1
|
Geisen C, Fleck E, Schäfer SMG, Walter C, Braeuninger S, Jensen JS, Sheridan D, Patki K, Armstrong R, Skogen B, Behrens F, Seifried E, Kjeldsen-Kragh J, Kjær M, Köhm M. A Phase 1b PK/PD Study to Demonstrate Antigen Elimination with RLYB212, A Monoclonal Anti-HPA-1a Antibody for FNAIT Prevention. Thromb Haemost 2025; 125:352-363. [PMID: 39168139 PMCID: PMC11961231 DOI: 10.1055/a-2398-9344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a rare bleeding disorder of the fetus/newborn caused by development of maternal alloantibodies against fetal human platelet antigens (HPAs), predominantly HPA-1a. Currently there are no treatments available to prevent maternal alloimmunization to HPAs or FNAIT.This proof-of-concept study (EudraCT Number: 2021-005380-49) was designed to assess the ability of subcutaneous (SC) RLYB212, a monoclonal anti-HPA-1a antibody, to eliminate HPA-1a-positive platelets in an antigen challenge model of a 30 mL fetal-maternal hemorrhage. Subjects were randomized to receive a single SC dose of RLYB212 or placebo on day 1 in a single-blinded manner, followed by transfusion of 10 × 109 HPA-1a-positive platelets on day 8.Four subjects received 0.09 mg SC RLYB212, five received 0.29 mg SC RLYB212, and two received placebo. RLYB212 achieved rapid elimination of HPA-1a-positive platelets in a concentration-dependent manner, with concentrations as low as 3.57 ng/mL meeting the prespecified proof-of-concept criterion of ≥90% reduction in platelet elimination half-life versus placebo. Following HPA-1a-positive platelet transfusion, a rapid decline was observed in the concentration of RLYB212 over a period of 2 to 24 hours, corresponding to the time needed for RLYB212 to bind to ∼10% of HPA-1a on cell surfaces. RLYB212 was well tolerated with no reports of drug-related adverse events.The data from this study are consistent with preclinical efficacy data and support the potential use of RLYB212 as a prophylactic treatment for FNAIT that prevents maternal HPA-1a alloimmunization during at-risk pregnancies.
Collapse
Affiliation(s)
- Christof Geisen
- Institute of Transfusion Medicine and Immunohaematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen GmbH, Frankfurt am Main, Germany
| | - Erika Fleck
- Institute of Transfusion Medicine and Immunohaematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen GmbH, Frankfurt am Main, Germany
| | - Stephan Martin Gastón Schäfer
- Division Clinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Carmen Walter
- Division Clinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Susanne Braeuninger
- Institute of Transfusion Medicine and Immunohaematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen GmbH, Frankfurt am Main, Germany
| | | | | | - Kiran Patki
- Rallybio, New Haven, Connecticut, United States
| | | | - Bjørn Skogen
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Frank Behrens
- Division Clinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital Goethe-University Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Frankfurt am Main, Germany
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohaematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen GmbH, Frankfurt am Main, Germany
| | - Jens Kjeldsen-Kragh
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Mette Kjær
- Faculty of Health Sciences, UiT—The Arctic University of Norway, Hammerfest, Norway
- Finnmark Hospital Trust, Hammerfest, Norway
| | - Michaela Köhm
- Division Clinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Division of Rheumatology, University Hospital Goethe-University Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Géraud A, Gougis P, de Nonneville A, Beaufils M, Bertucci F, Billon E, Brisou G, Gravis G, Greillier L, Guerin M, Mezni E, Mitry E, Noel R, Pignon J, Sabatier R, Seguin L, Spano JP, Vicier C, Viret F, Goncalves A, Ciccolini J. Pharmacology and pharmacokinetics of antibody-drug conjugates, where do we stand? Cancer Treat Rev 2025; 135:102922. [PMID: 40157134 DOI: 10.1016/j.ctrv.2025.102922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025]
Abstract
Antibody-drug conjugates (ADCs) are a rising therapeutic class in oncology and hematology, with eleven drugs approved by the US Food and Drug Administration as of January 2025. These "magic bullets" have a complex structure, including a monoclonal antibody, a linker, attachment sites, and a payload usually disrupting microtubules, targeting DNA, or inhibiting topoisomerase 1. By targeting specific tumor antigens, they are expected to be exquisitely effective in releasing "supertoxic" payloads inside tumor cells after intracellular trafficking. Additionally, they may exert a bystander effect, wherein the released payloads act on neighboring cells, amplifying their therapeutic impact regardless of target expression. ADCs have been game-changing drugs to treat tumors with once dismal prognoses or with previously considered unactionable targets, such as HER2-low or triple-negative breast cancer. To what extent there is room for personalized medicine to improve the toxicity/efficacy ratio remains unknown. However, there are inherent issues related to the complexity of the pharmacokinetics of ADCs and their assessments: efficacy or toxicity may be influenced by the clearance of the intact ADC, the circulating payload, or the payload-linker complex. Deciphering these multifaceted exposure-outcomes relationships for both efficacy and safety endpoints, is critical for advancing precision medicine and enabling personalized dosing strategies. To improve future developments and broaden their therapeutic scope, several strategies can be developed, including developing adequate combinations with other treatment classes (cytotoxic agents, immune-checkpoint inhibitors, oral molecular-targeted therapies). In this review, we will discuss the PK/PD aspects of ADCs and their dosing to improve their use in current and future indications.
Collapse
Affiliation(s)
- Arthur Géraud
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France; COMPO Team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, Aix Marseille University, 13009 Marseille, France.
| | - Paul Gougis
- Department of Medical Oncology, Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris (AP-HP), 75013 Paris, France; Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Assistance Publique - Hôpitaux de Paris (AP-HP), Clinical Investigation Center (CIC-1901), Department of Pharmacology, Pitié-Salpêtrière Hospital, Paris, France; Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Institut Curie, France
| | - Alexandre de Nonneville
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Mathilde Beaufils
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - François Bertucci
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Emilien Billon
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Gabriel Brisou
- Department of Hematology, Institut Paoli-Calmettes, CRCM, Aix-Marseille University,13009 Marseille, France
| | - Gwenaelle Gravis
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Laurent Greillier
- COMPO Team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, Aix Marseille University, 13009 Marseille, France; Department of Multidisciplinary Oncology and Therapeutic Innovations, Assistance Publique-Hôpitaux de Marseille (AP-HM), Aix Marseille University (AMU), 13015 Marseille, France
| | - Mathilde Guerin
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Essia Mezni
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Emmanuel Mitry
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Robin Noel
- Department of Hematology, Institut Paoli-Calmettes, CRCM, Aix-Marseille University,13009 Marseille, France
| | - Joséphine Pignon
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Renaud Sabatier
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Lorène Seguin
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Jean-Philippe Spano
- Department of Medical Oncology, Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris (AP-HP), 75013 Paris, France
| | - Cécile Vicier
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Frederic Viret
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Anthony Goncalves
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Department of Medical Oncology, CRCM, Marseille, France
| | - Joseph Ciccolini
- COMPO Team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, Aix Marseille University, 13009 Marseille, France; Biogenopole, La timone University Hospital of Marseille, Assistance Publique-Hôpitaux de Marseille (AP-HM), 13005 Marseille, France
| |
Collapse
|
3
|
Kline JB, Grasso L, Nicolaides NC. ICAM-1 Is Overexpressed by Cancers and Negatively Impacts Antibody-Based Therapies Including Antibody-Drug Conjugates. Eur J Immunol 2025; 55:e202451611. [PMID: 40111003 DOI: 10.1002/eji.202451611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
Humoral immunity utilizes antibodies and immune effector cells to mediate dysregulated cancer cell killing. These mechanisms are referred to as Humoral Immuno-Oncology (HIO). HIO immunosuppression is mediated by tumor-produced proteins called HIO factors. Using a combination of patient serum analysis and literature searches, we screened a number of samples to determine if they suppressed HIO. Herein, we identified that ICAM-1 (intercellular adhesion molecule 1) can bind IgG1-type antibodies and suppress their immune effector activity. Through a series of mutagenesis, we identified a unique motif within the IgG1CH3 domain essential for ICAM-1 binding, which inhibits antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Conservative amino acid substitutions within the CH3 domain were able to abrogate ICAM-1 binding and overcome ICAM-1 mediated immune effector suppression. Additionally, isogenic tumor cell lines with silenced ICAM-1 expression were more susceptible to antibody-drug conjugate (ADCs) cytotoxicity than parental cells. This effect appeared to correlate with membrane ICAM-1 binding to the IgG1 component that reduced ADC internalization, a function important for maximal target cell killing. These findings highlight a novel mechanism by which tumors can suppress the host's immune system for survival and offer new concepts for engineering antibody-based therapeutics that are refractory to ICAM-1 immunosuppression.
Collapse
Affiliation(s)
- J Bradford Kline
- Navrogen Inc., 1837 University Circle, Cheyney, Pennsylvania, USA
| | - Luigi Grasso
- Navrogen Inc., 1837 University Circle, Cheyney, Pennsylvania, USA
| | | |
Collapse
|
4
|
de Taeye SW, Faye L, Morel B, Schriek AI, Umotoy JC, Yuan M, Kuzmina NA, Turner HL, Zhu X, Grünwald-Gruber C, Poniman M, Burger JA, Caniels TG, Fitchette AC, Desgagnés R, Stordeur V, Mirande L, Beauverger G, de Bree G, Ozorowski G, Ward AB, Wilson IA, Bukreyev A, Sanders RW, Vezina LP, Beaumont T, van Gils MJ, Gomord V. Plant-produced SARS-CoV-2 antibody engineered towards enhanced potency and in vivo efficacy. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:4-16. [PMID: 39563066 DOI: 10.1111/pbi.14458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/12/2024] [Accepted: 08/16/2024] [Indexed: 11/21/2024]
Abstract
Prevention of severe COVID-19 disease by SARS-CoV-2 in high-risk patients, such as immuno-compromised individuals, can be achieved by administration of antibody prophylaxis, but producing antibodies can be costly. Plant expression platforms allow substantial lower production costs compared to traditional bio-manufacturing platforms depending on mammalian cells in bioreactors. In this study, we describe the expression, production and purification of the originally human COVA2-15 antibody in plants. Our plant-produced mAbs demonstrated comparable neutralizing activity with COVA2-15 produced in mammalian cells. Furthermore, they exhibited similar capacity to prevent SARS-CoV-2 infection in a hamster model. To further enhance these biosimilars, we performed three glyco- and protein engineering techniques. First, to increase antibody half-life, we introduced YTE-mutation in the Fc tail; second, optimization of N-linked glycosylation by the addition of a C-terminal ER-retention motif (HDEL), and finally; production of mAb in plant production lines lacking β-1,2-xylosyltransferase and α-1,3-fucosyltransferase activities (FX-KO). These engineered biosimilars exhibited optimized glycosylation, enhanced phagocytosis and NK cell activation capacity compared to conventional plant-produced S15 and M15 biosimilars, in some cases outperforming mammalian cell produced COVA2-15. These engineered antibodies hold great potential for enhancing in vivo efficacy of mAb treatment against COVID-19 and provide a platform for the development of antibodies against other emerging viruses in a cost-effective manner.
Collapse
Affiliation(s)
- Steven W de Taeye
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Loïc Faye
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
| | - Bertrand Morel
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
| | - Angela I Schriek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Jeffrey C Umotoy
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | - Meliawati Poniman
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Tom G Caniels
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | | | | | - Virginie Stordeur
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
| | - Lucie Mirande
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
| | | | - Godelieve de Bree
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | | | - Tim Beaumont
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam institute for Immunology and Infectious Diseases, Infectious Diseases, Amsterdam, The Netherlands
| | - Véronique Gomord
- ANGANY Innovation, 1 voie de l'innovation, Pharmaparc II, Val de Reuil, France
- ANGANY Inc, Québec, Quebec, Canada
| |
Collapse
|
5
|
Pitaro M, Antonini G, Arcovito A, Buccisano F, De Lauro A, Irno Consalvo M, Gallo V, Giacon N, Mangiatordi GF, Pacelli M, Pitaro MT, Polticelli F, Sorrenti M, Venditti A. Development of a recombinant human IgG1 monoclonal antibody against the TRBV5-1 segment of the T cell receptor for the treatment of mature T cell neoplasms. Front Immunol 2024; 15:1520103. [PMID: 39742266 PMCID: PMC11686114 DOI: 10.3389/fimmu.2024.1520103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
Background Mature T-cell neoplasms arise from the neoplastic transformation of a single T lymphocyte, and all cells in a neoplastic clone share the same V segment in the beta chain of the T-cell receptor (TCR). These segments may represent an innovative target for the development of targeted therapies. Methods A specific V segment of the TCR beta chain (TRBV5-1) was analyzed using bioinformatic tools, identifying three potential antigenic peptides. One of these peptides, selected for synthesis, was used to screen a library of human single-chain variable fragments (scFv) through phage display. One fragment demonstrated high affinity and specificity for the antigen and was used to produce a human monoclonal antibody of the IgG1 class. Results Surface plasmon resonance (SPR) studies confirmed the high affinity of the monoclonal antibody for the antigen in the nanomolar range. Flow cytometry analysis on patients' samples demonstrated that the antibody, conjugated with a fluorochrome, selectively binds to tumor T lymphocytes expressing TRBV5-1, without binding to other lymphocytes or blood cell components. Conclusions The development of fully human IgG1 monoclonal antibodies targeting specific V segments of the TCR beta chain represents a potential therapeutic option for patients with mature T-cell neoplasms.
Collapse
Affiliation(s)
- Michele Pitaro
- INBB – Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Giovanni Antonini
- INBB – Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
- Dipartimento di Scienze, Università di Roma Tre, Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche, Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Buccisano
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Rome, Italy
| | | | - Maria Irno Consalvo
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Rome, Italy
| | - Valentina Gallo
- Dipartimento di Scienze, Università di Roma Tre, Rome, Italy
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche, Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | - Adriano Venditti
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Wang W, Maliepaard JCL, Damelang T, Vidarsson G, Heck AJ, Reiding KR. Human IgG Subclasses Differ in the Structural Elements of Their N-Glycosylation. ACS CENTRAL SCIENCE 2024; 10:2048-2058. [PMID: 39634222 PMCID: PMC11613209 DOI: 10.1021/acscentsci.4c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024]
Abstract
Although immunoglobulin G (IgG) harbors just one N-glycosylation site per heavy chain, this glycosylation plays a key role in modulating its function. In human serum, IgG is classified into four subclasses (IgG1, IgG2, IgG3, IgG4), each characterized by unique features in their sequences, disulfide bridges and glycosylation signatures. While protein glycosylation is typically studied at the compositional level, this severely underestimates the complexity of the molecules involved. Glycan functionality heavily relies on the precise linkages and branching between monosaccharides, yet these features are challenging to study. Here, by development of a nanohydrophilic interaction chromatography (HILIC)-LC-MS/MS method, we reveal distinct structural glycosylation signatures for each of the four IgG subclasses, namely that IgG1 and IgG3 display predominant galactosylation of the 6-branched antenna, IgG2 instead of the 3-branched antenna, while IgG4 displays a balance. These and other subclass-specific glycostructural elements proved observable in both recombinant and endogenous IgGs as present in human plasma, in which interindividual differences and temporal stability could be demonstrated. Structural glycoproteomics is expected to fundamentally alter the way in which we study IgG, opening up a new layer of functional investigation and biomarker development, while also revealing new key structural differences between recombinant IgG subclasses in therapeutic applications.
Collapse
Affiliation(s)
- Weiwei Wang
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The
Netherlands
- Netherlands
Proteomics Center, 3584
CS Utrecht, The
Netherlands
- School
of Pharmaceutical Science, Shanghai Jiao
Tong University, 800
Dongchuan Road, 200240 Shanghai, People’s Republic
of China
| | - Joshua C. L. Maliepaard
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The
Netherlands
- Netherlands
Proteomics Center, 3584
CS Utrecht, The
Netherlands
| | - Timon Damelang
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The
Netherlands
- Sanquin
Research, Department of Experimental Immunohematology
and Landsteiner Laboratory, Amsterdam 1006 AD, The Netherlands
- Sanquin
Research, Department of Immunopathology, Amsterdam 1006 AD, The Netherlands
| | - Gestur Vidarsson
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The
Netherlands
- Netherlands
Proteomics Center, 3584
CS Utrecht, The
Netherlands
- Sanquin
Research, Immunoglobulin Research Laboratory, Amsterdam 1006 AD, The Netherlands
| | - Albert J.R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The
Netherlands
- Netherlands
Proteomics Center, 3584
CS Utrecht, The
Netherlands
| | - Karli R. Reiding
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The
Netherlands
- Netherlands
Proteomics Center, 3584
CS Utrecht, The
Netherlands
| |
Collapse
|
7
|
Gutierrez-Valdes N, Cunyat F, Balieu J, Walet-Balieu ML, Paul MJ, de Groot J, Blanco-Perera A, Carrillo J, Lerouge P, Seters MJV, Joensuu JJ, Bardor M, Ma J, Blanco J, Ritala A. Production and characterization of novel Anti-HIV Fc-fusion proteins in plant-based systems: Nicotiana benthamiana & tobacco BY-2 cell suspension. N Biotechnol 2024; 83:142-154. [PMID: 39142626 DOI: 10.1016/j.nbt.2024.08.499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Multifunctional anti-HIV Fc-fusion proteins aim to tackle HIV efficiently through multiple modes of action. Although results have been promising, these recombinant proteins are hard to produce. This study explored the production and characterization of anti-HIV Fc-fusion proteins in plant-based systems, specifically Nicotiana benthamiana plants and tobacco BY-2 cell suspension. Fc-fusion protein expression in plants was optimized by incorporating codon optimization, ER retention signals, and hydrophobin fusion elements. Successful transient protein expression was achieved in N. benthamiana, with notable improvements in expression levels achieved through N-terminal hydrophobin fusion and ER retention signals. Stable expression in tobacco BY-2 resulted in varying accumulation levels being at highest 2.2.mg/g DW. The inclusion of hydrophobin significantly enhanced accumulation, providing potential benefits for downstream processing. Mass spectrometry analysis confirmed the presence of the ER retention signal and of N-glycans. Functional characterization revealed strong binding to CD64 and CD16a receptors, the latter being important for antibody-dependent cellular cytotoxicity (ADCC). Interaction with HIV antigens indicated potential neutralization capabilities. In conclusion, this research highlights the potential of plant-based systems for producing functional anti-HIV Fc-fusion proteins, offering a promising avenue for the development of these novel HIV therapies.
Collapse
Affiliation(s)
- Noemi Gutierrez-Valdes
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland
| | - Francesc Cunyat
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Juliette Balieu
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Marie-Laure Walet-Balieu
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Matthew J Paul
- St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Jonas de Groot
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland
| | | | - Jorge Carrillo
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Patrice Lerouge
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | | | - Jussi J Joensuu
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland; University of Helsinki, Faculty of Biological and Environmental Sciences, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Muriel Bardor
- Université de Rouen Normandie, Laboratoire GlycoMEV UR4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, Rouen F-76000, France
| | - Julian Ma
- St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Julià Blanco
- AlbaJuna Therapeutics SL, Carretera Canyet, Badalona 08916, Spain
| | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044 VTT, Finland.
| |
Collapse
|
8
|
van der Horst HJ, Mutis T. Enhancing Fc-mediated effector functions of monoclonal antibodies: The example of HexaBodies. Immunol Rev 2024; 328:456-465. [PMID: 39275983 PMCID: PMC11659923 DOI: 10.1111/imr.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Since the approval of the CD20-targeting monoclonal antibody (mAb) rituximab for the treatment of lymphoma in 1997, mAb therapy has significantly transformed cancer treatment. With over 90 FDA-approved mAbs for the treatment of various hematological and solid cancers, modern cancer treatment relies heavily on these therapies. The overwhelming success of mAbs as cancer therapeutics is attributed to their broad applicability, high safety profile, and precise targeting of cancer-associated surface antigens. Furthermore, mAbs can induce various anti-tumor cytotoxic effector mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), all of which are mediated via their fragment crystallizable (Fc) domain. Over the past decades, these effector mechanisms have been substantially improved through Fc domain engineering. In this review, we will outline the different approaches to enhance Fc effector functions via Fc engineering of mAbs, with a specific emphasis on the so-called "HexaBody" technology, which is designed to enhance the hexamerization of mAbs on the target cell surface, thereby inducing greater complement activation, CDC, and receptor clustering. The review will summarize the development, preclinical, and clinical testing of several HexaBodies designed for the treatment of B-cell malignancies, as well as the potential use of the HexaBody technology beyond Fc-mediated effector functions.
Collapse
Affiliation(s)
- Hilma J. van der Horst
- Department of HematologyCancer Center Amsterdam, Amsterdam UMC, VU Medical CenterAmsterdamThe Netherlands
- Present address:
Department of Fundamental Oncology, Ludwig Institute for Cancer ResearchUniversity of LausanneEpalingesSwitzerland
| | - Tuna Mutis
- Department of HematologyCancer Center Amsterdam, Amsterdam UMC, VU Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
9
|
Mekala JR, Nalluri HP, Reddy PN, S B S, N S SK, G V S D SK, Dhiman R, Chamarthy S, Komaragiri RR, Manyam RR, Dirisala VR. Emerging trends and therapeutic applications of monoclonal antibodies. Gene 2024; 925:148607. [PMID: 38797505 DOI: 10.1016/j.gene.2024.148607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Monoclonal antibodies (mAbs) are being used to prevent, detect, and treat a broad spectrum of malignancies and infectious and autoimmune diseases. Over the past few years, the market for mAbs has grown exponentially. They have become a significant part of many pharmaceutical product lines, and more than 250 therapeutic mAbs are undergoing clinical trials. Ever since the advent of hybridoma technology, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some of the benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies, which are affordable versions of therapeutic antibodies. Along with biosimilars, innovations in antibody engineering have helped to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. In the future, mAbs generated by applying next-generation sequencing (NGS) are expected to become a powerful tool in clinical therapeutics. This article describes the methods of mAb production, pre-clinical and clinical development of mAbs, approved indications targeted by mAbs, and novel developments in the field of mAb research.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA.
| | - Hari P Nalluri
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Prakash Narayana Reddy
- Department of Microbiology, Dr. V.S. Krishna Government College, Visakhapatnam 530013, India
| | - Sainath S B
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524320, AP, India
| | - Sampath Kumar N S
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Sai Kiran G V S D
- Santhiram Medical College and General Hospital, Nandyal, Kurnool 518501, AP, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Sciences, National Institute of Technology Rourkela-769008, India
| | - Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA
| | - Raghava Rao Komaragiri
- Department of CSE, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522302, Andhra Pradesh, INDIA
| | - Rajasekhar Reddy Manyam
- Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati Campus, Amaravati, Andhra Pradesh, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India.
| |
Collapse
|
10
|
Weskamm LM, Tarnow P, Harms C, Huchon M, Raadsen MP, Friedrich M, Rübenacker L, Grüttner C, Garcia MG, Koch T, Becker S, Sutter G, Lhomme E, Haagmans BL, Fathi A, Blois SM, Dahlke C, Richert L, Addo MM. Dissecting humoral immune responses to an MVA-vectored MERS-CoV vaccine in humans using a systems serology approach. iScience 2024; 27:110470. [PMID: 39148710 PMCID: PMC11325358 DOI: 10.1016/j.isci.2024.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Besides neutralizing antibodies, which are considered an important measure for vaccine immunogenicity, Fc-mediated antibody functions can contribute to antibody-mediated protection. They are strongly influenced by structural antibody properties such as subclass and Fc glycan composition. We here applied a systems serology approach to dissect humoral immune responses induced by MVA-MERS-S, an MVA-vectored vaccine against the Middle East respiratory syndrome coronavirus (MERS-CoV). Building on preceding studies reporting the safety and immunogenicity of MVA-MERS-S, our study highlights the potential of a late boost, administered one year after prime, to enhance both neutralizing and Fc-mediated antibody functionality compared to the primary vaccination series. Distinct characteristics were observed for antibodies specific to the MERS-CoV spike protein S1 and S2 subunits, regarding subclass and glycan compositions as well as Fc functionality. These findings highlight the benefit of a late homologous booster vaccination with MVA-MERS-S and may be of interest for the design of future coronavirus vaccines.
Collapse
Affiliation(s)
- Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Paulina Tarnow
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Charlotte Harms
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Huchon
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
| | - Matthijs P Raadsen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Monika Friedrich
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Rübenacker
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Cordula Grüttner
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Mariana G Garcia
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Koch
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Antibiotic Stewardship Team, Pharmacy of the University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research, Partner Site München, Munich, Germany
| | - Edouard Lhomme
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Bart L Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anahita Fathi
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Dahlke
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Richert
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
11
|
Sun Y, Xu X, Wu T, Fukuda T, Isaji T, Morii S, Nakano M, Gu J. Core fucosylation within the Fc-FcγR degradation pathway promotes enhanced IgG levels via exogenous L-fucose. J Biol Chem 2024; 300:107558. [PMID: 39002669 PMCID: PMC11345378 DOI: 10.1016/j.jbc.2024.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8+/+), Fut8 heterozygous knockout (Fut8+/-), and Fut8 knockout (Fut8-/-) mice. The IgG levels in serum were lower in Fut8+/- and Fut8-/- mice compared with Fut8+/+ mice. Exogenous L-fucose increased IgG levels in Fut8+/- mice, while the ratios of core fucosylated IgG versus total IgG showed no significant difference among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. These ratios were determined by Western blot, lectin blot, and mass spectrometry analysis. Real-time PCR results demonstrated that mRNA levels of IgG Fc and neonatal Fc receptor, responsible for protecting IgG turnover, were similar among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. In contrast, the expression levels of Fc-gamma receptor Ⅳ (FcγRⅣ), mainly expressed on macrophages and neutrophils, were increased in Fut8+/- mice compared to Fut8+/+ mice. The effect was reversed by administrating L-fucose, suggesting that core fucosylation primarily regulates the IgG levels through the Fc-FcγRⅣ degradation pathway. Consistently, IgG internalization and transcytosis were suppressed in FcγRⅣ-knockout cells while enhanced in Fut8-knockout cells. Furthermore, we assessed the expression levels of specific antibodies against ovalbumin and found they were downregulated in Fut8+/- mice, with potential recovery observed with L-fucose administration. These findings confirm that core fucosylation plays a vital role in regulating IgG levels in serum, which may provide insights into a novel mechanism in adaptive immune regulation.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
12
|
Becerra JC, Hitchcock L, Vu K, Gach JS. Neutralizing the threat: harnessing broadly neutralizing antibodies against HIV-1 for treatment and prevention. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:207-220. [PMID: 38975023 PMCID: PMC11224682 DOI: 10.15698/mic2024.07.826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024]
Abstract
Broadly neutralizing antibodies (bnAbs) targeting the human immunodeficiency virus-1 (HIV-1) have played a crucial role in elucidating and characterizing neutralization-sensitive sites on the HIV-1 envelope spike and in informing vaccine development. Continual advancements in identifying more potent bnAbs, along with their capacity to trigger antibody-mediated effector functions, coupled with modifications to extend their half-life, position them as promising candidates for both HIV-1 treatment and prevention. While current pharmacological interventions have made significant progress in managing HIV-1 infection and enhancing quality of life, no definitive cure or vaccines have been developed thus far. Standard treatments involve daily oral anti-retroviral therapy, which, despite its efficacy, can lead to notable long-term side effects. Recent clinical trial data have demonstrated encouraging therapeutic and preventive potential for bnAb therapies in both HIV-1-infected individuals and those without the infection. This review provides an overview of the advancements in HIV-1-specific bnAbs and discusses the insights gathered from recent clinical trials regarding their application in treating and preventing HIV-1 infection.
Collapse
Affiliation(s)
- Juan C Becerra
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Lauren Hitchcock
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Khoa Vu
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Johannes S Gach
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| |
Collapse
|
13
|
Jarius S, Ringelstein M, Schanda K, Ruprecht K, Korporal-Kuhnke M, Viehöver A, Hümmert MW, Schindler P, Endmayr V, Gastaldi M, Trebst C, Franciotta D, Aktas O, Höftberger R, Haas J, Komorowski L, Paul F, Reindl M, Wildemann B. Improving the sensitivity of myelin oligodendrocyte glycoprotein-antibody testing: exclusive or predominant MOG-IgG3 seropositivity-a potential diagnostic pitfall in patients with MOG-EM/MOGAD. J Neurol 2024; 271:4660-4671. [PMID: 38609667 PMCID: PMC11233316 DOI: 10.1007/s00415-024-12285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein antibody-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disease, MOGAD) is the most important differential diagnosis of both multiple sclerosis and neuromyelitis optica spectrum disorders. A recent proposal for new diagnostic criteria for MOG-EM/MOGAD explicitly recommends the use of immunoglobulin G subclass 1 (IgG1)- or IgG crystallizable fragment (Fc) region-specific assays and allows the use of heavy-and-light-chain-(H+L) specific assays for detecting MOG-IgG. By contrast, the utility of MOG-IgG3-specific testing has not been systematically evaluated. OBJECTIVE To assess whether the use of MOG-IgG3-specific testing can improve the sensitivity of MOG-IgG testing. METHODS Re-testing of 22 patients with a definite diagnosis of MOG-EM/MOGAD and clearly positive MOG-IgG status initially but negative or equivocal results in H+L- or Fc-specific routine assays later in the disease course (i.e. patients with spontaneous or treatment-driven seroreversion). RESULTS In accordance with previous studies that had used MOG-IgG1-specific assays, IgG subclass-specific testing yielded a higher sensitivity than testing by non-subclass-specific assays. Using subclass-specific secondary antibodies, 26/27 supposedly seroreverted samples were still clearly positive for MOG-IgG, with MOG-IgG1 being the most frequently detected subclass (25/27 [93%] samples). However, also MOG-IgG3 was detected in 14/27 (52%) samples (from 12/22 [55%] patients). Most strikingly, MOG-IgG3 was the predominant subclass in 8/27 (30%) samples (from 7/22 [32%] patients), with no unequivocal MOG-IgG1 signal in 2 and only a very weak concomitant MOG-IgG1 signal in the other six samples. By contrast, no significant MOG-IgG3 reactivity was seen in 60 control samples (from 42 healthy individuals and 18 patients with MS). Of note, MOG-IgG3 was also detected in the only patient in our cohort previously diagnosed with MOG-IgA+/IgG- MOG-EM/MOGAD, a recently described new disease subvariant. MOG-IgA and MOG-IgM were negative in all other patients tested. CONCLUSIONS In some patients with MOG-EM/MOGAD, MOG-IgG is either exclusively or predominantly MOG-IgG3. Thus, the use of IgG1-specific assays might only partly overcome the current limitations of MOG-IgG testing and-just like H+L- and Fcγ-specific testing-might overlook some genuinely seropositive patients. This would have potentially significant consequences for the management of patients with MOG-EM/MOGAD. Given that IgG3 chiefly detects proteins and is a strong activator of complement and other effector mechanisms, MOG-IgG3 may be involved in the immunopathogenesis of MOG-EM/MOGAD. Studies on the frequency and dynamics as well as the clinical and therapeutic significance of MOG-IgG3 seropositivity are warranted.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - M Ringelstein
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | - K Schanda
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - K Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - M Korporal-Kuhnke
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - A Viehöver
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - M W Hümmert
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - P Schindler
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - V Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - M Gastaldi
- Neuroimmunology Laboratory and Neuroimmunology Research Unit, IRCCS Mondino Foundation National Neurological Institute, Pavia, Italy
| | - C Trebst
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - D Franciotta
- Neuroimmunology Laboratory and Neuroimmunology Research Unit, IRCCS Mondino Foundation National Neurological Institute, Pavia, Italy
| | - O Aktas
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | - R Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - J Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - L Komorowski
- Institute of Experimental Neuroimmunology, affiliated to Euroimmun AG, Lübeck, Germany
| | - F Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - M Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
14
|
Furiness KN, El Ansari YS, Oettgen HC, Kanagaratham C. Allergen-specific IgA and IgG antibodies as inhibitors of mast cell function in food allergy. FRONTIERS IN ALLERGY 2024; 5:1389669. [PMID: 38919913 PMCID: PMC11196826 DOI: 10.3389/falgy.2024.1389669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Food allergy, a group of adverse immune responses to normally innocuous food protein antigens, is an increasingly prevalent public health issue. The most common form is IgE-mediated food allergy in which food antigen-induced crosslinking of the high-affinity IgE-receptor, FcεRI, on the surface of mast cells triggers the release of inflammatory mediators that contribute to a wide range of clinical manifestations, including systemic anaphylaxis. Mast cells also play a critical function in adaptive immunity to foods, acting as adjuvants for food-antigen driven Th2 cell responses. While the diagnosis and treatment of food allergy has improved in recent years, no curative treatments are currently available. However, there is emerging evidence to suggest that both allergen-specific IgA and IgG antibodies can counter the activating effects of IgE antibodies on mast cells. Most notably, both antigen-specific IgA and IgG antibodies are induced in the course of oral immunotherapy. In this review, we highlight the role of mast cells in food allergy, both as inducers of immediate hypersensitivity reactions and as adjuvants for type 2 adaptive immune responses. Furthermore, we summarize current understanding of the immunomodulatory effects of antigen-specific IgA and IgG antibodies on IgE-induced mast cell activation and effector function. A more comprehensive understanding of the regulatory role of IgA and IgG in food allergy may provide insights into physiologic regulation of immune responses to ingested antigens and could seed novel strategies to treat allergic disease.
Collapse
Affiliation(s)
- Kameryn N. Furiness
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Wang J, Wu J, Ma Y, Hao L, Huang W, Liu Z, Li Y. Characterization of a membrane Fcγ receptor in largemouth bass (Micropterus saloumoides) and its response to bacterial challenge. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1123-1140. [PMID: 38407736 DOI: 10.1007/s10695-024-01325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
Fc receptors (FcRs), specific to the Fc portion of immunoglobulin (Ig), are required to regulate immune responses against pathogenic infections. However, FcγR is a member of FcRs family, whose structure and function remains to be elucidated in teleost fish. In this study, the FcγRII, from largemouth bass (Micropterus saloumoides), named membrane MsFcγRII (mMsFcγRII), was cloned and identified. The opening reading frame (ORF) of mMsFcγRII was 750 bp, encoding 249 amino acids with a predicted molecular mass of 27 kDa. The mMsFcγRII contained a signal peptide, two Ig domains, a transmembrane domain, and an intracellular region, which was highly homology with FcγR from other teleost fish. The mRNA expression analysis showed that mMsFcγRII was widely distributed in all tested tissues and with the highest expression level in spleen. After bacterial challenge, the expression of mMsFcγRII was significantly upregulated in vivo (spleen and head kidney), as well as in vitro (leukocytes from head kidney). The subcellular localization assay revealed that mMsFcγRII was mostly observed on the membrane of HEK293T cells which were transfected with mMsFcγRII overexpression plasmid. Flow cytometric analysis showed that natural mMsFcγRII protein was highly expressed in head kidney lymphocytes. Moreover, indirect immunofluorescence assay and pull-down assay indicated that mMsFcγRII could bind to IgM purified from largemouth bass serum. These results suggested that mMsFcγRII was likely to play an influential role in the immune response against pathogens and provided valuable insights for studying the function of FcRs in teleost.
Collapse
Affiliation(s)
- Jingya Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China
| | - Jing Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China
| | - Yanping Ma
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China
| | - Wen Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, 510640, China.
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Jiang Y, Lin Y, Tetlow AM, Pan R, Ji C, Kong XP, Congdon EE, Sigurdsson EM. Single-domain antibody-based protein degrader for synucleinopathies. Mol Neurodegener 2024; 19:44. [PMID: 38816762 PMCID: PMC11140919 DOI: 10.1186/s13024-024-00730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein (α-syn) in the brain, leading to motor and neuropsychiatric symptoms. Currently, there are no known cures for synucleinopathies, and treatments mainly focus on symptom management. In this study, we developed a single-domain antibody (sdAb)-based protein degrader with features designed to enhance proteasomal degradation of α-syn. This sdAb derivative targets both α-syn and Cereblon (CRBN), a substrate-receptor for the E3-ubiquitin ligase CRL4CRBN, and thereby induces α-syn ubiquitination and proteasomal degradation. Our results indicate that this therapeutic candidate enhances proteasomal degradation of α-syn, in addition to the endogenous lysosomal degradation machinery. By promoting proteasomal degradation of α-syn, we improved clearance of α-syn in primary culture and mouse models of synucleinopathy. These findings indicate that our sdAb-based protein degrader is a promising therapeutic candidate for synucleinopathies. Considering that only a small percentage of antibodies enter the brain, more potent sdAbs with greater brain entry than whole antibodies could enhance clinical benefits of antibody-based therapies.
Collapse
Affiliation(s)
- Yixiang Jiang
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yan Lin
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Erin E Congdon
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
17
|
Sudol ASL, Crispin M, Tews I. The IgG-specific endoglycosidases EndoS and EndoS2 are distinguished by conformation and antibody recognition. J Biol Chem 2024; 300:107245. [PMID: 38569940 PMCID: PMC11063906 DOI: 10.1016/j.jbc.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024] Open
Abstract
The IgG-specific endoglycosidases EndoS and EndoS2 from Streptococcus pyogenes can remove conserved N-linked glycans present on the Fc region of host antibodies to inhibit Fc-mediated effector functions. These enzymes are therefore being investigated as therapeutics for suppressing unwanted immune activation, and have additional application as tools for antibody glycan remodeling. EndoS and EndoS2 differ in Fc glycan substrate specificity due to structural differences within their catalytic glycosyl hydrolase domains. However, a chimeric EndoS enzyme with a substituted glycosyl hydrolase from EndoS2 loses catalytic activity, despite high structural homology between the two enzymes, indicating either mechanistic divergence of EndoS and EndoS2, or improperly-formed domain interfaces in the chimeric enzyme. Here, we present the crystal structure of the EndoS2-IgG1 Fc complex determined to 3.0 Å resolution. Comparison of complexed and unliganded EndoS2 reveals relative reorientation of the glycosyl hydrolase, leucine-rich repeat and hybrid immunoglobulin domains. The conformation of the complexed EndoS2 enzyme is also different when compared to the earlier EndoS-IgG1 Fc complex, and results in distinct contact surfaces between the two enzymes and their Fc substrate. These findings indicate mechanistic divergence of EndoS2 and EndoS. It will be important to consider these differences in the design of IgG-specific enzymes, developed to enable customizable antibody glycosylation.
Collapse
Affiliation(s)
- Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK.
| | - Ivo Tews
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
18
|
Ünlü S, Sánchez Navarro BG, Cakan E, Berchtold D, Meleka Hanna R, Vural S, Vural A, Meisel A, Fichtner ML. Exploring the depths of IgG4: insights into autoimmunity and novel treatments. Front Immunol 2024; 15:1346671. [PMID: 38698867 PMCID: PMC11063302 DOI: 10.3389/fimmu.2024.1346671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 05/05/2024] Open
Abstract
IgG4 subclass antibodies represent the rarest subclass of IgG antibodies, comprising only 3-5% of antibodies circulating in the bloodstream. These antibodies possess unique structural features, notably their ability to undergo a process known as fragment-antigen binding (Fab)-arm exchange, wherein they exchange half-molecules with other IgG4 antibodies. Functionally, IgG4 antibodies primarily block and exert immunomodulatory effects, particularly in the context of IgE isotype-mediated hypersensitivity reactions. In the context of disease, IgG4 antibodies are prominently observed in various autoimmune diseases combined under the term IgG4 autoimmune diseases (IgG4-AID). These diseases include myasthenia gravis (MG) with autoantibodies against muscle-specific tyrosine kinase (MuSK), nodo-paranodopathies with autoantibodies against paranodal and nodal proteins, pemphigus vulgaris and foliaceus with antibodies against desmoglein and encephalitis with antibodies against LGI1/CASPR2. Additionally, IgG4 antibodies are a prominent feature in the rare entity of IgG4 related disease (IgG4-RD). Intriguingly, both IgG4-AID and IgG4-RD demonstrate a remarkable responsiveness to anti-CD20-mediated B cell depletion therapy (BCDT), suggesting shared underlying immunopathologies. This review aims to provide a comprehensive exploration of B cells, antibody subclasses, and their general properties before examining the distinctive characteristics of IgG4 subclass antibodies in the context of health, IgG4-AID and IgG4-RD. Furthermore, we will examine potential therapeutic strategies for these conditions, with a special focus on leveraging insights gained from anti-CD20-mediated BCDT. Through this analysis, we aim to enhance our understanding of the pathogenesis of IgG4-mediated diseases and identify promising possibilities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Selen Ünlü
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Koç University School of Medicine, Istanbul, Türkiye
| | - Blanca G. Sánchez Navarro
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Elif Cakan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
| | - Daniel Berchtold
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rafael Meleka Hanna
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Secil Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Dermatology and Venereology, Koç University School of Medicine, İstanbul, Türkiye
| | - Atay Vural
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology, Koç University School of Medicine, İstanbul, Türkiye
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam L. Fichtner
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul, Türkiye
- Department of Neurology with Experimental Neurology, Integrated Myasthenia Gravis Center, Neuroscience Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
19
|
de Graaf EL, Larsen MD, van der Bolt N, Visser R, Verhagen OJHM, Hipgrave Ederveen AL, Koeleman CAM, van der Schoot CE, Wuhrer M, Vidarsson G. Assessment of IgG-Fc glycosylation from individual RhD-specific B cell clones reveals regulation at clonal rather than clonotypic level. Immunology 2024; 171:428-439. [PMID: 38097893 DOI: 10.1111/imm.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/26/2023] [Indexed: 02/09/2024] Open
Abstract
The type and strength of effector functions mediated by immunoglobulin G (IgG) antibodies rely on the subclass and the composition of the N297 glycan. Glycosylation analysis of both bulk and antigen-specific human IgG has revealed a marked diversity of the glycosylation signatures, including highly dynamic patterns as well as long-term stability of profiles, yet information on how individual B cell clones would contribute to this diversity has hitherto been lacking. Here, we assessed whether clonally related B cells share N297 glycosylation patterns of their secreted IgG. We differentiated single antigen-specific peripheral IgG+ memory B cells into antibody-secreting cells and analysed Fc glycosylation of secreted IgG. Furthermore, we sequenced the variable region of their heavy chain, which allowed the grouping of the clones into clonotypes. We found highly diverse glycosylation patterns of culture-derived IgG, which, to some degree, mimicked the glycosylation of plasma IgG. Each B cell clone secreted IgG with a mixture of different Fc glycosylation patterns. The majority of clones produced fully fucosylated IgG. B cells producing afucosylated IgG were scattered across different clonotypes. In contrast, the remaining glycosylation traits were, in general, more uniform. These results indicate IgG-Fc fucosylation to be regulated at the single-clone level, whereas the regulation of other glycosylation traits most likely occurs at a clonotypic or systemic level. The discrepancies between plasma IgG and culture-derived IgG, could be caused by the origin of the B cells analysed, clonal dominance or factors from the culture system, which need to be addressed in future studies.
Collapse
Affiliation(s)
- Erik L de Graaf
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Mads Delbo Larsen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Nieke van der Bolt
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Remco Visser
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Onno J H M Verhagen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - C Ellen van der Schoot
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
20
|
Stone CA, Spiller BW, Smith SA. Engineering therapeutic monoclonal antibodies. J Allergy Clin Immunol 2024; 153:539-548. [PMID: 37995859 PMCID: PMC11437839 DOI: 10.1016/j.jaci.2023.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
The use of human antibodies as biologic therapeutics has revolutionized patient care throughout fields of medicine. As our understanding of the many roles antibodies play within our natural immune responses continues to advance, so will the number of therapeutic indications for which an mAb will be developed. The great breadth of function, long half-life, and modular structure allow for nearly limitless therapeutic possibilities. Human antibodies can be rationally engineered to enhance their desired immune functions and eliminate those that may result in unwanted effects. Antibody therapeutics now often start with fully human variable regions, either acquired from genetically engineered humanized mice or from the actual human B cells. These variable genes can be further engineered by widely used methods for optimization of their specificity through affinity maturation, random mutagenesis, targeted mutagenesis, and use of in silico approaches. Antibody isotype selection and deliberate mutations are also used to improve efficacy and tolerability by purposeful fine-tuning of their immune effector functions. Finally, improvements directed at binding to the neonatal Fc receptor can endow therapeutic antibodies with unbelievable extensions in their circulating half-life. The future of engineered antibody therapeutics is bright, with the global mAb market projected to exhibit compound annual growth, forecasted to reach a revenue of nearly half a trillion dollars in 2030.
Collapse
Affiliation(s)
- Cosby A Stone
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Benjamin W Spiller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tenn; Department of Pharmacology, Vanderbilt University, Nashville, Tenn
| | - Scott A Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tenn.
| |
Collapse
|
21
|
De Weerdt L, Thiriard A, Leuridan E, Marchant A, Maertens K. Immunogenicity at delivery after Tdap vaccination in successive pregnancies. Front Immunol 2024; 15:1360201. [PMID: 38464513 PMCID: PMC10920275 DOI: 10.3389/fimmu.2024.1360201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Background Tetanus, diphtheria, acellular pertussis (Tdap) vaccination is recommended to be administered in every pregnancy. Although the safety of this strategy has been confirmed, the immunogenicity of Tdap vaccination in two successive pregnancies has not yet been described. This study investigated Tdap-specific immunity levels and transplacental transfer in two successive pregnancies after repeated Tdap-vaccination. Methods Women enrolled in prior studies on Tdap vaccination during pregnancy were invited to participate in a follow-up study if they became pregnant again. Women who received a Tdap vaccine in both pregnancies were considered for this analysis. Tdap-specific total IgG and IgG subclasses were measured with a multiplex immunoassay. Results In total, 27 participants with a mean interval between deliveries of 2.4 years were included in the analysis. In maternal serum, Tdap-specific total IgG levels were comparable at both deliveries whereas in cord serum, all Tdap-specific total IgG antibody levels were reduced at the second compared to the first delivery. This was largely reflected in the IgG1 levels in maternal and cord serum. Transplacental transfer ratios of total IgG and IgG1 were also mostly reduced in the second compared to the first pregnancy. Conclusion This study reports for the first time Tdap-specific total IgG and IgG subclass levels and transfer ratios after repeated Tdap vaccination in successive pregnancies. We found reduced transfer of most Tdap-specific IgG and IgG1 antibodies in the successive pregnancy. As pertussis-specific antibodies wane quickly, Tdap vaccination in each pregnancy remains beneficial. However, more research is needed to understand the impact of closely spaced booster doses during pregnancy on early infant protection against pertussis.
Collapse
Affiliation(s)
- Louise De Weerdt
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Anaïs Thiriard
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Elke Leuridan
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Kirsten Maertens
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
22
|
Lu J, Xu X, Sun X, Du Y. Protein and peptide-based renal targeted drug delivery systems. J Control Release 2024; 366:65-84. [PMID: 38145662 DOI: 10.1016/j.jconrel.2023.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Renal diseases have become an increasingly concerned public health problem in the world. Kidney-targeted drug delivery has profound transformative potential on increasing renal efficacy and reducing extra-renal toxicity. Protein and peptide-based kidney targeted drug delivery systems have garnered more and more attention due to its controllable synthesis, high biocompatibility and low immunogenicity. At the same time, the targeting methods based on protein/peptide are also abundant, including passive renal targeting based on macromolecular protein and active targeting mediated by renal targeting peptide. Here, we review the application and the drug loading strategy of different proteins or peptides in targeted drug delivery, including the ferritin family, albumin, low molecular weight protein (LMWP), different peptide sequence and antibodies. In addition, we summarized the factors influencing passive and active targeting in drug delivery system, the main receptors related to active targeting in different kidney diseases, and a variety of nano forms of proteins based on the controllable synthesis of proteins.
Collapse
Affiliation(s)
- Jingyi Lu
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaoling Xu
- College of Medical Sciences, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, Zhejiang 310015, China.
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China.
| | - Yongzhong Du
- Collaborative Innovation Center of Yangtza River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, China; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| |
Collapse
|
23
|
Bowman KA, Kaplonek P, McNamara RP. Understanding Fc function for rational vaccine design against pathogens. mBio 2024; 15:e0303623. [PMID: 38112418 PMCID: PMC10790774 DOI: 10.1128/mbio.03036-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Antibodies represent the primary correlate of immunity following most clinically approved vaccines. However, their mechanisms of action vary from pathogen to pathogen, ranging from neutralization, to opsonophagocytosis, to cytotoxicity. Antibody functions are regulated both by antigen specificity (Fab domain) and by the interaction of their Fc domain with distinct types of Fc receptors (FcRs) present in immune cells. Increasing evidence highlights the critical nature of Fc:FcR interactions in controlling pathogen spread and limiting the disease state. Moreover, variation in Fc-receptor engagement during the course of infection has been demonstrated across a range of pathogens, and this can be further influenced by prior exposure(s)/immunizations, age, pregnancy, and underlying health conditions. Fc:FcR functional variation occurs at the level of antibody isotype and subclass selection as well as post-translational modification of antibodies that shape Fc:FcR-interactions. These factors collectively support a model whereby the immune system actively harnesses and directs Fc:FcR interactions to fight disease. By defining the precise humoral mechanisms that control infections, as well as understanding how these functions can be actively tuned, it may be possible to open new paths for improving existing or novel vaccines.
Collapse
Affiliation(s)
- Kathryn A. Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
24
|
Esmat K, Jamil B, Kheder RK, Kombe Kombe AJ, Zeng W, Ma H, Jin T. Immunoglobulin A response to SARS-CoV-2 infection and immunity. Heliyon 2024; 10:e24031. [PMID: 38230244 PMCID: PMC10789627 DOI: 10.1016/j.heliyon.2024.e24031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
The novel coronavirus disease (COVID-19) and its infamous "Variants" of the etiological agent termed Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) has proven to be a global health concern. The three antibodies, IgA, IgM, and IgG, perform their dedicated role as main workhorses of the host adaptive immune system in virus neutralization. Immunoglobulin-A (IgA), also known as "Mucosal Immunoglobulin", has been under keen interest throughout the viral infection cycle. Its importance lies because IgA is predominant mucosal antibody and SARS family viruses primarily infect the mucosal surfaces of human respiratory tract. Therefore, IgA can be considered a diagnostic and prognostic marker and an active infection biomarker for SARS CoV-2 infection. Along with molecular analyses, serological tests, including IgA detection tests, are gaining ground in application as an early detectable marker and as a minimally invasive detection strategy. In the current review, it was emphasized the role of IgA response in diagnosis, host defense strategies, treatment, and prevention of SARS-CoV-2 infection. The data analysis was performed through almost 100 published peer-reviewed research reports and comprehended the importance of IgA in antiviral immunity against SARS-CoV-2 and other related respiratory viruses. Taken together, it is concluded that secretory IgA- Abs can serve as a promising detection tool for respiratory viral diagnosis and treatment parallel to IgG-based therapeutics and diagnostics. Vaccine candidates that target and trigger mucosal immune response may also be employed in future dimensions of research against other respiratory viruses.
Collapse
Affiliation(s)
- Khaleqsefat Esmat
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Baban Jamil
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, KRG, Erbil, Iraq
| | - Ramiar Kaml Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Weihong Zeng
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Huan Ma
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Laboratory of Structural Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, Anhui, 230027, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
25
|
Damelang T, Brinkhaus M, van Osch TLJ, Schuurman J, Labrijn AF, Rispens T, Vidarsson G. Impact of structural modifications of IgG antibodies on effector functions. Front Immunol 2024; 14:1304365. [PMID: 38259472 PMCID: PMC10800522 DOI: 10.3389/fimmu.2023.1304365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Immunoglobulin G (IgG) antibodies are a critical component of the adaptive immune system, binding to and neutralizing pathogens and other foreign substances. Recent advances in molecular antibody biology and structural protein engineering enabled the modification of IgG antibodies to enhance their therapeutic potential. This review summarizes recent progress in both natural and engineered structural modifications of IgG antibodies, including allotypic variation, glycosylation, Fc engineering, and Fc gamma receptor binding optimization. We discuss the functional consequences of these modifications to highlight their potential for therapeutical applications.
Collapse
Affiliation(s)
- Timon Damelang
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Maximilian Brinkhaus
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Thijs L. J. van Osch
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Janine Schuurman
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Aran F. Labrijn
- Department of Antibody Research & Technologies’, Genmab, Utrecht, Netherlands
| | - Theo Rispens
- Sanquin Research, Department of Immunopathology, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Department of Experimental Immunohematology and Landsteiner Laboratory, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
26
|
Wang S, Guirakhoo F, Periasamy S, Ryan V, Wiggins J, Subramani C, Thibodeaux B, Sahni J, Hellerstein M, Kuzmina NA, Bukreyev A, Dodart JC, Rumyantsev A. RBD-Protein/Peptide Vaccine UB-612 Elicits Mucosal and Fc-Mediated Antibody Responses against SARS-CoV-2 in Cynomolgus Macaques. Vaccines (Basel) 2023; 12:40. [PMID: 38250853 PMCID: PMC10818657 DOI: 10.3390/vaccines12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Antibodies provide critical protective immunity against COVID-19, and the Fc-mediated effector functions and mucosal antibodies also contribute to the protection. To expand the characterization of humoral immunity stimulated by subunit protein-peptide COVID-19 vaccine UB-612, preclinical studies in non-human primates were undertaken to investigate mucosal secretion and the effector functionality of vaccine-induced antibodies in antibody-dependent monocyte phagocytosis (ADMP) and antibody-dependent NK cell activation (ADNKA) assays. In cynomolgus macaques, UB-612 induced potent serum-neutralizing, RBD-specific IgG binding, ACE2 binding-inhibition antibodies, and antibodies with Fc-mediated effector functions in ADMP and ADNKA assays. Additionally, immunized animals developed mucosal antibodies in bronchoalveolar lavage fluids (BAL). The level of mucosal or serum ADMP and ADNKA antibodies was found to be UB-612 dose-dependent. Our results highlight that the novel subunit UB-612 vaccine is a potent B-cell immunogen inducing polyfunctional antibody responses contributing to anti-viral immunity and vaccine efficacy.
Collapse
Affiliation(s)
- Shixia Wang
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Farshad Guirakhoo
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Valorie Ryan
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Jonathan Wiggins
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Chandru Subramani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Brett Thibodeaux
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Jaya Sahni
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Michael Hellerstein
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Natalia A. Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jean-Cosme Dodart
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Alexander Rumyantsev
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| |
Collapse
|
27
|
Damelang T, de Taeye SW, Rentenaar R, Roya-Kouchaki K, de Boer E, Derksen NIL, van Kessel K, Lissenberg-Thunnissen S, Rooijakkers SHM, Jongerius I, Mebius MM, Schuurman J, Labrijn AF, Vidarsson G, Rispens T. The Influence of Human IgG Subclass and Allotype on Complement Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1725-1735. [PMID: 37843500 PMCID: PMC10656437 DOI: 10.4049/jimmunol.2300307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Complement activation via the classical pathway is initiated when oligomeric Igs on target surfaces are recognized by C1 of the complement cascade. The strength of this interaction and activation of the complement system are influenced by structural variation of the Ab, including Ab isotype, subclass, and glycosylation profile. Polymorphic variants of IgG have also been described to influence Fc-dependent effector functions. Therefore, we assessed complement binding, deposition, and complement-dependent cytotoxicity (CDC) of 27 known IgG allotypes with anti-trinitrophenyl specificity. Differences between allotypes within subclasses were minor for IgG1, IgG3, and IgG4 allotypes, and more substantial for IgG2. Allelic variant IGHG2*06, containing a unique serine at position 378 in the CH3 domain, showed less efficient complement activation and CDC compared with other IgG2 polymorphisms. We also observed variable cell lysis between IgG1 and IgG3, with IgG3 being superior in lysis of human RBCs and Ramos cells, and IgG1 being superior in lysis of Raji and Wien133 cells, demonstrating that a long-standing conundrum in the literature depends on cellular context. Furthermore, we compared IgG1 and IgG3 under different circumstances, showing that Ag density and Ab hinge length, but not complement regulators, define the context dependency of Ab-mediated CDC activity. Our results point toward a variation in the capacity of IgG subclasses to activate complement due to single amino acid changes and hinge length differences of allotypes to activate complement, which might give new insights on susceptibility to infectious, alloimmune, or autoimmune diseases and aid the design of Ab-based therapeutics.
Collapse
Affiliation(s)
- Timon Damelang
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Steven W. de Taeye
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
| | - Rosa Rentenaar
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kasra Roya-Kouchaki
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
| | - Esther de Boer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ninotska I. L. Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kok van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Suzan H. M. Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | | | | | | | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Yang W, Lecuona E, Wu Q, Liu X, Sun H, Alam H, Nadig SN, Bharat A. The role of lung-restricted autoantibodies in the development of primary and chronic graft dysfunction. FRONTIERS IN TRANSPLANTATION 2023; 2:1237671. [PMID: 38993924 PMCID: PMC11235341 DOI: 10.3389/frtra.2023.1237671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/18/2023] [Indexed: 07/13/2024]
Abstract
Lung transplantation is a life-saving treatment for both chronic end-stage lung diseases and acute respiratory distress syndrome, including those caused by infectious agents like COVID-19. Despite its increasing utilization, outcomes post-lung transplantation are worse than other solid organ transplants. Primary graft dysfunction (PGD)-a condition affecting more than half of the recipients post-transplantation-is the chief risk factor for post-operative mortality, transplant-associated multi-organ dysfunction, and long-term graft loss due to chronic rejection. While donor-specific antibodies targeting allogenic human leukocyte antigens have been linked to transplant rejection, the role of recipient's pre-existing immunoglobulin G autoantibodies against lung-restricted self-antigens (LRA), like collagen type V and k-alpha1 tubulin, is less understood in the context of lung transplantation. Recent studies have found an increased risk of PGD development in lung transplant recipients with LRA. This review will synthesize past and ongoing research-utilizing both mouse models and human subjects-aimed at unraveling the mechanisms by which LRA heightens the risk of PGD. Furthermore, it will explore prospective approaches designed to mitigate the impact of LRA on lung transplant patients.
Collapse
Affiliation(s)
- Wenbin Yang
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Emilia Lecuona
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Qiang Wu
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xianpeng Liu
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Haiying Sun
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hasan Alam
- Division of Trauma & Acute Care Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Satish N. Nadig
- Division of Abdominal Transplant, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
29
|
Blöchl C, Gstöttner C, Sénard T, Stork EM, Scherer HU, Toes REM, Wuhrer M, Domínguez-Vega E. A robust nanoscale RP HPLC-MS approach for sensitive Fc proteoform profiling of IgG allotypes. Anal Chim Acta 2023; 1279:341795. [PMID: 37827688 DOI: 10.1016/j.aca.2023.341795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
The conserved region (Fc) of IgG antibodies dictates the interactions with designated receptors thus defining the immunological effector functions of IgG. Amino acid sequence variations in the Fc, recognized as subclasses and allotypes, as well as post-translational modifications (PTMs) modulate these interactions. Yet, the high similarity of Fc sequences hinders allotype-specific PTM analysis by state-of-the-art bottom-up methods and current subunit approaches lack sensitivity and face co-elution of near-isobaric allotypes. To circumvent these shortcomings, we present a nanoscale reversed-phase (RP) HPLC-MS workflow of intact Fc subunits for comprehensive characterization of Fc proteoforms in an allotype- and subclass-specific manner. Polyclonal IgGs were purified from individuals followed by enzymatic digestion releasing single chain Fc subunits (Fc/2) that were directly subjected to analysis. Chromatographic conditions were optimized to separate Fc/2 subunits of near-isobaric allotypes and subclasses allowing allotype and proteoform identification and quantification across all four IgG subclasses. The workflow was complemented by a semi-automated data analysis pipeline based on the open-source software Skyline followed by post-processing in R. The approach revealed pronounced differences in Fc glycosylation between donors, besides inter-subclass and inter-allotype variability within donors. Notably, partial occupancy of the N-glycosylation site in the CH3 domain of IgG3 was observed that is generally neglected by established approaches. The described method was benchmarked across several hundred runs and showed good precision and robustness. This methodology represents a first mature Fc subunit profiling approach allowing truly subclass- and allotype-specific Fc proteoform characterization beyond established approaches. The comprehensive information obtained paired with the high sensitivity provided by the miniaturization of the approach guarantees applicability to a broad range of research questions including clinically relevant (auto)antibody characterization or pharmacokinetics assessment of therapeutic IgGs.
Collapse
Affiliation(s)
- Constantin Blöchl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Thomas Sénard
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Eva Maria Stork
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Rene E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
30
|
Brady T, Cayatte C, Roe TL, Speer SD, Ji H, Machiesky L, Zhang T, Wilkins D, Tuffy KM, Kelly EJ. Fc-mediated functions of nirsevimab complement direct respiratory syncytial virus neutralization but are not required for optimal prophylactic protection. Front Immunol 2023; 14:1283120. [PMID: 37901217 PMCID: PMC10600457 DOI: 10.3389/fimmu.2023.1283120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Nirsevimab is an extended half-life (M252Y/S254T/T256E [YTE]-modified) monoclonal antibody to the pre-fusion conformation of the respiratory syncytial virus (RSV) Fusion protein, with established efficacy in preventing RSV-associated lower respiratory tract infection in infants for the duration of a typical RSV season. Previous studies suggest that nirsevimab confers protection via direct virus neutralization. Here we use preclinical models to explore whether fragment crystallizable (Fc)-mediated effector functions contribute to nirsevimab-mediated protection. Methods Nirsevimab, MEDI8897* (i.e., nirsevimab without the YTE modification), and MEDI8897*-TM (i.e., MEDI8897* without Fc effector functions) binding to Fc γ receptors (FcγRs) was evaluated using surface plasmon resonance. Antibody-dependent neutrophil phagocytosis (ADNP), antibody-dependent cellular phagocytosis (ADCP), antibody-dependent complement deposition (ADCD), and antibody-dependent cellular cytotoxicity (ADCC) were assessed through in vitro and ex vivo serological analyses. A cotton rat challenge study was performed with MEDI8897* and MEDI8897*-TM to explore whether Fc effector functions contribute to protection from RSV. Results Nirsevimab and MEDI8897* exhibited binding to a range of FcγRs, with expected reductions in FcγR binding affinities observed for MEDI8897*-TM. Nirsevimab exhibited in vitro ADNP, ADCP, ADCD, and ADCC activity above background levels, and similar ADNP, ADCP, and ADCD activity to palivizumab. Nirsevimab administration increased ex vivo ADNP, ADCP, and ADCD activity in participant serum from the MELODY study (NCT03979313). However, ADCC levels remained similar between nirsevimab and placebo. MEDI8897* and MEDI8897*-TM exhibited similar dose-dependent reduction in lung and nasal turbinate RSV titers in the cotton rat model. Conclusion Nirsevimab possesses Fc effector activity comparable with the current standard of care, palivizumab. However, despite possessing the capacity for Fc effector activity, data from RSV challenge experiments illustrate that nirsevimab-mediated protection is primarily dependent on direct virus neutralization.
Collapse
Affiliation(s)
- Tyler Brady
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Corinne Cayatte
- Early Oncology ICA, Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Tiffany L. Roe
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Scott D. Speer
- Virology and Vaccine Discovery, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Hong Ji
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - LeeAnn Machiesky
- Process and Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Tianhui Zhang
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Deidre Wilkins
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Kevin M. Tuffy
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Elizabeth J. Kelly
- Translational Medicine, Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
31
|
Shkunnikova S, Mijakovac A, Sironic L, Hanic M, Lauc G, Kavur MM. IgG glycans in health and disease: Prediction, intervention, prognosis, and therapy. Biotechnol Adv 2023; 67:108169. [PMID: 37207876 DOI: 10.1016/j.biotechadv.2023.108169] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Immunoglobulin (IgG) glycosylation is a complex enzymatically controlled process, essential for the structure and function of IgG. IgG glycome is relatively stable in the state of homeostasis, yet its alterations have been associated with aging, pollution and toxic exposure, as well as various diseases, including autoimmune and inflammatory diseases, cardiometabolic diseases, infectious diseases and cancer. IgG is also an effector molecule directly involved in the inflammation processes included in the pathogenesis of many diseases. Numerous recently published studies support the idea that IgG N-glycosylation fine-tunes the immune response and plays a significant role in chronic inflammation. This makes it a promising novel biomarker of biological age, and a prognostic, diagnostic and treatment evaluation tool. Here we provide an overview of the current state of knowledge regarding the IgG glycosylation in health and disease, and its potential applications in pro-active prevention and monitoring of various health interventions.
Collapse
Affiliation(s)
- Sofia Shkunnikova
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Anika Mijakovac
- University of Zagreb, Faculty of Science, Department of Biology, Horvatovac 102a, Zagreb, Croatia
| | - Lucija Sironic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Maja Hanic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia; University of Zagreb, Faculty of Pharmacy and Biochemistry, Ulica Ante Kovačića 1, Zagreb, Croatia
| | | |
Collapse
|
32
|
Hsu YP, Nourzaie O, Tocher AE, Nerella K, Ermakov G, Jung J, Fowler A, Wu P, Ayesa U, Willingham A, Beaumont M, Ingale S. Site-Specific Antibody Conjugation Using Modified Bisected N-Glycans: Method Development and Potential toward Tunable Effector Function. Bioconjug Chem 2023; 34:1633-1644. [PMID: 37620302 PMCID: PMC10516122 DOI: 10.1021/acs.bioconjchem.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Antibody-drug conjugates (ADCs) have garnered worldwide attention for disease treatment, as they possess high target specificity, a long half-life, and outstanding potency to kill or modulate the functions of targets. FDA approval of multiple ADCs for cancer therapy has generated a strong desire for novel conjugation strategies with high biocompatibility and controllable bioproperties. Herein, we present a bisecting glycan-bridged conjugation strategy that enables site-specific conjugation without the need for the oligosaccharide synthesis and genetic engineering of antibodies. Application of this method is demonstrated by conjugation of anti-HER2 human and mouse IgGs with a cytotoxic drug, monomethyl auristatin E. The glycan bridge showed outstanding stability, and the resulting ADCs eliminated HER2-expressing cancer cells effectively. Moreover, our strategy preserves the feasibility of glycan structure remodeling to fine-tune the immunogenicity and pharmacokinetic properties of ADCs through glycoengineering.
Collapse
Affiliation(s)
- Yen-Pang Hsu
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Omar Nourzaie
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Ariel E. Tocher
- MRL,
Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kavitha Nerella
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Grigori Ermakov
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Jiwon Jung
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Alexandra Fowler
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Peidong Wu
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Umme Ayesa
- MRL, Merck
& Co., Inc., 90 E.
Scott Ave., Rahway, New Jersey 07065, United States
| | - Aarron Willingham
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Maribel Beaumont
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Sampat Ingale
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| |
Collapse
|
33
|
Flores A, Alonso-Vega C, Hermann E, Torrico MC, Montaño Villarroel NA, Torrico F, Carlier Y, Truyens C. Monocytes from Uninfected Neonates Born to Trypanosoma cruzi-Infected Mothers Display Upregulated Capacity to Produce TNF-α and to Control Infection in Association with Maternally Transferred Antibodies. Pathogens 2023; 12:1103. [PMID: 37764911 PMCID: PMC10536721 DOI: 10.3390/pathogens12091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Activated monocytes/macrophages that produce inflammatory cytokines and nitric oxide are crucial for controlling Trypanosoma cruzi infection. We previously showed that uninfected newborns from T. cruzi infected mothers (M+B- newborns) were sensitized to produce higher levels of inflammatory cytokines than newborns from uninfected mothers (M-B- newborns), suggesting that their monocytes were more activated. Thus, we wondered whether these cells might help limit congenital infection. We investigated this possibility by studying the activation status of M+B- cord blood monocytes and their ability to control T. cruzi in vitro infection. We showed that M+B- monocytes have an upregulated capacity to produce the inflammatory cytokine TNF-α and a better ability to control T. cruzi infection than M-B- monocytes. Our study also showed that T. cruzi-specific Abs transferred from the mother play a dual role by favoring trypomastigote entry into M+B- monocytes and inhibiting intracellular amastigote multiplication. These results support the possibility that some M+B- fetuses may eliminate the parasite transmitted in utero from their mothers, thus being uninfected at birth.
Collapse
Affiliation(s)
- Amilcar Flores
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | - Cristina Alonso-Vega
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | - Emmanuel Hermann
- Laboratory of Parasitology, Faculty of Medicine, ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
| | - Mary-Cruz Torrico
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | | | - Faustino Torrico
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | - Yves Carlier
- Laboratory of Parasitology, Faculty of Medicine, ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
| |
Collapse
|
34
|
Jukič M, Kralj S, Kolarič A, Bren U. Design of Tetra-Peptide Ligands of Antibody Fc Regions Using In Silico Combinatorial Library Screening. Pharmaceuticals (Basel) 2023; 16:1170. [PMID: 37631085 PMCID: PMC10459493 DOI: 10.3390/ph16081170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Peptides, or short chains of amino-acid residues, are becoming increasingly important as active ingredients of drugs and as crucial probes and/or tools in medical, biotechnological, and pharmaceutical research. Situated at the interface between small molecules and larger macromolecular systems, they pose a difficult challenge for computational methods. We report an in silico peptide library generation and prioritization workflow using CmDock for identifying tetrapeptide ligands that bind to Fc regions of antibodies that is analogous to known in vitro recombinant peptide libraries' display and expression systems. The results of our in silico study are in accordance with existing scientific literature on in vitro peptides that bind to antibody Fc regions. In addition, we postulate an evolving in silico library design workflow that will help circumvent the combinatorial problem of in vitro comprehensive peptide libraries by focusing on peptide subunits that exhibit favorable interaction profiles in initial in silico peptide generation and testing.
Collapse
Affiliation(s)
- Marko Jukič
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| | - Sebastjan Kralj
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
| | - Anja Kolarič
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, SI-6000 Koper, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| |
Collapse
|
35
|
Lukšić F, Mijakovac A, Josipović G, Vičić Bočkor V, Krištić J, Cindrić A, Vinicki M, Rokić F, Vugrek O, Lauc G, Zoldoš V. Long-Term Culturing of FreeStyle 293-F Cells Affects Immunoglobulin G Glycome Composition. Biomolecules 2023; 13:1245. [PMID: 37627310 PMCID: PMC10452533 DOI: 10.3390/biom13081245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Glycosylation of IgG regulates the effector function of this antibody in the immune response. Glycosylated IgG is a potent therapeutic used for both research and clinical purposes. While there is ample research on how different cell culture conditions affect IgG glycosylation, the data are missing on the stability of IgG glycome during long cell passaging, i.e., cell "aging". To test this, we performed three independent time course experiments in FreeStyle 293-F cells, which secrete IgG with a human-like glycosylation pattern and are frequently used to generate defined IgG glycoforms. During long-term cell culturing, IgG glycome stayed fairly stable except for galactosylation, which appeared extremely variable. Cell transcriptome analysis revealed no correlation in galactosyltransferase B4GALT1 expression with galactosylation change, but with expression of EEF1A1 and SLC38A10, genes previously associated with IgG galactosylation through GWAS. The FreeStyle 293-F cell-based system for IgG production is a good model for studies of mechanisms underlying IgG glycosylation, but results from the present study point to the utmost importance of the need to control IgG galactosylation in both in vitro and in vivo systems. This is especially important for improving the production of precisely glycosylated IgG for therapeutic purposes, since IgG galactosylation affects the inflammatory potential of IgG.
Collapse
Affiliation(s)
- Fran Lukšić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Anika Mijakovac
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Goran Josipović
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Vedrana Vičić Bočkor
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | | | - Ana Cindrić
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Martina Vinicki
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Filip Rokić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Oliver Vugrek
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Vlatka Zoldoš
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| |
Collapse
|
36
|
Gronke K, Nguyen M, Santamaria N, Schumacher J, Yang Y, Sonnert N, Leopold S, Martin AL, Hallet R, Richter K, Schubert DA, Daniel GM, Dylus D, Forkel M, Vieira SM, Schwinge D, Schramm C, Lassen KG, Piali L, Palm NW, Bieniossek C, Kriegel MA. Human Th17- and IgG3-associated autoimmunity induced by a translocating gut pathobiont. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.546430. [PMID: 37425769 PMCID: PMC10327010 DOI: 10.1101/2023.06.29.546430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Extraintestinal autoimmune diseases are multifactorial with translocating gut pathobionts implicated as instigators and perpetuators in mice. However, the microbial contributions to autoimmunity in humans remain largely unclear, including whether specific pathological human adaptive immune responses are triggered by such pathobionts. We show here that the translocating pathobiont Enterococcus gallinarum induces human IFNγ + Th17 differentiation and IgG3 subclass switch of anti- E. gallinarum RNA and correlating anti-human RNA autoantibody responses in patients with systemic lupus erythematosus and autoimmune hepatitis. Human Th17 induction by E. gallinarum is cell-contact dependent and involves TLR8-mediated human monocyte activation. In murine gnotobiotic lupus models, E. gallinarum translocation triggers IgG3 anti-RNA autoantibody titers that correlate with renal autoimmune pathophysiology and with disease activity in patients. Overall, we define cellular mechanisms of how a translocating pathobiont induces human T- and B-cell-dependent autoimmune responses, providing a framework for developing host- and microbiota-derived biomarkers and targeted therapies in extraintestinal autoimmune diseases. One Sentence Summary Translocating pathobiont Enterococcus gallinarum promotes human Th17 and IgG3 autoantibody responses linked to disease activity in autoimmune patients.
Collapse
|
37
|
Struble EB, Rawson JMO, Stantchev T, Scott D, Shapiro MA. Uses and Challenges of Antiviral Polyclonal and Monoclonal Antibody Therapies. Pharmaceutics 2023; 15:pharmaceutics15051538. [PMID: 37242780 DOI: 10.3390/pharmaceutics15051538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Viral diseases represent a major public health concerns and ever-present risks for developing into future pandemics. Antiviral antibody therapeutics, either alone or in combination with other therapies, emerged as valuable preventative and treatment options, including during global emergencies. Here we will discuss polyclonal and monoclonal antiviral antibody therapies, focusing on the unique biochemical and physiological properties that make them well-suited as therapeutic agents. We will describe the methods of antibody characterization and potency assessment throughout development, highlighting similarities and differences between polyclonal and monoclonal products as appropriate. In addition, we will consider the benefits and challenges of antiviral antibodies when used in combination with other antibodies or other types of antiviral therapeutics. Lastly, we will discuss novel approaches to the characterization and development of antiviral antibodies and identify areas that would benefit from additional research.
Collapse
Affiliation(s)
- Evi B Struble
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jonathan M O Rawson
- Division of Antivirals, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tzanko Stantchev
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Dorothy Scott
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Marjorie A Shapiro
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
38
|
Cortés-Sarabia K, Palomares-Monterrubio KH, Velázquez-Moreno JO, Luna-Pineda VM, Leyva-Vázquez MA, Vences-Velázquez A, Dircio-Maldonado R, Del Moral-Hernández O, Illades-Aguiar B. Seroprevalence of IgG and Subclasses against the Nucleocapsid of SARS-CoV-2 in Health Workers. Viruses 2023; 15:v15040955. [PMID: 37112935 PMCID: PMC10141201 DOI: 10.3390/v15040955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The nucleocapsid protein of SARS-CoV-2 participates in viral replication, transcription, and assembly. Antibodies against this protein have been proposed for the epidemiological analysis of the seroprevalence of COVID-19 associated with natural infection by SARS-CoV-2. Health workers were one of the most exposed populations, and some had an asymptomatic form of the disease, so detecting IgG antibodies and subclasses against the N protein can help to reclassify their epidemiological status and obtain information about the effector mechanisms associated with viral elimination. METHODS In this study, we analyzed 253 serum samples collected in 2021 and derived from health workers, and evaluated the presence of total IgG and subclasses against the N protein of SARS-CoV-2 by indirect ELISA. RESULTS From the analyzed samples, 42.69% were positive to anti-N IgG antibodies. A correlation between COVID-19 asymptomatic infection and IgG antibodies was observed (p = 0.006). The detected subclasses were: IgG1 (82.4%), IgG2 (75.9%), IgG3 (42.6%), and IgG4 (72.6%). CONCLUSIONS This work provides evidence about the high seroprevalence of total IgG and subclasses of anti-N and their relations with the asymptomatic infection of SARS-CoV-2 and related symptoms.
Collapse
Affiliation(s)
- Karen Cortés-Sarabia
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Kenet Hisraim Palomares-Monterrubio
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Jesús Omar Velázquez-Moreno
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Víctor Manuel Luna-Pineda
- Unidad de Investigación en Inmunología y Proteómica, Laboratorio de Investigación en COVID-19, Hospital Infantil de México "Federico Gómez", Mexico City 06720, Mexico
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Amalia Vences-Velázquez
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Roberto Dircio-Maldonado
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Oscar Del Moral-Hernández
- Laboratorio de Virología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Berenice Illades-Aguiar
- Unidad de Investigación en Inmunología y Proteómica, Laboratorio de Investigación en COVID-19, Hospital Infantil de México "Federico Gómez", Mexico City 06720, Mexico
| |
Collapse
|
39
|
Chen X, Gula H, Pius T, Ou C, Gomozkova M, Wang LX, Schneewind O, Missiakas D. Immunoglobulin G subclasses confer protection against Staphylococcus aureus bloodstream dissemination through distinct mechanisms in mouse models. Proc Natl Acad Sci U S A 2023; 120:e2220765120. [PMID: 36972444 PMCID: PMC10083571 DOI: 10.1073/pnas.2220765120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Antibodies bind target molecules with exquisite specificity. The removal of these targets is mediated by the effector functions of antibodies. We reported earlier that the monoclonal antibody (mAb) 3F6 promotes opsonophagocytic killing of Staphylococcus aureus in blood and reduces bacterial replication in animals. Here, we generated mouse immunoglobulin G (mIgG) subclass variants and observed a hierarchy in protective efficacy 3F6-mIgG2a > 3F6-mIgG1 ≥ 3F6-mIgG2b >> 3F6-mIgG3 following bloodstream challenge of C57BL/6J mice. This hierarchy was not observed in BALB/cJ mice: All IgG subclasses conferred similar protection. IgG subclasses differ in their ability to activate complement and interact with Fcγ receptors (FcγR) on immune cells. 3F6-mIgG2a-dependent protection was lost in FcγR-deficient, but not in complement-deficient C57BL/6J animals. Measurements of the relative ratio of FcγRIV over complement receptor 3 (CR3) on neutrophils suggest the preferential expression of FcγRIV in C57BL/6 mice and of CR3 in BALB/cJ mice. To determine the physiological significance of these differing ratios, blocking antibodies against FcγRIV or CR3 were administered to animals before challenge. Correlating with the relative abundance of each receptor, 3F6-mIgG2a-dependent protection in C57BL/6J mice showed a greater reliance for FcγRIV while protection in BALB/cJ mice was only impaired upon neutralization of CR3. Thus, 3F6-based clearance of S. aureus in mice relies on a strain-specific contribution of variable FcγR- and complement-dependent pathways. We surmise that these variabilities are the result of genetic polymorphism(s) that may be encountered in other mammals including humans and may have clinical implications in predicting the efficacy of mAb-based therapies.
Collapse
Affiliation(s)
- Xinhai Chen
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518132, China
| | - Haley Gula
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Tonu Pius
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Margaryta Gomozkova
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Olaf Schneewind
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| |
Collapse
|
40
|
Bekele B, Masresha Z, Alemayehu M, Seyoum B, Wassie L, Abebe M. Intravenous Immunoglobulin G (IVIG) Need Assessment Survey Toward Local Manufacturing of IVIG Using a Mini-Pool Plasma Fractionation Technique. Health Serv Insights 2023; 16:11786329231157467. [PMID: 36860668 PMCID: PMC9969427 DOI: 10.1177/11786329231157467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/27/2023] [Indexed: 02/27/2023] Open
Abstract
Immunoglobulin therapy has a crucial role in the treatment of primary and secondary immunodeficiencies as well as in a multitude of neurologic, hematologic, infectious, and autoimmune conditions. In the current study, a preliminary pilot scale needs assessment survey was conducted to examine the need for IVIG among patients in Addis Ababa, Ethiopia, and in so doing justify local manufacturing of IVIG products. The survey was performed by administering a structured questionnaire to private and government hospitals, a national blood bank, a regulatory body, and healthcare researchers working in academia and pharmaceutical companies. The questionnaire encompassed demographics and specific IVIG-related questions designed for each institution. Responses supplied in the study provide qualitative data. Our findings indicated that IVIG has been registered by the regulatory body for use in Ethiopia and there is a demand for the product in the country. The study also highlights that patients go as far as to clandestine markets to procure IVIG products at a cheaper price. To impede such illegal routes and make the product readily accessible, a small-scale and low-cost approach such as a mini-pool plasma fractionation technique could be implemented to locally purify and prepare IVIG using plasma collected through the national blood donation program.
Collapse
Affiliation(s)
- Bisrat Bekele
- Bisrat Bekele, Armauer Hansen Research
Institute, Biotechnology and Bioinformatics Directorate, Jimma Road, ALERT
Campus, P.O. Box 1005, Addis Ababa 1005, Ethiopia.
| | | | | | | | | | | |
Collapse
|
41
|
Kendal JK, Shehata MS, Lofftus SY, Crompton JG. Cancer-Associated B Cells in Sarcoma. Cancers (Basel) 2023; 15:cancers15030622. [PMID: 36765578 PMCID: PMC9913500 DOI: 10.3390/cancers15030622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Despite being one of the first types of cancers studied that hinted at a major role of the immune system in pro- and anti-tumor biology, little is known about the immune microenvironment in sarcoma. Few types of sarcoma have shown major responses to immunotherapy, and its rarity and heterogeneity makes it challenging to study. With limited systemic treatment options, further understanding of the underlying mechanisms in sarcoma immunity may prove crucial in advancing sarcoma care. While great strides have been made in the field of immunotherapy over the last few decades, most of these efforts have focused on harnessing the T cell response, with little attention on the role B cells may play in the tumor microenvironment. A growing body of evidence suggests that B cells have both pro- and anti-tumoral effects in a large variety of cancers, and in the age of bioinformatics and multi-omic analysis, the complexity of the humoral response is just being appreciated. This review explores what is currently known about the role of B cells in sarcoma, including understanding the various B cell populations associated with sarcoma, the organization of intra-tumoral B cells in tertiary lymphoid structures, recent trials in immunotherapy in sarcoma, intra-tumoral immunoglobulin, the pro-tumor effects of B cells, and exciting future areas for research.
Collapse
Affiliation(s)
- Joseph K. Kendal
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90404, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Michael S. Shehata
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Serena Y. Lofftus
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, CA 90095, USA
| | - Joseph G. Crompton
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-825-2644
| |
Collapse
|
42
|
Volkov M, Brinkhaus M, van Schie KA, Bondt A, Kissel T, van der Kooi EJ, Bentlage AEH, Koeleman CAM, de Taeye SW, Derksen NI, Dolhain RJEM, Braig-Scherer U, Huizinga TWJ, Wuhrer M, Toes REM, Vidarsson G, van der Woude D. IgG Fab Glycans Hinder FcRn-Mediated Placental Transport. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:158-167. [PMID: 36480251 DOI: 10.4049/jimmunol.2200438] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/08/2022] [Indexed: 01/04/2023]
Abstract
Abs can be glycosylated in both their Fc and Fab regions with marked effects on Ab function and binding. High levels of IgG Fab glycosylation are associated with malignant and autoimmune conditions, exemplified by rheumatoid arthritis and highly Fab-glycosylated (∼90%) anti-citrullinated protein Abs (ACPAs). Important properties of IgG, such as long half-life and placental transport, are facilitated by the human neonatal Fc receptor (hFcRn). Although it is known that glycosylation of Abs can affect binding to Fc receptors, little is known on the impact of IgG Fab glycosylation on hFcRn binding and transplacental transport. Therefore, we analyzed the interaction between hFcRn and IgG with and without Fab glycans in vitro with various methods as well as in vivo by studying placental transfer of Fab-glycosylated Abs from mothers to newborns. No effect of Fab glycosylation on IgG binding to hFcRn was found by surface plasmon resonance and hFcRn affinity chromatography. In contrast, studies in a cell membrane context revealed that Fab glycans negatively impacted IgG-hFcRn interaction. In line with this, we found that Fab-glycosylated IgGs were transported ∼20% less efficiently across the placenta. This appeared to be a general phenomenon, observed for ACPAs, non-ACPAs, as well as total IgG in rheumatoid arthritis patients and healthy controls. Our results suggest that, in a cellular context, Fab glycans inhibit IgG-hFcRn interaction and thus negatively affect the transplacental transfer of IgG. As Fab-glycosylated Abs are frequently associated with autoimmune and malignant disorders and may be potentially harmful, this might encompass a regulatory mechanism, limiting the half-life and transport of such Abs.
Collapse
Affiliation(s)
- Mikhail Volkov
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maximilian Brinkhaus
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Karin A van Schie
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Albert Bondt
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Theresa Kissel
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Elvera J van der Kooi
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Steven W de Taeye
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ninotska I Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Radboud J E M Dolhain
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, the Netherlands; and
| | - Ute Braig-Scherer
- International Health Centre-Polikliniek Prins Willem, The Hague, the Netherlands
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Diane van der Woude
- Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
43
|
Cottignies-Calamarte A, Tudor D, Bomsel M. Antibody Fc-chimerism and effector functions: When IgG takes advantage of IgA. Front Immunol 2023; 14:1037033. [PMID: 36817447 PMCID: PMC9933243 DOI: 10.3389/fimmu.2023.1037033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Recent advances in the development of therapeutic antibodies (Abs) have greatly improved the treatment of otherwise drug-resistant cancers and autoimmune diseases. Antibody activities are mediated by both their Fab and the Fc. However, therapeutic Abs base their protective mechanisms on Fc-mediated effector functions resulting in the activation of innate immune cells by FcRs. Therefore, Fc-bioengineering has been widely used to maximise the efficacy and convenience of therapeutic antibodies. Today, IgG remains the only commercially available therapeutic Abs, at the expense of other isotypes. Indeed, production, sampling, analysis and related in vivo studies are easier to perform with IgG than with IgA due to well-developed tools. However, interest in IgA is growing, despite a shorter serum half-life and a more difficult sampling and purification methods than IgG. Indeed, the paradigm that the effector functions of IgG surpass those of IgA has been experimentally challenged. Firstly, IgA has been shown to bind to its Fc receptor (FcR) on effector cells of innate immunity with greater efficiency than IgG, resulting in more robust IgA-mediated effector functions in vitro and better survival of treated animals. In addition, the two isotypes have been shown to act synergistically. From these results, new therapeutic formats of Abs are currently emerging, in particular chimeric Abs containing two tandemly expressed Fc, one from IgG (Fcγ) and one from IgA (Fcα). By binding both FcγR and FcαR on effector cells, these new chimeras showed improved effector functions in vitro that were translated in vivo. Furthermore, these chimeras retain an IgG-like half-life in the blood, which could improve Ab-based therapies, including in AIDS. This review provides the rationale, based on the biology of IgA and IgG, for the development of Fcγ and Fcα chimeras as therapeutic Abs, offering promising opportunities for HIV-1 infected patients. We will first describe the main features of the IgA- and IgG-specific Fc-mediated signalling pathways and their respective functional differences. We will then summarise the very promising results on Fcγ and Fcα containing chimeras in cancer treatment. Finally, we will discuss the impact of Fcα-Fcγ chimerism in prevention/treatment strategies against infectious diseases such as HIV-1.
Collapse
Affiliation(s)
- Andréa Cottignies-Calamarte
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Daniela Tudor
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Cochin Institute, Paris, France.,Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
44
|
Zakaria M, Al-Akhras A, Hassan T, Sherief L, Magdy W, Raafat N. FcγRIIa and FcγRIIIa genes polymorphism in Egyptian children with primary immune thrombocytopenia. Hematol Transfus Cell Ther 2023; 45:58-65. [PMID: 34266810 PMCID: PMC9938460 DOI: 10.1016/j.htct.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Phagocytosis of autoantibody-sensitized coated platelets through Fc gamma receptors on phagocytic cells is an important mechanism of thrombocytopenia in primary immune thrombocytopenia (ITP). OBJECTIVE We aimed to investigate the contribution of the FcγRIIa and FcγRIIIa genes polymorphism to the risk of ITP and their association with disease characteristics in Egyptian children. METHODS A case control study was conducted on eighty children with primary ITP and eighty age and sex healthy matched subjects as a control group. The FcγRIIa and FcγRIIIa genes polymorphism was detected using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS We found that the FcγRIIa-131H and -131R allele frequencies were 51.3 % and 48.7%, respectively, in children with ITP, versus 75% and 25%, respectively, in controls (p = 0.002). The compound heterozygous HR genotype was significantly higher in ITP patients (p < 0.05). The FcγRIIIa-158F and -158V allele frequencies were 46.3% and 53.7%, respectively, in children with ITP, versus 70% and 30%, respectively, in controls (p = 0.002). The compound heterozygous VF genotype was significantly higher in ITP patients (p < 0.05). The combined HR/FV genotype was 47.5% in ITP patients, versus 10% in controls (p < 0.001). No significant difference was found between children with newly diagnosed ITP and those who developed chronic ITP, regarding the frequency distribution of the FcγRIIa and FcγRIIIa alleles and genotypes (p > 0.05). CONCLUSION There is a possible association of the FcγRIIa and FcγRIIIa genes polymorphism with the risk for, and genetic susceptibility to ITP in Egyptian children, but large-scale studies are still needed to support our findings.
Collapse
|
45
|
Abstract
Hemolysis is a problem associated with a variety of red cell pathologies and physiologies not limited to the transfusion of cells. Various pathways lead to the observed outcomes when a hemolytic event occurs. Each event, and the pathway it follows, is based on characteristics of the red cell, the location in which the hemolysis occurs, and the interaction of the immune system. The severity of an event can be predicted with the knowledge of how these 3 factors interface. Although not all hemolytic events are alike, similarities may exist when the pathways overlap.
Collapse
|
46
|
Protection Efficacy of Monoclonal Antibodies Targeting Different Regions of Specific SzM Protein from Swine-Isolated Streptococcus equi ssp. zooepidemicus Strains. Microbiol Spectr 2022; 10:e0174222. [PMID: 36255327 PMCID: PMC9769693 DOI: 10.1128/spectrum.01742-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) has a wide host spectrum, including humans and domestic animals. The SEZ-caused swine streptococcicosis outbreak has occurred in several countries, and the swine-isolated strains usually have specific S. zooepidemicus M-like (szm) gene types. In this study, we found that the production of this specific szm gene (SzM protein) was an effective vaccine candidate. It could provide better protection with a 7-day interval immune procedure than the traditional vaccine strain ST171 and attenuate the strain ΔsezV against swine-isolated hypervirulent SEZ infections. According to this outcome, we developed monoclonal antibodies (McAbs) targeting the variable and conserved regions of this SzM protein, respectively. These McAbs all belong to the IgG1 isotype with a κ type light chain and have opsonophagocytic activity rather than agglutination or complement activation functions. We estimated the protection efficiency of the McAbs with 3 different passive immunotherapy programs. The anti-conserved region McAb can provide effective protection against swine-isolated SEZ infections with only the inconvenient immunotherapy program. It also partially works in preventing infection by other SEZ strains. In contrast, the anti-variable region McAb is only adapted to protect the host against a specific szm type SEZ strain isolated from pigs, but it is flexible for different immunotherapy programs. These data provide further information to guide the development of derived, genetically engineered McAbs that have potential applications in protecting hosts against swine-isolated, hypervirulent SEZ infections in the future. IMPORTANCE The swine-isolated SEZ, with its specific szm gene sequence, has impacted the pig feeding industry in China and North America and has led to serious economic loss. Though the SzM protein of SEZ has been proven to be an effective vaccine in preventing infection, most previous studies focused on horse-isolated strains, which have different szm gene types compared to swine-isolated strains. In this study, we developed the McAbs targeting the conserved and variable regions of this SzM protein from the swine-isolated hypervirulent strains and evaluated their protection efficiency. Our research provided information for the development of chimeric McAbs or other genetically engineered McAbs that have potential applications in protecting pigs against hypervirulent SEZ infections in the future.
Collapse
|
47
|
Capkin E, Kurt H, Gurel B, Bicak D, Akgun Bas S, Daglikoca DE, Yuce M. Characterization of FcγRIa (CD64) as a Ligand Molecule for Site-Specific IgG1 Capture: A Side-By-Side Comparison with Protein A. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14623-14634. [PMID: 36416530 PMCID: PMC9730901 DOI: 10.1021/acs.langmuir.2c02022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Fc γ receptors (FcγRs) are one of the structures that can initiate effector function for monoclonal antibodies. FcγRIa has the highest affinity toward IgG1-type monoclonal antibodies among all FcγRs. In this study, a comprehensive characterization was performed for FcγRIa as a potential affinity ligand for IgG1-type monoclonal antibody binding. The binding interactions were assessed with the SPR technique using different immobilization techniques such as EDC-NHS coupling, streptavidin-biotin interaction, and His-tagged FcγRIa capture. The His-tagged FcγRIa capture was the most convenient method based on assay repeatability. Next, a crude IgG1 sample and its fractions with different monomer contents obtained from protein A affinity chromatography were used to evaluate FcγRIa protein in terms of monoclonal antibody binding capacity. The samples were also compared with a protein A-immobilized chip (a frequently used affinity ligand) for IgG1 binding responses. The antibody binding capacity of the protein A-immobilized chip surface was significantly better than that of the FcγRIa-immobilized chip surface due to its 5 Ig binding domains. The antibody binding responses changed similarly with protein A depending on the monomer content of the sample. Finally, a different configuration was used to assess the binding affinity of free FcγRs (FcγRIa, FcγRIIa, and FcγRIIIa) to three different immobilized IgGs by immobilizing protein L to the chip surface. Unlike previous immobilization techniques tested where the FcγRIa was utilized as a ligand, nonimmobilized or free FcγRIa resulted in a significantly higher antibody binding response than free protein A. In this configuration, kinetics data of FcγRI revealed that the association rate (ka 50-80 × 105 M-1 s-1) increased in comparison to His capture method (1.9-2.4 × 105 M-1 s-1). In addition, the dissociation rate (kd 10-5 s-1) seemed slower over the His capture method (10-4 s-1) and provided stability on the chip surface during the dissociation phase. The KD values for FcγRIa were found in the picomolar range (2.1-10.33 pM from steady-state affinity analysis and 37.5-46.2 pM from kinetic analysis) for IgG1-type antibodies. FcγRIa possesses comparable ligand potential as well as protein A. Even though the protein A-immobilized surface bound more antibodies than the FcγRIa-captured surface, FcγRIa presented a significant antibody binding capacity in protein L configuration. The results suggest FcγRIa protein as a potential ligand for site-oriented immobilization of IgG1-type monoclonal antibodies, and it needs further performance investigation on different surfaces and interfaces for applications such as sensing and antibody purification.
Collapse
Affiliation(s)
- Eda Capkin
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| | - Hasan Kurt
- School
of Engineering and Natural Sciences, Istanbul
Medipol University, Beykoz 34810, Istanbul, Turkey
- SABITA
Research Institute for Health Sciences and Technologies, Istanbul Medipol University, Beykoz 34810, Istanbul, Turkey
- Nanosolar
Plasmonics Ltd., Gebze 41400, Kocaeli, Turkey
| | - Busra Gurel
- SUNUM
Nanotechnology Research and Application Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Dilan Bicak
- ILKO ARGEM
Biotechnology R&D Center, Pendik 34906, Istanbul, Turkey
| | - Sibel Akgun Bas
- ILKO ARGEM
Biotechnology R&D Center, Pendik 34906, Istanbul, Turkey
| | | | - Meral Yuce
- SUNUM
Nanotechnology Research and Application Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
| |
Collapse
|
48
|
MARSHALL NE, BLANTON MB, DORATT BM, MALHERBE DC, RINCON M, TRUE H, MCDONALD T, BEAUREGARD C, ADATORWOVOR R, MESSAOUDI I. SARS-CoV-2 Vaccine Booster Elicits Robust Prolonged Maternal Antibody Responses and Passive Transfer Via The Placenta And Breastmilk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.29.518385. [PMID: 36482972 PMCID: PMC9727762 DOI: 10.1101/2022.11.29.518385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background Infection during pregnancy can result in adverse outcomes for both pregnant persons and offspring. Maternal vaccination is an effective mechanism to protect both mother and neonate into post-partum. However, our understanding of passive transfer of antibodies elicited by maternal SARS-CoV-2 mRNA vaccination during pregnancy remains incomplete. Objective We aimed to evaluate the antibody responses engendered by maternal SARS-CoV-2 vaccination following initial and booster doses in maternal circulation and breastmilk to better understand passive immunization of the newborn. Study Design We collected longitudinal blood samples from 121 pregnant women who received SARS-CoV-2 mRNA vaccines spanning from early gestation to delivery followed by collection of blood samples and breastmilk between delivery and 12 months post-partum. During the study, 70% of the participants also received a booster post-partum. Paired maternal plasma, breastmilk, umbilical cord plasma, and newborn plasma samples were tested via enzyme-linked immunosorbent assays (ELISA) to evaluate SARS-CoV-2 specific IgG antibody levels. Results Vaccine-elicited maternal antibodies were detected in both cord blood and newborn blood, albeit at lower levels than maternal circulation, demonstrating transplacental passive immunization. Booster vaccination significantly increased spike specific IgG antibody titers in maternal plasma and breastmilk. Finally, SARS-CoV-2 specific IgG antibodies in newborn blood correlated negatively with days post initial maternal vaccine dose. Conclusion Vaccine-induced maternal SARS-CoV-2 antibodies were passively transferred to the offspring in utero via the placenta and after birth via breastfeeding. Maternal booster vaccination, regardless of gestational age at maternal vaccination, significantly increased antibody levels in breastmilk and maternal plasma, indicating the importance of this additional dose to maximize passive protection against SARS-CoV-2 infection for neonates and infants until vaccination eligibility.
Collapse
Affiliation(s)
- Nicole E. MARSHALL
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR,Corresponding authors: Nicole Marshall and Ilhem Messaoudi, Addresses: Nicole Marshall, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, , Ilhem Messaoudi, Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, 760 Press Ave, Lexington, KY 40536,
| | - Madison B. BLANTON
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - Brianna M. DORATT
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY
| | - Delphine C. MALHERBE
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY
| | - Monica RINCON
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR
| | - Heather TRUE
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - Taylor MCDONALD
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY
| | - Caroline BEAUREGARD
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY
| | | | - Ilhem MESSAOUDI
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY,Corresponding authors: Nicole Marshall and Ilhem Messaoudi, Addresses: Nicole Marshall, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, , Ilhem Messaoudi, Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, 760 Press Ave, Lexington, KY 40536,
| |
Collapse
|
49
|
Minott JA, van Vloten JP, Yates JGE, Chan L, Wood GA, Viloria-Petit AM, Karimi K, Petrik JJ, Wootton SK, Bridle BW. Multiplex flow cytometry-based assay for quantifying tumor- and virus-associated antibodies induced by immunotherapies. Front Immunol 2022; 13:1038340. [PMID: 36466867 PMCID: PMC9708883 DOI: 10.3389/fimmu.2022.1038340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/27/2022] [Indexed: 03/22/2024] Open
Abstract
Novel immunotherapies continue to be developed and tested for application against a plethora of diseases. The clinical translation of immunotherapies requires an understanding of their mechanisms. The contributions of antibodies in driving long-term responses following immunotherapies continue to be revealed given their diverse effector functions. Developing an in-depth understanding of the role of antibodies in treatment efficacy is required to optimize immunotherapies and improve the chance of successfully translating them into the clinic. However, analyses of antibody responses can be challenging in the context of antigen-agnostic immunotherapies, particularly in the context of cancers that lack pre-defined target antigens. As such, robust methods are needed to evaluate the capacity of a given immunotherapy to induce beneficial antibody responses, and to identify any therapy-limiting antibodies. We previously developed a comprehensive method for detecting antibody responses induced by antigen-agnostic immunotherapies for application in pre-clinical models of vaccinology and cancer therapy. Here, we extend this method to a high-throughput, flow cytometry-based assay able to identify and quantify isotype-specific virus- and tumor-associated antibody responses induced by immunotherapies using small sample volumes with rapid speed and high sensitivity. This method provides a valuable and flexible protocol for investigating antibody responses induced by immunotherapies, which researchers can use to expand their analyses and optimize their own treatment regimens.
Collapse
Affiliation(s)
- Jessica A. Minott
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | | - Jacob G. E. Yates
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Lily Chan
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Geoffrey A. Wood
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- ImmunoCeutica Inc., Cambridge, ON, Canada
| |
Collapse
|
50
|
Sensitive organic electrochemical transistor biosensors: Comparing single and dual gate functionalization and different COOH-functionalized bioreceptor layers. Biosens Bioelectron 2022; 216:114691. [PMID: 36113388 DOI: 10.1016/j.bios.2022.114691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022]
Abstract
We developed new measurement configurations based on organic electrochemical transistors (OECTs). Three types of COOH-functionalized bioreceptor layers were deposited on indium tin oxide (ITO) electrodes on poly(ethylene terephthalate) (PET) substrates and their performance was tested using single gate functionalization organic electrochemical transistor (S-OECT) and dual gate functionalization organic electrochemical transistor (D-OECT) configurations. The three layers included one p-type semiconductor, one insulator, and one self-assembled layer, and the dual gates were connected in series through buffer solutions, so the solution-electrode interfaces had the opposite polarities. We investigated the sensitivities of these systems using the human IgG antigen-human IgG antibody receptor pair for main experiments, and drifts of antibody-functionalized gates without analytes as control experiments. Drifts without analyte can obscure the real sensitivity. We show that the D-OECT has the capability to cancel the drifts, and is also beneficial for showing the sensitivity more exactly. This configuration has the ability to increase the accuracy of antibody-antigen interaction detection, and further decrease or eliminate the effect of ions in the buffer solution. We also prove that the D-OECT can work well with different bioreceptor materials, which indicates that the system can be further applied to different conditions.
Collapse
|