1
|
Shekhar R, Raghavendra VB, Rachitha P. A comprehensive review of mycotoxins, their toxicity, and innovative detoxification methods. Toxicol Rep 2025; 14:101952. [PMID: 40162074 PMCID: PMC11954124 DOI: 10.1016/j.toxrep.2025.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
A comprehensive overview of food mycotoxins, their toxicity, and contemporary detoxification techniques is given in this article. Mycotoxins, which are harmful secondary metabolites generated by a variety of fungi, including Fusarium, Aspergillus, and Penicillium, provide serious health concerns to humans and animals. These include hepatotoxicity, neurotoxicity, and carcinogenicity. Mycotoxins are commonly found in basic food products, as evidenced by recent studies, raising worries about public health and food safety. The article discusses detection techniques such as enzyme-linked immunosorbent assays (ELISA), and quick strip tests. Moreover, the use of various control systems associated with the detoxification of mycotoxinis highlighted. In addition, novel detoxification strategies such as nanotechnology, plant extracts, and omics studies were also discussed. When taken as a whole, this analysis helps to clarify the pressing need for efficient management and monitoring techniques to prevent mycotoxin contamination in the food chain.
Collapse
Affiliation(s)
| | | | - P. Rachitha
- Department of Biotechnology, Teresian College, Siddarthanagar, Mysore 570011, India
| |
Collapse
|
2
|
Mafe AN, Nkene IH, Ali ABM, Edo GI, Akpoghelie PO, Yousif E, Isoje EF, Igbuku UA, Ismael SA, Essaghah AEA, Ahmed DS, Umar H, Alamiery AA. Smart Probiotic Solutions for Mycotoxin Mitigation: Innovations in Food Safety and Sustainable Agriculture. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10569-4. [PMID: 40312537 DOI: 10.1007/s12602-025-10569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Mycotoxin contamination poses severe risks to food safety and agricultural sustainability. Probiotic-based interventions offer a promising strategy for mitigating these toxic compounds through adsorption, biodegradation, and gut microbiota modulation. This review examines the mechanisms by which specific probiotic strains inhibit mycotoxin biosynthesis, degrade existing toxins, and enhance host detoxification pathways. Emphasis is placed on strain-specific interactions, genetic and metabolic adaptations, and advancements in formulation technologies that improve probiotic efficacy in food matrices. Also, the review explores smart delivery systems, such as encapsulation techniques and biofilm applications, to enhance probiotic stability and functionality. Issues related to regulatory approval, strain viability, and large-scale implementation are also discussed. By integrating molecular insights, applied case studies, and innovative probiotic-based solutions, this review provides a roadmap for advancing safe and sustainable strategies to combat mycotoxin contamination in food and agricultural systems.
Collapse
Affiliation(s)
- Alice Njolke Mafe
- Department of Biological Sciences, Faculty of Science, Taraba State University Jalingo, Taraba State, Jalingo, Nigeria
| | - Istifanus Haruna Nkene
- Department of Microbiology, Faculty of Natural and Applied Sciences, Nasarawa State University, Keffi, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria.
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Patrick Othuke Akpoghelie
- Department of Food Science and Technology, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Endurance Fegor Isoje
- Department of Biochemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Shams A Ismael
- Department of Medical Physics, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Arthur Efeoghene Athan Essaghah
- Department of Urban and Regional Planning, Faculty of Environmental Sciences, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Ahmed A Alamiery
- AUIQ, Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, Thi Qar, P.O. Box: 64004, An Nasiriyah, Iraq
| |
Collapse
|
3
|
Mahmoud YAG, Elkaliny NE, Darwish OA, Ashraf Y, Ebrahim RA, Das SP, Yahya G. Comprehensive review for aflatoxin detoxification with special attention to cold plasma treatment. Mycotoxin Res 2025; 41:277-300. [PMID: 39891869 PMCID: PMC12037664 DOI: 10.1007/s12550-025-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Aflatoxins are potent carcinogens and pose significant risks to food safety and public health worldwide. Aflatoxins include Aflatoxin B1 (AFB1), Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1), Aflatoxin G2 (AFG2), and Aflatoxin M1 (AFM1). AFB1 is particularly notorious for its carcinogenicity, classified as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). Chronic exposure to aflatoxins through contaminated food and feed can lead to liver cancer, immunosuppression, growth impairment, and other systemic health issues. Efforts to mitigate aflatoxin contamination have traditionally relied on chemical treatments, physical separation methods, and biological degradation. However, these approaches often pose challenges related to safety, efficacy, and impact on food quality. Recently, cold plasma treatment has emerged as a promising alternative. Cold plasma generates reactive oxygen species, which effectively degrade aflatoxins on food surfaces without compromising nutritional integrity or safety. This review consolidates current research and advancements in aflatoxin detoxification, highlighting the potential of cold plasma technology to revolutionize food safety practices. By exploring the mechanisms of aflatoxin toxicity, evaluating existing detoxification methods, and discussing the principles and applications of cold plasma treatment.
Collapse
Affiliation(s)
- Yehia A-G Mahmoud
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Nehal E Elkaliny
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Omar A Darwish
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Yara Ashraf
- Applied and Analytical Microbiology Department, Faculty of Science, Ain Shams University, Ain Shams, 11772, Egypt
| | - Rumaisa Ali Ebrahim
- Cell Biology & Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Shankar Prasad Das
- Cell Biology & Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Al Sharqia, 44519, Egypt.
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain.
| |
Collapse
|
4
|
Wu J, An W, Wang Z, Gao B, Wang J, Zhao Y, Han B, Tao H, Guo Y, Wang J, Wang X. Biodetoxification of both AFB1 and ZEN by Bacillus subtilis ZJ-2019-1 in gastrointestinal environment and in mice. Mycotoxin Res 2025; 41:349-358. [PMID: 40072827 DOI: 10.1007/s12550-025-00585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Aflatoxin B1 (AFB1) and zearalenone (ZEN) are the most prevalent mycotoxins in production, posing a serious threat to human and animal health. Therefore, it is very urgent to find a safe and efficient method for the biodegradation of these mycotoxins. Our previous study demonstrated that Bacillus subtilis ZJ-2019-1 moderately degrades both mycotoxins in vitro and ZEN in female gilts. In this study, we assessed the effect of B. subtilis ZJ-2019-1 on AFB1 and ZEN degradation in naturally moldy corn gluten meal in a gastrointestinal environment while also evaluating the cytotoxicity of degradation products using the Cell Counting Kit-8 (CCK-8) assay. The efficacy of B. subtilis in degrading mycotoxins was further evaluated by orally administering 5 mg/kg AFB1 and 50 mg/kg ZEN to mice, followed by treatment with B. subtilis ZJ-2019-1 for 15 d. The results showed that B. subtilis ZJ-2019-1 moderately degraded both AFB1 and ZEN present in naturally moldy corn gluten meal in simulated small intestinal fluids, with degradation rates reaching 14.71% for AFB1 and 19.53% for ZEN respectively. Following degradation by B. subtilis ZJ-2019-1, the toxicity of resulting products from both AFB1 and ZEN decreased by 11.68-46.41% and 42.62-59.25%, respectively. Moreover, oral administration of B. subtilis ZJ-2019-1 exhibited remarkable detoxification effects on AFB1 and ZEN in mice, as evidenced by significant restoration of abnormal serum biochemical indices (including aspartate aminotransferase/alanine transaminase, alkaline phosphatase, total cholesterol, etc.) and alleviation of liver, intestine, and uterine damage caused by mycotoxins in mice. These findings indicate that B. subtilis ZJ-2019-1 possesses the ability to moderately degrade both AFB1 and ZEN, making it a promising candidate for biodegrading multi-mycotoxin contaminants in food and feed.
Collapse
Affiliation(s)
- Jianwen Wu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wei An
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China.
| | - Boquan Gao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jiaxue Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Zhao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bing Han
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hui Tao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yaping Guo
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
5
|
Gounder SK, Chuturgoon AA, Ghazi T. Exploring the cardiotoxic potential of fumonisin B1 through inflammatory pathways and epigenetic modifications: A mini review. Toxicon 2025; 261:108374. [PMID: 40286825 DOI: 10.1016/j.toxicon.2025.108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
This review is centered around the cardiotoxic effects of fumonisin B1 (FB1), particularly its impact on sphingolipid metabolism, inflammation, and epigenetics. FB1 is a mycotoxin produced by Fusarium fungi, which mainly contaminates cereal grains and poses an adverse health risk to both humans and animals; however, its disease-causing capabilities remain to be uncovered, specifically its ability to exacerbate and cause cardiovascular disease. It disrupts sphingolipid metabolism by inhibiting ceramide synthase, leading to cellular dysfunction and contributes to conditions such as hypertension and eventual heart failure. FB1 is responsible for an altered inflammatory response, whereby it increases pro-inflammatory cytokines such as IL-6 and IL-1β, which contribute to cardiovascular diseases. Moreover, FB1 induces significant epigenetic changes, including DNA hypermethylation, histone modifications such as increased H3K9me2 and H3K9me3, inhibition of histone acetyltransferase activity, and changes in microRNA expression profiles. These epigenetic alterations can silence or activate inflammatory genes, exacerbating disease progression. This review thus highlights the need for further research to elucidate the connections between FB1, inflammation, epigenetic modifications, and cardiotoxicity, which could lead to better strategies for managing FB1-related adverse health risks.
Collapse
Affiliation(s)
- Selwyn Kyle Gounder
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Anil Amichund Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.
| |
Collapse
|
6
|
Wattanasuntorn P, Poapolathep S, Phuektes P, Alassane-Kpembi I, Fink-Gremmels J, Oswald IP, Poapolathep A. Apoptotic Effect of Combinations of T-2, HT-2, and Diacetoxyscirpenol on Human Jurkat T Cells. Toxins (Basel) 2025; 17:203. [PMID: 40278701 PMCID: PMC12030997 DOI: 10.3390/toxins17040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Trichothecene type A mycotoxins, such as T-2, HT-2, and diacetoxyscirpenol (DAS), are known to induce cytotoxicity and apoptosis in different cell types. As all three Fusarium toxins may occur concomitantly in a given food or feed commodity, there is growing interest in the effect of such mycotoxin mixtures. This study aimed to identify the toxic interactions among T-2, HT-2, and DAS in a human Jurkat cell model. As a first step, an MTT assay was used to assess cytotoxicity after 24 h of cell exposure to individual mycotoxins and their mixtures. The results were used to calculate the combination index (CI), which indicates the nature of the mycotoxin interactions. In Jurkat T cells, the toxicity ranking for the individual mycotoxins was T-2 > HT-2 > DAS. The CI values of the dual and triple mycotoxin combinations calculated from the results of the MTT and reactive oxygen species assays showed synergistic effects at low concentrations and an apparent antagonism at very high concentrations for all combinations. The additional cytometric analyses confirmed the synergistic effects, as expected, following co-exposure to the three tested trichothecenes. As the lower toxin concentrations investigated reflect natural contamination levels in food and feeds, the synergistic effects identified should be considered in risk characterization for trichothecene exposure in humans and animals.
Collapse
Affiliation(s)
- Phattarawadee Wattanasuntorn
- Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Patchara Phuektes
- Department of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Imourana Alassane-Kpembi
- Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2R 0A8, Canada;
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, 3508 Utrecht, The Netherlands;
| | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpon, UPS, 31000 Toulouse, France;
| | - Amnart Poapolathep
- Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
7
|
Reisi A, Ataie Kachoie M, Ghodrati L. The negative aspects of using medicinal plants: human health risks assessment of mycotoxins and toxic metal contamination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-18. [PMID: 40250985 DOI: 10.1080/09603123.2025.2494229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/12/2025] [Indexed: 04/20/2025]
Abstract
Medicinal plants (MPs) have been valued for their therapeutic properties and are crucial in traditional and modern medicine. However, contamination with hazardous substances such as mycotoxins and toxic THMs (THMs) poses significant safety concerns. This study quantified the levels of mycotoxins and THMs in ten commonly used MPs in Tehran markets, Iran, and assessed their carcinogenic and non-carcinogenic risks to ensure consumer safety. A total of 210 samples were analyzed. THMs, including arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb), were detected using atomic absorption spectrometry, while mycotoxins such as aflatoxins (B1, B2, G1, G2) and ochratoxin A (OTA) were measured using high-performance liquid chromatography. Risk assessments used Target Hazard Quotient (THQ), Hazard Index (HI), Incremental Lifetime Cancer Risk (ILCR), and Total Carcinogenic Risk (TCR) methodologies. Results revealed variability in contaminant levels (p < 0.05). While heavy metal concentrations were within safe limits, mycotoxin exposure posed non-carcinogenic risks for children, with a THQ exceeding the acceptable limit. Mycotoxin levels remained below carcinogenic thresholds. To mitigate risks, storing MPs in dry, low-humidity environments is recommended to prevent fungal growth and reduce mycotoxin contamination, emphasizing the need for stricter safety measures.
Collapse
Affiliation(s)
- Ali Reisi
- Department of Medicinal Plants, Shk.C., Islamic Azad University, Shahrekord, Iran
| | - Mehrdad Ataie Kachoie
- Department of Medicinal Plants, Shk.C., Islamic Azad University, Shahrekord, Iran
- Medicinal Plants Processing Research Center, Shk.C., Islamic Azad University, Shahrekord, Iran
| | - Leila Ghodrati
- Department of Medicinal Plants, Shk.C., Islamic Azad University, Shahrekord, Iran
- Medicinal Plants Processing Research Center, Shk.C., Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
8
|
Molina-Hernandez JB, Grande-Tovar CD, Neri L, Delgado-Ospina J, Rinaldi M, Cordero-Bueso GA, Chaves-López C. Enhancing postharvest food safety: the essential role of non-thermal technologies in combating fungal contamination and mycotoxins. Front Microbiol 2025; 16:1543716. [PMID: 40135060 PMCID: PMC11934074 DOI: 10.3389/fmicb.2025.1543716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
During the production and storage of agricultural products, molds frequently occur as contaminants that can produce a wide range of secondary metabolites, the most important of which are mycotoxins. To solve these problems, the industry uses various methods, products and processes. This review examines the latest advances in novel non-thermal technologies for post-harvest inactivation of filamentous fungi and reduction of mycotoxins. These technologies include high pressure processes (HPP), ozone treatment, UV light, blue light, pulsed light, pulsed electric fields (PEF), cold atmospheric plasma (CAP), electron beams, ultrasound (US) and nanoparticles. Using data from previous studies, this review provides an overview of the primary mechanisms of action and recent results obtained using these technologies and emphasizes the limitations and challenges associated with each technology. The innovative non-thermal methods discussed here have been shown to be safe and efficient tools for reducing food mold contamination and infection. However, the effectiveness of these technologies is highly dependent on the fungal species and the structural characteristics of the mycotoxins. New findings related to the inactivation of fungi and mycotoxins underline that for a successful application it is essential to carefully determine and optimize certain key parameters in order to achieve satisfactory results. Finally, this review highlights and discusses future directions for non-thermal technologies. It emphasizes that they meet consumer demand for clean and safe food without compromising nutritional and sensory qualities.
Collapse
Affiliation(s)
- Junior Bernardo Molina-Hernandez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Puerto Colombia, Colombia
| | - Lilia Neri
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Johannes Delgado-Ospina
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Cali, Colombia
| | | | - Gustavo Adolfo Cordero-Bueso
- Laboratorio de Microbiología, CASEM, Dpto. Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Cádiz, Spain
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
9
|
Rizzo M, Licata P, Niutta PP, Pugliese M, Macaluso V, Costa GL, Bruschetta G, Bruno F. An Unusual Outbreak of Ochratoxicosis Associated with Trigonella foenum-graecum Ingestion in Ruminants from Different Farms of Sicily. Toxins (Basel) 2025; 17:120. [PMID: 40137893 PMCID: PMC11946147 DOI: 10.3390/toxins17030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Trigonella foenum-graecum is a widely cultivated legume in Mediterranean regions, and it is used for human and animal consumption, as well as for medical purposes. High temperatures and abundant rainfall during the spring season in Sicily favor the formation of an environment suitable for the growth and proliferation of fungi with the production of mycotoxins. In this study, ochratoxin A, aflatoxin, deoxynivalenol, zearalenone, fumonisin, and T-2 toxin concentrations in Trigonella foenum-graecum were determined in feed administered to ruminants and also in blood samples from cattle and sheep in order to evaluate the toxicity correlated to the possible presence of these mycotoxins based on the clinical signs observed in the animals. Analyses of mycotoxins in fenugreek and blood samples were conducted using the enzyme immunoassay KIT. Five extensive farms sited in the northwest of the Sicily region, with a total of 90 intoxicated animals, reported a concomitant unusual outbreak of neurological disorders. Decreased spinal reflex responses, postural abnormalities associated with weakness or recumbency, and hyperesthesia of the limbs suggested a problem regarding the peripheral nervous system. The mortality rate recorded was very high, even reaching 100% of the intoxicated animals. OTA intoxication in Sicilian ruminants represents an important warning on the vulnerability of farms to mycotoxin contamination and underlines the importance of preventive measures and monitoring in animal health management.
Collapse
Affiliation(s)
- Maria Rizzo
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, 98168 Messina, Italy
| | - Patrizia Licata
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, 98168 Messina, Italy
| | - Pietro Paolo Niutta
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, 98168 Messina, Italy
| | - Michela Pugliese
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, 98168 Messina, Italy
| | | | - Giovanna Lucrezia Costa
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, 98168 Messina, Italy
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, 98168 Messina, Italy
| | - Fabio Bruno
- Department of Veterinary Sciences, University of Messina, Via Palatucci Annunziata, 98168 Messina, Italy
| |
Collapse
|
10
|
Leeman D, Allan AB, Cameron H, Donelly C, Tramaseur A, Stratton J, MacDonald SJ. Validation of the 11+Myco MS-PREP® Method for Determination of Aflatoxins, Fumonisins, Deoxynivalenol, Ochratoxin A, Zearalenone, HT-2, and T-2 Toxins in Cereals, Baby Food, Spices, and Animal Feed by Immunoaffinity Column with LC-MS/MS: AOAC Performance Tested MethodSM 112401. J AOAC Int 2025; 108:207-252. [PMID: 39661480 PMCID: PMC11879221 DOI: 10.1093/jaoacint/qsae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND The 11+Myco MS-PREP® immunoaffinity column (IAC) contains a gel suspension of monoclonal antibodies specific to the toxins of interest. Following sample extraction, the IAC is used for cleanup and concentration of mycotoxins prior to analysis by LC with tandem mass spectrometry (LC-MS/MS). OBJECTIVE This study evaluated the IAC with LC-MS/MS method for Performance Tested MethodSM certification for simultaneous determination and confirmation of aflatoxins (AF) B1, B2, G1, G2, and M1; deoxynivalenol (DON), fumonisins B1, B2, and B3; ochratoxin A (OTA); T-2; HT-2; and zearalenone (ZON) from corn, wheat, cereal-based baby food (with and without dairy ingredients), paprika, chili powder, and animal feed. METHODS A single extraction method using acetonitrile-water (1 + 1, by volume) was used for all matrixes. The method developer validated all matrixes and an independent laboratory verified method performance on corn and animal feed. Data were analyzed for recovery, repeatability precision, LOD, LOQ, confirmation of identity, and method selectivity. RESULTS Recovery (72-138%) and repeatability (0.46-24%), with the exception of sporadic data points, were within acceptance criteria. LOQ was estimated as AFB1 0.018-0.32 μg/kg, AFB2 0.037-0.28 μg/kg, AFG1 0.019-0.14 μg/kg, AFG2 0.036-0.28 μg/kg, DON 4.0-75 μg/kg, fumonisin B1 4.9-37 μg/kg, fumonisin B2 4.0-32 μg/kg, fumonisin B3 2.0-16 μg/kg, OTA 0.15-4.4 μg/kg, T-2 0.5-7.5 μg/kg, HT-2 0.70-7.5 μg/kg, and ZON 1.3-7.2 μg/kg, depending on matrix. Method performance was verified with reference and QC materials. Selectivity and confirmation of identity were also demonstrated. CONCLUSION The 11+Myco MS-PREP IAC with LC-MS/MS method demonstrated acceptable performance for simultaneous determination of 12 mycotoxins in seven matrixes. HIGHLIGHT The data were reviewed by the AOAC Performance Tested MethodsSM Program and approval was granted for certification of the 11+Myco MS-PREP Method as PTM 112401.
Collapse
Affiliation(s)
- Dave Leeman
- R-Biopharm Rhône Ltd, Block 10 Todd Campus, West of Scotland Science Park, Acre Rd, Glasgow G20 0XA, UK
| | - Andrew B Allan
- R-Biopharm Rhône Ltd, Block 10 Todd Campus, West of Scotland Science Park, Acre Rd, Glasgow G20 0XA, UK
| | - Helen Cameron
- R-Biopharm Rhône Ltd, Block 10 Todd Campus, West of Scotland Science Park, Acre Rd, Glasgow G20 0XA, UK
| | - Carol Donelly
- R-Biopharm Rhône Ltd, Block 10 Todd Campus, West of Scotland Science Park, Acre Rd, Glasgow G20 0XA, UK
| | | | | | | |
Collapse
|
11
|
Khouni H, Ben Salah-Abbès J, Badji T, Al-Amiery A, Durand N, Zinedine A, Abbès S, Riba A. Mycotoxins in preharvest, postharvest, and stored wheat grains collected from two climatic regions in Algeria. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2025:1-11. [PMID: 39973013 DOI: 10.1080/19393210.2025.2463484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Multi-mycotoxin analysis of 22 mycotoxins in 202 durum wheat samples collected in Algeria from 2019 to 2021 was performed by UHPLCMS/MS. Enniatins were present in 2 out of 45 wheat samples in the 2019 harvest, whereas in the harvest of 2020 37.6% of wheat samples were contaminated by ochratoxin A and/or beauvericin, deoxynivalenol (1076 µg/kg), fumonisin B1, enniatins, and zearalenone (most prevalent in 2020 and 2021 harvest). Mycotoxin contamination increased from 37.6% in 2020 to 55.2% in 2021 harvests. The most frequently observed mycotoxin co-occurrence was the combination of enniatin A1, enniatin B, and enniatin B1 (0.5-126 µg/kg) and DON (1307 µg/kg). AFB1 (0.4-2.6 µg/kg) was found in only one sample collected from the continental region. These results pointed to the necessity of frequent and regular wheat quality controls in order to better evaluate the risk regarding the Algerian population.
Collapse
Affiliation(s)
- Hayat Khouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algier, Algeria
| | - Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Tiziri Badji
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algier, Algeria
| | - Ahmed Al-Amiery
- Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, AUIQ, Nasiriyah, Iraq
| | - Noel Durand
- UMR 95 QualiSud, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Université de Montpellier, Avignon Université, Montpellier, France
| | - Abdellah Zinedine
- BIOMARE Laboratory, Applied Microbiology and Biotechnology, Chouaib Doukkali University, El Jadida, Morocco
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Amar Riba
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algier, Algeria
| |
Collapse
|
12
|
Mei C, Wang Z, Jiang H. Determination of aflatoxin B1 in wheat using Raman spectroscopy combined with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125384. [PMID: 39500203 DOI: 10.1016/j.saa.2024.125384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/08/2024] [Accepted: 11/01/2024] [Indexed: 12/08/2024]
Abstract
Aflatoxin B1 (AFB1) is carcinogenic and highly susceptible to production in wheat. In this study, the quantitative detection of contaminant AFB1 in wheat was investigated by Raman spectroscopy combined with chemometric method realization. Firstly, Savitzky-Golay smoothing (SG) and baseline calibration methods were used to perform the necessary preprocessing of the collected raw Raman spectra. Then, three variable optimization methods, i.e., competitive adaptive reweighted sampling (CARS), iteratively variable subset optimization (IVSO), and bootstrap soft shrinkage (BOSS), were applied to the preprocessed wheat Raman spectra. Finally, partial least squares regression (PLSR) models were developed to determine AFB1 in wheat samples. The results showed that all three variable optimization algorithms significantly improved the predictive performance of the models. The BOSS-PLSR model has strong generalization performance and robustness. Its prediction coefficient of determination (RP2) was 0.9927, the root mean square error of prediction (RMSEP) was 2.4260 μg/kg, and the relative prediction deviation (RPD) was 11.5250, respectively. In conclusion, the combination of Raman spectroscopy and chemometrics can realize the rapid quantitative detection of AFB1 in wheat.
Collapse
Affiliation(s)
- Congli Mei
- College of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310048, PR China.
| | - Ziyu Wang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
13
|
Wan MLY, Co VA, Turner PC, Nagendra SP, El‐Nezami H. Deoxynivalenol modulated mucin expression and proinflammatory cytokine production, affecting susceptibility to enteroinvasive Escherichia coli infection in intestinal epithelial cells. J Food Sci 2025; 90:e70079. [PMID: 39980277 PMCID: PMC11842951 DOI: 10.1111/1750-3841.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/22/2025]
Abstract
Deoxynivalenol (DON) is a common mycotoxin in crops that could induce intestinal inflammation, affecting the susceptibility of intestinal epithelial cells (IECs) to pathogen infection. This study aimed to investigate DON's effects on mucin and cytokine production as part of the local immune system and how it affected intestinal susceptibility to pathogen infection. Caco-2 cells were exposed to DON followed by acute enteroinvasive Escherichia coli (EIEC) infection. An increase in EIEC attachment to DON-exposed cells was observed, probably in part, mediated by secretory MUC5AC mucins and membrane-bound MUC4 and MUC17 mucins. Additionally, DON with EIEC posttreatment led to significant changes in the gene expression of several proinflammatory cytokines (IL1α, IL1β, IL6, IL8, TNFα, and MCP-1), which may be in part, mediated by NK-κB and/or MAPK signaling pathways. These data suggested DON may exert immunomodulatory effects on IECs, altering the IEC susceptibility to bacterial infection. PRACTICAL APPLICATION: The results suggested that DON might modulate immune responses by affecting mucus and cytokine production, which may affect the susceptibility of intestinal epithelial cells to pathogen infection.
Collapse
Affiliation(s)
- Murphy Lam Yim Wan
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
- Department of Laboratory Medicine, Division of MicrobiologyImmunology and Glycobiology, Lund UniversityLundSweden
- School of Medicine, Pharmacy and Biomedical Sciences, Faculty of Science and HealthUniversity of PortsmouthPortsmouthUK
| | - Vanessa Anna Co
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
| | - Paul C Turner
- Maryland Institute for Applied Environmental Health, School of Public HealthUniversity of MarylandCollege ParkMarylandUSA
| | - Shah P Nagendra
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
| | - Hani El‐Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences BuildingThe University of Hong KongPokfulamHong Kong
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
14
|
Napo M, Kock A, Alayande KA, Sulyok M, Ezekiel CN, Uehling J, Pawlowska TE, Adeleke RA. Tomato rot by Rhizopus microsporus alters native fungal community composition and secondary metabolite production. Front Microbiol 2025; 16:1508519. [PMID: 39949627 PMCID: PMC11823476 DOI: 10.3389/fmicb.2025.1508519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
Rhizopus rot is considered one of the most common diseases influencing global production and yield of horticulture commodities. However, the factors contributing to this pattern of prevalence are uncertain. Here, we focused on R. microsporus, which is known to rely on its endosymbiotic bacterium, Mycetohabitans, to produce toxins that interfere with plant development and inhibit the growth of other fungi. We assessed the impact of the symbiotic R. microsporus harboring its endosymbiont as well as the fungus cured of it on: (1) the magnitude of spoilage in tomato fruits, as evaluated by Koch's postulate for pathogenicity, (2) the shifts in native communities of endophytic fungi inhabiting these fruits, as examined by ITS rRNA gene metabarcoding and (3) secondary metabolites generated by these communities, as analyzed using multi-analyte LC-MS/MS. The pathogenicity test showed that the symbiotic endobacterium-containing R. microsporus W2-50 was able to cause tomato fruit spoilage. This was accompanied by decreased relative abundance of Alternaria spp. and an increase in the relative abundance of Penicillium spp. that may have facilitated the observed spoilage. In conclusion, symbiotic W2-50 appeared to facilitate fruit spoilage, possibly through successful colonization or toxin production by its endosymbiont.
Collapse
Affiliation(s)
- Mmanoko Napo
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Alicia Kock
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Kazeem A. Alayande
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Michael Sulyok
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
- Feed and Food Quality, Safety and Innovation GmbH, Tulln, Austria
| | - Chibundu N. Ezekiel
- Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Jessie Uehling
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Teresa E. Pawlowska
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, NY, United States
| | - Rasheed A. Adeleke
- Unit of Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
15
|
Wan YC, Kong ZL, Wu YHS, Huang CN, Ogawa T, Lin JT, Yang DJ. Establishment of appropriate conditions for the efficient determination of multiple mycotoxins in tea samples and assessment of their drinking risks. Food Chem 2025; 463:141438. [PMID: 39353305 DOI: 10.1016/j.foodchem.2024.141438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Conditions were determined for rapid, convenient, and efficient determination of 16 common mycotoxins in tea samples. Mycotoxins in tea leaves and tea infusion samples were extracted using solid-liquid extraction/liquid-liquid extraction combined with ultrasonic-assisted extraction. The extraction solvent was 2-butanone/ethyl acetate (9/1 v/v) with 0.1 % formic acid. The established conditions enabled the analysis of these mycotoxins by ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) in 5.5 min. In addition, HPLC with a temperature-controlled fluorescence detector was able to simultaneously determine 8 mycotoxins with fluorescent properties in 10 min without derivatization. Aflatoxin M1 (2.15 and 3.01 μg/kg), fumonisin B2 (198.89 μg/kg), and zearalenone (87.54 μg/kg) could be detected in commercially available pu-erh tea, green tea, and black tea products, and their total transfer rates from the products to brewed tea infusions were 64.08-65.13 %, 90.59 %, and 25.99 %, respectively. The risks of drinking mycotoxins from these tea infusions mostly showed low levels of concern.
Collapse
Affiliation(s)
- Ying-Chun Wan
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung 20224, Taiwan, ROC; Testing Laboratory, Creation Food Co. Ltd., 3F No. 9, Ln. 168, Xingshan Road, Taipei 114066, Taiwan, ROC
| | - Zwe-Lin Kong
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung 20224, Taiwan, ROC
| | - Yi-Hsieng Samuel Wu
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University-Yangming Campus, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan, ROC
| | - Chien-Ni Huang
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University-Yangming Campus, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan, ROC
| | - Tomohisa Ogawa
- Graduate School of Agricultural Science, Tohoku University, 468-1 AzaAoba Aramaki, Aoba-ku, Sendai 980-8572, Japan
| | - Jau-Tien Lin
- Department of Medical Applied Chemistry, Chung Shan Medical University, and Department of Medical Education, Chung Shan Medical University Hospital, 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
| | - Deng-Jye Yang
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University-Yangming Campus, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan, ROC; Department of Nutrition and Master Program of Food and Drug Safety, China Medical University, 100, Sec. 1, Economic and Trade Road, Taichung 406040, Taiwan, ROC; Department of Food Nutrition and Health Biotechnology, Asia University, 500, Lioufeng Road., Wufeng, Taichung 41354, Taiwan, ROC.
| |
Collapse
|
16
|
Mirzaei G, Yazdanfar N, Shariatifar N, Molaee-Aghaee E, Sadighara P. Health risk assessment and determination of bisphenol A and aflatoxin M1 in infant formula. BMC Nutr 2025; 11:6. [PMID: 39815336 PMCID: PMC11734423 DOI: 10.1186/s40795-025-00998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Bisphenol A (BPA) is one of the chemical compounds used in food packaging, so it can migrate from the packaging into food. Also, environmental pollution of this compound is high due to its high use. Therefore, it may enter food chains through the environment. Aflatoxin M1 (AFM1) is one of the common mycotoxins in milk. Its presence has been reported worldwide. Infant formula is an alternative to human milk. The main ingredient of this product is cow's milk. AIMS This study aimed to investigate the levels and risk assessment of BPA and aflatoxin M1 in infant formula. METHODS Samples were purchased from 7 leading brands of infant formula in pharmacies. The samples were extracted according to common protocols and then injected into HPLC and analyzed with a fluorescence detector for both contaminants. RESULTS BPA wasn't detected in infant formula samples, but the presence of AFM1was confirmed in 11% of the samples. Of course, there is no risk in this regard with the risk assessment. CONCLUSION Infant formula samples are not of concern for infants in terms of BPA and aflatoxin M1. However, continuous monitoring is recommended for this product.
Collapse
Affiliation(s)
- Ghazal Mirzaei
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of public health, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Yazdanfar
- Iranian Research and Development Center for Chemical Industries, ACECR, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of public health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Molaee-Aghaee
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of public health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of public health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Murashiki TC, Munjoma PT, Zinyama-Gutsire RBL, Mutingwende I, Mazengera LR, Duri K. Aflatoxin B 1 and fumonisin B 1 exposure and adverse birth outcomes in HIV-infected and HIV-uninfected women from Harare, Zimbabwe. Drug Chem Toxicol 2025:1-14. [PMID: 39754746 DOI: 10.1080/01480545.2024.2448675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/04/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are toxic secondary products of fungi that frequently contaminate staple crops in resource-limited settings. Antenatal AFB1 and FB1 exposure may cause adverse birth outcomes. We conducted a retrospective substudy nested in a case-control cohort of HIV-infected and HIV-uninfected women ≥20 weeks gestation from Harare, Zimbabwe. Urinary aflatoxin M1 (AFM1) and FB1, biomarkers of AFB1 and FB1 exposure, respectively, were quantified in random antenatal urine via ELISA and grouped into tertiles. The adverse birth outcomes considered were low birth weight, preterm birth (PTB), small for gestational age, stillbirth, birth defects, neonatal death, neonatal jaundice and perinatal death (PD). We evaluated any associations between adverse birth outcomes and exposure to AFB1, FB1, or the AFB1-FB1 combination via a multivariable logistic regression controlled for potential confounders. We enrolled 94 HIV-infected and 81 HIV-uninfected women. In HIV-infected, AFM1 was detected in 46/94 (49%), and FB1 was detected in 86/94 (91%). In HIV-uninfected, AFM1 was detected in 48/81 (59%), and FB1 was detected in 74/81 (91%). Among all women, AFM1 tertile 3 was associated with PD (OR: 6.95; 95% CI: 1.21-39.78). In the same population, AFM1 tertiles 2 (OR: 13.46; 95% CI: 1.20-150.11) and 3 (OR: 7.92; 95% CI: 1.08-58.19) were associated with PTB. In HIV-infected, AFM1 tertile 2 was associated with PTB (OR: 64.73; 95% CI: 2.37-177.93). Our results revealed an association between AFB1 exposure and PD and PTB in women, including those infected with HIV. Public health and nutrition measures are necessary to mitigate mycotoxins.
Collapse
Affiliation(s)
- Tatenda Clive Murashiki
- Immunology Unit, Department of Laboratory, Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Privilege Tendai Munjoma
- Immunology Unit, Department of Laboratory, Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Rutendo B L Zinyama-Gutsire
- Immunology Unit, Department of Laboratory, Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Isaac Mutingwende
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Lovemore Ronald Mazengera
- Immunology Unit, Department of Laboratory, Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Kerina Duri
- Immunology Unit, Department of Laboratory, Diagnostic and Investigative Sciences, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
18
|
Llorens P, Juan-García A, Pardo O, Arjona-Mudarra P, Martí-Quijal FJ, Esteve-Turrillas FA, Barba FJ, Chiacchio MF, Vitaglione P, Moltó JC, Juan C. Bioavailability study of OTA, ZEN, and AFB1 along with bioactive compounds from tiger nut beverage and its by-products. Food Res Int 2025; 200:115458. [PMID: 39779105 DOI: 10.1016/j.foodres.2024.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Mycotoxins pose significant health risks due to their prevalence in food products and severe health implications, including carcinogenicity. This study investigates the bioavailability of mycotoxins aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) individually and combined, in the presence of identified polyphenols from tiger nut beverage (TNB) and tiger nut by-product (TNBP) using the in vitro model Caco-2 cells, which simulates the human intestinal barrier. The objective is to understand how bioactive compounds from TNBP can mitigate the effects of AFB1, OTA and ZEN (and their combination) by bioavailability interference, contributing to safer food products and innovative food safety strategies. In vitro gastrointestinal digestion was simulated using the INFOGEST protocol, followed by a bioavailability assessment through transepithelial transport assays in differentiated Caco-2 cells. OTA bioavailability significantly increased in the presence of TNB and TNBP, suggesting interactions that enhance its intestinal absorption. AFB1 maintained high bioavailability across all conditions (up to 83%), while ZEN showed a general decrease (up to 24%), thus indicating a potential protective effect of TNB and TNBP against ZEN toxicity. Regarding the effect of mycotoxins on the bioavailability of polyphenols from TNB and TNBP, a general enhancement was observed for TNB consistently showing higher bioavailability than for TNBP. Notably, OTA and ZEN significantly increased polyphenols bioavailability, reaching up to 79.2% in TNB. Individual polyphenol generally showed a notable reduction in trans-ferulic acid and an increase in trans-cinnamic acid in the presence of mycotoxins. For TNBP, individual mycotoxins generally enhanced polyphenol bioavailability, with AFB1 showing the most significant increase. In conclusion, tiger nut products show promise as sources of bioactive compounds for mitigating mycotoxin toxicity in food products. However, further studies are necessary to clarify these interactions and optimize the conditions of use for their safe and effective application in the food industry.
Collapse
Affiliation(s)
- P Llorens
- Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - A Juan-García
- Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain.
| | - O Pardo
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, Spain
| | - P Arjona-Mudarra
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, Spain
| | - F J Martí-Quijal
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain
| | - F A Esteve-Turrillas
- Department of Analytical Chemistry, University of Valencia, Doctor Moliner 50, Burjassot 46100, Spain
| | - F J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain
| | - M F Chiacchio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - P Vitaglione
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain
| | - J C Moltó
- Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - C Juan
- Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| |
Collapse
|
19
|
Eiri A, Kaboosi H, Niknejad F, Ardebili A, Joshaghani HR. In vitro detoxification of aflatoxin B1 by Lactiplantibacillus plantarum isolated from the north of Iran: A pioneering insights into the origin of fermented beverages. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01234-4. [PMID: 39739220 DOI: 10.1007/s12223-024-01234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
The contamination of food and animal feeds with mycotoxions, particularly aflatoxin B1 (AFB1), poses significant risks to human health and causes economic losses. This study investigated bacteria from various fermented milk products to assess their ability to detoxify AFB1. A variety of household fermented kefir milk, kefir-like beverages, and kefir grains were collected from rural areas and subjected to microbiological analysis. Gram-positive bacterial isolates were further identified based on the 16S rRNA gene homology analysis. Seven bacterial isolates that were initially identified as lactic acid bacteria were selected for their potential to detoxify AFB1. Effects of environmental factors, including temperature, time, pH, and cell concentration, as well as bacterial components such as inoculum, fermentation supernatant, and cells, were evaluated on AFB1 detoxification. The most frequent isolates belonged to the new genus Lentilactobacillus and Lactiplantibacillus, of which three strains were identified as L. kefiri, L. diolivorans, and L. plantarum. The selected L. plantarum isolate demonstrated optimal AFB1 detoxification at pH 4, a 4-h exposure time, and a cell concentration of 1.0 × 1016 CFU/mL. Significant differences were observed in toxin removal between fermentation supernatant and cells, while temperature showed no significant effect on toxin detoxification. This study demonstrated the high ability of L. plantarum for AFB1 detoxification, suggesting potential applications for food and feed safety enhancement. Further research is warranted to optimize its effectiveness and explore broader applications.
Collapse
Affiliation(s)
- Abdoljalil Eiri
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Hami Kaboosi
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| | - Farhad Niknejad
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Parasitology and Mycology, Faculty of Para Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdollah Ardebili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
20
|
Salam M, Bolletta V, Meng Y, Yakti W, Grossule V, Shi D, Hayat F. Exploring the role of the microbiome of the H. illucens (black soldier fly) for microbial synergy in optimizing black soldier fly rearing and subsequent applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125055. [PMID: 39447631 DOI: 10.1016/j.envpol.2024.125055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
The symbiotic microbiome in the insect's gut is vital to the host insect's development, improvement of health, resistance to disease, and adaptability to the environment. The black soldier fly (BSF) can convert organic substrates into a protein- and fat-rich biomass that is viable for various applications. With the support of a selective microbiome, BSF can digest and recycle different organic waste, reduce the harmful effects of improper disposal, and transform low-value side streams into valuable resources. Molecular and systems-level investigations on the harbored microbial populations may uncover new biocatalysts for organic waste degradation. This article discusses and summarizes the efforts taken toward characterizing the BSF microbiota and analyzing its substrate-dependent shifts. In addition, the review discusses the dynamic insect-microbe relationship from the functional point of view and focuses on how understanding this symbiosis can lead to alternative applications for BSF. Valorization strategies can include manipulating the microbiota to optimize insect growth and biomass production, as well as exploiting the role of BSF microbiota to discover new bioactive compounds based on BSF immunity. Optimizing the BSF application in industrial setup and exploiting its gut microbiota for innovative biotechnological applications are potential developments that could emerge in the coming decade.
Collapse
Affiliation(s)
- Muhammad Salam
- Department of Environmental Science, and Ecology, Chengdu University of Technology, Chengdu, PR China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China.
| | - Viviana Bolletta
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Italy
| | - Ying Meng
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Wael Yakti
- Faculty of Life Sciences, Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin, Berlin, Germany
| | - Valentina Grossule
- Department of Civil, Architectural and Environmental Engineering, University of Padova, Italy
| | - Dezhi Shi
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China
| | - Faisal Hayat
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| |
Collapse
|
21
|
Liu X, Liu Y, Liu M, Xing J, Wang Y, Sheng P, Ge G, Jia Y, Wang Z. Phycocyanin Additives Regulate Bacterial Community Structure and Antioxidant Activity of Alfalfa Silage. Microorganisms 2024; 12:2517. [PMID: 39770720 PMCID: PMC11676038 DOI: 10.3390/microorganisms12122517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Phycocyanin is a water-soluble pigment protein extracted from prokaryotes such as cyanobacteria and has strong antioxidant activity. As a silage additive, it is expected to enhance the antioxidant activity and fermentation quality of alfalfa silage. This study revealed the effects of different proportions of phycocyanin (1%, 3%, 5%) on the quality, bacterial community and antioxidant capacity of alfalfa silage. The results showed that 5% phycocyanin supplementation could maintain dry matter (DM), crude protein (CP) and water-soluble carbohydrate (WSC) content; increase lactic acid (LA) content; decrease pH and butyric acid (BA) and ammonia nitrogen (NH3-N) content; and improve fermentation quality. At the same time, the contents of total antioxidant capacity (TAOC), total phenol content (TP), polysaccharide content (P) and total flavonoid content (F) in the addition group were significantly increased, the antioxidant capacity was enhanced and the abundance of lactic acid bacteria was increased, which was positively correlated with silage quality. Phycocyanin can improve the metabolic function of carbohydrates and amino acids and promote the production of secondary metabolites. The application of phycocyanin broadens the variety of additives for alfalfa silage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.L.); (G.G.)
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland Science, Inner Mongolia Agricultural University, Hohhot 010019, China; (X.L.); (G.G.)
| |
Collapse
|
22
|
Ahmad MS, Alanazi YA, Alrohaimi Y, Shaik RA, Alrashidi S, Al-Ghasham YA, Alkhalifah YS, Ahmad RK. Infant nutrition at risk: a global systematic review of ochratoxin A in human breast milk-human health risk assessment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1611-1624. [PMID: 39292700 DOI: 10.1080/19440049.2024.2401976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Human breast milk is the optimal source of nutrition for newborns, but the potential transfer of contaminants like mycotoxins, particularly ochratoxin A (OTA), from maternal blood to milk remains a concern. This systematic review aims to provide a comprehensive analysis of global OTA levels in human breast milk and assess the associated health risks. We conducted a thorough search of scientific databases, including Web of Science, ScienceDirect, Scopus, Google Scholar and PubMed, using keywords related to OTA in human breast milk. A total of 39 studies met the inclusion criteria for this review. OTA levels compared to limits, estimated infant intake at various ages and health risks assessed using Margin of Exposures (MOEs) and Hazard quotient (HQ). Our findings reveal the widespread presence of OTA in breast milk across different regions, with notably higher levels detected in Africa compared to Asia, South America and Europe. The higher concentrations observed in warmer, humid climates suggest that environmental factors significantly influence OTA contamination. Mature breast milk samples generally exhibited greater OTA exposure. The neoplastic and non-neoplastic effects demonstrate generally low risks globally. The regional differences in OTA levels and associated health risk assessments underscore the need for continued research into the health impacts of OTA exposure in infants. This includes further investigation into multiple sources of exposure, such as infant formula, within the broader context of the exposome framework.
Collapse
Affiliation(s)
- Mohammad Shakil Ahmad
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Yousef Abud Alanazi
- Department of Paediatrics, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Yousef Alrohaimi
- Department of Paediatrics, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Riyaz Ahamed Shaik
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Sami Alrashidi
- Department of Paediatrics, Maternity and Children Hospital, Qassim, Saudi Arabia
| | - Yazeed A Al-Ghasham
- Department of Paediatrics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Yasir S Alkhalifah
- Department of Paediatrics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Ritu Kumar Ahmad
- Department of Applied Medical Science, Buraydah Private Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
23
|
Minasyan E, Aghajanyan A, Karapetyan K, Khachaturyan N, Hovhannisyan G, Yeghyan K, Tsaturyan A. Antimicrobial Activity of Melanin Isolated from Wine Waste. Indian J Microbiol 2024; 64:1528-1534. [PMID: 39678963 PMCID: PMC11645379 DOI: 10.1007/s12088-023-01155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2024] Open
Abstract
Melanins have immense application potential in the fields of agriculture, cosmetics and pharmaceutical industries. To determine the antimicrobial properties of melanin, conditionally pathogenic bacteria, belonging to different taxonomic groups were used. The results have shown that melanin solution exhibited bacteriostatic or bactericide activity depending on test culture and melanin concentration. Melanin at concentration of 20 mg/ml reduced the total number of cells of the Bacillus subtilis G 17-89, Salmonella typhimurium G 38 and Escherichia coli K 12 to about 20 percent. Melanin at the concentration of 40 mg/ml suppressed the growth of B. subtilis G17-89 and Candida gropengiesseri 10228 almost 100 percent. In the case of E. coli K 12 30 mg/ml concentration has the same effect as the 40 mg/ml and cell count decrease occurs about 50 percent. Lowest efficiency melanin showed against S. typhimurium G 38 and after 72 h of incubation the cell count decreases by log 1 degree. 30 mg/ml concentration of melanin on the growth of Candida bovina 10118 decreases about 80 percent. On the growth of the Fungi of Aspergillus fumigatus 8444, Aspergillus flavus 10559, Cladosporium herbarium 8270, Cladosporium elatum 8192, Fusarium oxysporum 12017, Fusarium solani 12018, Mucor hiemalis 12020, Mucor plumbeus 12021, Penicillium chrysogenum 8203, Penicillium expansum 8281 genus low concentration of melanin possessed bacteriostatic activity. The investigation of the efficiency of melanin to inhibit the growth of food-spoilage microorganisms shown, that it can be used as natural preservative agent for prevention contamination of food products and for extending of their shelf-life.
Collapse
Affiliation(s)
- Ela Minasyan
- Laboratory of BAS Purification and Certification, SPC “Armbiotechnology” Scientific and Production Center, National Academy of Science, Yerevan, Republic of Armenia
- Institute of Pharmacy, Scientific and Educational Center for Control and Monitoring of the Quality of Medicines, Yerevan State University, Yerevan, Republic of Armenia
| | - Armen Aghajanyan
- Laboratory of BAS Purification and Certification, SPC “Armbiotechnology” Scientific and Production Center, National Academy of Science, Yerevan, Republic of Armenia
| | - Kristina Karapetyan
- Laboratory of Probiotics Biotechnology, SPC “Armbiotechnology”, National Academy of Science, Yerevan, Republic of Armenia
| | - Nune Khachaturyan
- Microbial Depository Center (MDC), SPC “Armbiotechnology”, National Academy of Science, Yerevan, Republic of Armenia
| | - Gayane Hovhannisyan
- Laboratory of BAS Purification and Certification, SPC “Armbiotechnology” Scientific and Production Center, National Academy of Science, Yerevan, Republic of Armenia
| | - Karine Yeghyan
- Laboratory of BAS Purification and Certification, SPC “Armbiotechnology” Scientific and Production Center, National Academy of Science, Yerevan, Republic of Armenia
| | - Avetis Tsaturyan
- Laboratory of BAS Purification and Certification, SPC “Armbiotechnology” Scientific and Production Center, National Academy of Science, Yerevan, Republic of Armenia
- Institute of Pharmacy, Scientific and Educational Center for Control and Monitoring of the Quality of Medicines, Yerevan State University, Yerevan, Republic of Armenia
| |
Collapse
|
24
|
Alnaemi HS, Dawood TN, Algwari QT. Aflatoxin B1, ochratoxin A, and fumonisin B1 detoxification from poultry feeds by corona discharge application. J Adv Vet Anim Res 2024; 11:819-834. [PMID: 40013271 PMCID: PMC11855424 DOI: 10.5455/javar.2024.k834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 07/26/2024] [Indexed: 02/28/2025] Open
Abstract
Objective The efficiency of corona discharge (CD) for detoxification of aflatoxin B1 (AB1), ochratoxin A (OA), and fumonisin B1 (FMB1) from poultry feeds with its influences on feed components was investigated. Materials and Methods Feed samples were exposed to CD for six durations (10, 20, 30, 40, 50, and 60 min) at three distances (1.5, 2.5, and 3.5 cm). Mycotoxin levels were estimated by competitive enzyme-linked immunosorbent assay, and findings were substantiated by high-performance liquid chromatography. Results AB1, OA, and FMB1 degradation percentages increased significantly (p < 0.05) with processing times increment and distances reduction to reach values of 83.22%, 84.21%, and 84.76% at the first distance; 80.28%, 84.00%, and 84.12% at the second distance; and 68.30%, 71.74%, and 76.18% at the third distance, respectively, after 60 min of treatment. FMB1 reported the highest degradation level. Concerning CD impacts on feed composition, protein, fat, and moisture contents decreased significantly (p < 0.05). Carbohydrates and ash were not affected adversely. Depending on peroxide values estimation, fats were of good quality. Conclusion The CD effectiveness for AB1, OA, and FMB1 detox from poultry feeds with moderate impact on the quality of feed.
Collapse
Affiliation(s)
- Hiba S. Alnaemi
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Mosul, Mosul, Iraq
| | - Tamara N. Dawood
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Qais Th. Algwari
- Department of Electronics, College of Electronic Engineering, University of Ninevah, Mosul, Iraq
| |
Collapse
|
25
|
Mafe AN, Büsselberg D. Impact of Metabolites from Foodborne Pathogens on Cancer. Foods 2024; 13:3886. [PMID: 39682958 DOI: 10.3390/foods13233886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Foodborne pathogens are microorganisms that cause illness through contamination, presenting significant risks to public health and food safety. This review explores the metabolites produced by these pathogens, including toxins and secondary metabolites, and their implications for human health, particularly concerning cancer risk. We examine various pathogens such as Salmonella sp., Campylobacter sp., Escherichia coli, and Listeria monocytogenes, detailing the specific metabolites of concern and their carcinogenic mechanisms. This study discusses analytical techniques for detecting these metabolites, such as chromatography, spectrometry, and immunoassays, along with the challenges associated with their detection. This study covers effective control strategies, including food processing techniques, sanitation practices, regulatory measures, and emerging technologies in pathogen control. This manuscript considers the broader public health implications of pathogen metabolites, highlighting the importance of robust health policies, public awareness, and education. This review identifies research gaps and innovative approaches, recommending advancements in detection methods, preventive strategies, and policy improvements to better manage the risks associated with foodborne pathogens and their metabolites.
Collapse
Affiliation(s)
- Alice N Mafe
- Department of Biological Sciences, Faculty of Sciences, Taraba State University, Main Campus, Jalingo 660101, Taraba State, Nigeria
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha Metropolitan Area P.O. Box 22104, Qatar
| |
Collapse
|
26
|
Anumudu CK, Miri T, Onyeaka H. Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods 2024; 13:3714. [PMID: 39682785 DOI: 10.3390/foods13233714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Lactic Acid Bacteria (LAB) have garnered significant attention in the food and beverage industry for their significant roles in enhancing safety, quality, and nutritional value. As starter cultures, probiotics, and bacteriocin producers, LAB contributes to the production of high-quality foods and beverages that meet the growing consumer demand for minimally processed functional and health-promoting food products. Industrial food processing, especially in the fresh produce and beverage sector, is shifting to the use of more natural bioproducts in food production, prioritizing not only preservation but also the enhancement of functional characteristics in the final product. Starter cultures, essential to this approach, are carefully selected for their robust adaptation to the food environment. These cultures, often combined with probiotics, contribute beyond their basic fermentation roles by improving the safety, nutritional value, and health-promoting properties of foods. Thus, their selection is critical in preserving the integrity, quality, and nutrition of foods, especially in fresh produce and fruits and vegetable beverages, which have a dynamic microbiome. In addition to reducing the risk of foodborne illnesses and spoilage through the metabolites, including bacteriocins they produce, the use of LAB in these products can contribute essential amino acids, lactic acids, and other bioproducts that directly impact food quality. As a result, LAB can significantly alter the organoleptic and nutritional quality of foods while extending their shelf life. This review is aimed at highlighting the diverse applications of LAB in enhancing safety, quality, and nutritional value across a range of food products and fermented beverages, with a specific focus on essential metabolites in fruit and vegetable beverages and their critical contributions as starter cultures, probiotics, and bacteriocin producers.
Collapse
Affiliation(s)
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
27
|
García-García FA, Cristiani-Urbina E, Morales-Barrera L, Rodríguez-Peña ON, Hernández-Portilla LB, Campos JE, Flores-Ortíz CM. Study of Bacillus cereus as an Effective Multi-Type A Trichothecene Inactivator. Microorganisms 2024; 12:2236. [PMID: 39597625 PMCID: PMC11596695 DOI: 10.3390/microorganisms12112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Type A trichothecenes are common mycotoxins in stored cereal grains, where co-contamination is likely to occur. Seeking new microbiological options capable of inactivating more than one type A trichothecene, this study aimed to analyze facultative anaerobe bacteria isolated from broiler proventriculus. For this purpose, type A trichothecenes were produced in vitro, and a facultative anaerobic bacterial consortium was obtained from a broiler's proventriculus. Then, the most representative bacterial strains were purified, and trichothecene inactivating assays were performed. Finally, the isolate with the greatest capacity to remove all tested mycotoxins was selected for biosorption assays. The results showed that when the consortium was tested, neosolaniol (NEO) was the most degraded mycotoxin (64.55%; p = 0.008), followed by HT-2 toxin (HT-2) (22.96%; p = 0.008), and T-2 toxin (T-2) (20.84%; p = 0.014). All isolates were bacillus-shaped and Gram-positive, belonging to the Bacillus and Lactobacillus genera, of which B. cereus was found to remove T-2 (28.35%), HT-2 (32.84%), and NEO (27.14%), where biosorption accounted for 86.10% in T-2, 35.59% in HT-2, and 68.64% in NEO. This study is the first to prove the capacity of B. cereus as an effective inactivator and binder of multi-type A trichothecenes.
Collapse
Affiliation(s)
- Fernando Abiram García-García
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Liliana Morales-Barrera
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Olga Nelly Rodríguez-Peña
- Laboratorio de Biogeoquímica, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico;
| | - Luis Barbo Hernández-Portilla
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
| | - Jorge E. Campos
- Laboratorio de Bioquímica Molecular, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico;
| | - Cesar Mateo Flores-Ortíz
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
| |
Collapse
|
28
|
Li M, Li H. Research progress on inhibitors and inhibitory mechanisms of mycotoxin biosynthesis. Mycotoxin Res 2024; 40:483-494. [PMID: 39164466 DOI: 10.1007/s12550-024-00553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Mycotoxins are secondary metabolites produced by fungi with harmful effects such as carcinogenicity, teratogenicity, nephrotoxicity, and hepatotoxicity. They cause widespread contamination of plant products such as crops, food, and feed, posing serious threats to the life and health of human beings and animals. It has been found that many traditionally synthesized and natural compounds are capable of inhibiting the growth of fungi and their secondary metabolite production. Natural compounds have attracted much attention due to their safety, environmental, and health friendly features. In this paper, compounds of plant origin with inhibitory effects on ochratoxins, aflatoxins, Fusarium toxins, and Alternaria toxins, including cinnamaldehyde, citral, magnolol, eugenol, pterostilbene, curcumin, and phenolic acid, are reviewed, and the inhibitory mechanisms of different compounds on the toxin production of fungi are also elucidated, with the aim of providing application references to reduce the contamination of fungal toxins, thus safeguarding the health of human beings and animals.
Collapse
Affiliation(s)
- Mengjie Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Honghua Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China.
| |
Collapse
|
29
|
Aslanli A, Domnin M, Stepanov N, Senko O, Efremenko E. Action enhancement of antimicrobial peptides by their combination with enzymes hydrolyzing fungal quorum molecules. Int J Biol Macromol 2024; 280:136066. [PMID: 39343267 DOI: 10.1016/j.ijbiomac.2024.136066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Recently, the lactonase activity of several enzymes (lactonase AiiA, organophosphate hydrolase (His6-OPH) and New Delhi metallo-β-lactamase (NDM-1)) was revealed in the hydrolysis of lactone-containing fungal Quorum Sensing molecules (FQSM). This study was aimed at the investigation of possible use of these enzymes as components of antifungal combinations with antimicrobial peptides (AMPs) to increase their action efficiency against various fungi. For this, the interaction of various AMPs with AiiA, NDM-1 or His6-OPH, as well as the effect of AMPs on the catalytic characteristics of these enzymes in the hydrolysis of FQSM in enzyme/AMP combinations, were studied using in silico computer modeling methods. Enzymes combinations with 3 AMPs Bacitracin, Colistin and Polymyxin B were selected as the most rational in terms of maintaining the effectiveness of AMP and the catalytic activity of enzymes. The antifungal action of the selected combinations against cells of mycelial fungi and yeast was studied in vitro. It was found that combinations of the enzymes AiiA, His6-OPH and NDM-1 with Bacitracin, Colistin and Polymyxin B provide a significant increase in the action efficiency (up to 5000 times) of both AMPs and enzymes against fungi. The most effective variants were obtained for Polymyxin B in multicomponent combinations with enzymes.
Collapse
Affiliation(s)
- Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | - Maksim Domnin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia.
| |
Collapse
|
30
|
Gao B, An W, Wu J, Wang X, Han B, Tao H, Liu J, Wang Z, Wang J. Simultaneous Degradation of AFB1 and ZEN by CotA Laccase from Bacillus subtilis ZJ-2019-1 in the Mediator-Assisted or Immobilization System. Toxins (Basel) 2024; 16:445. [PMID: 39453221 PMCID: PMC11511518 DOI: 10.3390/toxins16100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
The global prevalence of aflatoxin B1 (AFB1) and zearalenone (ZEN) contamination in food and feed poses a serious health risk to humans and animals. Recently, enzymatic detoxification has received increasing attention, yet most enzymes are limited to degrading only one type of mycotoxin, and free enzymes often exhibit reduced stability and activity, limiting their practicality in real-world applications. In this study, the laccase CotA gene from ZEN/AFB1-degrading Bacillus subtilis ZJ-2019-1 was cloned and successfully expressed in Escherichia coli BL21, achieving a protein yield of 7.0 mg/g. The recombinant CotA (rCotA) completely degraded AFB1 and ZEN, with optimal activity at 70 °C and pH 7.0. After rCotA treatment, neither AFB1 nor ZEN showed significantly cytotoxicity to mouse macrophage cell lines. Additionally, the AFB1/ZEN degradation efficiency of rCotA was significantly enhanced by five natural redox mediators: acetosyringone, syringaldehyde, vanillin, matrine, and sophoridin. Among them, the acetosyringone-rCotA was the most effective mediator system, which could completely degrade 10 μg of AFB1 and ZEN within 1 h. Furthermore, the chitosan-immobilized rCotA system exhibited higher degradation activity than free rCotA. The immobilized rCotA degraded 27.95% of ZEN and 41.37% of AFB1 in contaminated maize meal within 12 h, and it still maintained more than 40% activity after 12 reuse cycles. These results suggest that media-assisted or immobilized enzyme systems not only boost degradation efficiency but also demonstrate remarkable reusability, offering promising strategies to enhance the degradation efficiency of rCotA for mycotoxin detoxification.
Collapse
Affiliation(s)
- Boquan Gao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Wei An
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Jianwen Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Bing Han
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Hui Tao
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Jie Liu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Zhenlong Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Jinquan Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
- Laboratory of Pet Nutrition and Food, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
31
|
Quesada-Vázquez S, Codina Moreno R, Della Badia A, Castro O, Riahi I. Promising Phytogenic Feed Additives Used as Anti-Mycotoxin Solutions in Animal Nutrition. Toxins (Basel) 2024; 16:434. [PMID: 39453210 PMCID: PMC11511298 DOI: 10.3390/toxins16100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Mycotoxins are a major threat to animal and human health, as well as to the global feed supply chain. Among them, aflatoxins, fumonisins, zearalenone, T-2 toxins, deoxynivalenol, and Alternaria toxins are the most common mycotoxins found in animal feed, with genotoxic, cytotoxic, carcinogenic, and mutagenic effects that concern the animal industry. The chronic negative effects of mycotoxins on animal health and production and the negative economic impact on the livestock industry make it crucial to develop and implement solutions to mitigate mycotoxins. In this review, we summarize the current knowledge of the mycotoxicosis effect in livestock animals as a result of their contaminated diet. In addition, we discuss the potential of five promising phytogenics (curcumin, silymarin, grape pomace, olive pomace, and orange peel extracts) with demonstrated positive effects on animal performance and health, to present them as potential anti-mycotoxin solutions. We describe the composition and the main promising characteristics of these bioactive compounds that can exert beneficial effects on animal health and performance, and how these phytogenic feed additives can help to alleviate mycotoxins' deleterious effects.
Collapse
Affiliation(s)
| | | | | | | | - Insaf Riahi
- Bionte Nutrition, 43204 Reus, Spain; (S.Q.-V.); (R.C.M.); (A.D.B.)
| |
Collapse
|
32
|
Lach M, Kotarska K. Negative Effects of Occurrence of Mycotoxins in Animal Feed and Biological Methods of Their Detoxification: A Review. Molecules 2024; 29:4563. [PMID: 39407492 PMCID: PMC11477962 DOI: 10.3390/molecules29194563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Secondary metabolic products of molds, called mycotoxins, negatively affect animal health and production. They constitute a significant problem in veterinary and medical sciences, and their presence has been confirmed in feed all over the world. Applying appropriate agricultural practices and ensuring proper storage conditions significantly reduces the contamination of agricultural products with mycotoxins. However, this does not guarantee that raw materials are completely free from contamination. Many detoxification methods are currently used, but their insufficient effectiveness and negative impact on the quality of the raw material subjected to them significantly limits their usefulness. The positive results of eliminating mycotoxins from many products have been proven by the specific properties of microorganisms (bacteria, yeast, and fungi) and the enzymes they produce. Biological detoxification methods seem to offer the most promising opportunities to solve the problem of the presence of mycotoxins in animal food. This work, based on literature data, presents the health risks to farm animals consuming mycotoxins with feed and discusses the biological methods of their purification.
Collapse
Affiliation(s)
- Michał Lach
- Department of Distillery Technology and Renewable Energy, Prof. Wacław Dąbrowski Institute of Agriculture and Food Biotechnology—State Research Institute, Powstańców Wielkopolskich 17, 85-090 Bydgoszcz, Poland;
| | | |
Collapse
|
33
|
Golowczyc M, Gomez-Zavaglia A. Food Additives Derived from Fruits and Vegetables for Sustainable Animal Production and Their Impact in Latin America: An Alternative to the Use of Antibiotics. Foods 2024; 13:2921. [PMID: 39335850 PMCID: PMC11431016 DOI: 10.3390/foods13182921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The production of healthy animal-derived food entails the effective control of foodborne pathogens and strategies to mitigate microbial threats during rearing. Antibiotics have been traditionally employed in animal farming to manage bacterial infections. However, the prohibition of antibiotic growth promoters in livestock farming has brought significant changes in animal production practices. Although antibiotics are now restricted to treating and preventing bacterial infections, their overuse has caused serious public health issues, including antibiotic resistance and the presence of antibiotic residues in food and wastewater. Therefore, sustainable animal production is crucial in reducing the spread of antibiotic-resistant bacteria. Annually, 40-50% of fruit and vegetable production is discarded worldwide. These discards present significant potential for extracting value-added ingredients, which can reduce costs, decrease waste, and enhance the food economy. This review highlights the negative impacts of antibiotic use in livestock farming and stresses the importance of analyzing the challenges and safety concerns of extracting value-added ingredients from fruit and vegetable co-products at an industrial scale. It also explores the current trends in reducing antibiotic use in livestock, with a focus on Latin American contexts. Finally, the suitability of using value-added ingredients derived from fruit and vegetable co-products for animal feeds is also discussed.
Collapse
Affiliation(s)
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA), CCT-CONICET La Plata, La Plata RA1900, Argentina;
| |
Collapse
|
34
|
Ahmad MS, Alanazi YA, Alrohaimi Y, Shaik RA, Alrashidi S, Al-Ghasham YA, Alkhalifah YS, Ahmad RK. Occurrence, evaluation, and human health risk assessment of ochratoxin a in infant formula and cereal-based baby food: a global literature systematic review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1171-1186. [PMID: 39008630 DOI: 10.1080/19440049.2024.2376157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024]
Abstract
This study reviews global levels of ochratoxin A (OTA) in infant formula and cereal-based foods, using Monte Carlo simulation to assess risks. The review found 24 studies on global OTA levels in infant food and cereal-based products, using databases including PubMed, Scopus, Web of Science and Embase until March 2024. We estimated OTA exposure in infant food based on concentration, intake and body weight. The exposure and hazard quotient margin were calculated using BMDL10 and TDI values. Monte Carlo simulation evaluated human health risks from OTA in infant formula and cereal-based foods. A global study from 14 countries shows varying levels, surpassing EU limits in Tunisia, Ecuador, the USA, and generally in Africa, notably in infant cereals, which had higher levels than formula. Globally, OTA was present in 29.3% of the 3348 samples analyzed, with Lebanon at 95.2% and Brazil at 0%. Analysis indicates only non-carcinogenic risk for infants. While health risks for infants are mostly low, ongoing research and monitoring are vital to minimize OTA exposure in infant food.
Collapse
Affiliation(s)
- Mohammad Shakil Ahmad
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Yousef Abud Alanazi
- Department of Paediatrics, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Yousef Alrohaimi
- Department of Paediatrics, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Riyaz Ahamed Shaik
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Majmaah, Saudi Arabia
| | - Sami Alrashidi
- Department of Paediatrics, Maternity and Children Hospital, Qassim, Saudi Arabia
| | - Yazeed A Al-Ghasham
- Department of Paediatrics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Yasir S Alkhalifah
- Department of Paediatrics, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Ritu Kumar Ahmad
- College of Applied Medical Sciences, Department of Physiotherapy, Buraydah Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
35
|
Lee CH, Shin S, Lee SI. 10-Eicosanol Alleviates Patulin-Induced Cell Cycle Arrest and Apoptosis by Activating AKT (Protein Kinase B) in Porcine Intestinal Epithelial Cells. Int J Mol Sci 2024; 25:8597. [PMID: 39201284 PMCID: PMC11354308 DOI: 10.3390/ijms25168597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Patulin (PAT) is a fungal toxin prevalent in apples and apple products and associated with several toxic effects, potentially harming multiple organs, including the kidneys, liver, and colon. However, the precise molecular mechanism through which PAT affects the intestines remains comprehensively unclear. Therefore, this study aims to investigate the molecular effects of PAT on the intestinal epithelium. Gene expression profiling was conducted, hypothesizing that PAT induces cell cycle arrest and apoptosis through the PI3K-Akt signaling pathway. Cell cycle analysis, along with Annexin-V and propidium iodide staining, confirmed that PAT induced G2/M phase arrest and apoptosis in IPEC-J2 cells. Additionally, PAT activated the expression of cell cycle-related genes (CDK1, CCNB1) and apoptosis-related genes (BCL6, CASP9). Treatment with SC79, an AKT activator, mitigated cell cycle arrest and apoptosis. To identify natural products that could mitigate the harmful effects of PAT in small intestinal epithelial cells in pigs, the high-throughput screening of a natural product library was conducted, revealing 10-Eicosanol as a promising candidate. In conclusion, our study demonstrates that 10-Eicosanol alleviates PAT-induced cell cycle arrest and apoptosis in IPEC-J2 cells by activating AKT.
Collapse
Affiliation(s)
- Chae Hyun Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea; (C.H.L.); (S.S.)
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea; (C.H.L.); (S.S.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea; (C.H.L.); (S.S.)
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju-si 37224, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
36
|
Braun V, Kanstinger A, Dahlem D. [Mycotoxin intoxication in 54 dogs after ingestion of walnuts]. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2024; 52:211-219. [PMID: 39173649 DOI: 10.1055/a-2344-6146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
OBJECTIVE The aim of this retrospective study was to decribe the intoxication with tremorgenic mycotoxins subsequent to the ingestion of walnuts in a large population of dogs and the evaluation of the development of the clinical signs under the initiated treatment. MATERIAL AND METHODS The study included 54 dogs exhibiting signs of tremor, hyperesthesia, hyperthermia and ataxia, in particular a few hours following observed ingestion of walnuts or its justified suspicion. RESULTS The patients were presented to the clinic mostly during winter and spring. Fifty-three of 54 dogs were hospitalized for symptomatic, decontaminating and eliminating therapy (98%). Symptomatic treatment comprised of anticonvulsant therapy in 14 dogs (26%) and an antiemetic therapy in for half of the patients (n=27; 50%). A forced emesis for decontamination was undertaken in only 6 patients due to the severity of their neurological symptoms (11%). For further decontamination, an oral administration of activated charcoal after improvement of clinical signs (n=39; 72%). The majority of dogs (n=45; 83%) additionally received an intravenous lipid therapy for toxin elimination and isotonic crystalloid solution to compensate fluid losses. There were no side effects observed following the administration of intravenous lipid therapy. The majority of dogs were hospitalized for a duration of 2 days (n=44; 81%). In most dogs, examination was unremarkable on the day of their release (n=39; 72%). Potential long-term sequelae of the intoxication were not recorded in any patient. CONCLUSION Due to the lipophilic nature of mycotoxins, the use of intravenous lipid therapy may considered for toxin elimination purposes. The prognosis of mycotoxin intoxication following walnut ingestion is good with decontamination and elimination measures. CLINICAL RELEVANCE In the case of unspecific neurological signs such as tremor, ataxia and hyperesthesia as well as a corresponding preliminary report, an intoxication with mycotoxin-containing walnuts should be considered.
Collapse
Affiliation(s)
- Vanessa Braun
- Abteilung Innere Medizin, Kleintierklinik Ettlingen, Tierärztliche Klinik für Chirurgie, Praxis für Kleintiere, Ettlingen
| | - Alina Kanstinger
- Abteilung Innere Medizin, Kleintierklinik Ettlingen, Tierärztliche Klinik für Chirurgie, Praxis für Kleintiere, Ettlingen
| | - Dorothee Dahlem
- Abteilung Innere Medizin, Kleintierklinik Ettlingen, Tierärztliche Klinik für Chirurgie, Praxis für Kleintiere, Ettlingen
| |
Collapse
|
37
|
Lumsangkul C, Kaewtui P, Huanhong K, Tso KH. Antioxidative and Antimycotoxigenic Efficacies of Thunbergia laurifolia Lindl. for Addressing Aflatoxicosis in Cherry Valley Ducks. Toxins (Basel) 2024; 16:334. [PMID: 39195744 PMCID: PMC11360618 DOI: 10.3390/toxins16080334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
This study aimed to assess the effectiveness of aflatoxin B1 (AFB1) and Thunbergia laurifolia extract (TLE) in the diets of Cherry Valley ducklings. Our investigation covered growth indicators, blood biochemical indices, meat quality, intestinal morphology, immune response, and CP450 enzyme-related gene expression. We conducted the study with 180 seven-day-old Cherry Valley ducks, randomly divided into five dietary treatments. These treatments included a basal diet without AFB1 (T1 group), TLE, or a commercial binder; the basal diet containing 0.1 mg AFB1/kg (T2 group), 0.1 mg AFB1/kg and 100 mg TLE/kg (T3 group), 0.1 mg AFB1/kg and 200 mg TLE/kg (T4 group), and 0.1 mg AFB1/kg and 0.5 g/kg of a commercial binder (T5 group), respectively. Ducklings fed with the T2 diet exhibited lower final body weight (BW), average body weight gain (ADG), and poor feed conversion ratio (FCR) during the 42-day trials. However, all ducklings in the T3, T4, and T5 groups showed significant improvements in final BW, ADG, and FCR compared to the T2 group. Increased alanine transaminase (ALT) concentration and increased expression of CYP1A1 and CYP1A2 indicated hepatotoxicity in ducklings fed the T2 diet. In contrast, ducklings fed T3, T4, and T5 diets all showed a decrease in the expression of CYP1A1 and CYP1A2, but only the T4 treatment group showed improvement in ALT concentration. AFB1 toxicity considerably raised the crypt depth (CD) in both the duodenum and jejunum of the T2 group, while the administration of 200 mg TLE/kg (T4) or a commercial binder (T5) effectively reduced this toxicity. Additionally, the villus width of the jejunum in the T2 treatment group decreased significantly, while all T3, T4, and T5 groups showed improvement in this regard. In summary, T. laurifolia extract can detoxify aflatoxicosis, leading to growth reduction and hepatic toxicosis in Cherry Valley ducklings.
Collapse
Affiliation(s)
- Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.H.)
- Multidisciplinary Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Chiang Mai 50200, Thailand
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Phruedrada Kaewtui
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.H.)
| | - Kiattisak Huanhong
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.H.)
| | - Ko-Hua Tso
- Dr. Bata Ltd., Bajcsy-Zs. u. 139, H-2364 Ócsa, Hungary
| |
Collapse
|
38
|
Murtaza B, Wang L, Li X, Saleemi MK, Nawaz MY, Li M, Xu Y. Cold plasma: A success road to mycotoxins mitigation and food value edition. Food Chem 2024; 445:138378. [PMID: 38383214 DOI: 10.1016/j.foodchem.2024.138378] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/09/2023] [Accepted: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Mycotoxins are common in many agricultural products and may harm both animals and humans. Dietary mycotoxins are reduced via physical, chemical, and thermal decontamination methods. Chemical residues are left behind after physical and chemical treatments that decrease food quality. Since mycotoxins are heat-resistant, heat treatments do not completely eradicate them. Cold plasma therapy increases food safety and shelf life. Cold plasma-generated chemical species may kill bacteria quickly at room temperature while leaving no chemical residues. This research explains how cold plasma combats mold and mycotoxins to guarantee food safety and quality. Fungal cells are damaged and killed by cold plasma species. Mycotoxins are also chemically broken down by the species, making the breakdown products safer. According to a preliminary cold plasma study, plasma may enhance food shelf life and quality. The antifungal and antimycotoxin properties of cold plasma benefit fresh produce, agricultural commodities, nuts, peppers, herbs, dried meat, and fish.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China
| | | | | | - Mengyao Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian 116600, China.
| |
Collapse
|
39
|
Nazareth TDM, Soriano Pérez E, Luz C, Meca G, Quiles JM. Comprehensive Review of Aflatoxin and Ochratoxin A Dynamics: Emergence, Toxicological Impact, and Advanced Control Strategies. Foods 2024; 13:1920. [PMID: 38928866 PMCID: PMC11203094 DOI: 10.3390/foods13121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize a plethora of secondary metabolites. These metabolites, produced in response to environmental stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins. Mycotoxins, exemplified by those originating from Alternaria, Aspergillus, Penicillium, and Fusarium species, represent challenging hazards to both human and animal health, thus warranting stringent regulatory control. Despite regulatory frameworks, mycotoxin contamination remains a pressing global challenge, particularly within cereal-based matrices and their derived by-products, integral components of animal diets. Strategies aimed at mitigating mycotoxin contamination encompass multifaceted approaches, including biological control modalities, detoxification procedures, and innovative interventions like essential oils. However, hurdles persist, underscoring the imperative for innovative interventions. This review elucidated the prevalence, health ramifications, regulatory paradigms, and evolving preventive strategies about two prominent mycotoxins, aflatoxins and ochratoxin A. Furthermore, it explored the emergence of new fungal species, and biocontrol methods using lactic acid bacteria and essential mustard oil, emphasizing their efficacy in mitigating fungal spoilage and mycotoxin production. Through an integrative examination of these facets, this review endeavored to furnish a comprehensive understanding of the multifaceted challenges posed by mycotoxin contamination and the emergent strategies poised to ameliorate its impact on food and feed safety.
Collapse
Affiliation(s)
- Tiago de Melo Nazareth
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (E.S.P.); (C.L.); (G.M.); (J.M.Q.)
| | | | | | | | | |
Collapse
|
40
|
Vieira DJC, Fonseca LM, Poletti G, Martins NP, Grigoletto NTS, Chesini RG, Tonin FG, Cortinhas CS, Acedo TS, Artavia I, Faas J, Takiya CS, Corassin CH, Rennó FP. Anti-mycotoxin feed additives: effects on metabolism, mycotoxin excretion, performance, and total tract digestibility of dairy cows fed artificially multi-mycotoxin-contaminated diets. J Dairy Sci 2024:S0022-0302(24)00892-0. [PMID: 38851567 DOI: 10.3168/jds.2023-24539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/10/2024] [Indexed: 06/10/2024]
Abstract
The aim of this study was to evaluate the effects of different anti-mycotoxin feed additives on the concentration of mycotoxins in milk, urine, and blood plasma of dairy cows fed artificially multi-mycotoxin-contaminated diets. Secondarily, performance, total-tract apparent digestibility of nutrients, and blood parameters were evaluated. Twelve multiparous cows (165 ± 45 d in milk, 557 ± 49 kg body weight, and 32.1 ± 4.57 kg/d milk yield at the start of the experiment) were blocked according to parity, milk yield, and days in milk and used in a 4 × 4 Latin square design experiment with 21-d periods, where the last 7 d were used for sampling and data analysis. Treatments were: 1) Mycotoxin group (MTX), basal diet (BD) without anti-mycotoxin feed additives; 2) Hydrated sodium calcium aluminosilicate (HSCA), HSCA added to the BD at 25g/cow/d; 3) Mycotoxin deactivator 15 (MD15), MD (Mycofix® Plus, dsm-firmenich) added to the BD at 15 g/cow/d; and 4) Mycotoxin deactivator 30 (MD30), MD added to the BD at 30 g/cow/d. Cows from all treatments were challenged with a blend of mycotoxins containing 404 μg aflatoxins B1 (AFB1), 5,025 μg deoxynivalenol (DON), 8,046 μg fumonisins (FUM), 195 μg T2 toxin (T2), and 2,034 μg of zearalenone (ZEN) added daily to the BD during the last 7 d of each period. Neither performance (milk yield and composition) nor nutrient digestibility was affected by treatments. All additives reduced aflatoxin M1 (AFM1) concentration in milk, whereas MD15 and MD30 group had lower excretion of AFM1 in milk than HSCA. DON, FUM, T2, or ZEN were not detected in milk of MD15 and MD30. Concentrations in milk of DON, FUM, T2, and ZEN were similar between MTX and HSCA. Except for AFM1, none of the analyzed mycotoxins were detected in urine of MD30 group. Comparing HSCA to MD treatments, the concentration of AFM1 was greater for HSCA, whereas MD30 was more efficient at reducing AFM1 in urine than MD15. AFM1, DON, FUM, and ZEN were not detected in the plasma of cows fed MD30, and DON was also not detected in MD15 group. Plasma concentration of FUM was lower for MD15, similar plasma FUM concentration was reported for HSCA and MTX. Plasma concentration of ZEN was lower for MD15 than MTX and HSCA. Serum concentrations of haptoglobin and hepatic enzymes were not affected by treatments. Blood concentration of sodium was lower in HSCA compared with MD15 and MD30 groups. In conclusion, the mycotoxin deactivator proved to be effective in reducing the secretion of mycotoxins in milk, urine, and blood plasma, regardless of the dosage. This reduction was achieved without adverse effects on milk production or total-tract digestibility in cows fed multi-mycotoxin-contaminated diets over a short-term period. Greater reductions in mycotoxin secretion were observed with full dose of MD.
Collapse
Affiliation(s)
- Daniel J C Vieira
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Brazil. 13635-900
| | - Luzianna M Fonseca
- Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, Brazil. 13418-900
| | - Guilherme Poletti
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Brazil. 13635-900
| | - Natalia P Martins
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Brazil. 13635-900
| | - Nathália T S Grigoletto
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Brazil. 13635-900
| | - Rodrigo G Chesini
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Brazil. 13635-900
| | - Fernando G Tonin
- Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil. 13635-900
| | | | - Tiago S Acedo
- dsm-firmenich, Nutritional Products, São Paulo, SP, Brazil
| | | | | | - Caio S Takiya
- Federal University of Technology - Paraná (UTFPR), Pato Branco, Brazil. 85503-390
| | - Carlos H Corassin
- Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil. 13635-900.
| | - Francisco P Rennó
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga, Brazil. 13635-900.
| |
Collapse
|
41
|
Saleh I, Zeidan R, Abu-Dieyeh M. The characteristics, occurrence, and toxicological effects of alternariol: a mycotoxin. Arch Toxicol 2024; 98:1659-1683. [PMID: 38662238 PMCID: PMC11106155 DOI: 10.1007/s00204-024-03743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Alternaria species are mycotoxin-producing fungi known to infect fresh produce and to cause their spoilage. Humans get exposed to fungal secondary metabolites known as mycotoxin via the ingestion of contaminated food. Alternariol (AOH) (C14H10O5) is an isocoumarins produced by different species of Alternaria including Alternaria alternata. AOH is often found in grain, fruits and fruits-based food products with high levels in legumes, nuts, and tomatoes. AOH was first discovered in 1953, and it is nowadays linked to esophagus cancer and endocrine disruption due to its similarity to estrogen. Although considered as an emerging mycotoxin with no regulated levels in food, AOH occurs in highly consumed dietary products and has been detected in various masked forms, which adds to its occurrence. Therefore, this comprehensive review was developed to give an overview on recent literature in the field of AOH. The current study summarizes published data on occurrence levels of AOH in different food products in the last ten years and evaluates those levels in comparison to recommended levels by the regulating entities. Such surveillance facilitates the work of health risk assessors and highlights commodities that are most in need of AOH levels regulation. In addition, the effects of AOH on cells and animal models were summarized in two tables; data include the last two-year literature studies. The review addresses also the main characteristics of AOH and the possible human exposure routes, the populations at risk, and the effect of anthropogenic activities on the widespread of the mycotoxin. The commonly used detection and control methods described in the latest literature are also discussed to guide future researchers to focus on mitigating mycotoxins contamination in the food industry. This review aims mainly to serve as a guideline on AOH for mycotoxin regulation developers and health risk assessors.
Collapse
Affiliation(s)
- Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Randa Zeidan
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
42
|
Wang G, Jiao M, Hu J, Xun Y, Chen L, Qiu J, Ji F, Lee YW, Shi J, Xu J. Quantitative Analysis of Fungal Contamination of Different Herbal Medicines in China. Toxins (Basel) 2024; 16:229. [PMID: 38787081 PMCID: PMC11126118 DOI: 10.3390/toxins16050229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Herbal medicines are widely used for clinical purposes worldwide. These herbs are susceptible to phytopathogenic fungal invasion during the culturing, harvesting, storage, and processing stages. The threat of fungal and mycotoxin contamination requires the evaluation of the health risks associated with these herbal medicines. In this study, we collected 138 samples of 23 commonly used herbs from 20 regions in China, from which we isolated a total of 200 phytopathogenic fungi. Through morphological observation and ITS sequencing, 173 fungal isolates were identified and classified into 24 genera, of which the predominant genera were Fusarium (27.74%) and Alternaria (20.81%), followed by Epicoccum (11.56%), Nigrospora (7.51%), and Trichocladium (6.84%). Quantitative analysis of the abundance of both Fusarium and Alternaria in herbal medicines via RT-qPCR revealed that the most abundant fungi were found on the herb Taraxacum mongolicum, reaching 300,000 copies/μL for Fusarium and 700 copies/μL for Alternaria. The in vitro mycotoxin productivities of the isolated Fusarium and Alternaria strains were evaluated by using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and it was found that the Fusarium species mainly produced the acetyl forms of deoxynivalenol, while Alternaria species mainly produced altertoxins. These findings revealed widely distributed fungal contamination in herbal medicines and thus raise concerns for the sake of the quality and safety of herbal medicines.
Collapse
Affiliation(s)
- Gang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (G.W.); (M.J.); (Y.X.); (L.C.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.Q.); (F.J.); (J.S.)
| | - Mingyue Jiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (G.W.); (M.J.); (Y.X.); (L.C.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.Q.); (F.J.); (J.S.)
| | - Junqiang Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.Q.); (F.J.); (J.S.)
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiren Xun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (G.W.); (M.J.); (Y.X.); (L.C.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.Q.); (F.J.); (J.S.)
| | - Longyun Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (G.W.); (M.J.); (Y.X.); (L.C.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.Q.); (F.J.); (J.S.)
| | - Jianbo Qiu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.Q.); (F.J.); (J.S.)
| | - Fang Ji
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.Q.); (F.J.); (J.S.)
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea;
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.Q.); (F.J.); (J.S.)
| | - Jianhong Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (G.W.); (M.J.); (Y.X.); (L.C.)
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Key Laboratory for Control Technology and Standard for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.H.); (J.Q.); (F.J.); (J.S.)
| |
Collapse
|
43
|
Jiang S, Du L, Zhao Q, Su S, Huang S, Zhang J. Tropical postbiotics alleviate the disorders in the gut microbiota and kidney damage induced by ochratoxin A exposure. Food Funct 2024; 15:3980-3992. [PMID: 38482731 DOI: 10.1039/d3fo05213c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Ochratoxin A (OTA), commonly found in various foods, significantly impacts the health of humans and animals, especially their kidneys. Our study explores OTA's effects on the gut microbiota and kidney damage while examining how postbiotics offer protection. Using metagenomic sequencing, we observed that OTA increased the potential gut pathogens such as Alistipes, elevating detrimental metabolites and inflammation. Also, OTA inhibited the Nrf2/HO-1 pathway, reducing kidney ROS elimination and leading to cellular ferroptosis and subsequent kidney damage. Postbiotics mitigate OTA's effects by downregulating the abundance of the assimilatory sulfate reduction IV pathway and virulence factors associated with iron uptake and relieving the inhibition of OTA on Nrf2/HO-1, restoring ROS-clearing capabilities and thereby alleviating chronic OTA-induced kidney damage. Understanding the OTA-gut-kidney link provides new approaches for preventing kidney damage, with postbiotics showing promise as a preventive treatment.
Collapse
Affiliation(s)
- Shuaiming Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Lingwei Du
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Qian Zhao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Shunyong Su
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Shi Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
- One Health Institute, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
44
|
Xia S, Yan C, Gu J, Yuan Y, Zou H, Liu Z, Bian J. Resveratrol Alleviates Zearalenone-Induced Intestinal Dysfunction in Mice through the NF-κB/Nrf2/HO-1 Signalling Pathway. Foods 2024; 13:1217. [PMID: 38672890 PMCID: PMC11049466 DOI: 10.3390/foods13081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Zearalenone (ZEA), a mycotoxin widely present in crops and food, poses a major threat to animal and human health. The consumption of ZEA-contaminated food or feed causes intestinal damage. Therefore, exploring how to mitigate the intestinal damage caused by its ZEA is becoming increasingly important. Resveratrol (RSV), a polyphenol compound, mainly exists in Vitis vinifera, Polygonum cuspidatum, Arachis hypogaea, and other plants. It has potent anti-inflammatory and antioxidant activity. The primary objective of this study was to assess the defensive effects of RSV and its molecular mechanism on the intestinal mucosal injury induced by ZEA exposure in mice. The results showed that RSV pretreatment significantly reduced serum DAO and that D-lactate levels altered intestinal morphology and markedly restored TJ protein levels, intestinal goblet cell number, and MUC-2 gene expression after ZEA challenge. In addition, RSV significantly reversed serum pro-inflammatory factor levels and abnormal changes in intestinal MDA, CAT, and T-SOD. Additional research demonstrated that RSV decreased inflammation by blocking the translocation of nuclear factor-kappaB (NF-κB) p65 and decreased oxidative stress by activating the nuclear factor E2-related factor 2 (Nrf2) pathway and its associated antioxidant genes, including NQO1, γ-GCS, and GSH-PX. In summary, RSV supplementation attenuates intestinal oxidative stress, inflammation, and intestinal barrier dysfunction induced by ZEA exposure by mediating the NF-κB and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Sugan Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chaoyue Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (S.X.); (C.Y.); (J.G.); (Y.Y.); (H.Z.); (Z.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
45
|
Rauf A, Subhani MN, Siddique M, Shahid H, Chattha MB, Alrefaei AF, Hasan Naqvi SA, Ali H, Lucas RS. Cultivating a greener future: Exploiting trichoderma derived secondary metabolites for fusarium wilt management in peas. Heliyon 2024; 10:e29031. [PMID: 38601549 PMCID: PMC11004880 DOI: 10.1016/j.heliyon.2024.e29031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
This study aimed to identify efficient Trichoderma isolate(s) for the management of Fusarium wilt in peas. Four different pea germplasms (Sarsabz, Pea-09, Meteor and Supreme) were evaluated for resistance against Fusarium oxysporum in pot assay. Resistant germplasm exhibits a varying range of disease severity (23%) and percent disease index (21%), whereas susceptible and highly susceptible germplasm exhibit maximum disease severity (44-79%) and percent disease index (47-82%). The susceptible germplasm Meteor was selected for in vivo experiment. Five different Trichoderma spp. (Trichoderma koningii, T. hamatum, T. longibrachiatum, T. viride, and T. harzianum) were screened for the production of hydrolytic extracellular enzymes under in vitro. In-vitro biocontrol potential of Trichoderma spp. was assayed by percentage inhibition of dry mass of Fusarium oxysporum pisi (FOP) with Trichoderma spp. metabolite filtrate concentrations. Maximum growth inhibition was observed by T. harzianum (50-89%). T. harzianum metabolites in filtrate conc. (40%, 50%, and 60%) exhibited maximum reduction in biomass and were thus used for in vivo management of the disease. The pot experiment for in-vivo management also confirmed the maximum inhibition of FOP by T. harzianum metabolites filtrate at 60% by reducing disease parameters and enhancing growth, yield, and physiochemical and stress markers. Trichoderma strains led to an increase in chlorophyll and carotenoids (34-26%), Total phenolic 55%, Total protein content 60%, Total Flavonoid content 36%, and the increasing order of enzyme activities were as follows: CAT > POX > PPO > PAL in all treatments. These strains demonstrate excellent bio-control of Fusarium wilt in pea via induction of defense-related enzymes. The present work will help use Trichoderma species in disease management programme as an effective biocontrol agent against plant pathogens.
Collapse
Affiliation(s)
- Amna Rauf
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Nasir Subhani
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Maroof Siddique
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Habiba Shahid
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Bilal Chattha
- Department of Agronomy, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Haider Ali
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Rosa Sanchez Lucas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
46
|
Makhuvele R, Foubert K, Hermans N, Pieters L, Verschaeve L, Elgorashi E. Hepatoprotective effects of leaf extract of Annona senegalensis against aflatoxin B1 toxicity in rats. Onderstepoort J Vet Res 2024; 91:e1-e6. [PMID: 38572889 PMCID: PMC11019046 DOI: 10.4102/ojvr.v91i1.2133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 04/05/2024] Open
Abstract
Global aflatoxin contamination of agricultural commodities is of the most concern in food safety and quality. This study investigated the hepatoprotective effect of 80% methanolic leaf extract of Annona senegalensis against aflatoxin B1 (AFB1)-induced toxicity in rats. A. senegalensis has shown to inhibit genotoxicity of aflatoxin B1 in vitro. The rats were divided into six groups including untreated control, aflatoxin B1 only (negative control); curcumin (positive control; 10 mg/kg); and three groups receiving different doses (100 mg/kg, 200 mg/kg, and 300 mg/kg) of A. senegalensis extract. The rats received treatment (with the exception of untreated group) for 7 days prior to intoxication with aflatoxin B1. Serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were measured. Hepatic tissues were analysed for histological alterations. Administration of A. senegalensis extract demonstrated hepatoprotective effects against aflatoxin B1-induced toxicity in vivo by significantly reducing the level of serum aspartate aminotransferase and alanine aminotransferase and regenerating the hepatocytes. No significant changes were observed in the levels of alkaline phosphatase, lactate dehydrogenase, and creatinine for the AFB1 intoxicated group, curcumin+AFB1 and Annona senegalensis leaf extract (ASLE)+AFB1 (100 mg/kg, 200 mg/kg, and 300 mg/kg body weight [b.w.]) treated groups. Annona senegalensis is a good candidate for hepatoprotective agents and thus its use in traditional medicine may at least in part be justified.Contribution: The plant extract investigated in this study can be used in animal health to protect the organism from toxicity caused by mycotoxins.
Collapse
Affiliation(s)
- Rhulani Makhuvele
- Department of Toxicology and Ethnoveterinary Medicine, Faculty of Public Health and Zoonoses, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort, Pretoria, South Africa; and, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Pretoria.
| | | | | | | | | | | |
Collapse
|
47
|
Kumar M, Parveen, Raj N, Khatoon S, Fakhri KU, Kumar P, Alamri MA, Kamal M, Manzoor N, Harsha, Solanki R, Elossaily GM, Asiri YI, Hassan MZ, Kapur MK. In-silico and in-vitro evaluation of antifungal bioactive compounds from Streptomyces sp. strain 130 against Aspergillus flavus. J Biomol Struct Dyn 2024:1-19. [PMID: 38319066 DOI: 10.1080/07391102.2024.2313167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
Streptomyces spp. are considered excellent reservoirs of natural bioactive compounds. The study evaluated the bioactive potential of secondary metabolites from Streptomyces sp. strain 130 through PKS-I and NRPS gene-clusters screening. GC-MS analysis was done for metabolic profiling of bioactive compounds from strain 130 in the next set of experiments. Identified antifungal compounds underwent ADMET analyses to screen their toxicity. All compounds' molecular docking was done with the structural gene products of the aflatoxin biosynthetic pathway of Aspergillus flavus. MD simulations were utilized to evaluate the stability of protein-ligand complexes under physiological conditions. Based on the in-silico studies, compound 2,4-di-tert butyl-phenol (DTBP) was selected for in-vitro studies against Aspergillus flavus. Simultaneously, bioactive compounds were extracted from strain 130 in two different solvents (ethyl-acetate and methanol) and used for similar assays. The MIC value of DTBP was found to be 314 µg/mL, whereas in ethyl-acetate extract and methanol-extract, it was 250 and 350 µg/mL, respectively. A mycelium growth assay was done to analyze the effect of compounds/extracts on the mycelium formation of Aspergillus flavus. In agar diffusion assay, zone of inhibitions in DTBP, ethyl-acetate extract, and methanol extract were observed with diameters of 11.3, 13.3, and 7.6 mm, respectively. In the growth curve assay, treated samples have delayed the growth of fungi, which signified that the compounds have a fungistatic nature. Spot assay has determined the fungal sensitivity to a sub-minimum inhibitory concentration of antifungal compounds. The study's results suggested that DTBP can be exploited for antifungal-drug development.
Collapse
Affiliation(s)
- Munendra Kumar
- Department of Zoology, Rajiv Gandhi University, Doimukh, India
| | - Parveen
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Nafis Raj
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shabana Khatoon
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Prateek Kumar
- Department of Zoology, University of Allahabad, Prayagraj, India
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nikhat Manzoor
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Harsha
- Microbial Technology Lab, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, India New Delhi
| | - Renu Solanki
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Yahya I Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohd Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Monisha Khanna Kapur
- Microbial Technology Lab, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, India New Delhi
| |
Collapse
|
48
|
Ahmad T, Xing F, Cao C, Liu Y. Characterization and toxicological potential of Alternaria alternata associated with post-harvest fruit rot of Prunus avium in China. Front Microbiol 2024; 15:1273076. [PMID: 38380098 PMCID: PMC10877066 DOI: 10.3389/fmicb.2024.1273076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Post-harvest fruit rot caused by Alternaria species is one of the most important threats to the fruit industry. Post-harvest rot on sweet cherry (Prunus avium) fruit was observed in the fruit markets of the Haidian district of Beijing, China. The fungal isolates obtained from the infected sweet cherry fruits matched the descriptions of Alternaria alternata based on the morphology and multi-gene (ITS, endo-PG, and Alta1) sequence analysis. Pathogenicity tests indicated that ACT-3 was the most virulent isolate, exhibiting typical post-harvest fruit rot symptoms. Physiological studies revealed that the optimal conditions for the growth of ACT-3 were temperature of 28°C, water activity of 0.999, and pH of 8 with 87, 85, and 86 mm radial growth of ACT-3 on a potato dextrose agar (PDA) medium, respectively, at 12 days post-inoculation (dpi). Moreover, the fungus showed the highest growth on a Martin agar medium (MAM) modified (85 mm) and a PDA medium (84 mm) at 12 dpi. The proliferation of the fungus was visualized inside the fruit tissues by confocal and scanning electron microscope (SEM), revealing the invasion and destruction of fruit tissues. Alternaria mycotoxins, tenuazonic acid (TeA), and alternariol (AOH) were detected in five representative isolates by HPLC analysis. The highest concentrations of TeA (313 μg/mL) and AOH (8.9 μg/mL) were observed in ACT-6 and ACT-3 isolates, respectively. This study is the first to present a detailed report on the characteristics and proliferation of A. alternata associated with sweet cherry fruit rot and the detection of toxic metabolites.
Collapse
Affiliation(s)
- Tanvir Ahmad
- School of Food Science and Engineering, Foshan University, National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, Guangdong, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuguo Xing
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changyu Cao
- School of Life Sciences and Engineering, Foshan University, Foshan, Guangdong, China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University, National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan, Guangdong, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
49
|
Efremenko E, Lyagin I, Stepanov N, Senko O, Maslova O, Aslanli A, Ugarova N. Luminescent Bacteria as Bioindicators in Screening and Selection of Enzymes Detoxifying Various Mycotoxins. SENSORS (BASEL, SWITZERLAND) 2024; 24:763. [PMID: 38339480 PMCID: PMC10857395 DOI: 10.3390/s24030763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Interest in enzymes capable of neutralizing various mycotoxins is quite high. The methods used for the screening and selection of enzymes that catalyze the detoxification of mycotoxins should be sensitive and fast. However toxic compounds can be generated under the action of such enzymes. Thus, the assessment of the overall reduction in the toxic properties of reaction media towards bioluminescent bacteria seems to be the most reasonable control method allowing a quick search for the effective enzymatic biocatalysts. The influence of a wide range of mycotoxins and glucanases, which hydrolyze toxins with different chemical structures, on the analytical characteristics of luminescent photobacteria as a biosensing element has been studied. Different glucanases (β-glucosidase and endoglucanase) were initially selected for reactions with 10 mycotoxins based on the results of molecular docking which was performed in silico with 20 mycotoxins. Finally, the biorecognizing luminescent cells were used to estimate the residual toxicity of reaction media with mycotoxins after their interaction with enzymes. The notable non-catalytic decrease in toxicity of media containing deoxynivalenol was revealed with luminous cells for both types of tested glucanases, whereas β-glucosidase provided a significant catalytic detoxification of media with aflatoxin B2 and zearalenone at pH 6.0.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Natalia Ugarova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| |
Collapse
|
50
|
Gómez-Verduzco G, Arce-Menocal J, López-Coello C, Avila-González E, Márquez-Mota CC, Polo J, Rangel L. Feeding spray-dried plasma to broilers early in life improved their intestinal development, immunity and performance irrespective of mycotoxins in feed. Front Vet Sci 2024; 10:1321351. [PMID: 38283370 PMCID: PMC10812105 DOI: 10.3389/fvets.2023.1321351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Fungi that produce mycotoxins can grow on certain food products, such as grains and feed, and can cause a variety of health issues if consumed by animals, including chickens. The use of spray-dried plasma (SDP) is one strategy for combating the health problems caused by mycotoxins. Materials and methods In the present study, Ross 308 chickens (n = 960) were divided into four treatment groups. T1 group was given a control diet (corn-soybean meal), T2 group was given a control diet +2% SDP, T3 group was given a control diet +2% SDP + mixture mycotoxins and T4 group was givena control diet + mycotoxin mixture. Results The presence of SDP resulted in weight gain and decreased feed efficiency, whereas mycotoxins resulted in weight loss and increased feed efficiency. SDP increased the thymus' relative weight. The presence of mycotoxins increased the heterophile/lymphocyte ratio. The presence of mycotoxins reduced the production of IL-2 and macrophage inflammatory protein-3 Alpha (MIP-3a), whereas the presence of SDP increased the production of macrophage colony-stimulating Factor (M-CSF). SDP resulted in higher IgA concentrations in the intestinal and tracheal washes than mycotoxin. Finally, adding SDP to broiler diets boosts weight gain, feed efficiency, and immune system development. Discussion Our results provide information supporting that SDP is a promising tool for improving poultry immunity and performance.
Collapse
Affiliation(s)
- Gabriela Gómez-Verduzco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - José Arce-Menocal
- Departamento de Producción avícola, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Carlos López-Coello
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ernesto Avila-González
- Centro de Enseñanza, Investigación y Extensión en Producción Avícola CEIEPAv, Tláhuac, Mexico
| | - Claudia C. Márquez-Mota
- Departamento de Nutrición Animal y Bioquímica, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | | |
Collapse
|