1
|
Diakogiannaki I, D'Amore VM, Affinito A, Donati G, Cinquegrana E, Quintavalle C, Mascolo M, Walter J, Betat H, Mörl M, Di Leva FS, Condorelli G, Marinelli L. Targeting Glioblastoma Stem Cells via EphA2: Structural Insights into the RNA Aptamer A40s for Precision Therapy. J Chem Inf Model 2025. [PMID: 40408544 DOI: 10.1021/acs.jcim.5c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
EphA2 receptor tyrosine kinase is overexpressed in many solid tumors and serves as a key driver of tumorigenesis and metastasis. It is highly expressed in glioblastoma multiforme, the most aggressive brain tumor in adults, and in its stem cells [glioblastoma stem cells (GSCs)], which contribute to treatment resistance and tumor relapse. In a previous study, we used the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedure, a method for selecting high-affinity nucleic acids to specific targets via iterative selection and amplification, to identify the 2'-fluorinated EphA2-targeting RNA aptamer A40L and a truncated 30-mer derivative, A40s. Both aptamers were able to inhibit GSC growth, stemness, and migration upon EphA2 binding. Here, by integrating computational and experimental methods, the A40s structure was unraveled and its interaction with EphA2 was investigated. Our model offers a blueprint to accelerate the development of optimized A40s variants, advancing next-generation EphA2-targeted anticancer therapies.
Collapse
Affiliation(s)
- Isidora Diakogiannaki
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Vincenzo Maria D'Amore
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Alessandra Affinito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Greta Donati
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Elpidio Cinquegrana
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Cristina Quintavalle
- Institute of Experimental Institute of Endotypes in Oncology, Metabolism and Immunology "G. Salvatore" (IEOMI), Consiglio Nazionale delle Ricerche (CNR), 80131 Naples, Italy
| | - Martina Mascolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Jule Walter
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | - Francesco Saverio Di Leva
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
2
|
Marutha T, Williams S, Novellie M, Dillon B, Carstens N, Mavri-Damelin D. Exome sequencing identifies existing and novel variants in a South African cohort presenting with anterior segment dysgenesis. Gene 2025; 943:149273. [PMID: 39870121 DOI: 10.1016/j.gene.2025.149273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/28/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Anterior segment dysgenesis (ASD) defines a collection of congenital eye disorders that affect structures within the anterior segment of the eye. Mutations in genes that initiate and regulate the complex pathways involved in eye development can cause a spectrum of disorders such as ASD, congenital cataracts and corneal opacity. In South Africa, causes of ASD are poorly understood with few studies looking at the possible genetic basis for these disorders. In this study, we performed exome sequencing on a cohort of South African patients with ASD, focusing on a panel of genes known to regulate eye development pathways, including the PXDN gene which has recently been associated with ASD. We identified novel as well as established variants: specifically, we found a disease-causing variant in PAX6; variants that are likely to be pathogenic in GJA8, BCOR and EPHA2, as well as variants of uncertain significance in PXDN and LTBP2. In conclusion, this study is the first to show disease-causing variants in South African patients presenting with ASD, including the identification of novel variants and highlights the need to expand upon such studies in understudied populations.
Collapse
Affiliation(s)
- Tebogo Marutha
- School of Molecular and Cell Biology Faculty of Science University of the Witwatersrand Johannesburg South Africa
| | - Sue Williams
- Division of Ophthalmology Department of Neurosciences School of Clinical Medicine Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | - Michael Novellie
- Division of Human Genetics National Health Laboratory Service and School of Pathology Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | - Bronwyn Dillon
- Division of Human Genetics National Health Laboratory Service and School of Pathology Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa
| | - Nadia Carstens
- South African Medical Research Council Genomics Centre NIVS Building Tygerberg Hospital Campus Cape Town Western Cape South Africa
| | - Demetra Mavri-Damelin
- School of Molecular and Cell Biology Faculty of Science University of the Witwatersrand Johannesburg South Africa.
| |
Collapse
|
3
|
Maparu K, Chatterjee D, Kaur R, Kalia N, Kuwar OK, Attri M, Singh S. Molecular crosstalk between GPCR and receptor tyrosine-protein kinase in neuroblastoma: molecular mechanism and therapeutic implications. Med Oncol 2025; 42:131. [PMID: 40121614 DOI: 10.1007/s12032-025-02685-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Neuroblastoma is an aggressive pediatric tumor condition derived from neural crest cells that typically affect infants and children under the age of five. It can often originate in the adrenal glands but can also develop in the sympathetic nervous system. G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases have been shown in recent research to have a vital role in the progression of neuroblastoma. GPCR-RTK crosstalk stimulates signaling pathways such as MAP kinase, and the activation of the GPCR-AKT signaling pathway plays a critical role in neuroblastoma progression by promoting cell growth, survival, and resistance to apoptosis through complex interactions with insulin signaling pathways. ALK (Anaplastic lymphoma kinase), a member of the RTK family, and any mutations can lead to oncogenic signaling and resistance to targeted therapy in neuroblastoma. By interfering with cellular signaling via novel therapeutic strategies by selective RET inhibitors, ALK inhibitors, and Trk-specific inhibitors may be able to reduce the prevalence of neuroblastoma. Understanding the complicated signaling relationships between GPCRs, RTKs, and the insulin pathway is critical when developing new cancer treatments. The integration of these signaling networks offers promising avenues for enhancing the effectiveness of existing treatments and improving patient outcomes in neuroblastoma.
Collapse
Affiliation(s)
- Kousik Maparu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Dhrita Chatterjee
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Romanpreet Kaur
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Nileshwar Kalia
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Omkar Kumar Kuwar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Mayank Attri
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
4
|
Xu B, Liu N, Zhou T, Chen J, Jiang L, Wu W, Fu H, Chen X, Yan H, Yang X, Luo P, Yang B, Xu Z, He Q. Schisandrin C prevents regorafenib-induced cardiotoxicity by recovering EPHA2 expression in cardiomyocytes. Toxicol Sci 2024; 202:220-235. [PMID: 39348200 DOI: 10.1093/toxsci/kfae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
Regorafenib, an oral multikinase inhibitor of angiogenic, stromal, and oncogenic receptor tyrosine kinases, has been approved for the treatment of metastatic colorectal cancer, gastrointestinal stromal tumors, and hepatocellular carcinoma by the US Food and Drug Administration and European Medicines Agency. However, regorafenib-induced cardiotoxicity increases the risk of mortality. Despite reports that regorafenib can cause mitochondrial dysfunction in cardiomyocytes, the molecular mechanism of regorafenib-induced cardiotoxicity is much less known and there is an urgent need for intervention strategies. Here, we treated mice with vehicle or 200 mg/kg regorafenib daily for 42 d by gavage or treated cardiomyocyte lines with 8, 16, or 32 μM regorafenib, and we found that regorafenib could cause apoptosis, mitochondrial injury, and DNA damage in cardiomyocytes. Mechanistically, regorafenib can reduce the expression of EPHA2, which inhibits AKT signaling, leading to cardiomyocyte apoptosis and cardiotoxicity. In addition, we showed that recovering EPHA2 expression via plasmid-induced overexpression of EPHA2 or schisandrin C, a natural product, could prevent regorafenib-induced cardiotoxicity. These findings demonstrated that regorafenib causes cardiomyocyte apoptosis and cardiac injury by reducing the expression of EPHA2 and schisandrin C could prevent regorafenib-induced cardiotoxicity by recovering EPHA2 expression, which provides a potential management strategy for regorafenib-induced cardiotoxicity and will benefit the safe application of regorafenib in clinic.
Collapse
Affiliation(s)
- Bo Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Ning Liu
- Emergency Department, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Taicheng Zhou
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Jian Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Liyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Huangxi Fu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xueqin Chen
- Department of Medical Oncology, Affiliated Hangzhou First People's Hospital, Xihu University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang 310018, P.R. China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, P.R. China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
5
|
Wang G, Xiao H, Liang Z, Feng Y, Wang L, Feng Y, Guo F, Zhang L. Molecular characteristics and prognostic role of EPHA2 in human tumors via pan-cancer analysis. Medicine (Baltimore) 2024; 103:e40741. [PMID: 39612413 PMCID: PMC11608714 DOI: 10.1097/md.0000000000040741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024] Open
Abstract
The tyrosine kinase ephrin type-A receptor 2 (EPHA2) was remarkably elevated expressed in various tumors and plays a crucial role in cancer tumorigenesis and progression, while pan-cancer analyses are currently lacking. This study was designed to analyze the expression status and prognostic significance of EPHA2 in pan-cancer. By mining The Cancer Genome Atlas data, we performed a comprehensive and systematic characterization of EPHA2 across >10,000 samples of 33 types of cancer. EPHA2 expressions were substantially different in most of the normal control and tumor tissues, and it was considerably associated with the prognosis of tumor patients. EPHA2 gene modifications in malignant tumors were mainly missense mutations. There was a significant correlation between EPHA2 expression and cancer-associated fibroblasts in most The Cancer Genome Atlas cancers. Furthermore, functional enrichment analysis showed that the biological role of EPHA2 in tumors was mainly involved in some noticeably pro-oncogenic pathways, such as the Ras signaling pathway, PI3K-Akt signaling pathway, ErbB signaling pathway, MAPK signaling pathway, etc. This study provided the first pan-cancer analyses of EPHA2 in various tumors, and EPHA2 was potentially involved in many cancer types and can be developed as candidates for cancer diagnosis, prognosis, and therapeutic biomarkers. In addition, EPHA2 seemed to be a key modulator of the tumor immune microenvironment and might be a potential biomarker in predicting the immunotherapeutic efficacy for cancer patients.
Collapse
Affiliation(s)
- Guoqiang Wang
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Hui Xiao
- Department of Burns and Plastic Surgery, Central Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zhipan Liang
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yuxin Feng
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Liyu Wang
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ying Feng
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Fen Guo
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Luyao Zhang
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
6
|
Jørgensen SH, Emdal KB, Pedersen AK, Axelsen LN, Kildegaard HF, Demozay D, Pedersen TÅ, Grønborg M, Slaaby R, Nielsen PK, Olsen JV. Multi-layered proteomics identifies insulin-induced upregulation of the EphA2 receptor via the ERK pathway which is dependent on low IGF1R level. Sci Rep 2024; 14:28856. [PMID: 39572596 PMCID: PMC11582730 DOI: 10.1038/s41598-024-77817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024] Open
Abstract
Insulin resistance impairs the cellular insulin response, and often precedes metabolic disorders, like type 2 diabetes, impacting an increasing number of people globally. Understanding the molecular mechanisms in hepatic insulin resistance is essential for early preventive treatments. To elucidate changes in insulin signal transduction associated with hepatocellular resistance, we employed a multi-layered mass spectrometry-based proteomics approach focused on insulin receptor (IR) signaling at the interactome, phosphoproteome, and proteome levels in a long-term hyperinsulinemia-induced insulin-resistant HepG2 cell line with a knockout of the insulin-like growth factor 1 receptor (IGF1R KO). The analysis revealed insulin-stimulated recruitment of the PI3K complex in both insulin-sensitive and -resistant cells. Phosphoproteomics showed attenuated signaling via the metabolic PI3K-AKT pathway but sustained extracellular signal-regulated kinase (ERK) activity in insulin-resistant cells. At the proteome level, the ephrin type-A receptor 2 (EphA2) showed an insulin-induced increase in expression, which occurred through the ERK signaling pathway and was concordantly independent of insulin resistance. Induction of EphA2 by insulin was confirmed in additional cell lines and observed uniquely in cells with high IR-to-IGF1R ratio. The multi-layered proteomics dataset provided insights into insulin signaling, serving as a resource to generate and test hypotheses, leading to an improved understanding of insulin resistance.
Collapse
Affiliation(s)
- Sarah Hyllekvist Jørgensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Global Research Technologies, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | - Kristina Bennet Emdal
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Anna-Kathrine Pedersen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | | | | | - Damien Demozay
- Global Drug Discovery, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | | | - Mads Grønborg
- Global Translation, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | - Rita Slaaby
- Global Drug Discovery, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | | | - Jesper Velgaard Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
7
|
Toracchio L, Carrabotta M, Mancarella C, Morrione A, Scotlandi K. EphA2 in Cancer: Molecular Complexity and Therapeutic Opportunities. Int J Mol Sci 2024; 25:12191. [PMID: 39596256 PMCID: PMC11594831 DOI: 10.3390/ijms252212191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Erythropoietin-producing hepatocellular A2 (EphA2) is a member of the Eph tyrosine kinase receptor family that has been linked to various biological processes. In tumors, EphA2 overexpression is associated with noncanonical pathway activation, tumor progression, and a poor prognosis, which has emphasized its importance as a marker of malignancy. Studies on numerous cancer models have highlighted EphA2's dual and often contradictory action, which can be attributed to EphA2's interactions involving multiple pathways and different ligands, as well as the heterogeneity of the tumor microenvironment. In this review, we summarize the main mechanisms underlying EphA2 dysregulation in cancer, highlighting its molecular complexity. Then, we analyze therapies that have been developed over time to counteract its action. We discuss the limitations of the described approaches, emphasizing the fact that the goal of new options is high specificity without losing therapeutic efficacy. For this reason, immunotherapy or the emerging field of targeted protein degradation with proteolysis-targeting chimeras (PROTACs) may represent a promising solution that can be developed based on a deeper understanding of the molecular mechanisms sustaining EphA2 oncogenic activity.
Collapse
Affiliation(s)
- Lisa Toracchio
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Marianna Carrabotta
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.T.); (M.C.); (C.M.)
| |
Collapse
|
8
|
Tuoheti M, Li J, Zhang C, Gao F, Wang J, Wu Y. MiR-124-3p inhibits cell stemness in glioblastoma via targeting EPHA2 through ALKBH5-mediated m6A modification. Hum Cell 2024; 38:10. [PMID: 39460871 DOI: 10.1007/s13577-024-01129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Glioblastoma (GBM) is the most aggressive form of glioma, characterized by high mortality and poor prognosis. Dysregulation of microRNAs (miRNAs) plays a critical role in the progression and metastasis of GBM. This study aimed to investigate the role and molecular mechanism of miR-124-3p in GBM. Levels of miR-124-3p, EPHA2, and ALKBH5 were measured using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation, migration, invasion, and stemness were assessed using the Cell Counting Kit-8 (CCK-8), colony formation, Transwell, and sphere formation assays, respectively. Bioinformatics prediction, dual-luciferase reporter assays, and RNA pull-down experiments were employed to validate the target of miR-124-3p. RNA binding protein immunoprecipitation (RIP) and methylated RNA immunoprecipitation (Me-RIP) were utilized to evaluate the regulation of miR-124-3p maturation by ALKBH5. The results indicated that overexpression of miR-124-3p inhibited the proliferation, migration, invasion, and stemness of GBM cells. EPHA2 was identified as a direct downstream target of miR-124-3p, and its overexpression reversed the inhibitory effects of miR-124-3p on cellular functions. Furthermore, miR-124-3p targeted EPHA2 to inactivate the Wnt/β-catenin pathway. Additionally, ALKBH5 negatively regulated miR-124-3p by impeding its processing. In conclusion, knockdown of ALKBH5 promoted the processing of pri-miR-124-3p, increasing mature miR-124-3p levels, which inhibited the malignant behaviors of GBM cells by targeting EPHA2. These findings highlight the importance of the ALKBH5/miR-124-3p/EPHA2 axis in GBM.
Collapse
Affiliation(s)
- Maimaitiyiming Tuoheti
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Jinxian Li
- Department of Rehabilitative Medicine, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Cheng Zhang
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Feng Gao
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Jichao Wang
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China
| | - Yonggang Wu
- Department of Neurosurgery, The People's Hospital of Xinjiang Uygur Autonomous Region, #91 Tianchi Road, Tianshan District, Urumqi, 830001, Xinjiang, China.
| |
Collapse
|
9
|
Horner JL, Vu MP, Clark JT, Innis IJ, Cheng C. Canonical ligand-dependent and non-canonical ligand-independent EphA2 signaling in the eye lens of wild-type, knockout, and aging mice. Aging (Albany NY) 2024; 16:13039-13075. [PMID: 39466050 PMCID: PMC11552635 DOI: 10.18632/aging.206144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/29/2024] [Indexed: 10/29/2024]
Abstract
Disruption of Eph-ephrin bidirectional signaling leads to human congenital and age-related cataracts, but the mechanisms for these opacities in the eye lens remain unclear. Eph receptors bind to ephrin ligands on neighboring cells to induce canonical ligand-mediated signaling. The EphA2 receptor also signals non-canonically without ligand binding in cancerous cells, leading to epithelial-to-mesenchymal transition (EMT). We have previously shown that the receptor EphA2 and the ligand ephrin-A5 have diverse functions in maintaining lens transparency in mice. Loss of ephrin-A5 leads to anterior cataracts due to EMT. Surprisingly, both canonical and non-canonical EphA2 activation are present in normal wild-type lenses and in the ephrin-A5 knockout lenses. Canonical EphA2 signaling is localized exclusively to lens epithelial cells and does not change with age. Non-canonical EphA2 signaling is in both epithelial and fiber cells and increases significantly with age. We hypothesize that canonical ligand-dependent EphA2 signaling is required for the morphogenesis and organization of hexagonal equatorial epithelial cells while non-canonical ligand-independent EphA2 signaling is needed for complex membrane interdigitations that change during fiber cell differentiation and maturation. This is the first demonstration of non-canonical EphA2 activation in a non-cancerous tissue or cell and suggests a possible physiological function for ligand-independent EphA2 signaling.
Collapse
Affiliation(s)
- Jenna L. Horner
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Michael P. Vu
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Jackson T. Clark
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Isaiah J. Innis
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
10
|
Li T, Mitani Y, Cruz-Acuña R, Karaksheva TA, Sahu V, Martin C, Nakagawa H, Gabre J. EPHA2 Regulates SOX2 during Esophageal Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617209. [PMID: 39416037 PMCID: PMC11482797 DOI: 10.1101/2024.10.08.617209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The human esophagus, derived from the anterior foregut endoderm, requires proper dorsal-ventral patterning for development. The transcription factor SOX2, crucial in this process, when dysregulated, leads to congenital esophageal abnormalities. EPHA2, a receptor tyrosine kinase, is vital in various developmental processes and cancer models, where it activates SOX2. This study demonstrates that EPHA2 regulates SOX2 expression during esophageal development using human iPSCs and iPSC-derived human esophageal organoids (HEO). Inhibition of EPHA2 decreased iPSC-derived HEO formation and SOX2 expression. These findings provide evidence of EPHA2 as being a key regulator of SOX2 signaling in early esophageal development. Highlights SOX2 is crucial for proper esophageal development.EPHA2 is a receptor tyrosine kinase involved in various developmental processes.EPHA2 activates SOX2.Inhibition of EPHA2 decreased SOX2 expression and human esophageal organoid formation.
Collapse
|
11
|
Faraz A, Amani J, Arbabian S, Karizi SZ, Torbati MB. In vitro analysis of single chain variable fragment-based immunotoxins against Erythropoietin-producing hepatocellular A2 receptor overexpressed in breast cancer cells. J Immunol Methods 2024; 533:113732. [PMID: 39116931 DOI: 10.1016/j.jim.2024.113732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Breast cancer is one of the leading causes of cancer deaths worldwide. Thereafter, designing new treatments with higher specificity and efficacy is urgently required. In this regard, targeted immunotherapy using immunotoxins has shown great promise in treating cancer. To target a breast cancer cell, the authors used the antibody fragment against a receptor tyrosine kinase, EphA2, which is overexpressed in many cancers. This fragment was conjugated to a plant toxin, subunit A of ricin, in two different orientations from N to C-terminal (EphA2- C-Ricin and EphA2- N-Ricin). Then, these two immunotoxins were characterized using in vitro cell-based assays. Three different cell lines were treated, MDA-MB-231 (breast cancer) which has a high level of EphA2 expression, MCF-7 (breast cancer) which has a low level of EphA2 expression, and HEK293 (human embryonic kidney) which has a very low level of EphA2 expression. Moreover, binding ability, cytotoxicity, internalization, and apoptosis capacity of these two newly developed immunotoxins were investigated. The flow cytometry using Annexin V- Propidium iodide (PI) method indicated significant induction of apoptosis only in the MDA-MB-231 cells at different concentrations. It was also found that construct I, EphA2- C-Ricin immunotoxin, could bind, internalize, and induce apoptosis better than the EphA2- N-Ricin immunotoxin. In addition, the obtained data suggested that the N or C-terminal orientation conformation is of significant importance.
Collapse
Affiliation(s)
- Atefeh Faraz
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Sedigheh Arbabian
- Department of Cellular and Molecular Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Genetic and Biotechnology, Varamin Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Maryam Bikhof Torbati
- Department of Biology, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Giordano G, Tucciarello C, Merlini A, Cutrupi S, Pignochino Y. Targeting the EphA2 pathway: could it be the way for bone sarcomas? Cell Commun Signal 2024; 22:433. [PMID: 39252029 PMCID: PMC11382444 DOI: 10.1186/s12964-024-01811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Bone sarcomas are malignant tumors of mesenchymal origin. Complete surgical resection is the cornerstone of multidisciplinary treatment. However, advanced, unresectable forms remain incurable. A crucial step towards addressing this challenge involves comprehending the molecular mechanisms underpinning tumor progression and metastasis, laying the groundwork for innovative precision medicine-based interventions. We previously showed that tyrosine kinase receptor Ephrin Type-A Receptor 2 (EphA2) is overexpressed in bone sarcomas. EphA2 is a key oncofetal protein implicated in metastasis, self-renewal, and chemoresistance. Molecular, genetic, biochemical, and pharmacological approaches have been developed to target EphA2 and its signaling pathway aiming to interfere with its tumor-promoting effects or as a carrier for drug delivery. This review synthesizes the main functions of EphA2 and their relevance in bone sarcomas, providing strategies devised to leverage this receptor for diagnostic and therapeutic purposes, with a focus on its applicability in the three most common bone sarcoma histotypes: osteosarcoma, chondrosarcoma, and Ewing sarcoma.
Collapse
Affiliation(s)
- Giorgia Giordano
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Cristina Tucciarello
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Ymera Pignochino
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy.
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy.
| |
Collapse
|
13
|
Intoh A, Watanabe-Susaki K, Kato T, Kiritani H, Kurisaki A. EPHA2 is a novel cell surface marker of OCT4-positive undifferentiated cells during the differentiation of mouse and human pluripotent stem cells. Stem Cells Transl Med 2024; 13:763-775. [PMID: 38811016 PMCID: PMC11328934 DOI: 10.1093/stcltm/szae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) possess the intrinsic ability to differentiate into diverse cellular lineages, marking them as potent instruments in regenerative medicine. Nonetheless, the proclivity of these stem cells to generate teratomas post-transplantation presents a formidable obstacle to their therapeutic utility. In previous studies, we identified an array of cell surface proteins specifically expressed in the pluripotent state, as revealed through proteomic analysis. Here we focused on EPHA2, a protein found to be abundantly present on the surface of undifferentiated mouse ESCs and is diminished upon differentiation. Knock-down of Epha2 led to the spontaneous differentiation of mouse ESCs, underscoring a pivotal role of EPHA2 in maintaining an undifferentiated cell state. Further investigations revealed a strong correlation between EPHA2 and OCT4 expression during the differentiation of both mouse and human PSCs. Notably, removing EPHA2+ cells from mouse ESC-derived hepatic lineage reduced tumor formation after transplanting them into immune-deficient mice. Similarly, in human iPSCs, a larger proportion of EPHA2+ cells correlated with higher OCT4 expression, reflecting the pattern observed in mouse ESCs. Conclusively, EPHA2 emerges as a potential marker for selecting undifferentiated stem cells, providing a valuable method to decrease tumorigenesis risks after stem-cell transplantation in regenerative treatments.
Collapse
Affiliation(s)
- Atsushi Intoh
- Division of Biological Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan
- Organ Development Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8560, Japan
| | - Kanako Watanabe-Susaki
- Organ Development Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8560, Japan
| | - Taku Kato
- Division of Biological Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Hibiki Kiritani
- Division of Biological Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Akira Kurisaki
- Division of Biological Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan
- Organ Development Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8560, Japan
| |
Collapse
|
14
|
El Fakiri M, Regupathy AR, Uhlmann L, Ayada N, Geis NM, Domogalla LC, Lahdenranta J, Blakeman B, Wood F, Meyer PT, Huxley P, Eder M, Mudd GE, Eder AC. Development and preclinical characterization of a novel radiotheranostic EphA2-targeting bicyclic peptide. Theranostics 2024; 14:4701-4712. [PMID: 39239524 PMCID: PMC11373624 DOI: 10.7150/thno.96641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/09/2024] [Indexed: 09/07/2024] Open
Abstract
Erythropoietin-producing hepatocellular receptor A2 (EphA2), is a receptor tyrosine kinase involved in cell-cell interactions. It is known to be overexpressed in various tumors and is associated with poor prognosis. EphA2 has been proposed as a target for theranostic applications. Low molecular weight peptide-based scaffolds with low nanomolar affinities have been shown to be ideal in such applications. Bicyclic peptides have emerged as an alternative to traditional peptides for this purpose, offering affinities comparable to antibodies due to their constrained nature, along with high tissue penetration, and improved stability compared to linear counterparts. This study presents the development and comprehensive in vitro and in vivo preclinical evaluation of BCY18469, a novel EphA2-targeting bicyclic peptide-based radiotheranostic agent. Methods: The EphA2-targeting Bicycle® peptide BCY18469 was identified through phage-display and chemically optimized. BCY18469 was radiolabeled with 68Ga, 177Lu and 111In. The physicochemical properties, binding affinity and internalization as well as specificity of the peptide were evaluated in vitro. In vivo PET/MR and SPECT/CT imaging studies were performed using [68Ga]Ga-BCY18469 and [111In]In-BCY18469, respectively, along with biodistribution of [177Lu]Lu-BCY18469 up to 24 h post injection in HT1080- and PC-3-tumor bearing BALB/c nu/nu EphA2-overexpressing xenograft mouse models. Results: The EphA2-targeting bicyclic peptide BCY18469 showed high binding affinity toward human and mouse EphA2 (1.9 and 3.8 nM, respectively). BCY18469 specifically bound and internalized into EphA2-expressing HT1080 cells. Imaging studies showed high tumor enrichment at early time-points (SUV of 1.7 g/mL at 1 h p.i. and 1.2 g/mL at 2 h p.i. in PET/MRI, HT1080 xenograft) with tumor contrast as early as 5 min p.i. and kidney-mediated clearance. Biodistribution studies revealed high early tumor uptake (19.5 ± 3.5 %ID/g at 1 h p.i., HT1080 xenograft) with SPECT/CT imaging further confirming these findings (5.7 ± 1.5 %ID/g at 1 h p.i., PC-3 xenograft). Conclusion: BCY18469 demonstrated high affinity, specific targeting of EphA2, a favorable biodistribution profile, and clearance through renal pathways. These findings underscore the potentially important role of bicyclic peptides in advancing radiotheranostic approaches and encourage additional translational research.
Collapse
Affiliation(s)
- Mohamed El Fakiri
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anusha R. Regupathy
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Lisa Uhlmann
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nawal Ayada
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nicolas M. Geis
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lisa-Charlotte Domogalla
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Johanna Lahdenranta
- Bicycle Therapeutics, 35 Cambridgepark Drive, Cambridge, MA, 02140, United States
| | - Ben Blakeman
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Francesca Wood
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Philipp T. Meyer
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Philip Huxley
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Matthias Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Gemma E. Mudd
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, United Kingdom
| | - Ann-Christin Eder
- Department of Nuclear Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
- Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany and German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
15
|
Pandey GK, Vadlamudi S, Currin KW, Moxley AH, Nicholas JC, McAfee JC, Broadaway KA, Mohlke KL. Liver regulatory mechanisms of noncoding variants at lipid and metabolic trait loci. HGG ADVANCES 2024; 5:100275. [PMID: 38297830 PMCID: PMC10881423 DOI: 10.1016/j.xhgg.2024.100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Genome-wide association studies (GWASs) have identified hundreds of risk loci for liver disease and lipid-related metabolic traits, although identifying their target genes and molecular mechanisms remains challenging. We predicted target genes at GWAS signals by integrating them with molecular quantitative trait loci for liver gene expression (eQTL) and liver chromatin accessibility QTL (caQTL). We predicted specific regulatory caQTL variants at four GWAS signals located near EFHD1, LITAF, ZNF329, and GPR180. Using transcriptional reporter assays, we determined that caQTL variants rs13395911, rs11644920, rs34003091, and rs9556404 exhibit allelic differences in regulatory activity. We also performed a protein binding assay for rs13395911 and found that FOXA2 differentially interacts with the alleles of rs13395911. For variants rs13395911 and rs11644920 in putative enhancer regulatory elements, we used CRISPRi to demonstrate that repression of the enhancers altered the expression of the predicted target and/or nearby genes. Repression of the element at rs13395911 reduced the expression of EFHD1, and repression of the element at rs11644920 reduced the expression of LITAF, SNN, and TXNDC11. Finally, we showed that EFHD1 is a metabolically active gene in HepG2 cells. Together, these results provide key steps to connect genetic variants with cellular mechanisms and help elucidate the causes of liver disease.
Collapse
Affiliation(s)
- Gautam K Pandey
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Kevin W Currin
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anne H Moxley
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jayna C Nicholas
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jessica C McAfee
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Kashyap D, Salman H. Targeting Interleukin-13 Receptor α2 and EphA2 in Aggressive Breast Cancer Subtypes with Special References to Chimeric Antigen Receptor T-Cell Therapy. Int J Mol Sci 2024; 25:3780. [PMID: 38612592 PMCID: PMC11011362 DOI: 10.3390/ijms25073780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer (BCA) remains the leading cause of cancer-related mortality among women worldwide. This review delves into the therapeutic challenges of BCA, emphasizing the roles of interleukin-13 receptor α2 (IL-13Rα2) and erythropoietin-producing hepatocellular receptor A2 (EphA2) in tumor progression and resistance. Highlighting their overexpression in BCA, particularly in aggressive subtypes, such as Her-2-enriched and triple-negative breast cancer (TNBC), we discuss the potential of these receptors as targets for chimeric antigen receptor T-cell (CAR-T) therapies. We examine the structural and functional roles of IL-13Rα2 and EphA2, their pathological significance in BCA, and the promising therapeutic avenues their targeting presents. With an in-depth analysis of current immunotherapeutic strategies, including the limitations of existing treatments and the potential of dual antigen-targeting CAR T-cell therapies, this review aims to summarize potential future novel, more effective therapeutic interventions for BCA. Through a thorough examination of preclinical and clinical studies, it underlines the urgent need for targeted therapies in combating the high mortality rates associated with Her-2-enriched and TNBC subtypes and discusses the potential role of IL-13Rα2 and EphA2 as promising candidates for the development of CAR T-cell therapies.
Collapse
Affiliation(s)
| | - Huda Salman
- Brown Center for Immunotherapy, Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
| |
Collapse
|
17
|
Vincenzi M, Mercurio FA, Autiero I, Leone M. Cancer-Related Mutations in the Sam Domains of EphA2 Receptor and Ship2 Lipid Phosphatase: A Computational Study. Molecules 2024; 29:1024. [PMID: 38474536 DOI: 10.3390/molecules29051024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The lipid phosphatase Ship2 interacts with the EphA2 receptor by forming a heterotypic Sam (sterile alpha motif)-Sam complex. Ship2 works as a negative regulator of receptor endocytosis and consequent degradation, and anti-oncogenic effects in cancer cells should be induced by hindering its association with EphA2. Herein, a computational approach is presented to investigate the relationship between Ship2-Sam/EphA2-Sam interaction and cancer onset and further progression. A search was first conducted through the COSMIC (Catalogue of Somatic Mutations in Cancer) database to identify cancer-related missense mutations positioned inside or close to the EphA2-Sam and Ship2-Sam reciprocal binding interfaces. Next, potential differences in the chemical-physical properties of mutant and wild-type Sam domains were evaluated by bioinformatics tools based on analyses of primary sequences. Three-dimensional (3D) structural models of mutated EphA2-Sam and Ship2-Sam domains were built as well and deeply analysed with diverse computational instruments, including molecular dynamics, to classify potentially stabilizing and destabilizing mutations. In the end, the influence of mutations on the EphA2-Sam/Ship2-Sam interaction was studied through docking techniques. This in silico approach contributes to understanding, at the molecular level, the mutation/cancer relationship by predicting if amino acid substitutions could modulate EphA2 receptor endocytosis.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
18
|
Vincenzi M, Mercurio FA, Leone M. EPHA2 Receptor as a Possible Therapeutic Target in Viral Infections. Curr Med Chem 2024; 31:5670-5701. [PMID: 37828671 DOI: 10.2174/0109298673256638231003111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/02/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The receptor tyrosine kinase EphA2 plays a role in many diseases, like cancer, cataracts, and osteoporosis. Interestingly, it has also been linked to viral infections. OBJECTIVE Herein, current literature has been reviewed to clarify EphA2 functions in viral infections and explore its potential role as a target in antiviral drug discovery strategies. METHODS Research and review articles along with preprints connecting EphA2 to different viruses have been searched through PubMed and the web. Structures of complexes between EphA2 domains and viral proteins have been retrieved from the PDB database. RESULTS EphA2 assumes a key role in Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein Barr virus (EBV) infections by directly binding, through its ligand binding domain, viral glycoproteins. For human cytomegalovirus (HCMV), the role of EphA2 in maintaining virus latency state, through cooperation with specific viral proteins, has also been speculated. In certain cells, with high EphA2 expression levels, following ligand stimulation, receptor activation might contribute to severe symptoms accompanying a few viral infections, including lung injuries often related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). CONCLUSION Since EphA2 works as a host receptor for certain viruses, it might be worth more deeply investigating known compounds targeting its extracellular ligand binding domain as antiviral therapeutics. Due to EphA2's function in inflammation, its possible correlation with SARS-CoV-2 cannot be excluded, but more experimental studies are needed in this case to undoubtedly attribute the role of this receptor in viral infections.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB), Naples, Italy
| |
Collapse
|
19
|
Bright RK. Preclinical support for tumor protein D52 as a cancer vaccine antigen. Hum Vaccin Immunother 2023; 19:2273699. [PMID: 37904517 PMCID: PMC10760363 DOI: 10.1080/21645515.2023.2273699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Overexpressed tumor-associated antigens (TAAs) are a large group that includes proteins found at increased levels in tumors compared to healthy cells. Universal tumor expression can be defined as overexpression in all cancers examined as has been shown for Tumor Protein D52. TPD52 is an over expressed TAA actively involved in transformation, leading to increased proliferation and metastasis. TPD52 overexpression has been demonstrated in many human adult and pediatric malignancies. The murine orthologue of TPD52 (mD52) parallels normal tissue expression patterns and known functions of human TPD52 (hD52). Here in we present our preclinical studies over the past 15 years which have demonstrated that vaccine induced immunity against mD52 is effective against multiple cancers in murine models, without inducing autoimmunity against healthy tissues and cells.
Collapse
Affiliation(s)
- Robert K. Bright
- Department of Immunology and Molecular Microbiology, School of Medicine and Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
20
|
Yan H, Wu W, Hu Y, Li J, Xu J, Chen X, Xu Z, Yang X, Yang B, He Q, Luo P. Regorafenib inhibits EphA2 phosphorylation and leads to liver damage via the ERK/MDM2/p53 axis. Nat Commun 2023; 14:2756. [PMID: 37179400 PMCID: PMC10182995 DOI: 10.1038/s41467-023-38430-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The hepatotoxicity of regorafenib is one of the most noteworthy concerns for patients, however the mechanism is poorly understood. Hence, there is a lack of effective intervention strategies. Here, by comparing the target with sorafenib, we show that regorafenib-induced liver injury is mainly due to its nontherapeutic target Eph receptor A2 (EphA2). EphA2 deficiency attenuated liver damage and cell apoptosis under regorafenib treatment in male mice. Mechanistically, regorafenib inhibits EphA2 Ser897 phosphorylation and reduces ubiquitination of p53 by altering the intracellular localization of mouse double minute 2 (MDM2) by affecting the extracellular signal-regulated kinase (ERK)/MDM2 axis. Meanwhile, we found that schisandrin C, which can upregulate the phosphorylation of EphA2 at Ser897 also has protective effect against the toxicity in vivo. Collectively, our findings identify the inhibition of EphA2 Ser897 phosphorylation as a key cause of regorafenib-induced hepatotoxicity, and chemical activation of EphA2 Ser897 represents a potential therapeutic strategy to prevent regorafenib-induced hepatotoxicity.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuhuai Hu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Jinjin Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiangxin Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xueqin Chen
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, 310002, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310018, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
| |
Collapse
|
21
|
Murakoshi M, Iwasawa T, Koshida T, Suzuki Y, Gohda T, Kato K. Development of an In-House EphA2 ELISA for Human Serum and Measurement of Circulating Levels of EphA2 in Hypertensive Patients with Renal Dysfunction. Diagnostics (Basel) 2022; 12:diagnostics12123023. [PMID: 36553030 PMCID: PMC9776842 DOI: 10.3390/diagnostics12123023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Identifying novel biomarkers of kidney function in patients with chronic kidney disease (CKD) has strong clinical value as current measures have limitations. This study aims to develop and validate a sensitive and specific ephrin type-A receptor 2 (EphA2) enzyme-linked immunosorbent assay (ELISA) for human serum, and determine whether its results correlate with traditional renal measures in patients with hypertension. The novel ELISA of the current study was validated and used to measure circulating EphA2 levels in 80 hypertensive patients with and without kidney function decline (eGFR less than 60 mL/min/1.73 m2). Validation of the EphA2 ELISA showed good recovery (87%) and linearity (103%) and no cross-reactivity with other Eph receptors. Patients with kidney function decline had lower diastolic blood pressure, and higher UPCR and EphA2 than those without kidney function decline. The association of age and eGFR with EphA2 was maintained in the stepwise multiple regression analysis. In a multivariate logistic model, EphA2 was associated with a lower eGFR (<60 mL/min/1.73 m2) after adjustment for age, sex, and UPCR. High circulating EphA2 levels have potential application as a clinical biomarker for the presence of CKD in patients with hypertension.
Collapse
Affiliation(s)
- Maki Murakoshi
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Takumi Iwasawa
- Graduate School of Science and Engineering, Toyo University, Saitama 350-8585, Japan
| | - Takeo Koshida
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Tomohito Gohda
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: (T.G.); (K.K.)
| | - Kazunori Kato
- Graduate School of Science and Engineering, Toyo University, Saitama 350-8585, Japan
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Correspondence: (T.G.); (K.K.)
| |
Collapse
|
22
|
Ezenwafor TC, Uzonwanne VO, Madukwe JUA, Amin SM, Anye VC, Obayemi JD, Odusanya OS, Soboyejo WO. Adhesion of LHRH/EphA2 to human Triple Negative Breast Cancer tissues. J Mech Behav Biomed Mater 2022; 136:105461. [PMID: 36195050 DOI: 10.1016/j.jmbbm.2022.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022]
Abstract
The adhesive interactions between molecular recognition units (such as specific peptides and antibodies) and antigens or other receptors on the surfaces of tumors are of great value in the design of targeted nanoparticles and drugs for the detection and treatment of specific cancers. In this paper, we present the results of a combined experimental and theoretical study of the adhesion between Luteinizing Hormone Releasing Hormone (LHRH)/Epherin type A2 (EphA2)-AFM coated tips and LHRH/EphA2 receptors that are overexpressed on the surfaces of human Triple Negative Breast Cancer (TNBC) tissues of different histological grades. Following a histochemical and immuno-histological study of human tissue extracts, the receptor overexpression, and their distributions are characterized using Immunohistochemistry (IHC), Immunofluorescence (IF), and a combination of fluorescence microscopy and confocal microscopy. The adhesion forces between LHRH or EphA2 and human TNBC breast tissues are measured using force microscopy techniques that account for the potential effects of capillary forces due to the presence of water vapor. The corresponding adhesion energies are also determined using adhesion theory. The pull off forces and adhesion energies associated with higher grades of TNBC are shown to be greater than those associated with normal/non-tumorigenic human breast tissues, which were studied as controls. The observed increase in adhesion forces and adhesion energies are also correlated with the increasing incidence of LHRH/EphA2 receptors at higher grades of TNBC. The implications of the results are discussed for the development of targeted nanostructures for the detection and treatment of TNBC.
Collapse
Affiliation(s)
- Theresa C Ezenwafor
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; NASENI Centre of Excellence in Nanotechnology and Advanced Materials, Km 4, Ondo Road, Akure, Ondo State, Nigeria; Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, Gateway Park Life Sciences and Bioengineering Centre, 60 Prescott Street, Worcester, MA, 01609, USA
| | - Vanessa O Uzonwanne
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, Gateway Park Life Sciences and Bioengineering Centre, 60 Prescott Street, Worcester, MA, 01609, USA
| | - Jonathan U A Madukwe
- Department of Histopathology, National Hospital, Abuja, Federal Capital Territory (FCT), Nigeria
| | - Said M Amin
- Department of Histopathology, National Hospital, Abuja, Federal Capital Territory (FCT), Nigeria
| | - Vitalis C Anye
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria
| | - John D Obayemi
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, Gateway Park Life Sciences and Bioengineering Centre, 60 Prescott Street, Worcester, MA, 01609, USA
| | - Olushola S Odusanya
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex (SHESTCO), Kwale, Abuja, Federal Capital Territory, Nigeria
| | - Winston O Soboyejo
- Department of Materials Science and Engineering, African University of Science and Technology, Km 10 Airport Road, Galadimawa, Abuja, Federal Capital Territory (FCT), Nigeria; Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA; Department of Biomedical Engineering, Worcester Polytechnic Institute, Gateway Park Life Sciences and Bioengineering Centre, 60 Prescott Street, Worcester, MA, 01609, USA.
| |
Collapse
|
23
|
Hunting for Novel Routes in Anticancer Drug Discovery: Peptides against Sam-Sam Interactions. Int J Mol Sci 2022; 23:ijms231810397. [PMID: 36142306 PMCID: PMC9499636 DOI: 10.3390/ijms231810397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/10/2023] Open
Abstract
Among the diverse protein binding modules, Sam (Sterile alpha motif) domains attract attention due to their versatility. They are present in different organisms and play many functions in physiological and pathological processes by binding multiple partners. The EphA2 receptor contains a Sam domain at the C-terminus (EphA2-Sam) that is able to engage protein regulators of receptor stability (including the lipid phosphatase Ship2 and the adaptor Odin). Ship2 and Odin are recruited by EphA2-Sam through heterotypic Sam-Sam interactions. Ship2 decreases EphA2 endocytosis and consequent degradation, producing chiefly pro-oncogenic outcomes in a cellular milieu. Odin, through its Sam domains, contributes to receptor stability by possibly interfering with ubiquitination. As EphA2 is upregulated in many types of tumors, peptide inhibitors of Sam-Sam interactions by hindering receptor stability could function as anticancer therapeutics. This review describes EphA2-Sam and its interactome from a structural and functional perspective. The diverse design strategies that have thus far been employed to obtain peptides targeting EphA2-mediated Sam-Sam interactions are summarized as well. The generated peptides represent good initial lead compounds, but surely many efforts need to be devoted in the close future to improve interaction affinities towards Sam domains and consequently validate their anticancer properties.
Collapse
|
24
|
Qu B, Han Y, Liang T, Zhang C, Hou G, Gao F. Evaluation of a novel EphA2 targeting peptide for triple negative breast cancer based on radionuclide molecular imaging. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
25
|
Gil CH, Chakraborty D, Vieira CP, Prasain N, Calzi SL, Fortmann SD, Hu P, Banno K, Jamal M, Huang C, Sielski MS, Lin Y, Huang X, Dupont MD, Floyd JL, Prasad R, Longhini ALF, McGill TJ, Chung HM, Murphy MP, Kotton DN, Boulton ME, Yoder MC, Grant MB. Specific mesoderm subset derived from human pluripotent stem cells ameliorates microvascular pathology in type 2 diabetic mice. SCIENCE ADVANCES 2022; 8:eabm5559. [PMID: 35245116 PMCID: PMC8896785 DOI: 10.1126/sciadv.abm5559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) were differentiated into a specific mesoderm subset characterized by KDR+CD56+APLNR+ (KNA+) expression. KNA+ cells had high clonal proliferative potential and specification into endothelial colony-forming cell (ECFCs) phenotype. KNA+ cells differentiated into perfused blood vessels when implanted subcutaneously into the flank of nonobese diabetic/severe combined immunodeficient mice and when injected into the vitreous of type 2 diabetic mice (db/db mice). Transcriptomic analysis showed that differentiation of hiPSCs derived from diabetics into KNA+ cells was sufficient to change baseline differences in gene expression caused by the diabetic status and reprogram diabetic cells to a pattern similar to KNA+ cells derived from nondiabetic hiPSCs. Proteomic array studies performed on retinas of db/db mice injected with either control or diabetic donor-derived KNA+ cells showed correction of aberrant signaling in db/db retinas toward normal healthy retina. These data provide "proof of principle" that KNA+ cells restore perfusion and correct vascular dysfunction in db/db mice.
Collapse
Affiliation(s)
- Chang-Hyun Gil
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dibyendu Chakraborty
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Cristiano P. Vieira
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Nutan Prasain
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Astellas Institute for Regenerative Medicine (AIRM), Westborough, MA 01581, USA
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Seth D. Fortmann
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
- Medical Scientist Training Program (MSTP), School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ping Hu
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Kimihiko Banno
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Physiology II, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Mohamed Jamal
- Center for Regenerative Medicine, Pulmonary Center, and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Endodontics, Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 00000, UAE
| | - Chao Huang
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Micheli S. Sielski
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Yang Lin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xinxin Huang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Zhongshan-Xuhui Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 310104, China
| | - Mariana D. Dupont
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Jason L. Floyd
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Ana Leda F. Longhini
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Trevor J. McGill
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Michael P. Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Pulmonary Center, and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| | - Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| |
Collapse
|
26
|
Yang Y, Nian S, Li L, Wen X, Liu Q, Zhang B, Lan Y, Yuan Q, Ye Y. Fully human recombinant antibodies against EphA2 from a multi-tumor patient immune library suitable for tumor-targeted therapy. Bioengineered 2021; 12:10379-10400. [PMID: 34709992 PMCID: PMC8810047 DOI: 10.1080/21655979.2021.1996807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enhanced EphA2 expression is observed in a variety of epithelial-derived malignancies and is an important target for anti-tumor therapy. Currently, Therapeutic monoclonal antibodies against immune checkpoints have shown good efficacy for tumor treatment. In this study, we constructed an immune single-chain fragment variable (scFv) library using peripheral blood mononuclear cells (PBMCs) from 200 patients with a variety of malignant tumors. High affinity scFvs against EphA2 can be easily screened from the immune library using phage display technology. Anti-EphA2 scFvs can be modified into any form of recombinant antibody, including scFv-Fc and full-length IgG1 antibodies, and the recombinant antibody affinity was improved following modification. Among the modified anti-EphA2 antibodies the affinity of 77-IgG1 was significantly increased, reaching a pmol affinity level (10−12). We further demonstrated the binding activity of recombinant antibodies to the EphA2 protein, tumor cells, and tumor tissues using macromolecular interaction techniques, flow cytometry and immunohistochemistry. Most importantly, both the constructed scFvs-Fc, as well as the IgG1 antibodies against EphA2 were able to inhibit the growth of tumor cells to some extent. These results suggest that the immune libraries from patients with malignant tumors are more likely to screen for antibodies with high affinity and therapeutic effect. The constructed fully human scFv immune library has broad application prospects for specific antibody screening. The screened scFv-Fc and IgG1 antibodies against EphA2 can be used for the further study of tumor immunotherapy.
Collapse
Affiliation(s)
- Yaqi Yang
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| | - Siji Nian
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| | - Lin Li
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| | - Xue Wen
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China.,Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Sichuan 646000, P.R. China
| | - Qin Liu
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| | - Bo Zhang
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| | - Yu Lan
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| | - Qing Yuan
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| | - Yingchun Ye
- Public Center of Experimental Technology, The school of Basic medical science, Southwest medical university, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
27
|
Giordano G, Merlini A, Ferrero G, Mesiano G, Fiorino E, Brusco S, Centomo ML, Leuci V, D’Ambrosio L, Aglietta M, Sangiolo D, Grignani G, Pignochino Y. EphA2 Expression in Bone Sarcomas: Bioinformatic Analyses and Preclinical Characterization in Patient-Derived Models of Osteosarcoma, Ewing's Sarcoma and Chondrosarcoma. Cells 2021; 10:cells10112893. [PMID: 34831119 PMCID: PMC8616526 DOI: 10.3390/cells10112893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are a group of heterogeneous malignant mesenchymal tumors. Complete surgical resection is still the cornerstone of treatment, but, in the advanced/unresectable setting, their management remains challenging and not significantly improved by target- and immuno-therapies. We focused on the tyrosine kinase Eph type-A receptor-2 (EphA2), a key oncoprotein implicated in self-renewal, angiogenesis, and metastasis, in several solid tumors and thus representing a novel potential therapeutic target. Aiming at better characterizing its expression throughout the main bone sarcoma histotypes, we investigated EPHA2 expression in the Cancer Cell Lines Encyclopedia and in public datasets with clinical annotations. looking for correlations with molecular, histopathological and patients’ features and clinical outcomes in a total of 232 osteosarcomas, 197 Ewing’s sarcomas, and 102 chondrosarcomas. We observed EPHA2 expression in bone sarcoma cell lines. We demonstrated higher EPHA2 expression in tumor tissues when compared to normal counterparts. A significant correlation was found between EPHA2 expression and Huvos grade (osteosarcoma) and with worse overall survival (dedifferentiated chondrosarcoma). Next, we characterized EPHA2 expression and activation in bone sarcoma primary tissues and in patient-derived xenografts generated in our laboratory to verify their reliability as in vivo models of osteosarcoma, Ewing’s sarcoma and chondrosarcoma. Furthermore, for the first time, we demonstrated EPHA2 expression in chondrosarcoma, suggesting its potential key role in this histotype. Indeed, we observed a significant dose-dependent antitumor effect of the EphA2-inhibitor ALW-II-41-27 in patient-derived in vitro models. In conclusion, EphA2 targeting represents a promising novel therapeutic strategy against bone sarcomas.
Collapse
Affiliation(s)
- Giorgia Giordano
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Alessandra Merlini
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
- Correspondence: ; Tel.: +39-0119933503
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy;
- Department of Computer Science, University of Torino, 10124 Torino, Italy
| | - Giulia Mesiano
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Erika Fiorino
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Silvia Brusco
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Maria Laura Centomo
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Lorenzo D’Ambrosio
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Cardinal Massaia Hospital, 14100 Asti, Italy
| | - Massimo Aglietta
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Giovanni Grignani
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
| | - Ymera Pignochino
- Candiolo Cancer Institute, FPO–IRCCS Str. Prov.le 142, Km 3.95, 10060 Candiolo, Italy; (G.G.); (G.M.); (E.F.); (S.B.); (M.L.C.); (V.L.); (L.D.); (M.A.); (D.S.); (G.G.); (Y.P.)
- Department of Clinical and Biological Sciences, University of Torino, 10124 Torino, Italy;
| |
Collapse
|
28
|
Ghonime MG, Saini U, Kelly MC, Roth JC, Wang PY, Chen CY, Miller K, Hernandez-Aguirre I, Kim Y, Mo X, Stanek JR, Cripe T, Mardis E, Cassady KA. Eliciting an immune-mediated antitumor response through oncolytic herpes simplex virus-based shared antigen expression in tumors resistant to viroimmunotherapy. J Immunother Cancer 2021; 9:jitc-2021-002939. [PMID: 34599026 PMCID: PMC8488720 DOI: 10.1136/jitc-2021-002939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Background Oncolytic virotherapy (OV) is an immunotherapy that incorporates viral cancer cell lysis with engagement of the recruited immune response against cancer cells. Pediatric solid tumors are challenging targets because they contain both an inert immune environment and a quiet antigenic landscape, making them more resistant to conventional OV approaches. Further complicating this, herpes simplex virus suppresses host gene expression during virotherapy infection. Methods We therefore developed a multimodal oncolytic herpes simplex virus (oHSV) that expresses ephrin A2 (EphA2), a shared tumor-associated antigen (TAA) expressed by many tumors to improve immune-mediated antitumor activity. We verified the virus genotypically and phenotypically and then tested it in an oHSV-resistant orthotopic model (including immunophenotypic analysis), in flank and in T cell-deficient mouse models. We then assessed the antigen-expressing virus in an unrelated peripheral tumor model that also expresses the shared tumor antigen and evaluated functional T-cell response from the treated mice. Results Virus-based EphA2 expression induces a robust acquired antitumor immune responses in both an oHSV-resistant murine brain and peripheral tumor model. Our new multimodal oncolytic virus (1) improves survival in viroimmunotherapy resistant tumors, (2) alters both the infiltrating and peripheral T-cell populations capable of suppressing tumor growth on rechallenge, and (3) produces EphA2-specific CD8 effector-like populations. Conclusions Our results suggest that this flexible viral-based platform enables immune recognition of the shared TAA and improves the immune-therapeutic response, thus making it well suited for low-mutational load tumors.
Collapse
Affiliation(s)
- Mohammed G Ghonime
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Uksha Saini
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Michael C Kelly
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Justin C Roth
- The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Pin-Yi Wang
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Chun-Yu Chen
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Katherine Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | - Yeaseul Kim
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiaokui Mo
- Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Joseph R Stanek
- Biostatistics Resource, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tim Cripe
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Elaine Mardis
- Pediatrics, The Ohio State University, Columbus, Ohio, USA.,The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kevin A Cassady
- Center for Childhood Cancer and Blood Disorders, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA .,Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
29
|
Abdi E, Latifi-Navid S, Abedi Sarvestani F, Esmailnejad MH. Emerging therapeutic targets for gastric cancer from a host- Helicobacter pylori interaction perspective. Expert Opin Ther Targets 2021; 25:685-699. [PMID: 34410200 DOI: 10.1080/14728222.2021.1971195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Gastric cancer (GC) has the higher genetic, cytologic, and architectural heterogeneity compared to other gastrointestinal cancers. By inducing gastric inflammation, Helicobacter pylori (HP) may lead to GC through combining bacterial factors with host factors. In this regard, identification of the major therapeutic targets against the host-HP interactions plays a critical role in GC prevention, diagnosis, and treatment. AREAS COVERED This study offers new insights into the promising therapeutic targets against the angiogenesis, invasion, or metastasis of GC from a host-HP interaction perspective. To this end, MEDLINE, EMBASE, LILACS, AIM, and IndMed databases were searched for relevant articles since 1992. EXPERT OPINION Wnt signaling and COX pathway have a well-documented history in the genesis of GC by HP and might be considered as the most promising targets for early GC treatment. Destroying HP may decrease the risk of GC, but it cannot fully hinder the GC development induced by HP infection. Therefore, targeting HP-activated pathways, especially COX-2/Wnt/beta-catenin/VEGF, TLR2/TLR9/COX-2, COX2-PGE2, and NF-κB/COX-2, as well as EPHA2, MMPs, and miR-543/SIRT1 axis, can be an effective measure in the early treatment of GC. However, different clinical trials and large, multi-center cohorts are required to validate these potentially effective targets for GC therapy.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | | |
Collapse
|
30
|
Single-molecule fluorescence vistas of how lipids regulate membrane proteins. Biochem Soc Trans 2021; 49:1685-1694. [PMID: 34346484 DOI: 10.1042/bst20201074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The study of membrane proteins is undergoing a golden era, and we are gaining unprecedented knowledge on how this key group of proteins works. However, we still have only a basic understanding of how the chemical composition and the physical properties of lipid bilayers control the activity of membrane proteins. Single-molecule (SM) fluorescence methods can resolve sample heterogeneity, allowing to discriminate between the different molecular populations that biological systems often adopt. This short review highlights relevant examples of how SM fluorescence methodologies can illuminate the different ways in which lipids regulate the activity of membrane proteins. These studies are not limited to lipid molecules acting as ligands, but also consider how the physical properties of the bilayer can be determining factors on how membrane proteins function.
Collapse
|
31
|
EphA2 Interacts with Tim-4 through Association between Its FN3 Domain and the IgV Domain of Tim-4. Cells 2021; 10:cells10061290. [PMID: 34067457 PMCID: PMC8224564 DOI: 10.3390/cells10061290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/21/2021] [Indexed: 11/22/2022] Open
Abstract
Tim-4 promotes the engulfment of apoptotic cells or exogenous particles by securing them on phagocytes. It is unable to transduce signals by itself but helps other engulfment receptors sense and internalize them. However, the identity of the engulfment receptors collaborating with Tim-4 is still incompletely understood. In this study, we searched for a candidate transmembrane protein with a FN3 domain, important for interaction with Tim-4, in silico and investigated whether it indeed interacts with Tim-4 and is involved in Tim-4-mediated phagocytosis. We found that EphA2 containing a FN3 domain in the extracellular region interacted with Tim-4, which was mediated by the IgV domain of Tim-4 and the FN3 domain of EphA2. Nevertheless, we found that EphA2 expression failed to alter Tim-4-mediated phagocytosis of apoptotic cells or polystyrene beads. Taken together, our findings suggest that EphA2, a new Tim-4 interacting protein, may intervene in a Tim-4-mediated cellular event even if it is not phagocytosis of endogenous or exogenous particles and vice versa.
Collapse
|
32
|
Cirillo F, Catellani C, Lazzeroni P, Sartori C, Street ME. The Role of MicroRNAs in Influencing Body Growth and Development. Horm Res Paediatr 2021; 93:7-15. [PMID: 31914447 DOI: 10.1159/000504669] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/08/2019] [Indexed: 11/19/2022] Open
Abstract
Body growth and development are regulated among others by genetic and epigenetic factors. MicroRNAs (miRNAs) are epigenetic regulators of gene expression that act at the post-transcriptional level, thereby exerting a strong influence on regulatory gene networks. Increasing studies suggest the importance of miRNAs in the regulation of the growth plate and growth hormone (GH)-insulin-like growth factor (IGF) axis during the life course in a broad spectrum of animal species, contributing to longitudinal growth. This review summarizes the role of miRNAs in regulating growth in different in vitro and in vivo models acting on GH, GH receptor (GHR), IGFs, and IGF1R genes besides current knowledge in humans, and highlights that this regulatory system is of importance for growth.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Cecilia Catellani
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Pietro Lazzeroni
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Sartori
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Maria Elisabeth Street
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy,
| |
Collapse
|
33
|
Wilson K, Shiuan E, Brantley-Sieders DM. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene 2021; 40:2483-2495. [PMID: 33686241 PMCID: PMC8035212 DOI: 10.1038/s41388-021-01714-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 01/31/2023]
Abstract
More than 25 years of research and preclinical validation have defined EphA2 receptor tyrosine kinase as a promising molecular target for clinical translation in cancer treatment. Molecular, genetic, biochemical, and pharmacological targeting strategies have been extensively tested in vitro and in vivo, and drugs like dasatinib, initially designed to target SRC family kinases, have been found to also target EphA2 activity. Other small molecules, therapeutic targeting antibodies, and peptide-drug conjugates are being tested, and more recently, approaches harnessing antitumor immunity against EphA2-expressing cancer cells have emerged as a promising strategy. This review will summarize preclinical studies supporting the oncogenic role of EphA2 in breast cancer, lung cancer, glioblastoma, and melanoma, while delineating the differing roles of canonical and noncanonical EphA2 signaling in each setting. This review also summarizes completed and ongoing clinical trials, highlighting the promise and challenges of targeting EphA2 in cancer.
Collapse
Affiliation(s)
- Kalin Wilson
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Eileen Shiuan
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dana M Brantley-Sieders
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
34
|
Harding P, Toms M, Schiff E, Owen N, Bell S, Lloyd IC, Moosajee M. EPHA2 Segregates with Microphthalmia and Congenital Cataracts in Two Unrelated Families. Int J Mol Sci 2021; 22:2190. [PMID: 33671840 PMCID: PMC7926380 DOI: 10.3390/ijms22042190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
EPHA2 is a transmembrane tyrosine kinase receptor that, when disrupted, causes congenital and age-related cataracts. Cat-Map reports 22 pathogenic EPHA2 variants associated with congenital cataracts, variable microcornea, and lenticonus, but no previous association with microphthalmia (small, underdeveloped eye, ≥2 standard deviations below normal axial length). Microphthalmia arises from ocular maldevelopment with >90 monogenic causes, and can include a complex ocular phenotype. In this paper, we report two pathogenic EPHA2 variants in unrelated families presenting with bilateral microphthalmia and congenital cataracts. Whole genome sequencing through the 100,000 Genomes Project and cataract-related targeted gene panel testing identified autosomal dominant heterozygous mutations segregating with the disease: (i) missense c.1751C>T, p.(Pro584Leu) and (ii) splice site c.2826-9G>A. To functionally validate pathogenicity, morpholino knockdown of epha2a/epha2b in zebrafish resulted in significantly reduced eye size ± cataract formation. Misexpression of N-cadherin and retained fibre cell nuclei were observed in the developing lens of the epha2b knockdown morphant fish by 3 days post-fertilisation, which indicated a putative mechanism for microphthalmia pathogenesis through disruption of cadherin-mediated adherens junctions, preventing lens maturation and the critical signals stimulating eye growth. This study demonstrates a novel association of EPHA2 with microphthalmia, suggesting further analysis of pathogenic variants in unsolved microphthalmia cohorts may increase molecular diagnostic rates.
Collapse
Affiliation(s)
- Philippa Harding
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (P.H.); (M.T.); (N.O.)
| | - Maria Toms
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (P.H.); (M.T.); (N.O.)
- The Francis Crick Institute, London NW1 1AT, UK
| | - Elena Schiff
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (E.S.); (S.B.)
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (P.H.); (M.T.); (N.O.)
| | - Suzannah Bell
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (E.S.); (S.B.)
| | - Ian Christopher Lloyd
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
- Manchester Academic Health Sciences Centre, University of Manchester, Manchester, M13 9PT, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (P.H.); (M.T.); (N.O.)
- The Francis Crick Institute, London NW1 1AT, UK
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (E.S.); (S.B.)
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
35
|
Lam S, Zeidan J, Miglior F, Suárez-Vega A, Gómez-Redondo I, Fonseca PAS, Guan LL, Waters S, Cánovas A. Development and comparison of RNA-sequencing pipelines for more accurate SNP identification: practical example of functional SNP detection associated with feed efficiency in Nellore beef cattle. BMC Genomics 2020; 21:703. [PMID: 33032519 PMCID: PMC7545862 DOI: 10.1186/s12864-020-07107-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Background Optimization of an RNA-Sequencing (RNA-Seq) pipeline is critical to maximize power and accuracy to identify genetic variants, including SNPs, which may serve as genetic markers to select for feed efficiency, leading to economic benefits for beef production. This study used RNA-Seq data (GEO Accession ID: PRJEB7696 and PRJEB15314) from muscle and liver tissue, respectively, from 12 Nellore beef steers selected from 585 steers with residual feed intake measures (RFI; n = 6 low-RFI, n = 6 high-RFI). Three RNA-Seq pipelines were compared including multi-sample calling from i) non-merged samples; ii) merged samples by RFI group, iii) merged samples by RFI and tissue group. The RNA-Seq reads were aligned against the UMD3.1 bovine reference genome (release 94) assembly using STAR aligner. Variants were called using BCFtools and variant effect prediction (VeP) and functional annotation (ToppGene) analyses were performed. Results On average, total reads detected for Approach i) non-merged samples for liver and muscle, were 18,362,086.3 and 35,645,898.7, respectively. For Approach ii), merging samples by RFI group, total reads detected for each merged group was 162,030,705, and for Approach iii), merging samples by RFI group and tissues, was 324,061,410, revealing the highest read depth for Approach iii). Additionally, Approach iii) merging samples by RFI group and tissues, revealed the highest read depth per variant coverage (572.59 ± 3993.11) and encompassed the majority of localized positional genes detected by each approach. This suggests Approach iii) had optimized detection power, read depth, and accuracy of SNP calling, therefore increasing confidence of variant detection and reducing false positive detection. Approach iii) was then used to detect unique SNPs fixed within low- (12,145) and high-RFI (14,663) groups. Functional annotation of SNPs revealed positional candidate genes, for each RFI group (2886 for low-RFI, 3075 for high-RFI), which were significantly (P < 0.05) associated with immune and metabolic pathways. Conclusion The most optimized RNA-Seq pipeline allowed for more accurate identification of SNPs, associated positional candidate genes, and significantly associated metabolic pathways in muscle and liver tissues, providing insight on the underlying genetic architecture of feed efficiency in beef cattle.
Collapse
Affiliation(s)
- S Lam
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G2W1, Canada
| | - J Zeidan
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G2W1, Canada
| | - F Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G2W1, Canada
| | - A Suárez-Vega
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G2W1, Canada
| | - I Gómez-Redondo
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G2W1, Canada.,Spanish National Institute for Agriculture and Food Research and Technology, Carretera de La Coruña, 28040, Madrid, Spain
| | - P A S Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G2W1, Canada
| | - L L Guan
- Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, Alberta, T6H 2P5, Canada
| | - S Waters
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G2W1, Canada.
| |
Collapse
|
36
|
Chen J, Longnecker R. Epithelial cell infection by Epstein-Barr virus. FEMS Microbiol Rev 2020; 43:674-683. [PMID: 31584659 DOI: 10.1093/femsre/fuz023] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr Virus (EBV) is etiologically associated with multiple human malignancies including Burkitt lymphoma and Hodgkin disease as well as nasopharyngeal and gastric carcinoma. Entry of EBV into target cells is essential for virus to cause disease and is mediated by multiple viral envelope glycoproteins and cell surface associated receptors. The target cells of EBV include B cells and epithelial cells. The nature and mechanism of EBV entry into these cell types are different, requiring different glycoprotein complexes to bind to specific receptors on the target cells. Compared to the B cell entry mechanism, the overall mechanism of EBV entry into epithelial cells is less well known. Numerous receptors have been implicated in this process and may also be involved in additional processes of EBV entry, transport, and replication. This review summarizes EBV glycoproteins, host receptors, signal molecules and transport machinery that are being used in the epithelial cell entry process and also provides a broad view for related herpesvirus entry mechanisms.
Collapse
Affiliation(s)
- Jia Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
37
|
Bennett G, Brown A, Mudd G, Huxley P, Van Rietschoten K, Pavan S, Chen L, Watcham S, Lahdenranta J, Keen N. MMAE Delivery Using the Bicycle Toxin Conjugate BT5528. Mol Cancer Ther 2020; 19:1385-1394. [PMID: 32398269 DOI: 10.1158/1535-7163.mct-19-1092] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/24/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Abstract
The EphA2 receptor is found at high levels in tumors and low levels in normal tissue and high EphA2 expression in biopsies is a predictor of poor outcome in patients. Drug discovery groups have therefore sought to develop EphA2-based therapies using small molecule, peptide, and nanoparticle-based approaches (1-3). However, until now only EphA2-targeting antibody-drug conjugates (ADC) have entered clinical development. For example, MEDI-547 is an EphA2-targeting ADC that displayed encouraging antitumor activity in preclinical models and progressed to phase I clinical testing in man. Here we describe the development of BT5528, a bicyclic peptide ("Bicycle") conjugated to the auristatin derivative maleimidocaproyl-monomethyl auristatin E to generate the Bicycle toxin conjugate BT5528. The report compares and contrasts the Pharmacokinetics (PK) characteristics of antibody and Bicycle-based targeting systems and discusses how the PK and payload characteristics of different delivery systems impact the efficacy-toxicity trade off which is key to the development of successful cancer therapies. We show that BT5528 gives rise to rapid update into tumors and fast renal elimination followed by persistent toxin levels in tumors without prolonged exposure of parent drug in the vasculature. This fast in, fast out kinetics gave rise to more favorable toxicology findings in rats and monkeys than were observed with MEDI-547 in preclinical and clinical studies.Graphical Abstract: http://mct.aacrjournals.org/content/molcanther/19/7/1385/F1.large.jpg.
Collapse
Affiliation(s)
| | - Amy Brown
- Bicycle Therapeutics, Cambridge, United Kingdom
| | - Gemma Mudd
- Bicycle Therapeutics, Cambridge, United Kingdom
| | | | | | - Silvia Pavan
- Fabbrica Italiana Sintetici S.p.A., Vicenza, Italy
| | | | | | | | | |
Collapse
|
38
|
Leite M, Marques MS, Melo J, Pinto MT, Cavadas B, Aroso M, Gomez-Lazaro M, Seruca R, Figueiredo C. Helicobacter Pylori Targets the EPHA2 Receptor Tyrosine Kinase in Gastric Cells Modulating Key Cellular Functions. Cells 2020; 9:cells9020513. [PMID: 32102381 PMCID: PMC7072728 DOI: 10.3390/cells9020513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori, a stomach-colonizing Gram-negative bacterium, is the main etiological factor of various gastroduodenal diseases, including gastric adenocarcinoma. By establishing a life-long infection of the gastric mucosa, H. pylori continuously activates host-signaling pathways, in particular those associated with receptor tyrosine kinases. Using two different gastric epithelial cell lines, we show that H. pylori targets the receptor tyrosine kinase EPHA2. For long periods of time post-infection, H. pylori induces EPHA2 protein downregulation without affecting its mRNA levels, an effect preceded by receptor activation via phosphorylation. EPHA2 receptor downregulation occurs via the lysosomal degradation pathway and is independent of the H.pylori virulence factors CagA, VacA, and T4SS. Using small interfering RNA, we show that EPHA2 knockdown affects cell–cell and cell–matrix adhesion, invasion, and angiogenesis, which are critical cellular processes in early gastric lesions and carcinogenesis mediated by the bacteria. This work contributes to the unraveling of the underlying mechanisms of H. pylori–host interactions and associated diseases. Additionally, it raises awareness for potential interference between H. pylori infection and the efficacy of gastric cancer therapies targeting receptors tyrosine kinases, given that infection affects the steady-state levels and dynamics of some receptor tyrosine kinases (RTKs) and their signaling pathways.
Collapse
Affiliation(s)
- Marina Leite
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Correspondence: (M.L.); (C.F.); Tel.: +351-220-408-800 (M.L. & C.F.)
| | - Miguel S. Marques
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
| | - Joana Melo
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta T. Pinto
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
| | - Bruno Cavadas
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- ICBAS–Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Miguel Aroso
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Raquel Seruca
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Ceu Figueiredo
- Ipatimup–Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; (M.S.M.); (J.M.); (M.T.P.); (B.C.); (R.S.)
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (M.A.); (M.G.-L.)
- Department of Pathology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
- Correspondence: (M.L.); (C.F.); Tel.: +351-220-408-800 (M.L. & C.F.)
| |
Collapse
|
39
|
Plüss CJ, Kustermann S. A Human Three-Dimensional In Vitro Model of Lens Epithelial Cells as a Model to Study Mechanisms of Drug-Induced Posterior Subcapsular Cataracts. J Ocul Pharmacol Ther 2019; 36:56-64. [PMID: 31259661 DOI: 10.1089/jop.2019.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: Cataract is a pathological opacification of the lens, which is still one of the leading causes of blindness in the world. Several etiologies are described, among them drug-induced cataract, for example, posterior subcapsular cataract (PSC) after steroid treatment. To investigate different mechanisms of drug-induced cataract a human three-dimensional (3D) lens in vitro model was developed, consisting of immortalized human lens epithelial cells. Methods: These cells were cultivated on 96-well, ultralow attachment plates, where they rapidly form spheroids. By gene expression analysis different markers were observed, which are important to maintain lens transparency, such as ephrin type-A receptor 2 (EphA2) or α-smooth muscle actin (α-SMA). Results: The lens epithelial cells form a spheroid within a few days and show stable expression of important lens marker, and size and viability remain stable up to 26 days in culture. The gene expression of the glucocorticoid-treated spheroids revealed a clear shift in the expression of EphA2, α-SMA, αB-crystallin (CRYAB), and heat shock protein beta-1 (HSPB1). Furthermore, the glucocorticoid treatment did not improve cell survival. Conclusions: This study proposes a useful 3D in vitro model, which expresses important lens markers and is capable of demonstrating features found in drug-induced cataracts. As the viability remains stable over long time, this model can also be used for long-term treatment. The main characteristics are the increased expression of α-SMA, CRYAB, and HSPB1 and the decreased expression of EphA2. The present data provide some first evidence on novel mechanisms involved in glucocorticoid-induced cataracts.
Collapse
Affiliation(s)
- Carla Johanna Plüss
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stefan Kustermann
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
40
|
Rudzińska M, Grzanka M, Stachurska A, Mikula M, Paczkowska K, Stępień T, Paziewska A, Ostrowski J, Czarnocka B. Molecular Signature of Prospero Homeobox 1 (PROX1) in Follicular Thyroid Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20092212. [PMID: 31060342 PMCID: PMC6539481 DOI: 10.3390/ijms20092212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 01/15/2023] Open
Abstract
The prospero homeobox 1 (PROX1) transcription factor is a product of one of the lymphangiogenesis master genes. It has also been suggested to play a role in carcinogenesis, although its precise role in tumour development and metastasis remains unclear. The aim of this study was to gain more knowledge on the PROX1 function in thyroid tumorigenesis. Follicular thyroid cancer-derived cells—CGTH-W-1—were transfected with PROX1-siRNA (small interfering RNA) and their proliferation, cell cycle, apoptosis and motility were then analysed. The transcriptional signature of PROX1 depletion was determined using RNA-Sequencing (RNA-Seq) and the expression of relevant genes was further validated using reverse transcriptase quantitative PCR (RT-qPCR), Western blot and immunocytochemistry. PROX1 depletion resulted in a decreased cell motility, with both migratory and invasive potential being significantly reduced. The cell morphology was also affected, while the other studied cancer-related cell characteristics were not significantly altered. RNA-seq analysis revealed significant changes in the expression of transcripts encoding genes involved in both motility and cytoskeleton organization. Our transcriptional analysis of PROX1-depleted follicular thyroid carcinoma cells followed by functional and phenotypical analyses provide, for the first time, evidence that PROX1 plays an important role in the metastasis of thyroid cancer cells by regulating genes involved in focal adhesion and cytoskeleton organization in tumour cells.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Anna Stachurska
- Department of Immunohematology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
| | - Katarzyna Paczkowska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
| | - Tomasz Stępień
- Clinic of Endocrinological and General Surgery, Medical University of Lodz, 93-513 Lodz, Poland.
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| |
Collapse
|
41
|
Minias P, Dunn PO, Whittingham LA, Johnson JA, Oyler-McCance SJ. Evaluation of a Chicken 600K SNP genotyping array in non-model species of grouse. Sci Rep 2019; 9:6407. [PMID: 31015535 PMCID: PMC6478925 DOI: 10.1038/s41598-019-42885-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/11/2019] [Indexed: 12/30/2022] Open
Abstract
The use of single nucleotide polymorphism (SNP) arrays to generate large SNP datasets for comparison purposes have recently become an attractive alternative to other genotyping methods. Although most SNP arrays were originally developed for domestic organisms, they can be effectively applied to wild relatives to obtain large panels of SNPs. In this study, we tested the cross-species application of the Affymetrix 600K Chicken SNP array in five species of North American prairie grouse (Centrocercus and Tympanuchus genera). Two individuals were genotyped per species for a total of ten samples. A high proportion (91%) of the total 580 961 SNPs were genotyped in at least one individual (73–76% SNPs genotyped per species). Principal component analysis with autosomal SNPs separated the two genera, but failed to clearly distinguish species within genera. Gene ontology analysis identified a set of genes related to morphogenesis and development (including genes involved in feather development), which may be primarily responsible for large phenotypic differences between Centrocercus and Tympanuchus grouse. Our study provided evidence for successful cross-species application of the chicken SNP array in grouse which diverged ca. 37 mya from the chicken lineage. As far as we are aware, this is the first reported application of a SNP array in non-passerine birds, and it demonstrates the feasibility of using commercial SNP arrays in research on non-model bird species.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Peter O Dunn
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.,Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Linda A Whittingham
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Jeff A Johnson
- Department of Biological Sciences, Institute of Applied Sciences, University of North Texas, Denton, Texas, USA
| | | |
Collapse
|
42
|
Torres-Adorno AM, Vitrac H, Qi Y, Tan L, Levental KR, Fan YY, Yang P, Chapkin RS, Eckhardt BL, Ueno NT. Eicosapentaenoic acid in combination with EPHA2 inhibition shows efficacy in preclinical models of triple-negative breast cancer by disrupting cellular cholesterol efflux. Oncogene 2018; 38:2135-2150. [PMID: 30459358 PMCID: PMC6430703 DOI: 10.1038/s41388-018-0569-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/26/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023]
Abstract
Triple-negative breast cancer (TNBC), the most aggressive breast cancer subtype, currently lacks effective targeted therapy options. Eicosapentaenoic acid (EPA), an omega-3 fatty acid and constituent of fish oil, is a common supplement with anti-inflammatory properties. Although it is not a mainstream treatment, several preclinical studies have demonstrated that EPA exerts anti-tumor activity in breast cancer. However, against solid tumors, EPA as a monotherapy is clinically ineffective; thus, we sought to develop a novel targeted drug combination to bolster its therapeutic action against TNBC. Using a high-throughput functional siRNA screen, we identified Ephrin type-A receptor 2 (EPHA2), an oncogenic cell-surface receptor tyrosine kinase, as a therapeutic target that sensitizes TNBC cells to EPA. EPHA2 expression was uniquely elevated in TNBC cell lines and patient tumors. In independent functional expression studies in TNBC models, EPHA2 gene-silencing combined with EPA significantly reduced cell growth and enhanced apoptosis compared with monotherapies, both in vitro and in vivo. EPHA2 specific inhibitors similarly enhanced the therapeutic action of EPA. Finally, we identified that therapy-mediated apoptosis was attributed to a lethal increase in cancer cell membrane polarity due to ABCA1 inhibition and subsequent dysregulation of cholesterol homeostasis. This study provides new molecular and pre-clinical evidence to support a clinical evaluation of EPA combined with EPHA2 inhibition in patients with TNBC.
Collapse
Affiliation(s)
- Angie M Torres-Adorno
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Section of Translational Breast Cancer Research and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heidi Vitrac
- Department of Biochemistry and Molecular Biology, UTHealth McGovern Medical School, Houston, TX, USA
| | - Yuan Qi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lin Tan
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, UTHealth McGovern Medical School, Houston, TX, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Bedrich L Eckhardt
- Section of Translational Breast Cancer Research and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Naoto T Ueno
- Section of Translational Breast Cancer Research and Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
43
|
Tian Y, Ma Y, Wu S, Zhang T, Li Z, Wang G, Zhang J. Understand the acquired resistance of RTK inhibitors by computational receptor tyrosine kinases network. Comput Biol Chem 2018; 76:275-282. [DOI: 10.1016/j.compbiolchem.2018.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 06/27/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
|
44
|
Li CY, Cui JY. Regulation of protein-coding gene and long noncoding RNA pairs in liver of conventional and germ-free mice following oral PBDE exposure. PLoS One 2018; 13:e0201387. [PMID: 30067809 PMCID: PMC6070246 DOI: 10.1371/journal.pone.0201387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/14/2018] [Indexed: 02/07/2023] Open
Abstract
Gut microbiome communicates with the host liver to modify hepatic xenobiotic biotransformation and nutrient homeostasis. Polybrominated diphenyl ethers (PBDEs) are persistent environmental contaminants that are detected in fatty food, household dust, and human breast milk at worrisome levels. Recently, long noncoding RNAs (lncRNAs) have been recognized as novel biomarkers for toxicological responses and may regulate the transcriptional/translational output of protein-coding genes (PCGs). However, very little is known regarding to what extent the interactions between PBDEs and gut microbiome modulate hepatic lncRNAs and PCGs, and what critical signaling pathways are impacted at the transcriptomic scale. In this study, we performed RNA-Seq in livers of nine-week-old male conventional (CV) and germ-free (GF) mice orally exposed to the most prevalent PBDE congeners BDE-47 and BDE-99 (100 μmol/kg once daily for 4-days; vehicle: corn oil, 10 ml/kg), and unveiled key molecular pathways and PCG-lncRNA pairs targeted by PBDE-gut microbiome interactions. Lack of gut microbiome profoundly altered the PBDE-mediated transcriptomic response in liver, with the most prominent effect observed in BDE-99-exposed GF mice. The top pathways up-regulated by PBDEs were related to xenobiotic metabolism, whereas the top pathways down-regulated by PBDEs were in lipid metabolism and protein synthesis in both enterotypes. Genomic annotation of the differentially regulated lncRNAs revealed that majority of these lncRNAs overlapped with introns and 3'-UTRs of PCGs. Lack of gut microbiome profoundly increased the percentage of PBDE-regulated lncRNAs mapped to the 3'-UTRs of PCGs, suggesting the potential involvement of lncRNAs in increasing the translational efficiency of PCGs by preventing miRNA-3'-UTR binding, as a compensatory mechanism following toxic exposure to PBDEs. Pathway analysis of PCGs paired with lncRNAs revealed that in CV mice, BDE-47 regulated nucleic acid and retinol metabolism, as well as circadian rhythm; whereas BDE-99 regulated fatty acid metabolism. In GF mice, BDE-47 differentially regulated 19 lncRNA-PCG pairs that were associated with glutathione conjugation and transcriptional regulation. In contrast, BDE-99 up-regulated the xenobiotic-metabolizing Cyp3a genes, but down-regulated the fatty acid-metabolizing Cyp4 genes. Taken together, the present study reveals common and unique lncRNAs and PCG targets of PBDEs in mouse liver, and is among the first to show that lack of gut microbiome sensitizes the liver to toxic exposure of BDE-99 but not BDE-47. Therefore, lncRNAs may serve as specific biomarkers that differentiate various PBDE congeners as well as environmental chemical-mediated dysbiosis. Coordinate regulation of PCG-lncRNA pairs may serve as a more efficient molecular mechanism to combat against xenobiotic insult, and especially during dysbiosis-induced increase in the internal dose of toxicants.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
45
|
Townsend MH, Shrestha G, Robison RA, O’Neill KL. The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res 2018; 37:163. [PMID: 30031396 PMCID: PMC6054736 DOI: 10.1186/s13046-018-0817-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
Biomarkers are an integral part of cancer management due to their use in risk assessment, screening, differential diagnosis, prognosis, prediction of response to treatment, and monitoring progress of disease. Recently, with the advent of Chimeric Antigen Receptor (CAR) T cell therapy, a new category of targetable biomarkers has emerged. These biomarkers are associated with the surface of malignant cells and serve as targets for directing cytotoxic T cells. The first biomarker target used for CAR T cell therapy was CD19, a B cell marker expressed highly on malignant B cells. With the success of CD19, the last decade has shown an explosion of new targetable biomarkers on a range of human malignancies. These surface targets have made it possible to provide directed, specific therapy that reduces healthy tissue destruction and preserves the patient's immune system during treatment. As of May 2018, there are over 100 clinical trials underway that target over 25 different surface biomarkers in almost every human tissue. This expansion has led to not only promising results in terms of patient outcome, but has also led to an exponential growth in the investigation of new biomarkers that could potentially be utilized in CAR T cell therapy for treating patients. In this review, we discuss the biomarkers currently under investigation and point out several promising biomarkers in the preclinical stage of development that may be useful as targets.
Collapse
Affiliation(s)
- Michelle H. Townsend
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Gajendra Shrestha
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
- Thunder Biotech, Highland, UT USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, 3142 LSB, Provo, UT 84602 USA
| |
Collapse
|
46
|
Jedwabny W, Lodola A, Dyguda-Kazimierowicz E. Theoretical Model of EphA2-Ephrin A1 Inhibition. Molecules 2018; 23:molecules23071688. [PMID: 29997324 PMCID: PMC6099714 DOI: 10.3390/molecules23071688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 02/03/2023] Open
Abstract
This work aims at the theoretical description of EphA2-ephrin A1 inhibition by small molecules. Recently proposed ab initio-based scoring models, comprising long-range components of interaction energy, is tested on lithocholic acid class inhibitors of this protein–protein interaction (PPI) against common empirical descriptors. We show that, although limited to compounds with similar solvation energy, the ab initio model is able to rank the set of selected inhibitors more effectively than empirical scoring functions, aiding the design of novel compounds.
Collapse
Affiliation(s)
- Wiktoria Jedwabny
- Department of Chemistry, Wrocław University of Science and Technology, 50370 Wrocław, Poland.
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43100 Parma, Italy.
| | | |
Collapse
|
47
|
Wu X, Zahari MS, Renuse S, Sahasrabuddhe NA, Chaerkady R, Kim MS, Fackler MJ, Stampfer M, Gabrielson E, Sukumar S, Pandey A. Quantitative phosphoproteomic analysis reveals reciprocal activation of receptor tyrosine kinases between cancer epithelial cells and stromal fibroblasts. Clin Proteomics 2018; 15:21. [PMID: 29946230 PMCID: PMC6003199 DOI: 10.1186/s12014-018-9197-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are one of the most important components of tumor stroma and play a key role in modulating tumor growth. However, a mechanistic understanding of how CAFs communicate with tumor cells to promote their proliferation and invasion is far from complete. A major reason for this is that most current techniques and model systems do not capture the complexity of signal transduction that occurs between CAFs and tumor cells. Methods In this study, we employed a stable isotope labeling with amino acids in cell culture (SILAC) strategy to label invasive breast cancer cells, MDA-MB-231, and breast cancer patient-derived CAF this has already been defined above cells. We used an antibody-based phosphotyrosine peptide enrichment method coupled to LC-MS/MS to catalog and quantify tyrosine phosphorylation-mediated signal transduction events induced by the bidirectional communication between patient-derived CAFs and tumor cells. Results We discovered that distinct signaling events were activated in CAFs and in tumor epithelial cells during the crosstalk between these two cell types. We identified reciprocal activation of a number of receptor tyrosine kinases including EGFR, FGFR1 and EPHA2 induced by this bidirectional communication. Conclusions Our study not only provides insights into the mechanisms of the interaction between CAFs and tumor cells, but the model system described here could be used as a prototype for analysis of intercellular communication in many different tumor microenvironments.
Collapse
Affiliation(s)
- Xinyan Wu
- 1Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD USA.,2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD USA.,8Johns Hopkins University, 733 N. Broadway, Baltimore, MD 21205 USA
| | - Muhammad Saddiq Zahari
- 1Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD USA.,2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Santosh Renuse
- 1Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD USA.,2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD USA.,3Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India
| | - Nandini A Sahasrabuddhe
- 1Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD USA.,2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD USA.,3Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India.,4Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Raghothama Chaerkady
- 1Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD USA.,2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Min-Sik Kim
- 1Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD USA.,2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Mary Jo Fackler
- 5Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Martha Stampfer
- 7Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Edward Gabrielson
- 5Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA.,6Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Saraswati Sukumar
- 5Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Akhilesh Pandey
- 1Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD USA.,2McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD USA.,3Institute of Bioinformatics, International Technology Park, Bangalore, 560066 India.,8Johns Hopkins University, 733 N. Broadway, Baltimore, MD 21205 USA
| |
Collapse
|
48
|
Zhou Y, Sakurai H. Emerging and Diverse Functions of the EphA2 Noncanonical Pathway in Cancer Progression. Biol Pharm Bull 2018; 40:1616-1624. [PMID: 28966234 DOI: 10.1248/bpb.b17-00446] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erythropoietin-producing hepatocellular receptor A2 (EphA2) receptor tyrosine kinase controls multiple physiological processes to maintain homeostasis in normal cells. In many types of solid tumors, it has been reported that EphA2 is overexpressed and plays a critical role in oncogenic signaling. However, in recent years, the opposing functions of EphA2 have been explained by the canonical and noncanonical signaling pathways. Ligand- and tyrosine kinase-dependent EphA2 activation (the canonical pathway) inhibits cancer cell proliferation and motility. In contrast, ligand- and tyrosine kinase-independent EphA2 signaling (the noncanonical pathway) promotes tumor survival and metastasis and controls acquired drug resistance and maintenance of cancer stem cell-like properties. Evidence has accumulated showing that the EphA2 noncanonical pathway is mainly regulated by inflammatory cytokines and growth factors via phosphorylation at Ser-897 in the intracellular C-tail region via some serine/threonine kinases, including p90 ribosomal S6 kinase. In this review, we focus on the regulation of Ser-897 phosphorylation and its functional importance in tumor malignancy and discuss future therapeutic targeting.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama.,The MOE Key Laboratory for Standardization of Chinese Medicines and the Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
49
|
Berry V, Pontikos N, Albarca-Aguilera M, Plagnol V, Massouras A, Prescott D, Moore AT, Arno G, Cheetham ME, Michaelides M. A recurrent splice-site mutation in EPHA2 causing congenital posterior nuclear cataract. Ophthalmic Genet 2017; 39:236-241. [PMID: 29039721 DOI: 10.1080/13816810.2017.1381977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Intoduction: Inherited cataract, opacification of the lens, is the most common worldwide cause of blindness in children. We aimed to identify the genetic cause of autosomal dominant (AD) posterior nuclear cataract in a four generation British family. METHODS Whole genome sequence (WGS) was performed on two affected and one unaffected individual of the family and further validated by direct sequencing. Haplotype analysis was performed via genotying. RESULTS A splice-site mutation c.2826-9G>A in the gene EPHA2, encoding EPH receptor A2 was identified and found to co-segregate with disease. CONCLUSIONS We have identified a recurrent splice-site mutation c.2826-9G>A in EPHA2 causing isolated posterior nuclear cataract, providing evidence of further phenotypic heterogeneity associated with this variant.
Collapse
Affiliation(s)
- Vanita Berry
- a Genetics, UCL Institute of Ophthalmology , London , UK
| | - Nikolas Pontikos
- a Genetics, UCL Institute of Ophthalmology , London , UK.,c Genetics, UCL Genetics Institute , London , UK
| | | | | | | | | | | | - Gavin Arno
- a Genetics, UCL Institute of Ophthalmology , London , UK
| | | | - Michel Michaelides
- a Genetics, UCL Institute of Ophthalmology , London , UK.,b Ophthalmology, Moorfields Eye Hospital , London , UK
| |
Collapse
|
50
|
Chen X, Wang QL, Zhang MH. Identifying key genes in glaucoma based on a benchmarked dataset and the gene regulatory network. Exp Ther Med 2017; 14:3651-3657. [PMID: 29067091 PMCID: PMC5647551 DOI: 10.3892/etm.2017.4931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 04/28/2017] [Indexed: 11/15/2022] Open
Abstract
The current study aimed to identify key genes in glaucoma based on a benchmarked dataset and gene regulatory network (GRN). Local and global noise was added to the gene expression dataset to produce a benchmarked dataset. Differentially-expressed genes (DEGs) between patients with glaucoma and normal controls were identified utilizing the Linear Models for Microarray Data (Limma) package based on benchmarked dataset. A total of 5 GRN inference methods, including Zscore, GeneNet, context likelihood of relatedness (CLR) algorithm, Partial Correlation coefficient with Information Theory (PCIT) and GEne Network Inference with Ensemble of Trees (Genie3) were evaluated using receiver operating characteristic (ROC) and precision and recall (PR) curves. The interference method with the best performance was selected to construct the GRN. Subsequently, topological centrality (degree, closeness and betweenness) was conducted to identify key genes in the GRN of glaucoma. Finally, the key genes were validated by performing reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 176 DEGs were detected from the benchmarked dataset. The ROC and PR curves of the 5 methods were analyzed and it was determined that Genie3 had a clear advantage over the other methods; thus, Genie3 was used to construct the GRN. Following topological centrality analysis, 14 key genes for glaucoma were identified, including IL6, EPHA2 and GSTT1 and 5 of these 14 key genes were validated by RT-qPCR. Therefore, the current study identified 14 key genes in glaucoma, which may be potential biomarkers to use in the diagnosis of glaucoma and aid in identifying the molecular mechanism of this disease.
Collapse
Affiliation(s)
- Xi Chen
- Department of Ophthalmology, The Ninth Hospital of Chongqing, Chongqing 400700, P.R. China
| | - Qiao-Ling Wang
- Department of Ophthalmology, The Second Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - Meng-Hui Zhang
- Department of General Surgery, The Fourth Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| |
Collapse
|