1
|
Huh SY, Lee YL, Kim SH, Lee SY. Efficacy of rice bran extract for alleviating depressive symptoms in adults: A randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 2025:S0002-9165(25)00276-X. [PMID: 40409466 DOI: 10.1016/j.ajcnut.2025.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Preclinical research indicates the potential benefit of rice bran extract supplements (RBS) in improving depressive-like behaviors and symptoms. OBJECTIVE We aimed to evaluate the efficacy and safety of an 8-week administration of RBS in alleviating depressive symptoms among adults with mild-to-moderate symptom severity. METHODS This randomized, double-blind, placebo-controlled trial included 100 adults (aged 19-75 years) with scores of 7-24 on the Korean version of the Hamilton Depression Rating Scale (K-HDRS). Participants were randomly assigned to receive 1 g/day of RBS or a placebo for 8 weeks. Evaluations at baseline and after 8 weeks included mood assessments using K-HDRS, the Korean version of the Beck Depression Inventory-II (K-BDI-II), the Patient Health Questionnaire-9 (K-PHQ-9), the Beck Anxiety Inventory (K-BAI), and other psychological scales. Biomarker measurements included serum brain-derived neurotrophic factor, serotonin, dopamine, and salivary cortisol. RESULTS In the RBS and placebo groups, 47 and 50 participants, respectively, completed the intervention. At 8 weeks, the RBS group exhibited greater reductions in K-HDRS scores compared to the placebo group (P<0.001), with adjusted differences of -5.73 (95% confidence interval [CI]: -7.07, -4.39; intention-to treat analysis [ITT]) and -5.95 (95% CI: -7.33, -4.57, per-protocol analysis [PP]), corresponding to percent changes of -45.1% (ITT) and -46.0% (PP), respectively. A trend toward greater reductions in the percent changes of K-BDI-II and K-BAI scores was observed in the RBS group compared to the placebo group (ITT and PP). Notably, K-PHQ-9 scores were lower in the RBS group than in the placebo group (P=0.026, PP) after 8 weeks of treatment. However, no significant intergroup differences were identified in other questionnaire scores or biomarker measurements. No adverse events were reported. CONCLUSION RBS may provide a beneficial effect on depressive symptoms of mild-to-moderate severity in adults. This trial was registered at clinicaltrials.gov as NCT05180136. https://clinicaltrials.gov/study/NCT05180136.
Collapse
Affiliation(s)
- Sung-Young Huh
- Department of Psychiatry, Pusan National University Yangsan Hospital and Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Ye Li Lee
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, Republic of Korea
| | - Su Hui Kim
- Food and Bio-Industry Research Institute, School of Food Science & Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Yeoup Lee
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, Republic of Korea; Family Medicine Clinic and Biomedical Research Institute, Pusan National University Yangsan Hospital and Department of Medical Education, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| |
Collapse
|
2
|
Alam N, Ding X, Fu Y, Jia L, Ali S, Liu E. Oryzanol ameliorates MCD-induced metabolic dysfunction-associated steatohepatitis in mice via gut microbiota reprogramming and TLR4/NF-κB signaling suppression. Am J Physiol Gastrointest Liver Physiol 2025; 328:G578-G593. [PMID: 40243180 DOI: 10.1152/ajpgi.00190.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 03/03/2025] [Indexed: 04/18/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) has emerged as a major global health concern that affects about a quarter of the global population. Recently, host-gut microbiota metabolic interactions have emerged as key mechanistic pathways in MASH development. Oryzanol (ORY), a rice bran bioactive compound, exhibits antioxidant, anti-inflammatory, hypolipidemic, and hypoglycemic properties. Here, we investigated the potential of ORY in alleviating MASH and its association with gut microbiota and MASH progression. Male C57BL/6J mice were fed normal chow diet or methionine-choline-deficient diet and received ORY supplementation at 300 mg/kg/day via gavage for 4 wk. Liver injury, inflammation, lipid accumulation, and TLR4/NF-κB signaling protein levels were assessed. In addition, changes in gut microbiota diversity and abundance across groups were evaluated using 16S rDNA sequencing. Our results demonstrated that ORY significantly reduced lipid accumulation and liver enzymes, ameliorated liver and ileum damage, and restored intestinal barrier function in MASH mice. Furthermore, ORY decreased plasma lipopolysaccharide levels, and inflammatory cytokines and downregulated TLR4, MyD88, and NF-κB protein levels in the liver. ORY enhanced tight junction protein level (ZO-1, occludin) in the gut. Microbial analysis revealed that ORY positively impacted Firmicutes and Bacteroidetes abundance, promoted beneficial bacteria like Lactobacillus and Lachnospiraceae_NK4A136_group, and inhibited harmful bacteria such as Mucispirillum, Bacteroides, and Colidextribacter. Notably, ORY increased Akkermansia abundance, potentially modulating metabolic and inflammatory pathways. ORY exerted restorative and reversible effects on the pathophysiological damage within the gut-liver axis in MASH mice. The therapeutic mechanism may be related to the modulation of the gut microbiota and TLR4/NF-κB signaling pathway.NEW & NOTEWORTHY This study demonstrates that oryzanol (ORY), a bioactive rice bran compound, alleviates metabolic dysfunction-associated steatohepatitis (MASH) in mice by reducing lipid accumulation and inflammation. ORY beneficial effects are associated to the modulation of gut microbiota, enhancing gut barrier integrity, and lowering endotoxemia and TLR4/NF-κB signaling pathway. These findings suggest ORY potential in MASH prevention and treatment, highlighting its influence on gut-liver axis dynamics.
Collapse
Affiliation(s)
- Naqash Alam
- Laboratory of Animal Center, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xinhua Ding
- Laboratory of Animal Center, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yu Fu
- Laboratory of Animal Center, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Linying Jia
- Laboratory of Animal Center, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Sadiq Ali
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Enqi Liu
- Laboratory of Animal Center, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
3
|
Baixinho JP, Cardeira M, Bento-Silva A, Partidário AMC, Serra AT, Bronze MDR, Fernández N. Optimization of Supercritical Fluid Extraction for the Recovery of γ-Oryzanol-Rich Extracts with Improved Bioactivity from Rice Bran. Antioxidants (Basel) 2025; 14:206. [PMID: 40002392 PMCID: PMC11852124 DOI: 10.3390/antiox14020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Rice bran (RB) is a rice processing by-product recognized to be a source of bioactive compounds, including γ-oryzanol and fatty acids, which have interesting bioactivities such as antioxidant and anti-inflammatory effects. This study aims to optimize the supercritical fluid extraction process for recovering these high-value compounds from rice bran with improved bioactivity. A Central Composite Face-Centered Design was employed to optimize the extraction process by varying the temperature (40-80 °C) and pressure (200-500 bar). The optimal extraction conditions were identified at 500 bar and 62 °C that led to the extraction of 17.3% mass yield with 784.5 mg of fatty acids and 36.6 mg of γ-oryzanol per gram of extract, striking a balance between extraction yield and bioactive concentrations. When compared with conventional extractions with n-hexane, supercritical fluid extraction showed similar global yield (18.0 vs. 17.3%) and FA concentration (130.14 vs. 135.70 mg/g of RB) but higher selectivity and extraction yield for γ-oryzanol (18.0 vs. 36.4 mg/g extract; 3.3 vs. 6.3 mg/g of RB). Cellular antioxidant activity assays showed that both extracts reduced the quantity of reactive oxygen species (ROS) up to 50% in Caco-2 cells submitted to oxidative stress. Importantly, supercritical fluid extract was more effective in inhibiting colorectal cancer cell growth (EC50 = 0.9 mg/mL vs. 1.15 mg/mL) than the hexane extract, and this effect was more pronounced than that obtained for pure γ-oryzanol in the same concentration range. These findings highlight the potential of supercritical fluid technology to develop rice bran extracts with antioxidant and antiproliferative properties, underlining the promising applications of this technology in the field of natural product extraction.
Collapse
Affiliation(s)
- João P. Baixinho
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (M.C.); (A.T.S.); (M.d.R.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Martim Cardeira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (M.C.); (A.T.S.); (M.d.R.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Andreia Bento-Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-003 Lisboa, Portugal;
| | - Ana Maria Carvalho Partidário
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Unidade de Tecnologia e Inovação, Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (M.C.); (A.T.S.); (M.d.R.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria do Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (M.C.); (A.T.S.); (M.d.R.B.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-003 Lisboa, Portugal;
| | - Naiara Fernández
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (M.C.); (A.T.S.); (M.d.R.B.)
| |
Collapse
|
4
|
Du X, Zhang M, Wang R, Zeng Z, Zhao W, Fang B, Lan H, Hung W, Gao H. Bifidobacterium lactis-Derived Vesicles Attenuate Hippocampal Neuroinflammation by Targeting IL-33 to Regulate FoxO6/P53 Signaling. Nutrients 2024; 16:3586. [PMID: 39519420 PMCID: PMC11547434 DOI: 10.3390/nu16213586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hippocampal Neuroinflammation (HNF) is a critical driver of cognitive impairment. The lipopolysaccharide (LPS) accumulate amyloid beta (Aβ) and lead to HNF. The Bifidobacterium lactis (BL) 99 have anti-inflammatory ability. However, whether BL99-derived microbiota-derived vesicles (MV) could alleviate LPS-induced HNF remains unclear. METHODS To investigate, we used ultrafiltration with ultracentrifuge to extract BL99-derived-MV (BL99-MV). We used hippocampal neuronal HT22 cells (HT22) to establish the LPS-induced HNF model, and explored whether BL99-MV alleviate LPS-induced HNF. RESULTS The confocal microscopy showed that BL99-MV were taken up by HT22 and reduced the oxidative stress (ROS) level. The PCR showed that BL99-MV up-regulate IL-10 level, and down-regulate TNF-α, IL-1β, and IL-6. Transcriptomic analysis revealed 4127 differentially expressed genes, with 2549 genes upregulated and 1578 genes downregulated in the BL99-MV group compared to the LPS group. Compared to the LPS group, BL99-MV decreased FoxO6, IL-33, P53, and NFκB expression, but increased FoxO1 and Bcl2 expression. The WB showed that BL99-MV modulated NFκB, FoxO6, P53, Caspase9, and Caspase3 protein expression by reducing IL-33 expression in HT22. The findings demonstrated IL-33 as a regulator for FoxO6/P53 signaling. CONCLUSIONS Here, we hypothesized that BL99-MV alleviated LPS-induced HNF to promote HT22 survival and synaptic development by regulating FoxO6/P53 signaling by targeting IL-33.
Collapse
Affiliation(s)
- Xiaoyu Du
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (M.Z.)
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (M.Z.)
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (W.Z.); (B.F.)
| | - Zhaozhong Zeng
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (Z.Z.); (H.L.)
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010100, China
| | - Wen Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (W.Z.); (B.F.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (W.Z.); (B.F.)
| | - Hanglian Lan
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (Z.Z.); (H.L.)
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010100, China
| | - Weilian Hung
- National Center of Technology Innovation for Dairy, Hohhot 010110, China; (Z.Z.); (H.L.)
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010100, China
| | - Haina Gao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (M.Z.)
| |
Collapse
|
5
|
Chao YW, Tung YT, Yang SC, Shirakawa H, Su LH, Loe PY, Chiu WC. The Effects of Rice Bran on Neuroinflammation and Gut Microbiota in Ovariectomized Mice Fed a Drink with Fructose. Nutrients 2024; 16:2980. [PMID: 39275295 PMCID: PMC11397027 DOI: 10.3390/nu16172980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Rice bran, which is abundant in dietary fiber and phytochemicals, provides multiple health benefits. Nonetheless, its effects on neuroinflammation and gut microbiota in postmenopausal conditions are still not well understood. This study investigated the effects of rice bran and/or tea seed oil supplementation in d-galactose-injected ovariectomized (OVX) old mice fed a fructose drink. The combination of d-galactose injection, ovariectomy, and fructose drink administration creates a comprehensive model that simulates aging in females under multiple metabolic stressors, including oxidative stress, estrogen deficiency, and high-sugar diets, and allows the study of their combined impact on metabolic disorders and related diseases. Eight-week-old and 6-8-month-old female C57BL/6 mice were used. The mice were divided into six groups: a sham + young mice, a sham + old mice, an OVX + soybean oil, an OVX + soybean oil with rice bran, an OVX + tea seed oil (TO), and an OVX + TO with rice bran diet group. The OVX groups were subcutaneously injected with d-galactose (100 mg/kg/day) and received a 15% (v/v) fructose drink. The rice bran and tea seed oil supplementation formed 10% of the diet (w/w). The results showed that the rice bran with TO diet increased the number of short-chain fatty acid (SCFA)-producing Clostridia and reduced the number of endotoxin-producing Tannerellaceae, which mitigated imbalances in the gut-liver-brain axis. Rice bran supplementation reduced the relative weight of the liver, levels of hepatic triglycerides and total cholesterol; aspartate transaminase and alanine aminotransferase activity; brain levels of proinflammatory cytokines, including interleukin-1β and tumor necrosis factor-α; and plasma 8-hydroxy-2-deoxyguanosine. This study concludes that rice bran inhibits hepatic fat accumulation, which mitigates peripheral metaflammation and oxidative damage and reduces neuroinflammation in the brain.
Collapse
Affiliation(s)
- Yu-Wen Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Hitoshi Shirakawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Li-Han Su
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Pei-Yu Loe
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| |
Collapse
|
6
|
Yan H, Cai S, Wang F. Efficacy and feasibility analysis of compound fluocinolone acetonide cream combined with guaiazulene in the treatment of neurodermatitis. Arch Dermatol Res 2024; 316:546. [PMID: 39162834 DOI: 10.1007/s00403-024-03315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
OBJECTIVE To evaluate the effectiveness and feasibility of combined treatment with compound fluocinolone acetonide cream and guaiazulene in patients with neurodermatitis. METHODS A prospective study was conducted on 92 outpatient patients diagnosed with neurodermatitis at our dermatology department from January 2022 to December 2023. Using a random number table, these patients were evenly divided into a control group and an experimental group, with 46 individuals in each group. The control group received treatment with compound fluocinolone acetonide alone, while the experimental group additionally received oral guaiazulene tablets. Clinical symptom and sign scores, Visual Analog Scale (VAS) scores, skin lesion itching scores, comprehensive efficacy, treatment onset time, adverse reactions, and quality of life were monitored, recorded, and compared. RESULTS In the 2-week treatment period, patients in the experimental group showed significant improvement in skin symptoms and signs, with scores significantly lower than those in the control group (P < 0.05). After treatment, VAS and skin lesion itching scores in the experimental group were significantly reduced (P < 0.05), demonstrating a more pronounced therapeutic advantage compared to the control group (P < 0.05). Although the effective rate in the experimental group was as high as 86.96%, there was no significant advantage compared to the control group, and the difference in treatment efficacy was not significant (P > 0.05). The treatment onset time in the experimental group was significantly shorter than that in the control group (P < 0.05), and the incidence of adverse reactions was lower (P < 0.05). The quality of life in the experimental group improved significantly after treatment, with DLQI scores lower than those in the control group (P < 0.05). CONCLUSION Combined treatment with compound fluocinolone acetonide cream and guaiazulene demonstrates excellent efficacy and feasibility in the management of neurodermatitis. Compared to standard treatment alone, it yields superior clinical outcomes.
Collapse
Affiliation(s)
- He Yan
- Department of Pharmacy, Geriatric Hospital Affiliated with Wuhan University of Science and Technology, Wuhan, 430065, Hubei Province, China
| | - Silong Cai
- Department of Dermatology, Geriatric Hospital Affiliated with Wuhan University of Science and Technology, No. 6, Huangjiahu Road, Wuhan, 430065, Hubei Province, China
| | - Fen Wang
- Department of Dermatology, Geriatric Hospital Affiliated with Wuhan University of Science and Technology, No. 6, Huangjiahu Road, Wuhan, 430065, Hubei Province, China.
| |
Collapse
|
7
|
Abate G, Pezzotta A, Pucci M, Bortolotto V, Ribaudo G, Bonini SA, Mastinu A, Maccarinelli G, Ongaro A, Tirelli E, Zizioli D, Gianoncelli A, Memo M, Grilli M, Uberti D. The Bioactive Gamma-Oryzanol from Oryza sativa L. Promotes Neuronal Differentiation in Different In Vitro and In Vivo Models. Antioxidants (Basel) 2024; 13:969. [PMID: 39199215 PMCID: PMC11352202 DOI: 10.3390/antiox13080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
Gamma-oryzanol (ORY), found in rice (Oryza sativa L.), is a mixture of ferulic acid esters with triterpene alcohols, well-known for its antioxidant and anti-inflammatory properties. Our past research demonstrated its positive impact on cognitive function in adult mice, influencing synaptic plasticity and neuroprotection. In this study, we explored whether ORY can exert neuro-differentiating effects by using different experimental models. For this purpose, chemical characterization identified four components that are most abundant in ORY. In human neuroblastoma cells, we showed ORY's ability to stimulate neurite outgrowth, upregulating the expression of GAP43, BDNF, and TrkB genes. In addition, ORY was found to guide adult mouse hippocampal neural progenitor cells (NPCs) toward a neuronal commitment. Microinjection of ORY in zebrafish Tg (-3.1 neurog1:GFP) amplified neurog1-GFP signal, islet1, and bdnf mRNA levels. Zebrafish nrf2a and nrf2b morphants (MOs) were utilized to assess ORY effects in the presence or absence of Nrf2. Notably, ORY's ability to activate bdnf was nullified in nrf2a-MO and nrf2b-MO. Furthermore, computational analysis suggested ORY's single components have different affinities for the Keap1-Kelch domain. In conclusion, although more in-depth studies are needed, our findings position ORY as a potential source of bioactive molecules with neuro-differentiating potential involving the Nrf2 pathway.
Collapse
Affiliation(s)
- Giulia Abate
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Alex Pezzotta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy;
| | - Mariachiara Pucci
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Valeria Bortolotto
- Laboratory of Neuroplasticity, University of Piemonte Orientale, 28100 Novara, Italy; (V.B.); (M.G.)
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Sara A. Bonini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Emanuela Tirelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, University of Piemonte Orientale, 28100 Novara, Italy; (V.B.); (M.G.)
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (G.A.); (G.R.); (S.A.B.); (A.M.); (G.M.); (A.O.); (E.T.); (D.Z.); (A.G.); (M.M.); (D.U.)
| |
Collapse
|
8
|
Zeini S, Davoodian N, Kazemi H, Shareghi Brojeni M, Ghani E, Arab Firouzjaei M, Atashabparvar A. Resveratrol prevents cognitive impairment and hippocampal inflammatory response induced by lipopolysaccharide in a mouse model of chronic neuroinflammation. Physiol Behav 2024; 278:114508. [PMID: 38460779 DOI: 10.1016/j.physbeh.2024.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Neurodegenerative disorders are associated with chronic neuroinflammation, which contributes to their pathogenesis and progression. Resveratrol (RSV) is a polyphenolic compound with strong antioxidant and anti-inflammatory properties. In the present study, we investigated whether RSV could protect against cognitive impairment and inflammatory response in a mouse model of chronic neuroinflammation induced by lipopolysaccharide (LPS). METHOD Mice received oral RSV (30 mg/kg) or vehicle for two weeks, and injected with LPS (0.75 mg/kg) or saline daily for the last seven days. After two weeks, mice were subjected to behavioral assessments using the Morris water maze and Y-maze. Moreover, mRNA expression of several inflammatory markers, neuronal loss, and glial density were evaluated in the hippocampus of treated mice. RESULTS Our findings showed that RSV treatment effectively improved spatial and working memory impairments induced by LPS. In addition, RSV significantly reduced hippocampal glial densities and neuronal loss in LPS-injected mice. Moreover, RSV treatment suppressed LPS-induced upregulation of NF-κB, IL-6, IL-1β, and GFAP in the hippocampus of treated mice. CONCLUSION Taken together, our results highlight the detrimental effect of systemic inflammation on the hippocampus and the potential of natural products with anti-inflammatory effects to counteract this impact.
Collapse
Affiliation(s)
- Shiva Zeini
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Haniyeh Kazemi
- Department of Physiology, The Medical School, Shiraz Medical University, of Medical Sciences, Shiraz, Iran
| | - Masoud Shareghi Brojeni
- Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Arab Firouzjaei
- Department of Physiology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Atashabparvar
- Department of Pathology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
9
|
Nikooyeh B, Zargaraan A, Ebrahimof S, Kalayi A, Zahedirad M, Yazdani H, Rismanchi M, Karami T, Khazraei M, Jafarpour A, Neyestani TR. Added γ-oryzanol boosted anti-inflammatory effects of canola oil in adult subjects with type 2 diabetes: a randomized controlled clinical trial. Eur J Nutr 2024; 63:425-433. [PMID: 37971692 DOI: 10.1007/s00394-023-03275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE This study was conducted to examine the effects of daily intake of γ-oryzanol (ORZ)-fortified canola oil, as compared with plain canola and sunflower oils, on certain inflammatory and oxidative stress biomarkers in adult subjects with Type 2 Diabetes (T2D). METHODS We randomly allocated 92 adult subjects with T2D from both sexes to one of the following groups to receive: (a) ORZ-fortified canola oil (ORZO; n1 = 30); (b) unfortified canola oil (CANO; n2 = 32); or (c) sunflower oil (SUFO; n3 = 30) for 12 weeks. Dietary and laboratory evaluations were performed initially and finally. RESULTS Serum hs-CRP concentrations significantly decreased in ORZO group (from 3.1 ± 0.2 to 1.2 ± 0.2 mg/L), as compared with CANO (p = 0.003) and SUFO (p < 0.001) groups. Serum IL-6 significantly decreased just in ORZO (- 22.8%, p = 0.042) and CANO groups (- 19.8%, p = 0.038). However, the between-group differences were not significant. Serum IL-1β slightly decreased in ORZO (- 28.1%, p = 0.11) and increased in SUFO (+ 20.6%, p = 0.079) but between-group difference was statistically significant (p = 0.017). Serum IFN-γ concentrations decreased significantly only in ORZO (from 3.3 ± 0.08 to 2.9 ± 0.21 IU/mL, p = 0.044). Salivary IgA concentrations increased significantly in all three intervention groups. Notwithstanding, only the difference between ORZO and CANO groups was statistically significant (p = 0.042). Similarly, circulating malondialdehyde concentrations significantly decreased in all three groups but with no between-group significant difference. CONCLUSIONS Daily consumption of ORZ-fortified canola oil, compared with unfortified canola and sunflower oils, for 12 weeks resulted in boosting of certain anti-inflammatory effects of canola oil. These findings may have preventive implications for both clinicians and policy makers. This clinical trial was registered at clinicaltrials.gov (03.08.2022; NCT05271045).
Collapse
Affiliation(s)
- Bahareh Nikooyeh
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azizollaah Zargaraan
- Department of Food and Nutrition Policy and Planning Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition and Food Science, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Samira Ebrahimof
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Kalayi
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maliheh Zahedirad
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hootan Yazdani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Rismanchi
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Karami
- Department of Research and Development, Kourosh Food Industry, Tehran, Iran
| | | | - Ali Jafarpour
- Quality Assurance Unit, Kourosh Food Industry, Tehran, Iran
| | - Tirang R Neyestani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Zeini S, Davoodian N, Mousavi SA. Gamma-oryzanol attenuates lipopolysaccharide-induced cognitive impairment by modulation of hippocampal inflammatory response and glial activation in mice. J Neuroimmunol 2024; 387:578292. [PMID: 38278081 DOI: 10.1016/j.jneuroim.2024.578292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
Systemic inflammation can cause chronic neuroinflammation, which is a significant risk factor for neurodegenerative disorders. Therefore, anti-inflammatory agents that reduce peripheral inflammation are potential targets for the prevention or treatment of these debilitating diseases. In the present study, we investigated whether gamma-oryzanol (ORY) could protect against chronic neuroinflammation induced by lipopolysaccharide (LPS) in adult male mice. Mice were injected with LPS (0.75 mg/kg/day) or saline for 7 consecutive days and orally received ORY (100 mg/kg) or vehicle for 14 days (7 days before LPS injections and 7 days co-treated with LPS). After two weeks, mice were subjected to behavioral assessments using the Morris water maze and Y-maze. Moreover, the expression level of several inflammatory mediators was measured in the hippocampus of treated animals. Also, neuronal loss, microglia, and astrocyte densities were evaluated in the CA1 and CA3 hippocampus. We found that ORY treatment significantly improved spatial and working memory in LPS-treated mice. This behavioral improvement was accompanied by a significant reduction in the number of microglia and astrocytes in the CA1 and CA3 hippocampus. Moreover, ORY treatment effectively prevented LPS-induced increases in the expression of inflammatory mediators and enhanced neuronal survival in the CA1 hippocampus. Our findings suggest that ORY treatment can be a therapeutic option to improve cognitive impairments and neuroinflammation induced by endotoxins.
Collapse
Affiliation(s)
- Shiva Zeini
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Nahid Davoodian
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Seyed Abdollah Mousavi
- Pathology Department, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
11
|
Kim M, Yoon M, Cho S, Lee C, Um MY. γ-Oryzanol Ameliorates Depressive Behavior in Ovariectomized Mice by Regulating Hippocampal Nitric Oxide Synthase: A Potential Therapy for Menopausal Depression. Mol Nutr Food Res 2024; 68:e2300253. [PMID: 38054627 DOI: 10.1002/mnfr.202300253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/18/2023] [Indexed: 12/07/2023]
Abstract
SCOPE Depression is a severe mental condition, common among menopausal women. γ-Oryzanol (ORY) has various biological properties; however, the effect of ORY on menopausal depression and its underlying mechanisms have not been investigated. METHODS AND RESULTS ORY is orally administered to ovariectomized (OVX) mice for 20 weeks. ORY administration results in lower immobility time in the tail suspension and forced swim test and increases locomotor activity in the open field test. In the primary hippocampal neurons and hippocampi of OVX mice, ORY treatment increases nitric oxide (NO) production and neuronal NO synthase (nNOS) expression. Further, the phosphorylation of extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), and tropomyosin receptor kinase B, along with the expression of brain-derived neurotrophic factior (BDNF), is upregulated. These stimulatory effects of ORY are diminished by treatment with estrogen receptor β (ERβ) antagonist. ORY similarly interacts with ERβ in the molecular docking analysis. Moreover, intracerebroventricular injection of 7-nitroindazole, a nNOS inhibitor, abolishes the antidepressant effects of ORY. CONCLUSIONS The results indicate that ORY attenuates depressive behavior in OVX mice by upregulating ERβ-mediated hippocampal nNOS expression and activating the ERK-CREB-BDNF signaling networks. The findings suggest that ORY is a potential therapeutic agent for attenuating menopausal depression.
Collapse
Affiliation(s)
- Minji Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju, 55365, Republic of Korea
- Department of Food Biotechnology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Minseok Yoon
- Division of Functional Food Research, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Suengmok Cho
- Department of Food Science and Technology/Institute of Food Science, Pukyong National University, Busan, 48513, Republic of Korea
| | - Changho Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Min Young Um
- Division of Functional Food Research, Korea Food Research Institute, Wanju, 55365, Republic of Korea
- Department of Food Biotechnology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| |
Collapse
|
12
|
Provoost L. Cognitive Changes Associated with Aging and Physical Disease in Dogs and Cats. Vet Clin North Am Small Anim Pract 2024; 54:101-119. [PMID: 37722947 DOI: 10.1016/j.cvsm.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Behavior changes may indicate primary physical disease or primary behavioral disorders in veterinary patients. It is imperative to recognize that secondary behavioral problems can develop due to medical causes. The incidence of systemic disease increases with age and behavior manifestations can be similar to those expected with cognitive dysfunction syndrome. In this article, we review basic concepts of cognition, aging, and cognitive dysfunction syndrome. Additionally, we provide information regarding factors that influence cognition, and the role medical conditions have on the behavior of aging pets.
Collapse
Affiliation(s)
- Lena Provoost
- Clinical Sciences & Advanced Medicine, University of Pennsylvania, 3900 Delancey Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Xia QQ, Walker AK, Song C, Wang J, Singh A, Mobley JA, Xuan ZX, Singer JD, Powell CM. Effects of heterozygous deletion of autism-related gene Cullin-3 in mice. PLoS One 2023; 18:e0283299. [PMID: 37428799 PMCID: PMC10332626 DOI: 10.1371/journal.pone.0283299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/05/2023] [Indexed: 07/12/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental disorder in which children display repetitive behavior, restricted range of interests, and atypical social interaction and communication. CUL3, coding for a Cullin family scaffold protein mediating assembly of ubiquitin ligase complexes through BTB domain substrate-recruiting adaptors, has been identified as a high-risk gene for autism. Although complete knockout of Cul3 results in embryonic lethality, Cul3 heterozygous mice have reduced CUL3 protein, demonstrate comparable body weight, and display minimal behavioral differences including decreased spatial object recognition memory. In measures of reciprocal social interaction, Cul3 heterozygous mice behaved similarly to their wild-type littermates. In area CA1 of hippocampus, reduction of Cul3 significantly increased mEPSC frequency but not amplitude nor baseline evoked synaptic transmission or paired-pulse ratio. Sholl and spine analysis data suggest there is a small yet significant difference in CA1 pyramidal neuron dendritic branching and stubby spine density. Unbiased proteomic analysis of Cul3 heterozygous brain tissue revealed dysregulation of various cytoskeletal organization proteins, among others. Overall, our results suggest that Cul3 heterozygous deletion impairs spatial object recognition memory, alters cytoskeletal organization proteins, but does not cause major hippocampal neuronal morphology, functional, or behavioral abnormalities in adult global Cul3 heterozygous mice.
Collapse
Affiliation(s)
- Qiang-qiang Xia
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Angela K. Walker
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Chenghui Song
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Jing Wang
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Anju Singh
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham Mass Spectrometry & Proteomics Shared Facility, Birmingham, AL, United States of America
| | - Zhong X. Xuan
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Jeffrey D. Singer
- Department of Biology, Portland State University, Portland, OR, United States of America
| | - Craig M. Powell
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| |
Collapse
|
14
|
Jung H, Lee D, You H, Lee M, Kim H, Cheong E, Um JW. LPS induces microglial activation and GABAergic synaptic deficits in the hippocampus accompanied by prolonged cognitive impairment. Sci Rep 2023; 13:6547. [PMID: 37085584 PMCID: PMC10121592 DOI: 10.1038/s41598-023-32798-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/03/2023] [Indexed: 04/23/2023] Open
Abstract
Neuroinflammation impacts the brain and cognitive behavior through microglial activation. In this study, we determined the temporal sequence from microglial activation to synaptic dysfunction and cognitive behavior induced by neuroinflammation in mice. We found that LPS injection activated microglia within a short period, followed by impairments in GABAergic synapses, and that these events led to long-term cognitive impairment. We demonstrated that, 3 days after LPS injection, microglia in the hippocampus were significantly activated due to the LPS-induced inflammation in association with alterations in cellular morphology, microglial density, and expression of phagocytic markers. GABAergic synaptic impairments were detected at 4-6 days after LPS treatment, a time when microglia activity had returned to normal. Consequently, memory impairment persisted for 6 days after injection of LPS. Our results suggest that neuroinflammation induces microglia activation, GABAergic synaptic deficits and prolonged memory impairment over a defined temporal sequence. Our observations provide insight into the temporal sequence of neuroinflammation-associated brain pathologies. Moreover, the specific loss of inhibitory synapses accompanying the impaired inhibitory synaptic transmission provides mechanistic insight that may explain the prolonged cognitive deficit observed in patients with neuroinflammation. Thus, this study provides essential clues regarding early intervention strategies against brain pathologies accompanying neuroinflammation.
Collapse
Affiliation(s)
- Hyeji Jung
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea
| | - Dongsu Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Heejung You
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Myungha Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Hyeonho Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea.
| | - Ji Won Um
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea.
- Center for Synapse Diversity and Specificity, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea.
| |
Collapse
|
15
|
Itagi H, Sartagoda KJD, Pratap V, Roy P, Tiozon RN, Regina A, Sreenivasulu N. Popped rice with distinct nutraceutical properties. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Villar MAL, Vidallon MLP, Rodriguez EB. Nanostructured lipid carrier for bioactive rice bran gamma-oryzanol. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Effects of Different Lipopolysaccharide Doses on Short- and Long-Term Spatial Memory and Hippocampus Morphology in an Experimental Alzheimer’s Disease Model. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn6030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia. Various animal models are widely used to investigate its underlying mechanisms, including lipopolysaccharide (LPS)-induced neuroinflammation models. Aim: In this study, we aimed to investigate the effect of different doses (0.25, 0.5, and 0.75 mg/kg) of LPS on short- and long-term spatial memory and hippocampal morphology in an experimental AD mouse model. Materials and methods: Twenty-four adult male Swiss mice (SWR/J) weighing 18–25 g were divided into four groups: control, 0.25 mg/kg LPS, 0.50 mg/kg LPS, and 0.75 mg/kg LPS. All groups were treated with LPS or vehicle for 7 days. Behavioral tests were started (Morris water maze for 6 days and Y maze for 1 day) on the last 2 days of injections. After the behavioral procedures, tissues were collected for further histological investigations. Result: All LPS doses induced significant short- and long-term spatial memory impairment in both the Y maze and Morris water maze compared with the control group. Furthermore, histological examination of the hippocampus indicated degenerating neurons in both the 0.50 mg/kg and 0.75 mg/kg LPS groups, while the 0.25 mg/kg LPS group showed less degeneration. Conclusion: our results showed that 0.75 mg/kg LPS had a greater impact on early-stage spatial learning memory and short-term memory than other doses. Our behavioral and histological findings suggest 0.75 mg/kg LPS as a promising dose for LPS-induced AD models.
Collapse
|
18
|
Phothi T, Tunsophon S, Tiyaboonchai W, Khongsombat O. Effects of curcumin and γ‑oryzanol solid dispersion on the brain of middle‑aged rats. Biomed Rep 2022; 17:59. [PMID: 35719843 PMCID: PMC9198973 DOI: 10.3892/br.2022.1542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress is one of the major factors that contributes to brain deterioration in the elderly. Oxidation causes molecular alterations, structural damage, and brain dysfunction, which includes cognitive impairment. Memory loss can begin in middle-aged individuals, so prevention of brain deterioration before aging is important. Several studies have reported that curcumin and γ-oryzanol exhibits anti-oxidant and anti-inflammatory properties. However, curcumin and γ-oryzanol exhibit low aqueous solubility. Thus, a solid dispersion technique was used to prepare curcumin and γ-oryzanol to enhance their solubility and stability. This study aims to evaluate the effects and mechanisms of γ-oryzanol solid dispersion (GOSD) and curcumin solid dispersion (CURSD) on learning and memory in six groups of male rats (n=5/group). Group one was the adult control consisting of 6-week old male rats, and the remaining five groups consisted of 42-week (middle-aged) male rats. The groups were labeled as the control group, the GO group (GOSD 10 mg/kg·BW), the Cur group (CURSD 50 mg/kg·BW), the GO-LCur group (GOSD 10 mg/kg·BW plus CURSD 25 mg/kg·BW), and the GO-HCur group (GOSD 10 mg/kg·BW plus CURSD 50 mg/kg·BW). Substances were administrated by oral gavage once daily for 42 consecutive days. The GO-HCur group exhibited significantly increased learning and memory performance in a Morris water maze and in reacting to a spontaneous tendency novel object test. The rats also exhibited decreased levels of lipid peroxidation, increased superoxide dismutase levels, glutathione peroxidase levels, catalase activity, and enhanced c-Fos expression both in the hippocampus and prefrontal cortex. The results indicated that GOSD 10 mg/kg plus CURSD 50 mg/kg was able to enhance learning and memory performance in the middle-aged rats.
Collapse
Affiliation(s)
- Thanyaphon Phothi
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sakara Tunsophon
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Waree Tiyaboonchai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Onrawee Khongsombat
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
19
|
Gao M, Zou Z, Qiu Y, Sumayyah G, Jiang X, Su J, Duan X, Chen C, Qiu J. Preventive effects of traditional Chinese medicine formula Huoxiangzhengqi against lipopolysaccharide-induced inflammatory response. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153968. [PMID: 35183933 DOI: 10.1016/j.phymed.2022.153968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Huoxiangzhengqi oral liquid (HX), a pharmaceutical product made from traditional Chinese medicine formulas, has been commonly used in household medication for gastrointestinal disorders, but the mode of action remains largely unclear. PURPOSE This study aims to investigate whether pretreatment with HX prevents lipopolysaccharide (LPS)-induced adverse effects and the potential mechanisms involved. METHODS Seven-week-old male C57BL/6J mice were orally administered low (1.3 ml/kg) and high doses (2.6 ml/kg) of HX for 7 days, and subsequently subjected to a single dose of LPS at 6 mg/kg. Dexamethasone served as the positive control. Each group had ten animals. RESULTS The data demonstrated that either a low or high dose of HX significantly reduced the levels of inflammation induced by LPS in both small intestinal and cortical tissues. LPS profoundly decreased the richness and evenness of the microbiota and disrupted the composition of the intestinal microbial community, but pretreatment with HX did not successfully prevent dysbiosis. No significant improvements in HX against LPS were observed in intestinal local immunity or the secretion of partial gut-brain peptides. In addition, pretreatment with HX prevented the alterations in the expression levels of proteins related to the NF-κB pathway, including phospho-p38, p38, phospho-p44/42, p44/42, p50 and p65 induced by LPS. CONCLUSION Herein, we demonstrated for the first time that the preventive effects of HX against LPS mainly occur through the inhibition of inflammation. These findings provide novel evidence that HX may serve as a new agent for the prevention of gastrointestinal inflammation-related disorders.
Collapse
Affiliation(s)
- Min Gao
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China; Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Qiu
- Department of Neurology, The Affiliated University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Golamaully Sumayyah
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Junhao Su
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Chengzhi Chen
- Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, 400016, China; Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
20
|
Anti-Inflammatory and α-Glucosidase Inhibitory Activities of Chemical Constituents from Bruguiera parviflora Leaves. J CHEM-NY 2022. [DOI: 10.1155/2022/3049994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bruguiera parviflora (Rhizophoraceae) is one of the Bruguiera genus-based mangrove plants which has not been investigated for the chemical compositions as well as biological activities so far. The present study was aimed at investigating the phytochemicals as well as anti-inflammatory and α-glucosidase inhibitory activities of B. parviflora leaves. The results showed that the crude extract and its fractions significantly increased the percentage inhibitory activity against α-glucosidase and decreased NO production in LPS-stimulated RAW 264.7 cells in a dose-dependent manner. The most effective fraction BP5 was further chromatographed and purified. As a result, eight compounds were isolated and elucidated, including five flavonoids (1–5) and three triterpenoids (6–8). All isolated compounds were evaluated for the anti-inflammatory and α-glucosidase inhibitory effects. The results indicated that flavonoids namely taxifolin (1), quercetin (2), myricetin (3), rutin (4), and kaempferol (5) exhibited potent anti-inflammatory as well as α-glucosidase inhibitory activities. Among them, compound 2 showed the most potent inhibitory effect against an α-glucosidase activity with an
value of
and the LPS-induced NO production of 11.8 μM at the concentration of 100 μg/mL. These findings suggest that flavonoids (1–5) from B. parviflora leaves may be useful as the potential α-glucosidase inhibitor as well as anti-inflammatory agent.
Collapse
|
21
|
Mastinu A, Ascrizzi R, Ribaudo G, Bonini SA, Premoli M, Aria F, Maccarinelli G, Gianoncelli A, Flamini G, Pistelli L, Memo M. Prosocial Effects of Nonpsychotropic Cannabis sativa in Mice. Cannabis Cannabinoid Res 2022; 7:170-178. [PMID: 34370607 PMCID: PMC9070742 DOI: 10.1089/can.2021.0017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction:Cannabis sativa L. (C. sativa) is used since ancient times to produce fabrics, baskets, and cords. Later, different ethnic groups used to burn the leaves and flowers of psychotropic cultivars with high Δ9-tetrahydrocannabinol (D9-THC) levels, during the religious or propitiatory rites to alter the state of consciousness. To date, it is not known whether also nonpsychotropic cultivars of C. sativa were used during these rites, and whether these varieties could have an effect on human behavior. This study aimed to evaluate the behavioral effects of an extract of nonpsychotropic C. sativa (NP-CS) in mice. Materials and Methods: An extract of a nonpsychotropic cultivar of C. sativa dissolved in medium-chain triglyceride oil was used and the different phytochemical components were evaluated. The relative composition in terms of phytocannabinoid content was assessed by reverse phase high-performance liquid chromatography coupled to UV detection (RP-HPLC-UV), and the volatile components were analyzed by gas chromatography-mass spectrometry (GC-MS). In addition, the behavioral effect of NP-CS was assessed on a wild-type mouse model. The animals were treated for 14 days (oral gavage) and motility, anxiety, and social effects were assessed. Results: RP-HPLC-UV analysis demonstrated that D9-THC was present in lower concentration with respect to other cannabinoids, like cannabidiol. Furthermore, the GC-MS analysis revealed the presence of several terpenoids. Concerning in vivo studies, chronic treatment with NP-CS did not alter body weight, motility, and anxiety and increased social interaction. Conclusions: This study highlighted the prosocial effects of NP-CS.
Collapse
Affiliation(s)
- Andrea Mastinu
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Giovanni Ribaudo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Aria
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppina Maccarinelli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Gianoncelli
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Maurizio Memo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
22
|
Oliveira MEAS, Coimbra PPS, Galdeano MC, Carvalho CWP, Takeiti CY. How does germinated rice impact starch structure, products and nutrional evidences? – A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Noryan M, Hervan IM, Sabouri H, Kojouri FD, Mastinu A. Drought Resistance Loci in Recombinant Lines of Iranian Oryza sativa L. in Germination Stage. BIOTECH 2021; 10:biotech10040026. [PMID: 35822800 PMCID: PMC9245469 DOI: 10.3390/biotech10040026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
In order to locate control genes related to Oryza sativa L. traits at the germination stage under normal conditions and at drought stress levels (−4.5 and −9.0 bar), we evaluated 120 F8 generation offspring from the cross between two cultivars Neda × Ahlemitarum in a factorial experiment in a completely randomized block design with three replications in 2013 in the botanical laboratory of Gonbad Kavous University. A linkage map was prepared using 90 Simple Sequence Repeats (SSR) markers and 28 Inter Simple Sequence Repeats (ISSR), and 6 iPBS and 9 IRAP markers (265 polymorphic alleles). The results of the analysis of variance showed that all of the evaluated traits had a significant difference at the probability level of 1%. Hence, it can be noted that the desired genetic diversity can be found between genotypes. The results of the stepwise regression analysis for the germination percentage as a dependent variable and other traits as independent variables in the studied treatments showed that under normal conditions, there was variable coleoptile length, but under drought stress of −4.5 and −9.0 bar, the variable plumule dry weight entered the model. In this study, the markers included in RM1-RM490 and ISSR2-3-RM133 of chromosomes 1 and 6 of Oryza sativa were identified as the main regulators of traits associated with Oryza sativa drought resistance. In particular, they present the quantitative trait loci (QTL) that control the first stages of germination of Oryza sativa in water stress conditions.
Collapse
Affiliation(s)
- Morteza Noryan
- Department of Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.N.); (I.M.H.); (F.D.K.)
| | - Islam Majidi Hervan
- Department of Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.N.); (I.M.H.); (F.D.K.)
| | - Hossein Sabouri
- Department of Plant Production, Collage of Agricultural Science and Natural Resources, Gonbad Kavous University, Gonbad Kavous 4971799151, Iran
- Correspondence: (H.S.); (A.M.)
| | - Faroukh Darvish Kojouri
- Department of Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (M.N.); (I.M.H.); (F.D.K.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy
- Correspondence: (H.S.); (A.M.)
| |
Collapse
|
24
|
Pucci M, Aria F, Premoli M, Maccarinelli G, Mastinu A, Bonini S, Memo M, Uberti D, Abate G. Methylglyoxal affects cognitive behaviour and modulates RAGE and Presenilin-1 expression in hippocampus of aged mice. Food Chem Toxicol 2021; 158:112608. [PMID: 34656697 DOI: 10.1016/j.fct.2021.112608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/12/2022]
Abstract
Methylglyoxal (MG), a potent glycotoxin that can be found in the diet, is one of the main precursors of Advanced glycation end products (AGEs). It is well known that modifications in lifestyle such as nutritional interventions can be of great value for preventing brain deterioration. This study aimed to evaluate in vivo how an oral MG treatment, that mimics a high MG dietary intake, could affect brain health. From our results, we demonstrated that MG administration affected working memory, and induced neuroinflammation and oxidative stress by modulating the Receptor for Advanced glycation end products (RAGE). The gene and protein expressions of RAGE were increased in the hippocampus of MG mice, an area where the activity of glyoxalase 1, one of the main enzymes involved in MG detoxification, was found reduced. Furthermore, at hippocampus level, MG mice showed increased expression of proinflammatory cytokines and increased activities of NADPH oxidase and catalase. MG administration also increased the gene and protein expressions of Presenilin-1, a subunit of the gamma-secretase protein complex linked to Alzheimer's disease. These findings suggest that high MG oral intake induces alteration directly in the brain and might establish an environment predisposing to AD-like pathological conditions.
Collapse
Affiliation(s)
- M Pucci
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - F Aria
- Department of Molecular and Translational Medicine, University of Brescia, Italy; Center for Neural Science, New York University, New York, United States
| | - M Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - G Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - A Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - S Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - M Memo
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - D Uberti
- Department of Molecular and Translational Medicine, University of Brescia, Italy; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - G Abate
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| |
Collapse
|
25
|
Competitive Ability Effects of Datura stramonium L. and Xanthium strumarium L. on the Development of Maize ( Zea mays) Seeds. PLANTS 2021; 10:plants10091922. [PMID: 34579455 PMCID: PMC8472135 DOI: 10.3390/plants10091922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
The objective of this study was to explore the physical properties of maize seeds in competition with weeds. The basic and complex geometric characteristics of seeds from maize plants, competing with Datura stramonium L. (DS) or Xanthium strumarium (XS) at different weed densities, were studied. It was found that the basic and complex geometric characteristics of maize seeds, such as dimension, aspect ratio, equivalent diameter, sphericity, surface area and volume, were significantly affected by weed competition. The increase in weed density from 0 to 8 plants m2 resulted in an increase in the angle of repose from 27° to 29°, while increasing weed density from 8 to 16 plants m2 caused a diminution of the angle of repose down to 28°. Increasing the density of XS and DS to 16 plants m2 caused a reduction in the maximum 1000 seed weight of maize by 40.3% and 37.4%, respectively. These weed side effects must be considered in the design of industrial equipment for seed cleaning, grading and separation. To our knowledge, this is the first study to consider the effects of weed competition on maize traits, which are important in industrial processing such as seed aeration, sifting and drying.
Collapse
|
26
|
Ramazani E, Akaberi M, Emami SA, Tayarani-Najaran Z. Biological and Pharmacological Effects of Gamma-oryzanol: An Updated Review of the Molecular Mechanisms. Curr Pharm Des 2021; 27:2299-2316. [PMID: 33138751 DOI: 10.2174/1381612826666201102101428] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gamma-oryzanol (γ-oryzanol) is one of the rice bran oil (RBO) compounds, known as a principal food source throughout the world. In recent numerous experimental studies, γ-oryzanol has been revealed to have several useful pharmacological properties, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, ameliorating unpleasant menopausal symptoms, cholesterol-lowering, improving plasma lipid pattern, etc. Methods: In this study, we reviewed the scientific literature published up until 2020, which has evaluated the biological and pharmacological activity of gamma-oryzanol. This review summarizes the published data found in PubMed, Science Direct, and Scopus. RESULTS AND CONCLUSION The present review attempts to summarize the most related articles about the pharmacological and therapeutic potential from recent studies on γ-oryzanol to gain insights into design further studies to achieve new evidence that confirm the observed effects.
Collapse
Affiliation(s)
- Elham Ramazani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Abate G, Zhang L, Pucci M, Morbini G, Mac Sweeney E, Maccarinelli G, Ribaudo G, Gianoncelli A, Uberti D, Memo M, Lucini L, Mastinu A. Phytochemical Analysis and Anti-Inflammatory Activity of Different Ethanolic Phyto-Extracts of Artemisia annua L. Biomolecules 2021; 11:biom11070975. [PMID: 34356599 PMCID: PMC8301839 DOI: 10.3390/biom11070975] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Artemisia annua L. (AA) has shown for many centuries important therapeutic virtues associated with the presence of artemisinin (ART). The aim of this study was to identify and quantify ART and other secondary metabolites in ethanolic extracts of AA and evaluate the biological activity in the presence of an inflammatory stimulus. In this work, after the extraction of the aerial parts of AA with different concentrations of ethanol, ART was quantified by HPLC and HPLC-MS. In addition, anthocyanins, flavanols, flavanones, flavonols, lignans, low-molecular-weight phenolics, phenolic acids, stilbenes, and terpenes were identified and semi-quantitatively determined by UHPLC-QTOF-MS untargeted metabolomics. Finally, the viability of human neuroblastoma cells (SH-SY5Y) was evaluated in the presence of the different ethanolic extracts and in the presence of lipopolysaccharide (LPS). The results show that ART is more concentrated in AA samples extracted with 90% ethanol. Regarding the other metabolites, only the anthocyanins are more concentrated in the samples extracted with 90% ethanol. Finally, ART and all AA samples showed a protective action towards the pro-inflammatory stimulus of LPS. In particular, the anti-inflammatory effect of the leaf extract of AA with 90% ethanol was also confirmed at the molecular level since a reduction in TNF-α mRNA gene expression was observed in SH-SY5Y treated with LPS.
Collapse
Affiliation(s)
- Giulia Abate
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Mariachiara Pucci
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Giulia Morbini
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Eileen Mac Sweeney
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Daniela Uberti
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
- Correspondence: (L.L.); (A.M.)
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy; (G.A.); (M.P.); (G.M.); (E.M.S.); (G.M.); (G.R.); (A.G.); (D.U.); (M.M.)
- Correspondence: (L.L.); (A.M.)
| |
Collapse
|
28
|
Sharipov A, Tursunov K, Fazliev S, Azimova B, Razzokov J. Hypoglycemic and Anti-Inflammatory Effects of Triterpene Glycoside Fractions from Aeculus hippocastanum Seeds. Molecules 2021; 26:molecules26133784. [PMID: 34206308 PMCID: PMC8270310 DOI: 10.3390/molecules26133784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
Horse chestnut (Aesculus hippocastanum L.)-derived drugs have shown their potential in biomedical applications. The seed of A. hippocastanum contains various kinds of chemical compounds including phenolics, flavonoids, coumarins, and triterpene saponins. Here, we investigated the chemical components in A. hippocastanum L. grown in Uzbekistan, which has not yet been studied in detail. We identified 30 kinds of triterpene saponins in an extract of A. hippocastanum L. Classifying extracted saponins into eight fractions, we next studied the hypoglycemic and the anti-inflammatory activities of escin and its derivatives through in vivo experiments. We came by data indicating the highest (SF-1 and SF-2) and the lowest (SF-5 and SF-8) antidiabetic and anti-inflammatory effects of those eight fractions. These results imply the prospective use of A. hippocastanum L. grown in Uzbekistan in the production of pharmaceutical drugs to treat diabetes and inflammation.
Collapse
Affiliation(s)
- Avez Sharipov
- Department of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, Oybek Street 45, Tashkent 100015, Uzbekistan; (A.S.); (K.T.); (B.A.)
| | - Khurshid Tursunov
- Department of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, Oybek Street 45, Tashkent 100015, Uzbekistan; (A.S.); (K.T.); (B.A.)
| | - Sunnatullo Fazliev
- Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany;
- Faculty of Chemistry and Earth Sciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Bahtigul Azimova
- Department of Inorganic, Physical and Colloidal Chemistry, Tashkent Pharmaceutical Institute, Oybek Street 45, Tashkent 100015, Uzbekistan; (A.S.); (K.T.); (B.A.)
| | - Jamoliddin Razzokov
- Department of Physics and Chemistry, Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- Department of Physics, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan
- Correspondence:
| |
Collapse
|
29
|
Combined Effect of Impregnation with an Origanum vulgare Infusion and Osmotic Treatment on the Shelf Life and Quality of Chilled Chicken Fillets. Molecules 2021; 26:molecules26092727. [PMID: 34066449 PMCID: PMC8124957 DOI: 10.3390/molecules26092727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
The scope of this work is the study of a combined process including a dipping step into an oregano (Origanum vulgare ssp. hirtum) infusion (OV) followed by osmotic treatment of chicken fillets at 15 °C. Chicken fillets were immersed in an osmotic solution consisting of 40% glycerol and 5% NaCl with (OV/OD) and without (OD) prior antioxidant enrichment in a hypotonic oregano solution. A comparative shelf life study of all the samples (untreated, OD and OV/OD treated) was then conducted at 4 °C in order to assess the impact of this process on the quality and shelf life of chilled chicken fillets. Microbial growth, lipid oxidation and color/texture changes were measured throughout the chilled storage period. Rates of microbial growth of pretreated fillets were significantly reduced, mainly as a result of water activity decrease (OD step). Rancidity development closely related to off odors and sensory rejection was greatly inhibited in treated fillets owing to both inhibitory factors (OD and OV), with water-soluble phenols (OV step) exhibiting the main antioxidant effect. Shelf life of treated chicken fillets exhibited a more than three-fold increase as compared to the untreated samples based on both chemical and microbial spoilage indices, maintaining a positive and pleasant sensory profile throughout the storage period examined.
Collapse
|
30
|
Reguero M, Gómez de Cedrón M, Reglero G, Quintela JC, Ramírez de Molina A. Natural Extracts to Augment Energy Expenditure as a Complementary Approach to Tackle Obesity and Associated Metabolic Alterations. Biomolecules 2021; 11:biom11030412. [PMID: 33802173 PMCID: PMC7999034 DOI: 10.3390/biom11030412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is the epidemic of the 21st century. In developing countries, the prevalence of obesity continues to rise, and obesity is occurring at younger ages. Obesity and associated metabolic stress disrupt the whole-body physiology. Adipocytes are critical components of the systemic metabolic control, functioning as an endocrine organ. The enlarged adipocytes during obesity recruit macrophages promoting chronic inflammation and insulin resistance. Together with the genetic susceptibility (single nucleotide polymorphisms, SNP) and metabolic alterations at the molecular level, it has been highlighted that key modifiable risk factors, such as those related to lifestyle, contribute to the development of obesity. In this scenario, urgent therapeutic options are needed, including not only pharmacotherapy but also nutrients, bioactive compounds, and natural extracts to reverse the metabolic alterations associated with obesity. Herein, we first summarize the main targetable processes to tackle obesity, including activation of thermogenesis in brown adipose tissue (BAT) and in white adipose tissue (WAT-browning), and the promotion of energy expenditure and/or fatty acid oxidation (FAO) in muscles. Then, we perform a screening of 20 natural extracts (EFSA approved) to determine their potential in the activation of FAO and/or thermogenesis, as well as the increase in respiratory capacity. By means of innovative technologies, such as the study of their effects on cell bioenergetics (Seahorse bioanalyzer), we end up with the selection of four extracts with potential application to ameliorate the deleterious effects of obesity and the chronic associated inflammation.
Collapse
Affiliation(s)
- Marina Reguero
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain;
- NATAC BIOTECH, Electronica 7, 28923 Madrid, Spain;
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain;
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| | - Guillermo Reglero
- Production and Characterization of Novel Foods Department, Institute of Food Science Research CIAL, CEI UAM + CSIC, 28049 Madrid, Spain;
| | | | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain;
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| |
Collapse
|
31
|
Naservafaei S, Sohrabi Y, Moradi P, Mac Sweeney E, Mastinu A. Biological Response of Lallemantia iberica to Brassinolide Treatment under Different Watering Conditions. PLANTS 2021; 10:plants10030496. [PMID: 33807761 PMCID: PMC8000778 DOI: 10.3390/plants10030496] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
Lallemantia iberica (L. iberica) is an important dry season medicinal plant. Drought, an important abiotic stress, adversely affects the plant’s metabolism, which can be alleviated by plant growth regulators like brassinolides. A two-year field experiment was conducted in 2017–2018 to determine the effects of three different irrigation regimes and four brassinolide concentrations on the L. iberica biochemical properties. A split-plot based on a completely randomized block design in three replicates was used as an experimental design with the following irrigation regimes: full watering, watering until flowering and watering until branching. These were the main plots, and 0, 0.5, 1 and 1.5 μM brassinolide concentrations were applied as the subplots. The results showed that many antioxidant enzymes and some biochemical parameters were affected by brassinolide treatment. Furthermore, the highest membrane stability and grain yield were produced in full watering treatment in the second year, and these treatments were not affected by brassinolide application. Several concentrations of brassinolide differently affected the studied treatments, and our study suggests that the amelioration of the effects of the drought stress on L. iberica could possibly be achieved through brassinolide-induced elevation of reactive oxygen species (ROS) scavenging defense systems. There is a need for complementary research to prove the effectiveness of foliar application of this growth regulator to improve the growth and yield of L. iberica under water shortage conditions.
Collapse
Affiliation(s)
- Saeid Naservafaei
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj 66314, Iran;
| | - Yousef Sohrabi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj 66314, Iran;
- Correspondence: (Y.S.); (A.M.)
| | - Parviz Moradi
- Research of Agricultural and Natural Resources Research Center, Zanjan 45617, Iran;
| | - Eileen Mac Sweeney
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
- Correspondence: (Y.S.); (A.M.)
| |
Collapse
|
32
|
Costunolide, a Sesquiterpene Lactone, Suppresses Skin Cancer via Induction of Apoptosis and Blockage of Cell Proliferation. Int J Mol Sci 2021; 22:ijms22042075. [PMID: 33669832 PMCID: PMC7922093 DOI: 10.3390/ijms22042075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Costunolide is a naturally occurring sesquiterpene lactone that demonstrates various therapeutic actions such as anti-oxidative, anti-inflammatory, and anti-cancer properties. Costunolide has recently emerged as a potential anti-cancer agent in various types of cancer, including colon, lung, and breast cancer. However, its mode of action in skin cancer remains unclear. To determine the anti-cancer potential of costunolide in skin cancer, human epidermoid carcinoma cell line A431 was treated with costunolide. A lactate dehydrogenase assay showed that costunolide diminished the viability of A431 cells. Apoptotic cells were detected by annexin V/propidium iodide double staining and Terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay assay, and costunolide induced cell apoptosis via activation of caspase-3 as well as induction of poly-ADP ribose polymerase cleavage in A431 cells. In addition, costunolide elevated the level of the pro-apoptotic protein Bax while lowering the levels of anti-apoptotic proteins, including Bcl-2 and Bcl-xL. To address the inhibitory effect of costunolide on cell proliferation and survival, various signaling pathways, including mitogen-activated protein kinases, signal transducer and activator of transcription 3 (STAT3), nuclear factor κB (NF-κB), and Akt, were investigated. Costunolide activated the p38 and c-Jun N-terminal kinase pathways while suppressing the extracellular signal-regulated kinase (ERK), STAT3, NF-κB, and Akt pathways in A431 cells. Consequently, it was inferred that costunolide suppresses cell proliferation and survival via these signaling pathways. Taken together, our data clearly indicated that costunolide exerts anti-cancer activity in A431 cells by suppressing cell growth via inhibition of proliferation and promotion of apoptosis. Therefore, it may be employed as a potentially tumor-specific candidate in skin cancer treatment.
Collapse
|
33
|
Parker KD, Maurya AK, Ibrahim H, Rao S, Hove PR, Kumar D, Kant R, Raina B, Agarwal R, Kuhn KA, Raina K, Ryan EP. Dietary Rice Bran-Modified Human Gut Microbial Consortia Confers Protection against Colon Carcinogenesis Following Fecal Transfaunation. Biomedicines 2021; 9:biomedicines9020144. [PMID: 33546192 PMCID: PMC7913285 DOI: 10.3390/biomedicines9020144] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 01/19/2023] Open
Abstract
Rice bran, removed from whole grain rice for white rice milling, has demonstrated efficacy for the control and suppression of colitis and colon cancer in multiple animal models. Dietary rice bran intake was shown to modify human stool metabolites as a result of modifications to metabolism by gut microbiota. In this study, human stool microbiota from colorectal cancer (CRC) survivors that consumed rice bran daily was examined by fecal microbiota transplantation (FMT) for protection from azoxymethane and dextran sodium sulfate (AOM/DSS) induced colon carcinogenesis in germ-free mice. Mice transfaunated with rice bran-modified microbiota communities (RMC) harbored fewer neoplastic lesions in the colon and displayed distinct enrichment of Flavonifractor and Oscillibacter associated with colon health, and the depletion of Parabacteroides distasonis correlated with increased tumor burden. Two anti-cancer metabolites, myristoylcarnitine and palmitoylcarnitine were increased in the colon of RMC transplanted mice. Trimethylamine-N-oxide (TMAO) and tartarate that are implicated in CRC development were reduced in murine colon tissue after FMT with rice bran-modified human microbiota. Findings from this study show that rice bran modified gut microbiota from humans confers protection from colon carcinogenesis in mice and suggests integrated dietary-FMT intervention strategies should be tested for colorectal cancer control, treatment, and prevention.
Collapse
Affiliation(s)
- Kristopher D. Parker
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.D.P.); (H.I.); (S.R.)
| | - Akhilendra K. Maurya
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (A.K.M.); (D.K.); (R.K.); (B.R.); (R.A.)
| | - Hend Ibrahim
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.D.P.); (H.I.); (S.R.)
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Sangeeta Rao
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.D.P.); (H.I.); (S.R.)
| | - Petronella R. Hove
- Department of Microbiology, Immunology & Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Dileep Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (A.K.M.); (D.K.); (R.K.); (B.R.); (R.A.)
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (A.K.M.); (D.K.); (R.K.); (B.R.); (R.A.)
| | - Bupinder Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (A.K.M.); (D.K.); (R.K.); (B.R.); (R.A.)
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; (A.K.M.); (D.K.); (R.K.); (B.R.); (R.A.)
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Komal Raina
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
- Correspondence: (K.R.); (E.P.R.); Tel.: +1-970-491-1536 (E.P.R.)
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.D.P.); (H.I.); (S.R.)
- Correspondence: (K.R.); (E.P.R.); Tel.: +1-970-491-1536 (E.P.R.)
| |
Collapse
|
34
|
Hong SS, Lee JE, Jung YW, Park JH, Lee JA, Jeong W, Ahn EK, Choi CW, Oh JS. Monoterpenoids from the Fruits of Amomum tsao-ko Have Inhibitory Effects on Nitric Oxide Production. PLANTS (BASEL, SWITZERLAND) 2021; 10:257. [PMID: 33525660 PMCID: PMC7911220 DOI: 10.3390/plants10020257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022]
Abstract
In our search for novel plant-derived inhibitors of nitric oxide (NO) with potential for treating inflammatory diseases, the phytochemicals of Amomum tsao-ko fruits were investigated, leading to the isolation of one bicyclic nonane (1), three menthene skeleton monoterpenoids (2-4), and two acyclic monoterpenoids (5 and 6). Their structures were identified using one- and two-dimensional nuclear magnetic resonance spectroscopy, and mass spectrometry. To the best of our knowledge, compounds 2-5 were obtained from the genus Amomum for the first time. All isolates were tested for their ability to inhibit lipopolysaccharide-stimulated NO overproduction in RAW264.7 cells. Compound 4 was found to inhibit NO production. Western blotting analysis indicated that active compound 4 can regulate inducible NO synthase expression. In addition, lipopolysaccharide-induced interleukin 1 beta and interleukin-6 overproduction was reduced in a concentration-dependent manner.
Collapse
Affiliation(s)
- Seong Su Hong
- Bio-Center, Gyeonggido Business & Science Accelerator (GBSA), Suwon 16229, Korea; (J.E.L.); (Y.W.J.); (J.A.L.); (W.J.); (E.-K.A.); (C.W.C.)
| | - Ji Eun Lee
- Bio-Center, Gyeonggido Business & Science Accelerator (GBSA), Suwon 16229, Korea; (J.E.L.); (Y.W.J.); (J.A.L.); (W.J.); (E.-K.A.); (C.W.C.)
| | - Yeon Woo Jung
- Bio-Center, Gyeonggido Business & Science Accelerator (GBSA), Suwon 16229, Korea; (J.E.L.); (Y.W.J.); (J.A.L.); (W.J.); (E.-K.A.); (C.W.C.)
| | - Ju-Hyoung Park
- College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| | - Jung A. Lee
- Bio-Center, Gyeonggido Business & Science Accelerator (GBSA), Suwon 16229, Korea; (J.E.L.); (Y.W.J.); (J.A.L.); (W.J.); (E.-K.A.); (C.W.C.)
| | - Wonsik Jeong
- Bio-Center, Gyeonggido Business & Science Accelerator (GBSA), Suwon 16229, Korea; (J.E.L.); (Y.W.J.); (J.A.L.); (W.J.); (E.-K.A.); (C.W.C.)
| | - Eun-Kyung Ahn
- Bio-Center, Gyeonggido Business & Science Accelerator (GBSA), Suwon 16229, Korea; (J.E.L.); (Y.W.J.); (J.A.L.); (W.J.); (E.-K.A.); (C.W.C.)
| | - Chun Whan Choi
- Bio-Center, Gyeonggido Business & Science Accelerator (GBSA), Suwon 16229, Korea; (J.E.L.); (Y.W.J.); (J.A.L.); (W.J.); (E.-K.A.); (C.W.C.)
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, Cheonan 31116, Korea;
| |
Collapse
|
35
|
Das G, Patra JK, Kang SS, Shin HS. Pharmaceutical importance of some promising plant species with special reference to the isolation and extraction of bioactive compounds: A review. Curr Pharm Biotechnol 2021; 23:15-29. [PMID: 33480340 DOI: 10.2174/1389201022666210122125854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Active principles from natural sources, in the form of extracts and natural compounds, provide an infinite number of bioactive compounds with consummate disposal of chemical diversity. These compounds and active principles are of utmost importance in the discovery of drugs of biological origin particularly, from plants. OBJECTIVE Development of resourceful technology for the isolation and extraction of bioactive compounds of medicinal importance is considered as an important task for researchers. There are a number of extraction, isolation, and characterization techniques currently utilized; however, most are laborious and use toxic chemicals and huge quantities of raw materials with a very low output. There are a number of abiotic and biotic factors that affects the quality and the quantity of plants bioactive compounds. Considering this the objectives of the current review is to discuss the various extraction and characterization techniques used to isolate the essential bioactive compounds from three plant species and the biotic and abiotic factors that affects the quantity and quality of the plants secondary metabolites. METHODS Many advanced technologies have been developed and tested for extraction, characterization, and their capacity for high yield products, and those requiring less application of toxic solvents are investigated continuously. CONCLUSION In this context, the present review summarizes the different types of extraction and characterization techniques utilized commercially by the food, drug, and pharmaceutical industries for better output and environmentally- and healthbenefiting products with special reference to three industrially important plants: Leonotis leonurus (L.) R.Br. (Lamiaceae) and Santalum album L. (Santalaceae) and Aloe vera (L.) Burm. f. (Aloaceae or Asphodelaceae).
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326. Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326. Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326. Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326. Korea
| |
Collapse
|
36
|
Protective Effects of Gynostemma pentaphyllum (var. Ginpent) against Lipopolysaccharide-Induced Inflammation and Motor Alteration in Mice. Molecules 2021; 26:molecules26030570. [PMID: 33499104 PMCID: PMC7865846 DOI: 10.3390/molecules26030570] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Gynostemma pentaphyllum (var. Ginpent) (GP) is a variety of Cucurbit with anti-inflammatory and antioxidant effects in patients. In this manuscript, the main components present in the dry extract of GP have been identified using Ultra High Performance Liquid Chromatography quadrupole-time-of-flight mass spectrometry (UHPLC/Q-TOF-MS). In addition, the anti-inflammatory action of GP was evaluated in animal models with acute peripheral inflammation and motor alteration induced by lipopolysaccharide. The results showed that GP dry extract is rich in secondary metabolites with potential antioxidant and anti-inflammatory properties. We found that the treatment with GP induced a recovery of motor function measured with the rotarod test and pole test, and a reduction in inflammatory cytokines such as interleukin-1β and interleukin-6 measured with the ELISA test. The data collected in this study on the effects of GP in in vivo models may help integrate the therapeutic strategies of inflammatory-based disorders.
Collapse
|
37
|
Tan XW, Kobayashi K, Shen L, Inagaki J, Ide M, Hwang SS, Matsuura E. Antioxidative attributes of rice bran extracts in ameliorative effects of atherosclerosis-associated risk factors. Heliyon 2020; 6:e05743. [PMID: 33376820 PMCID: PMC7758525 DOI: 10.1016/j.heliyon.2020.e05743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/28/2020] [Accepted: 12/11/2020] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress, chronic inflammation, dyslipidemia, hyperglycemia, and shear stress (physical effect) are risk factors associated with the pathogenesis of atherosclerosis. Rice bran, a by-product of rice milling process, is known to house polyphenols and vitamins which exhibit potent antioxidant and anti-inflammatory properties. Through recent emerging knowledge of rice bran in health and wellness, the present study was aimed to assess the ameliorative effects of rice bran extracts (RBE) derived from Japanese colored rice varieties in modulating risk factors of atherosclerosis via in vitro and in vivo study models. Pre-treatment of lipopolysaccharide (LPS)-stimulated murine J774A.1 macrophage-like cells with RBE alleviated nitric oxide (NO) overproduction and downregulated gene expressions of pro-inflammatory modulators: tumor necrosis factor-α (TNF-α), interleukin (IL)-α (IL-1α), IL-1β, IL-6, and inducible nitric oxide synthase (iNOS). In addition, RBE also significantly attenuated LPS-stimulated protein expressions of iNOS, TNF-α, IL-1α, and IL-6 in J774A.1 macrophage-like cells as compared to non-treated LPS control group. In in vivo, 12 weeks of RBE dietary supplementations significantly reduced (p < 0.05) total cholesterol, triglycerides, and pro-atherogenic oxidized LDL/β2-glycoprotein I (oxLDL/β2GPI) complexes at plasma levels, in high fat diet (HFD) induced low density lipoprotein receptor knockout (Ldlr−/-) mice. En face pathological assessments of murine aortas also revealed significant reductions by 38% (p < 0.05) in plaque sizes of RBE-supplemented HFD mice groups as compared to non RBE-supplemented HFD control mice group. Moreover, gene expressions of aortic (iNOS, TNF-α, IL-1β) and hepatic (TNF-α, IL-1α, IL-1β) pro-inflammatory modulators were also downregulated in RBE-supplemented mice groups. Present study has revealed the potent health attributes and application of RBE as a dietary supplement to attenuate risks of inadvertent oxidative damage and chronic inflammation underlying the pathogenesis of atherosclerosis. Intrinsically, present preliminary findings may provide global health prospects for future dietary implementation of RBE in management of atherosclerosis.
Collapse
Affiliation(s)
- Xian Wen Tan
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuko Kobayashi
- Collaborative Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Lianhua Shen
- Department of Pathophysiology, Zunyi Medical University, Guizhou, China
| | - Junko Inagaki
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Ide
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Food Function Research Team, Saito Laboratories, Japan Food Research Laboratories, Osaka, Japan
| | - Siaw San Hwang
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Sarawak, Malaysia
| | - Eiji Matsuura
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Collaborative Research Center for OMIC, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.,Neutron Therapy Research Center, Okayama University, Okayama, Japan
| |
Collapse
|
38
|
Germination and Seedling Growth Responses of Zygophyllum fabago, Salsola kali L. and Atriplex canescens to PEG-Induced Drought Stress. ENVIRONMENTS 2020. [DOI: 10.3390/environments7120107] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In arid and semi-arid regions, planting drought-tolerant species is the most useful strategy in the reclamation of degraded soils. In the present study, we evaluated the effect of simulated drought by polyethylene glycol (PEG-6000) on seed germination and seedling growth of three desert plants such as Atriplex canescens, Salsola kali and Zygophyllum fabago. Seeds were subjected to water stress to drought stress by PEG at five stress levels (0, −1, −4, −8, −12, −14 bars). Germination of Z. fabago was completely inhibited at an osmotic potential of −8, −10 and −12 bars and the germination of A. canescens was inhibited only at −14 bar. In contrast, S. kali responded positively to high levels of stress and our results showed the highest final germination percent (71.75, 54 and 18.25%) under three-drought stress −8, −12 and −14 bars, respectively. In addition, increasing PEG concentration adversely affected the germination rate and seedling vigor index as well as the root and shoot length of species. Under high stress levels, S. kali achieved a higher germination rate and seedling vigor index compared to Z. fabago and A. canescens. Among species, S. kali was the only one able to develop roots and shoots at −14 bar. Therefore, S. kali could be considered as a promising plant for the rehabilitation of degraded soils at risk of desertification.
Collapse
|
39
|
Coumarins and Polar Constituents from Eupatorium triplinerve and Evaluation of Their α-Glucosidase Inhibitory Activity. J CHEM-NY 2020. [DOI: 10.1155/2020/8945063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In our study of antidiabetic compounds from the leaves of Eupatorium triplinerve Vahl. (Asteraceae), ten compounds were isolated from the methanol leaf extract. They were determined to be β-sitosterol (1), stigmasterol (2), β-sitosterol 3-O-β-D-glucopyranoside (3), ayapanin (4), ayapin (5), thymoquinol 5-O-β-D-glucopyranoside (6), thyrsifloside (8), (E)-4-methoxymelilotoside (9), and kaempferol 3,7-di-O-β-D-glucopyranoside (10) by using ESI-MS, 1D (1H-, 13C-, DEPT) and 2D NMR (HSQC, HMBC, and NOESY) techniques. This is the first report of water-soluble compounds from E. triplinerve and compounds 6–10 were isolated for the first time from E. triplinerve. NMR profiling and HPLC analysis are fast and reliable methods to screen phytochemicals in plant samples. Due to their high concentrations in the leaf extracts of E. triplinerve, coumarins 4 and 5 could be fast screened by NMR profiling and RP-HPLC-PDA analysis. In the in vitro test for α-glucosidase inhibition of compounds 4–9, compounds 4, 5, and 7 showed the enzymatic inhibition of 40%, 46%, and 81%, respectively, at 256 μg/mL. An IC50 value of 58.65 ± 1.20 μg/mL (302 μM) was calculated for compound 7 which is lower than that of the positive control acarbose (IC50 197.33 ± 2.51 μg/mL; 306 μM).
Collapse
|
40
|
Quantitative and Qualitative Evaluation of Sorghum bicolor L. under Intercropping with Legumes and Different Weed Control Methods. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6040078] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In order to evaluate the quantity and quality of forage when intercropping forage sorghum (Sorghum bicolor L.) with lathyrus (Lathyrus sativus) and hairy vetch (Vicia villosa), and using different weed management methods such as double cropping, a factorial experiment in a randomized complete block design with three replications was carried out at the research station of the University of Zanjan over two growing seasons (2015 and 2016). In this experiment, the intercropping of forage sorghum with lathyrus and hairy vetch at six levels with single cropping of forage sorghum, lathyrus, and hairy vetch, and three weed management strategies (no weed control, full weed control, and single weed control) was evaluated. The results showed that most forage sorghum traits were significantly (p ≤ 0.05) affected by different sowing ratios. The highest fresh forage yield of sorghum (77.9 ton/ha) and lowest (49.0 ton/ha) were obtained with sorghum + 33% hairy vetch and sorghum + 100% lathyrus, respectively. Forage qualitative traits were also affected by intercropping and weed management. The highest average acid detergent fiber (ADF), neutral detergent fiber (NDF), and total ash percentage (ASH) were obtained with 100% sorghum + 66% lathyrus and 33% hairy vetch. The results showed that sorghum intercropping with 33% lathyrus led to a significant reduction in dry matter intake and relative feed value with no weed control and single weed control. This study demonstrated that, by selecting the appropriate intercropping ratios and forage legumes, we could largely control sorghum weeds in addition to improving the quantitative and qualitative yield of sorghum forage.
Collapse
|
41
|
Kumar A, Memo M, Mastinu A. Plant behaviour: an evolutionary response to the environment? PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:961-970. [PMID: 32557960 DOI: 10.1111/plb.13149] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/01/2020] [Indexed: 05/21/2023]
Abstract
Plants are not just passive living beings that exist in nature. They are complex and highly adaptable species that react sensitively to environmental forces/stimuli with movement, morphological changes and through the communication via volatile molecules. In a way, plants mimic some traits of animal and human behaviour; they compete for limited resources by gaining more area for more sunlight and spread their roots underground. Furthermore, in order to survive and thrive, they evolve and 'learn' to control various environmental stress factors in order to increase the yield of flowering, fertilization and germination processes. The concept of associating complex behaviour, such as intelligence, with plants is still a highly debatable topic among researchers worldwide. Recent studies have shown that plants are able to discriminate between positive and negative experiences and 'learn' from them. Some botanists have interpreted these behavioural data as a form of primitive cognitive processes. Others have evaluated these responses as biological automatisms of plants determined by adaptation to the environment and absence of intelligence. This review aims to explore adaptive behavioural aspects of various plant species distributed in different ecosystems by emphasizing their biological complexity and survival instincts.
Collapse
Affiliation(s)
- A Kumar
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - M Memo
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - A Mastinu
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
42
|
Zhang H, Ma L, Guo WZ, Jiao LB, Zhao HY, Ma YQ, Hao XM. TSPO ligand etifoxine attenuates LPS-induced cognitive dysfunction in mice. Brain Res Bull 2020; 165:178-184. [PMID: 33075418 DOI: 10.1016/j.brainresbull.2020.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
Abstract
The translocator protein (TSPO), once known as peripheral-type benzodiazepine receptor, was reported to be related with several physiological functions. Etifoxine is a clinically available anxiolytic drug, and has recently shown neuroprotective effects as a TSPO ligand. The aim of the present study was to investigate the influence of etifoxine on LPS-induced neuroinflammation and cognitive dysfunction. C57/BL6 male mice were injected with etifoxine (50 mg/kg, i.p.) three days before lipopolysaccharide (LPS, 500 μg/kg, i.p.) administration. Etifoxine pretreatment alleviated hippocampal inflammation, increased brain levels of progesterone, allopregnanolone and attenuated cognitive dysfunction in LPS-injected mice. While LPS increased expression of caspase-3 and decreased p-Akt/Akt, etifoxine returned caspase-3 and p-Akt/Akt to control levels. Finasteride, a 5α-reductase inhibitor that blocked allopregnanolone production, partially reversed the effects of etifoxine. We concluded that etifoxine exerted neuroprotective effects in LPS-induced neuroinflammation and the neuroprotection may be related with increase of neurosteroids synthesis and decrease of apoptosis.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Neurosurgery, Air Force Medical Center of the Chinese PLA, Beijing, 100142, China.
| | - Li Ma
- Department of Anesthesiology, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China
| | - Wen-Zhi Guo
- Department of Anesthesiology, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China
| | - Lin-Bo Jiao
- Department of Anesthesiology, Beijing Shouda E.E.N.T Hospital, Beijing, 100070, China
| | - Hong-Yu Zhao
- Department of Anesthesiology, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China
| | - Ya-Qun Ma
- Department of Anesthesiology, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China
| | - Xue-Mei Hao
- Operating Room, 7th Medical Center of the Chinese PLA General Hospital, Beijing, 100700, China.
| |
Collapse
|
43
|
Gupta AK, Rather MA, Kumar Jha A, Shashank A, Singhal S, Sharma M, Pathak U, Sharma D, Mastinu A. Artocarpus lakoocha Roxb. and Artocarpus heterophyllus Lam. Flowers: New Sources of Bioactive Compounds. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1329. [PMID: 33050190 PMCID: PMC7600190 DOI: 10.3390/plants9101329] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/03/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022]
Abstract
Artocarpus heterophyllus Lam. (AH) and Artocarpus lakoocha Roxb. (AL) are two endemic plants that grow on the Asian continent. To date, their applications have been aimed at using their fruit as a food source or for some of their therapeutic virtues. In this study, attention was given to the flowers of AH and AL. Initially, the cytotoxicity of the phytoextracts was assessed, and the content of minerals, phenols, and flavonoids was determined. Furthermore, some antioxidant components were identified by HPLC. Furthermore, the ability of AH and AL extracts to modulate the gene expression of some targets involved in the antioxidant response was studied. The results obtained highlighted the nutritional and antioxidant value of the AH and AL flower extracts. This study will contribute to enhancing the use of AH and AL flowers as potential supplements in human nutrition.
Collapse
Affiliation(s)
- Arun Kumar Gupta
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India; (A.K.G.); (A.K.J.); (S.S.); (M.S.)
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India;
| | - Avinash Kumar Jha
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India; (A.K.G.); (A.K.J.); (S.S.); (M.S.)
| | - Abhinay Shashank
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Somya Singhal
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India; (A.K.G.); (A.K.J.); (S.S.); (M.S.)
| | - Maanas Sharma
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India; (A.K.G.); (A.K.J.); (S.S.); (M.S.)
| | - Urbi Pathak
- Department of Food Science, ISA Lille, 59800 Lille, France;
| | - Dipti Sharma
- Department of Food Technology, Shyama Prasad Mukherji College for Women, University of Delhi, Delhi 110026, India;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
44
|
Brain Structural and Functional Alterations in Mice Prenatally Exposed to LPS Are Only Partially Rescued by Anti-Inflammatory Treatment. Brain Sci 2020; 10:brainsci10090620. [PMID: 32906830 PMCID: PMC7564777 DOI: 10.3390/brainsci10090620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant immune activity during neurodevelopment could participate in the generation of neurological dysfunctions characteristic of several neurodevelopmental disorders (NDDs). Numerous epidemiological studies have shown a link between maternal infections and NDDs risk; animal models of maternal immune activation (MIA) have confirmed this association. Activation of maternal immune system during pregnancy induces behavioral and functional alterations in offspring but the biological mechanisms at the basis of these effects are still poorly understood. In this study, we investigated the effects of prenatal lipopolysaccharide (LPS) exposure in peripheral and central inflammation, cortical cytoarchitecture and behavior of offspring (LPS-mice). LPS-mice reported a significant increase in interleukin-1β (IL-1β) serum level, glial fibrillary acidic protein (GFAP)- and ionized calcium-binding adapter molecule 1 (Iba1)-positive cells in the cortex. Furthermore, cytoarchitecture analysis in specific brain areas, showed aberrant alterations in minicolumns’ organization in LPS-mice adult brain. In addition, we demonstrated that LPS-mice presented behavioral alterations throughout life. In order to better understand biological mechanisms whereby LPS induced these alterations, dams were treated with meloxicam. We demonstrated for the first time that exposure to LPS throughout pregnancy induces structural permanent alterations in offspring brain. LPS-mice also present severe behavioral impairments. Preventive treatment with meloxicam reduced inflammation in offspring but did not rescue them from structural and behavioral alterations.
Collapse
|
45
|
Murtey MD, Seeni A. The phytochemical analysis and pharmacological potentials of husk and straw as paddy waste products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4347-4352. [PMID: 32248531 DOI: 10.1002/jsfa.10406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/14/2019] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Rice serves as a staple food for one-half of the global population. However, rice production, particularly the rice milling process, results in a substantial amount of paddy waste products (e.g. bran, husk and straw) annually. Because the potentials of bran have been extensively explored in prior studies, the present review focuses exclusively on the phytochemical analysis and pharmacological potentials of husk and straw. This comprehensive review establishes a solid foundation for promoting husk and straw as medicinal substances given their promising pharmacological potentials as bioactive compound sources with therapeutic functions. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mogana Das Murtey
- Basic Sciences and Oral Biology Unit, School of Dental Sciences. Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Azman Seeni
- Cluster of Integrative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
| |
Collapse
|
46
|
Mena P, Angelino D. Plant Food, Nutrition, and Human Health. Nutrients 2020; 12:nu12072157. [PMID: 32698451 PMCID: PMC7400879 DOI: 10.3390/nu12072157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Pedro Mena
- Department of Food and Drug, Human Nutrition Unit, University of Parma, 43125 Parma, Italy
- Correspondence: (P.M.); (D.A.); Tel.: +39-0541-903841 (P.M.)
| | - Donato Angelino
- Department of Food and Drug, Human Nutrition Unit, University of Parma, 43125 Parma, Italy
- Faculty of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy
- Correspondence: (P.M.); (D.A.); Tel.: +39-0541-903841 (P.M.)
| |
Collapse
|
47
|
Enteromorpha prolifera Extract Improves Memory in Scopolamine-Treated Mice via Downregulating Amyloid-β Expression and Upregulating BDNF/TrkB Pathway. Antioxidants (Basel) 2020; 9:antiox9070620. [PMID: 32679768 PMCID: PMC7402154 DOI: 10.3390/antiox9070620] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/25/2022] Open
Abstract
Enteromorpha prolifera, a green alga, has long been used in food diets as well as traditional remedies in East Asia. Our preliminary study demonstrated that an ethyl acetate extract of Enteromorpha prolifera (EAEP) exhibited the strongest antioxidant activity compared to ethanol or water extracts. Nonetheless, there has been no report on the effect of EAEP on memory impairment due to oxidative damage. This study investigated whether EAEP could attenuate memory deficits in an oxidative stress-induced mouse model. EAEP was orally administered (50 or 100 mg/kg body weight (b.w.)) to mice and then scopolamine was administered. The oral administration of EAEP at 100 mg/kg b.w. significantly restored memory impairments induced by scopolamine, as evaluated by the Morris water maze test, and the passive avoidance test. Further, EAEP upregulated the protein expression of BDNF, p-CREB, p-TrkB, and p-Akt. Moreover, EAEP downregulated the expression of amyloid-β, tau, and APP. The regulation of cholinergic marker enzyme activities and the protection of neuronal cells from oxidative stress-induced cell death in the brain of mice via the downregulation of amyloid-β and the upregulation of the BDNF/TrkB pathway by EAEP suggest its potential as a pharmaceutical candidate to prevent neurodegenerative diseases.
Collapse
|
48
|
Lim DW, Jeon H, Kim M, Yoon M, Jung J, Kwon S, Cho S, Um MY. Standardized rice bran extract improves hepatic steatosis in HepG2 cells and ovariectomized rats. Nutr Res Pract 2020; 14:568-579. [PMID: 33282120 PMCID: PMC7683207 DOI: 10.4162/nrp.2020.14.6.568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/29/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUD/OBJECTIVES Hepatic steatosis is the most common liver disorder, particularly in postmenopausal women. This study investigated the protective effects of standardized rice bran extract (RBS) on ovariectomized (OVX)-induced hepatic steatosis in rats. MATERIALS/METHODS HepG2 cells were incubated with 200 µM oleic acid to induce lipid accumulation with or without RBS and γ-oryzanol. OVX rats were separated into three groups and fed a normal diet (ND) or the ND containing 17β-estradiol (E2; 10 µg/kg) and RBS (500 mg/kg) for 16 weeks. RESULTS RBS supplementation improved serum triglyceride and free fatty acid levels in OVX rats. Histological analysis showed that RBS significantly attenuated hepatic fat accumulation and decreased hepatic lipid, total cholesterol, and triglyceride levels. Additionally, RBS suppressed the estrogen deficiency-induced upregulation of lipogenic genes, such as sterol regulatory element-binding protein 1 (SREBP1), acetyl-CoA carboxylase 1, fatty acid synthase, glycerol-3-phosphate acyltransferase, and stearoyl-CoA desaturase 1. CONCLUSIONS RBS and γ-oryzanol effectively reduced lipid accumulation in a HepG2 cell hepatic steatosis model. RBS improves OVX-induced hepatic steatosis by regulating the SREBP1-mediated activation of lipogenic genes, suggesting the benefits of RBS in preventing fatty liver in postmenopausal women.
Collapse
Affiliation(s)
- Dong Wook Lim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea
| | - Hyejin Jeon
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea
| | - Minji Kim
- Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Korea
| | - Minseok Yoon
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea
| | - Jonghoon Jung
- Technical Assistance Center, Korea Food Research Institute, Wanju 55365, Korea
| | - Sangoh Kwon
- S&D Research and Development Institute, Cheongju 28156, Korea
| | - Suengmok Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Min Young Um
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea.,Division of Food Biotechnology, University of Science & Technology, Daejeon 34113, Korea
| |
Collapse
|
49
|
Ana Silvia GR, Gabriela TT, Maribel HR, Nayeli MB, José Luis TE, Alejandro Z, Manasés GC. Effect of Terpenoids and Flavonoids Isolated from Baccharis conferta Kunth on TPA-Induced Ear Edema in Mice. Molecules 2020; 25:molecules25061379. [PMID: 32197377 PMCID: PMC7144369 DOI: 10.3390/molecules25061379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
In this study, we isolated from the aerial parts of Baccharis conferta Kunth (i) a new neoclerodane, denominated "bacchofertone"; (ii) four known terpenes: schensianol A, bacchofertin, kingidiol and oleanolic acid; and (iii) two flavonoids: cirsimaritin and hispidulin. All structures were identified by an exhaustive analysis of nuclear magnetic resonance (NMR) and mass spectroscopy (MS). Extracts from aerial parts were screened for anti-inflammatory activity in the mice ear edema model of 12-O-tetradecanoylforbol-13-acetate mice. Dichloromethane extract (BcD) exhibited 78.5 ± 0.72% inhibition of edema, followed by the BcD2 and BcD3 fractions of 71.4% and 82.9% respectively, at a dose of 1 mg/ear. Kingidiol and cirsimaritin were the most potent compounds identified, with a median effective dose of 0.12 and 0.16 mg/ear, respectively. A histological analysis showed that the topical application of TPA promoted intense cell infiltration, and this inflammatory parameter was reduced with the topical application of isolated compounds.
Collapse
Affiliation(s)
- Gutiérrez-Román Ana Silvia
- Centro de Desarrollo de Productos Bióticos. Instituto Politécnico Nacional (IPN), Col. San Isidro, Carretera Yautepec-Jojutla, Km 6, 62731, Morelos, Mexico; (G.-R.A.S.); (T.-E.J.L.)
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina 1, Col. Centro, Xochitepec, 62790 Morelos, Mexico; (H.-R.M.); (Z.A.)
| | - Trejo-Tapia Gabriela
- Centro de Desarrollo de Productos Bióticos. Instituto Politécnico Nacional (IPN), Col. San Isidro, Carretera Yautepec-Jojutla, Km 6, 62731, Morelos, Mexico; (G.-R.A.S.); (T.-E.J.L.)
- Correspondence: (T.-T.G.); (G.-C.M.); Tel.: +52 (777) 3612155 (T.-T.G.); +52 (735) 3942020 (G.-C.M.)
| | - Herrera-Ruiz Maribel
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina 1, Col. Centro, Xochitepec, 62790 Morelos, Mexico; (H.-R.M.); (Z.A.)
| | - Monterrosas-Brisson Nayeli
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad 1001, Col. Chamilpa, Cuernavaca, 62209 Morelos, Mexico;
| | - Trejo-Espino José Luis
- Centro de Desarrollo de Productos Bióticos. Instituto Politécnico Nacional (IPN), Col. San Isidro, Carretera Yautepec-Jojutla, Km 6, 62731, Morelos, Mexico; (G.-R.A.S.); (T.-E.J.L.)
| | - Zamilpa Alejandro
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina 1, Col. Centro, Xochitepec, 62790 Morelos, Mexico; (H.-R.M.); (Z.A.)
| | - González-Cortazar Manasés
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina 1, Col. Centro, Xochitepec, 62790 Morelos, Mexico; (H.-R.M.); (Z.A.)
- Correspondence: (T.-T.G.); (G.-C.M.); Tel.: +52 (777) 3612155 (T.-T.G.); +52 (735) 3942020 (G.-C.M.)
| |
Collapse
|
50
|
Shu G, Qiu Y, Hao J, Fu Q, Deng X. γ-Oryzanol alleviates acetaminophen-induced liver injury: roles of modulating AMPK/GSK3β/Nrf2 and NF-κB signaling pathways. Food Funct 2020; 10:6858-6872. [PMID: 31584590 DOI: 10.1039/c9fo01808e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acetaminophen (APAP) overdose is a major cause of drug-induced liver injury worldwide. Our current study was performed to assess the potential protective effects of γ-oryzanol (ORY) on APAP-induced liver injury in mice and explore the underlying molecular mechanisms. We unveiled that ORY alleviated the APAP-induced death of HL-7702 hepatocytes in vitro and liver injury in mice. Moreover, ORY promoted the nuclear translocation of Nrf2, increased the expressions of Nrf2-downstream antioxidative enzymes, including HO-1, NQO1, GCLC, and GCLM, and thereby restrained APAP-induced oxidative stress in hepatocytes. Moreover, ORY modulated the AMPK/GSK3β axis that acts upstream of Nrf2 in hepatocytes. Compound C, an inhibitor of AMPK, prevented the ORY-mediated activation of Nrf2 and protection against APAP toxicity in HL-7702 hepatocytes. Additionally, in the liver of mice receiving APAP, ORY suppressed the nuclear translocation of the NF-κB p65 subunit, downregulated the expressions of iNOS and COX-2, and reduced the levels of pro-inflammatory factors including TNF-α, IL-1β, IL-6, and NO. Taken together, our findings revealed that ORY is capable of ameliorating APAP-induced liver injury. The modulation of AMPK/GSK3β/Nrf2 and NF-κB signaling pathways is implicated in the hepatoprotective activity of ORY.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei 430074, China.
| | | | | | | | | |
Collapse
|