1
|
Del Mármol C, Scalese G, Moreira R, Veiga N, Machado I, Faccio R, Lima A, Peralta RA, Pérez-Díaz L, Gambino D. Exploring a series of multifunctional Mn(I) tricarbonyls as prospective agents against trypanosomatid parasites: a comparative study with the Re(I) analogues. Dalton Trans 2025; 54:6495-6516. [PMID: 40138200 DOI: 10.1039/d5dt00241a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Diseases caused by trypanosomatid parasites are among the most pressing neglected illnesses. Chagas disease, caused by Trypanosoma cruzi, and visceral Leishmaniasis, caused by Leishmania infantum, have a severe health impact in developing countries. Searching for prospective metal-based drugs against these diseases, five multifunctional fac-[Mn(CO)3(CTZ)(NN)](PF6) compounds, including four new derivatives, were synthesized and thoroughly characterized, featuring NN polypyridyl derivatives and Clotrimazole (CTZ) as bioactive ligands. The biological behavior was compared with that previously reported for the Re analogues. Mn compounds showed EC50 values in the low micromolar range against the infective trypomastigote form of Trypanosoma cruzi and the promastigote form of Leishmania infantum and moderate selectivity indexes. While their potency against T. cruzi was comparable to the Re analogues, their selectivity was lower. Key physicochemical properties relevant to drug development were assessed: Mn(I) compounds showed lower stability in relevant tested media compared with their Re(I) counterparts and higher lipophilicity than the free ligands and the Re analogues. To gain insight into the potential mechanisms of action, the interaction with DNA and the effects on ergosterol biosynthesis in T. cruzi and L. infantum were investigated. Minimal DNA association (<1%) and moderate interaction with this target discarded DNA binding as the primary mechanism of action. In contrast, inhibition of lanosterol 14-α-demethylase (CYP51), key enzyme involved in the parasites' ergosterol biosynthetic pathway, was experimentally confirmed. Metallomic study revealed an uptake by T. cruzi of the most promising compound, fac-[Mn(CO)3(CTZ)(tmp)](PF6), more than twice that of the Re(I) analogue and preferential association to soluble proteins. Proteomic analysis of T. cruzi epimastigotes treated with the Mn(I) and Re(I) analogues showed no change in CYP51 abundance, suggesting that reduced ergosterol levels may arise from post-translational modifications of the enzyme. Raman confocal microscopy allowed us to detect effects of the most promising Mn compound in treated T. cruzi. Furthermore, the photoinduced CO release properties of both Mn and Re analogues were examined, searching for an additional and yet non-studied potential mechanism of action of metal-tricarbonyls in these trypanosomatid parasites. Collectively, the results highlight the potential of Mn(I) tricarbonyls as promising candidates for further drug development.
Collapse
Affiliation(s)
- Carolina Del Mármol
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
- Programa de Posgrado de Facultad de Química, Universidad de la República, Uruguay
- PEDECIBA - Programa de Desarrollo de las Ciencias Básicas, Uruguay
| | - Gonzalo Scalese
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| | - Rodrigo Moreira
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
- Programa de Posgrado de Facultad de Química, Universidad de la República, Uruguay
- PEDECIBA - Programa de Desarrollo de las Ciencias Básicas, Uruguay
| | - Nicolás Veiga
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| | - Ignacio Machado
- Área Química Analítica, DEC, Facultad de Química, Universidad de la República, Uruguay
| | - Ricardo Faccio
- Área Física, DETEMA, Facultad de Química, Universidad de la República, Uruguay
| | - Analía Lima
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Uruguay
- Instituto de Investigaciones Biológicas Clemente Estable, Uruguay
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Leticia Pérez-Díaz
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Dinorah Gambino
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Uruguay.
| |
Collapse
|
2
|
Scalese G, Pérez N, Pereyra J, Sanabria Y, Blacque O, Machado I, Pérez-Díaz L, Gambino D. Broadening the chemical diversity of oxidovanadium(V) complexes for targeting neglected tropical diseases. J Inorg Biochem 2025; 269:112891. [PMID: 40112427 DOI: 10.1016/j.jinorgbio.2025.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/01/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Chagas disease and Leishmaniasis, caused by Trypanosoma cruzi and Leishmania spp., respectively, are highly prevalent neglected tropical diseases (NTDs) that pose significant global health challenges. In our pursuit of effective vanadium-based therapeutics against these diseases, we previously developed several series of oxidovanadium(V) complexes featuring bidentate bioactive ligands and Schiff base tridentate ligands. The current study extends our previous research by incorporating in the same molecule, a tridentate bromo-substituted isonicotinyl hydrazone Schiff base ligand, BrIS, and a 8-hydroxyquinoline derivative (L), leading to the synthesis and comprehensive characterization of five new complexes, [VVO(BrIS-2H)(L-H)]. Most of new complexes exhibited activity in the micromolar range against the infective trypomastigote form of T. cruzi (EC50, 24h: 0.73-7.95 μM) and against L. infantum promastigotes (IC50, 5 days: 1.14-1.16 μM) and some of them showed good selectivity indexes towards the parasites (SI up to 52). Notably, the vanadium uptake by the parasites was higher for the new [VVO(BrIS-2H)(L-H)] compounds compared to [VVO(IN-2H)(L-H)] analogues previously developed, where IN is the structurally related 2-hydroxy-1-naphtaldehyde isonicotinoylhydrazone ligand, with accumulation in the soluble cell fraction. High-dose incubations resulted in trypanocidal effects and suggested the generation of reactive oxygen species (ROS). Further analysis revealed that [VVO(BrIS-2H)(L-H)] complexes induced a higher percentage of apoptosis, whereas the [VVO(IN-2H)(L-H)] series was associated with autophagic cell death. These findings highlight the potential of the [VVO(BrIS-2H)(L-H)] series as promising anti-T. cruzi agents and underscore the need for further research to optimize their therapeutic efficacy and explore their mechanisms of action.
Collapse
Affiliation(s)
- Gonzalo Scalese
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| | - Nicolás Pérez
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Josefina Pereyra
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Yasmina Sanabria
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Ignacio Machado
- Área Química Analítica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Leticia Pérez-Díaz
- Sección Genómica Funcional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay..
| | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
3
|
Giraudo A, Bolchi C, Pallavicini M, Di Santo R, Costi R, Saccoliti F. Uncovering the Mechanism of Action of Antiprotozoal Agents: A Survey on Photoaffinity Labeling Strategy. Pharmaceuticals (Basel) 2024; 18:28. [PMID: 39861091 PMCID: PMC11768348 DOI: 10.3390/ph18010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Plasmodium, Leishmania, and Trypanosoma parasites are responsible for infectious diseases threatening millions of people worldwide. Despite more recent efforts devoted to the search for new antiprotozoal agents, efficacy, safety, and resistance issues still hinder the development of suited therapeutic options. The lack of robustly validated targets and the complexity of parasite's diseases have made phenotypic screening a preferential drug discovery strategy for the identification of new chemical entities. However, via this approach, no information on biological target(s) and mechanisms of action of compounds are provided. Among the target deconvolution strategies useful to fill this gap, photoaffinity labeling (PAL) has emerged as one of most suited to enable investigation in a complex cellular environment. More recently, PAL has been exploited to unravel the molecular basis of bioactive compounds' function in live parasites, allowing elucidation of the mechanism of action of both approved drugs and new chemical entities. Besides highlighting new potential drug targets, PAL can provide valuable information on efficacy and liabilities of small molecules at the molecular level, which could be exploited to greatly facilitate the rational optimization of compounds in terms of potency and safety. In this review, we will report the most recent studies that have leveraged PAL to disclose the biological targets and mechanism of action of phenotypically active compounds targeting kinetoplastid diseases (i.e., human African trypanosomiasis, leishmaniasis, and Chagas disease) and malaria. Moreover, we will comment on potential perspectives that this innovative approach can provide in aiding the discovery and development of new antiprotozoal drugs.
Collapse
Affiliation(s)
- Alessandro Giraudo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Francesco Saccoliti
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi “Link Campus University”, Via del Casale di S. Pio V 44, I-00165 Rome, Italy
| |
Collapse
|
4
|
Maia Santos Urbancg Moncorvo F, Avendaño Leon OL, Curti C, Kabri Y, Redon S, Torres-Santos EC, Vanelle P. Enhancing Antileishmanial Activity of Amidoxime-Based Compounds Bearing a 4,5-Dihydrofuran Scaffold: In Vitro Screening Against Leishmania amazonensis. Molecules 2024; 29:5469. [PMID: 39598858 PMCID: PMC11597885 DOI: 10.3390/molecules29225469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Leishmaniasis, a protozoan disease affecting humans, exposes significant shortcomings in current treatments. In continuation to our previous findings on amidoxime-based antileishmanial compounds bearing a 4,5-dihydrofuran scaffold, twelve new amidoxime derivatives substituted at position 3 with an amide bearing a nitrogen heterocycle were synthesized. This series was designed to replace the sulfone and aryl group on a previously reported HIT. The synthesis of these compounds involved the following three-step pathway: manganese (III) acetate-based cyclization of a β-ketoester, followed by amidation with LiHMDS and a final reaction with hydroxylamine. Three of them, containing either bromine, chlorine, or methyl substitutions and featuring a pyridine moiety, showed an interesting toxicity-activity relationship in vitro. They exhibited IC50 values of 15.0 µM, 16.0 µM, and 17.0 µM against the promastigote form of the parasite and IC50 values of 0.5 µM, 0.6 µM, and 0.3 µM against the intracellular amastigote form, respectively. A selectivity index (SI) greater than 300 was established between the cytotoxic concentrations (in murine macrophages) and the effective concentrations (against the intracellular form of Leishmania amazonensis). This SI is at least seventy times higher than that observed for Pentamidine and twenty-five times higher than that observed for the reference HIT, as previously reported.
Collapse
Affiliation(s)
| | - Oscar Leonardo Avendaño Leon
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.L.A.L.); (C.C.); (Y.K.); (S.R.)
| | - Christophe Curti
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.L.A.L.); (C.C.); (Y.K.); (S.R.)
- Service Central de la Qualité et de l’Information Pharmaceutiques (SCQIP), Pharmacy Department, Assistance Publique—Hôpitaux de Marseille (AP-HM), 147 Bd. Baille, 13006 Marseille, France
| | - Youssef Kabri
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.L.A.L.); (C.C.); (Y.K.); (S.R.)
| | - Sébastien Redon
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.L.A.L.); (C.C.); (Y.K.); (S.R.)
| | - Eduardo Caio Torres-Santos
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz—FIOCRUZ, Av. Brasil, 4365, Rio de Janeiro 21040-900, Brazil;
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385 Marseille, France; (O.L.A.L.); (C.C.); (Y.K.); (S.R.)
- Service Central de la Qualité et de l’Information Pharmaceutiques (SCQIP), Pharmacy Department, Assistance Publique—Hôpitaux de Marseille (AP-HM), 147 Bd. Baille, 13006 Marseille, France
| |
Collapse
|
5
|
Marinho MM, da Rocha MN, Magalhães EP, Ribeiro LR, Roberto CHA, de Queiroz Almeida-Neto FW, Monteiro ML, Nunes JVS, de Menezes RRPPB, Marinho ES, de Lima Neto P, Martins AMC, Dos Santos HS. Insights of potential trypanocidal effect of the synthetic derivative (2E)-1-(4-aminophenyl)-3-(2,4-dichlorophenyl)prop-2-en-1-one: in vitro assay, MEV analysis, quantum study, molecular docking, molecular dynamics, MPO analysis, and predictive ADMET. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7797-7818. [PMID: 38722342 DOI: 10.1007/s00210-024-03138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/30/2024] [Indexed: 10/04/2024]
Abstract
This study aims to evaluate the antitrypanosomiasis activity of a synthetic dichloro-substituted aminochalcone via in vitro assays against infected cell cultures, as well as a theoretical characterization of pharmacokinetics and pharmacodynamics against the protein targets of the evolutionary cycle of T. cruzi. The in vitro evaluation of parasite proliferation inhibition was performed via cytotoxicity analysis on mammalian host cells, effect on epimastigote and trypomastigote forms, and cell death analysis, while computer simulations characterized the electronic structure of (2E)-1-(4-aminophenyl)-3-(2,4-dichlorophenyl)prop-2-en-1-one (DCl), the mechanism of action against the proteins of the evolutionary cycle of T. cruzi: Cruzain, Trypanothione reductase, TcGAPDH, and CYP51 by molecular docking and dynamics and predictive pharmacokinetics by MPO-based ADMET. The in vitro tests showed that the DCl LC50 in order of 178.9 ± 23.9 was similar to the BZN, evidencing the effectiveness of chalcone against Trypomastigotes. Molecular docking and dynamics simulations suggest that DCl acts on the active site of the CYP51 receptor, with hydrogen interactions that showed a high degree of occupation, establishing a stable complex with the target. MPO analysis and ADMET prediction tests suggest that the compound presents an alignment between permeability and hepatic clearance, although it presents low metabolic stability. Chalcone showed stable pharmacodynamics against the CYP51 target, but can form reactive metabolites from N-conjugation and C = C epoxidation, as an indication of controlled oral dose, although the estimated LD50 rate > 500 mg/kg is a indicative of low incidence of lethality by ingestion, constituting a promising therapeutic strategy.
Collapse
Affiliation(s)
- Márcia Machado Marinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
- Center for Exact Sciences and Technology, State University of Vale do Acaraú, Sobral, CE, Brazil
| | - Matheus Nunes da Rocha
- Center for Science and Technology, Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Emanuel Paula Magalhães
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lyanna Rodrigues Ribeiro
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Caio Henrique Alexandre Roberto
- Center for Science and Technology, Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | | | - Marília Lopes Monteiro
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - João Victor Serra Nunes
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Center for Science and Technology, Postgraduate Program in Natural Sciences, State University of Ceará, Fortaleza, CE, Brazil
| | - Pedro de Lima Neto
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus do Pici, Fortaleza, CE, Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélcio Silva Dos Santos
- Center for Exact Sciences and Technology, State University of Vale do Acaraú, Sobral, CE, Brazil.
| |
Collapse
|
6
|
Barbosa DCS, Holanda VN, Lima EMA, Cavalcante MKA, Brelaz-de-Castro MCA, Chaves EJF, Rocha GB, Silva CJO, Oliveira RN, Figueiredo RCBQ. 1,2,4-Oxadiazole Derivatives: Physicochemical Properties, Antileishmanial Potential, Docking and Molecular Dynamic Simulations of Leishmania infantum Target Proteins. Molecules 2024; 29:4654. [PMID: 39407583 PMCID: PMC11478322 DOI: 10.3390/molecules29194654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Visceral leishmaniasis (VL), caused by protozoa of the genus Leishmania, remains a significant public health concern due to its potentially lethal nature if untreated. Current chemotherapy options are limited by severe toxicity and drug resistance. Derivatives of 1,2,4-oxadiazole have emerged as promising drug candidates due to their broad biological activity. This study investigated the effects of novel 1,2,4-oxadiazole derivatives (Ox1-Ox7) on Leishmania infantum, the etiological agent of VL. In silico predictions using SwissADME suggest that these compounds have high oral absorption and good bioavailability. Among them, Ox1 showed the most promise, with higher selectivity against promastigotes and lower cytotoxicity towards L929 fibroblasts and J774.G8 macrophages. Ox1 exhibited selectivity indices of 18.7 and 61.7 against L. infantum promastigotes and amastigotes, respectively, compared to peritoneal macrophages. Ultrastructural analyses revealed severe morphological damage in both parasite forms, leading to cell death. Additionally, Ox1 decreased the mitochondrial membrane potential in promastigotes, as shown by flow cytometry. Molecular docking and dynamic simulations indicated a strong affinity of Ox1 for the L. infantum CYP51 enzyme. Overall, Ox1 is a promising and effective compound against L. infantum.
Collapse
Affiliation(s)
- Deyzi C. S. Barbosa
- Department of Microbiology, Aggeu Magalhães Institute (IAM-FIOCRUZ), Recife 50740-465, PE, Brazil;
| | - Vanderlan N. Holanda
- Department of Biomedicine, University Center of Vitória de Santo Antão (UNIVISA), Vitória de Santo Antão 55610-050, PE, Brazil
| | - Elton M. A. Lima
- Center for Exact and Natural Sciences, Federal University of Pernambuco (UFPE), Recife 50740-560, PE, Brazil
| | - Marton K. A. Cavalcante
- Parasitology Laboratory, Academic Center of Vitória, Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil
- Department of Immunology, Aggeu Magalhães Institute (IAM-FIOCRUZ), Recife 50740-465, PE, Brazil
| | - Maria Carolina A. Brelaz-de-Castro
- Parasitology Laboratory, Academic Center of Vitória, Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil
- Department of Immunology, Aggeu Magalhães Institute (IAM-FIOCRUZ), Recife 50740-465, PE, Brazil
| | - Elton J. F. Chaves
- Department of Chemistry, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Gerd B. Rocha
- Department of Chemistry, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Carla J. O. Silva
- Department of Fundamental Chemistry, Federal University of Pernambuco (UFPE), Recife 50740-540, PE, Brazil;
| | - Ronaldo N. Oliveira
- Department of Chemistry, Federal Rural University of Pernambuco (UFRPE), Recife 52171-900, PE, Brazil;
| | | |
Collapse
|
7
|
Janse van Rensburg HD, Suganuma K, N'Da DD. In vitro trypanocidal activities and structure-activity relationships of ciprofloxacin analogs. Mol Divers 2024; 28:2667-2680. [PMID: 37481633 DOI: 10.1007/s11030-023-10704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Tropical diseases, such as African trypanosomiasis, by their nature and prevalence lack the necessary urgency regarding drug development, despite the increasing need for novel, structurally diverse antitrypanosomal drugs, using different mechanisms of action that would improve drug efficacy and safety. Traditionally antibacterial agents, the fluoroquinolones, reportedly possess in vitro trypanocidal activities against Trypanosoma brucei organisms. During our research, the fluroquinolone, ciprofloxacin (1), and its analogs (2-24) were tested against bloodstream forms of T. brucei brucei, T. b. gambiense, T. b. rhodesiense, T. evansi, T. equiperdum, and T. congolense and Madin-Darby bovine kidney cells (cytotoxicity). Ciprofloxacin [CPX (1)] demonstrated selective trypanocidal activity against T. congolense (IC50 7.79 µM; SI 39.6), whereas the CPX derivatives (2-10) showed weak selective activity (25 < IC50 < 65 µM; 2 < SI < 4). Selectivity and activity of the CPX and 1,2,3-triazole (TZ) hybrids (11-24) were governed by their chemical functionality at C-3 (carboxylic acid, or 4-methylpiperazinyl amide) and their electronic effect (electron-donating or electron-withdrawing para-benzyl substituent), respectively. Trypanocidal hits in the micromolar range were identified against bloodstream forms of T. congolense [CPX (1); CPX amide derivatives 18: IC50 8.95 µM; SI 16.84; 22: IC50 5.42 µM; SI 25.2] and against T. brucei rhodesiense (CPX acid derivative 13: IC50 4.51 µM; SI 10.2), demonstrating more selectivity toward trypanosomes than mammalian cells. Hence, the trypanocidal hit compound 22 may be optimized by retaining the 4-methylpiperazine amide functional group (C-3) and the TZ moiety at position N-15 and introducing other electron-withdrawing ortho-, meta-, and/or para-substituents on the aryl ring in an effort to improve the pharmacokinetic properties and increase the trypanocidal activity.
Collapse
Affiliation(s)
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan.
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
8
|
Rivas F, Del Mármol C, Scalese G, Pérez Díaz L, Machado I, Blacque O, Salazar F, Coitiño EL, Benítez D, Medeiros A, Comini M, Gambino D. Multifunctional Organometallic Compounds Active against Infective Trypanosomes: Ru(II) Ferrocenyl Derivatives with Two Different Bioactive Ligands. Inorg Chem 2024; 63:11667-11687. [PMID: 38860314 DOI: 10.1021/acs.inorgchem.4c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Human African trypanosomiasis (HAT, sleeping sickness) and American trypanosomiasis (Chagas disease) are endemic zoonotic diseases caused by genomically related trypanosomatid protozoan parasites (Trypanosoma brucei and Trypanosoma cruzi, respectively). Just a few old drugs are available for their treatment, with most of them sharing poor safety, efficacy, and pharmacokinetic profiles. Only fexinidazole has been recently incorporated into the arsenal for the treatment of HAT. In this work, new multifunctional Ru(II) ferrocenyl compounds were rationally designed as potential agents against these pathogens by including in a single molecule 1,1'-bis(diphenylphosphino)ferrocene (dppf) and two bioactive bidentate ligands: pyridine-2-thiolato-1-oxide ligand (mpo) and polypyridyl ligands (NN). Three [Ru(mpo)(dppf)(NN)](PF6) compounds and their derivatives with chloride as a counterion were synthesized and fully characterized in solid state and solution. They showed in vitro activity on bloodstream T. brucei (EC50 = 31-160 nM) and on T. cruzi trypomastigotes (EC50 = 190-410 nM). Compounds showed the lowest EC50 values on T. brucei when compared to the whole set of metal-based compounds previously developed by us. In addition, several of the Ru compounds showed good selectivity toward the parasites, particularly against the highly proliferative bloodstream form of T. brucei. Interaction with DNA and generation of reactive oxygen species (ROS) were ruled out as potential targets and modes of action of the Ru compounds. Biochemical assays and in silico analysis led to the insight that they are able to inhibit the NADH-dependent fumarate reductase from T. cruzi. One representative hit induced a mild oxidation of low molecular weight thiols in T. brucei. The compounds were stable for at least 72 h in two different media and more lipophilic than both bioactive ligands, mpo and NN. An initial assessment of the therapeutic efficacy of one of the most potent and selective candidates, [Ru(mpo)(dppf)(bipy)]Cl, was performed using a murine infection model of acute African trypanosomiasis. This hit compound lacks acute toxicity when applied to animals in the dose/regimen described, but was unable to control parasite proliferation in vivo, probably because of its rapid clearance or low biodistribution in the extracellular fluids. Future studies should investigate the pharmacokinetics of this compound in vivo and involve further research to gain deeper insight into the mechanism of action of the compounds.
Collapse
Affiliation(s)
- Feriannys Rivas
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Carolina Del Mármol
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Gonzalo Scalese
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Leticia Pérez Díaz
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Ignacio Machado
- Área Química Analítica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, CH 8057 Zurich, Switzerland
| | - Fabiana Salazar
- Laboratorio de Química Teórica y Computacional (LQTC), Instituto de Química Biológica, Facultad de Ciencias, and Centro de Investigaciones Biomédicas (CeInBio), Universidad de la República, 11400 Montevideo, Uruguay
| | - E Laura Coitiño
- Laboratorio de Química Teórica y Computacional (LQTC), Instituto de Química Biológica, Facultad de Ciencias, and Centro de Investigaciones Biomédicas (CeInBio), Universidad de la República, 11400 Montevideo, Uruguay
| | - Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Andrea Medeiros
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay
| | - Marcelo Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| |
Collapse
|
9
|
González-Montero MC, Andrés-Rodríguez J, García-Fernández N, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, García-Estrada C. Targeting Trypanothione Metabolism in Trypanosomatids. Molecules 2024; 29:2214. [PMID: 38792079 PMCID: PMC11124245 DOI: 10.3390/molecules29102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Infectious diseases caused by trypanosomatids, including African trypanosomiasis (sleeping sickness), Chagas disease, and different forms of leishmaniasis, are Neglected Tropical Diseases affecting millions of people worldwide, mainly in vulnerable territories of tropical and subtropical areas. In general, current treatments against these diseases are old-fashioned, showing adverse effects and loss of efficacy due to misuse or overuse, thus leading to the emergence of resistance. For these reasons, searching for new antitrypanosomatid drugs has become an urgent necessity, and different metabolic pathways have been studied as potential drug targets against these parasites. Considering that trypanosomatids possess a unique redox pathway based on the trypanothione molecule absent in the mammalian host, the key enzymes involved in trypanothione metabolism, trypanothione reductase and trypanothione synthetase, have been studied in detail as druggable targets. In this review, we summarize some of the recent findings on the molecules inhibiting these two essential enzymes for Trypanosoma and Leishmania viability.
Collapse
Affiliation(s)
- María-Cristina González-Montero
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Julia Andrés-Rodríguez
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Nerea García-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
10
|
Marín M, López M, Gallego-Yerga L, Álvarez R, Peláez R. Experimental structure based drug design (SBDD) applications for anti-leishmanial drugs: A paradigm shift? Med Res Rev 2024; 44:1055-1120. [PMID: 38142308 DOI: 10.1002/med.22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by at least 20 species of Leishmania protozoa, which are spread by the bite of infected sandflies. There are three main forms of the disease: cutaneous leishmaniasis (CL, the most common), visceral leishmaniasis (VL, also known as kala-azar, the most serious), and mucocutaneous leishmaniasis. One billion people live in areas endemic to leishmaniasis, with an annual estimation of 30,000 new cases of VL and more than 1 million of CL. New treatments for leishmaniasis are an urgent need, as the existing ones are inefficient, toxic, and/or expensive. We have revised the experimental structure-based drug design (SBDD) efforts applied to the discovery of new drugs against leishmaniasis. We have grouped the explored targets according to the metabolic pathways they belong to, and the key achieved advances are highlighted and evaluated. In most cases, SBDD studies follow high-throughput screening campaigns and are secondary to pharmacokinetic optimization, due to the majoritarian belief that there are few validated targets for SBDD in leishmaniasis. However, some SBDD strategies have significantly contributed to new drug candidates against leishmaniasis and a bigger number holds promise for future development.
Collapse
Affiliation(s)
- Miguel Marín
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Marta López
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Laura Gallego-Yerga
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
11
|
Gonçalves RCR, Teixeira F, Peñalver P, Costa SPG, Morales JC, Raposo MMM. Designing Antitrypanosomal and Antileishmanial BODIPY Derivatives: A Computational and In Vitro Assessment. Molecules 2024; 29:2072. [PMID: 38731562 PMCID: PMC11085077 DOI: 10.3390/molecules29092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Leishmaniasis and Human African trypanosomiasis pose significant public health threats in resource-limited regions, accentuated by the drawbacks of the current antiprotozoal treatments and the lack of approved vaccines. Considering the demand for novel therapeutic drugs, a series of BODIPY derivatives with several functionalizations at the meso, 2 and/or 6 positions of the core were synthesized and characterized. The in vitro activity against Trypanosoma brucei and Leishmania major parasites was carried out alongside a human healthy cell line (MRC-5) to establish selectivity indices (SIs). Notably, the meso-substituted BODIPY, with 1-dimethylaminonaphthalene (1b) and anthracene moiety (1c), were the most active against L. major, displaying IC50 = 4.84 and 5.41 μM, with a 16 and 18-fold selectivity over MRC-5 cells, respectively. In contrast, the mono-formylated analogues 2b and 2c exhibited the highest toxicity (IC50 = 2.84 and 6.17 μM, respectively) and selectivity (SI = 24 and 11, respectively) against T. brucei. Further insights on the activity of these compounds were gathered from molecular docking studies. The results suggest that these BODIPYs act as competitive inhibitors targeting the NADPH/NADP+ linkage site of the pteridine reductase (PR) enzyme. Additionally, these findings unveil a range of quasi-degenerate binding complexes formed between the PRs and the investigated BODIPY derivatives. These results suggest a potential correlation between the anti-parasitic activity and the presence of multiple configurations that block the same site of the enzyme.
Collapse
Affiliation(s)
- Raquel C R Gonçalves
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Advanced (Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Filipe Teixeira
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Susana P G Costa
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Juan C Morales
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - M Manuela M Raposo
- Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
12
|
Berhe H, Kumar Cinthakunta Sridhar M, Zerihun M, Qvit N. The Potential Use of Peptides in the Fight against Chagas Disease and Leishmaniasis. Pharmaceutics 2024; 16:227. [PMID: 38399281 PMCID: PMC10892537 DOI: 10.3390/pharmaceutics16020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Chagas disease and leishmaniasis are both neglected tropical diseases that affect millions of people around the world. Leishmaniasis is currently the second most widespread vector-borne parasitic disease after malaria. The World Health Organization records approximately 0.7-1 million newly diagnosed leishmaniasis cases each year, resulting in approximately 20,000-30,000 deaths. Also, 25 million people worldwide are at risk of Chagas disease and an estimated 6 million people are infected with Trypanosoma cruzi. Pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine are currently used to treat leishmaniasis. Also, nifurtimox and benznidazole are two drugs currently used to treat Chagas disease. These drugs are associated with toxicity problems such as nephrotoxicity and cardiotoxicity, in addition to resistance problems. As a result, the discovery of novel therapeutic agents has emerged as a top priority and a promising alternative. Overall, there is a need for new and effective treatments for Chagas disease and leishmaniasis, as the current drugs have significant limitations. Peptide-based drugs are attractive due to their high selectiveness, effectiveness, low toxicity, and ease of production. This paper reviews the potential use of peptides in the treatment of Chagas disease and leishmaniasis. Several studies have demonstrated that peptides are effective against Chagas disease and leishmaniasis, suggesting their use in drug therapy for these diseases. Overall, peptides have the potential to be effective therapeutic agents against Chagas disease and leishmaniasis, but more research is needed to fully investigate their potential.
Collapse
Affiliation(s)
| | | | | | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (H.B.); (M.K.C.S.); (M.Z.)
| |
Collapse
|
13
|
Pérez-Pertejo Y, García-Estrada C, Martínez-Valladares M, Murugesan S, Reguera RM, Balaña-Fouce R. Polyamine Metabolism for Drug Intervention in Trypanosomatids. Pathogens 2024; 13:79. [PMID: 38251386 PMCID: PMC10820115 DOI: 10.3390/pathogens13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Neglected tropical diseases transmitted by trypanosomatids include three major human scourges that globally affect the world's poorest people: African trypanosomiasis or sleeping sickness, American trypanosomiasis or Chagas disease and different types of leishmaniasis. Different metabolic pathways have been targeted to find antitrypanosomatid drugs, including polyamine metabolism. Since their discovery, the naturally occurring polyamines, putrescine, spermidine and spermine, have been considered important metabolites involved in cell growth. With a complex metabolism involving biosynthesis, catabolism and interconversion, the synthesis of putrescine and spermidine was targeted by thousands of compounds in an effort to produce cell growth blockade in tumor and infectious processes with limited success. However, the discovery of eflornithine (DFMO) as a curative drug against sleeping sickness encouraged researchers to develop new molecules against these diseases. Polyamine synthesis inhibitors have also provided insight into the peculiarities of this pathway between the host and the parasite, and also among different trypanosomatid species, thus allowing the search for new specific chemical entities aimed to treat these diseases and leading to the investigation of target-based scaffolds. The main molecular targets include the enzymes involved in polyamine biosynthesis (ornithine decarboxylase, S-adenosylmethionine decarboxylase and spermidine synthase), enzymes participating in their uptake from the environment, and the enzymes involved in the redox balance of the parasite. In this review, we summarize the research behind polyamine-based treatments, the current trends, and the main challenges in this field.
Collapse
Affiliation(s)
- Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| | | | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani 333031, India;
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| |
Collapse
|
14
|
Kumawat J, Jain S, Misra N, Dwivedi J, Kishore D. 1,3,5-Triazine: Recent Development in Synthesis of its Analogs and Biological Profile. Mini Rev Med Chem 2024; 24:2019-2071. [PMID: 38847171 DOI: 10.2174/0113895575309800240526180356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 10/25/2024]
Abstract
Triazine is an important pharmacophore in the field of research for the development of novel medications due to its presence in numerous powerful physiologically active compounds with significant medical potential, such as anti-tumor, anti-viral, anti-inflammatory, anti-microbial, anti- HIV, anti-leishmanial and others. The easy availability of triazine, high reactivity, simple synthesis of their analog, and their notable broad range of biological activities have garnered chemist interest in designing s-triazine-based drugs. The interest of medicinal chemists has been sparked by the structure-activity relationship of these biologically active entities, leading to the discovery of several promising lead molecules. Its importance for medicinal chemistry research is demonstrated by the remarkable progress made with triazine derivatives in treating a variety of disorders in a very short period. Authors have collated and reviewed the medicinal potential of s-triazine analogous to afford medicinal chemists with a thorough and target-oriented overview of triazine-derived compounds. We hope the present compilation will help people from the industry and research working in the medicinal chemistry area.
Collapse
Affiliation(s)
- Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Namita Misra
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| |
Collapse
|
15
|
de Almeida GC, de Oliveira GB, da Silva Monte Z, Costa ÉCS, da Silva Falcão EP, Scotti L, Scotti MT, Oliveira Silva R, Pereira VRA, da Silva ED, Junior PAS, de Andrade Cavalcante MK, de Melo SJ. Structure-based design, optimization of lead, synthesis, and biological evaluation of compounds active against Trypanosoma cruzi. Chem Biol Drug Des 2023; 102:843-856. [PMID: 37455325 DOI: 10.1111/cbdd.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/18/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Chagas' disease affects approximately eight million people throughout the world, especially the poorest individuals. The protozoan that causes this disease-Trypanosoma cruzi-has the enzyme cruzipain, which is the main therapeutic target. As no available medications have satisfactory effectiveness and safety, it is of fundamental importance to design and synthesize novel analogues that are more active and selective. In the present study, molecular docking and the in silico prediction of ADMET properties were used as strategies to optimize the trypanocidal activity of the pyrimidine compound ZN3F based on interactions with the target site in cruzipain. From the computational results, eight 4-amino-5-carbonitrile-pyrimidine analogues were proposed, synthesized (5a-f and 7g-h) and, tested in vitro on the trypomastigote form of the Tulahuen strain of T. cruzi. The in silico study showed that the designed analogues bond favorably to important amino acid residues of the active site in cruzipain. An in vitro evaluation of cytotoxicity was performed on L929 mammal cell lines. All derivatives inhibited the Tulahuen strain of T. cruzi and also exhibited lower toxicity to L929 cells. The 5e product, in particular, proved to be a potent, selective (IC50 = 2.79 ± 0.00 μM, selectivity index = 31.3) inhibitor of T. cruzi. The present results indicated the effectiveness of drugs based on the structure of the receptor, revealing the potential trypanocidal of pyrimidines. This study also provides information on molecular aspects for the inhibition of cruzipain.
Collapse
Affiliation(s)
- Gleybson Correia de Almeida
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | - Gerliny Bezerra de Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | - Zenaide da Silva Monte
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | - Érick Caique Santos Costa
- Postgraduate Program in Biological Sciences, Department of Biosciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| | | | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Ricardo Oliveira Silva
- Department of Fundamental Chemistry, Center for Exact and Natural Sciences, Federal University of Pernambuco, Av. Journalist Anibal Fernandes, Recife, Brazil
| | - Valéria Rêgo Alves Pereira
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco - Campus da Av. Prof. Moraes Rego, Recife, Brazil
| | - Elis Dionisio da Silva
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco - Campus da Av. Prof. Moraes Rego, Recife, Brazil
| | - Policarpo Ademar Sales Junior
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco - Campus da Av. Prof. Moraes Rego, Recife, Brazil
| | - Marton Kaique de Andrade Cavalcante
- Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Federal University of Pernambuco - Campus da Av. Prof. Moraes Rego, Recife, Brazil
| | - Sebastião José de Melo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Federal University of Pernambuco/UFPE, Recife, Brazil
- Postgraduate Program in Biological Sciences, Department of Biosciences, Federal University of Pernambuco/UFPE, Recife, Brazil
| |
Collapse
|
16
|
Nicolau MSP, Resende MA, Serafim P, Lima GYP, Ueira-Vieira C, Nicolau-Junior N, Yoneyama KAG. Identification of potential inhibitors for N-myristoyltransferase (NMT) protein of Plasmodium vivax. J Biomol Struct Dyn 2023; 41:7019-7031. [PMID: 36002266 DOI: 10.1080/07391102.2022.2114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
Malaria is a neglected parasitic infection of global importance. It is mainly present in tropical countries and caused by a protozoa that belongs to the genus Plasmodium. The disease vectors are female Anopheles mosquitoes infected with the Plasmodium spp. According to the World Health Organization (WHO), there were 241 million malaria cases worldwide in 2020 and approximately 627 thousand malaria deaths in the same year. The increasing resistance to treatment has been a major problem since the beginning of the 21st century. New studies have been conducted to find possible drugs that can be used for the eradication of the disease. In this scenario, a protein named N-myristoyltransferase (NMT) has been studied as a potential drug target. NMT has an important role on the myristoylation of proteins and binds to the plasma membrane, contributing to the stabilization of protein-protein interactions. Thus, inhibition of NMT can lead to death of the parasite cell. Therefore, in order to predict and detect potential inhibitors against Plasmodium NMT, Computer-Aided Drug Design techniques were used in this research that involve virtual screening, molecular docking, and molecular dynamics. Three potential compounds similar to a benzofuran inhibitor were identified as stable PvNMT ligands. These compounds (EXP90, ZBC205 and ZDD968) originate from three different sources, respectively: a commercial library, a natural product library, and the FDA approved drugs dataset. These compounds may be further tested in in vitro and in vivo inhibition tests against Plasmodium vivax NMT.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Milllena Almeida Resende
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Pedro Serafim
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Germano Yoneda Pereira Lima
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Carlos Ueira-Vieira
- Laboratory of Genetics, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Nilson Nicolau-Junior
- Laboratory of Molecular Modeling, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Kelly Aparecida Geraldo Yoneyama
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| |
Collapse
|
17
|
Gaona-López C, Martínez-Vázquez AV, Villalobos-Rocha JC, Juárez-Rendón KJ, Rivera G. Analysis of Giardia lamblia Nucleolus as Drug Target: A Review. Pharmaceuticals (Basel) 2023; 16:1168. [PMID: 37631082 PMCID: PMC10457859 DOI: 10.3390/ph16081168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Giardia lamblia (G. lamblia) is the main causative agent of diarrhea worldwide, affecting children and adults alike; in the former, it can be lethal, and in the latter a strong cause of morbidity. Despite being considered a predominant disease in low-income and developing countries, current migratory flows have caused an increase in giardiasis cases in high-income countries. Currently, there is a wide variety of chemotherapeutic treatments to combat this parasitosis, most of which have potentially serious side effects, such as genotoxic, carcinogenic, and teratogenic. The necessity to create novel treatments and discover new therapeutic targets to fight against this illness is evident. The current review centers around the controversial nucleolus of G. lamblia, providing a historical perspective that traces its apparent absence to the present evidence supporting its existence as a subnuclear compartment in this organism. Additionally, possible examples of ncRNAs and proteins ubiquitous to the nucleolus that can be used as targets of different therapeutic strategies are discussed. Finally, some examples of drugs under research that could be effective against G. lamblia are described.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | | | - Juan Carlos Villalobos-Rocha
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Karina Janett Juárez-Rendón
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.V.M.-V.); (K.J.J.-R.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
18
|
Mukherjee A, Hossain Z, Erben E, Ma S, Choi JY, Kim HS. Identification of a small-molecule inhibitor that selectively blocks DNA-binding by Trypanosoma brucei replication protein A1. Nat Commun 2023; 14:4390. [PMID: 37474515 PMCID: PMC10359466 DOI: 10.1038/s41467-023-39839-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
Replication Protein A (RPA) is a broadly conserved complex comprised of the RPA1, 2 and 3 subunits. RPA protects the exposed single-stranded DNA (ssDNA) during DNA replication and repair. Using structural modeling, we discover an inhibitor, JC-229, that targets RPA1 in Trypanosoma brucei, the causative parasite of African trypanosomiasis. The inhibitor is highly toxic to T. brucei cells, while mildly toxic to human cells. JC-229 treatment mimics the effects of TbRPA1 depletion, including DNA replication inhibition and DNA damage accumulation. In-vitro ssDNA-binding assays demonstrate that JC-229 inhibits the activity of TbRPA1, but not the human ortholog. Indeed, despite the high sequence identity with T. cruzi and Leishmania RPA1, JC-229 only impacts the ssDNA-binding activity of TbRPA1. Site-directed mutagenesis confirms that the DNA-Binding Domain A (DBD-A) in TbRPA1 contains a JC-229 binding pocket. Residue Serine 105 determines specific binding and inhibition of TbRPA1 but not T. cruzi and Leishmania RPA1. Our data suggest a path toward developing and testing highly specific inhibitors for the treatment of African trypanosomiasis.
Collapse
Affiliation(s)
- Aditi Mukherjee
- Public Health Research Institute, Rutgers Biomedical Health Sciences, Newark, NJ, 07103, USA
| | - Zakir Hossain
- Department of Chemistry and Biochemistry, Queens College, New York, NY, 11367, USA
| | - Esteban Erben
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Provincia de Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Provincia de Buenos Aires, Argentina
| | - Shuai Ma
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Jun Yong Choi
- Department of Chemistry and Biochemistry, Queens College, New York, NY, 11367, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Hee-Sook Kim
- Public Health Research Institute, Rutgers Biomedical Health Sciences, Newark, NJ, 07103, USA.
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, 07103, USA.
| |
Collapse
|
19
|
Burgess V, Maya JD. Statin and aspirin use in parasitic infections as a potential therapeutic strategy: A narrative review. Rev Argent Microbiol 2023; 55:278-288. [PMID: 37019801 DOI: 10.1016/j.ram.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/13/2022] [Accepted: 01/26/2023] [Indexed: 04/05/2023] Open
Abstract
Infections, including zoonoses, constitute a threat to human health due to the spread of resistant pathogens. These diseases generate an inflammatory response controlled by a resolving mechanism involving specialized membrane lipid-derived molecules called lipoxins, resolvins, maresins, and protectins. The production of some of these molecules can be triggered by aspirin or statins. Thus, it is proposed that modulation of the host response could be a useful therapeutic strategy, contributing to the management of resistance to antiparasitic agents or preventing drift to chronic, host-damaging courses. Therefore, the present work presents the state of the art on the use of statins or aspirin for the experimental management of parasitic infections such as Chagas disease, leishmaniasis, toxoplasmosis or malaria. The methodology used was a narrative review covering original articles from the last seven years, 38 of which met the inclusion criteria. Based on the publications consulted, modulation of the resolution of inflammation using statins may be feasible as an adjuvant in the therapy of parasitic diseases. However, there was no strong experimental evidence on the use of aspirin; therefore, further studies are needed to evaluate its role inflammation resolution process in infectious diseases.
Collapse
Affiliation(s)
- Valentina Burgess
- Escuela de Medicina, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Juan D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile.
| |
Collapse
|
20
|
Kruth S, Nett M. Aurachins, Bacterial Antibiotics Interfering with Electron Transport Processes. Antibiotics (Basel) 2023; 12:1067. [PMID: 37370386 DOI: 10.3390/antibiotics12061067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Aurachins are farnesylated quinolone alkaloids of bacterial origin and excellent inhibitors of the respiratory chain in pro- and eukaryotes. Therefore, they have become important tool compounds for the investigation of electron transport processes and they also serve as lead structures for the development of antibacterial and antiprotozoal drugs. Especially aurachin D proved to be a valuable starting point for structure-activity relationship studies. Aurachin D is a selective inhibitor of the cytochrome bd oxidase, which has received increasing attention as a target for the treatment of infectious diseases caused by mycobacteria. Moreover, aurachin D possesses remarkable activities against Leishmania donovani, the causative agent of leishmaniasis. Aurachins are naturally produced by myxobacteria of the genus Stigmatella as well as by some Streptomyces and Rhodococcus strains. The recombinant production of these antibiotics turned out to be challenging due to their complex biosynthesis and their inherent toxicity. Recently, the biotechnological production of aurachin D was established in E. coli with a titer which is higher than previously reported from natural producer organisms.
Collapse
Affiliation(s)
- Sebastian Kruth
- Laboratory of Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | - Markus Nett
- Laboratory of Technical Biology, Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
21
|
Gabaldón-Figueira JC, Martinez-Peinado N, Escabia E, Ros-Lucas A, Chatelain E, Scandale I, Gascon J, Pinazo MJ, Alonso-Padilla J. State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation. Res Rep Trop Med 2023; 14:1-19. [PMID: 37337597 PMCID: PMC10277022 DOI: 10.2147/rrtm.s415273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Chagas disease is the most important protozoan infection in the Americas, and constitutes a significant public health concern throughout the world. Development of new medications against its etiologic agent, Trypanosoma cruzi, has been traditionally slow and difficult, lagging in comparison with diseases caused by other kinetoplastid parasites. Among the factors that explain this are the incompletely understood mechanisms of pathogenesis of T. cruzi infection and its complex set of interactions with the host in the chronic stage of the disease. These demand the performance of a variety of in vitro and in vivo assays as part of any drug development effort. In this review, we discuss recent breakthroughs in the understanding of the parasite's life cycle and their implications in the search for new chemotherapeutics. For this, we present a framework to guide drug discovery efforts against Chagas disease, considering state-of-the-art preclinical models and recently developed tools for the identification and validation of molecular targets.
Collapse
Affiliation(s)
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Elisa Escabia
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - María-Jesús Pinazo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| |
Collapse
|
22
|
Alkhaldi AAM. Effects of Synthetic Ligustrazine-Based Chalcone Derivatives on Trypanosoma brucei brucei and Leishmania spp. Promastigotes. Molecules 2023; 28:4652. [PMID: 37375205 DOI: 10.3390/molecules28124652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Current medication therapy for leishmaniasis and trypanosomiasis remains a major challenge due to its limited efficacy, significant adverse effects, and inaccessibility. Consequently, locating affordable and effective medications is a pressing concern. Because of their easy-to-understand structure and high functionalization potential, chalcones are promising candidates for use as bioactive agents. Thirteen synthetic ligustrazine-containing chalcones were evaluated for their ability to inhibit the growth of leishmaniasis and trypanosomiasis in etiologic agents. The tetramethylpyrazine (TMP) analogue ligustrazine was chosen as the central moiety for the synthesis of these chalcone compounds. The most effective compound (EC50 = 2.59 µM) was the chalcone derivative 2c, which featured a pyrazin-2-yl amino on the ketone ring and a methyl substitution. Multiple actions were observed for certain derivatives, including 1c, 2a-c, 4b, and 5b, against all strains tested. Eflornithine served as a positive control, and three ligustrazine-based chalcone derivatives, including 1c, 2c, and 4b, had a higher relative potency. Compounds 1c and 2c are particularly efficacious; even more potent than the positive control, they are therefore promising candidates for the treatment of trypanosomiasis and leishmaniasis.
Collapse
|
23
|
Nascimento IJDS, Cavalcanti MDAT, de Moura RO. Exploring N-myristoyltransferase as a promising drug target against parasitic neglected tropical diseases. Eur J Med Chem 2023; 258:115550. [PMID: 37336067 DOI: 10.1016/j.ejmech.2023.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Neglected tropical diseases (NTDs) constitute a group of approximately 20 infectious diseases that mainly affect the impoverished population without basic sanitation in tropical countries. These diseases are responsible for many deaths worldwide, costing billions of dollars in public health investment to treat and control these infections. Among them are the diseases caused by protozoa of the Trypanosomatid family, which constitute Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness), and Leishmaniasis. In addition, there is a classification of other diseases, called the big three, AIDS, tuberculosis, and malaria, which are endemic in countries with tropical conditions. Despite the high mortality rates, there is still a gap in the treatment. The drugs have a high incidence of side effects and protozoan resistance, justifying the investment in developing new alternatives. In fact, the Target-Based Drug Design (TBDD) approach is responsible for identifying several promising compounds, and among the targets explored through this approach, N-myristoyltransferase (NMT) stands out. It is an enzyme related to the co-translational myristoylation of N-terminal glycine in various peptides. The myristoylation process is a co-translation that occurs after removing the initiator methionine. This process regulates the assembly of protein complexes and stability, which justifies its potential as a drug target. In order to propose NMT as a potential target for parasitic diseases, this review will address the entire structure and function of this enzyme and the primary studies demonstrating its promising potential against Leishmaniasis, T. cruzi, T. brucei, and malaria. We hope our information can help researchers worldwide search for potential drugs against these diseases that have been threatening the health of the world's population.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Cesmac University Center, Pharmacy Departament, Maceió, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil.
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil; Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
24
|
Kisula L, Siwe-Noundou X, Swart T, Hoppe HC, Mgani Q, Krause RWM. Synthesis, Molecular Docking Analysis and In vitro Evaluation of 1,4-
Dihydroxyanthraquinone Derivatives As Anti-Trypanosomal Agents. LETT ORG CHEM 2023; 20:507-518. [DOI: 10.2174/1570178620666221114100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Abstract:
Hydroxy-substituted anthraquinones are among the most important derivatives in organic
synthesis. The attractive biological properties of these compounds are relevant to many therapeutic areas
that are of use in clinical applications. In this study synthesized several amino-substituted anthraquinones
were synthesized from 1,4-dihydroxyanthraquinone using a modified Marschalk reaction.
Moreover, 1,4,5-trihydroxyanthraquinone was synthesized from anacardic acid, an agro-waste from
the cashew industry. The in-vitro screening of the compounds against Trypanosoma brucei parasites
revealed noteworthy activity with reasonable selectivity against human cell lines. A molecular docking
study was performed to analyze the synthesized compounds' modes of interaction to the trypanothione
reductase's active site. Visual inspections examined the docked poses, and test compounds displayed
a good binding affinity with the receptor protein. This in vitro/ molecular docking evaluation
suggests that substituted 1,4-dihydroxyanthraquinone derivative can be promising starting structures
in the search for active drugs against trypanosomiasis.
Collapse
Affiliation(s)
- Lydia Kisula
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda, 6140, South Africa
| | - Xavier Siwe-Noundou
- Department of
Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0204, South
Africa
| | - Tarryn Swart
- Departments of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda, 6140,
South Africa
| | - Heinrich C. Hoppe
- Departments of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Makhanda, 6140,
South Africa
| | - Quintino Mgani
- Department of Chemistry, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es
Salaam, Tanzania
| | - Rui WM Krause
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda, 6140, South Africa
- Center for Chemical and Biomedicinal Research (CCBR), Rhodes University, Makhanda, 6140,
South Africa
| |
Collapse
|
25
|
Cox Holanda de Barros Dias M, Souza Barbalho M, Bezerra de Oliveira Filho G, Veríssimo de Oliveira Cardoso M, Lima Leite AC, da Silva Santos AC, Cristovão Silva AC, Accioly Brelaz de Castro MC, Maria Nascimento Moura D, Gomes Rebello Ferreira LF, Zaldini Hernandes M, de Freitas E Silva R, Rêgo Alves Pereira V. 1,3-Thiazole derivatives as privileged structures for anti-Trypanosoma cruzi activity: Rational design, synthesis, in silico and in vitro studies. Eur J Med Chem 2023; 257:115508. [PMID: 37267753 DOI: 10.1016/j.ejmech.2023.115508] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Chagas disease is a deadly and centenary neglected disease that is recently surging as a potential global threat. Approximately 30% of infected individuals develop chronic Chagas cardiomyopathy and current treatment with the reference benznidazole (BZN) is ineffective for this stage. We presently report the structural planning, synthesis, characterization, molecular docking prediction, cytotoxicity, in vitro bioactivity and mechanistic studies on the anti-T. cruzi activity of a series of 16 novel 1,3-thiazoles (2-17) derived from thiosemicarbazones (1a, 1b) in a two-step and reproducible Hantzsch-based synthesis approach. The anti-T. cruzi activity was evaluated in vitro against the epimastigote, amastigote and trypomastigote forms of the parasite. In the bioactivity assays, all thiazoles were more potent than BZN against epimastigotes. We found that the compounds presented an overall increased anti-tripomastigote selectivity (Cpd 8 was 24-fold more selective) than BZN, and they mostly presented anti-amastigote activity at very low doses (from 3.65 μM, cpd 15). Mechanistic studies on cell death suggested that the series of 1,3-thiazole compounds herein reported cause parasite cell death through apoptosis, but without compromising the mitochondrial membrane potential. In silico prediction of physicochemical properties and pharmacokinetic parameters showed promising drug-like results, being all the reported compounds in compliance with Lipinski and Veber rules. In summary, our work contributes towards a more rational design of potent and selective antitripanosomal drugs, using affordable methodology to yield industrially viable drug candidates.
Collapse
Affiliation(s)
- Mabilly Cox Holanda de Barros Dias
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil.
| | - Mayara Souza Barbalho
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 50670- 420, Recife, Pernambuco, Brazil
| | - Gevanio Bezerra de Oliveira Filho
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | | | | | | | | | - Luiz Felipe Gomes Rebello Ferreira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Marcelo Zaldini Hernandes
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
26
|
Paoli-Lombardo R, Primas N, Hutter S, Bourgeade-Delmas S, Boudot C, Castera-Ducros C, Jacquet I, Courtioux B, Azas N, Rathelot P, Vanelle P. 6-Chloro-3-nitro-8-(phenylthio)-2-[(phenylthio)methyl] imidazo[1,2-a]pyridine. MOLBANK 2023. [DOI: 10.3390/m1613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
As part of our ongoing antikinetoplastid structure–activity relationship study focused on positions 2 and 8 of the 3-nitroimidazo[1,2-a]pyridine scaffold, we were able to introduce a phenylthioether moiety at both position 2 and position 8 in one step. Using a previously reported synthetic route developed in our laboratory, we obtained 6-chloro-3-nitro-8-(phenylthio)-2-[(phenylthio)methyl]imidazo[1,2-a]pyridine in 74% yield. The in vitro cell viability of this compound was assessed on the HepG2 cell line, and its in vitro activity was evaluated against the promastigote form of L. donovani, the axenic amastigote form of L. infantum and the trypomastigote blood stream form of T. b. brucei. It showed low solubility in HepG2 culture medium (CC50 > 7.8 µM), associated with weak activity against both the promastigote form of L. donovani (EC50 = 8.8 µM), the axenic amastigote form of L. infantum (EC50 = 9.7 µM) and the trypomastigote blood stream form of T. b. brucei (EC50 = 12.8 µM).
Collapse
|
27
|
Rojas-Pirela M, Kemmerling U, Quiñones W, Michels PAM, Rojas V. Antimicrobial Peptides (AMPs): Potential Therapeutic Strategy against Trypanosomiases? Biomolecules 2023; 13:biom13040599. [PMID: 37189347 DOI: 10.3390/biom13040599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Trypanosomiases are a group of tropical diseases that have devastating health and socio-economic effects worldwide. In humans, these diseases are caused by the pathogenic kinetoplastids Trypanosoma brucei, causing African trypanosomiasis or sleeping sickness, and Trypanosoma cruzi, causing American trypanosomiasis or Chagas disease. Currently, these diseases lack effective treatment. This is attributed to the high toxicity and limited trypanocidal activity of registered drugs, as well as resistance development and difficulties in their administration. All this has prompted the search for new compounds that can serve as the basis for the development of treatment of these diseases. Antimicrobial peptides (AMPs) are small peptides synthesized by both prokaryotes and (unicellular and multicellular) eukaryotes, where they fulfill functions related to competition strategy with other organisms and immune defense. These AMPs can bind and induce perturbation in cell membranes, leading to permeation of molecules, alteration of morphology, disruption of cellular homeostasis, and activation of cell death. These peptides have activity against various pathogenic microorganisms, including parasitic protists. Therefore, they are being considered for new therapeutic strategies to treat some parasitic diseases. In this review, we analyze AMPs as therapeutic alternatives for the treatment of trypanosomiases, emphasizing their possible application as possible candidates for the development of future natural anti-trypanosome drugs.
Collapse
|
28
|
Gomes SQ, Federico LB, Silva GM, Lopes CD, de Albuquerque S, da Silva CHTDP. Ligand-based virtual screening, molecular dynamics, and biological evaluation of repurposed drugs as inhibitors of Trypanosoma cruzi proteasome. J Biomol Struct Dyn 2023; 41:13844-13856. [PMID: 36826433 DOI: 10.1080/07391102.2023.2182129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/12/2023] [Indexed: 02/25/2023]
Abstract
Chagas disease is a well-known Neglected Tropical Disease, mostly endemic in continental Latin America, but that has spread to North America and Europe. Unfortunately, current treatments against such disease are ineffective and produce known and undesirable side effects. To find novel effective drug candidates to treat Chagas disease, we uniquely explore the Trypanosoma cruzi proteasome as a recent biological target and, also, apply drug repurposing through different computational methodologies. For this, we initially applied protein homology modeling to build a robust model of proteasome β4/β5 subunits, since there is no crystallographic structure of this target. Then, we used it on a drug repurposing via a virtual screening campaign starting with more than 8,000 drugs and including the methodologies: ligand-based similarity, toxicity predictions, and molecular docking. Three drugs were selected concerning their favorable interactions at the protein binding site and subsequently submitted to molecular dynamics simulations, which allowed us to elucidate their behavior and compare such theoretical results with experimental ones, obtained in biological assays also described in this paper.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suzane Quintana Gomes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Leonardo Bruno Federico
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Guilherme Martins Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Carla Duque Lopes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Sérgio de Albuquerque
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos Henrique Tomich de Paula da Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
29
|
Caroli AP, Mansoldo FRP, Cardoso VS, Lage CLS, Carmo FL, Supuran CT, Beatriz Vermelho A. Are patents important indicators of innovation for Chagas disease treatment? Expert Opin Ther Pat 2023; 33:193-209. [PMID: 36786067 DOI: 10.1080/13543776.2023.2176219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Chagas disease is a neglected, endemic disease in 21 countries, spreading to non-endemic countries too. Like other neglected diseases affecting primarily low- and middle-income countries, low investment and the absence of new chemical entities from the industry occurred. Increased knowledge about the parasite, drug targets, and vector control has been observed, but this was not translated into new drugs. The partnerships of pharmaceutical companies with academies and consolidated networks to increment the new drugs and treatment research in Chagas disease are shown. The current review analyzes in detail the patents dealing with compounds candidates for new drugs and treatment. The patent search was performed using Orbit Intelligence® software in the 2001-2021 period. AREAS COVERED The author focused specifically on patents for the treatment, the new candidates disclosed in the patents, and the barriers to innovation. EXPERT OPINION Patents in Chagas disease have been increasing in the last years, although they do not bring new compounds to an effective treatment.
Collapse
Affiliation(s)
- Andrea Pestana Caroli
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Felipe R P Mansoldo
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Veronica S Cardoso
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Celso Luiz Salgueiro Lage
- National Institute of Intellectual Property (INPI), Graduate and Research Division, Rio de Janeiro-RJ, Brazil
| | - Flavia L Carmo
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, LEMM - Molecular Microbial Ecology Laboratory
| | - Claudiu T Supuran
- NEUROFARBA Department Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Alane Beatriz Vermelho
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Henriquez-Figuereo A, Morán-Serradilla C, Angulo-Elizari E, Sanmartín C, Plano D. Small molecules containing chalcogen elements (S, Se, Te) as new warhead to fight neglected tropical diseases. Eur J Med Chem 2023; 246:115002. [PMID: 36493616 DOI: 10.1016/j.ejmech.2022.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Neglected tropical diseases (NTDs) encompass a group of infectious diseases with a protozoan etiology, high incidence, and prevalence in developing countries. As a result, economic factors constitute one of the main obstacles to their management. Endemic countries have high levels of poverty, deprivation and marginalization which affect patients and limit their access to proper medical care. As a matter of fact, statistics remain uncollected in some affected areas due to non-reporting cases. World Health Organization and other organizations proposed a plan for the eradication and control of the vector, although many of these plans were halted by the COVID-19 pandemic. Despite of the available drugs to treat these pathologies, it exists a lack of effectiveness against several parasite strains. Treatment protocols for diseases such as American trypanosomiasis (Chagas disease), leishmaniasis, and human African trypanosomiasis (HAT) have not achieved the desired results. Unfortunately, these drugs present limitations such as side effects, toxicity, teratogenicity, renal, and hepatic impairment, as well as high costs that have hindered the control and eradication of these diseases. This review focuses on the analysis of a collection of scientific shreds of evidence with the aim of identifying novel chalcogen-derived molecules with biological activity against Chagas disease, leishmaniasis and HAT. Compounds illustrated in each figure share the distinction of containing at least one chalcogen element. Sulfur (S), selenium (Se), and tellurium (Te) have been grouped and analyzed in accordance with their design strategy, chemical synthesis process and biological activity. After an exhaustive revision of the related literature on S, Se, and Te compounds, 183 compounds presenting excellent biological performance were gathered against the different causative agents of CD, leishmaniasis and HAT.
Collapse
Affiliation(s)
- Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| |
Collapse
|
31
|
Diyaolu OA, Preet G, Fagbemi AA, Annang F, Pérez-Moreno G, Bosch-Navarrete C, Adebisi OO, Oluwabusola ET, Milne BF, Jaspars M, Ebel R. Antiparasitic Activities of Compounds Isolated from Aspergillus fumigatus Strain Discovered in Northcentral Nigeria. Antibiotics (Basel) 2023; 12:antibiotics12010109. [PMID: 36671310 PMCID: PMC9854968 DOI: 10.3390/antibiotics12010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
In this study, we explored a fungal strain UIAU-3F identified as Aspergillus fumigatus isolated from soil samples collected from the River Oyun in Kwara State, Nigeria. In order to explore its chemical diversity, the fungal strain UIAU-3F was cultured in three different fermentation media, which resulted in different chemical profiles, evidenced by LC-ESI-MS-based metabolomics and multivariate analysis. The methanolic extract afforded two known compounds, fumitremorgin C (1) and pseurotin D (2). The in vitro antiparasitic assays of 1 against Trypanosoma cruzi and Plasmodium falciparum showed moderate activity with IC50 values of 9.6 µM and 2.3 µM, respectively, while 2 displayed IC50 values > 50 µM. Molecular docking analysis was performed on major protein targets to better understand the potential mechanism of the antitrypanosomal and antiplasmodial activities of the two known compounds.
Collapse
Affiliation(s)
- Oluwatofunmilayo A. Diyaolu
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- Correspondence:
| | - Gagan Preet
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Adeshola A. Fagbemi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Lead City University, Ibadan 200005, Nigeria
| | - Frederick Annang
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento 34, Armilla, 18016 Granada, Spain
| | - Guiomar Pérez-Moreno
- Institut de Parasitiologia Biomedicina “Lopez-Neyra”, Consejo Superior de Investigaciones Cientificas (CSIC) Avda. Del Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Cristina Bosch-Navarrete
- Institut de Parasitiologia Biomedicina “Lopez-Neyra”, Consejo Superior de Investigaciones Cientificas (CSIC) Avda. Del Conocimiento 17, Armilla, 18016 Granada, Spain
| | - Olusoji O. Adebisi
- School of Biosciences, Aston University Birmingham, Birmingham B4 7ET, UK
| | - Emmanuel T. Oluwabusola
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Bruce F. Milne
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
- CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| | - Rainer Ebel
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK
| |
Collapse
|
32
|
Rivas F, Del Mármol C, Scalese G, Pérez-Díaz L, Machado I, Blacque O, Medeiros A, Comini M, Gambino D. New multifunctional Ru(II) organometallic compounds show activity against Trypanosoma brucei and Leishmania infantum. J Inorg Biochem 2022; 237:112016. [PMID: 36244312 DOI: 10.1016/j.jinorgbio.2022.112016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Human African trypanosomiasis (sleeping sickness) and leishmaniasis are prevalent zoonotic diseases caused by genomically related trypanosomatid protozoan parasites (Trypanosoma brucei and Leishmania spp). Additionally, both are co-endemic in certain regions of the world. Only a small number of old drugs exist for their treatment, with most of them sharing poor safety, efficacy, and pharmacokinetic profiles. In this work, new multifunctional Ru(II) ferrocenyl compounds were rationally designed as potential agents against these trypanosomatid parasites by including in a single molecule 1,1'-bis(diphenylphosphino)ferrocene (dppf) and two bioactive bidentate ligands: 8-hydroxyquinoline derivatives (8HQs) and polypyridyl ligands (NN). Three [Ru(8HQs)(dppf)(NN)](PF6) compounds were synthesized and fully characterized. They showed in vitro activity on bloodstream Trypanosoma brucei (IC50 140-310 nM) and on Leishmania infantum promastigotes (IC50 3.0-4.8 μM). The compounds showed good selectivity towards T. brucei in respect to J774 murine macrophages as mammalian cell model (SI 15-38). Changing hexafluorophosphate counterion by chloride led to a three-fold increase in activity on both parasites and to a two to three-fold increase in selectivity towards the pathogens. The compounds affect in vitro at least the targets of the individual bioactive moieties included in the new chemical entities: DNA and generation of ROS. The compounds are stable in solution and are more lipophilic than the free bioactive ligands. No clear correlation between lipophilicity, interaction with DNA or generation of ROS and activity was detected, which agrees with their overall similar anti-trypanosoma potency and selectivity. These compounds are promising candidates for further drug development.
Collapse
Affiliation(s)
- Feriannys Rivas
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay; Programa de Posgrado en Química, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Carolina Del Mármol
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Scalese
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ignacio Machado
- Área Química Analítica, Universidad de la República, Montevideo, Uruguay
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Andrea Medeiros
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Marcelo Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
33
|
The Broad-Spectrum Antitrypanosomal Inhibitory Efficiency of the Antimetabolite/Anticancer Drug Raltitrexed. Processes (Basel) 2022. [DOI: 10.3390/pr10112158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Raltitrexed is a classical antifolate drug with antimetabolite and anticancer properties. In this research, we provide its detailed antitrypanosomal inhibition against six Trypanosoma species and investigate its potential mode of action. Molecular dynamics (MD) simulations and in silico analyses were used to track the binding strength and stability. Raltitrexed showed broad-spectrum trypanocidal actions against Trypanosoma brucei brucei GUTat3.1, T. b. rhodesiense IL1501, T. b. gambiense IL1922, T. evansi Tansui, T. equiperdum IVM-t1 and T. congolense IL3000. The estimated IC50 was found to be in the range of 5.18–24.13 µg/mL, indicating inhibition of Trypanosoma in the low micromolar range. Although the co-crystallized ligand had robust hydrogen bonding and lipophilic characteristics, its docking score was only −4.6 compared to raltitrexed’s −7.78, indicating strong binding with T. brucei dihydrofolate reductase-thymidylate synthase (TbDHFR-TS). MD simulations support the strong binding of raltitrexed with TbDHFR-TS evidenced by low root mean square deviation (RMSD), low residues fluctuations, a tight radius of gyration (ROG) and an average of 3.38 ± 1.3 hydrogen bonds during 50 ns MD simulation. The prospective extended spectrum of raltitrexed against Trypanosoma species grants further research for the synthesis of raltitrexed derivatives and repurposing against other protozoa.
Collapse
|
34
|
Sharma A, Cipriano M, Ferrins L, Hajduk SL, Mensa-Wilmot K. Hypothesis-generating proteome perturbation to identify NEU-4438 and acoziborole modes of action in the African Trypanosome. iScience 2022; 25:105302. [PMID: 36304107 PMCID: PMC9593816 DOI: 10.1016/j.isci.2022.105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/24/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
NEU-4438 is a lead for the development of drugs against Trypanosoma brucei, which causes human African trypanosomiasis. Optimized with phenotypic screening, targets of NEU-4438 are unknown. Herein, we present a cell perturbome workflow that compares NEU-4438's molecular modes of action to those of SCYX-7158 (acoziborole). Following a 6 h perturbation of trypanosomes, NEU-4438 and acoziborole reduced steady-state amounts of 68 and 92 unique proteins, respectively. After analysis of proteomes, hypotheses formulated for modes of action were tested: Acoziborole and NEU-4438 have different modes of action. Whereas NEU-4438 prevented DNA biosynthesis and basal body maturation, acoziborole destabilized CPSF3 and other proteins, inhibited polypeptide translation, and reduced endocytosis of haptoglobin-hemoglobin. These data point to CPSF3-independent modes of action for acoziborole. In case of polypharmacology, the cell-perturbome workflow elucidates modes of action because it is target-agnostic. Finally, the workflow can be used in any cell that is amenable to proteomic and molecular biology experiments.
Collapse
Affiliation(s)
- Amrita Sharma
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Michael Cipriano
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lori Ferrins
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Stephen L. Hajduk
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kojo Mensa-Wilmot
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA,Corresponding author
| |
Collapse
|
35
|
Panecka-Hofman J, Poehner I, Wade R. Anti-trypanosomatid structure-based drug design - lessons learned from targeting the folate pathway. Expert Opin Drug Discov 2022; 17:1029-1045. [PMID: 36073204 DOI: 10.1080/17460441.2022.2113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Trypanosomatidic parasitic infections of humans and animals caused by Trypanosoma brucei, Trypanosoma cruzi, and Leishmania species pose a significant health and economic burden in developing countries. There are few effective and accessible treatments for these diseases, and the existing therapies suffer from problems such as parasite resistance and side effects. Structure-based drug design (SBDD) is one of the strategies that has been applied to discover new compounds targeting trypanosomatid-borne diseases. AREAS COVERED We review the current literature (mostly over the last 5 years, searched in PubMed database on Nov 11th 2021) on the application of structure-based drug design approaches to identify new anti-trypanosomatidic compounds that interfere with a validated target biochemical pathway, the trypanosomatid folate pathway. EXPERT OPINION The application of structure-based drug design approaches to perturb the trypanosomatid folate pathway has successfully provided many new inhibitors with good selectivity profiles, most of which are natural products or their derivatives or have scaffolds of known drugs. However, the inhibitory effect against the target protein(s) often does not translate to anti-parasitic activity. Further progress is hampered by our incomplete understanding of parasite biology and biochemistry, which is necessary to complement SBDD in a multiparameter optimization approach to discovering selective anti-parasitic drugs.
Collapse
Affiliation(s)
- Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5a, 02-097 Warsaw, Poland
| | - Ina Poehner
- School of Pharmacy, University of Eastern Finland, Kuopio, Yliopistonranta 1C, PO Box 1627, FI-70211 Kuopio, Finland
| | - Rebecca Wade
- Center for Molecular Biology (ZMBH), Heidelberg University, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.,Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany.,DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg 69120, Germany
| |
Collapse
|
36
|
Estrella-Parra EA, Arreola R, Álvarez-Sánchez ME, Torres-Romero JC, Rojas-Espinosa O, De la Cruz-Santiago JA, Martinez-Benitez MB, López-Camarillo C, Lara-Riegos JC, Arana-Argáez VE, Ramírez-Camacho MA. Natural marine products as antiprotozoal agents against amitochondrial parasites. Int J Parasitol Drugs Drug Resist 2022; 19:40-46. [PMID: 35636129 PMCID: PMC9157375 DOI: 10.1016/j.ijpddr.2022.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
The goal of this work is to compile and discuss molecules of marine origin reported in the scientific literature with anti-parasitic activity against Trichomonas, Giardia, and Entamoeba, parasites responsible for diseases that are major global health problems, and Microsporidial parasites as an emerging problem. The presented data correspond to metabolites with anti-parasitic activity in human beings that have been isolated by chromatographic techniques from marine sources and structurally elucidated by spectroscopic and spectrometric procedures. We also highlight some semi-synthetic derivatives that have been successful in enhancing the activity of original compounds. The biological oceanic reservoir offers the possibility to discover new biologically active molecules as lead compounds to develop new drug candidates. The molecular variety is extensive and must be correctly explored and managed. Also, it will be necessary to take some actions to preserve the source species from extinction or overharvest (e.g., by cryopreservation of coral spermatozoa, oocytes, embryos, and larvae) and coordinate appropriate exploitation to increase the chemical knowledge of the natural products generated in the oceans. Additional initiatives such as the total synthesis of complex natural products and their derivatives can help to prevent overharvest of the marine ecosystems and at the same time contribute to the discovery of new molecules.
Collapse
Affiliation(s)
- Edgar Antonio Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. De los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, Mexico
| | - Rodrigo Arreola
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | - Maria Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo 290, Col. Del Valle, 03100, Mexico City, Mexico.
| | | | - Oscar Rojas-Espinosa
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), 11340, Ciudad de México, Mexico
| | - José Alberto De la Cruz-Santiago
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | - Máximo Berto Martinez-Benitez
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | - Cesar López-Camarillo
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | | | | | | |
Collapse
|
37
|
Ali V, Behera S, Nawaz A, Equbal A, Pandey K. Unique thiol metabolism in trypanosomatids: Redox homeostasis and drug resistance. ADVANCES IN PARASITOLOGY 2022; 117:75-155. [PMID: 35878950 DOI: 10.1016/bs.apar.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Trypanosomatids are mainly responsible for heterogeneous parasitic diseases: Leishmaniasis, Sleeping sickness, and Chagas disease and control of these diseases implicates serious challenges due to the emergence of drug resistance. Redox-active biomolecules are the endogenous substances in organisms, which play important role in the regulation of redox homeostasis. The redox-active substances like glutathione, trypanothione, cysteine, cysteine persulfides, etc., and other inorganic intermediates (hydrogen peroxide, nitric oxide) are very useful as defence mechanism. In the present review, the suitability of trypanothione and other essential thiol molecules of trypanosomatids as drug targets are described in Leishmania and Trypanosoma. We have explored the role of tryparedoxin, tryparedoxin peroxidase, ascorbate peroxidase, superoxide dismutase, and glutaredoxins in the anti-oxidant mechanism and drug resistance. Up-regulation of some proteins in trypanothione metabolism helps the parasites in survival against drug pressure (sodium stibogluconate, Amphotericin B, etc.) and oxidative stress. These molecules accept electrons from the reduced trypanothione and donate their electrons to other proteins, and these proteins reduce toxic molecules, neutralize reactive oxygen, or nitrogen species; and help parasites to cope with oxidative stress. Thus, a better understanding of the role of these molecules in drug resistance and redox homeostasis will help to target metabolic pathway proteins to combat Leishmaniasis and trypanosomiases.
Collapse
Affiliation(s)
- Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India.
| | - Sachidananda Behera
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Afreen Nawaz
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Asif Equbal
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India; Department of Botany, Araria College, Purnea University, Purnia, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| |
Collapse
|
38
|
Probing Adamantane Arylhydroxamic Acids against Trypanosoma brucei and Trypanosoma cruzi. MOLBANK 2022. [DOI: 10.3390/m1363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, we present the synthesis and the anti-trypanosomal activity of the 2-(4-(adamant-1-yl)phenyl)-N-hydroxyarylamides, 1a,b and the 2-(4-(adamant-1-yl)phenoxy)-N-hydroxyacetamide, 1c. The 4-(adamant-1-yl)phenyl- and 4-(adamant-1-yl)phenoxy- moieties, which are endowed with promising drug-like properties, are functionalized at the side chain termini as hydroxamic acids. The phenoxy acetohydroxamic derivative, 1c, shows the most interesting profile in terms of activity and toxicity against trypanosomes and merits further investigation.
Collapse
|
39
|
Brogi S, Ibba R, Rossi S, Butini S, Calderone V, Gemma S, Campiani G. Covalent Reversible Inhibitors of Cysteine Proteases Containing the Nitrile Warhead: Recent Advancement in the Field of Viral and Parasitic Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082561. [PMID: 35458759 PMCID: PMC9029279 DOI: 10.3390/molecules27082561] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022]
Abstract
In the field of drug discovery, the nitrile group is well represented among drugs and biologically active compounds. It can form both non-covalent and covalent interactions with diverse biological targets, and it is amenable as an electrophilic warhead for covalent inhibition. The main advantage of the nitrile group as a warhead is mainly due to its milder electrophilic character relative to other more reactive groups (e.g., -CHO), reducing the possibility of unwanted reactions that would hinder the development of safe drugs, coupled to the ease of installation through different synthetic approaches. The covalent inhibition is a well-assessed design approach for serine, threonine, and cysteine protease inhibitors. The mechanism of hydrolysis of these enzymes involves the formation of a covalent acyl intermediate, and this mechanism can be exploited by introducing electrophilic warheads in order to mimic this covalent intermediate. Due to the relevant role played by the cysteine protease in the survival and replication of infective agents, spanning from viruses to protozoan parasites, we will review the most relevant and recent examples of protease inhibitors presenting a nitrile group that have been introduced to form or to facilitate the formation of a covalent bond with the catalytic cysteine active site residue.
Collapse
Affiliation(s)
- Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.B.); (V.C.)
| | - Roberta Ibba
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (R.I.); (S.R.); (S.B.); (G.C.)
| | - Sara Rossi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (R.I.); (S.R.); (S.B.); (G.C.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (R.I.); (S.R.); (S.B.); (G.C.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.B.); (V.C.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (R.I.); (S.R.); (S.B.); (G.C.)
- Correspondence:
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (R.I.); (S.R.); (S.B.); (G.C.)
| |
Collapse
|
40
|
Vaccine Design against Chagas Disease Focused on the Use of Nucleic Acids. Vaccines (Basel) 2022; 10:vaccines10040587. [PMID: 35455336 PMCID: PMC9028413 DOI: 10.3390/vaccines10040587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi and is endemic to Central and South America. However, it has spread around the world and affects several million people. Treatment with currently available drugs cause several side effects and require long treatment times to eliminate the parasite, however, this does not improve the chronic effects of the disease such as cardiomyopathy. A therapeutic vaccine for Chagas disease may be able to prevent the disease and improve the chronic effects such as cardiomyopathy. This vaccine would be beneficial for both infected people and those which are at risk in endemic and non-endemic areas. In this article, we will review the surface antigens of T. cruzi, in order to choose those that are most antigenic and least variable, to design effective vaccines against the etiological agent of Chagas disease. Also, we discuss aspects of the design of nucleic acid-based vaccines, which have been developed and proven to be effective against the SARS-CoV-2 virus. The role of co-adjuvants and delivery carriers is also discussed. We present an example of a chimeric trivalent vaccine, based on experimental work, which can be used to design a vaccine against Chagas disease.
Collapse
|
41
|
Scalese G, Kostenkova K, Crans DC, Gambino D. Metallomics and other omics approaches in antiparasitic metal-based drug research. Curr Opin Chem Biol 2022; 67:102127. [DOI: 10.1016/j.cbpa.2022.102127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/17/2021] [Accepted: 01/24/2022] [Indexed: 01/08/2023]
|
42
|
Durão R, Ramalhete C, Madureira AM, Mendes E, Duarte N. Plant Terpenoids as Hit Compounds against Trypanosomiasis. Pharmaceuticals (Basel) 2022; 15:ph15030340. [PMID: 35337138 PMCID: PMC8951850 DOI: 10.3390/ph15030340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Human African trypanosomiasis (sleeping sickness) and American trypanosomiasis (Chagas disease) are vector-borne neglected tropical diseases, caused by the protozoan parasites Trypanosoma brucei and Trypanosoma cruzi, respectively. These diseases were circumscribed to South American and African countries in the past. However, human migration, military interventions, and climate changes have had an important effect on their worldwide propagation, particularly Chagas disease. Currently, the treatment of trypanosomiasis is not ideal, becoming a challenge in poor populations with limited resources. Exploring natural products from higher plants remains a valuable approach to find new hits and enlarge the pipeline of new drugs against protozoal human infections. This review covers the recent studies (2016–2021) on plant terpenoids, and their semi-synthetic derivatives, which have shown promising in vitro and in vivo activities against Trypanosoma parasites.
Collapse
Affiliation(s)
- Raquel Durão
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
| | - Cátia Ramalhete
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
- ATLANTICA—Instituto Universitário, Fábrica da Pólvora de Barcarena, 2730-036 Barcarena, Portugal
| | - Ana Margarida Madureira
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
| | - Eduarda Mendes
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
| | - Noélia Duarte
- Research Institute for Medicines (iMED.Ulisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (R.D.); (C.R.); (A.M.M.); (E.M.)
- Correspondence:
| |
Collapse
|
43
|
Kasozi KI, MacLeod ET, Ntulume I, Welburn SC. An Update on African Trypanocide Pharmaceutics and Resistance. Front Vet Sci 2022; 9:828111. [PMID: 35356785 PMCID: PMC8959112 DOI: 10.3389/fvets.2022.828111] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 12/22/2022] Open
Abstract
African trypanosomiasis is associated with Trypanosoma evansi, T. vivax, T. congolense, and T. brucei pathogens in African animal trypanosomiasis (AAT) while T. b gambiense and T. b rhodesiense are responsible for chronic and acute human African trypanosomiasis (HAT), respectively. Suramin sodium suppresses ATP generation during the glycolytic pathway and is ineffective against T. vivax and T. congolense infections. Resistance to suramin is associated with pathogen altered transport proteins. Melarsoprol binds irreversibly with pyruvate kinase protein sulfhydryl groups and neutralizes enzymes which interrupts the trypanosome ATP generation. Melarsoprol resistance is associated with the adenine-adenosine transporter, P2, due to point mutations within this transporter. Eflornithine is used in combination with nifurtimox. Resistance to eflornithine is caused by the deletion or mutation of TbAAT6 gene which encodes the transmembrane amino acid transporter that delivers eflornithine into the cell, thus loss of transporter protein results in eflornithine resistance. Nifurtimox alone is regarded as a poor trypanocide, however, it is effective in melarsoprol-resistant gHAT patients. Resistance is associated with loss of a single copy of the genes encoding for nitroreductase enzymes. Fexinidazole is recommended for first-stage and non-severe second-stage illnesses in gHAT and resistance is associated with trypanosome bacterial nitroreductases which reduce fexinidazole. In AAT, quinapyramine sulfate interferes with DNA synthesis and suppression of cytoplasmic ribosomal activity in the mitochondria. Quinapyramine sulfate resistance is due to variations in the potential of the parasite's mitochondrial membrane. Pentamidines create cross-links between two adenines at 4–5 pairs apart in adenine-thymine-rich portions of Trypanosoma DNA. It also suppresses type II topoisomerase in the mitochondria of Trypanosoma parasites. Pentamidine resistance is due to loss of mitochondria transport proteins P2 and HAPT1. Diamidines are most effective against Trypanosome brucei group and act via the P2/TbAT1 transporters. Diminazene aceturate resistance is due to mutations that alter the activity of P2, TeDR40 (T. b. evansi). Isometamidium chloride is primarily employed in the early stages of trypanosomiasis and resistance is associated with diminazene resistance. Phenanthridine (homidium bromide, also known as ethidium bromide) acts by a breakdown of the kinetoplast network and homidium resistance is comparable to isometamidium. In humans, the development of resistance and adverse side effects against monotherapies has led to the adoption of nifurtimox-eflornithine combination therapy. Current efforts to develop new prodrug combinations of nifurtimox and eflornithine and nitroimidazole fexinidazole as well as benzoxaborole SCYX-7158 (AN5568) for HAT are in progress while little comparable progress has been done for the development of novel therapies to address trypanocide resistance in AAT.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- School of Medicine, Kabale University, Kabale, Uganda
- *Correspondence: Keneth Iceland Kasozi ;
| | - Ewan Thomas MacLeod
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ibrahim Ntulume
- School of Biosecurity Biotechnical and Laboratory Sciences, College of Medicine and Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Hangzhou, China
- Susan Christina Welburn
| |
Collapse
|
44
|
Qiu L, Zhang X, Tong J. A calculation method for designing new Trypanosoma brucei leucyl-tRNA synthetase inhibitors: combining QSAR and molecular docking technology. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Gambino D, Otero L. Facing Diseases Caused by Trypanosomatid Parasites: Rational Design of Pd and Pt Complexes With Bioactive Ligands. Front Chem 2022; 9:816266. [PMID: 35071192 PMCID: PMC8777014 DOI: 10.3389/fchem.2021.816266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
Human African Trypanosomiasis (HAT), Chagas disease or American Trypanosomiasis (CD), and leishmaniases are protozoan infections produced by trypanosomatid parasites belonging to the kinetoplastid order and they constitute an urgent global health problem. In fact, there is an urgent need of more efficient and less toxic chemotherapy for these diseases. Medicinal inorganic chemistry currently offers an attractive option for the rational design of new drugs and, in particular, antiparasitic ones. In this sense, one of the main strategies for the design of metal-based antiparasitic compounds has been the coordination of an organic ligand with known or potential biological activity, to a metal centre or an organometallic core. Classical metal coordination complexes or organometallic compounds could be designed as multifunctional agents joining, in a single molecule, different chemical species that could affect different parasitic targets. This review is focused on the rational design of palladium(II) and platinum(II) compounds with bioactive ligands as prospective drugs against trypanosomatid parasites that has been conducted by our group during the last 20 years.
Collapse
Affiliation(s)
- Dinorah Gambino
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Lucía Otero
- Área Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
46
|
The Oxidative Stress and Chronic Inflammatory Process in Chagas Disease: Role of Exosomes and Contributing Genetic Factors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:4993452. [PMID: 34976301 PMCID: PMC8718323 DOI: 10.1155/2021/4993452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/27/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the flagellated protozoa Trypanosoma cruzi that affects several million people mainly in Latin American countries. Chagas disease has two phases, which are acute and chronic, both separated by an indeterminate time period in which the infected individual is relatively asymptomatic. The acute phase extends for 40-60 days with atypical and mild symptoms; however, about 30% of the infected patients will develop a symptomatic chronic phase, which is characterized by either cardiac, digestive, neurological, or endocrine problems. Cardiomyopathy is the most important and severe result of Chagas disease, which leads to left ventricular systolic dysfunction, heart failure, and sudden cardiac death. Most deaths are due to heart failure (70%) and sudden death (30%) resulting from cardiomyopathy. During the chronic phase, T. cruzi-infected macrophages respond with the production of proinflammatory cytokines and production of superoxide and nitric oxide by the NADPH oxidase 2 (NOX2) and inducible nitric oxide synthase (iNOS) enzymes, respectively. During the chronic phase, myocardial changes are produced as a result of chronic inflammation, oxidative stress, fibrosis, and cell death. The cellular inflammatory response is mainly the result of activation of the NF-κB-dependent pathway, which activates gene expression of inflammatory cytokines, leading to progressive tissue damage. The persisting production of reactive oxygen species (ROS) is the result of mitochondrial dysfunction in the cardiomyocytes. In this review, we will discuss inflammation and oxidative damage which is produced in the heart during the chronic phase of Chagas disease and recent evidence on the role of macrophages and the production of proinflammatory cytokines during the acute phase and the origin of macrophages/monocytes during the chronic phase of Chagas disease. We will also discuss the contributing factors and mechanisms leading to the chronic inflammation of the cardiac tissue during the chronic phase of the disease as well as the innate and adaptive host immune response. The contribution of genetic factors to the progression of the chronic inflammatory cardiomyopathy of chronic Chagas disease is also discussed. The secreted extracellular vesicles (exosomes) produced for both T. cruzi and infected host cells can play key roles in the host immune response, and those roles are described. Lastly, we describe potential treatments to attenuate the chronic inflammation of the cardiac tissue, designed to improve heart function in chagasic patients.
Collapse
|
47
|
Decreased glutamate transport in acivicin resistant Leishmania tarentolae. PLoS Negl Trop Dis 2021; 15:e0010046. [PMID: 34914690 PMCID: PMC8718007 DOI: 10.1371/journal.pntd.0010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Studies of drug resistance in the protozoan parasites of the genus Leishmania have been helpful in revealing biochemical pathways as potential drug targets. The chlorinated glutamine analogue acivicin has shown good activity against Leishmania cells and was shown to target several enzymes containing amidotransferase domains. We selected a Leishmania tarentolae clone for acivicin resistance. The genome of this resistant strain was sequenced and the gene coding for the amidotransferase domain-containing GMP synthase was found to be amplified. Episomal expression of this gene in wild-type L. tarentolae revealed a modest role in acivicin resistance. The most prominent defect observed in the resistant mutant was reduced uptake of glutamate, and through competition experiments we determined that glutamate and acivicin, but not glutamine, share the same transporter. Several amino acid transporters (AATs) were either deleted or mutated in the resistant cells. Some contributed to the acivicin resistance phenotype although none corresponded to the main glutamate transporter. Through sequence analysis one AAT on chromosome 22 corresponded to the main glutamate transporter. Episomal expression of the gene coding for this transporter in the resistant mutant restored glutamate transport and acivicin susceptibility. Its genetic knockout led to reduced glutamate transport and acivicin resistance. We propose that acivicin binds covalently to this transporter and as such leads to decreased transport of glutamate and acivicin thus leading to acivicin resistance. Studies of drug resistance in the protozoan parasites of the genus Leishmania have been helpful in revealing biochemical pathways as potential drug targets. Here we report on the characterization at the genomics and metabolomics levels of a L. tarentolae strain made resistant to acivicin, an analogue of glutamine with activity against this parasite. We found that resistance to acivicin is accompanied by a reduced uptake and intracellular levels of glutamate and that both are expected to share the same transporter. Through gene overexpression and disruption studies we identified the main amino acid transporter responsible for glutamate uptake.
Collapse
|
48
|
Bethencourt-Estrella CJ, Nocchi N, López-Arencibia A, San Nicolás-Hernández D, Souto ML, Suárez-Gómez B, Díaz-Marrero AR, Fernández JJ, Lorenzo-Morales J, Piñero JE. Antikinetoplastid Activity of Sesquiterpenes Isolated from the Zoanthid Palythoa aff. clavata. Pharmaceuticals (Basel) 2021; 14:ph14111095. [PMID: 34832876 PMCID: PMC8625207 DOI: 10.3390/ph14111095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis and Chagas disease are neglected tropical diseases that cause problems in developing countries. The causative agents, Leishmania spp. and Trypanosoma cruzi, produce a clinical picture that can be fatal for the patient, such as Chagas heart disease, visceral leishmaniasis and megacolon, among others. Current treatments for these diseases are not very effective and highly toxic, since they require very prolonged treatments. The development of innovative, effective and safe drugs to fight infections caused by these parasites remains a challenge. For this reason, in recent years, there has been an increase in the search for new therapies. In this study, the antikinetoplastid activity of 13 sesquiterpene lactones obtained from Palythoa aff. clavata was screened against L. amazonensis, L. donovani and T. cruzi. The results revealed that the sesquiterpene lactones anhydroartemorin (2), cis,trans-costunolide-14-acetate (3) and 4-hydroxyarbusculin A (11) were the most selective against the kinetoplastid species studied. These molecules seem to induce the mechanisms involved in an apoptotic-like death or programmed cell death (PCD) in the kinetoplastids, and since they do not cause necrosis, the inflammatory events associated with this type of cell death will not be triggered.
Collapse
Affiliation(s)
- Carlos J. Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Spain; (C.J.B.-E.); (A.L.-A.); (D.S.N.-H.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Spain
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), 28029 Madrid, Spain
| | - Nathalia Nocchi
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (N.N.); (M.L.S.); (B.S.-G.)
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Spain
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Spain; (C.J.B.-E.); (A.L.-A.); (D.S.N.-H.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Spain
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), 28029 Madrid, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Spain; (C.J.B.-E.); (A.L.-A.); (D.S.N.-H.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Spain
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), 28029 Madrid, Spain
| | - María L. Souto
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (N.N.); (M.L.S.); (B.S.-G.)
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Spain
| | - Blanca Suárez-Gómez
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (N.N.); (M.L.S.); (B.S.-G.)
| | - Ana R. Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (N.N.); (M.L.S.); (B.S.-G.)
- Correspondence: (A.R.D.-M.); (J.J.F.); (J.L.-M.); (J.E.P.)
| | - José J. Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; (N.N.); (M.L.S.); (B.S.-G.)
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Spain
- Correspondence: (A.R.D.-M.); (J.J.F.); (J.L.-M.); (J.E.P.)
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Spain; (C.J.B.-E.); (A.L.-A.); (D.S.N.-H.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Spain
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), 28029 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (A.R.D.-M.); (J.J.F.); (J.L.-M.); (J.E.P.)
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Spain; (C.J.B.-E.); (A.L.-A.); (D.S.N.-H.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38203 La Laguna, Spain
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), 28029 Madrid, Spain
- Consorcio Centro de Investigacion Biomedica en Red M.P. (CIBER) de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (A.R.D.-M.); (J.J.F.); (J.L.-M.); (J.E.P.)
| |
Collapse
|
49
|
Identification of a proteasome-targeting arylsulfonamide with potential for the treatment of Chagas' disease. Antimicrob Agents Chemother 2021; 66:e0153521. [PMID: 34606338 PMCID: PMC8765320 DOI: 10.1128/aac.01535-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phenotypic screening identified an arylsulfonamide compound with activity against Trypanosoma cruzi, the causative agent of Chagas’ disease. Comprehensive mode of action studies revealed that this compound primarily targets the T. cruzi proteasome, binding at the interface between β4 and β5 subunits that catalyze chymotrypsin-like activity. A mutation in the β5 subunit of the proteasome was associated with resistance to compound 1, while overexpression of this mutated subunit also reduced susceptibility to compound 1. Further genetically engineered and in vitro-selected clones resistant to proteasome inhibitors known to bind at the β4/β5 interface were cross-resistant to compound 1. Ubiquitinated proteins were additionally found to accumulate in compound 1-treated epimastigotes. Finally, thermal proteome profiling identified malic enzyme as a secondary target of compound 1, although malic enzyme inhibition was not found to drive potency. These studies identify a novel pharmacophore capable of inhibiting the T. cruzi proteasome that may be exploitable for anti-chagasic drug discovery.
Collapse
|