1
|
Li Y, Zhang Y, Kam KW, Chan P, Liu D, Zaabaar E, Zhang XJ, Ho M, Ng MP, Ip P, Young A, Pang CP, Tham CC, Kwan MP, Chen LJ, Yam JC. Associations of long-term joint exposure to multiple ambient air pollutants with the incidence of age-related eye diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118052. [PMID: 40107215 DOI: 10.1016/j.ecoenv.2025.118052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVES The associations between long-term joint exposure to low levels of multiple air pollutants and the incidence of common age-related eye diseases (AREDs), including cataract, glaucoma, and age-related macular degeneration (AMD), remain underexplored. METHODS We conducted a prospective cohort study using UK Biobank data from 441,567 participants without cataract, glaucoma, or AMD at baseline. An air pollution score was constructed to assess the combined effect of multiple air pollutants, including PM2.5, PM2.5-10, PM10, NO2 and NO. Cox proportional hazards models were used to evaluate associations. RESULTS Over a median follow-up of 14.41 years, 55,104 participants developed cataract, 11,940 glaucoma, and 9060 AMD. A relatively stronger association was observed between combined exposure to multiple pollutants and AREDs incidence compared to exposure to individual pollutants. For every interquartile range increase in the air pollution score, the risk of incident AREDs increased by 4-5 % (cataract, HR [95 % CI], 1.05 [1.04-1.06]; glaucoma, 1.04 [1.02, 1.06]; AMD, 1.04 [1.01, 1.07]), suggesting the potential additive or synergistic effects of exposure to pollutant mixtures. Compared to individuals in the lowest exposure quartile, those in the highest had a 13 %, 9 %, and 14 % greater risk of developing cataract (1.13 [1.10-1.16]), glaucoma (1.09 [1.03-1.15]), and AMD (1.14 [1.07-1.22]), respectively. CONCLUSIONS Long-term joint exposure to multiple air pollutants, even at low concentrations, is associated with an increased risk of AREDs incidence, suggesting that reducing air pollution level could improve human ocular health. These findings provide a more comprehensive understanding of air pollution's impact on ocular health in the real world.
Collapse
Affiliation(s)
- Yingan Li
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuzhou Zhang
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China
| | - Poemen Chan
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Eye Hospital, Hong Kong SAR, China
| | - Dong Liu
- School of Humanities and Social Science, The Chinese University of Hong Kong, Shenzhen, China
| | - Ebenezer Zaabaar
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mary Ho
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China
| | - Mandy Ph Ng
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Alvin Young
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China; Shantou University/The Chinese University of Hong Kong Joint Shantou International Eye Centre, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Eye Hospital, Hong Kong SAR, China; Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China; Shantou University/The Chinese University of Hong Kong Joint Shantou International Eye Centre, China; Department of Ophthalmology, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Mei Po Kwan
- Institute of Space and Earth Information Science, Fok Ying Tung Remote Sensing Science Building, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Future Cities, Wong Foo Yuan Building, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Geography and Resource Management, Wong Foo Yuan Building, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Eye Hospital, Hong Kong SAR, China; Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China; Shantou University/The Chinese University of Hong Kong Joint Shantou International Eye Centre, China.
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong SAR, China; Hong Kong Eye Hospital, Hong Kong SAR, China; Hong Kong Hub of Pediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China; Shantou University/The Chinese University of Hong Kong Joint Shantou International Eye Centre, China; Department of Ophthalmology, Hong Kong Children's Hospital, Hong Kong SAR, China.
| |
Collapse
|
2
|
Mi B, Mu J, Ding X, Guo S, Hua X. Responsive Microneedles for Diagnostic and Therapeutic Applications of Ocular Diseases. SMALL METHODS 2025:e2402048. [PMID: 40095315 DOI: 10.1002/smtd.202402048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Traditional ophthalmic formulations are characterized by low bioavailability, short intraocular retention time, strong irritation, and failure to achieve the expected therapeutic effect due to the special physiological structure of the eye and the existence of many barriers. Microneedle drug delivery is a novel transdermal drug delivery modality. Responsive microneedles are defined as controllably releasing the drug payloads in response to physiological stimuli, including pH levels, temperature, enzymes, and reactive oxygen species (ROS), as well as external stimuli such as magnetic fields and light. In addition to inheriting the advantages of traditional microneedles, which include enhanced targeting and permeability, non-invasiveness, and painless application, the integration with stimulus-responsive materials enables responsive microneedles to achieve a personalized precision drug delivery process, which further increases the accuracy and efficiency of ocular treatments, making on-demand drug delivery possible. This article systematically reviews the classification, mechanisms, and characteristics of responsive microneedles and provides a detailed introduction to their diagnostic and therapeutic applications as well as real-time monitoring potential in ocular diseases, aiming to offer insights for the precision treatment of ocular diseases in the future.
Collapse
Affiliation(s)
- Baoyue Mi
- Tianjin Aier Eye Hospital, Tianjin University, No. 102, Fukang Road, Nankai, Tianjin, 300074, P. R. China
| | - Jingqing Mu
- Changsha Aier Eye Hospital, No. 188, Section 1, Furong South Road, Changsha, Hunan, 410023, P. R. China
- Aier Eye Institute, No. 188, Section 1, Furong South Road, Changsha, Hunan, 410023, P. R. China
| | - Xiangyu Ding
- Tianjin Aier Eye Hospital, Tianjin University, No. 102, Fukang Road, Nankai, Tianjin, 300074, P. R. China
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai, Tianjin, 300071, P. R. China
| | - Xia Hua
- Tianjin Aier Eye Hospital, Tianjin University, No. 102, Fukang Road, Nankai, Tianjin, 300074, P. R. China
- Changsha Aier Eye Hospital, No. 188, Section 1, Furong South Road, Changsha, Hunan, 410023, P. R. China
- Aier Eye Institute, No. 188, Section 1, Furong South Road, Changsha, Hunan, 410023, P. R. China
| |
Collapse
|
3
|
Khuu SK, Rodríguez MF, Bernal-Bechara L, Dussan GA, He RY, Jiménez-Barbosa IA. Perimetric visual field testing reveals deficits in contrast sensitivity in workers exposed to occupational levels of pesticides. Ophthalmic Physiol Opt 2025; 45:494-503. [PMID: 39629962 DOI: 10.1111/opo.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 02/14/2025]
Abstract
PURPOSE This case-control study investigated whether defects in visual field contrast sensitivity are associated with exposure to occupational levels of pesticides in agricultural workers. METHODS Twenty-seven individuals exposed to occupational levels of pesticides (exposed group) from 14 agricultural systems and 27 non-exposed individuals (non-exposed group) were measured using standard automated perimetry (30-2 full threshold). Visual sector analysis, targeting regions of the optic nerve head, was performed to examine for potential region-specific sensitivity differences. Participants also underwent comprehensive assessments, including general optometric examinations and demographic surveys. Symptoms and signs of neurotoxicity were assessed using the modified Q16 neurotoxic symptom questionnaire and biological testing for abnormal levels of Substance P in tears (an inflammatory marker associated with chemical exposure) and cholinesterase (which is inhibited by pesticides) in blood samples. RESULTS Signs of chemical exposure were found as indicated by significantly higher levels of neurotoxic symptoms, higher concentrations of Substance P and lower levels of cholinesterase in the exposed group. Visual field global indices showed differences in contrast sensitivity between the exposed and non-exposed groups, with the exposed group demonstrating significantly lower means and larger pattern-standard deviations. Notably, visual field sector analysis revealed comparatively lower contrast sensitivity at nasal locations surrounding the optic nerve head in the exposed group. CONCLUSION This study found deficits in visual field contrast sensitivity to be associated with pesticide exposure, and selective loss at nasal locations centred on the optic nerve head may indicate retinal toxicity. These findings suggest the utility of visual field assessment as a potential method to evaluate pesticide-related health implications. The results highlight the need for ongoing monitoring and protective measures for agricultural workers exposed to pesticides to prevent potential visual and neurological damage.
Collapse
Affiliation(s)
- Sieu K Khuu
- School of Optometry and Vision Science, The University of New South Wales, Sydney, New South Wales, Australia
| | | | - Laila Bernal-Bechara
- Agricultural Sciences Faculty, Programme of Animal Science, Universidad de La Salle, Bogotá, Colombia
| | - Gerardo A Dussan
- Health and Sciences Faculty, Programme of Optometry, Universidad de La Salle, Bogotá, Colombia
| | - Rebecca Y He
- School of Optometry and Vision Science, The University of New South Wales, Sydney, New South Wales, Australia
| | | |
Collapse
|
4
|
Deng J, Qin Y. Investigating the Link between Psychological Well-Being and Early-Stage Age-Related Macular Degeneration: A Mendelian Randomization Analysis. Curr Eye Res 2025; 50:190-202. [PMID: 39329215 DOI: 10.1080/02713683.2024.2408757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/03/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE While some studies have started to focus on the link between psychological well-being and age-related macular degeneration (AMD), the relationship remains uncertain. Our research aims to provide new insights into this association, laying a foundation for future interventions and addressing existing knowledge gaps. METHODS We utilized the "TwoSampleMR" package in R for a bidirectional Mendelian randomization analysis of psychological well-being (subjective well-being, depression, neuroticism, and Sensitivity to Environmental Stress and Adversity) and early-stage AMD. Causal effects were estimated using the inverse-variance weighted method, and additional methods included weighted median and MR-Egger regression. Sensitivity analyses included Cochran's Q test, MR-Egger intercept analysis, MR-PRESSO, and leave-one-out analysis. RESULTS The study found that the population with genetic predisposition to neuroticism had a 39.7% lower risk of early-stage AMD (OR = 0.603, 95% CI = 0.385-0.945, p = 0.027). Conversely, the population with genetic predisposition to subjective well-being had a 3.2% increased risk of early-stage AMD (OR = 1.032, 95% CI = 1.003-1.063, p = 0.029). No significant causal relationships were found from depression or Sensitivity to Environmental Stress and Adversity to early-stage AMD, nor from early-stage AMD to psychological well-being. CONCLUSION This study provides preliminary evidence that the relationship between psychological well-being and early-stage AMD may be complex and multifaceted. It suggests that moderate neuroticism levels might reduce early-stage AMD risk through health behaviors, pathophysiological mechanisms, and other factors, while high subjective well-being levels might increase this risk similarly. However, these findings are insufficient for preventive strategies due to a lack of substantial evidence and still require extensive experimental research for further validation.
Collapse
Affiliation(s)
- Jie Deng
- First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - YuHui Qin
- First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Čakar U, Čolović M, Milenković D, Pagnacco M, Maksimović J, Krstić D, Đorđević B. Strawberry and Drupe Fruit Wines Antioxidant Activity and Protective Effect Against Induced Oxidative Stress in Rat Synaptosomes. Antioxidants (Basel) 2025; 14:155. [PMID: 40002342 PMCID: PMC11851380 DOI: 10.3390/antiox14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this study was to investigate the antioxidant capacity of fruit wines and their protective effects against hydrogen peroxide-induced oxidative stress in rat synaptosomes in vitro. The wines were produced from strawberries and drupe fruits (i.e., plum, sweet cherry, peach, and apricot) through microvinification with a pure S. cerevisiae yeast culture. Fruit wines were produced with and without added sugar before the start of fermentation, whereas subvariants with and without pits were only applied to drupe fruit wines. First, synaptosomes were treated with the wines, while oxidative stress was induced with H2O2. Subsequently, the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) and the content of malondialdehyde (MDA), an indicator of membrane injury, were determined. In addition, the Briggs-Rauscher reaction (BR) was used to evaluate the inhibition capacity against free radicals. All investigated fruit wines increased the activity of the studied antioxidant enzymes and decreased MDA content compared to the corresponding controls (synaptosomes treated with H2O2). After synaptosomal treatment with plum wine, the highest activities were observed for SOD (5.57 U/mg protein) and GPx (0.015 U/mg protein). Strawberry wine induced the highest CAT activity (0.047 U/mg protein) and showed the best ability to reduce lipid peroxidation, yielding the lowest MDA level (2.68 nmol/mg). Strawberry, plum, and sweet cherry wines were identified as samples with higher antioxidant activity in both principal component analysis (PCA) and hierarchical cluster analysis (HCA). Finally, plum wine exhibited the highest inhibitory activity in the BR reaction (397 s). The results suggest that fruit wines could be considered potential functional food due to their protective effects against oxidative stress.
Collapse
Affiliation(s)
- Uroš Čakar
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Mirjana Čolović
- Department of Physical Chemistry, “Vinča” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11 351 Belgrade, Serbia;
| | - Danijela Milenković
- Department of Physics and Mathematics, Faculty of Pharmacy, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Maja Pagnacco
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Jelena Maksimović
- Faculty of Physical Chemistry, University of Belgrade, 11 158 Belgrade, Serbia;
| | - Danijela Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Brižita Đorđević
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11 000 Belgrade, Serbia;
| |
Collapse
|
6
|
Dias MF, Cruz-Cazarim ELC, Pittella F, Baião A, Pacheco AC, Sarmento B, Fialho SL. Co-delivery of antioxidants and siRNA-VEGF: promising treatment for age-related macular degeneration. Drug Deliv Transl Res 2025:10.1007/s13346-024-01772-x. [PMID: 39751765 DOI: 10.1007/s13346-024-01772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Current treatments for retinal disorders are anti-angiogenic agents, laser photocoagulation, and photodynamic therapies. These conventional treatments focus on reducing abnormal blood vessel formation in the retina, which, in a low-oxygen environment, can lead to harmful proliferation of endothelial cells. This results in dysfunctional, leaky blood vessels that cause retinal edema, hemorrhage, and vision loss. Age-related Macular Degeneration is a primary cause of vision loss and blindness in the elderly, impacting around 20% of those over 50 years old. This complex disease is also closely related to oxidative stress in retina. In this review, we explore the challenge of treating retinal diseases, alternatives and possibilities of enhancing the effectiveness of therapies using co-delivery systems containing both antiangiogenic and antioxidant therapeutic agents. Despite recent proposals potential, the lack of extensive clinical studies on the long-term outcomes and optimal combinations of therapies means that the full risk profile and effectiveness of combined therapy are not yet completely understood. These factors must be carefully considered and managed by healthcare providers to optimize treatment outcomes and ensure patient safety.
Collapse
Affiliation(s)
- Marina F Dias
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil
| | - Estael L C Cruz-Cazarim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
| | - Frederico Pittella
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-900, Minas Gerais, Brazil
| | - Ana Baião
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Catarina Pacheco
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- CESPU-IUCS, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Bruno Sarmento
- i3S - Instituto Nacional de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- Instituto de Engenharia Biomédica, INEB, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- CESPU-IUCS, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Silvia L Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Rua Conde Pereira Carneiro 80, Gameleira, Belo Horizonte, CEP 30510-010, Minas Gerais, Brazil.
| |
Collapse
|
7
|
Li F, Luo Y, Li X, Dai Y, Xiang Q. Association between metabolic syndrome and the risk of glaucoma: a meta-analysis of observational studies. Diabetol Metab Syndr 2024; 16:300. [PMID: 39696489 DOI: 10.1186/s13098-024-01532-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The potential link between metabolic syndrome (MetS) and the risk of glaucoma has been proposed but remains inconclusive. This meta-analysis aimed to systematically evaluate the association between MetS and the risk of glaucoma. METHODS We conducted a comprehensive search of PubMed, Embase, and Web of Science from inception to August 12, 2024, for observational studies assessing the relationship between MetS and glaucoma risk. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate the association. Heterogeneity was assessed using I² statistics, and a random-effects model was applied. RESULTS Nine studies involving 2,258,797 participants were included. The pooled results showed that MetS was significantly associated with an increased risk of glaucoma (OR: 1.34, 95% CI 1.15-1.55, p < 0.001; I² = 75%). Subgroup analyses according to the individual component of MetS suggested that hypertension and hyperglycemia were significantly associated with glaucoma, but not for obesity or dyslipidemia, although the difference among subgroups was not significant (p = 0.05). Further subgroup and meta-regression analyses suggested that the results were not significantly affected by study design, average age, sex, method of glaucoma diagnosis, or glaucoma subtype (primary open-angle glaucoma or normal-tension glaucoma). Sensitivity analysis confirmed the robustness of the findings. CONCLUSIONS This meta-analysis suggests that MetS is significantly associated with an increased risk of glaucoma. These findings highlight the need for heightened awareness and potential screening strategies for glaucoma in individuals with MetS. Further studies are required to elucidate underlying mechanisms and causality.
Collapse
Affiliation(s)
- Fei Li
- Department of ophthalmology, Chengdu Fifth People's Hospital, No. 33 Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, China
| | - Yanjun Luo
- Department of ophthalmology, Chengdu Fifth People's Hospital, No. 33 Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, China
| | - Xin Li
- Department of ophthalmology, Chengdu Fifth People's Hospital, No. 33 Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, China
| | - Yan Dai
- Department of ophthalmology, Chengdu Fifth People's Hospital, No. 33 Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, China
| | - Qingping Xiang
- Department of ophthalmology, Chengdu Fifth People's Hospital, No. 33 Mashi Street, Wenjiang District, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
8
|
Robles-Rivera RR, Pacheco-Moisés FP, Olvera-Montaño C, Castellanos-González JA, Barley-Villaseñor AL, Cardona-Muñoz EG, Rodríguez-Carrizalez AD. Mitochondrial Function and Oxidative Stress Biomarkers in Diabetic Retinopathy Development: An Analytical Cross-Sectional Study. Int J Mol Sci 2024; 25:13084. [PMID: 39684793 DOI: 10.3390/ijms252313084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
DR is a complex complication of DM with multiple biochemical pathways implicated in its genesis and progression. Circulating OS and mitochondrial function biomarkers represent potential candidates in the DR staging system. We conducted a comparative cross-sectional study comparing the OS biomarkers: TAC, GR, NOS, CARB, and hydroperoxydes, as well as mitochondrial function biomarkers: ATP synthase and ATPase activity in healthy volunteers, DM w/o DR, Moderate and Severe NPDR, and PDR. TAC is progressively diminished the more DR progresses to its proliferative stages. GR and NOS may function as biomarkers to differentiate the progression from S NPDR to PDR. CARB may correlate with the progression from M NPDR to S NPDR. Hydroperoxide levels were higher in patients with DR compared to DM w/o DR expressing OS in the early development of DR. ATPase activity is increasingly augmented the more DR progresses and may function as a biomarker that reflects the difference between N PDR and PDR, and ATP synthesis was lower the more DR progressed, being significantly lower compared to DM w/o DR. The behavior of OS and mitochondrial function in several stages of DR may aid in the staging and the prognosis of DR.
Collapse
Affiliation(s)
- Ricardo Raúl Robles-Rivera
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Fermín Paul Pacheco-Moisés
- Department of Chemistry, University Centre of Exact and Engineering Sciences, University of Guadalajara, Guadalajara 44430, Jalisco, Mexico
| | - Cecilia Olvera-Montaño
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Alberto Castellanos-González
- Department of Ophthalmology, Specialties Hospital of the National Occidental Medical Center, Mexican Institute of Social Security, Guadalajara 44349, Jalisco, Mexico
| | - Andre Leonardo Barley-Villaseñor
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ernesto Germán Cardona-Muñoz
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Adolfo Daniel Rodríguez-Carrizalez
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
9
|
Seetharaman ATM, Owens CE, Gangaraju R. Cysteinyl Leukotriene Receptor Antagonism by Montelukast to Treat Visual Deficits. J Ocul Pharmacol Ther 2024; 40:617-628. [PMID: 39358316 DOI: 10.1089/jop.2024.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Montelukast, a Food and Drug Administration-approved drug for asthma and allergic rhinitis modulates leukotriene (LT) receptors and serves as a critical anti-inflammatory agent. Recent research suggests that the LT signaling pathway targeted by montelukast has broader implications for diseases such as fibrosis, cardiovascular diseases, cancer, cerebrovascular disease, and immune defense. This expanded understanding highlights montelukast's potential for repurposing in conditions involving aberrant stress mechanisms, including ocular diseases marked by inflammation, oxidative stress, ER stress, and apoptosis, among several others. This review delves into montelukast's therapeutic mechanisms across various diseases, draws parallels to ocular conditions, and examines clinical trials and associated adverse effects to underscore the unmet need for cysteinyl LT receptor antagonism by montelukast as an effective therapy for visual deficits.
Collapse
Affiliation(s)
- Amritha T M Seetharaman
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Caroline E Owens
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, Anatomy & Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
10
|
Folahan JT, Fakir S, Barabutis N. Endothelial Unfolded Protein Response-Mediated Cytoskeletal Effects. Cell Biochem Funct 2024; 42:e70007. [PMID: 39449673 PMCID: PMC11528298 DOI: 10.1002/cbf.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The endothelial semipermeable monolayers ensure tissue homeostasis, are subjected to a plethora of stimuli, and their function depends on cytoskeletal integrity and remodeling. The permeability of those membranes can fluctuate to maintain organ homeostasis. In cases of severe injury, inflammation or disease, barrier hyperpermeability can cause irreparable damage of endothelium-dependent issues, and eventually death. Elucidation of the signaling regulating cytoskeletal structure and barrier integrity promotes the development of targeted pharmacotherapies towards disorders related to the impaired endothelium (e.g., acute respiratory distress syndrome, sepsis). Recent reports investigate the role of unfolded protein response in barrier function. Herein we review the cytoskeletal components, the unfolded protein response function; and their interrelations on health and disorder. Moreover, we emphasize on unfolded protein response modulators, since they ameliorate illness related to endothelial leak.
Collapse
Affiliation(s)
- Joy T Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| |
Collapse
|
11
|
Srejovic JV, Muric MD, Jakovljevic VL, Srejovic IM, Sreckovic SB, Petrovic NT, Todorovic DZ, Bolevich SB, Sarenac Vulovic TS. Molecular and Cellular Mechanisms Involved in the Pathophysiology of Retinal Vascular Disease-Interplay Between Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:11850. [PMID: 39519401 PMCID: PMC11546760 DOI: 10.3390/ijms252111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Retinal vascular diseases encompass several retinal disorders, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and retinal vascular occlusion; these disorders are classified as similar groups of disorders due to impaired retinal vascularization. The aim of this review is to address the main signaling pathways involved in the pathogenesis of retinal vascular diseases and to identify crucial molecules and the importance of their interactions. Vascular endothelial growth factor (VEGF) is recognized as a crucial and central molecule in abnormal neovascularization and a key phenomenon in retinal vascular occlusion; thus, anti-VEGF therapy is now the most successful form of treatment for these disorders. Interaction between angiopoietin 2 and the Tie2 receptor results in aberrant Tie2 signaling, resulting in loss of pericytes, neovascularization, and inflammation. Notch signaling and hypoxia-inducible factors in ischemic conditions induce pathological neovascularization and disruption of the blood-retina barrier. An increase in the pro-inflammatory cytokines-TNF-α, IL-1β, and IL-6-and activation of microglia create a persistent inflammatory milieu that promotes breakage of the blood-retinal barrier and neovascularization. Toll-like receptor signaling and nuclear factor-kappa B are important factors in the dysregulation of the immune response in retinal vascular diseases. Increased production of reactive oxygen species and oxidative damage follow inflammation and together create a vicious cycle because each factor amplifies the other. Understanding the complex interplay among various signaling pathways, signaling cascades, and molecules enables the development of new and more successful therapeutic options.
Collapse
Affiliation(s)
- Jovana V. Srejovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Maja D. Muric
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia
| | - Suncica B. Sreckovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad T. Petrovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dusan Z. Todorovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sergey B. Bolevich
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Tatjana S. Sarenac Vulovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
12
|
Li J, Buonfiglio F, Zeng Y, Pfeiffer N, Gericke A. Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon? Antioxidants (Basel) 2024; 13:1249. [PMID: 39456502 PMCID: PMC11505147 DOI: 10.3390/antiox13101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cataracts, a leading cause of blindness worldwide, are closely linked to oxidative stress-induced damage to lens epithelial cells (LECs). Key factors contributing to cataract formation include aging, arterial hypertension, and diabetes mellitus. Given the high global prevalence of cataracts, the burden of cataract-related visual impairment is substantial, highlighting the need for pharmacological strategies to supplement surgical interventions. Understanding the molecular pathways involved in oxidative stress during cataract development may offer valuable insights for designing novel therapeutic approaches. This review explores the role of oxidative stress in cataract formation, focusing on critical mechanisms, such as mitochondrial dysfunction, endoplasmic reticulum stress, loss of gap junctions, and various cell death pathways in LECs. Additionally, we discuss emerging therapeutic strategies and potential targeting options, including antioxidant-based treatments.
Collapse
Affiliation(s)
- Jingyan Li
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| |
Collapse
|
13
|
Du E, Jia X, Li X, Zhang B, Zhai Y, Qin F. Neuroprotective effect of ciclopirox olamine in retinal ischemia/reperfusion injury. BMC Mol Cell Biol 2024; 25:22. [PMID: 39385121 PMCID: PMC11465616 DOI: 10.1186/s12860-024-00520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024] Open
Abstract
Retinal ischemia-reperfusion (IR) injury is a basic pathological procedure in clinic and associated with various ischemic retinal diseases, including glaucoma, diabetic retinopathy, retinal vascular occlusion, etc. The purpose of this work is to investigate the effect of ciclopirox olamine (CPX) on retinal IR injury and further explore the underlying mechanism. In vitro assay exhibited that CPX exhibited significant neuroprotection against oxygen glucose deprivation (OGD) and oxidative stress-induced injuries in 661W photoreceptor cells. OGD injury showed a proinflammatory phenotype characterized by significantly increased production of cytokines (IL-6, IL-23 and TNF-α), while CPX significantly inhibited their secretion. In addition, the in vivo experiment demonstrated that CPX significantly preserved the normal thickness of the retina. Therefore, we suggest that CPX is identified in our research as a prospective therapeutic agent for retinal IR injury.
Collapse
Affiliation(s)
- Enming Du
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaolin Jia
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Beibei Zhang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yaping Zhai
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Fangyuan Qin
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan University School of Medicine, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
14
|
Abbasi M, Gupta V, Chitranshi N, Moustardas P, Ranjbaran R, Graham SL. Molecular Mechanisms of Glaucoma Pathogenesis with Implications to Caveolin Adaptor Protein and Caveolin-Shp2 Axis. Aging Dis 2024; 15:2051-2068. [PMID: 37962455 PMCID: PMC11346403 DOI: 10.14336/ad.2023.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a common retinal disorder characterized by progressive optic nerve damage, resulting in visual impairment and potential blindness. Elevated intraocular pressure (IOP) is a major risk factor, but some patients still experience disease progression despite IOP-lowering treatments. Genome-wide association studies have linked variations in the Caveolin1/2 (CAV-1/2) gene loci to glaucoma risk. Cav-1, a key protein in caveolae membrane invaginations, is involved in signaling pathways and its absence impairs retinal function. Recent research suggests that Cav-1 is implicated in modulating the BDNF/TrkB signaling pathway in retinal ganglion cells, which plays a critical role in retinal ganglion cell (RGC) health and protection against apoptosis. Understanding the interplay between these proteins could shed light on glaucoma pathogenesis and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| |
Collapse
|
15
|
Li L, Liu X, Han C, Tian L, Wang Y, Han B. Ferroptosis in radiation-induced brain injury: roles and clinical implications. Biomed Eng Online 2024; 23:93. [PMID: 39261942 PMCID: PMC11389269 DOI: 10.1186/s12938-024-01288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Radiation-induced brain injury (RBI) presents a significant challenge for patients undergoing radiation therapy for head, neck, and intracranial tumors. This review aims to elucidate the role of ferroptosis in RBI and its therapeutic implications. Specifically, we explore how ferroptosis can enhance the sensitivity of tumor cells to radiation while also examining strategies to mitigate radiation-induced damage to normal brain tissues. By investigating the mechanisms through which radiation increases cellular reactive oxygen species (ROS) and initiates ferroptosis, we aim to develop targeted therapeutic strategies that maximize treatment efficacy and minimize neurotoxicity. The review highlights key regulatory factors in the ferroptosis pathway, including glutathione peroxidase 4 (GPX4), cystine/glutamate antiporter system Xc- (System Xc-), nuclear factor erythroid 2-related factor 2 (NRF2), Acyl-CoA synthetase long-chain family member 4 (ACSL4), and others, and their interactions in the context of RBI. Furthermore, we discuss the clinical implications of modulating ferroptosis in radiation therapy, emphasizing the potential for selective induction of ferroptosis in tumor cells and inhibition in healthy cells. The development of advanced diagnostic tools and therapeutic strategies targeting ferroptosis offers a promising avenue for enhancing the safety and efficacy of radiation therapy, underscoring the need for further research in this burgeoning field.
Collapse
Affiliation(s)
- Lifang Li
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Xia Liu
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Chunfeng Han
- Department of Pharmacy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Licheng Tian
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Yongzhi Wang
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Baolin Han
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China.
| |
Collapse
|
16
|
Sehgal A, South AM, Menahem S. Systemic hemodynamics and pediatric lung disease: mechanistic links and therapeutic relevance. Am J Physiol Heart Circ Physiol 2024; 327:H454-H459. [PMID: 38968163 PMCID: PMC11901395 DOI: 10.1152/ajpheart.00271.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Chronic lung disease, also known as bronchopulmonary dysplasia, affects thousands of infants worldwide each year. The impact on resources is second only to bronchial asthma, with lung function affected well into adolescence. Diagnostic and therapeutic constructs have almost exclusively focused on pulmonary architecture (alveoli/airways) and pulmonary hypertension. Information on systemic hemodynamics indicates major artery thickness/stiffness, elevated systemic afterload, and/or primary left ventricular dysfunction may play a part in a subset of infants with severe neonatal-pediatric lung disease. Understanding the underlying principles with attendant effectors would aid in identifying the pathophysiological course where systemic afterload reduction with angiotensin-converting enzyme inhibitors could become the preferred treatment strategy over conventional pulmonary artery vasodilatation.NEW & NOTEWORTHY Extremely preterm infants are at a higher risk of developing severe bronchopulmonary dysplasia. In a subset of infants, diuretic and pulmonary vasodilator therapy is ineffective. Recent information points toward systemic hemodynamic disease (systemic arterial stiffness and left ventricular dysfunction) as a contributor via back-pressure changes. Mechanistic links include heightened renin angiotensin aldosterone system activity, inflammation, and oxygen toxicity. Angiotensin-converting enzyme inhibition may be operationally more suited compared with induced pulmonary artery vasodilatation.
Collapse
Affiliation(s)
- Arvind Sehgal
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
- Department of Pediatrics, Monash University, Melbourne, Australia
| | - Andrew M South
- Section of Nephrology, Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
- Department of Surgery-Hypertension and Vascular Research, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States
| | - Samuel Menahem
- Paediatric and Fetal Cardiac Units, Monash Medical Centre, Monash Health, Melbourne, Australia
| |
Collapse
|
17
|
Gallego-Rentero M, López Sánchez A, Nicolás-Morala J, Alcaraz-Laso P, Zhang N, Juarranz Á, González S, Carrasco E. The effect of Fernblock® in preventing blue-light-induced oxidative stress and cellular damage in retinal pigment epithelial cells is associated with NRF2 induction. Photochem Photobiol Sci 2024; 23:1471-1484. [PMID: 38909335 DOI: 10.1007/s43630-024-00606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Blue light exposure of the ocular apparatus is currently rising. This has motivated a growing concern about potential deleterious effects on different eye structures. To address this, ARPE-19 cells were used as a model of the retinal pigment epithelium and subjected to cumulative expositions of blue light. The most relevant cellular events previously associated with blue-light-induced damage were assessed, including alterations in cell morphology, viability, cell proliferation, oxidative stress, inflammation, and the induction of DNA repair cellular mechanisms. Consistent with previous reports, our results provide evidence of cellular alterations resulting from repeated exposure to blue light irradiation. In this context, we explored the potential protective properties of the vegetal extract from Polypodium leucotomos, Fernblock® (FB), using the widely known treatment with lutein as a reference for comparison. The only changes observed as a result of the sole treatment with either FB or lutein were a slight but significant increase in γH2AX+ cells and the raise in the nuclear levels of NRF2. Overall, our findings indicate that the treatment with FB (similarly to lutein) prior to blue light irradiation can alleviate blue-light-induced deleterious effects in RPE cells, specifically preventing the drop in both cell viability and percentage of EdU+ cells, as well as the increase in ROS generation, percentage of γH2AX+ nuclei (more efficiently with FB), and TNF-α secretion (the latter restored only by FB to similar levels to those of the control). On the contrary, the induction in the P21 expression upon blue light irradiation was not prevented neither by FB nor by lutein. Notably, the nuclear translocation of NRF2 induced by blue light was similar to that observed in cells pre-treated with FB, while lutein pre-treatment resulted in nuclear NRF2 levels similar to control cells, suggesting key differences in the mechanism of cellular protection exerted by these compounds. These results may represent the foundation ground for the use of FB as a new ingredient in the development of alternative prophylactic strategies for blue-light-associated diseases, a currently rising medical interest.
Collapse
Affiliation(s)
- María Gallego-Rentero
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Jimena Nicolás-Morala
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Paula Alcaraz-Laso
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noelia Zhang
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Alcalá de Henares University, Madrid, Spain.
| | - Elisa Carrasco
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa (CBM); Instituto Universitario de Biología Molecular-IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
18
|
Ren Y, Liang H, Xie M, Zhang M. Natural plant medications for the treatment of retinal diseases: The blood-retinal barrier as a clue. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155568. [PMID: 38795692 DOI: 10.1016/j.phymed.2024.155568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Retinal diseases significantly contribute to the global burden of visual impairment and blindness. The occurrence of retinal diseases is often accompanied by destruction of the blood‒retinal barrier, a vital physiological structure responsible for maintaining the stability of the retinal microenvironment. However, detailed summaries of the factors damage the blood‒retinal barrier and treatment methods involving natural plant medications are lacking. PURPOSE To comprehensively summarize and analyze the protective effects of active substances in natural plant medications on damage to the blood-retina barrier that occurs when retinal illnesses, particularly diabetic retinopathy, and examine their medicinal value and future development prospects. METHODS In this study, we searched for studies published in the ScienceDirect, PubMed, and Web of Science databases. The keywords used included natural plant medications, plants, natural herbs, blood retinal barrier, retinal diseases, diabetic retinopathy, age-related macular degeneration, and uveitis. Chinese herbal compound articles, non-English articles, warning journals, and duplicates were excluded from the analysis. RESULTS The blood‒retinal barrier is susceptible to high glucose, aging, immune responses, and other factors that destroy retinal homeostasis, resulting in pathological changes such as apoptosis and increased vascular permeability. Existing studies have shown that the active compounds or extracts of many natural plants have the effect of repairing blood-retinal barrier dysfunction. Notably, berberine, puerarin, and Lycium barbarum polysaccharides exhibited remarkable therapeutic effects. Additionally, curcumin, astragaloside IV, hesperidin, resveratrol, ginsenoside Rb1, luteolin, and Panax notoginseng saponins can effectively protect the blood‒retinal barrier by interfering with distinct pathways. The active ingredients found in natural plant medications primarily repair the blood‒retinal barrier by modulating pathological factors such as oxidative stress, inflammation, pyroptosis, and autophagy, thereby alleviating retinal diseases. CONCLUSION This review summarizes a series of plant extracts and plant active compounds that can treat retinal diseases by preventing and treating blood‒retinal barrier damage and provides reference for the research of new drugs for treating retinal diseases.
Collapse
Affiliation(s)
- Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Mengjun Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
19
|
Wagle SR, Kovacevic B, Ionescu CM, Foster T, Lim P, Brunet A, McLenachan S, Carvalho L, Mikov M, Mooranian A, Al-Salami H. Polymer-Based Nanoparticles with Probucol and Lithocholic Acid: A Novel Therapeutic Approach for Oxidative Stress-Induced Retinopathies. Mol Pharm 2024; 21:3566-3576. [PMID: 38899552 DOI: 10.1021/acs.molpharmaceut.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Oxidative stress is pivotal in retinal disease progression, causing dysfunction in various retinal components. An effective antioxidant, such as probucol (PB), is vital to counteract oxidative stress and emerges as a potential candidate for treating retinal degeneration. However, the challenges associated with delivering lipophilic drugs such as PB to the posterior segment of the eye, specifically targeting photoreceptor cells, necessitate innovative solutions. This study uses formulation-based spray dry encapsulation technology to develop polymer-based PB-lithocholic acid (LCA) nanoparticles and assesses their efficacy in the 661W photoreceptor-like cell line. Incorporating LCA enhances nanoparticles' biological efficacy without compromising PB stability. In vitro studies demonstrate that PB-LCA nanoparticles prevent reactive oxygen species (ROS)-induced oxidative stress by improving cellular viability through the nuclear erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. These findings propose PB-LCA nanoparticles as a promising therapeutic strategy for oxidative stress-induced retinopathies.
Collapse
Affiliation(s)
- Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
| | - Alicia Brunet
- Centre for Ophthalmology and Visual Science (Incorporating the Lions Eye Institute), The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating the Lions Eye Institute), The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Livia Carvalho
- Centre for Ophthalmology and Visual Science (Incorporating the Lions Eye Institute), The University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, Novi Sad 21101, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago 9016, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, Western Australia 6102, Australia
- Medical School, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
20
|
Yang Z, Zhang J, Zheng Y. Higher vitamin B 6 dietary consumption is associated with a lower risk of glaucoma among United States adults. Front Nutr 2024; 11:1363539. [PMID: 38903614 PMCID: PMC11188593 DOI: 10.3389/fnut.2024.1363539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Objective Although numerous studies have substantiated the neuroprotective effects of vitamin B6 on the optic nerve and its enhancement of visual function, comprehensive data delineating the correlation between vitamin B6 and glaucoma at a national demographic scale remain insufficient. This study is designed to explore the link between the dietary consumption of vitamin B6 and glaucoma. Methods This study included 3,850 individuals aged 40 and older from the National Health and Nutrition Examination Survey (NHANES), spanning 2005-2008. Dietary consumption of vitamin B6 was calculated from the average of two 24-h dietary recall interviews. Glaucoma was diagnosed in accordance with the established Rotterdam criteria. To evaluate the relationship between vitamin B6 dietary consumption and the risk of glaucoma, we employed Restricted Cubic Splines and weighted multivariable logistic regression analysis. We employed stratified and three other sensitivity analyses to confirm the robustness of our results, and conducted a preliminary exploration of the potential association between vitamin B6 supplement consumption and glaucoma risk. Results After adjusting for covariates, we found a significant inverse correlation between dietary consumption of vitamin B6 and glaucoma risk (p non-linearity = 0.18; p for trend = 0.02). Stratified analysis and three other sensitivity analyses revealed stability in the outcomes (all p for interaction>0.05). Compared to the lowest quartile of consumption (≤1.23 mg/day), individuals in the highest quartile of vitamin B6 consumption (>2.34 mg/day) experienced a 75% reduction in glaucoma risk (OR = 0.25, 95% CI 0.07-0.92). However, the effect of vitamin B6 supplements on glaucoma was inconclusive. Conclusion A diet high in vitamin B6 inversely correlates with glaucoma risk, suggesting that increasing dietary intake of vitamin B6 could be a viable preventative strategy against glaucoma among adults in the United States.
Collapse
Affiliation(s)
- Ziling Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Jinming Zhang
- The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
21
|
Yadav KS, Bisen AC, Ishteyaque S, Sharma I, Verma S, Sanap SN, Verma S, Washimkar KR, Kumar A, Tripathi V, Bhatta RS, Mugale MN. Solanum nigrum Toxicity and Its Neuroprotective Effect Against Retinal Ganglion Cell Death Through Modulation of Extracellular Matrix in a Glaucoma Rat Model. J Ocul Pharmacol Ther 2024; 40:309-324. [PMID: 38603587 DOI: 10.1089/jop.2023.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Purpose: Glaucoma is a complex degenerative optic neuropathy characterized by loss of retinal ganglion cells (RGCs) leading to irreversible vision loss and blindness. Solanum nigrum has been used for decades in traditional medicine system. However, no extensive studies were reported on its antiglaucoma properties. Therefore, this study was designed to investigate the neuroprotective effects of S. nigrum extract on RGC against glaucoma rat model. Methods: High performance liquid chromatography and liquid chromatography tandem mass spectrometry was used to analyze the phytochemical profile of aqueous extract of S. nigrum (AESN). In vitro, {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide} (MTT) and H2DCFDA assays were used to determine cell viability and reactive oxygen species (ROS) production in Statens Seruminstitut Rabbit Cornea cells. In vivo, AESN was orally administered to carbomer-induced rats for 4 weeks. Intraocular pressure, antioxidant levels, and electrolytes were determined. Histopathological and immunohistochemical analysis was carried out to evaluate the neurodegeneration of RGC. Results: MTT assay showed AESN exhibited greater cell viability and minimal ROS production at 10 μg/mL. Slit lamp and funduscopy confirmed glaucomatous changes in carbomer-induced rats. Administration of AESN showed minimal peripheral corneal vascularization and restored histopathological alterations such as minimal loss of corneal epithelium and moderate narrowing of the iridocorneal angle. Immunohistochemistry analysis showed increased expression of positive BRN3A cells and decreased matrix metalloproteinase (MMP)-9 activation in retina and cornea, whereas western blot analysis revealed downregulation of extracellular matrix proteins (COL-1 and MMP-9) in AESN-treated rats compared with the diseased group rats. Conclusions: AESN protects RGC loss through remodeling of MMPs and, therefore, can be used for the development of novel neurotherapeutics for the treatment of glaucoma.
Collapse
Affiliation(s)
- Karan Singh Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amol Chhatrapati Bisen
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmaceutics and Pharmacokinetics Division, and CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Sharmeen Ishteyaque
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Isha Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sachin Nashik Sanap
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmaceutics and Pharmacokinetics Division, and CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Shobhit Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Akhilesh Kumar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Vineeta Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Botany, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Rabi Sankar Bhatta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Pharmaceutics and Pharmacokinetics Division, and CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
22
|
Nadeem S, Zafar AN. Optociliary shunt vessels in multiple sclerosis. Int J Neurosci 2024:1-10. [PMID: 38713461 DOI: 10.1080/00207454.2024.2352770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND/INTRODUCTION Optociliary shunt vessels develop as a result of chronic retinal venous obstruction. Optic neuritis has never been reported as a causative influence. OBJECTIVE To determine whether optic neuritis predisposes to the development of optociliary shunts in patients with multiple sclerosis. CASES This case series follows two patients with multiple sclerosis from August 1st, 2019 to April 24th, 2024, who developed optociliary shunt vessels after attacks of optic neuritis. A 43-year-old female presented with left visual loss and bilateral superior optociliary shunt vessels. Perimetry showed bilateral peripheral visual field loss. Optical coherence tomography showed bilateral retinal thinning and ganglion cell complex loss. Optical coherence tomography angiography showed reduced capillary density bilaterally. We investigated her and eventually diagnosed her with multiple sclerosis. The second, a 49-year-old female, developed right-sided optociliary shunt vessels after an episode of neuroretinitis. Perimetry revealed bilateral central scotomata; optical coherence tomography showed disc and retinal nerve fiber layer edema, and serous retinal detachment; later, ganglion cell complex loss; and reduced capillary density on optical coherence tomography angiography. Neuroimaging revealed demyelination in both, leading to a diagnosis of multiple sclerosis, and therapy was instituted. CONCLUSIONS We hypothesize, that demyelinating optic neuritis due to multiple sclerosis causes chronic retinal hypoperfusion, leading to subsequent optociliary shunt development in affected eyes. Our case series reveals that eyes with optic neuritis, both previous episodes and fresh cases, can contribute to sufficient retinal vein hypoperfusion to cause the development of optociliary shunts, which should be reported in the literature.
Collapse
Affiliation(s)
- Sana Nadeem
- Department of Ophthalmology, Foundation University Medical College and Fauji Foundation Hospital, Rawalpindi, Pakistan
| | - Aasma Nudrat Zafar
- Department of Radiology, Foundation University Medical College and Fauji Foundation Hospital, Rawalpindi, Pakistan
| |
Collapse
|
23
|
Tang Q, Buonfiglio F, Böhm EW, Zhang L, Pfeiffer N, Korb CA, Gericke A. Diabetic Retinopathy: New Treatment Approaches Targeting Redox and Immune Mechanisms. Antioxidants (Basel) 2024; 13:594. [PMID: 38790699 PMCID: PMC11117924 DOI: 10.3390/antiox13050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic retinopathy (DR) represents a severe complication of diabetes mellitus, characterized by irreversible visual impairment resulting from microvascular abnormalities. Since the global prevalence of diabetes continues to escalate, DR has emerged as a prominent area of research interest. The development and progression of DR encompass a complex interplay of pathological and physiological mechanisms, such as high glucose-induced oxidative stress, immune responses, vascular endothelial dysfunction, as well as damage to retinal neurons. Recent years have unveiled the involvement of genomic and epigenetic factors in the formation of DR mechanisms. At present, extensive research explores the potential of biomarkers such as cytokines, molecular and cell therapies, antioxidant interventions, and gene therapy for DR treatment. Notably, certain drugs, such as anti-VEGF agents, antioxidants, inhibitors of inflammatory responses, and protein kinase C (PKC)-β inhibitors, have demonstrated promising outcomes in clinical trials. Within this context, this review article aims to introduce the recent molecular research on DR and highlight the current progress in the field, with a particular focus on the emerging and experimental treatment strategies targeting the immune and redox signaling pathways.
Collapse
Affiliation(s)
- Qi Tang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (E.W.B.); (L.Z.); (N.P.); (C.A.K.)
| | | | | | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (E.W.B.); (L.Z.); (N.P.); (C.A.K.)
| |
Collapse
|
24
|
Alahmari H, Liu CC, Rubin E, Lin VY, Rodriguez P, Chang KC. Vitamin C alleviates hyperglycemic stress in retinal pigment epithelial cells. Mol Biol Rep 2024; 51:637. [PMID: 38727927 DOI: 10.1007/s11033-024-09595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs. METHODS AND RESULTS ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway. CONCLUSIONS These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.
Collapse
Affiliation(s)
- Hamid Alahmari
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Chia-Chun Liu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Elizabeth Rubin
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Venice Y Lin
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- North Allegheny Senior High School, Wexford, PA, 15090, USA
| | - Paul Rodriguez
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
25
|
Scanlon G, O'Shea S, Amarandei G, Butler JS, O'Dwyer V. Investigation of factors that may affect the foveal avascular zone: An optical coherence tomography angiography study. Optom Vis Sci 2024; 101:276-283. [PMID: 38857040 DOI: 10.1097/opx.0000000000002129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SIGNIFICANCE An understanding of factors that affect the foveal avascular zone (FAZ) in healthy eyes may aid in the early identification of patients at risk of retinal pathology, thereby allowing better management and preventive measures to be implemented. PURPOSE The size and shape of the FAZ can change due to retinal diseases associated with oxidative stress, including diabetic retinopathy, glaucoma, and macular degeneration. This study aimed to assess the relationship, if any, between factors that may affect the superficial FAZ (i.e., vessel density, vessel perfusion, overweight/obesity) and possible links with macular pigment optical density in young, healthy participants. METHODS One hundred thirty-nine participants aged 18 to 35 years were recruited to this cross-sectional study. The superficial FAZ area, foveal vascularity, and central macular thickness (CMT) were assessed using the Cirrus 5000. Health parameters, body mass index, trunk fat %, and macular pigment were analyzed to determine possible associations with the superficial FAZ. RESULTS Mean FAZ area was 0.23 ± 0.08 mm2. Females had a significantly larger mean FAZ area than males (p=0.002). The FAZ area was positively correlated with body mass index (Pearson's r = 0.189, p=0.026). Significant correlates of the FAZ area in the multivariate model included vessel perfusion (central), CMT, and trunk fat %, collectively explaining 65.1% of the overall variability. CONCLUSIONS Study findings suggest that reduced vessel perfusion, thinner CMT, and higher trunk fat % are plausible predictors of a larger FAZ area in healthy Caucasian adults. Low macular pigment optical density was, however, not associated with increased FAZ size in young healthy eyes. Noninvasive optical coherence tomography angiography testing, in association with these predictors, may aid in the early detection and monitoring of retinal diseases associated with oxidative stress.
Collapse
Affiliation(s)
| | | | - George Amarandei
- School of Physics, Clinical & Optometric Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | | | | |
Collapse
|
26
|
Radulescu D, Mihai FD, Trasca MET, Caluianu EI, Calafeteanu CDM, Radulescu PM, Mercut R, Ciupeanu-Calugaru ED, Marinescu GA, Siloşi CA, Nistor CCE, Danoiu S. Oxidative Stress in Military Missions-Impact and Management Strategies: A Narrative Analysis. Life (Basel) 2024; 14:567. [PMID: 38792589 PMCID: PMC11121804 DOI: 10.3390/life14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review comprehensively examines the impact of oxidative stress on military personnel, highlighting the crucial role of physical exercise and tailored diets, particularly the ketogenic diet, in minimizing this stress. Through a meticulous analysis of the recent literature, the study emphasizes how regular physical exercise not only enhances cardiovascular, cognitive, and musculoskeletal health but is also essential in neutralizing the effects of oxidative stress, thereby improving endurance and performance during long-term missions. Furthermore, the implementation of the ketogenic diet provides an efficient and consistent energy source through ketone bodies, tailored to the specific energy requirements of military activities, and significantly contributes to the reduction in reactive oxygen species production, thus protecting against cellular deterioration under extreme stress. The study also underlines the importance of integrating advanced technologies, such as wearable devices and smart sensors that allow for the precise and real-time monitoring of oxidative stress and physiological responses, thus facilitating the customization of training and nutritional regimes. Observations from this review emphasize significant variability among individuals in responses to oxidative stress, highlighting the need for a personalized approach in formulating intervention strategies. It is crucial to develop and implement well-monitored, personalized supplementation protocols to ensure that each member of the military personnel receives a regimen tailored to their specific needs, thereby maximizing the effectiveness of measures to combat oxidative stress. This analysis makes a valuable contribution to the specialized literature, proposing a detailed framework for addressing oxidative stress in the armed forces and opening new directions for future research with the aim of optimizing clinical practices and improving the health and performance of military personnel under stress and specific challenges of the military field.
Collapse
Affiliation(s)
- Dumitru Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Florina-Diana Mihai
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Major Emil-Tiberius Trasca
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Elena-Irina Caluianu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Captain Dan Marian Calafeteanu
- Department of Ortopedics, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania;
| | - Patricia-Mihaela Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Razvan Mercut
- Department of Plastic and Reconstructive Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | | | - Georgiana-Andreea Marinescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Cristian-Adrian Siloşi
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | | | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
27
|
Shi X, Li P, Herb M, Liu H, Wang M, Wang X, Feng Y, van Beers T, Xia N, Li H, Prokosch V. Pathological high intraocular pressure induces glial cell reactive proliferation contributing to neuroinflammation of the blood-retinal barrier via the NOX2/ET-1 axis-controlled ERK1/2 pathway. J Neuroinflammation 2024; 21:105. [PMID: 38649885 PMCID: PMC11034147 DOI: 10.1186/s12974-024-03075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND NADPH oxidase (NOX), a primary source of endothelial reactive oxygen species (ROS), is considered a key event in disrupting the integrity of the blood-retinal barrier. Abnormalities in neurovascular-coupled immune signaling herald the loss of ganglion cells in glaucoma. Persistent microglia-driven inflammation and cellular innate immune system dysregulation often lead to deteriorating retinal degeneration. However, the crosstalk between NOX and the retinal immune environment remains unresolved. Here, we investigate the interaction between oxidative stress and neuroinflammation in glaucoma by genetic defects of NOX2 or its regulation via gp91ds-tat. METHODS Ex vivo cultures of retinal explants from wildtype C57BL/6J and Nox2 -/- mice were subjected to normal and high hydrostatic pressure (Pressure 60 mmHg) for 24 h. In vivo, high intraocular pressure (H-IOP) was induced in C57BL/6J mice for two weeks. Both Pressure 60 mmHg retinas and H-IOP mice were treated with either gp91ds-tat (a NOX2-specific inhibitor). Proteomic analysis was performed on control, H-IOP, and treatment with gp91ds-tat retinas to identify differentially expressed proteins (DEPs). The study also evaluated various glaucoma phenotypes, including IOP, retinal ganglion cell (RGC) functionality, and optic nerve (ON) degeneration. The superoxide (O2-) levels assay, blood-retinal barrier degradation, gliosis, neuroinflammation, enzyme-linked immunosorbent assay (ELISA), western blotting, and quantitative PCR were performed in this study. RESULTS We found that NOX2-specific deletion or activity inhibition effectively attenuated retinal oxidative stress, immune dysregulation, the internal blood-retinal barrier (iBRB) injury, neurovascular unit (NVU) dysfunction, RGC loss, and ON axonal degeneration following H-IOP. Mechanistically, we unveiled for the first time that NOX2-dependent ROS-driven pro-inflammatory signaling, where NOX2/ROS induces endothelium-derived endothelin-1 (ET-1) overexpression, which activates the ERK1/2 signaling pathway and mediates the shift of microglia activation to a pro-inflammatory M1 phenotype, thereby triggering a neuroinflammatory outburst. CONCLUSIONS Collectively, we demonstrate for the first time that NOX2 deletion or gp91ds-tat inhibition attenuates iBRB injury and NVU dysfunction to rescue glaucomatous RGC loss and ON axon degeneration, which is associated with inhibition of the ET-1/ERK1/2-transduced shift of microglial cell activation toward a pro-inflammatory M1 phenotype, highlighting NOX2 as a potential target for novel neuroprotective therapies in glaucoma management.
Collapse
Affiliation(s)
- Xin Shi
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Panpan Li
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Goldenfelsstr. 19-21, 50935, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Maoren Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, P. R. China
| | - Xiaosha Wang
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Yuan Feng
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany
| | - Tim van Beers
- Institut I für Anatomie, Universitätsklinikum Köln (AöR), Cologne, Germany
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131, Mainz, Germany
| | - Verena Prokosch
- Department of Ophthalmology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937, Cologne, Germany.
| |
Collapse
|
28
|
Wu ZK, Li HY, Zhu YL, Xiong MQ, Zhong JX. Neuroprotective and anti-inflammatory effects of eicosane on glutamate and NMDA-induced retinal ganglion cell injury. Int J Ophthalmol 2024; 17:638-645. [PMID: 38638263 PMCID: PMC10988067 DOI: 10.18240/ijo.2024.04.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/18/2024] [Indexed: 04/20/2024] Open
Abstract
AIM To investigate the protective effects, antioxidant potential, and anti-inflammatory mechanisms of eicosane on glutamate-induced cell damage and on N-methyl-D-aspartate (NMDA)-induced retinal ganglion cell (RGC) injury in a mouse model of glaucoma. METHODS The protective effects of eicosane on the rat R28 retinal precursor cell line were assessed using cell counting kit-8 assays and Hoechst-propidium iodide staining. Intracellular reactive oxygen species (ROS) production was measured using the fluorescent probe 2'-7'-dichlorofluorescin diacetate and flow cytometry. The protective role of eicosane on NMDA-induced RGC injury in a mouse glaucoma model was determined by immunostaining of frozen sections of retina. The effects of eicosane on the metabolome of the retina in mice with NMDA-induced RGC damage were evaluated by liquid chromatography-mass spectroscopy (LC-MS) and untargeted metabolomics analyses. RESULTS Eicosane treatment significantly attenuated glutamate-induced damage to R28 cells in vitro. Eicosane also protected RGCs against NMDA-induced injury in a mouse glaucoma model. Untargeted metabolomics analyses showed that eicosane increased multiple metabolites, including L-arginine and L-carnitine, in the retina. CONCLUSION Eicosane has protective effects, antioxidant potential, and anti-inflammatory properties in an in vitro model of glutamate-induced cell damage and in an in vivo model of NMDA-induced RGC injury in mouse glaucoma through modulation of L-arginine and/or L-carnitine metabolism.
Collapse
Affiliation(s)
- Zhen-Kai Wu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
- Changde Hospital, Xiangya School of Medicine, Central South University (the First People's Hospital of Changde City), Changde 415000, Hunan Province, China
| | - Huan-Yu Li
- Changde Hospital, Xiangya School of Medicine, Central South University (the First People's Hospital of Changde City), Changde 415000, Hunan Province, China
| | - You-Lin Zhu
- Changde Hospital, Xiangya School of Medicine, Central South University (the First People's Hospital of Changde City), Changde 415000, Hunan Province, China
| | - Meng-Qin Xiong
- Changde Hospital, Xiangya School of Medicine, Central South University (the First People's Hospital of Changde City), Changde 415000, Hunan Province, China
| | - Jing-Xiang Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
29
|
Bu J, Liu Y, Zhang R, Lin S, Zhuang J, Sun L, Zhang L, He H, Zong R, Wu Y, Li W. Potential New Target for Dry Eye Disease-Oxidative Stress. Antioxidants (Basel) 2024; 13:422. [PMID: 38671870 PMCID: PMC11047456 DOI: 10.3390/antiox13040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Dry eye disease (DED) is a multifactorial condition affecting the ocular surface. It is characterized by loss of tear film homeostasis and accompanied by ocular symptoms that may potentially result in damage to the ocular surface and even vision loss. Unmodifiable risk factors for DED mainly include aging, hormonal changes, and lifestyle issues such as reduced sleep duration, increased screen exposure, smoking, and ethanol consumption. As its prevalence continues to rise, DED has garnered considerable attention, prompting the exploration of potential new therapeutic targets. Recent studies have found that when the production of ROS exceeds the capacity of the antioxidant defense system on the ocular surface, oxidative stress ensues, leading to cellular apoptosis and further oxidative damage. These events can exacerbate inflammation and cellular stress responses, further increasing ROS levels and promoting a vicious cycle of oxidative stress in DED. Therefore, given the central role of reactive oxygen species in the vicious cycle of inflammation in DED, strategies involving antioxidants have emerged as a novel approach for its treatment. This review aims to enhance our understanding of the intricate relationship between oxidative stress and DED, thereby providing directions to explore innovative therapeutic approaches for this complex ocular disorder.
Collapse
Affiliation(s)
- Jinghua Bu
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yanbo Liu
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Rongrong Zhang
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Sijie Lin
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jingbin Zhuang
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Le Sun
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Lingyu Zhang
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Hui He
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Rongrong Zong
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yang Wu
- Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
| | - Wei Li
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361005, China
- Xiamen University Affiliated Xiamen Eye Center, Xiamen 361102, China
| |
Collapse
|
30
|
Bugara K, Pacwa A, Smedowski A. Molecular pathways in experimental glaucoma models. Front Neurosci 2024; 18:1363170. [PMID: 38562304 PMCID: PMC10982327 DOI: 10.3389/fnins.2024.1363170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Glaucoma is a complex and progressive disease that primarily affects the optic nerve axons, leading to irreversible vision loss. Although the exact molecular mechanisms underlying glaucoma pathogenesis are not fully understood, it is believed that except increased intraocular pressure, a combination of genetic and environmental factors play a role in the development of the disease. Animal models have been widely used in the study of glaucoma, allowing researchers to better understand the underlying mechanisms of the disease and test potential treatments. Several molecular pathways have been implicated in the pathogenesis of glaucoma, including oxidative stress, inflammation, and excitotoxic-induced neurodegeneration. This review summarizes the most important knowledge about molecular mechanisms involved in the glaucoma development. Although much research has been done to better understand the molecular mechanisms underlying this disease, there is still much to be learned to develop effective treatments and prevent vision loss in those affected by glaucoma.
Collapse
Affiliation(s)
- Klaudia Bugara
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Adrian Smedowski
- GlaucoTech Co., Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
31
|
Nam J, Nivison-Smith L, Trinh M. Spatial Analysis Reveals Vascular Changes in Retinal and Choroidal Vessel Perfusion in Intermediate AMD With Reticular Pseudodrusen. Invest Ophthalmol Vis Sci 2024; 65:33. [PMID: 38386332 PMCID: PMC10896234 DOI: 10.1167/iovs.65.2.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Purpose To examine the effect of reticular pseudodrusen (RPD) on retinal and choroidal vessel perfusion (VP) topography in intermediate age-related macular degeneration (iAMD) using refined spatial analyses. Methods This was a retrospective cross-sectional study of 120 individuals with 30 iAMDRPD, 60 iAMDno_RPD, and 30 normal eyes, propensity-score matched by age, sex, and presence of cardiovascular-related disease. VP of the superficial and deep retinal and choriocapillaris vascular slabs was assessed from 6 × 6-mm optical coherence tomography angiography (OCTA) scans divided into 126 × 126 grids, with adjustment for various person- and eye-level factors. Grid-wise VP differences (%) among the groups were spatially assessed according to analyses based on the Early Treatment for Diabetic Retinopathy Study (ETDRS), eccentricity (µm), and degree (°). Results VP was significantly decreased between iAMDRPD and iAMDno_RPD, across all vascular slabs in various ETDRS sectors (up to -2.16%; 95% confidence interval, -2.99 to -1.34; P < 0.05). Eccentricity analyses revealed more complex patterns: a bisegmented relationship where VP in iAMDRPD eyes decreased linearly toward 1000 µm then returned toward similar values as iAMDno_RPD, plateauing around 2000 µm in the superficial and 3000 µm in the deep retina (R2 = 0.57-0.9; P < 0.001). Degree-based analysis further showed that the greatest VP differences in iAMDRPD eyes were commonly located superiorly and nasally across all vascular slabs (P < 0.05). Conclusions RPD appears to compound the vascular impact of iAMD, displaying complex spatial patterns beyond the ETDRS sectors. This highlights the importance of considering spatial delineations for future work regarding the role of RPD and vascular dysfunction.
Collapse
Affiliation(s)
- Judy Nam
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Centre for Eye Health, Sydney, Australia
| | - Lisa Nivison-Smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Centre for Eye Health, Sydney, Australia
| | - Matt Trinh
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Centre for Eye Health, Sydney, Australia
| |
Collapse
|
32
|
Liao J, Lai Z, Huang G, Lin J, Huang W, Qin Y, Chen Q, Hu Y, Cheng Q, Jiang L, Cui L, Zhong H, Li M, Wei Y, Xu F. Setanaxib mitigates oxidative damage following retinal ischemia-reperfusion via NOX1 and NOX4 inhibition in retinal ganglion cells. Biomed Pharmacother 2024; 170:116042. [PMID: 38118351 DOI: 10.1016/j.biopha.2023.116042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023] Open
Abstract
Glaucoma, a prevalent cause of permanent visual impairment worldwide, is characterized by the progressive degeneration of retinal ganglion cells (RGCs). NADPH oxidase (NOX) 1 and NOX4 are pivotal nodes in various retinal diseases. Setanaxib, a potent and highly selective inhibitor of NOX1 and NOX4, can impede the progression of various diseases. This study investigated the efficacy of setanaxib in ameliorating retinal ischemia-reperfusion (I/R) injury and elucidated its underlying mechanisms. The model of retinal I/R induced by acute intraocular hypertension and the oxygen-glucose deprivation/reoxygenation (OGD/R) model of primary RGCs were established. By suppressing NOX1 and NOX4 expression in RGCs, setanaxib mitigated I/R-induced retinal neuronal loss, structural disruption, and dysfunction. Setanaxib reduced TUNEL-positive cells, upregulated Bcl-2, and inhibited Bax, Bad, and cleaved-caspase-3 overexpression after I/R injury in vitro and in vivo. Moreover, setanaxib also significantly reduced cellular senescence, as demonstrated by downregulating SA-β-gal-positive and p16-INK4a expression. Furthermore, setanaxib significantly suppressed ROS production, Hif-1α and FOXO1 upregulation, and NRF2 downregulation in damaged RGCs. These findings highlight that the setanaxib effectively inhibited NOX1 and NOX4, thereby regulating ROS production and redox signal activation. This inhibition further prevents the activation of apoptosis and senescence related factors in RGCs, ultimately protecting them against retinal I/R injury. Consequently, setanaxib exhibits promising potential as a therapeutic intervention for glaucoma.
Collapse
Affiliation(s)
- Jing Liao
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Zhaoguang Lai
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Guangyi Huang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Jiali Lin
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Wei Huang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Yuanjun Qin
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Qi Chen
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Yaguang Hu
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Qiaochu Cheng
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Yanta District, Xi'an, Shaanxi 710061, China
| | - Li Jiang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Ling Cui
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Haibin Zhong
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China
| | - Min Li
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China.
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, 7 Jinsui Road, Guangzhou 510060, China.
| | - Fan Xu
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Key Laboratory of Eye Health & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, 530000 Guangxi, China.
| |
Collapse
|
33
|
Ruan Y, Buonfiglio F, Gericke A. Adrenoceptors in the Eye - Physiological and Pathophysiological Relevance. Handb Exp Pharmacol 2024; 285:453-505. [PMID: 38082203 DOI: 10.1007/164_2023_702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The autonomic nervous system plays a crucial role in the innervation of the eye. Consequently, it comes as no surprise that catecholamines and their corresponding receptors have been extensively studied and characterized in numerous ocular structures, including the cornea, conjunctiva, lacrimal gland, trabecular meshwork, uvea, and retina. These investigations have unveiled substantial clinical implications, particularly in the context of treating glaucoma, a progressive neurodegenerative disorder responsible for irreversible vision loss on a global scale. The primary therapeutic approaches for glaucoma frequently involve the modulation of α1-, α2-, and β-adrenoceptors, making them pivotal targets. In this chapter, we offer a comprehensive overview of the expression, distribution, and functional roles of adrenoceptors within various components of the eye and its associated structures. Additionally, we delve into the pivotal role of adrenoceptors in the pathophysiology of glaucoma. Furthermore, we provide a concise historical perspective on adrenoceptor research, examine the distinct contributions of individual adrenoceptor subtypes to the treatment of various ocular conditions, and propose potential future avenues of exploration in this field.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
34
|
Marino R, Sappington R, Feligioni M. Retinoprotective compounds, current efficacy, and future prospective. Neural Regen Res 2023; 18:2619-2622. [PMID: 37449599 DOI: 10.4103/1673-5374.373662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Retinal dysfunction is the most common cause of vision loss in several retinal disorders. It has been estimated a great increase in these pathologies that are becoming more globally widespread and numerous over time, also supported by the life expectancy increment. Among different types of retinopathies, we can account some that share causes, symptoms, and treatment including diabetic retinopathy, age-related macular degeneration, glaucoma, and retinitis pigmentosa. Molecular changes, environmental factors, and genetic predisposition might be some of the main causes that drive retinal tissue to chronic inflammation and neurodegeneration in these retinopathies. The treatments available on the market contain compounds that efficiently ameliorate some of the important clinical features of these pathologies like stabilization of the intraocular pressure, reduction of eye inflammation, control of eye oxidative stress which are considered the major molecular mechanisms related to retinal dysfunction. Indeed, the most commonly used drugs are anti-inflammatories, such as corticosteroids, antioxidant, hypotonic molecules and natural neuroprotective compounds. Unfortunately, these drugs, which are fundamental to treating disease symptoms, are not capable to cure the pathologies and so they are not life-changing for patients. This review provided an overview of current treatments on the market, but more interestingly, wants to be a quick window on the new treatments that are now in clinical trials. Additionally, it has been here highlighted that the recent technical enhancement of the investigation methods to identify the various retinopathies causes might be used as a sort of "precise medicine" approach to tailor the identification of molecular pathways involved and potentially study a dedicated treatment for each patient. This approach includes the use of cutting-edge technologies like gene therapy and metabolomics.
Collapse
Affiliation(s)
- Rachele Marino
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - Rebecca Sappington
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center; Department of Ophthalmology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome; Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
35
|
Zhao WL, Xu D, Wang JS. Torachrysone-8-O-β-d-glucoside mediates anti-inflammatory effects by blocking aldose reductase-catalyzed metabolism of lipid peroxidation products. Biochem Pharmacol 2023; 218:115931. [PMID: 37981172 DOI: 10.1016/j.bcp.2023.115931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Aldose reductase (AR) is an important enzyme involved in the reduction of various aldehyde and carbonyl compounds, including the highly reactive and toxic 4-hydroxynonenal (4-HNE), which has been linked to the progression of various pathologies such as atherosclerosis, hyperglycemia, inflammation, and tumors. AR inhibitors have potential therapeutic benefits for these diseases by reducing lipid peroxidation and mitigating the harmful effects of reactive aldehydes. In this study, we found that torachrysone-8-O-β-d-glucoside (TG), a natural product isolated from Polygonum multiflorum Thunb., functions as an effective inhibitor of AR, exhibiting potent effects in clearing reactive aldehydes and reducing inflammation. TG up-regulated the mRNA levels of several antioxidant factors downstream of NRF2, especially glutathione S-transferase (GST), which is significantly increased, thus detoxifying 4-HNE by facilitating the conjugation of 4-HNE to glutathione, forming glutathione-4-hydroxynonenal (GS-HNE). By employing a combination of molecular docking, cellular thermal shift assay, and enzyme activity experiments, we demonstrated that TG exhibited strong binding affinity with AR and inhibited its activity and blocked the conversion of GS-HNE to glutathionyl-1,4-dihydroxynonene (GS-DHN), thereby preventing the formation of protein adducts and inducing severe cellular damage. This study provides novel insights into the anti-inflammatory mechanisms of AR inhibitors and offers potential avenues for developing therapeutic strategies for AR-related pathologies. Our findings suggest that TG, as an AR inhibitor, may hold promise as a therapeutic agent for treating conditions characterized by excessive lipid peroxidation and inflammation. Further investigations are needed to fully explore the clinical potential of TG and evaluate its efficacy in the treatment and management of these complex diseases.
Collapse
Affiliation(s)
- Wen-Long Zhao
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Di Xu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, People's Republic of China.
| |
Collapse
|
36
|
Shi Y, Fan X, Zhang K, Ma Y. Association of the endothelial nitric oxide synthase (eNOS) 4a/b polymorphism with the risk of incident diabetic retinopathy in patients with type 2 diabetes mellitus: a systematic review and updated meta-analysis. Ann Med 2023; 55:2226908. [PMID: 37353997 PMCID: PMC10291908 DOI: 10.1080/07853890.2023.2226908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/06/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Abstract
OBJECTIVE To conduct a systematic review and updated meta-analysis on the potential association between endothelial nitric oxide synthase (eNOS) 4a/b polymorphism and the risk of developing diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM) and to identify possible clinical biomarkers for early screening of DR. MATERIALS AND METHODS A meta-analysis based on case-control or cross-sectional studies was conducted to examine the correlation between eNOS 4a/b polymorphism and DR. Pooled odds ratio (OR) and 95% confidence interval (CI) were used to estimate the association strength. RESULTS We included 19 studies, covering 7838 subjects. An association was observed in Caucasians (allelic model: OR = 1.273, 95% CI: 1.006-1.610, p = .045; recessive model: OR = 0.575, 95% CI: 0.371-0.892, p = .014; dominant model: OR = 1.268, 95% CI: 1.052-1.528, p = .013; homozygote model: OR = 1.833, 95% CI: 1.176-2.856, p = .007). Moreover, population-based studies have indicated an association between eNOS 4a/b polymorphism and DR susceptibility. CONCLUSIONS The present study showed that intron 4a allele of eNOS 4a/b is a risk factor for DR in Caucasians with T2DM. Thus, eNOS 4a/b may be used as a biomarker for the early screening and diagnosis of DR in Caucasian T2DM patients.Key messagesEndothelial nitric oxide synthase 4a/b gene polymorphism is not associated with the risk of developing diabetic retinopathy in the overall population, Asians, or Chinese Han patients with type 2 diabetes. However, 4a is a risk factor for the development of diabetic retinopathy in Caucasians.Endothelial nitric oxide synthase 4a/b gene polymorphism is not associated with the type of diabetic retinopathy.
Collapse
Affiliation(s)
- Yushan Shi
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xin Fan
- Department of Ophthalmology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Kaiyun Zhang
- Shaanxi Eye Hospital, Xi’an People’s Hospital(Xi’an Fourth Hospital, The People’s Hospital Affiliated to Northwest University), Xi’an, Shaanxi, China
| | - Yaling Ma
- Department of Ophthalmology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
37
|
Yang J, Chen X, A L, Gao H, Zhao M, Ge L, Li M, Yang C, Gong Y, Gu Z, Xu H. Alleviation of Photoreceptor Degeneration Based on Fullerenols in rd1 Mice by Reversing Mitochondrial Dysfunction via Modulation of Mitochondrial DNA Transcription and Leakage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205998. [PMID: 37407519 DOI: 10.1002/smll.202205998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/18/2023] [Indexed: 07/07/2023]
Abstract
Poor therapeutic outcomes of antioxidants in ophthalmologic clinical applications, including glutathione during photoreceptor degeneration in retinitis pigmentosa (RP), are caused by limited anti-oxidative capacity. In this study, fullerenols are synthesized and proven to be highly efficient in vitro radical scavengers. Fullerenol-based intravitreal injections significantly improve the flash electroretinogram and light/dark transition tests performed for 28 days on rd1 mice, reduce the thinning of retinal outer nuclear layers, and preserve the Rhodopsin, Gnat-1, and Arrestin expressions of photoreceptors. RNA-sequencing, RT-qPCR, and Western blotting validate that mitochondrial DNA (mt-DNA)-encoded genes of the electron transport chain (ETC), such as mt-Nd4l, mt-Co1, mt-Cytb, and mt-Atp6, are drastically downregulated in the retinas of rd1 mice, whereas nuclear DNA (n-DNA)-encoded genes, such as Ndufa1 and Atp5g3, are abnormally upregulated. Fullerenols thoroughly reverse the abnormal mt-DNA and n-DNA expression patterns of the ETC and restore mitochondrial function in degenerating photoreceptors. Additionally, fullerenols simultaneously repress Flap endonuclease 1 (FEN1)-mediated mt-DNA cleavage and mt-DNA leakage via voltage-dependent anion channel (VDAC) pores by downregulating the transcription of Fen1 and Vdac1, thereby inactivating the downstream pro-inflammatory cGAS-STING pathway. These findings demonstrate that fullerenols can effectively alleviate photoreceptor degeneration in rd1 mice and serve as a viable treatment for RP.
Collapse
Affiliation(s)
- Junling Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Xia Chen
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Luodan A
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Hui Gao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Minghui Li
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Cao Yang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Yu Gong
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 400038, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| |
Collapse
|
38
|
Amankwa CE, Kodati B, Donkor N, Acharya S. Therapeutic Potential of Antioxidants and Hybrid TEMPOL Derivatives in Ocular Neurodegenerative Diseases: A Glimpse into the Future. Biomedicines 2023; 11:2959. [PMID: 38001960 PMCID: PMC10669210 DOI: 10.3390/biomedicines11112959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Reactive oxygen species play a significant role in the pathogenesis of various ocular neurodegenerative diseases especially glaucoma, age-related macular degeneration (AMD), and ocular ischemic stroke. Increased oxidative stress and the accumulation of ROS have been implicated in the progression of these diseases. As a result, there has been growing interest in exploring potential therapeutic and prophylactic strategies involving exogenous antioxidants. In recent years, there have been significant advancements in the development of synthetic therapeutic antioxidants for targeting reactive oxygen species (ROS) in neurodegenerative diseases. One area of focus has been the development of hybrid TEMPOL derivatives. In the context of ocular diseases, the application of next-generation hybrid TEMPOL antioxidants may offer new avenues for neuroprotection. By targeting ROS and reducing oxidative stress in the retina and optic nerve, these compounds have the potential to preserve retinal ganglion cells and trabecular meshwork and protect against optic nerve damage, mitigating irreversible blindness associated with these diseases. This review seeks to highlight the potential impact of hybrid TEMPOL antioxidants and their derivatives on ocular neurodegenerative disorders.
Collapse
Affiliation(s)
- Charles E. Amankwa
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Bindu Kodati
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nina Donkor
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- Department of Pharmaceutical Science, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Suchismita Acharya
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (C.E.A.); (B.K.); (N.D.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
39
|
Cornwell A, Badiei A. The role of hydrogen sulfide in the retina. Exp Eye Res 2023; 234:109568. [PMID: 37460081 DOI: 10.1016/j.exer.2023.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
The discovery of the hydrogen sulfide (H2S) and the transsulfuration pathway (TSP) responsible for its synthesis in the mammalian retina has highlighted this molecule's wide range of physiological processes that influence cellular signaling, redox homeostasis, and cellular metabolism. The multi-level regulatory program that influences H2S levels in the retina depends on the relative expression and activity of TSP enzymes, which regulate the abundance of competitive substrates that support or abrogate H2S synthesis. In addition, and apart from TSP, intracellular H2S levels are regulated by mitochondrial sulfide oxidizing pathways. Retinal layers natively express differing levels of TSP enzymes, which highlight the differences in the metabolite and substrate requirement. Recent studies indicate that these systems are susceptible to pathophysiologies affecting the retina. Dysregulation at any level can upset the balance of redox and signaling processes and possibly upset oxidative stress, apoptotic signaling, ion channels, and immune response within this sensitive tissue. H2S donors are a potential therapeutic in such cases and have been demonstrated to bridge the gap, positively impacting the damaged retina. Here, we review the recent findings of H2S, how its multi-level regulation impacts the retina, and how its dysregulation is implicated in retinal pathologies.
Collapse
Affiliation(s)
- Alex Cornwell
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, 99775, AK, USA
| | - Alireza Badiei
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, 99775, AK, USA.
| |
Collapse
|
40
|
Subramanya S, Fernando R, Goswami M, Besirli CG, Weh E, Wubben TJ. Flow cytometric method for the detection and quantification of retinal cell death and oxidative stress. Exp Eye Res 2023; 233:109563. [PMID: 37393050 PMCID: PMC10794879 DOI: 10.1016/j.exer.2023.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Retinal cell death is the major cause of vision loss in many forms of blinding retinal disease. A plethora of research is focused on understanding the mechanisms of retinal cell death to identify potential neuroprotective strategies that prevent vision loss in these diseases. Traditionally, histological techniques have been used to determine the type and extent of cell death in the retina. These techniques, such as TUNEL labeling and immunohistochemistry, are laborious and time consuming, resulting in low throughput and variable results depending on the experimenter. To increase throughput and reduce variability, we developed several flow cytometry-based assays to detect and quantify retinal cell death. The methods and accompanying data presented demonstrate that flow cytometry can readily detect both retinal cell death and oxidative stress and importantly, the efficacy of neuroprotective agents. These methods will be of interest to investigators looking to increase throughput and efficiency without compromising sensitivity as the methods herein reduce analysis time from several months to less than a week. As such, the flow cytometry methods presented have the potential to expedite research efforts focused on developing novel strategies for retinal cell neuroprotection.
Collapse
Affiliation(s)
- Shubha Subramanya
- University of Michigan, Department of Ophthalmology and Visual Sciences, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - Roshini Fernando
- University of Michigan, Department of Ophthalmology and Visual Sciences, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - Moloy Goswami
- University of Michigan, Department of Ophthalmology and Visual Sciences, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - Cagri G Besirli
- University of Michigan, Department of Ophthalmology and Visual Sciences, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - Eric Weh
- University of Michigan, Department of Ophthalmology and Visual Sciences, 1000 Wall St, Ann Arbor, MI, 48105, USA.
| | - Thomas J Wubben
- University of Michigan, Department of Ophthalmology and Visual Sciences, 1000 Wall St, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
41
|
Chen C, Ding P, Yan W, Wang Z, Lan Y, Yan X, Li T, Han J. Pharmacological roles of lncRNAs in diabetic retinopathy with a focus on oxidative stress and inflammation. Biochem Pharmacol 2023; 214:115643. [PMID: 37315816 DOI: 10.1016/j.bcp.2023.115643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Diabetic retinopathy (DR) is a complication caused by abnormal glucose metabolism, which affects the vision and quality of life of patients and severely impacts the society at large.DR has a complex pathogenic process. Evidence from multiple studies have shown that oxidative stress and inflammation play pivotal roles in DR.Additionally, with the rapid development of various genetic detection methods, the abnormal expression of long non-coding RNAs (lncRNAs) have been confirmed to promote the development of DR.Research has demonstrated the potential of lncRNAs as ideal biomarkers and theranostic targets in DR. In this narrative review, we will focus on the research results on mechanisms underlying DR, list lncRNAs confirmed to be closely related to these mechanisms, and discuss their potential clinical application value and limitations.
Collapse
Affiliation(s)
- Chengming Chen
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China; Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Weiming Yan
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Yanyan Lan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| |
Collapse
|
42
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
43
|
Chalotra R, Gupta T, Chib S, Amanat M, Kumar P, Singh R. Treatment of diabetic complications: do flavonoids holds the keys? Crit Rev Food Sci Nutr 2023; 64:11091-11112. [PMID: 37435788 DOI: 10.1080/10408398.2023.2232868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Diabetes mellitus (DM) is an endocrinological disorder in which blood sugar levels get elevated and if unmanaged, it leads to several critical complications. Existing therapies or drugs are not able to attain absolute control of DM. Moreover, associated side/adverse effects associated with pharmacotherapy further worsen the Quality of life of patients. Present review is focused on therapeutical potential of flavonoids in management of diabetes and diabetic complications. Plenteous literature has established significant potential of flavonoids in the treatment of diabetes and diabetic complications. A number of flavonoids are found to be effective in treatment of not only diabetes but progression of diabetic complication was also found to be attenuated with the use of flavonoids. Moreover, SAR studies of some flavonoids also indicated the that efficacy of flavonoids is increased with a change in functional group of flavonoids in the treatment of diabetes and diabetic complications. A number of clinical trials are into action to investigate the therapeutic potential of flavonoids as first-line drugs or as adjuvants for treatment of diabetes and diabetic complications.. Owing to their diverse mechanism of action, efficacy and safety, flavonoids may be conscripted as potential candidate for treatment of diabetic complications.
Collapse
Affiliation(s)
- Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Tanya Gupta
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Muhammed Amanat
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
44
|
Xiao R, Lei C, Zhang Y, Zhang M. Interleukin-6 in retinal diseases: From pathogenesis to therapy. Exp Eye Res 2023:109556. [PMID: 37385535 DOI: 10.1016/j.exer.2023.109556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/03/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that participates in immunomodulation, inflammation, increases vascular permeability, hematopoiesis, and stimulates cell proliferation, among other biological processes. It exerts effects primarily through the classic and trans-signaling pathways. Many studies have demonstrated that IL-6 plays a critical role in the development of retinal diseases including diabetic retinopathy, uveitis, age-related macular degeneration, glaucoma, retinal vein occlusion, central serous chorioretinopathy and proliferative vitreoretinopathy. Thus, the progressive development of drugs targeting IL-6 and IL-6 receptor may play a role in the treatment of multiple retinal diseases. In this article, we comprehensively review the IL-6's biological functions of and its mechanisms in the pathogenesis of various retinal diseases. Furthermore, we summarize the drugs targeting IL-6 and its receptor and prospect their potential application in retinal diseases, hoping to provide new ideas for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Ruihan Xiao
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunyan Lei
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhang
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meixia Zhang
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
45
|
Markeviciute A, Huang-Lung J, Zemaitiene R, Grzybowski A. A Review of Ambient Air Pollution as a Risk Factor for Posterior Segment Ocular Diseases. J Clin Med 2023; 12:jcm12113842. [PMID: 37298038 DOI: 10.3390/jcm12113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE To review the most recent evidence on the association of ambient air pollution with posterior segment ocular diseases. METHODS A search of the most recently published medical literature was performed in PubMed and Google Scholar on 10 December 2022. Articles published between 2018 and December 2022 were included in this rapid review. Studies that evaluated the association between ambient air pollutants (nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), particulate matters (PMs), total hydrocarbons (THC), nonmethane hydrocarbons (NMHC), benzene), and ocular posterior segment diseases (glaucoma, age-related macular degeneration (AMD), and retinal vascular diseases) were included. RESULTS Nineteen research articles met the inclusion criteria. Significant associations were found between PM2.5 and glaucoma, including primary open angle, primary angle closure, and normal tension glaucoma. An increased risk of AMD was linked to increased exposure to PM2.5, NO2, and CO. Single studies suggested that increased exposure to PM2.5 and PM10 is associated with diabetic retinopathy; THC and NMHC increased the risk of retinal vein occlusion; and CO, NO2, and PM10 are linked to an increased risk of central retinal artery occlusion. CONCLUSIONS There is increasing evidence that toxic air pollutants have an impact on posterior segment ocular diseases, hence determining it as a potential modifiable risk factor for visual impairment.
Collapse
Affiliation(s)
- Agne Markeviciute
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Jessie Huang-Lung
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia
| | - Reda Zemaitiene
- Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 61-553 Poznan, Poland
| |
Collapse
|
46
|
Kitao M, Yamaguchi A, Tomioka T, Kai K, Kamei Y, Sugimoto K, Akagawa M. Astaxanthin protects human ARPE-19 retinal pigment epithelium cells from blue light-induced phototoxicity by scavenging singlet oxygen. Free Radic Res 2023; 57:430-443. [PMID: 37897411 DOI: 10.1080/10715762.2023.2277144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Age-related macular degeneration (AMD) is one of an increasing number of diseases that causes irreversible impairment and loss of vision in the elderly. AMD occurs by oxidative stress-mediated apoptosis of retinal pigment epithelium cells. The onset of AMD may be positively correlated with the exposure to blue light. We screened food-derived carotenoids for cytoprotective action against blue light irradiation using human ARPE-19 retinal pigment epithelium cells. This study revealed that blue light irradiation triggered apoptosis and oxidative stress in all-trans-retinal (atRAL)-exposed ARPE-19 cells by generating singlet oxygen (1O2), leading to significant cell death. We found that astaxanthin, a potent anti-oxidative xanthophyll abundant in several marine organisms including microalgae, salmon, and shrimp, significantly suppresses blue light-induced apoptotic cell death of atRAL-exposed ARPE-19 cells by scavenging 1O2. Mechanistic studies using the blue-light irradiated cells also demonstrated that the cytoprotective effects of astaxanthin can be attributed to scavenging of 1O2 directly. Our results suggest the potential value of astaxanthin as a dietary strategy to prevent blue light-induced retinal degeneration including AMD.
Collapse
Affiliation(s)
- Mana Kitao
- Faculty of Biomolecular Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Ai Yamaguchi
- Faculty of Integrated Bioscience, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Takuma Tomioka
- Faculty of Biomolecular Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Kenji Kai
- Faculty of Biomolecular Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Yuki Kamei
- Department of Food and Nutrition, Institute of Biomedical sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenji Sugimoto
- Faculty of Integrated Bioscience, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Mitsugu Akagawa
- Department of Food and Nutrition, Institute of Biomedical sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
47
|
Khalili H, Kashkoli HH, Weyland DE, Pirkalkhoran S, Grabowska WR. Advanced Therapy Medicinal Products for Age-Related Macular Degeneration; Scaffold Fabrication and Delivery Methods. Pharmaceuticals (Basel) 2023; 16:620. [PMID: 37111377 PMCID: PMC10146656 DOI: 10.3390/ph16040620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Retinal degenerative diseases such as age-related macular degeneration (AMD) represent a leading cause of blindness, resulting in permanent damage to retinal cells that are essential for maintaining normal vision. Around 12% of people over the age of 65 have some form of retinal degenerative disease. Whilst antibody-based drugs have revolutionised treatment of neovascular AMD, they are only effective at an early stage and cannot prevent eventual progression or allow recovery of previously lost vision. Hence, there is a clear unmet need to find innovative treatment strategies to develop a long-term cure. The replacement of damaged retinal cells is thought to be the best therapeutic strategy for the treatment of patients with retinal degeneration. Advanced therapy medicinal products (ATMPs) are a group of innovative and complex biological products including cell therapy medicinal products, gene therapy medicinal products, and tissue engineered products. Development of ATMPs for the treatment of retinal degeneration diseases has become a fast-growing field of research because it offers the potential to replace damaged retinal cells for long-term treatment of AMD. While gene therapy has shown encouraging results, its effectiveness for treatment of retinal disease may be hampered by the body's response and problems associated with inflammation in the eye. In this mini-review, we focus on describing ATMP approaches including cell- and gene-based therapies for treatment of AMD along with their applications. We also aim to provide a brief overview of biological substitutes, also known as scaffolds, that can be used for delivery of cells to the target tissue and describe biomechanical properties required for optimal delivery. We describe different fabrication methods for preparing cell-scaffolds and explain how the use of artificial intelligence (AI) can aid with the process. We predict that combining AI with 3D bioprinting for 3D cell-scaffold fabrication could potentially revolutionise retinal tissue engineering and open up new opportunities for developing innovative platforms to deliver therapeutic agents to the target tissues.
Collapse
Affiliation(s)
- Hanieh Khalili
- School of Biomedical Science, University of West London, London W5 5RF, UK
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | | | | | - Sama Pirkalkhoran
- School of Biomedical Science, University of West London, London W5 5RF, UK
| | | |
Collapse
|
48
|
Chronopoulos P, Manicam C, Zadeh JK, Laspas P, Unkrig JC, Göbel ML, Musayeva A, Pfeiffer N, Oelze M, Daiber A, Li H, Xia N, Gericke A. Effects of Resveratrol on Vascular Function in Retinal Ischemia-Reperfusion Injury. Antioxidants (Basel) 2023; 12:antiox12040853. [PMID: 37107227 PMCID: PMC10135068 DOI: 10.3390/antiox12040853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Ischemia-reperfusion (I/R) events are involved in the development of various ocular pathologies, e.g., retinal artery or vein occlusion. We tested the hypothesis that resveratrol is protective against I/R injury in the murine retina. Intraocular pressure (IOP) was elevated in anaesthetized mice to 110 mm Hg for 45 min via a micropipette placed in the anterior chamber to induce ocular ischemia. In the fellow eye, which served as control, IOP was kept at a physiological level. One group received resveratrol (30 mg/kg/day p.o. once daily) starting one day before the I/R event, whereas the other group of mice received vehicle solution only. On day eight after the I/R event, mice were sacrificed and retinal wholemounts were prepared and immuno-stained using a Brn3a antibody to quantify retinal ganglion cells. Reactivity of retinal arterioles was measured in retinal vascular preparations using video microscopy. Reactive oxygen species (ROS) and nitrogen species (RNS) were quantified in ocular cryosections by dihydroethidium and anti-3-nitrotyrosine staining, respectively. Moreover, hypoxic, redox and nitric oxide synthase gene expression was quantified in retinal explants by PCR. I/R significantly diminished retinal ganglion cell number in vehicle-treated mice. Conversely, only a negligible reduction in retinal ganglion cell number was observed in resveratrol-treated mice following I/R. Endothelial function and autoregulation were markedly reduced, which was accompanied by increased ROS and RNS in retinal blood vessels of vehicle-exposed mice following I/R, whereas resveratrol preserved vascular endothelial function and autoregulation and blunted ROS and RNS formation. Moreover, resveratrol reduced I/R-induced mRNA expression for the prooxidant enzyme, nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2). Our data provide evidence that resveratrol protects from I/R-induced retinal ganglion cell loss and endothelial dysfunction in the murine retina by reducing nitro-oxidative stress possibly via suppression of NOX2 upregulation.
Collapse
Affiliation(s)
- Panagiotis Chronopoulos
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Jenia Kouchek Zadeh
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
- AbbVie Germany GmbH & Co., KG, 65189 Wiesbaden, Germany
| | - Panagiotis Laspas
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Johanna Charlotte Unkrig
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Marie Luise Göbel
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Aytan Musayeva
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
- Laboratory of Corneal Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA 02114, USA
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology 1, University Medical Center, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology 1, University Medical Center, Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
49
|
Lumi X, Confalonieri F, Ravnik-Glavač M, Goričar K, Blagus T, Dolžan V, Petrovski G, Hawlina M, Glavač D. Inflammation and Oxidative Stress Gene Variability in Retinal Detachment Patients with and without Proliferative Vitreoretinopathy. Genes (Basel) 2023; 14:genes14040804. [PMID: 37107562 PMCID: PMC10137369 DOI: 10.3390/genes14040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
This study investigated the association between certain genetic variations and the risk of developing proliferative vitreoretinopathy (PVR) after surgery. The study was conducted on 192 patients with primary rhegmatogenous retinal detachment (RRD) who underwent 3-port pars plana vitrectomy (PPV). The distribution of single nucleotide polymorphisms (SNPs) located in genes involved in inflammation and oxidative stress associated with PVR pathways were analyzed among patients with and without postoperative PVR grade C1 or higher. A total of 7 defined SNPs of 5 genes were selected for genotyping: rs4880 (SOD2); rs1001179 (CAT); rs1050450 (GPX1); rs1143623, rs16944, rs1071676 (IL1B); rs2910164 (MIR146A) using competitive allele-specific polymerase chain reaction. The association of SNPs with PVR risk was evaluated using logistic regression. Furthermore, the possible association of SNPs with postoperative clinical parameters was evaluated using non-parametric tests. The difference between two genotype frequencies between patients with or without PVR grade C1 or higher was found to be statistically significant: SOD2 rs4880 and IL1B rs1071676. Carriers of at least one polymorphic IL1B rs1071676 GG allele appeared to have better postoperative best-corrected visual acuity only in patients without PVR (p = 0.070). Our study suggests that certain genetic variations may play a role in the development of PVR after surgery. These findings may have important implications for identifying patients at higher risk for PVR and developing new treatments.
Collapse
Affiliation(s)
- Xhevat Lumi
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (X.L.); (M.H.)
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (F.C.); (G.P.)
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
| | - Filippo Confalonieri
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (F.C.); (G.P.)
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
| | - Metka Ravnik-Glavač
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.R.-G.); (K.G.); (T.B.); (V.D.)
| | - Katja Goričar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.R.-G.); (K.G.); (T.B.); (V.D.)
| | - Tanja Blagus
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.R.-G.); (K.G.); (T.B.); (V.D.)
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.R.-G.); (K.G.); (T.B.); (V.D.)
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway; (F.C.); (G.P.)
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Ophthalmology, School of Medicine, University of Split, University Hospital Centre, 21 000 Split, Croatia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (X.L.); (M.H.)
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Center for Human Genetics & Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Correspondence:
| |
Collapse
|
50
|
Li Y, Wang K, Zhu X, Cheng Z, Zhu L, Murray M, Zhou F. Ginkgo biloba extracts protect human retinal Müller glial cells from t-BHP induced oxidative damage by activating the AMPK-Nrf2-NQO-1 axis. J Pharm Pharmacol 2023; 75:385-396. [PMID: 36583518 DOI: 10.1093/jpp/rgac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/25/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Retinal Müller glial cell loss is almost involved in all retinal diseases, especially diabetic retinopathy (DR). Oxidative stress significantly contributes to the development of Müller glial cell loss. Ginkgo biloba extracts (GBE) have been reported to possess antioxidant property, beneficial in treating human retinal diseases. However, little is known about its role in Müller glial cells. This study investigated the protective effect of GBE (prepared from ginkgo biloba dropping pills) in human Müller glial cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative stress and its underlying molecular mechanism. METHODS MIO-M1 cells were pretreated with or without GBE prior to the exposure to t-BHP-induced oxidative stress. Cell viability, cell death profile and lipid peroxidation were subsequently assessed. Protein expression of the key anti-oxidative signalling factors were investigated. KEY FINDINGS We showed that GBE can effectively protect human MIO-M1 cells from t-BHP-induced oxidative injury by improving cell viability, reducing intracellular ROS accumulation and suppressing lipid peroxidation, which effect is likely mediated through activating AMPK-Nrf2-NQO-1 antioxidant respondent axis. CONCLUSIONS Our study is the first to reveal the great potentials of GBE in protecting human retinal Müller glial cell loss against oxidative stress. GBE might be used to prevent human retinal diseases particularly DR.
Collapse
Affiliation(s)
- Yue Li
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, 214063, China
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province, 214063, China
| | - Zhengqi Cheng
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Ling Zhu
- The University of Sydney, Save Sight Institute, Sydney, NSW, 2000, Australia
| | - Michael Murray
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| | - Fanfan Zhou
- The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health NSW, 2006, Australia
| |
Collapse
|