5.0 g/L ChangQing compound group, while potential pathogens like Escherichia-Shigella, Enterococcus, and norank_f_Oscillospiraceae were reduced. These findings offer critical data for coccidiosis prevention in chickens and lay a theoretical foundation for future research on the antiparasitic mechanisms of traditional Chinese medicine.
Collapse
Affiliation(s)
- Jiajia Yang
- College of Animal Science, Guizhou University, Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, Guizhou Province 550025, PR China.
| | - Xuan Wang
- Institute of Animal Husbandry and Veterinary Medicine of Guizhou Academy of Agricultural Sciences, Guizhou Province 550025, PR China.
| | - Ying Chen
- College of Animal Science, Guizhou University, Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, Guizhou Province 550025, PR China.
| | - Ye He
- College of Animal Science, Guizhou University, Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, Guizhou Province 550025, PR China.
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou Province 550025, PR China.
| | - Xin Wen
- College of Animal Science, Guizhou University, Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou Province 550025, PR China.
| | - Bi Wang
- College of Animal Science, Guizhou University, Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province (Cultivation), Guiyang, Guizhou Province 550025, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou Province 550025, PR China.
| |
Collapse
|
5
|
Li Y, Suo J, Liang R, Liang L, Liu X, Ding J, Suo X, Tang X. Genetic manipulation for the non-model protozoan Eimeria: Advancements, challenges, and future perspective. iScience 2025; 28:112060. [PMID: 40109377 PMCID: PMC11919594 DOI: 10.1016/j.isci.2025.112060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Eimeria parasites pose a significant global threat to animal health, necessitating improved and cost-effective control measures. Genetic manipulation is pivotal for understanding Eimeria biology and designing targeted control strategies. Recent advancements, including genome sequencing and the development of transient and stable transfection systems, have significantly enhanced insights into the molecular biology of Eimeria. These advancements have paved the way for cutting-edge techniques like CRISPR-Cas9 gene editing. This review summarizes the key milestones in the development of genetic manipulation platforms for Eimeria and their transformative applications, such as the development of next-generation drugs, vaccines, and Eimeria-based vaccine vectors. Furthermore, this review provides insights that could be applicable to the establishment of genetic tools for other protozoan organisms.
Collapse
Affiliation(s)
- Yaru Li
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruiying Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
El-Saadony MT, Salem HM, Attia MM, Yehia N, Abdelkader AH, Mawgod SA, Kamel NM, Alkafaas SS, Alsulami MN, Ahmed AE, Mohammed DM, Saad AM, Mosa WF, Elnesr SS, Farag MR, Alagawany M. Alternatives to antibiotics against coccidiosis for poultry production: the relationship between immunity and coccidiosis management – a comprehensive review. ANNALS OF ANIMAL SCIENCE 2025. [DOI: 10.2478/aoas-2025-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Abstract
Avian coccidiosis is a protozoan infection caused by numerous Eimeria parasitic species and mainly affects the bird’s gastrointestinal tract and results in a reduction of the bird ‘ability to absorb nutrients, slower growth, with a higher mortality rate. According to recent research, immune-based treatments, such as dietary immunomodulating feed additives and recombinant vaccines, can help the hosts protect themselves from intracellular parasites and reduce inflammatory reactions caused by parasites. Coccidiosis control in the post-antiparasitic stage requires thoroughly investigation of the intricate relationships between the parasites, host defense system, enteroendocrine system, and gut microbiome contributing to coccidian infections. To produce a vaccine, it is crucial to explore the defense mechanism of the intestine’s immune machinery and to identify many effector molecules that act against intracellular parasites. Due to the massive usage of chemical anticoccidial drugs, coccidiosis developed resistant against most commonly used anticoccidials; therefore, numerous researches focused on the usage of safe natural anticoccidials such as probiotics, prebiotics, organic acids, and essential oils to counteract such resistance problem. This review describes how host immunity responds to coccidial infection in chickens and the use of some nonantiparasitic safe natural alternative controls to counter the disease. It would throw the light on the possibility of developing effective therapies against Eimeria to alleviate the detrimental effects of avian coccidiosis.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
- Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine , Badr University in Cairo (BUC) , Badr City, Cairo, 11829 , Egypt
| | - Marwa M. Attia
- Department of Parasitology, Faculty of Veterinary Medicine , Cairo University , Giza , , Egypt
| | - Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production , Animal Health Research Institute, Agriculture Research Center , Dokki, Giza, 12618 , Egypt
| | - Ahmed H. Abdelkader
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Sara Abdel Mawgod
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Nesma Mohamed Kamel
- Department of Microbiology faculty of Veterinary Medicine Cairo University , Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry , Department of Chemistry, Faculty of Science, Tanta University , , Egypt
| | - Muslimah N. Alsulami
- Department of Biology, College of Science , University of Jeddah , Jeddah , , Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science , King Khalid University , Abha , , Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department , National Research Centre , Dokki, Giza, 12622 , Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture , Zagazig University , Zagazig , , Egypt
| | - Walid F.A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture , Saba Basha, Alexandria University , Alexandria , , Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture , Fayoum University , Fayoum , Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty , Zagazig University , Zagazig , , Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| |
Collapse
|
7
|
Boyner M, Ivarsson E, Hansen A, Lundén A, Ibrahim O, Söderlund R, Cervin G, Pavia H, Wattrang E. Effects of a laminarin-rich algal extract on caecal microbiota composition, leukocyte counts, parasite specific immune responses and growth rate during Eimeria tenella infection of broiler chickens. Vet Parasitol 2025; 334:110377. [PMID: 39709943 DOI: 10.1016/j.vetpar.2024.110377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Coccidiosis, infection with protozoan parasites of genus Eimeria, is a major problem in poultry husbandry world-wide. The disease is currently managed by coccidiostats and live vaccines, but these approaches are not sustainable. Hence, it is important to identify new means to control the infection and/or ameliorate its detrimental effects on gut health. Laminarin, a β-glucan found in marine brown algae, has prebiotic and bioactive properties that could be beneficial in coccidiosis control. The present study aimed to examine the potential of laminarin as an immunostimulatory and microbiota-regulatory compound in broiler chickens infected with E. tenella. Chickens were continuously fed a diet supplemented with a laminarin-rich algal extract (AE) from first feed and subsequently infected with E. tenella at 19 days old. The outcome of infection including caecal microbiota and some immune parameters were monitored during the experiment. Results showed that AE supplementation affected some lymphocyte subpopulations, with increased numbers of TCRγ/δ+CD8-, B-cells and CD4-CD8αβ+ cells and lower numbers of CD4+CD8αα+ cells in blood and increased proportions of CD4-CD8αβ+ spleen cells compared to those in control chickens. The AE diet did not affect parasite excretion, lesion scores or E. tenella specific T-cell responses. However, reductions of E. tenella induced contraction of Bifidobacteriaceae and expansion of Clostridiaceae in caecal microbiota were observed for AE fed chickens compared to chickens fed the control diet. Thus, AE feed supplementation induced some immunostimulatory activity in chickens and affected some of the alterations in caecal microbiota evoked by E. tenella infection.
Collapse
Affiliation(s)
- Malin Boyner
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, P.O. 7024, Uppsala SE 750 07, Sweden
| | - Emma Ivarsson
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, P.O. 7024, Uppsala SE 750 07, Sweden.
| | - Alma Hansen
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, P.O. 7024, Uppsala SE 750 07, Sweden
| | - Anna Lundén
- Department of Microbiology, Swedish Veterinary Agency, Uppsala SE 751 89, Sweden
| | - Osama Ibrahim
- Department of Microbiology, Swedish Veterinary Agency, Uppsala SE 751 89, Sweden
| | - Robert Söderlund
- Department of Microbiology, Swedish Veterinary Agency, Uppsala SE 751 89, Sweden; Department of Clinical Sciences, Veterinary Epidemiology Unit, Swedish University of Agricultural Sciences, P.O. 7054, Uppsala SE 750 07, Sweden
| | - Gunnar Cervin
- Department of Marine Sciences, Tjärnö, University of Gothenburg, Strömstad SE 452 96, Sweden
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö, University of Gothenburg, Strömstad SE 452 96, Sweden
| | - Eva Wattrang
- Department of Microbiology, Swedish Veterinary Agency, Uppsala SE 751 89, Sweden
| |
Collapse
|
8
|
Turner BJ, Jespersen JC, Suarez JC, Coufal CD. Effects of sodium bisulfate or sodium sesquicarbonate as a sodium source in broiler chicken diets with or without a coccidiosis challenge. Poult Sci 2025; 104:104680. [PMID: 39709823 PMCID: PMC11731570 DOI: 10.1016/j.psj.2024.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Abstract
Broilers commonly experience stressors such as coccidiosis, a parasitic infection that results in intestinal damage, malabsorption, and performance losses. The poultry industry is exploring alternatives to anticoccidials for controlling coccidiosis, especially through the enhancement of gut health. Sodium bisulfate (NaHSO4; SBS), an acid salt, has been used for many years as a litter acidifier to reduce aerial ammonia in poultry housing. More recently, SBS has shown promise as a feed additive that improves growth performance through enhancing gut health in poultry. Two trials of 1,920 broiler chicks each were raised to 42 d in floor pens. Chicks were randomly divided into 1 of 4 treatments (480 chicks/treatment) on d 0 that utilized SBS (0.3 or 0.4% of diet) or control diets using sodium sesquicarbonate (0.2 or 0.3% of diet) as a sodium source. In Trial 2, birds were challenged with a 2 × dose of coccidiosis vaccine on d 0. Growth performance was measured on d 0, 14, 28, and 42. Each trial was analyzed independently to yield results for non-challenged or coccidiosis-challenged conditions. All data were analyzed with means separation using a Duncan's test. SBS and control treatments with equivalent sodium contributions were also directly compared. Significance was accepted at P ≤ 0.05. On d 28, broilers fed 0.4% SBS weighed more (P < 0.05) than broilers from either control, regardless of challenge status. This effect was sustained in the challenged broilers at d 42 but was not different (P > 0.05) in non-challenged broilers. No differences (P > 0.05) in feed intake or mortality were observed in either trial. Birds fed 0.4% SBS had lower feed conversion than both control treatments for d 0-42, regardless of challenge status. Collectively, these results indicate that SBS promoted growth performance with and without a coccidiosis challenge more than that of sodium sesquicarbonate as a supplemental sodium source. Because experimental treatments were balanced for mineral content, it is possible the sulfate content of SBS influenced these results.
Collapse
Affiliation(s)
- B J Turner
- Poultry Research Partners, LLC., Hoschton, GA
| | - J C Jespersen
- Animal Nutritional Health Division, Jones-Hamilton Co., Walbridge, OH..
| | - J C Suarez
- Animal Nutritional Health Division, Jones-Hamilton Co., Walbridge, OH
| | - C D Coufal
- Animal Nutritional Health Division, Jones-Hamilton Co., Walbridge, OH
| |
Collapse
|
9
|
Juarez-Estrada MA, Tellez-Isaias G, Petrone-Garcia VM, Gayosso-Vazquez A, Hernandez-Velasco X, Alonso-Morales RA. Influence of High Eimeria tenella Immunization Dosages on Total Oocyst Output and Specific Antibodies Recognition Response in Hybrid Pullets ( Gallus gallus)-A Pilot Study. Antibodies (Basel) 2025; 14:9. [PMID: 39982224 PMCID: PMC11843834 DOI: 10.3390/antib14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/10/2024] [Accepted: 11/18/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Two high primary-immunization doses of a wild-type E. tenella strain were assessed in healthy pullets (5K versus 10K sporulated oocysts/bird) to understand the effects of coccidia infection. METHODS Acquired immunity was evaluated following primary immunization and two booster doses with the homologous strain. Total oocyst shedding, clinical signs, and viability of every bird/group after each immunization/booster were recorded. Indirect ELISA measured the time course of humoral responses from each immunization group against sporozoite and second-generation merozoite of E. tenella. Antigen pattern recognition on these two asexual zoite stages of E. tenella was analyzed using Western blotting with antibodies from each immunization program. Afterwards, antigen recognition of specific life-cycle stages was performed using individual pullet serums from the best immunization program. RESULTS A primary-immunization dose of 1 × 104 oocysts/bird reduced the oocyst output; however, all pullets exhibited severe clinical signs and low specific antibodies titers, with decreased polypeptide recognition on both E. tenella asexual zoite stages. In contrast, immunization with 5 × 103 oocysts/bird yielded the best outcomes regarding increased oocyst collection and early development of sterilizing immunity. After the first booster dosage, this group's antisera revealed a strong pattern of specific antigen recognition on the two assayed E. tenella life-cycle stages. CONCLUSIONS The E. tenella-specific antibodies from the 5 × 103 oocysts/bird immunization program can aid in passive immunization trials and further research to identify B-cell immunoprotective antigens, which could help in the development of a genetically modified anticoccidial vaccine.
Collapse
Affiliation(s)
- Marco A. Juarez-Estrada
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cd. Universitaria, Ciudad de Mexico 04510, Mexico;
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cd. Universitaria, Ciudad de Mexico 04510, Mexico;
| | | | - Víctor M. Petrone-Garcia
- Centro de Educación Agropecuaria (CEA), Facultad de Estudios Superiores Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico;
| | - Amanda Gayosso-Vazquez
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cd. Universitaria, Ciudad de Mexico 04510, Mexico;
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cd. Universitaria, Ciudad de Mexico 04510, Mexico;
| | - Rogelio A. Alonso-Morales
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Cd. Universitaria, Ciudad de Mexico 04510, Mexico;
| |
Collapse
|
10
|
CHEN N, CAI Q, WANG S, SONG Q, XIE Y, SHI H, LI H, ZHAO X, ZHAO N, ZHANG X. Evaluation of the efficicacy of myrcene in the treatment of Eimeria tenella and Toxoplasma gondii infection. J Vet Med Sci 2025; 87:32-42. [PMID: 39567006 PMCID: PMC11735216 DOI: 10.1292/jvms.24-0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Protozoan parasites such as Eimeria tenella and Toxoplasma gondii pose significant health challenges in livestock and humans. The limited treatment options and rising drug resistance underscore the urgent need for new therapies. This study investigates myrcene, a monoterpene hydrocarbon classified for its antiprotozoal potential against E. tenella and T. gondii infections. Initially, we examined its effect on the sporulation process of E. tenella oocysts in vitro and its anti-E. tenella activity in vivo. Myrcene significantly reduced the sporulation rate of E. tenella oocysts at 3 and 4 mg/kg. In vivo experiments demonstrated that treatment with 4 mg/kg myrcene significantly reduced E. tenella load and oocyst output, as well as cecal lesion and weight loss caused by E. tenella infection, showing moderate anti-E. tenella activity, with an Anticoccidial Index (ACI) of 161.4. Furthermore, we investigated the anti-T. gondii activity of myrcene both in vitro and in vivo. In vitro studies showed that treatment with myrcene effectively inhibited the invasion rate and intracellular proliferation ability of T. gondii tachyzoite in DF-1 cells in a dose-dependent manner. In vivo administration prolonged the survival time in T. gondii-infected mice, suggesting notable protective effects. Additionally, it mitigated T. gondii-induced hepatosplenic toxicity by reducing parasite load in the liver and spleen, and ameliorating liver function as evidenced by decreased serum transaminase levels. In conclusion, the findings demonstrate promising anti-E. tenella and anti-T. gondii activity exhibited by myrcene warranting further exploration into its mechanisms and potential therapeutic applications.
Collapse
Affiliation(s)
- Nianyuan CHEN
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Qingxiu CAI
- The National Animal Health Products for Engineering Technology Research Center, Qingdao, China
| | - Shujing WANG
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Qingyang SONG
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Ying XIE
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Huijuan SHI
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Hongmei LI
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an, China
| | - Xiaomin ZHAO
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an, China
| | - Ningning ZHAO
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an, China
| | - Xiao ZHANG
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
11
|
Mathis GF, Lumpkins B, Cervantes HM, Fitz-Coy SH, Jenkins MC, Jones MK, Price KR, Dalloul RA. Coccidiosis in poultry: Disease mechanisms, control strategies, and future directions. Poult Sci 2024; 104:104663. [PMID: 40203723 PMCID: PMC12008577 DOI: 10.1016/j.psj.2024.104663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 04/11/2025] Open
Abstract
According to a 2023 survey by the American Veterinarians in Broiler Production, Coccidiosis is the number one disease in the broiler poultry industry. Coccidiosis results in the reduction of growth rate, decrease in feed efficiency, and poor body weight uniformity. The more we understand this disease the more we can move forward towards control. The purpose of this symposium was to increase our understanding of coccidiosis. The topics discussed were the diagnosis, immune response, control/prevention, medications (natural and chemical), and interactions with other diseases. The Coccidiosis Symposium provided up to date information from both research and field experiences. This information will be useful for production managers, nutritionists, and veterinarians, as well as providing opportunities for future research.
Collapse
Affiliation(s)
| | | | | | | | - Mark C Jenkins
- Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - Matthew K Jones
- Southern Poultry Research Group, Inc., Watkinsville, GA, USA
| | | | - Rami A Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Wang Z, Shang P, Song X, Wu M, Zhang T, Zhao Q, Zhu S, Qiao Y, Zhao F, Zhang R, Wang J, Yu Y, Han H, Dong H. Alterations in Ileal Microbiota and Fecal Metabolite Profiles of Chickens with Immunity to Eimeria mitis. Animals (Basel) 2024; 14:3515. [PMID: 39682480 DOI: 10.3390/ani14233515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Coccidiosis, caused by different species of Eimeria parasites, is an economically important disease in poultry and livestock worldwide. This study aimed to investigate the changes in the ileal microbiota and fecal metabolites in chickens after repeated infections with low-dose E. mitis. The chickens developed solid immunity against a high dose of E. mitis infection after repeated infections with low-dose E. mitis. The composition of the ileal microbiota and the metabonomics of the Eimeria-immunized group and the control group were detected using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS). The relative abundance of Neisseria, Erysipelotrichaceae, Incertae sedis, Coprobacter, Capnocytophaga, Bifidobacterium, and the Ruminococcus torques group declined in the Eimeria-immunized chickens, whereas Alloprevotella, Staphylococcus, Haemophilus, and Streptococcus increased. Furthermore, 286 differential metabolites (including N-undecylbenzenesulfonic acid, 1,25-dihydroxyvitamin D3, gluconic acid, isoleucylproline, proline, and 1-kestose) and 19 significantly altered metabolic pathways (including galactose metabolism, ABC transporters, starch and sucrose metabolism, the ErbB signaling pathway, and the MAPK signaling pathway) were identified between the Eimeria-immunized group and the control group. These discoveries will help us learn more about the composition and dynamics of the gut microbiota as well as the metabolic changes in chickens infected with Eimeria spp.
Collapse
Affiliation(s)
- Zhongchuang Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Peiyao Shang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Minghui Wu
- Beijing Yuanda Spark Medical Technology Co., Ltd., Beijing 102615, China
| | - Tong Zhang
- Beijing Yuanda Spark Medical Technology Co., Ltd., Beijing 102615, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Yu Qiao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Fanghe Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Ruiting Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinwen Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Minhang, Shanghai 200241, China
| |
Collapse
|
13
|
Zhao D, Suo J, Liang L, Liang R, Zhou R, Ding J, Liu X, Suo X, Zhang S, Tang X. Innovative prevention and control of coccidiosis: targeting sporogony for new control agent development. Poult Sci 2024; 103:104246. [PMID: 39260244 PMCID: PMC11416347 DOI: 10.1016/j.psj.2024.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/13/2024] Open
Abstract
Coccidiosis is one of the most significant diseases affecting the poultry industry, with recent estimates indicating that it causes annual losses exceeding £10 billion globally. Increasing concerns over drug residues and resistance have elevated the importance of safe and effective vaccines as the primary method for controlling coccidiosis and other animal diseases. However, current commercial live vaccines for coccidiosis can negatively impact the feed conversion rates of young broilers and induce subclinical symptoms of coccidiosis, limiting their widespread adoption. Eimeria species, the causative agents of coccidiosis, exhibit unique biological characteristics. Their life cycle involves 2 or more generations of schizogony and 1 generation of gametogony within the host, followed by sporogony in a suitable external environment. Sporogony is crucial for Eimeria oocysts to become infectious and propagate within the host. Focusing on the sporogony process of Eimeria presents a promising approach to overcoming technical challenges in the efficient control of coccidiosis, addressing the urgent need for sustainable and healthy farming practices. This paper systematically reviews existing control strategies for coccidiosis, identifies current challenges, and emphasizes the research progress and future directions in developing control agents targeting sporogony. The goal is to provide guidance for the formulation of scientific prevention and control measures for coccidiosis.
Collapse
Affiliation(s)
- Dan Zhao
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lin Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiying Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Rongqiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Sixin Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
14
|
Shi H, Paneru D, Sharma MK, Lee J, Naeini HRR, Mahdavi FS, Kim WK. Phytase, 25-hydroxyvitamin D 3 and cocci vaccination to broilers fed a calcium and phosphorus-reduced diet under Eimeria spp. challenge: effects on growth performance and intestinal health. Poult Sci 2024; 103:104326. [PMID: 39342689 PMCID: PMC11470746 DOI: 10.1016/j.psj.2024.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
A study evaluated the effects of phytase, 25-hydroxyvitamin D3 (25OHD), and cocci vaccination on broilers fed a diet reduced in calcium (Ca) and available phosphorus (avP) under Eimeria challenge. A total of 840 one-day-old male broilers were assigned to a 2 × 5 factorial arrangement based on cocci vaccination and dietary treatments. Half of the birds were vaccinated against coccidia on d 1, and all birds were orally challenged with Eimeria spp. (sporulated oocysts: 12,500 of E. maxima, 12,500 of E. tenella, and 62,500 of E. acervulina) on d 14. Dietary treatments included: 1) a nutrient adequate diet (PC); 2) a diet reduced by 0.2% in Ca and avP (NC); 3) NC plus 1,500 FTU/kg of phytase (NC+PHY); 4) NC plus 3,000 IU/kg of 25OHD (NC+25OHD); 5) NC with both PHY and 25OHD (NC+PHY+25OHD). SAS was used for data analysis, with significance set at P ≤ 0.05. Pre-infection growth performance was comparable across the treatments. However, vaccinated birds exhibited higher body weight (BW) and body weight gain (BWG) from 0 to 6 d postinoculation (DPI; P < 0.05). The NC diet reduced BWG from 6 to 12 DPI and increased the feed conversion ratio (FCR) during 6 to 12 DPI and the overall period (0-26 d) compared to the PC birds. In contrast, the supplementation with phytase, 25OHD, or both, returned BWG and FCR to levels seen with the PC diet (P < 0.01). Vaccinated birds also had reduced gut permeability at 5 DPI, increased intestinal villus height, and lower expression levels of the tight junction proteins junctional adhesion molecule 2 (JAM2) and occludin (OCLN) at 6 DPI (P < 0.05). Interestingly, the cocci vaccine resulted in lower E. acervulina but higher E. tenella oocyst shedding at 6 DPI (P < 0.01). Interaction effects were observed for duodenal lesion scores and ileal crypt depth at 6 DPI (P < 0.05). In conclusion, coccidial vaccination improved growth performance, decreased intestinal permeability, enhanced intestinal morphology, and modulated tight junction protein gene expression under Eimeria infection. Reducing dietary Ca and avP levels adversely affected growth performance and FI during the recovery phase, but these negative effects could be mitigated by supplementing with phytase or 25OHD.
Collapse
Affiliation(s)
- Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Milan Kumar Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Jihwan Lee
- National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | | | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
15
|
El-Shall NA, El-Naggar K, El-Kasrawy NI, Elblehi SS, Albadrani GM, Al-Ghadi MQ, Abdel-Daim MM. The anticoccidial effects of probiotics and prebiotics on the live coccidia vaccine and the subsequent influence on poultry performance post-challenge with mixed Eimeria species. Poult Sci 2024; 103:104283. [PMID: 39305616 PMCID: PMC11437767 DOI: 10.1016/j.psj.2024.104283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Live vaccines containing Eimeria oocysts are commercially available to protect against avian coccidiosis. Additionally, probiotics (PRO) and prebiotics (PRE) improve the poultry productivity and health and can be used as anticoccidial substitutes. However, the impact of PRO and PRE on reproductive potential, lesion score, intestinal health, and immunization outcomes of the live coccidia vaccines has not received adequate attention. Five groups of unsexed 1-day-old broiler chicks were used as follows: negative control (NC); challenged control (CC); vaccinated and challenged (VC); vaccinated, PRO-treated, and challenged (V-PRO); and vaccinated, PRE-treated, and challenged (V-PRE). At 21 d post-vaccination (pv), the vaccine increased the count of cecal anaerobes (P ≤ 0.05) and coliforms (P > 0.05) as well as harmed body weight gain (WG) (P ≤ 0.05), cecal lactic acid bacteria (P ≤ 0.05), and plasma carotenoid level (P > 0.05). None of the additives decreased oocyst shedding after vaccination, although they lowered the middle intestine and cecal lesion scores (P > 0.05). Compared to VC (2.68 ± 0.12) and V-PRE (2.66 ± 0.05), the V-PRO group showed an improved carotenoid level pv (2.96 ± 0.05) (P ≤ 0.05). V-PRE exhibited higher WG (822.95 ± 18.25) (P > 0.05) and FI (1153.01 ± 10.02) (P ≤ 0.05) than VC (781.86 ± 25.16 and 1109.85 ± 33.68) and V-PRO pv (787.61 ± 19.92 and 1077.43 ± 15.99). Following the homologous coccidia challenge, coccidia-vaccinated broilers adminstered the PRO or PRE continued to exhibit protection levels comparable to those received the vaccine alone. During 2 weeks post-challenge, VC, V-PRO and V-PRE improved bird performance and reduced oocyst shedding and lesion scores compared to CC. Ultimately, PRO and PRE treatments did not significantly reverse the reduction in growth performance in broiler chickens vaccinated against coccidia during the 1st three weeks of age.
Collapse
Affiliation(s)
- Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt.
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Nagwa I El-Kasrawy
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Damanhur University, Damanhour 22511, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21944, Egypt
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 84428, Riyadh 11671, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
16
|
Kiang ALW, Loo SS, Mat-Isa MN, Ng CL, Blake DP, Wan KL. Insights into genomic sequence diversity of the SAG surface antigen superfamily in geographically diverse Eimeria tenella isolates. Sci Rep 2024; 14:26251. [PMID: 39482455 PMCID: PMC11528073 DOI: 10.1038/s41598-024-77580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Eimeria tenella is among the protozoan parasites that cause the infectious disease coccidiosis in chickens, incurring huge economic losses to the global poultry industry. Surface antigens (EtSAGs) involved in host-parasite interaction are potential targets for control strategies. However, the occurrence of genetic diversity for EtSAGs in field populations is unknown, as is the risk of such diversity to the efficacy of EtSAG-based control approaches. Here, the extent of EtSAG genetic diversity and its implications on protein structure and function is assessed. Eighty-seven full-length EtSAG genomic sequences were identified from E. tenella genome assemblies of isolates sampled from continents including North America (United States), Europe (United Kingdom), Asia (Malaysia and Japan) and Africa (Nigeria). Limited diversity was observed in the EtSAG sequences. However, distinctive patterns of polymorphism were identified between EtSAG subfamilies, suggesting functional differences among these antigen families. Polymorphisms were sparsely distributed across isolates, with a small number of variants exclusive to specific geographical regions. These findings enhance our understanding of EtSAGs, particularly in elucidating functional differences among the antigens that could inform the development of more effective and long-lasting anticoccidial control strategies.
Collapse
Affiliation(s)
- Alice Li-Wen Kiang
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia
| | - Shu-San Loo
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor DE, Malaysia
| | - Mohd-Noor Mat-Isa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor DE, Malaysia
| | - Chyan-Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia
| | - Damer P Blake
- Pathobiology and Population Sciences, Royal Veterinary College, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Kiew-Lian Wan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor DE, Malaysia.
| |
Collapse
|
17
|
Weston WC, Hales KH, Hales DB. Utilizing Flaxseed as an Antimicrobial Alternative in Chickens: Integrative Review for Salmonella enterica and Eimeria. Curr Issues Mol Biol 2024; 46:12322-12342. [PMID: 39590326 PMCID: PMC11592616 DOI: 10.3390/cimb46110732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
This review provides an integrative framework for understanding flaxseed (Linum utassitissimum) as an antimicrobial alternative for poultry production. We begin by familiarizing the reader with the global legislation of antibiotics in animal husbandry; highlighting gaps and current issues for Salmonella enterica (S. enterica) and Eimeria (coccidiosis-inducing). We then discuss the natural, symbiotic characteristics of the Galliformes order (chicken-like birds) and Linum (the flaxes). The key immunological themes in this review include: (i) flaxseed's regulation of innate and adaptive immunity in chickens, (ii) flaxseed's ability to accelerate chicken recovery from infection with S. enterica and Eimeria, and (iii) flaxseed's strengthening of immunity via vitamin B6 antagonism. Research indicates that whole flaxseed increases adaptive immune capacity by augmenting cecal Bacteroides and short-chain fatty acids while also attenuating the heterophil to lymphocyte ratio in chickens. Moreover, flaxseed accelerates chicken recovery from infection with Salmonella Enteritidis or Eimeria tenella; however, future work is needed to better understand (i) defatted flaxseed's superior performance against Eimeria species and (ii) Eimeria maxima's resilience against whole flaxseed. In the context of vitamin B6 antagonism, we propose that 15% whole flaxseed overcomes S. enterica's insult to estrogen synthesis by sustaining the activity of phosphatidylethanolamine methyltransferase (PEMT) in liver. We also propose that 10% defatted flaxseed (as a metformin homologue) strengthens chicken immunity by safeguarding gonadal physiology and by increasing plasma thymidine bioavailability. The concepts in this review can be used as a template for conducting advanced immunological studies in poultry science.
Collapse
Affiliation(s)
- William C. Weston
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Karen H. Hales
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dale B. Hales
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| |
Collapse
|
18
|
Urtecho-Novelo R, Santos-Ricalde R, Sarmiento-Franco L, Torres-Acosta JF, Borges-Árgaez R. Effect of ethanol extract from Enterolobium cyclocarpum fruit on Leghorn chickens exposed to Eimeria. Trop Anim Health Prod 2024; 56:369. [PMID: 39476271 DOI: 10.1007/s11250-024-04209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/14/2024] [Indexed: 12/11/2024]
Abstract
There are concerns about residues of drugs in meat that are used to prevent coccidiosis in chickens. Natural compounds are an alternative to drugs. Two studies investigated the effect of an extract of Enterolobium cyclocarpum fruits (EEC) in the feed of male Leghorn chickens exposed to Eimeria spp. In the first experiment, the administration of EEC after infection with Eimeria spp. was investigated over 16 days. One thousand chickens were randomly housed in 20 pens of 1 m2 each. The pens were randomly assigned to each treatment. Five treatments were administered, containing 150, 300 and 450 mg/kg of EEC in the feed, the fourth treatment (C) contained 0.5 g/kg of a commercial anticoccidial, and the fifth treatment provided no treatment (WA). The second experiment lasted 18 days. Administration of the EEC began five days before the chickens were infected with Eimeria spp. Four hundred and eighty chickens were randomly allocated to 24 pens of 1 m2. The pens were randomly assigned to each treatment. In the second experiment, the same five treatments were tested and one additional treatment containing 300 mg EEC plus 1 g of polyethylene glycol (PEG)/kg of feed (E300PEG). In the experiment one chickens in the EEC treatments had lower faecal oocyst excretion (OE) on day 14 post infection with Eimeria spp., than chickens in the WA treatment (P < 0.05). A reduction in live weight gain (LWG) was observed in the EEC treatments (P < 0.05). In the second experiment, the excretion of oocysts in chickens from the EEC and E300PEG treatments on day 13 post-infection with Eimeria spp. was the same as in the C treatment and lower than in the WA treatment (P < 0.05). LWG was lower in the EEC treatments than in the C treatment (P < 0.05). However, the Chickens in the E300PEG and C treatments had similar LWG (P > 0.05) suggesting that PEG inhibits the negative effect of EEC tannins on LWG. In conclusion, the addition of EEC to chicken feed reduced both OE and LWG. Treatment with EEC and PEG (E300PEG) reduced the excretion of oocysts without negative effects on LWG.
Collapse
Affiliation(s)
- Rosalinda Urtecho-Novelo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Ronald Santos-Ricalde
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Luis Sarmiento-Franco
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico.
| | - Juan Felipe Torres-Acosta
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 carretera Mérida-Xmatkuil, Mérida, Yucatán, Mexico
| | - Rocío Borges-Árgaez
- Centro de Investigación Científica de Yucatán A. C. (CICY), Calle 43 n. 130 x 32 y 34 Chuburná de Hidalgo, Mérida, Yucatán, CP. 97205, Mexico
| |
Collapse
|
19
|
Zhang N, Liu J, Zhang Y, Chen L, Zhang S, Liu X, Tang X, Gu X, Chen S, Suo X. Transcriptomic analysis uncovers a biphasic response to precocious Eimeria acervulina infection in chicken duodenal tissue. Vet Parasitol 2024; 331:110245. [PMID: 39018905 DOI: 10.1016/j.vetpar.2024.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
Live anticoccidial vaccines, either formulated with unattenuated or attenuated Eimeria parasites, are powerful stimulators of chicken intestinal immunity. Little is known about the dynamics of gene expression and the corresponding biological processes of chicken responses against infection with precocious line (PL) of Eimeria parasites. In the present study, we performed a time-series transcriptomic analysis of chicken duodenum across 15 time points from 6 to 156 hours post-infection (p.i.) with PL of E. acervulina. A high-quality profile showing two distinct changes in chicken duodenum mRNA expression was generated during the infection of Eimeria. Early response revealed that activation of the chicken immune response was detectable from 6 h.p.i., prominent genes triggered during the initiation of asexual and sexual parasite growth encompass immune regulatory effects, such as interferon gamma (IFN-γ), interferon regulatory factor 1 (IRF1), and interleukin-10 (IL10). The late response was identified significantly associating with maintaining cellular structure and activating lipid metabolic pathways. These analyses provide a detailed depiction of the biological response landscape in chickens infected by the PL of E. acervulina, contributing significant insights for the investigation of the host-parasite interactions and the management of parasitic diseases.
Collapse
Affiliation(s)
- Ning Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193 China
| | - Linlin Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Sixin Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinming Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolong Gu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Lee Y, Lee R, Kim J, Han YH, Hunter C, Park J. Comparative analysis of changes in immune cell in the chicken spleen across different ages using flow cytometry. BMC Vet Res 2024; 20:429. [PMID: 39334332 PMCID: PMC11438354 DOI: 10.1186/s12917-024-04287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Concurrent emerging and reemerging avian infectious diseases cause multiple risk factors in poultry. A body amount studies attempted to understand pathogen-associated immunity in chickens. Recent research has made progress in identifying immune functions in chicken, there are still gaps in knowledge, especially regarding immune responses during infectious diseases. A deeper understanding in chicken immune system is critical for improving disease control strategies and vaccine development. RESULTS This study proposes analytical method for chicken splenocytes, enabling the tracking changes in T cells, monocytes, and B cells across three ages. Optimized lymphocyte-activating conditions were suggested using concanavalin A and chicken interleikin-2, which facilitate immune cell activation and proliferation. Next, splenocytes from embryonic day 18, day 5, and day 30 were compared using surface markers and flow cytometry analysis. We observed an increase in T cell subsets, including activated T cells (CD4+CD44+ and CD8+CD44+), and B cells, along with a reduced monocyte population after hatching. However, morphological changes and genetic expression of functional immune molecules were limited. CONCLUSIONS The present findings on chicken immune system development offer valuable insights into the avian immune system, including analytical methods and the phenotypic and functional changes in immune cells. Updated immune-boosting strategies during the early stages of life are crucial for developing preventive measures against major infectious diseases in the poultry industry.
Collapse
Affiliation(s)
- Yeonjae Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Rangyeon Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Jieun Kim
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
- College of Biomedicine Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Yong-Hyun Han
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
- College of Parmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Christopher Hunter
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jeongho Park
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea.
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea.
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
21
|
Nguyen BT, Yim D, Flores RA, Lee SY, Kim WH, Jung SH, Kim S, Min W. Large-Scale Field Trials of an Eimeria Vaccine Induce Positive Effects on the Production Index of Broilers. Vaccines (Basel) 2024; 12:800. [PMID: 39066438 PMCID: PMC11281675 DOI: 10.3390/vaccines12070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Live coccidiosis vaccines have mainly been used to reduce Eimeria species infection, which is considered the most economically important disease in the poultry industry. Evaluation data on vaccine effectiveness through large-scale field experiments are lacking, especially in broilers. Thus, the effectiveness of a commercial coccidiosis vaccine was evaluated in approximately 900,000 chicks reared on three open-broiler farms where coccidiosis is prevalent. The vaccine's effectiveness after vaccination of 1-day-old chicks was monitored using three parameters (lesion score, fecal oocyst shedding, and production index, PI) in nine trials performed three times on each farm. Lesion scores were confirmed in three different areas of the intestine because the vaccine contained four Eimeria species. The average lesion scores were 0.36 to 0.64 in the duodenal region, 0.30 to 0.39 in the jejuno-ileal region, and 0.18 to 0.39 in the cecal region. The average fecal oocyst shedding rate ranged from 19,766 to 100,100 oocysts per gram, showing large variations depending on farms and buildings within the farm. Compared with the PI of the previous 9-10 trials on each farm, the PI increased by 2.45 to 23.55. Because of the potential for perturbation of the fecal microbiota by live coccidiosis vaccines, the fecal microbiota was investigated using 16S rRNA microbial profiling. Although the β-diversity was significantly different in distribution and relative abundance among farms (PERMANOVA, pseudo-F = 4.863, p = 0.009), a Kyoto Encyclopedia of Genes and Genomes pathway analysis found no significant bacterial invasion of the epithelial cell pathway across farms. This large-scale field trial of a live Eimeria vaccine indicates that coccidiosis vaccines can have meaningful effects on the poultry industry and could be used as an alternative to the prophylactic use of anticoccidial drugs under field conditions.
Collapse
Affiliation(s)
- Binh T. Nguyen
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (B.T.N.); (R.A.F.); (S.Y.L.); (W.H.K.)
| | - Dongjean Yim
- Hoxbio, Business Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Rochelle A. Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (B.T.N.); (R.A.F.); (S.Y.L.); (W.H.K.)
| | - Seung Yun Lee
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (B.T.N.); (R.A.F.); (S.Y.L.); (W.H.K.)
| | - Woo H. Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (B.T.N.); (R.A.F.); (S.Y.L.); (W.H.K.)
| | - Seung-Hwan Jung
- MSD Animal Health Korea Ltd., Seoul Square, Jung-gu, Seoul 04637, Republic of Korea; (S.-H.J.); (S.K.)
| | - Sangkyu Kim
- MSD Animal Health Korea Ltd., Seoul Square, Jung-gu, Seoul 04637, Republic of Korea; (S.-H.J.); (S.K.)
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (B.T.N.); (R.A.F.); (S.Y.L.); (W.H.K.)
| |
Collapse
|
22
|
Stefanello TB, Cardinal KM, Orso C, Franceschi CH, Silva JP, Mann MB, Frazzon J, Moraes PO, Ribeiro AML. The impact of different levels of functional oil supplementation in combination with salinomycin on growth performance and intestinal microbiota of broilers undergoing Eimeria challenge: An analysis of dynamics. Res Vet Sci 2024; 172:105249. [PMID: 38579633 DOI: 10.1016/j.rvsc.2024.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
The effect of salinomycin sodium alone and in combination with functional oils on performance and microbiota of broiler infected Eimeria were evaluated. 512 broilers were randomly assigned to 4 treatments (8 replicates, 16 birds/pen): a Control group (any additives); Ionophore group: salinomycin supplementation at 66 ppm (SS66); Ionophore +0.075% Functional oil (FO) group (SS66 + FO supplementation at 750 ppm); and Ionophore +0.10% FO group (SS66 + FO supplementation at 1000 ppm). At 14 days of age, birds were gavaged with 1 mL of a saline solution containing sporulated oocysts of E. tenella, E. acervulina and E. maxima. Performance indices were measured weekly. At 28 days, intestinal content was collected for microbiota analysis. Broilers of Control group presented the worst performance indices. Broilers of Ionophore + FO (0.075% and 0.10%) groups exhibited a higher BW at 28 days of age. The supplementation of Ionophore +0.075% FO resulted in a higher relative proportion of Firmicutes and a lower proportion of Actinobacteria in the ileum-jejunum. Lactobacillaceae was the dominant family in the jejunal, and ileal microbiotas of broilers fed diets supplemented with Ionophore, Ionophore +0.075% FO and Ionophore +0.10% FO. The supplementation of ionophore yielded higher numbers of Lactobacillaceae, Enterobactereaceae and Cloritridiaceae in the cecal. Ionophore associated with FO controlled the Lactobacillaceae, Enterobactereaceae and Cloritridiaceae families present in the cecum. Therefore, the combination of salinomycin with functional oil showed synergistic effect on performance and modulation of intestinal microbiota of broilers challenged with Eimeria.
Collapse
Affiliation(s)
- Thaís Bastos Stefanello
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kátia Maria Cardinal
- Department of Animal Science, Instituto Federal Farroupilha, Alegrete, RS, Brazil
| | - Catiane Orso
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Jéssica Pereira Silva
- Department of Animal Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Micheli Bertoni Mann
- Institute of Food Science and Technology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jeverzon Frazzon
- Institute of Food Science and Technology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Priscila Oliveira Moraes
- Department of Animal Science and Rural Development, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | |
Collapse
|
23
|
Hao G, Xiong C, Xiao J, He W, Zhu Y, Xu L, Jiang Q, Yang G. Evaluation of the immunoprotective effect of the recombinant Eimeria intestinalis rhoptry protein 25 and rhoptry protein 30 on New Zealand rabbits. Exp Parasitol 2024; 259:108719. [PMID: 38364954 DOI: 10.1016/j.exppara.2024.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Rabbit coccidiosis is a parasitism caused by either one or multiple co-infections of Eimeria species. Among them, Eimeria intestinalis is the primary pathogen responsible for diarrhea, growth retardation, and potential mortality in rabbits. Concerns regarding drug resistance and drug residues have led to the development of recombinant subunit vaccines targeting Eimeria species as a promising preventive measure. The aim of this study was to assess the immunoprotective efficacy of recombinant subunit vaccines comprising EiROP25 and EiROP30 (rhoptry proteins (ROPs)) against E. intestinalis infection in rabbits. METHODS Cloning, prokaryotic expression, and protein purification were performed to obtain EiROP25 and EiROP30. Five groups of fifty 35-day-old Eimeria-free rabbits were created (unchallenged control group, challenged control group, vector protein control group, rEiROP25 group, and rEiROP30 group), with 10 rabbits in each group. Rabbits in the rEiROP25 and rEiROP30 groups were immunized with the recombinant proteins (100 μg per rabbit) for primary and booster immunization (100 μg per rabbit) at a two-week intervals, and challenged with 7 × 104 oocysts per rabbit after an additional two-week interval. Two weeks after the challenge, the rabbits were euthanized for analysis. Weekly collections of rabbit sera were made to measure changes in specific IgG and cytokine level. Clinical symptoms and pathological changes after challenge were observed and recorded. At the conclusion of the animal experiment, lesion scores, the relative weight increase ratio, the oocyst reduction rate, and the anticoccidial index were computed. RESULTS Rabbits immunized with rEiROP25 and rEiROP30 exhibited relative weight gain ratios of 56.57% and 72.36%, respectively. Oocysts decreased by 78.14% and 84.06% for the rEiROP25 and rEiROP30 groups, respectively. The anticoccidial indexes were 140 and 155. Furthermore, there was a noticeable drop in intestinal lesions. After the primary immunization with rEiROP25 and rEiROP30, a week later, there was a notable rise in specific IgG levels, which remained elevated for two weeks following challenge (P < 0.05). Interleukin (IL)-2 levels increased markedly in the rEiROP25 group, whereas IL-2, interferon gamma (IFN-γ), and IL-4 levels increased substantially in the rEiROP30 group (P < 0.05). CONCLUSION Immunization of rabbits indicated that both rEiROP25 and rEiROP30 are capable of inducing an increase in specific antibody levels. rEiROP25 triggered a Th1-type immune protection response, while rEiROP30 elicited a Th1/Th2 mixed response. EiROP25 and EiROP30 can generate a moderate level of immune protection, with better efficacy observed for EiROP30. This study provides valuable insights for the promotion of recombinant subunit vaccines targeting rabbit E. intestinalis infection.
Collapse
Affiliation(s)
- Ge Hao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Changming Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Wei He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yuhua Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Liwen Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Qing Jiang
- Ya'an Polytechnic College, Yaan, 625014, China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.
| |
Collapse
|
24
|
Jespersen JC, Sommer KM, White CS, Froebel LE, Dorigam JCDP, Harsh BN, Dilger RN. Effects of a coccidiosis challenge on dietary methionine recommendations in broilers. Poult Sci 2024; 103:103502. [PMID: 38350387 PMCID: PMC10875611 DOI: 10.1016/j.psj.2024.103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Broilers are commonly exposed to coccidiosis infections, and the use of dietary strategies to reduce losses in growth performance has practical implications for the poultry industry. Methionine (Met) is typically the first limiting amino acid for broilers and is involved in metabolic and immunological pathways; however, literature is conflicting on how dietary Met requirements are affected by environmental stressors. Our objective was to assess how the Met requirement changes during coccidiosis based on results of growth performance, carcass traits, and health outcomes. Two trials were conducted using 780 male Ross 308 broiler chicks in floor pens randomly assigned to 1 of 12 experimental treatments. All birds received common starter (d 0-10) and finisher (d 24-35, Trial 2 only) diets, and only differed based on their assigned experimental grower diet (d 10-24). Trial 1 experimental grower diets ranged from 2.61 to 6.21 g/kg digestible Met. Trial 2 experimental grower diets were formulated to contain 15% below, at, or 15% above the Met requirement determined in Trial 1. Birds were exposed to a coccidiosis challenge on d 11, with blood and tissue collection (1 bird/pen) on d 18 and carcass processing on d 35 (2 birds/pen) in Trial 2. Data were analyzed using a 1- or 2-way ANOVA. A non-linear regression analysis was conducted in Trial 1 to determine the Met requirement of 4.32 g of digestible Met/kg of diet using BW gain. Coccidiosis infection reduced (P < 0.05) growth performance during the experimental grower and overall study periods in Trial 2. Increasing dietary Met from below requirement to meeting requirement during the grower period improved (P < 0.001) BW gain and feed conversion ratio (FCR), but this effect was only significant between treatments below and above the requirement for the overall study period. There was an interactive effect (P = 0.038) on FCR for the overall study period. These findings provide evidence that the Met requirement is likely increased during coccidiosis based on growth performance outcomes.
Collapse
Affiliation(s)
- J C Jespersen
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - K M Sommer
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - C S White
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - L E Froebel
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | - B N Harsh
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - R N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
25
|
Zhang Y, Lu M, Huang J, Tian X, Liang M, Wang M, Song X, Xu L, Yan R, Li X. Identification and characterization of the receptors of a microneme adhesive repeat domain of Eimeria maxima microneme protein 3 in chicken intestine epithelial cells. Poult Sci 2024; 103:103486. [PMID: 38350385 PMCID: PMC10874745 DOI: 10.1016/j.psj.2024.103486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
Eimeria maxima microneme protein 3 (EmMIC3) is pivotal in the initial recognition and attachment of E. maxima sporozoites to host cells. EmMIC3 comprises 5 tandem Type I microneme adhesive repeat (MAR) domains, among which MAR2 of EmMIC3 (EmMAR2) has been identified as the primary determinant of EmMIC3-mediated tissue tropism. Nonetheless, the mechanisms through which EmMAR2 guides the parasite to its invasion site through interactions with host receptors remained largely uncharted. In this study, we employed yeast two-hybrid (YTH) screening assays and shotgun LC-MS/MS analysis to identify EmMAR2 receptors in chicken intestine epithelial cells. ATPase H+ transporting V1 subunit G1 (ATP6V1G1), receptor accessory protein 5 (REEP5), transmembrane p24 trafficking protein (TMED2), and delta 4-desaturase sphingolipid 1 (DEGS1) were characterized as the 4 receptors of EmMAR2 by both assays. By blocking the interaction of EmMAR2 with each receptor using specific antibodies, we observed varying levels of inhibition on the invasion of E. maxima sporozoites, and the combined usage of all 4 antibodies resulted in the most pronounced inhibitory effect. Additionally, the spatio-temporal expression profiles of ATP6V1G1, REEP5, TMED2, and DEGS1 were assessed. The tissue-specific expression patterns of EmMAR2 receptors throughout E. maxima infection suggested that ATP6V1G1 and DEGS1 might play a role in early-stage invasion, whereas TMED2 could be involved in middle and late-stage invasion and REEP5 and DEGS1 may participate primarily in late-stage invasion. Consequently, E. maxima may employ a multitude of ligand-receptor interactions to drive invasion during different stages of infection. This study marks the first report of EmMAR2 receptors at the interface between E. maxima and the host, providing insights into the invasion mechanisms of E. maxima and the pathogenesis of coccidiosis.
Collapse
Affiliation(s)
- Yang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jianmei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaowei Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Meng Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Mingyue Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
26
|
Gelinas A, Sudan S, Patterson R, Li J, Huyben D, Barta JR, Kiarie EG. Growth performance, organs weight, intestinal histomorphology, and oocyst shedding in broiler chickens offered novel single strain Bacillus subtilis isolated from camel dung and challenged with Eimeria. Poult Sci 2024; 103:103519. [PMID: 38359772 PMCID: PMC10877951 DOI: 10.1016/j.psj.2024.103519] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
We evaluated a single strain Bacillus subtilis BS-9 direct-fed microbial (BSDFM) isolated from camel dung in Eimeria challenged broiler chickens. Seven-hundred d-old Ross 708 male chicks were placed in pens (25 birds/pen) and allocated to 2 treatments (n = 14). From d 0 to 13, control pens received untreated water (-BSDFM), and 2 treated pens received water and 2 mL x 108 colony forming unit/bird/d (+BSDFM); daily water intake (WI) was recorded. On d 9, birds in half (+Eimeria) of pens per treatment received of 1 mL of Eimeria maxima and Eimeria acervulina oocysts orally, and the other half (-Eimeria) sterile saline solution. Birds had ad libitum access to feed and a water line from d 14. Feed intake (FI), body weight (BW) and mortality were recorded for calculating BW gain (BWG) and feed conversion ratio (FCR). On d 14 and 35, samples of birds were necropsied for organ weight and intestinal measurements. Excreta samples were collected from d 14 to 19 for oocyst count. There was no treatment effect (P > 0.05) on growth performance or WI on d 0 to 9. There were interactions between BSDFM and Eimeria on d 19 (P = 0.014) and 29 (P = 0.036) BW with unchallenged +BSDFM birds being heavier than birds in the other treatments. The main effects (P < 0.05) on d 10 to 35 FI, BW, and BWG were such that +BSDFM increased and Eimeria decreased (P < 0.01) these parameters. There was interaction (P = 0.022) between BSDFM and Eimeria on d 10 to 35 FCR such that the FCR of challenged -BSDFM birds was poor than that of unchallenged counterparts, but none differed with +BSDFM birds. There was an interaction (P = 0.039) between BSDFM and Eimeria on d 14 bursa weight with challenged birds exhibiting heavier bursa than unchallenged +BSDFM birds. Eimeria reduced (P = 0.01) and BSDFM (P = 0.002) increased the villi height to crypt depth ratio. Results showed that BSDFM supplementation via water can support the growth performance of broiler chickens challenged with Eimeria and may be a strategy to reduce adverse effects of coccidiosis.
Collapse
Affiliation(s)
- Alison Gelinas
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA
| | - Sudhanshu Sudan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA
| | | | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA
| | - David Huyben
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA
| | - John R Barta
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, USA
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA.
| |
Collapse
|
27
|
Liu C, Wei H, Liang R, Wang Y, Su X, Tu T, Luo H, Yao B, Ding J, Tang X, Huang H, Zhang H. Recombinant production of SAG1 fused with xylanase in Pichia pastoris induced higher protective immunity against Eimeria tenella infection in chicken. Microb Biotechnol 2024; 17:e14447. [PMID: 38478376 PMCID: PMC10936739 DOI: 10.1111/1751-7915.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 10/17/2024] Open
Abstract
Chicken coccidiosis is an intestinal disease caused by the parasite Eimeria, which severely damages the growth of chickens and causes significant economic losses in the poultry industry. Improvement of the immune protective effect of antigens to develop high efficiency subunit vaccines is one of the hotspots in coccidiosis research. Sporozoite-specific surface antigen 1 (SAG1) of Eimeria tenella (E. tenella) is a well-known protective antigen and is one of the main target antigens for the development of subunit, DNA and vector vaccines. However, the production and immunoprotective effects of SAG1 need to be further improved. Here, we report that both SAG1 from E. tenella and its fusion protein with the xylanase XynCDBFV-SAG1 are recombinant expressed and produced in Pichia pastoris (P. pastoris). The substantial expression quantity of fusion protein XynCDBFV-SAG1 is achieved through fermentation in a 15-L bioreactor, reaching up to about 2 g/L. Moreover, chickens immunized with the fusion protein induced higher protective immunity as evidenced by a significant reduction in the shedding of oocysts after E. tenella challenge infection compared with immunized with recombinant SAG1. Our results indicate that the xylanase enhances the immunogenicity of subunit antigens and has the potential for developing novel molecular adjuvants. The high expression level of fusion protein XynCDBFV-SAG1 in P. pastoris holds promise for the development of effective recombinant anti-coccidial subunit vaccine.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - HanBing Wei
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Ruiying Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARAInstitute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Jiabo Ding
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARAInstitute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of MARAInstitute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition and FeedingInstitute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
28
|
Jespersen JC, de Paula Dorigam JC, Whelan R, Dilger AC, Oelschlager ML, Sommer KM, Gorenz BE, White RR, Dilger RN. Defining optimal dietary starch, oil, and amino acid inclusion levels for broilers experiencing a coccidiosis challenge. Poult Sci 2024; 103:103335. [PMID: 38176364 PMCID: PMC10806127 DOI: 10.1016/j.psj.2023.103335] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Alternative methods to alleviate coccidiosis in broilers are of interest to producers, including dietary strategies to minimize disruptions in growth rate and efficiency when faced with health challenges. Our objective was to determine optimal combinations of dietary starch, amino acids (AA), and oil to benefit productivity of broilers experiencing Eimeria-induced immune activation. Two trials were conducted using 1,536 male Ross 308 broiler chicks in floor pens randomly assigned to 1 of 17 experimental treatments. All birds received common starter (d 0-10) and finisher (d 24-35) diets, and only differed based on their assigned experimental grower diet (d 10-24). Trial 1 experimental grower diets ranged from 2,700 to 3,300 kcal/kg AME. Trial 2 included 10 experimental grower diets following a simplex lattice design consisting of 3 basal lots formulated to have the highest starch (45.4%), oil (10.2%), or AA density (120, 1.33% digestible Lys) and mixed in 4 equally spaced levels for each component (0, 0.33, 0.67, 1). These mixtures enabled varying densities of AA (80-120% of recommendation), starch:oil (4:1-20:1), and AME (2,940-3,450 kcal/kg). Bird and feeder weights were collected on d 0, 10, 24, and 35, and birds were exposed to an Eimeria challenge on d 11 or 12. In trial 2, excreta samples were collected for AME determination and carcasses were processed on d 36. Data were analyzed using ANOVA, t test, or regression. In Trial 1, BW gain and feed conversion were improved (P < 0.05) by increasing dietary AME. In Trial 2, birds receiving diets containing AA at 93 to 107% of recommendations and higher oil exhibited improved (P < 0.05) performance, but increased starch at the expense of oil reduced performance (P < 0.05). Relative breast and fat pad weights were not influenced by diet in Trial 2. We determined that broilers mildly challenged with Eimeria would exhibit highest BW gain when receiving diets containing 35.8% starch, 8.9% oil, and 101.3% of AA recommendations, which can be utilized by producers to maintain productivity under health-challenged conditions.
Collapse
Affiliation(s)
- J C Jespersen
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | - R Whelan
- Evonik Operations GmbH, Nutrition & Care, Hanau-Wolfgang, Germany
| | - A C Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - M L Oelschlager
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - K M Sommer
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - B E Gorenz
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - R R White
- Department of Animal and Poultry Sciences, Virginia Tech, Backsburg, VA, USA
| | - R N Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
29
|
Domínguez-Odio A, Rodríguez Martínez E, Cala Delgado DL. Commercial vaccines used in poultry, cattle, and aquaculture: a multidirectional comparison. Front Vet Sci 2024; 10:1307585. [PMID: 38234985 PMCID: PMC10791835 DOI: 10.3389/fvets.2023.1307585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
|
30
|
Ahmad R, Yu YH, Hua KF, Chen WJ, Zaborski D, Dybus A, Hsiao FSH, Cheng YH. Management and control of coccidiosis in poultry - A review. Anim Biosci 2024; 37:1-15. [PMID: 37641827 PMCID: PMC10766461 DOI: 10.5713/ab.23.0189] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023] Open
Abstract
Poultry coccidiosis is an intestinal infection caused by an intracellular parasitic protozoan of the genus Eimeria. Coccidia-induced gastrointestinal inflammation results in large economic losses, hence finding methods to decrease its prevalence is critical for industry participants and academic researchers. It has been demonstrated that coccidiosis can be effectively controlled and managed by employing anticoccidial chemical compounds. However, as a result of their extensive use, anticoccidial drug resistance in Eimeria species has raised concerns. Phytochemical/herbal medicines (Artemisia annua, Bidens pilosa, and garlic) seem to be a promising strategy for preventing coccidiosis, in accordance with the "anticoccidial chemical-free" standards. The impact of herbal supplements on poultry coccidiosis is based on the reduction of oocyst output by preventing the proliferation and growth of Eimeria species in chicken gastrointestinal tissues and lowering intestinal permeability via increased epithelial turnover. This review provides a thorough up-to-date assessment of the state of the art and technologies in the prevention and treatment of coccidiosis in chickens, including the most used phytochemical medications, their mode of action, and the applicable legal framework in the European Union.
Collapse
Affiliation(s)
- Rafiq Ahmad
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Wei-Jung Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Daniel Zaborski
- Department of Ruminants Science, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin,
Poland
| | - Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, 70-310 Szczecin,
Poland
| | - Felix Shih-Hsiang Hsiao
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047,
Taiwan
| |
Collapse
|
31
|
Abstract
The complexity of parasites and their life cycles makes vaccination against parasitic diseases challenging. This review highlights this by discussing vaccination against four relevant parasites of poultry. Coccidia, i.e., Eimeria spp., are the most important parasites in poultry production, causing multiple billions of dollars of damage worldwide. Due to the trend of antibiotic-free broiler production, use of anticoccidia vaccines in broilers is becoming much more important. As of now, only live vaccines are on the market, almost all of which must be produced in birds. In addition, these live vaccines require extra care in the management of flocks to provide adequate protection and prevent the vaccines from causing damage. Considerable efforts to develop recombinant vaccines and related work to understand the immune response against coccidia have not yet resulted in an alternative. Leucozytozoon caulleryi is a blood parasite that is prevalent in East and South Asia. It is the only poultry parasite for which a recombinant vaccine has been developed and brought to market. Histomonas meleagridis causes typhlohepatitis in chickens and turkeys. The systemic immune response after intramuscular vaccination with inactivated parasites is not protective. The parasite can be grown and attenuated in vitro, but only together with bacteria. This and the necessary intracloacal application make the use of live vaccines difficult. So far, there have been no attempts to develop a recombinant vaccine against H. meleagridis. Inactivated vaccines inducing antibodies against the poultry red mite Dermanyssus gallinae have the potential to control infestations with this parasite. Potential antigens for recombinant vaccines have been identified, but the use of whole-mite extracts yields superior results. In conclusion, while every parasite is unique, development of vaccines against them shares common problems, namely the difficulties of propagating them in vitro and the identification of protective antigens that might be used in recombinant vaccines.
Collapse
Affiliation(s)
- Ruediger Hauck
- Department of Pathobiology, Auburn University, Auburn, AL 36849,
- Department of Poultry Science, Auburn University, Auburn, AL 36849
| | - Kenneth S Macklin
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
32
|
Rautenschlein S, Schat KA. The Immunological Basis for Vaccination. Avian Dis 2024; 67:366-379. [PMID: 38300658 DOI: 10.1637/aviandiseases-d-23-99996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 02/02/2024]
Abstract
Vaccination is crucial for health protection of poultry and therefore important to maintaining high production standards. Proper vaccination requires knowledge of the key players of the well-orchestrated immune system of birds, their interdependence and delicate regulation, and, subsequently, possible modes of stimulation through vaccine antigens and adjuvants. The knowledge about the innate and acquired immune systems of birds has increased significantly during the recent years but open questions remain and have to be elucidated further. Despite similarities between avian and mammalian species in their composition of immune cells and modes of activation, important differences exist, including differences in the innate, but also humoral and cell-mediated immunity with respect to, for example, signaling transduction pathways, antigen presentation, and cell repertoires. For a successful vaccination strategy in birds it always has to be considered that genotype and age of the birds at the time point of immunization as well as their microbiota composition may have an impact and may drive the immune reactions into different directions. Recent achievements in the understanding of the concept of trained immunity will contribute to the advancement of current vaccine types helping to improve protection beyond the specificity of an antigen-driven immune response. The fast developments in new omics technologies will provide insights into protective B- and T-cell epitopes involved in cross-protection, which subsequently will lead to the improvement of vaccine efficacy in poultry.
Collapse
Affiliation(s)
- Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Clinic for Poultry, Hannover, Lower Saxony 30559, Germany,
| | - Karel A Schat
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
33
|
Tucker MS, O’Brien CN, Johnson AN, Dubey JP, Rosenthal BM, Jenkins MC. RNA-Seq of Phenotypically Distinct Eimeria maxima Strains Reveals Coordinated and Contrasting Maturation and Shared Sporogonic Biomarkers with Eimeria acervulina. Pathogens 2023; 13:2. [PMID: 38276148 PMCID: PMC10818985 DOI: 10.3390/pathogens13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Strains of Eimeria maxima, an enteric parasite of poultry, vary in virulence. Here, we performed microscopy and RNA sequencing on oocysts of strains APU-1 (which exhibits more virulence) and APU-2. Although each underwent parallel development, APU-1 initially approached maturation more slowly. Each strain sporulated by hour 36; their gene expression diverged somewhat thereafter. Candidate biomarkers of viability included 58 genes contributing at least 1000 Transcripts Per Million throughout sporulation, such as cation-transporting ATPases and zinc finger domain-containing proteins. Many genes resemble constitutively expressed genes also important to Eimeria acervulina. Throughout sporulation, the expression of only a few genes differed between strains; these included cyclophilin A, EF-1α, and surface antigens (SAGs). Mature and immature oocysts uniquely differentially express certain genes, such as an X-Pro dipeptidyl-peptidase domain-containing protein in immature oocysts and a profilin in mature oocysts. The immature oocysts of each strain expressed more phosphoserine aminotransferase and the mature oocysts expressed more SAGs and microneme proteins. These data illuminate processes influencing sporulation in Eimeria and related genera, such as Cyclospora, and identify biological processes which may differentiate them. Drivers of development and senescence may provide tools to assess the viability of oocysts, which would greatly benefit the poultry industry and food safety applications.
Collapse
Affiliation(s)
- Matthew S. Tucker
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Celia N. O’Brien
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Alexis N. Johnson
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
- Department of State, Bureau of Consular Affairs, Washington, DC 20006, USA
| | - Jitender P. Dubey
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Benjamin M. Rosenthal
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Mark C. Jenkins
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| |
Collapse
|
34
|
Liu Q, Liu X, Zhao X, Zhu XQ, Suo X. Live attenuated anticoccidial vaccines for chickens. Trends Parasitol 2023; 39:1087-1099. [PMID: 37770352 DOI: 10.1016/j.pt.2023.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/30/2023]
Abstract
Chicken coccidiosis, caused by infection with single or multiple Eimeria species, results in significant economic losses to the global poultry industry. Over the past decades, considerable efforts have been made to generate attenuated Eimeria strains, and the use of live attenuated anticoccidial vaccines for disease prevention has achieved tremendous success. In this review, we evaluate the advantages and limitations of the methods of attenuation as well as attenuated Eimeria strains in a historical perspective. Also, we summarize the recent exciting research advances in transient/stable transfection systems and clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing developed for Eimeria parasites, and discuss trends and challenges of developing live attenuated anticoccidial vaccines based on transgenesis and genome editing.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100093, PR China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, PR China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture and Rural Affairs, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100093, PR China.
| |
Collapse
|
35
|
Zhang Z, Li M, Tan Q, Chen J, Sun J, Li J, Sun L, Chen N, Song Q, Zhao X, Li H, Zhang X. A moderate anticoccidial effect of cedrol on Eimeria tenella in broiler chickens. Parasitol Int 2023; 97:102779. [PMID: 37451395 DOI: 10.1016/j.parint.2023.102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
As drug-resistant strains of Eimeria have emerged and concerns about drug residues in poultry have grown, there is renewed interest in identifying natural alternatives to control coccidiosis. Cedrol, a natural sesquiterpene alcohol, was used in this study to test anticoccidial efficacy in chicks. Both the control and treatment groups were orally challenged with 2 × 104 oocysts per chicken. Chicks administered with cedrol had reduced oocyst count, an increase in the relative weight gain rate of chicks, and a decrease in severe swelling of the cecum. Based on the above, ACI was calculated and the cedrol group reached moderate anti-coccidial activity (169.34). In chickens treated with cedrol, there were no changes in serum biochemical parameters, but oxidative stress biomarkers and cytokine levels associated with anticoccidial response were altered. These changes suggest that the administered concentration of cedrol did not have any adverse effects on the chickens while enhancing their antioxidant capacity and immunity, leading to an improved anticoccidial ability. In conclusion, this study shows that the addition of cedrol in poultry production has an anticoccidial effect and successfully improves growth performance during the growth period.
Collapse
Affiliation(s)
- Zhenzhao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Muzi Li
- China Animal Health and Epidemiology Center, Qing'dao, China
| | - Qianqian Tan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Junpeng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Jinkun Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Jinxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Lingyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Nianyuan Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Qingyang Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xiaomin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Hongmei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Xiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
36
|
Fries-Craft K, Graham D, Hargis BM, Bobeck EA. Evaluating a Salmonella Typhimurium, Eimeria maxima, and Clostridium perfringens coinfection necrotic enteritis model in broiler chickens: repeatability, dosing, and immune outcomes. Poult Sci 2023; 102:103018. [PMID: 37651774 PMCID: PMC10480656 DOI: 10.1016/j.psj.2023.103018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Coccidiosis and necrotic enteritis negatively impact poultry production, making challenge model repeatability important for evaluating mitigation strategies. Study objectives were: 1) evaluate Salmonella Typhimurium-Eimeria maxima-Clostridium perfringens necrotic enteritis coinfection model repeatability and 2) investigate E. maxima dose and early S. Typhimurium challenge on immune responses. Three trials using Ross 308 chicks assigned to 12 cages/trial (7 chicks/cage) in wire-floor brooders were completed. Trials 1 and 2 determined E. maxima dose for necrotic enteritis challenge in trial 3. Chicks in trials 1 and 2 were inoculated with 0 (control), 5, 15, or 25,000 sporulated E. maxima M6 oocysts on d 14 and jejunal lesion scores evaluated on d 20. In trial 3, chicks were assigned to control or necrotic enteritis challenge (42 chicks/group). Necrotic enteritis challenge chicks were inoculated with 1 × 105 colony forming units (CFU) S. Typhimurium on d 1, 15,000 E. maxima oocysts on d 14, and 1 × 108 CFU C. perfringens on d 19 and 20 with lesion scoring on d 22. Bird and feeder weights were recorded throughout each trial. Peripheral blood mononuclear cells (PBMC) were isolated from 1 chick/cage at baseline (all trials), 4 chicks/dose (trials 1 and 2) or 8 chicks/challenge (trial 3) 24 h post-inoculation (pi) with E. maxima for immunometabolic assays and immune cell profiling. Data were analyzed by mixed procedure (SAS 9.4) with challenge and timepoint fixed effects (P ≤ 0.05, trends 0.05 ≤ P ≤ 0.01). Inoculating chicks with 15,000 E. maxima oocysts increased d 14 to 20 FCR 79 points (trials 1 and 2; P = 0.009) vs. unchallenged chicks and achieved a target lesion score of 2. While C. perfringens challenge reduced trial 3 performance, average lesion scores were <1. Salmonella inoculation on d 1 tended to increase PBMC ATP production 41.6% 24 hpi with E. maxima vs. chicks challenged with E. maxima only (P = 0.06). These results provide insight for future model optimization and considerations regarding S. Typhimurium's effect on E. maxima immune response timelines.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - D Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - B M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
37
|
Shi H, Wang J, White D, Martinez OJT, Kim WK. Impacts of phytase and coccidial vaccine on growth performance, nutrient digestibility, bone development, and intestinal gene expression of broilers fed a nutrient reduced diet. Poult Sci 2023; 102:103062. [PMID: 37742452 PMCID: PMC10520538 DOI: 10.1016/j.psj.2023.103062] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
An experiment was conducted to evaluate effects of phytase and coccidial vaccine on growth performance, bone ash, bone 3-D microstructure, nutrient digestibility, and gene expression of intestinal biomarkers in broilers fed a regular or nutrient-reduced diet. The experiment was conducted in a 2 × 4 factorial arrangement with 6 replicates per treatment and 10 birds per replicate. Two main factors were coccidial vaccine and dietary treatments. The dietary treatments included: 1) a positive control (PC; normal nutrient levels); 2) a negative control (NC; with a reduction of 0.15% of Ca and avP and 5% of essential amino acid (EAA) and crude protein relative to PC); 3) NC + 500 FTU/kg of phytase; and 4) NC + 1,500 FTU/kg of phytase. No interaction effect of phytase and coccidial vaccine on growth performance, bone ash, and apparent ileal digestibility (AID) was observed. For the main effect, birds fed the NC diet showed lower (P = 0.007) BWG during d 0 to 21 compared to PC birds, whereas supplementing 500 or 1,500 FTU/kg phytase increased BWG to the similar level to the PC. During d 0 to 21, vaccinated birds had a lower (P < 0.001) FI and better (P = 0.045) FCR compared to unvaccinated birds. Birds fed the NC diet resulted a decrease in tibia fat-free dry bone weight (P = 0.012), ash weight (P = 0.005), ash percentage (P < 0.001), and ash concentration (P = 0.019) compared to the PC group at d 21, whereas supplementing phytase at 500 or 1,500 FTU/kg in NC diet was able to improve these bone parameters to the similar level to the PC; however, vaccination did not have any effect on bone ash. Similarly, birds fed with the NC diet showed had significant lower bone microstructure levels including bone volume, bone mineral density, and bone mineral content (P < 0.001), and supplementing phytase at 1,500 FTU/kg improved these parameters. Vaccination improved AID of nitrogen (P < 0.001). Birds from the NC and both phytase supplementation groups had a higher (P = 0.001) AID of Ca compared to the PC. Supplementing phytase at 500 FTU/kg or 1,500 FTU/kg improved (P < 0.001) AID of P compared to the NC. Additionally, the NC had a lower AID of DM than the PC, whereas supplementing phytase at 500 FTU/kg or 1,500 FTU/kg improved DM digestibility (P = 0.0299). In conclusion, supplementation of phytase at 500 or 1,500 FTU/kg improved growth performance, bone mineralization, and nutrient digestibility regardless of vaccination, with a more pronounced effect when supplementing phytase at 1,500 FTU/kg.
Collapse
Affiliation(s)
- Hanyi Shi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Jinquan Wang
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Dima White
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
38
|
Arczewska-Włosek A, Świątkiewicz S, Tomaszewska E, Muszyński S, Dobrowolski P, Józefiak D. Effects of Anticoccidial Vaccination and Taraxacum officinale Extract on the Growth Performance, Biochemical Parameters, Immunity, and Intestinal Morphology of Eimeria-Challenged Chickens. Life (Basel) 2023; 13:1927. [PMID: 37763330 PMCID: PMC10532845 DOI: 10.3390/life13091927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
A total of 160 Ross 308 male chickens were used in a 2 × 2 factorial design to examine the effects of anticoccidial vaccination (ACV; lack or 1× dose recommended by the manufacturer) and dietary supplementation with Taraxacum officinale (dandelion) extract (DE; with or without) on growth performance, immunity, biochemical parameters, and intestinal morphology in broiler chickens challenged with Eimeria spp. At 20 days of age, all birds were challenged with a 25× dose of ACV, including Eimeria acervulina, E. maxima, E. mitis, and E. tenella. No interaction between ACV and DE was observed in terms of growth performance. Vaccinated birds showed increased feed intake (FI) and feed conversion ratio (FCR) during the 11-20 day period. Meanwhile, DE supplementation led to decreased FI and body weight gain (BWG) during the 1-10 day period. ACV effectively induced immunity against Eimeria, as evidenced by reduced oocyst shedding and less intestinal lesions, decreased levels of pro-inflammatory interleukin-6, and improved BWG during both the post infection (PI) period (21-35 days) and the entire growth period. DE supplementation lowered FCR and increased BWG during the 35-42 day period, increased the concentration of butyric acid in the cecal digesta, and lowered oocyst shedding PI. In vaccinated birds, DE elevated levels of plasma total protein and immunoglobulin M, and influenced tight junction proteins zonula occludens-1 and claudin-3, indicating a more robust epithelial barrier. DE also lowered alanine aminotransferase activity in unvaccinated birds. Both ACV and DE independently improved intestinal morphology in the jejunum, decreasing crypt depth and increasing the villus height-to-crypt ratio. These findings suggest that both ACV and DE could be effective strategies for managing coccidiosis in broiler chickens.
Collapse
Affiliation(s)
- Anna Arczewska-Włosek
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland;
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Damian Józefiak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, 60-637 Poznań, Poland;
| |
Collapse
|
39
|
Xiao K, Zhao Q, Wang H, Zhu S, Dong H, Huang B, Han H. Molecular characterization of methionine aminopeptidase1 from Eimeria tenella. Eur J Protistol 2023; 90:126012. [PMID: 37557059 DOI: 10.1016/j.ejop.2023.126012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Coccidiosis, a serious intestinal parasitic disease caused by Eimeria spp., can result in huge annual economic losses to the poultry industry worldwide. At present, coccidiosis is mainly controlled by anticoccidial drugs. However, drug resistance has developed in Eimeria because of the long-term and unreasonable use of the drugs currently available. In our previous study, RNA-seq showed that the expression of methionine aminopeptidase1 (EtMetAP1) was up-regulated in diclazuril-resistant (DZR) and maduramicin-resistant (MRR) strains compared to drug-sensitive (DS) strain of Eimeria tenella. In this study, EtMetAP1 was cloned and expressed, and the function and characteristics of the EtMetAP1 protein were analyzed. The transcription and translation levels of EtMetAP1 in DS strain of E. tenella at different developmental stages were analyzed by qPCR and western blotting. We found that the transcription and translation levels of EtMetAP1 in second-generation merozoites (SM) were higher than those of the other three stages (unsporulated oocyst, sporulated oocyst, and sporozoites). Simultaneously, qPCR was used to analyze the mRNA transcription levels of EtMetAP1 in DS, DZR, MRR, and salinomycin-resistant (SMR) strain. The results showed that compared to the sensitive strain, the transcription levels of EtMetAP1 in DZR and MRR were up-regulated. There was no significant difference in transcription level in SMR. Indirect immunofluorescence localization showed that the protein was mainly localised in the cell membrane and cytoplasm of sporozoites and SM. An invasion inhibition test showed that anti-rEtMetAP1 polyclonal antibody could effectively inhibit the sporozoite invasion of host cells. These results suggest that the protein may be involved in the growth and development of parasites in host cells, the generation of drug resistance, and host cell invasion.
Collapse
Affiliation(s)
- Ke Xiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Haixia Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Bing Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China.
| |
Collapse
|
40
|
Madlala T, Adeleke VT, Okpeku M, Tshilwane SI, Adeniyi AA, Adeleke MA. Screening of apical membrane antigen-1 (AMA1), dense granule protein-7 (GRA7) and rhoptry protein-16 (ROP16) antigens for a potential vaccine candidate against Toxoplasma gondii for chickens. Vaccine X 2023; 14:100347. [PMID: 37519774 PMCID: PMC10384181 DOI: 10.1016/j.jvacx.2023.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Toxoplasmosis is a zoonotic disease caused by the protozoan parasite, Toxoplasma gondii known to infect almost all animals, including birds and humans globally. This disease has impacted the livestock industry and public health, where infection of domestic animals increases the zoonotic risk of transmission of infection to humans, threatening public health. Hence the need to discover novel and safe vaccines to fight against toxoplasmosis. In the current study, a novel multiepitope vaccine was designed using immunoinformatics techniques targeting T. gondii AMA1, GRA7 and ROP16 antigens, consisting of antigenic, immunogenic, non-allergenic and cytokine inducing T-cell (9 CD8+ and 15 CD4+) epitopes and four (4) B-cell epitopes fused together using AAY, KK and GPGPG linkers. The tertiary model of the proposed vaccine was predicted and validated to confirm the structural quality of the vaccine. The designed vaccine was highly antigenic (antigenicity = 0.6645), immunogenic (score = 2.89998), with molecular weight of 73.35 kDa, instability and aliphatic index of 28.70 and 64.10, respectively; and GRAVY of -0.363. The binding interaction, stability and flexibility were assessed with molecular docking and dynamics simulation, which revealed the proposed vaccine to have good structural interaction (binding affinity = -106.882 kcal/mol) and stability when docked with Toll like receptor-4 (TLR4). The results revealed that the Profilin-adjuvanted vaccine is promising, as it predicted induction of enhanced immune responses through the production of cytokines and antibodies critical in blocking host invasion.
Collapse
Affiliation(s)
- Thabile Madlala
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Victoria T. Adeleke
- Department of Chemical Engineering, Mangosuthu University of Technology, Durban 4031, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Selaelo I. Tshilwane
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Adebayo A. Adeniyi
- Department of Industrial Chemistry, Federal University, Oye-Ekiti, P.O Box 370111, Nigeria
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| |
Collapse
|
41
|
Cai H, Luo S, Liu Q, Zhou Q, Yan Z, Kang Z, Liao S, Li J, Lv M, Lin X, Hu J, Yu S, Zhang J, Qi N, Sun M. Effects of a complex probiotic preparation, Fengqiang Shengtai and coccidiosis vaccine on the performance and intestinal microbiota of broilers challenged with Eimeria spp. Parasit Vectors 2023; 16:253. [PMID: 37501177 PMCID: PMC10375739 DOI: 10.1186/s13071-023-05855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Coccidiosis, a prominent intestinal protozoan disease, carries significant economic implications for the poultry industry. The aim of this study was to evaluate the effects of Fengqiang Shengtai (BLES), a probiotics product, and coccidiosis vaccine in modulating the intestinal microbiome and providing insight into mitigating the occurrence and management of avian coccidiosis. METHODS Broilers included in the study were divided into four pre-treatment groups: the Pre-Con group (commercial diet), Pre-BLES group (BLES supplement), Pre-Vac group (coccidiosis vaccination) and Pre-Vac-BLES group (combined vaccination and BLES). Body weight gain, feed consumption and feed conversion ratio were monitored from age 25 to 55 days. Cecum contents were collected at 8 and 15 days of age for comparative analysis of intestinal microbiomes. In the Pre-BLES and Pre-Vac-BLES groups, probiotics were administered at a dose of 0.01 g per chicken between ages 3 to 6 days and 10-13 days. At 3 days of age, chickens in the Pre-Vac and Pre-Vac-BLES groups were vaccinated with 1700 sporulated oocysts of the live coccidiosis vaccine per chicken. At the age of 25 days, Eimeria spp. challenge experiments were performed based on the aforementioned immunization strategy, and the oocysts per gram (OPG) in the feces, intestinal lesion score and intestinal pathological characteristics were evaluated. Specifically, 30 chickens were randomly selected from each group and orally administered 34,000 sporulated oocysts of Eimeria spp. per chicken, re-defined as Eimeria group, BLES-Eimeria group, Vac-Eimeria group and Vac-BLES-Eimeria group, respectively. Additionally, 30 chickens were randomly selected from the Pre-Con group and included as negative control without Eimeria spp. CHALLENGE Intestinal microbiota was sequenced and analyzed when the broilers were 32 days old. RESULTS A significant improvement was observed in body weight gain of the broilers in the Pre-BLES and Pre-Vac-BLES group at 45 days of age. Analysis of the intestinal microbiota revealed a positive correlation between the experimental groups receiving BLES and coccidiosis vaccines at 8 and 15 days of age with the Enterococcus genus and Lachnospiraceae NK4A136 group, respectively. In addition to the reduced lesion score and OPG values, the combination of coccidiosis vaccine and BLES also reduced the intestinal epithelial abscission induced by coccidiosis vaccines. The results of intestinal microbial function prediction demonstrated that N-glycan biosynthesis and ferroptosis were the prominent signal pathways in the Vac-BLES-Eimeria group. CONCLUSIONS Taken together, the results of the present study suggest that supplementation of BLES with coccidiosis vaccine represents a promising strategy for improving growth performance, alleviating clinical manifestations and inducing favorable alterations to the intestinal microbiota in broiler chickens affected by coccidiosis.
Collapse
Affiliation(s)
- Haiming Cai
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Shengjun Luo
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Qihong Liu
- Jiangsu HFQ Biotechnology Co., Ltd., Haimen, Jiangsu Province, People's Republic of China
| | - Qingfeng Zhou
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, Guangdong, 527400, People's Republic of China
| | - Zhuanqiang Yan
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, Guangdong, 527400, People's Republic of China
| | - Zhen Kang
- Qingdao Vland Biotech Group Co., Ltd., Qingdao, Shandong Province, People's Republic of China
| | - Shenquan Liao
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Juan Li
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Minna Lv
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Xuhui Lin
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Junjing Hu
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Shuilan Yu
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, Guangdong, 527400, People's Republic of China
| | - Jianfei Zhang
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China
| | - Nanshan Qi
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China.
- Laboratory of Parasitology, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China.
| | - Mingfei Sun
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China.
- Laboratory of Parasitology, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Jinying Road, Tianhe District, Guangzhou, 510640, Guangdong, People's Republic of China.
| |
Collapse
|
42
|
Juárez-Estrada MA, Tellez-Isaias G, Graham DM, Laverty L, Gayosso-Vázquez A, Alonso-Morales RA. Identification of Eimeria tenella sporozoite immunodominant mimotopes by random phage-display peptide libraries-a proof of concept study. Front Vet Sci 2023; 10:1223436. [PMID: 37554540 PMCID: PMC10405736 DOI: 10.3389/fvets.2023.1223436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION Coccidiosis, caused by parasites of numerous Eimeria species, has long been recognized as an economically significant disease in the chicken industry worldwide. The rise of anti-coccidian resistance has driven a search for other parasite management techniques. Recombinant antigen vaccination presents a highly feasible alternative. Properly identifying antigens that might trigger a potent immune response is one of the major obstacles to creating a viable genetically modified vaccine. METHODS This study evaluated a reverse immunology approach for the identification of B-cell epitopes. Antisera from rabbits and hens inoculated with whole-sporozoites of E. tenella were used to identify Western blot antigens. The rabbit IgG fraction from the anti-sporozoite serum exhibited the highest reactogenicity; consequently, it was purified and utilized to screen two random Phage-display peptide libraries (12 mer and c7c mer). After three panning rounds, 20 clones from each library were randomly selected, their nucleotide sequences acquired, and their reactivity to anti-sporozoite E. tenella serum assessed. The selected peptide clones inferred amino acid sequences matched numerous E. tenella proteins. RESULTS AND CONCLUSIONS The extracellular domain of the epidermal growth factor-like (EGF-like) repeats, and the thrombospondin type-I (TSP-1) repeats of E. tenella micronemal protein 4 (EtMIC4) matched with the c7c mer selected clones CNTGSPYEC (2/20) and CMSTGLSSC (1/20) respectively. The clone CSISSLTHC that matched with a conserved hypothetical protein of E. tenella was widely selected (3/20). Selected clones from the 12-mer phage display library AGHTTQFNSKTT (7/20), GPNSAFWAGSER (2/20) and HFAYWWNGVRGP (8/20) showed similarities with a cullin homolog, elongation factor-2 and beta-dynein chain a putative E. tenella protein, respectively. Four immunodominant clones were previously selected and used to immunize rabbits. By ELISA and Western blot, all rabbit anti-clone serums detected E. tenella native antigens. DISCUSSION Thus, selected phagotopes contained recombinant E. tenella antigen peptides. Using antibodies against E. tenella sporozoites, this study demonstrated the feasibility of screening Phage-display random peptide libraries for true immunotopes. In addition, this study looked at an approach for finding novel candidates that could be used as an E. tenella recombinant epitope-based vaccine.
Collapse
Affiliation(s)
- Marco A. Juárez-Estrada
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Danielle M. Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Lauren Laverty
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Amanda Gayosso-Vázquez
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rogelio A. Alonso-Morales
- Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
43
|
Britez JD, Rodriguez AE, Di Ciaccio L, Marugán-Hernandez V, Tomazic ML. What Do We Know about Surface Proteins of Chicken Parasites Eimeria? Life (Basel) 2023; 13:1295. [PMID: 37374079 DOI: 10.3390/life13061295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Poultry is the first source of animal protein for human consumption. In a changing world, this sector is facing new challenges, such as a projected increase in demand, higher standards of food quality and safety, and reduction of environmental impact. Chicken coccidiosis is a highly widespread enteric disease caused by Eimeria spp. which causes significant economic losses to the poultry industry worldwide; however, the impact on family poultry holders or backyard production-which plays a key role in food security in small communities and involves mainly rural women-has been little explored. Coccidiosis disease is controlled by good husbandry measures, chemoprophylaxis, and/or live vaccination. The first live vaccines against chicken coccidiosis were developed in the 1950s; however, after more than seven decades, none has reached the market. Current limitations on their use have led to research in next-generation vaccines based on recombinant or live-vectored vaccines. Next-generation vaccines are required to control this complex parasitic disease, and for this purpose, protective antigens need to be identified. In this review, we have scrutinised surface proteins identified so far in Eimeria spp. affecting chickens. Most of these surface proteins are anchored to the parasite membrane by a glycosylphosphatidylinositol (GPI) molecule. The biosynthesis of GPIs, as well as the role of currently identified surface proteins and interest as vaccine candidates has been summarised. The potential role of surface proteins in drug resistance and immune escape and how these could limit the efficacy of control strategies was also discussed.
Collapse
Affiliation(s)
- Jesica Daiana Britez
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Anabel Elisa Rodriguez
- Instituto Nacional de Tecnología Agropecuaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Lucía Di Ciaccio
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | | | - Mariela Luján Tomazic
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Ciudad Autónoma de Buenos Aires 1113, Argentina
| |
Collapse
|
44
|
Yang C, Das Q, Rehman MA, Yin X, Shay J, Gauthier M, Lau CHF, Ross K, Diarra MS. Microbiome of Ceca from Broiler Chicken Vaccinated or Not against Coccidiosis and Fed Berry Pomaces. Microorganisms 2023; 11:1184. [PMID: 37317158 DOI: 10.3390/microorganisms11051184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
American cranberry (Vaccinium macrocarpon) and lowbush/wild blueberry (V. angustifolium) pomace are polyphenol-rich products having potentially beneficial effects in broiler chickens. This study investigated the cecal microbiome of broiler-vaccinated or non-vaccinated birds against coccidiosis. Birds in each of the two groups (vaccinated or non-vaccinated) were fed a basal non-supplemented diet (NC), a basal diet supplemented with bacitracin (BAC), American cranberry (CP), and lowbush blueberry (BP) pomace alone or in combination (CP + BP). At 21 days of age, cecal DNA samples were extracted and analyzed using both whole-metagenome shotgun sequencing and targeted-resistome sequencing approaches. Ceca from vaccinated birds showed a lower abundance of Lactobacillus and a higher abundance of Escherichia coli than non-vaccinated birds (p < 0.05). The highest and lowest abundance of L. crispatus and E. coli, respectively, were observed in birds fed CP, BP, and CP + BP compared to those from NC or BAC treatments (p < 0.05). Coccidiosis vaccination affected the abundance of virulence genes (VGs) related to adherence, flagella, iron utilization, and secretion system. Toxin-related genes were observed in vaccinated birds (p < 0.05) in general, with less prevalence in birds fed CP, BP, and CP + BP than NC and BAC (p < 0.05). More than 75 antimicrobial resistance genes (ARGs) detected by the shotgun metagenomics sequencing were impacted by vaccination. Ceca from birds fed CP, BP, and CP + BP showed the lowest (p < 0.05) abundances of ARGs related to multi-drug efflux pumps, modifying/hydrolyzing enzyme and target-mediated mutation, when compared to ceca from birds fed BAC. Targeted metagenomics showed that resistome from BP treatment was distant to other groups for antimicrobials, such as aminoglycosides (p < 0.05). Significant differences in the richness were observed between the vaccinated and non-vaccinated groups for aminoglycosides, β-lactams, lincosamides, and trimethoprim resistance genes (p < 0.05). Overall, this study demonstrated that dietary berry pomaces and coccidiosis vaccination significantly impacted cecal microbiota, virulome, resistome, and metabolic pathways in broiler chickens.
Collapse
Affiliation(s)
- Chongwu Yang
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| | - Quail Das
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| | - Muhammad A Rehman
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| | - Xianhua Yin
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| | - Julie Shay
- Ottawa Laboratory (Carling) Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1Y 4K7, Canada
| | - Martin Gauthier
- Biological Informatics Centre of Excellence, AAFC, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Calvin Ho-Fung Lau
- Ottawa Laboratory (Carling) Research and Development, Canadian Food Inspection Agency, Ottawa, ON K1Y 4K7, Canada
| | - Kelly Ross
- Summerland Research and Development Center, AAFC, Summerland, BC V0H 1Z0, Canada
| | - Moussa S Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada (AAFC), Guelph, ON N1G 5C9, Canada
| |
Collapse
|
45
|
Saeed Z, Alkheraije KA. Botanicals: A promising approach for controlling cecal coccidiosis in poultry. Front Vet Sci 2023; 10:1157633. [PMID: 37180056 PMCID: PMC10168295 DOI: 10.3389/fvets.2023.1157633] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 05/15/2023] Open
Abstract
Avian species have long struggled with the problem of coccidiosis, a disease that affects various parts of the intestine, including the anterior gut, midgut, and hindgut. Among different types of coccidiosis, cecal coccidiosis is particularly dangerous to avian species. Chickens and turkeys are commercial flocks; thus, their parasites have remained critical due to their economic importance. High rates of mortality and morbidity are observed in both chickens and turkeys due to cecal coccidiosis. Coccidiostats and coccidiocidal chemicals have traditionally been added to feed and water to control coccidiosis. However, after the EU banned their use because of issues of resistance and public health, alternative methods are being explored. Vaccines are also being used, but their efficacy and cost-effectiveness remain as challenges. Researchers are attempting to find alternatives, and among the alternatives, botanicals are a promising choice. Botanicals contain multiple active compounds such as phenolics, saponins, terpenes, sulfur compounds, etc., which can kill sporozoites and oocysts and stop the replication of Eimeria. These botanicals are primarily used as anticoccidials due to their antioxidant and immunomodulatory activities. Because of the medicinal properties of botanicals, some commercial products have also been developed. However, further research is needed to confirm their pharmacological effects, mechanisms of action, and methods of concentrated preparation. In this review, an attempt has been made to summarize the plants that have the potential to act as anticoccidials and to explain the mode of action of different compounds found within them.
Collapse
Affiliation(s)
- Zohaib Saeed
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Khalid A. Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
46
|
Zhou X, Wang L, Zhu P, Yang Z, Wang Z, Chen Y, Gu X, He R, Xu J, Jing B, Yang G, Chen S, Wu S, Xie Y. Comprehensive molecular characterization of complete mitogenome assemblies of 33 Eimeria isolates infecting domestic chickens. Parasit Vectors 2023; 16:109. [PMID: 36935516 PMCID: PMC10026407 DOI: 10.1186/s13071-023-05712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/22/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Coccidiosis caused by Eimeria is one of the most severe chicken diseases and poses a great economic threat to the poultry industry. Understanding the evolutionary biology of chicken Eimeria parasites underpins development of new interactions toward the improved prevention and control of this poultry disease. METHODS We presented an evolutionary blueprint of chicken coccidia by genetically characterizing complete mitogenome assemblies of 33 isolates representing all seven known Eimeria species infecting chickens in China. Further genome- and gene-level phylogenies were also achieved to better understand the evolutionary relationships of these chicken Eimeria at the species level. RESULTS 33 mitogenomes of chicken eimerian parasites ranged from 6148 bp to 6480 bp in size and encoded typical mitochondrial compositions of apicomplexan parasites including three protein-coding genes (PCGs), seven fragmented small subunit (SSU) and 12/13 fragmented large subunit (LSU) rRNAs. Comparative genomics provided an evolutionary scenario for the genetic diversity of PCGs-cytochrome c oxidase subunits 1 and 3 (cox1 and cox3) and cytochrome b (cytb); all were under purifying selection with cox1 and cox3 being the lowest and highest evolutionary rates, respectively. Genome-wide phylogenies classified the 33 Eimeria isolates into seven subgroups, and furthermore Eimeria tenella and Eimeria necatrix were determined to be more closely related to each other than to the other eight congenic species. Single/concatenated mitochondrial protein gene-based phylogenies supported cox1 as the genetic marker for evolutionary and phylogenetic studies for avain coccidia. CONCLUSIONS To our knowledge, these are the first population-level mitogenomic data on the genus Eimeria, and its comprehensive molecular characterization provides valuable resources for systematic, population genetic and evolutionary biological studies of apicomplexan parasites in poultry.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130, China
| | - Lidan Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130, China
| | - Pengchen Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130, China
| | - Zijiang Yang
- Tokyo University of Marine Science and Technology, Konan Minato-Ku, Tokyo, 1088477, Japan
| | - Zhao Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130, China
| | - Yijun Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130, China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130, China.
| | - Shuangyang Wu
- Gregor Mendel Institute, Austrian Academy of Sciences, 1030, Vienna, Austria.
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan, 611130, China.
| |
Collapse
|
47
|
Jelveh K, Mottaghitalab M, Mohammadi M. Effects of green tea phytosome on growth performance and intestinal integrity under coccidiosis infection challenge in broilers. Poult Sci 2023; 102:102627. [PMID: 36996511 PMCID: PMC10074246 DOI: 10.1016/j.psj.2023.102627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
This research examined the effects of feeding phytosomal green tea on broilers infected with coccidia. To provide phytosome, green tea extract was loaded into soy lecithin. Groups of chicks included uninfected and untreated control (NC), infected and untreated control (PC), infected and treated with salinomycin control (SC), infected and treated with 300 and 400 mL of green tea extract (GTE300, GTE400), infected and treated with 200, 300, 400 and 500 mL of green tea phytosome (GTP200, GTP300, GTP400, and GTP500). At 14-days posthatch, chickens were orally gavaged, except the NC group with a coccidia vaccine 30 times larger than the approved dose. Body weight (BW), feed intake (FI), and feed conversion ratio (FCR) were determined at 7, 14, 20, 28, 35, and 42 d. The characteristics of the carcass, internal organs and intestinal morphology were assessed on d 42. Applying overdose of coccidiosis vaccine showed experimental Eimeria infection, led to decrease in FI and BW, and increased FCR compared to PC group (P < 0.001). Meanwhile salinomycin, green tea extract, and green tea phytosome compensated the negative effects of Eimeria infection on growth performance. The treatments did not affect carcass, breast, and thigh relative weights. Interestingly, abdominal fat percent was significantly lower in chickens fed GTP300, GTP400, and GTP500 than in those fed GTE300, GTE300, and GTP200 (P < 0.0001). In comparison to the basal diet plus green tea extract forms and NC groups, the PC group increased the relative weights of the liver, spleen, bursa, and pancreas (P < 0.05). The highest values of villus height and villus height to crypt ratio were obtained in duodenum, jejunum and ileum in GTP300 group (P < 0.0001), while, villi diameter in duodenum and ileum decreased the most in GTP300 and GTP500, respectively (P < 0.0001). Consequently, as natural anticoccidial drug delivery systems, 300 mL of green tea phytosome can be introduced as the optimal dose to maximize the benefits of phytosome for intestinal integrity and reduce the consumption of green tea extract.
Collapse
|
48
|
Dietary Supplementation with Eugenol Nanoemulsion Alleviates the Negative Effects of Experimental Coccidiosis on Broiler Chicken's Health and Growth Performance. Molecules 2023; 28:molecules28052200. [PMID: 36903445 PMCID: PMC10005078 DOI: 10.3390/molecules28052200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The present study investigated the protective efficacy of dietary supplementation with clove essential oil (CEO), its main constituent eugenol (EUG), and their nanoformulated emulsions (Nano-CEO and Nano-EUG) against experimental coccidiosis in broiler chickens. To this aim, various parameters (oocyst number per gram of excreta (OPG), daily weight gain (DWG), daily feed intake (DFI), feed conversion ratio (FCR), serum concentrations of total proteins (TP), albumin (ALB), globulins (GLB), triglycerides (TG), cholesterol (CHO) and glucose (GLU), serum activity of superoxide dismutase (SOD), glutathione s-transferase (GST), and glutathione peroxidase (GPx)] were compared among groups receiving CEO supplemented feed (CEO), Nano-CEO supplemented feed (Nano-CEO), EUG supplemented feed (EUG), Nano-EUG supplemented feed (Nano-EUG), diclazuril supplemented feed (standard treatment, ST), or basal diet [diseased control (d-CON) and healthy control (h-CON)), from days 1-42. Chickens of all groups, except h-CON, were challenged with mixed Eimeria spp. at 14 days of age. Coccidiosis development in d-CON was associated with impaired productivity (lower DWG and higher DFI and FCR relative to h-CON; p < 0.05) and altered serum biochemistry (decreased TP, ALB, and GLB concentrations and SOD, GST, and GPx activities relative to h-CON; p < 0.05). ST effectively controlled coccidiosis infection by significantly decreasing OPG values compared with d-CON (p < 0.05) and maintaining zootechnical and serum biochemical parameters at levels close to (DWG, FCR; p < 0.05) or not different from (DFI, TP, ALB, GLB, SOD, GST, and GPx) those of h-CON. Among the phytogenic supplemented (PS) groups, all showed decreased OPG values compared with d-CON (p < 0.05), with the lowest value being measured in Nano-EUG. All PS groups showed better values of DFI and FCR than d-CON (p < 0.05), but only in Nano-EUG were these parameters, along with DWG, not different from those of ST. Furthermore, Nano-EUG was the only PS group having all serum biochemical values not different (or even slightly improved) relative to ST and h-CON. In conclusion, the tested PS diets, especially Nano-EUG, can limit the deleterious effects of coccidiosis in broiler chickens, due to anticoccidial activity and possibly their reported antioxidant and anti-inflammatory properties, thereby representing a potential green alternative to synthetic anticoccidials.
Collapse
|
49
|
Lee Y, Park I, Lillehoj HS. Oral administration of chicken NK-lysin or recombinant chicken IL-7 improves vaccine efficacy of Eimeria tenella elongation factor-1α (EF-1α) against coccidiosis in commercial broiler chickens. Poult Sci 2023; 102:102611. [PMID: 36940651 PMCID: PMC10036930 DOI: 10.1016/j.psj.2023.102611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023] Open
Abstract
The synergistic effects of orally-delivered chicken NK-lysin peptide 2 (cNK-2) or recombinant chicken IL-7 (rchIL-7) on vaccination with recombinant Eimeria elongation factor-1α (rEF-1α) against Eimeria maxima (E. maxima) infection was investigated in broiler chickens. Chickens were divided into six groups: control (CON, no Eimeria infection), non-immunized control (NC, PBS), Vaccination 1 (VAC 1, rEF-1α plus cNK-2), Vaccination 2 (VAC 2, rchIL-7 plus cNK-2), Vaccination 3 (VAC 3, rEF-1α/rchIL-7 plus cNK-2), and Vaccination 4 (VAC 4, rEF-1α/rchIL-7 plus cNK-2). All groups, except the CON and NC, were orally treated with cNK-2 for 5 days. The first immunization, except for the VAC 4 group, was performed intramuscularly on day 4, and the second immunization was given with the same concentration of components as the primary immunization one week later. The immunization of the VAC 4 group was carried out by an oral inoculation on the same days. On day 19, all chickens except the CON group, were orally challenged with E. maxima (1.0 × 104 oocysts/chicken). The in vivo vaccination results showed that the VAC 1 and VAC 3 groups produced high (p < 0.05) levels of serum antibody titers to rEF-1α, and the VAC 3 showed enhanced (p < 0.05) levels of serum IL-7. Furthermore, the VAC 3 group showed significantly (p < 0.01) greater body weight gains at 6- and 9-days post-E. maxima infection (dpi) with reduced oocyst shedding at 6 dpi. The average jejunal lesion score of the NC group was 2.5 whereas the VAC 1 group showed a significantly (p < 0.05) lower lesion scores at 6 dpi. E. maxima infection significantly (P < 0.05) up-regulated the expression levels of cytokines (IL-6, IL-10 and IFN-γ) in the jejunum at 4 dpi, but those expressions were down-regulated in VAC 1 or VAC 3 groups. Moreover, the gene expression levels of Jam 2 and Occludin, were significantly (P < 0.05) decreased following E. maxima infection in jejunum at 4 dpi (NC), but their expressions were increased in the VAC 3 group. Collectively, these results showed that the efficacy of rEF-1α vaccination was significantly enhanced when rEF-1α vaccine co-immunized with chIL-7 or cNK-2.
Collapse
Affiliation(s)
- Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.
| |
Collapse
|
50
|
Wattrang E, Lundén A, Ibrahim O, Dalgaard TS. Phenotypic characterization of Eimeria tenella-specific chicken T-cells responding to in vitro parasite antigen re-stimulation. J Med Microbiol 2023; 72. [PMID: 36748566 DOI: 10.1099/jmm.0.001650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction. Coccidiosis, caused by protozoan parasites of genus Eimeria, is a disease with large impact on poultry production worldwide. It is well known that Eimeria immunity is dependent on Th1-type responses.Gap Statement. In vitro assessment of Eimeria-specific T-cell activity would therefore be a valuable research tool but has so far proven difficult to establish.Aim. The present study aimed to evaluate in vitro induced blast transformation and CD25 expression in defined chicken T-cell populations as a measure of Eimeria immunity.Methodology. Three E. tenella infection experiments were performed and PBMC and/or spleen cells were collected between 6 and 16 days after infection of chickens. Cells were stimulated in vitro with E. tenella antigens and T-cell activation was assessed by immunofluorescence labelling and flow cytometry.Results. The results consistently showed statistically significant E. tenella specific activation of TCRα/β+T cells within a 'window' from 8 to 14 days after infection for both spleen cells and PBMC. Responding T-cells were identified as CD4+CD8-, CD4+CD8αα+ and CD4-CD8αβ+ where the CD4+CD8αα+ cells generally showed the highest responses. All three of these TCRα/βT-cell subsets showed significant E. tenella induced blast transformation and/or CD25 expression albeit not always in concert on the same days after infection indicating complex kinetics of T-cell responses. In general, responses were higher for spleen cells compared to PBMC for all responding T-cell populations.Conclusions. This methodology shows promise to study Eimeria-specific T-cells, e.g. to evaluate vaccine responses. Results indicated that a Th1-type response was induced and suggested a role for CD4+CD8αα+ cells in Eimeria immunity.
Collapse
Affiliation(s)
- Eva Wattrang
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Anna Lundén
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Osama Ibrahim
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | | |
Collapse
|