1
|
Ryan R, Leslie MN, He P, Young PM, Hoyos CM, Ong HX, Traini D. Intranasal and inhaled delivery systems for targeting circadian dysfunction in neurodegenerative disorders, perspective and future outlook. Adv Drug Deliv Rev 2025; 220:115575. [PMID: 40185279 DOI: 10.1016/j.addr.2025.115575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/09/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Synchronisation of the suprachiasmatic nucleus (SCN) driven endogenous clock, located within the central nervous system (CNS), and exogenous time cues, is essential for maintaining circadian rhythmicity, homeostasis and overall wellbeing. Disordered circadian rhythms have been associated with various conditions, inclusive of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. Traditional pharmacological approaches to circadian dysfunction in neurodegenerative disorders have primarily focused on oral drug delivery. Oral medications often face challenges in achieving the necessary systemic circulation to effectively bypass the blood brain barrier (BBB) and reach the CNS, primarily due to low or variable bioavailability. Advancements in non-invasive delivery methods, such as orally inhaled and intranasal formulations, present promising alternatives for targeting the CNS. Orally inhaled and intranasal drug delivery allows for medications to rapidly achieve high systemic circulation through increased bioavailability and fast onset of action. Additionally, intranasal delivery allows for therapies to bypass the BBB through the olfactory or trigeminal nerve pathways to directly enter the CNS. This review assesses the potential for orally inhaled and intranasal therapies to treat circadian disorders in neurodegenerative conditions. In addition, this review will explore melatonin as an example of enhancing therapeutic outcomes by adopting inhaled or intranasal drug delivery formulations to improve drug absorption and target circadian disorder more effectively.
Collapse
Affiliation(s)
- Rhearne Ryan
- Centre for Sleep and Chronobiology, The Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia
| | - Mathew N Leslie
- Respiratory Technology, The Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia
| | - Patrick He
- Respiratory Technology, The Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia
| | - Paul M Young
- Respiratory Technology, The Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia; Department of Marketing, Macquarie Business School, Macquarie University, Sydney, NSW 2109, Australia
| | - Camilla M Hoyos
- Centre for Sleep and Chronobiology, The Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia; Department of Health Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Hui Xin Ong
- Respiratory Technology, The Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research, Sydney, NSW 2113, Australia; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
2
|
Bhairu Khot K, Jose J, Gopan G, Sandeep DS, Ashtekar H, Shastry P, Raviraj C. Stearyl amine coated liposome of rotigotine alleviates cognitive deficit in Parkinson's disease induced mice model: modulation of oxidative stress, and motor coordination. Drug Dev Ind Pharm 2025:1-16. [PMID: 40238494 DOI: 10.1080/03639045.2025.2494127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE The study was conducted to evaluate the brain targeted delivery of cationic liposomes of rotigotine via nasal route, addressing the limitations in brain penetration for Parkinson's disease intervention. METHODS Cationic liposomes were fabricated and optimized using a Box-Behnken design to improve the excipient composition for effective intranasal delivery. The optimized liposome, LR12, was surface modified with stearylamine at three concentrations to confer a cationic charge. The final formulation, RTG-LP3, was evaluated for physicochemical parameters, including size, entrapment efficiency, and zeta potential. A morphological study was performed within the 100-200 nm size range. The cytotoxicity of RTG-LP3 was determined in SH-SY5Y cell lines, whereas pharmacodynamic studies were evaluated in C57BL/6 mice following nasal administration. RESULTS The formulation RTG-LP3 exhibited a minimal vesicle size of 162 ± 2.94 nm, a high entrapment efficiency of 86.53 ± 0.33%, and a positive zeta potential of +19.8 ± 2.45 mV. Morphological investigation indicated spherical shape of liposomes in the size range of 100-200 nm. Cytotoxicity study showed fivefold safety margin for RTG-LP3 when compared with rotigotine. Pharmacodynamic assessments in PD-induced C57BL6 mice showed increased motor coordination and antioxidant benefits following nasal treatment. Histological study of brain regions treated with RTG-LP3 demonstrated improved neuronal architecture, indicating reduced neurodegeneration and improved disease condition. CONCLUSION The cationic liposome RTG-LP3 demonstrated effective delivery of liposomes with superior therapeutic effects in treating PD via nasal route. These findings highlight the potential of cationic liposomes as a viable method for improving brain penetration and neuroprotection in PD therapy.
Collapse
Affiliation(s)
- Kartik Bhairu Khot
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Jobin Jose
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Gopika Gopan
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - D S Sandeep
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Harsha Ashtekar
- Department of Pharmacology, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Prajna Shastry
- Department of Pharmaceutics, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| | - Chaithra Raviraj
- Department of Advance Research Centre, NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangalore, India
| |
Collapse
|
3
|
Jung JM, Lee MS, Seo YK, Lee JE, Lim SY, Kim D, Lyu S, Park C, Kim BD, Shin JH, Lee JH, Liu P, Jung J, Conde J, Thambi T, Jeong JH, Lee DS. Bioengineered metastatic cancer nanovaccine with a TLR7/8 agonist for needle-free intranasal immunization. Biomaterials 2025; 321:123331. [PMID: 40253735 DOI: 10.1016/j.biomaterials.2025.123331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Recent outbreaks and the global spread of infectious diseases increased the need for the development of mucosal vaccines because of their ability to induce both an antigen-specific humoral and cellular immune response. Vaccines are commonly administered via a systemic route which is ineffective at inducing mucosal immunity. Therefore, developing mucosal vaccines is necessary to prevent and treat diseases that could not only elicit mucosal immune responses but also facilitate mass vaccination via a needle-free approach. Despite the benefits of mucosal vaccines, inducing mucosal immunity remains difficult due to the low antigen stability at mucosal sites. Herein, we developed a co-delivery platform using a polymeric nanoparticle carrier to upregulate the immune responses by improving the antigen's stability. Through hydrophobic and ionic interactions, the cationic polymeric nanoparticle composed of secondary bile acid conjugated polyethyleneimine (DA3) can load both TLR7/8 agonist resiquimod (R848) and anionic ovalbumin (OVA) antigen. The DA3/R848/OVA nanovaccine based co-delivery system can boost immune responses through binding affinity with dendritic cells (DCs). The results showed that DA3/R848/OVA could activate DCs better than OVA or OVA + R848. Furthermore, the nanovaccine demonstrated a strong therapeutic effect by significantly suppressing tumor growth in a B16-OVA melanoma model. Additionally, prophylactic immunization with the nanovaccine effectively induced immunological memory, leading to sustained tumor suppression upon challenge. Intranasal delivery of DA3/R848/OVA upregulates the antitumor effect in the metastatic lung tumor foci and the survival rates. These results suggest that intranasal immunization using the DA3/R848/OVA nanovaccine can promote needle-free vaccination.
Collapse
Affiliation(s)
- Jae Min Jung
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min Sang Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Bio Industry Department, Gyeonggido Business & Science Accelerator, Suwon, 16229, Republic of Korea
| | - Young Kyu Seo
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung Eun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Su Yeon Lim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dahwun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Siyan Lyu
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chaeeun Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Byung Deok Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ju Hwa Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ji Hyun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pin Liu
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Junku Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - João Conde
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, 1169-056 Portugal
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin Si, Gyeonggi do, 17104, Republic of Korea.
| | - Ji Hoon Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Doo Sung Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Frank-Ito DO. Olfaction and drug delivery to the human olfactory airspace: current challenges and recent advances. Expert Opin Drug Deliv 2025; 22:511-524. [PMID: 39955085 DOI: 10.1080/17425247.2025.2467784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/01/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Olfactory function, despite its critical role in human survival and quality of life, is often underappreciated. This could be associated with the fact that symptoms of olfactory dysfunction rarely occur in isolation as they are frequently concomitant with comorbidities. Furthermore, effective treatments for olfactory dysfunction largely remain elusive, and no standardized clinical practice for treating this dysfunction currently exist, thus complicating the initiation of appropriate therapeutic modalities. Intranasal administration of topical medication targeting the olfactory cleft represents a safe, noninvasive and potentially efficacious approach, but several challenges impede effective drug delivery. AREAS COVERED This review highlights the importance of human olfaction, assessment of olfactory function, underlying sources of olfactory dysfunction, and challenges involved in developing long-term and effective treatment modalities, particularly in the administration of topical medication to the olfactory cleft intranasally. Advancements in both device-related and administration-related modalities designed to enhance intranasal drug delivery are discussed. EXPERT OPINION Clinical management typically prioritizes comorbid conditions, relegating symptoms pertaining olfactory dysfunction to ancillary concerns. Device manufacturers for intranasal administration likewise underestimate the complexity and variabilities of the nasal cavity, and how these impact drug transport. Synergistic implementation of device and formulation strategies can potentially yield enhanced olfactory cleft drug delivery.
Collapse
Affiliation(s)
- Dennis Onyeka Frank-Ito
- Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
- Computational Biology & Bioinformatics PhD Program, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Qin L, Zhai Q, Cui Z, Li H, Guan J, Zhang Z, Xu E, Zhang X, Mao S. Elucidating structure of endogenous phospholipids on in vivo absorption of octreotide following lung administration. Eur J Pharm Biopharm 2025:114706. [PMID: 40174681 DOI: 10.1016/j.ejpb.2025.114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/15/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025]
Abstract
Phospholipids as endogenous pulmonary components have received extensive attention on promoting the transmembrane absorption of peptides and proteins. However, considering their diversified structure, influence of phospholipid structural characteristics on drug absorption across lung epithelial cells, together with the underlying absorption-promoting mechanisms, remain unclear. Therefore, in this study, taking octreotide as a model drug, phospholipids with different "tail" and "head" structures were adopted in the form of blank liposomes to investigate their structural characteristics on drug absorption utilizing both 3D Transwell cell models and Sprague Dawley rats. It was demonstrated that indeed the absorption-enhancing capacity of phospholipids was their structure-dependent. Among the tail (non-polar) structures, a moderately increased alkyl chain length could facilitate drug absorption across the pulmonary epithelium, with the highest enhancement ratio observed for Dipalmitoyl Phosphatidylcholine (DPPC) containing a palmitoyl group of 16 carbons, and its apparent permeability coefficient (Papp) increased 2.4 times compared to octreotide solution. Among the head (polar) structures, charged functional groups could contribute to better drug permeation, and Dipalmitoyl Phosphatidylserine (DPPS) containing a protonated amino (NH3+) and a deprotonated carboxyl (COO-) exhibited a 4.6-fold increase in Papp compared to octreotide solution. Mechanism studies disclosed a paracellular pathway-mediated drug transport across lung epithelial cells. In summary, phospholipids can serve as biosafe absorption enhancers for pulmonary drug delivery, with the extent depending on their structure, which could provide a theoretical basis for pulmonary delivery of macromolecules for systemic absorption.
Collapse
Affiliation(s)
- Lu Qin
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiyao Zhai
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhixiang Cui
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongfang Li
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Ziwei Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Enyu Xu
- Department of Forensic Toxicological Analysis, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
6
|
Brandauer K, Schweinitzer S, Lorenz A, Krauß J, Schobesberger S, Frauenlob M, Ertl P. Advances of dual-organ and multi-organ systems for gut, lung, skin and liver models in absorption and metabolism studies. LAB ON A CHIP 2025; 25:1384-1403. [PMID: 39973270 DOI: 10.1039/d4lc01011f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Drug development is a costly and timely process with high risks of failure during clinical trials. Although in vitro tissue models have significantly advanced over the years, thus fostering a transition from animal-derived models towards human-derived models, failure rates still remain high. Current cell-based assays are still not able to provide an accurate prediction of the clinical success or failure of a drug candidate. To overcome the limitations of current methods, a variety of microfluidic systems have been developed as powerful tools that are capable of mimicking (micro)physiological conditions more closely by integrating physiological fluid flow conditions, mechanobiological cues and concentration gradients, to name only a few. One major advantage of these biochip-based tissue cultures, however, is their ability to seamlessly connect different organ models, thereby allowing the study of organ-crosstalk and metabolic byproduct effects. This is especially important when assessing absorption, distribution, metabolism, and excretion (ADME) processes of drug candidates, where an interplay between various organs is a prerequisite. In the current review, a number of in vitro models as well as microfluidic dual- and multi-organ systems are summarized with a focus on absorption (skin, lung, gut) and metabolism (liver). Additionally, the advantage of multi-organ chips in identifying a drug's on and off-target toxicity is discussed. Finally, the potential high-throughput implementation and modular chip design of multi-organ-on-a-chip systems within the pharmaceutical industry is highlighted, outlining the necessity of reducing handling complexity.
Collapse
Affiliation(s)
- Konstanze Brandauer
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Sophie Schweinitzer
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Alexandra Lorenz
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Judith Krauß
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
| | | | - Martin Frauenlob
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
| | - Peter Ertl
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.
| |
Collapse
|
7
|
Hosseini-Kharat M, Bremmell KE, Grubor-Bauk B, Prestidge CA. Enhancing non-viral DNA delivery systems: Recent advances in improving efficiency and target specificity. J Control Release 2025; 378:170-194. [PMID: 39647508 DOI: 10.1016/j.jconrel.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
DNA-based therapies are often limited by challenges such as stability, long-term integration, low transfection efficiency, and insufficient targeted DNA delivery. This review focuses on recent progress in the design of non-viral delivery systems for enhancing targeted DNA delivery and modulation of therapeutic efficiency. Cellular uptake and intracellular trafficking mechanisms play a crucial role in optimizing gene delivery efficiency. There are two main strategies employed to improve the efficiency of gene delivery vectors: (i) explore different administration routes (e.g., mucosal, intravenous, intramuscular, subcutaneous, intradermal, intratumoural, and intraocular) that best facilitates optimal uptake into the targeted cells and organs and (ii) modify the delivery vectors with cell-specific ligands (e.g., natural ligands, antibodies, peptides, carbohydrates, or aptamers) that enable targeted uptake to specific cells with higher specificity and improved biodistribution. We describe how recent progress in employing these DNA delivery strategies is advancing the field and increasing the clinical translation and ultimate clinical application of DNA therapies.
Collapse
Affiliation(s)
- Mahboubeh Hosseini-Kharat
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
8
|
Agnihotri TG, Dahifale A, Gomte SS, Rout B, Peddinti V, Jain A. Nanosystems at Nexus: Navigating Nose-to-Brain Delivery for Glioblastoma Treatment. Mol Pharm 2025; 22:599-619. [PMID: 39746097 DOI: 10.1021/acs.molpharmaceut.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Glioblastoma multiforme (GBM) is considered to be one of the most devastating brain tumors with a shorter life expectancy. Several factors contribute to the dismal prognosis of GBM patients including the complicated nature of GBM, the ability of tumor cells to resist treatment, and the difficulty of delivering drugs to the brain because of barriers like the blood-brain barrier (BBB) and blood-tumor barrier (BTB). The unique challenges posed by the BBB in delivering therapeutic agents to the brain have led to the development of innovative nanotechnology-based approaches. By exploiting the olfactory/trigeminal pathway, nanosystems offer a promising strategy for targeted drug delivery to the brain, glioblastoma tumors in particular. This review contemplates varied nanocarriers, including polymeric nanoparticles, lipid-based nanosystems, in situ gel formulations, peptide, and stem cell-based nanoformulations, signifying their utility in brain targeting with minimal systemic side effects. Emerging trends in gene therapy and immunotherapy in the context of GBM treatment have also been discussed. Since safety is a paramount aspect for any drug product to get approved, this review also delves into toxicological considerations associated with intranasal delivery of nanosystems. Regulatory aspects and critical factors for the successful development of intranasal products are also explored in this review. Overall, this review underscores the significant advancements in nanotechnology for nose-to-brain delivery and its potential impact on GBM management.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Akanksha Dahifale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Biswajit Rout
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Vasu Peddinti
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
9
|
Steyn JD, Haasbroek-Pheiffer A, Pheiffer W, Weyers M, van Niekerk SE, Hamman JH, van Staden D. Evaluation of Drug Permeation Enhancement by Using In Vitro and Ex Vivo Models. Pharmaceuticals (Basel) 2025; 18:195. [PMID: 40006008 PMCID: PMC11859300 DOI: 10.3390/ph18020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Drugs administered by means of extravascular routes of drug administration must be absorbed into the systemic circulation, which involves the movement of the drug molecules across biological barriers such as epithelial cells that cover mucosal surfaces or the stratum corneum that covers the skin. Some drugs exhibit poor permeation across biological membranes or may experience excessive degradation during first-pass metabolism, which tends to limit their bioavailability. Various strategies have been used to improve drug bioavailability. Absorption enhancement strategies include the co-administration of chemical permeation enhancers, enzymes, and/or efflux transporter inhibitors, chemical changes, and specialized dosage form designs. Models with physiological relevance are needed to evaluate the efficacy of drug absorption enhancement techniques. Various in vitro cell culture models and ex vivo tissue models have been explored to evaluate and quantify the effectiveness of drug permeation enhancement strategies. This review deliberates on the use of in vitro and ex vivo models for the evaluation of drug permeation enhancement strategies for selected extravascular drug administration routes including the nasal, oromucosal, pulmonary, oral, rectal, and transdermal routes of drug administration.
Collapse
Affiliation(s)
- Johan D. Steyn
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Anja Haasbroek-Pheiffer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Wihan Pheiffer
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom 2531, South Africa;
| | - Morné Weyers
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Suzanne E. van Niekerk
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Josias H. Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| | - Daniélle van Staden
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2531, South Africa; (J.D.S.); (A.H.-P.); (M.W.); (S.E.v.N.); (J.H.H.)
| |
Collapse
|
10
|
de Alencar Morais Lima W, de Souza JG, García-Villén F, Loureiro JL, Raffin FN, Fernandes MAC, Souto EB, Severino P, Barbosa RDM. Next-generation pediatric care: nanotechnology-based and AI-driven solutions for cardiovascular, respiratory, and gastrointestinal disorders. World J Pediatr 2025; 21:8-28. [PMID: 39192003 DOI: 10.1007/s12519-024-00834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Global pediatric healthcare reveals significant morbidity and mortality rates linked to respiratory, cardiac, and gastrointestinal disorders in children and newborns, mostly due to the complexity of therapeutic management in pediatrics and neonatology, owing to the lack of suitable dosage forms for these patients, often rendering them "therapeutic orphans". The development and application of pediatric drug formulations encounter numerous challenges, including physiological heterogeneity within age groups, limited profitability for the pharmaceutical industry, and ethical and clinical constraints. Many drugs are used unlicensed or off-label, posing a high risk of toxicity and reduced efficacy. Despite these circumstances, some regulatory changes are being performed, thus thrusting research innovation in this field. DATA SOURCES Up-to-date peer-reviewed journal articles, books, government and institutional reports, data repositories and databases were used as main data sources. RESULTS Among the main strategies proposed to address the current pediatric care situation, nanotechnology is specially promising for pediatric respiratory diseases since they offer a non-invasive, versatile, tunable, site-specific drug release. Tissue engineering is in the spotlight as strategy to address pediatric cardiac diseases, together with theragnostic systems. The integration of nanotechnology and theragnostic stands poised to refine and propel nanomedicine approaches, ushering in an era of innovative and personalized drug delivery for pediatric patients. Finally, the intersection of drug repurposing and artificial intelligence tools in pediatric healthcare holds great potential. This promises not only to enhance efficiency in drug development in general, but also in the pediatric field, hopefully boosting clinical trials for this population. CONCLUSIONS Despite the long road ahead, the deepening of nanotechnology, the evolution of tissue engineering, and the combination of traditional techniques with artificial intelligence are the most recently reported strategies in the specific field of pediatric therapeutics.
Collapse
Affiliation(s)
| | - Jackson G de Souza
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande Do Norte, Natal, RN, 59078-970, Brazil
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071, Granada, Spain.
| | - Julia Lira Loureiro
- Laboratory of Galenic Pharmacy, Department of Pharmacy, Federal University of Rio Grande Do Norte, Natal, 59012-570, Brazil
| | - Fernanda Nervo Raffin
- Laboratory of Galenic Pharmacy, Department of Pharmacy, Federal University of Rio Grande Do Norte, Natal, 59012-570, Brazil
| | - Marcelo A C Fernandes
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande Do Norte, Natal, RN, 59078-970, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande Do Norte, Natal, RN, 59078-970, Brazil
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Patricia Severino
- Industrial Biotechnology Program, University of Tiradentes (UNIT), Aracaju, Sergipe, 49032-490, Brazil
| | - Raquel de M Barbosa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Seville, C/Professor García González, 2, 41012, Seville, Spain.
| |
Collapse
|
11
|
Kurotani R, Sato Y, Okawara A, Fukuda N, Hada K, Sakahara S, Takakura K, Abe H, Konno H, Kimura S. Secretoglobin 3A2 peptides have therapeutic potential for allergic airway inflammation. Life Sci 2024; 359:123222. [PMID: 39515417 PMCID: PMC11631205 DOI: 10.1016/j.lfs.2024.123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Three isoforms of secretoglobin (SCGB) 3A2, namely type A, B, and C, are endogenously produced through alternative splicing. SCGB3A2 type A, the correctly spliced major type, begins to be expressed from embryonic day 11.5 in mice and shows various physiological activities such as promoting lung maturation and bronchial branching, anti-inflammatory effects, and ameliorating induced pulmonary fibrosis. To investigate the potential of SCGB3A2 peptides as a therapeutic to treat respiratory diseases, in this study, serially overlapping nine peptides were synthesized to cover the entire type C isoform, and five and one peptides covering the C-terminal region of type A and B, respectively. To evaluate their biological activities, each peptide was subjected to cell proliferation and apoptosis analyses in vitro using mouse lung fibroblast-derived MLg cells, bronchial branching rate using ex vivo mouse fetal lung organ cultures, and in vivo allergic airway inflammation mouse model. Among type A and C peptides, those corresponding to the C-terminal region of the SCGB3A2 sequence exhibited its unique biological activities of promoting cell proliferation and bronchial branching, and/or inhibiting apoptosis. The type B peptide did not show any proliferative effect while inhibited apoptosis. In a mouse model of allergic airway inflammation, lung inflammation was improved by the administration of most of the C-terminal region-derived type A and type C peptides. The results suggest that the bioactivity resides towards the C-terminal region of SCGB3A2 sequence, and the peptides covering this region could be used as a therapeutic in treating lung inflammation.
Collapse
Affiliation(s)
- Reiko Kurotani
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan.
| | - Yui Sato
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Ayaka Okawara
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Nichika Fukuda
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Kengo Hada
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | | | - Kei Takakura
- Faculty of Engineering, Yamagata University, Yamagata, Japan
| | - Hiroyuki Abe
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Shioko Kimura
- Cancer Innovation Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Darne P, Vidhate S, Shintre S, Wagdare S, Bhamare D, Mehta N, Rajagopalan V, Padmanabhan S. Advancements in Antiviral Therapy: Favipiravir Sodium in Nasal Formulation. AAPS PharmSciTech 2024; 25:273. [PMID: 39592539 DOI: 10.1208/s12249-024-02986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Favipiravir (FPV) is an Active Pharmaceutical Ingredient (API) known to have lower solubility in aqueous solvents. In the current study, efforts were made to generate a crystalline Favipiravir Sodium Salt (NaFPV) for enhanced solubility in aqueous media. The in-house generated NaFPV was characterized by NMR studies and its sodium content was determined by Flame Emission Spectroscopy (FES) as a confirmation of salt formation. Its solubility was determined where-in the solubility of NaFPV in water was about 100 times greater than FVP. FPV and NaFPV nasal spray formulations were prepared and its activity was determined against human coronavirus (hCoV) 229E strain. In the anti-hCoV assay as compared to FPV, NaFPV showed almost threefold higher anti-viral activity than its unmodified counterpart. Accelerated stability and spray pattern characteristics of both the formulations were studied. Interestingly, NaFPV showed higher physical stability during storage at conditions 40 ± 2 °C/ 75% ± 5% RH. The nasal spray formulations of both FPV and NaFPV showed ideal plume geometry and spray pattern of acceptable specifications. Due to its improvement in terms of solubility, NaFPV will have higher rate and extent of absorption, and faster onset of the therapeutic effect and may appear to be a feasible alternative to regular favipiravir for use in solid dosage forms.
Collapse
Affiliation(s)
- Priti Darne
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Shankar Vidhate
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Somesh Shintre
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Somnath Wagdare
- Analytical Development Laboratory Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Dhiraj Bhamare
- Analytical Development Laboratory Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Nisha Mehta
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Vishal Rajagopalan
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India
| | - Sriram Padmanabhan
- Innovation and Drug Discovery Division, Sava Healthcare Limited, Research Center, Block D1, Plot No. 17/6, MIDC, Chinchwad, Pune-411019, India.
| |
Collapse
|
13
|
Zarrabian M, Sherif SM. Silence is not always golden: A closer look at potential environmental and ecotoxicological impacts of large-scale dsRNA application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175311. [PMID: 39122031 DOI: 10.1016/j.scitotenv.2024.175311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
RNA interference (RNAi) technology has emerged as a pivotal strategy in sustainable pest management, offering a targeted approach that significantly mitigates the environmental and health risks associated with traditional insecticides. Originally implemented through genetically modified organisms (GMOs) to produce specific RNAi constructs, the technology has evolved in response to public and regulatory concerns over GMOs. This evolution has spurred the development of non-transgenic RNAi applications such as spray-induced gene silencing (SIGS), which employs double-stranded RNA (dsRNA) to silence pest genes directly without altering the plant's genetic makeup. Despite its advantages in specificity and reduced ecological footprint, SIGS faces significant obstacles, particularly the instability of dsRNA in field conditions, which limits its practical efficacy. To overcome these limitations, innovative delivery mechanisms have been developed. These include nanotechnology-based systems, minicells, and nanovesicles, which are designed to protect dsRNA from degradation and enhance its delivery to target organisms. While these advancements have improved the stability and application efficiency of dsRNA, comprehensive assessments of their environmental safety and the potential for increased exposure risks to non-target organisms remain incomplete. This comprehensive review aims to elucidate the environmental fate of dsRNA and evaluate the potential risks associated with its widespread application on non-target organisms, encompassing soil microorganisms, beneficial insects, host plants, and mammals. The objective is to establish a more refined framework for RNAi risk assessment within environmental and ecotoxicological contexts, thereby fostering the development of safer, non-transgenic RNAi-based pest control strategies.
Collapse
Affiliation(s)
- Mohammad Zarrabian
- Virginia Tech, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research, and Extension Center, Winchester, VA 22602, United States
| | - Sherif M Sherif
- Virginia Tech, School of Plant and Environmental Sciences, Alson H. Smith Jr. Agricultural Research, and Extension Center, Winchester, VA 22602, United States.
| |
Collapse
|
14
|
Aati S, Farouk HO, Elkarmalawy MH, Aati HY, Tolba NS, Hassan HM, Rateb ME, Hamad DS. Intratracheal Administration of Itraconazole-Loaded Hyaluronated Glycerosomes as a Promising Nanoplatform for the Treatment of Lung Cancer: Formulation, Physiochemical, and In Vivo Distribution. Pharmaceutics 2024; 16:1432. [PMID: 39598555 PMCID: PMC11597389 DOI: 10.3390/pharmaceutics16111432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Itraconazole (ITZ) is an antiangiogenic agent recognized as a potent suppressor of endothelial cell growth that suppresses angiogenesis. Nevertheless, its exploitation is significantly restricted by its low bioavailability and systematic side effects. The objective of this study was to utilize glycerosomes (GLY), glycerol-developed vesicles, as innovative nanovesicles for successful ITZ pulmonary drug delivery. METHODS The glycerosomes were functionalized with hyaluronic acid (HA-GLY) to potentiate the anticancer efficacy of ITZ and extend its local bio-fate. ITZ-HA-GLY were fabricated using soybean phosphatidylcholine, tween 80, HA, and sonication time via a thin-film hydration approach according to a 24 full factorial design. The impact of formulation parameters on ITZ-HA-GLY physicochemical properties, as well as the optimal formulation option, was evaluated using Design-Expert®. Sulphorhodamine-B (SRB) colorimetric cytotoxicity assay of the optimized ITZ-HA-GLY versus ITZ suspension was explored in the human A549 cell line. The in vivo pharmacokinetics and bio-distribution examined subsequent to intratracheal administrations of ITZ suspension, and ITZ-HA-GLY were scrutinized in rats. RESULTS The optimized ITZ-HA-GLY unveiled vesicles of size 210.23 ± 6.43 nm, zeta potential of 41.06 ± 2.62 mV, and entrapment efficiency of 73.65 ± 1.76%. Additionally, ITZ-HA-GLY manifested a far lower IC50 of 13.03 ± 0.2 µg/mL on the A549 cell line than that of ITZ suspension (28.14 ± 1.6 µg/mL). Additionally, the biodistribution analysis revealed a higher concentration of ITZ-HA-GLY within the lung tissues by 3.64-fold as compared to ITZ suspension. Furthermore, the mean resistance time of ITZ-HA-GLY declined more slowly with 14 h as compared to ITZ suspension, confirming the accumulation of ITZ inside the lungs and their promising usage as a target for the treatment of lung disease. CONCLUSIONS These data indicate that the improved ITZ-HA-GLY demonstrates significant promise and represents an exciting prospect in intratracheal delivery systems for lung cancer treatment, meriting further investigation.
Collapse
Affiliation(s)
- Sultan Aati
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Hanan O. Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Marwa H. Elkarmalawy
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11571, Egypt;
| | - Hanan Y. Aati
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Nahla Sameh Tolba
- Department of Pharmaceutics, Faculty of Pharmacy, Sadat City University, Sadat City 32897, Egypt;
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK;
| | - Doaa S. Hamad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Nile Valley University, Fayoum 63518, Egypt;
| |
Collapse
|
15
|
Berkenfeld K, Carneiro S, Corzo C, Laffleur F, Salar-Behzadi S, Winkeljann B, Esfahani G. Formulation strategies, preparation methods, and devices for pulmonary delivery of biologics. Eur J Pharm Biopharm 2024; 204:114530. [PMID: 39393712 DOI: 10.1016/j.ejpb.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Biological products, including vaccines, blood components, and recombinant therapeutic proteins, are derived from natural sources such as humans, animals, or microorganisms and are typically produced using advanced biotechnological methods. The success of biologics, particularly monoclonal antibodies, can be attributed to their favorable safety profiles and target specificity. However, their large molecular size presents significant challenges in drug delivery, particularly in overcoming biological barriers. Pulmonary delivery has emerged as a promising route for administering biologics, offering non-invasive delivery with rapid absorption, high systemic bioavailability, and avoidance of first-pass metabolism. This review first details the anatomy and physiological barriers of the respiratory tract and the associated challenges of pulmonary drug delivery (PDD). It further discusses innovations in PDD, the impact of particle size on drug deposition, and the use of secondary particles, such as nanoparticles, to enhance bioavailability and targeting. The review also explains various devices used for PDD, including dry powder inhalers (DPIs) and nebulizers, highlighting their advantages and limitations in delivering biologics. The role of excipients in improving the stability and performance of inhalation products is also addressed. Since dry powders are considered the suitable format for delivering biomolecules, particular emphasis is placed on the excipients used in DPI development. The final section of the article reviews and compares various dry powder manufacturing methods, clarifying their clinical relevance and potential for future applications in the field of inhalable drug formulation.
Collapse
Affiliation(s)
- Kai Berkenfeld
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Street 3, 53121 Bonn, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Simone Carneiro
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; RNhale GmbH, München 81371, Germany; Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Munich, German Center for Lung Research (DZL), 81377 Munich, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Golbarg Esfahani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle 06120, Saale, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS).
| |
Collapse
|
16
|
Butola M, Nainwal N. Non-Invasive Techniques of Nose to Brain Delivery Using Nanoparticulate Carriers: Hopes and Hurdles. AAPS PharmSciTech 2024; 25:256. [PMID: 39477829 DOI: 10.1208/s12249-024-02946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/15/2024] [Indexed: 12/12/2024] Open
Abstract
Intranasal drug delivery route has emerged as a promising non-invasive method of administering drugs directly to the brain, bypassing the blood-brain barrier (BBB) and blood-cerebrospinal fluid barriers (BCSF). BBB and BCSF prevent many therapeutic molecules from entering the brain. Intranasal drug delivery can transport drugs from the nasal mucosa to the brain, to treat a variety of Central nervous system (CNS) diseases. Intranasal drug delivery provides advantages over invasive drug delivery techniques such as intrathecal or intraparenchymal which can cause infection. Many strategies, including nanocarriers liposomes, solid-lipid NPs, nano-emulsion, nanostructured lipid carriers, dendrimers, exosomes, metal NPs, nano micelles, and quantum dots, are effective in nose-to-brain drug transport. However, the biggest obstacles to the nose-to-brain delivery of drugs include mucociliary clearance, poor drug retention, enzymatic degradation, poor permeability, bioavailability, and naso-mucosal toxicity. The current review aims to compile current approaches for drug delivery to the CNS via the nose, focusing on nanotherapeutics and nasal devices. Along with a brief overview of the related pathways or mechanisms, it also covers the advantages of nasal drug delivery as a potential method of drug administration. It also offers several possibilities to improve drug penetration across the nasal barrier. This article overviews various in-vitro, ex-vivo, and in-vivo techniques to assess drug transport from the nasal epithelium into the brain.
Collapse
Affiliation(s)
- Mansi Butola
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248001, India
| | - Nidhi Nainwal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
17
|
Ramos TI, Villacis-Aguirre CA, Sandoval FS, Martin-Solano S, Manrique-Suárez V, Rodríguez H, Santiago-Padilla L, Debut A, Gómez-Gaete C, Arias MT, Montesino R, Lamazares E, Cabezas I, Hugues F, Parra NC, Altamirano C, Ramos OS, Santiago-Vispo N, Toledo JR. Multilayer Nanocarrier for the Codelivery of Interferons: A Promising Strategy for Biocompatible and Long-Acting Antiviral Treatment. Pharmaceutics 2024; 16:1349. [PMID: 39598474 PMCID: PMC11597830 DOI: 10.3390/pharmaceutics16111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Interferons (IFNs) are cytokines involved in the immune response with a synergistic regulatory effect on the immune response. They are therapeutics for various viral and proliferative conditions, with proven safety and efficacy. Their clinical application is challenging due to the molecules' size, degradation, and pharmacokinetics. We are working on new drug delivery systems that provide adequate therapeutic concentrations for these cytokines and prolong their half-life in the circulation, such as nanoformulations. Methods: Through nanoencapsulation using electrospray technology and biocompatible and biodegradable polymers, we are developing a controlled release system based on nanoparticles for viral infections of the respiratory tract. Results: We developed a controlled release system for viral respiratory tract infections. A prototype nanoparticle with a core was created, which hydrolyzed the polyvinylpyrrolidone (PVP) shell , releasing the active ingredients interferon-alpha (IFN-α) and interferon-gamma (IFN-γ). The chitosan (QS) core degraded slowly, with a controlled release of IFN-α. The primary and rapid effect of the interferon combination ensured an antiviral and immunoregulatory response from day one, induced by IFN-α and enhanced by IFN-γ. The multilayer design demonstrated an optimal toxicity profile. Conclusions: This formulation is an inhaled dry powder intended for the non-invasive intranasal route. The product does not require a cold chain and has the potential for self-administration in the face of emerging viral infections. This novel drug has applications in multiple infectious, oncological, and autoimmune conditions, and further development is proposed for its therapeutic potential. This prototype would ensure greater bioavailability, controlled release, fewer adverse effects, and robust biological action through the simultaneous action of both molecules.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Carlos A. Villacis-Aguirre
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Felipe Sandoval Sandoval
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Sarah Martin-Solano
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Viana Manrique-Suárez
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Hortensia Rodríguez
- Yachay Tech Medicinal Chemistry Research Group (MedChem-YT), School of Chemical Science and Engineering, Yachay University for Experimental Technology and Research (Yachay Tech), Yachay City of Knowledge, Urcuqui 100119, Ecuador;
| | | | - Alexis Debut
- Laboratory of Characterization of Nanomaterials, Center of Nanoscience and Nanotecnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador;
| | - Carolina Gómez-Gaete
- Department of Pharmacy, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile;
| | - Marbel Torres Arias
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Raquel Montesino
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Emilio Lamazares
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Ignacio Cabezas
- Clinical Sciences Department, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile; (I.C.); (F.H.)
| | - Florence Hugues
- Clinical Sciences Department, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile; (I.C.); (F.H.)
| | - Natalie C. Parra
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
| | - Oliberto Sánchez Ramos
- Laboratory of Recombinant Biopharmaceuticals, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile;
| | | | - Jorge R. Toledo
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| |
Collapse
|
18
|
Safarov R, Fedotova O, Uvarova A, Gordienko M, Menshutina N. Review of Intranasal Active Pharmaceutical Ingredient Delivery Systems. Pharmaceuticals (Basel) 2024; 17:1180. [PMID: 39338342 PMCID: PMC11435088 DOI: 10.3390/ph17091180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
In recent decades, there has been an increased interest in the development of intranasal delivery systems for active pharmaceutical ingredients (APIs) not only for treating local nasal diseases but also for treating systemic diseases, central nervous system (CNS) disorders, and vaccine delivery. The nasal cavity possesses a unique set of anatomical characteristics for delivering active pharmaceutical ingredients, but there are several limitations that recent research in the field of the intranasal administration of APIs aims to overcome. For the effective delivery of nasal preparations, active pharmaceutical ingredients are incorporated into various micro- and nanosystems. Some of the most commonly encountered API delivery systems in the scientific literature include liposomal systems, polymer particles with mucoadhesive properties, in situ gels, nano- and microemulsions, and solid lipid particles. This article provides a review of research on the development of nasal preparations for treating local nasal cavity diseases (in particular, for antibiotic delivery), systemic diseases (analgesics, drugs for cardiovascular diseases, antiviral and antiemetic drugs), CNS disorders (Alzheimer's disease, Parkinson's disease, epilepsy, schizophrenia, depression), and vaccine delivery. The literature data show that active research is underway to reformulate drugs of various pharmacotherapeutic groups into a nasal form.
Collapse
Affiliation(s)
| | - Olga Fedotova
- Department of Chemical and Pharmaceutical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia (A.U.)
| | | | | | | |
Collapse
|
19
|
Adwani G, Bharti S, Kumar A. Engineered nanoparticles in non-invasive insulin delivery for precision therapeutics of diabetes. Int J Biol Macromol 2024; 275:133437. [PMID: 38944087 DOI: 10.1016/j.ijbiomac.2024.133437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Diabetes mellitus is a chronic disease leading to the death of millions a year across the world. Insulin is required for Type 1, Type 2, and gestational diabetic patients, however, there are various modes of insulin delivery out of which oral delivery is noninvasive and convenient. Moreover, factors like insulin degradation and poor intestinal absorption play a crucial role in its bioavailability and effectiveness. This review discusses various types of engineered nanoparticles used in-vitro, in-vivo, and ex-vivo insulin delivery along with their administration routes and physicochemical properties. Injectable insulin formulations, currently in use have certain limitations, leading to invasiveness, low patient compliance, causing inflammation, and side effects. Based on these drawbacks, this review emphasizes more on the non-invasive route, particularly oral delivery. The article is important because it focuses on how engineered nanoparticles can overcome the limitations of free therapeutics (drugs alone), navigate the barriers, and accomplish precision therapeutics in diabetes. In future, more drugs could be delivered with a similar strategy to cure various diseases and resolve challenges in drug delivery. This review significantly describes the role of various engineered nanoparticles in improving the bioavailability of insulin by protecting it from various barriers during non-invasive routes of delivery.
Collapse
Affiliation(s)
- Gunjan Adwani
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India
| | - Sharda Bharti
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, CG, India.
| |
Collapse
|
20
|
Silva AC, Costa MP, Zacaron TM, Ferreira KCB, Braz WR, Fabri RL, Frézard FJG, Pittella F, Tavares GD. The Role of Inhaled Chitosan-Based Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024; 16:969. [PMID: 39204314 PMCID: PMC11359377 DOI: 10.3390/pharmaceutics16080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to the limited efficacy of anticancer drugs, which is primarily attributed to insufficient doses reaching the lungs. Additionally, patients undergoing treatment experience severe systemic adverse effects due to the distribution of anticancer drugs to non-targeted sites. In light of these challenges, there has been a growing interest in pulmonary administration of drugs for the treatment of lung cancer. This route allows drugs to be delivered directly to the lungs, resulting in high local concentrations that can enhance antitumor efficacy while mitigating systemic toxic effects. However, pulmonary administration poses the challenge of overcoming the mechanical, chemical, and immunological defenses of the respiratory tract that prevent the inhaled drug from properly penetrating the lungs. To overcome these drawbacks, the use of nanoparticles in inhaler formulations may be a promising strategy. Nanoparticles can assist in minimizing drug clearance, increasing penetration into the lung epithelium, and enhancing cellular uptake. They can also facilitate increased drug stability, promote controlled drug release, and delivery to target sites, such as the tumor environment. Among them, chitosan-based nanoparticles demonstrate advantages over other polymeric nanocarriers due to their unique biological properties, including antitumor activity and mucoadhesive capacity. These properties have the potential to enhance the efficacy of the drug when administered via the pulmonary route. In view of the above, this paper provides an overview of the research conducted on the delivery of anticancer drug-loaded chitosan-based nanoparticles incorporated into inhaled drug delivery devices for the treatment of lung cancer. Furthermore, the article addresses the use of emerging technologies, such as siRNA (small interfering RNA), in the context of lung cancer therapy. Particularly, recent studies employing chitosan-based nanoparticles for siRNA delivery via the pulmonary route are described.
Collapse
Affiliation(s)
- Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Kézia Cristine Barbosa Ferreira
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Wilson Rodrigues Braz
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Frédéric Jean Georges Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| |
Collapse
|
21
|
Yagi H, Tomono T, Abe K, Tsutsumi Y, Makabe M, Mitsuhashi H, Kimura T, Kobayashi H, Miyata K, Shigeno K, Sakuma S. Validation of the Absorption-Enhancing Ability of Oligoarginines Grafted onto a Backbone of Hyaluronic Acid through Animal Studies from Rodents to Primates. Mol Pharm 2024; 21:3485-3501. [PMID: 38804275 DOI: 10.1021/acs.molpharmaceut.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The purpose of our research is to develop functional additives that enhance mucosal absorption of biologics, such as peptide/protein and antibody drugs, to provide their non-to-poor invasive dosage forms self-managed by patients. Our previous in vivo and in vitro studies demonstrated that the intranasal absorption of biologics in mice was significantly improved when coadministered with oligoarginines anchored chemically to hyaluronic acid via a glycine spacer, presumably through syndecan-4-mediated macropinocytosis under activation by oligoarginines. The present mouse experiments first revealed that diglycine-L-tetraarginine-linked hyaluronic acid significantly enhanced the intranasal absorption of sulpiride, which is a poor-absorptive organic compound with a low molecular weight. However, similar enhancement was not observed for levofloxacin, which has a similarly low molecular weight but is a well-absorptive organic compound, probably because its absorption was mostly dominated by passive diffusion. The subsequent monkey experiments revealed that there was no species difference in the absorption-enhancing ability of diglycine-L-tetraarginine-linked hyaluronic acid for not only organic compounds but also biologics. This was presumably because the expression levels of endocytosis-associated membrane proteins on the nasal mucosa in monkeys were almost equivalent to those in mice, and poorly membrane-permeable/membrane-impermeable drugs were mainly absorbed via syndecan-4-mediated macropinocytosis, regardless of animal species. Drug concentrations in the brain assessed in mice and monkeys and those in the cerebral spinal fluids (CSFs) assessed in monkeys indicated that drugs would be delivered from the systemic circulation to the central nervous system by crossing the blood-brain and the blood-CSF barriers under coadministration with the hyaluronic acid derivative. In line with our original hypothesis, this new set of data supported that our oligoarginine-linked hyaluronic acid would locally perform on the mucosal surface and enhance the membrane permeation of drugs under its colocalization.
Collapse
Affiliation(s)
- Haruya Yagi
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Takumi Tomono
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Koji Abe
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yasuhiro Tsutsumi
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Muneyoshi Makabe
- Organic & Biomolecular Chemistry Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Hiromi Mitsuhashi
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Takayuki Kimura
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Hideo Kobayashi
- Research Management Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kohei Miyata
- Life Science Materials Laboratory, ADEKA Co., 7-2-34, Higashiogu, Arakawa-ku, Tokyo 116-8553, Japan
| | - Koichi Shigeno
- Life Science Materials Laboratory, ADEKA Co., 7-2-34, Higashiogu, Arakawa-ku, Tokyo 116-8553, Japan
| | - Shinji Sakuma
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
22
|
Khan TTS, Sheikh Z, Maleknia S, Oveissi F, Fathi A, Abrams T, Ong HX, Traini D. Intranasal delivery of glucagon-like peptide-1 to the brain for obesity treatment: opportunities and challenges. Expert Opin Drug Deliv 2024; 21:1081-1101. [PMID: 39086086 DOI: 10.1080/17425247.2024.2387110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), approved by the US FDA for obesity treatment, are typically administered subcutaneously, an invasive method leading to suboptimal patient adherence and peripheral side effects. Additionally, this route requires the drug to cross the restrictive blood-brain barrier (BBB), limiting its safety and effectiveness in weight management and cognitive addiction disorders. Delivering the drug intranasally could overcome these drawbacks. AREAS COVERED This review summarizes GLP-1 RAs used as anti-obesity agents, focusing on the intranasal route as a potential pathway to deliver these biomolecules to the brain. It also discusses strategies to overcome challenges associated with nasal delivery. EXPERT OPINION Nose-to-brain (N2B) pathways can address limitations of the subcutaneous route for GLP-1 RAs. However, peptide delivery to the brain is challenging due to nasal physiological barriers and the drug's physicochemical properties. Innovative approaches, such as cell permeation enhancers, mucoadhesive systems, and nanocarriers in nasal formulations, along with efficient drug delivery devices, show promising preclinical results. Despite this, successful preclinical data does not guarantee clinical effectiveness, highlighting the need for comprehensive clinical investigations to optimize formulations and fully utilize the nose-to-brain interface for peptide delivery.
Collapse
Affiliation(s)
- Tanisha Tabassum Sayka Khan
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- School of Pharmacy, Brac University, Dhaka, Bangladesh
| | - Zara Sheikh
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- School of Pharmacy, Brac University, Dhaka, Bangladesh
| | - Simin Maleknia
- Tetratherix Technology Pty Ltd, Sydney, New South Wales, Australia
| | - Farshad Oveissi
- Tetratherix Technology Pty Ltd, Sydney, New South Wales, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ali Fathi
- Tetratherix Technology Pty Ltd, Sydney, New South Wales, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales, Australia
| | - Terence Abrams
- Tetratherix Technology Pty Ltd, Sydney, New South Wales, Australia
| | - Hui Xin Ong
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| | - Daniela Traini
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
24
|
Liu Y, Liang Y, Yuhong J, Xin P, Han JL, Du Y, Yu X, Zhu R, Zhang M, Chen W, Ma Y. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des Devel Ther 2024; 18:1469-1495. [PMID: 38707615 PMCID: PMC11070169 DOI: 10.2147/dddt.s447496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.
Collapse
Affiliation(s)
- Yifan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yushan Liang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Yuhong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Peng Xin
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jia Li Han
- School of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yongle Du
- School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xinru Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Runhe Zhu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Mingxun Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Wen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yingjie Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
25
|
Barlang LA, Deimel I, Mohl BP, Blaurock C, Balkema-Buschmann A, Weinbender K, Hess B, Obernolte H, Merkel OM, Popp A. Distribution and suitability of pulmonary surfactants as a vehicle for topically applied antibodies in healthy and SARS-CoV-2 infected rodent lungs. Eur J Pharm Sci 2024; 196:106744. [PMID: 38471595 DOI: 10.1016/j.ejps.2024.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
The use of natural pulmonary surfactants (PS) as a drug delivery vehicle for biologics is a more recent therapeutic modality. Herein, we tested different contents of PS regarding their physicochemical properties under stress conditions. The PS content of 12.25 mg/ml (Formulation B) showed desired properties such as an isotonic osmolality ∼300 mOsm/kg and an acceptable viscosity of 8.61 cSt, being lower than in commercially available PS solutions. Formulation B passed the specifications of surface lowering capacities of >80 % total lung capacity and physiologically desired formulation properties were independent of the antibody used in the composition. The identified formulation showed the capability of significantly increasing the oxygen saturation in ex vivo isolated perfused rat lungs, compared to a control and up to 30 min post lavage. In the in vivo setting, we showed that intratracheal administration of a human mAB with and without pulmonary surfactant led to higher amounts of delivered antibody within the alveolar tissue compared to intravenous administration. The antibody with the PS formulation remained longer in the alveolar tissues than the antibody without the PS formulation. Further, SARS-CoV-2 infected Golden Syrian hamsters showed that the intranasally applied antibody reached the site of infection in the alveoli and could be detected in the alveolar region 24 h after the last administration. With this work, we demonstrated that pulmonary surfactants can be used as a pulmonary drug delivery mechanism for antibodies and may subsequently improve the antibody efficacy by increasing the residence time at the desired site of action in the alveolar tissue.
Collapse
Affiliation(s)
- Lea-Adriana Barlang
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany; Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5‑13, 8133 Munich, Germany; Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany.
| | - Isabelle Deimel
- Biologics Drug Product Development Department, AbbVie Deutschland GmbH & Co.KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Björn-Patrick Mohl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald- Insel Riems, Germany
| | - Claudia Blaurock
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald- Insel Riems, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald- Insel Riems, Germany
| | - Kristina Weinbender
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Brian Hess
- Quality Control Laboratories, AbbVie Inc. Illinois, USA
| | - Helena Obernolte
- Department of Preclinical Pharmacology and In Vitro Toxicology, Fraunhofer ITEM, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5‑13, 8133 Munich, Germany
| | - Andreas Popp
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| |
Collapse
|
26
|
Azrak ZAT, Taha MS, Jagal J, Elsherbeny A, Bayraktutan H, AbouGhaly MHH, Elshafeey AH, Greish K, Haider M. Optimized mucoadhesive niosomal carriers for intranasal delivery of carvedilol: A quality by design approach. Int J Pharm 2024; 654:123935. [PMID: 38395319 DOI: 10.1016/j.ijpharm.2024.123935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Carvedilol (CV), a β-blocker essential for treating cardiovascular diseases, faces bioavailability challenges due to poor water solubility and first-pass metabolism. This study developed and optimized chitosan (CS)-coated niosomes loaded with CV (CS/CV-NS) for intranasal (IN) delivery, aiming to enhance systemic bioavailability. Utilizing a Quality-by-Design (QbD) approach, the study investigated the effects of formulation variables, such as surfactant type, surfactant-to-cholesterol (CHOL) ratio, and CS concentration, on CS/CV-NS properties. The focus was to optimize specific characteristics including particle size (PS), polydispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE%), and mucin binding efficiency (MBE%). The optimal formulation (Opt CS/CV-NS), achieved with a surfactant: CHOL ratio of 0.918 and a CS concentration of 0.062 g/100 mL, using Span 60 as the surfactant, exhibited a PS of 305 nm, PDI of 0.36, ZP of + 33 mV, EE% of 63 %, and MBE% of 57 %. Opt CS/CV-NS was characterized for its morphological and physicochemical properties, evaluated for stability under different storage conditions, and assessed for in vitro drug release profile. Opt CS/CV-NS demonstrated a 1.7-fold and 4.8-fold increase in in vitro CV release after 24 h, compared to uncoated CV-loaded niosomes (Opt CV-NS) and free CV, respectively. In vivo pharmacokinetic (PK) study, using a rat model, demonstrated that Opt CS/CV-NS achieved faster Tmax and higher Cmax compared to free CV suspension indicating enhanced absorption rate. Additionally, Opt CV-NS showed a 1.68-fold higher bioavailability compared to the control. These results underscore the potential of niosomal formulations in enhancing IN delivery of CV, offering an effective strategy for improving drug bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Zein A T Azrak
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Maie S Taha
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Amr Elsherbeny
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom; Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Hulya Bayraktutan
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom; Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Mohamed H H AbouGhaly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt; Department of Pharmaceutics and Industrial Pharmacy, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Ahmed H Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences Arabian Gulf University, Manama 329, Bahrain
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| |
Collapse
|
27
|
Mao Y, Yuan W, Gai J, Zhang Y, Wu S, Xu EY, Wang L, Zhang X, Guan J, Mao S. Enhanced brain distribution of Ginsenoside F1 via intranasal administration in combination with absorption enhancers. Int J Pharm 2024; 654:123930. [PMID: 38387820 DOI: 10.1016/j.ijpharm.2024.123930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Ginsenoside F1 (GF1) is a potential drug candidate for the treatment of Alzheimer's disease. Nevertheless, its low oral bioavailability and poor solubility limit clinical application. By utilizing either a direct or indirect approach, intranasal administration is a non-invasive drug delivery method that can deliver drugs to the brain rapidly. But large molecule drug delivered to the brain through intranasal administration may be insufficient to reach required concentration for therapeutic effect. In this study, using GF1 as a model drug, the feasibility of intranasal administration in combination with absorption enhancers to increase brain distribution of GF1 was explored. First of all, the appropriate absorption enhancers were screened by in situ nasal perfusion study. GF1-HP-β-CD inclusion complex was prepared and characterized. Thereafter, in vivo absorption of GF1 after intranasal or intravenous administration of its inclusion complex with/without absorption enhancers was investigated, and safety of the formulations was evaluated. The results showed that 2% Solutol HS 15 was a superior absorption enhancer. HP-β-CD inclusion complex improved GF1 solubility by 150 fold. Following intranasal delivery, the absolute bioavailability of inclusion complex was 46%, with drug brain targeting index (DTI) 247% and nose-to-brain direct transport percentage (DTP) 58%. Upon further addition of 2% Solutol HS 15, the absolute bioavailability was increased to 75%, with DTI 315% and DTP 66%. Both nasal cilia movement and biochemical substances (total protein and lactate dehydrogenase) leaching studies demonstrated 2% Solutol HS 15 was safe to the nasal mucosa. In conclusion, intranasal administration combining with safe absorption enhancers is an effective strategy to enhance drug distribution in the brain, showing promise for treating disorders related to the central nervous system.
Collapse
Affiliation(s)
- Ying Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weihua Yuan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiayi Gai
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yixuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | - En-Yu Xu
- Department of Forensic Toxicological Analysis, School of Forensic Medicine, China Medical University, Shenyang 110122, China.
| | - Luyao Wang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
28
|
Hua T, Li S, Han B. Nanomedicines for intranasal delivery: understanding the nano-bio interactions at the nasal mucus-mucosal barrier. Expert Opin Drug Deliv 2024; 21:553-572. [PMID: 38720439 DOI: 10.1080/17425247.2024.2339335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.
Collapse
Affiliation(s)
- Tangsiyuan Hua
- School of Pharmacy, Changzhou Univesity, Changzhou, PR China
| | - Shuling Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
29
|
Chen Y, Zhang C, Huang Y, Ma Y, Song Q, Chen H, Jiang G, Gao X. Intranasal drug delivery: The interaction between nanoparticles and the nose-to-brain pathway. Adv Drug Deliv Rev 2024; 207:115196. [PMID: 38336090 DOI: 10.1016/j.addr.2024.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Intranasal delivery provides a direct and non-invasive method for drugs to reach the central nervous system. Nanoparticles play a crucial role as carriers in augmenting the efficacy of brain delivery. However, the interaction between nanoparticles and the nose-to-brain pathway and how the various biopharmaceutical factors affect brain delivery efficacy remains unclear. In this review, we comprehensively summarized the anatomical and physiological characteristics of the nose-to-brain pathway and the obstacles that hinder brain delivery. We then outlined the interaction between nanoparticles and this pathway and reviewed the biomedical applications of various nanoparticulate drug delivery systems for nose-to-brain drug delivery. This review aims at inspiring innovative approaches for enhancing the effectiveness of nose-to-brain drug delivery in the treatment of different brain disorders.
Collapse
Affiliation(s)
- Yaoxing Chen
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Chenyun Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yuxiao Ma
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201210, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
30
|
Chmielewska N, Szyndler J. Intranasal administration of antiseizure medications in chronic and emergency treatment: Hopes and challenges. Seizure 2024; 115:62-67. [PMID: 38184900 DOI: 10.1016/j.seizure.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024] Open
Abstract
Despite the availability of many antiseizure medications (ASMs), 30 % of patients experience pharmacoresistant seizures. High-throughput screening methods undoubtedly remain one of the most important approaches for discovering new molecules to treat seizures. However, the costly and time-consuming nature of drug development prompts us to explore alternative strategies to counteract drug-resistant seizures. One such approach is to consider intranasal administration of known molecules for seizure treatment. In the case of treating epileptic seizures, administering ASMs intranasally may enhance treatment effectiveness and minimize adverse effects. A good example of changes in drug administration is the intranasal administration of fentanyl, which has become a clinical standard in the emergency setting to treat moderate to severe pain in adults and children. This review discusses the utilization of intranasally administered ASMs for both acute and chronic seizures. It addresses various targeted pharmacokinetic approaches, challenges and prospects associated with these regimens. Brief neuroanatomical and molecular rationale for nose-to-brain drug transport is also presented. Furthermore, recent preclinical studies validating the efficacy and brain distribution following intranasal administration of the most commonly used drugs in chronic treatment are also discussed.
Collapse
Affiliation(s)
- Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, Warsaw 02-957, Poland.
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B Street, Warsaw 02- 097, Poland
| |
Collapse
|
31
|
Fast J, Christian T, Crul M, Jiskoot W, Nejadnik MR, Medina A, Radwick A, Sreedhara A, Tole H. Use of Closed System Transfer Devices (CSTDs) with Protein-Based Therapeutic Drugs-A Non-Solution for a Non-Problem? J Pharm Sci 2024; 113:298-305. [PMID: 37984700 DOI: 10.1016/j.xphs.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Affiliation(s)
- Jonas Fast
- Pharmaceutical Development, F. Hoffmann-La Roche Ltd. CH-4070 Basel, Switzerland.
| | | | - Mirjam Crul
- Amsterdam University Medical Center, Department of Clinical Pharmacology and Pharmacy, Amsterdam, the Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden University, the Netherlands; Coriolis Pharma, Martinsried, Germany
| | - M Reza Nejadnik
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Annette Medina
- Dosage Form Design and Development, AstraZeneca, Gaithersburg, MD, USA
| | | | | | - Hugh Tole
- Occupational Health, Hygiene &Toxicology, Genentech Inc., Little Falls, NJ, USA
| |
Collapse
|
32
|
Neary MT, Mulder LM, Kowalski PS, MacLoughlin R, Crean AM, Ryan KB. Nebulised delivery of RNA formulations to the lungs: From aerosol to cytosol. J Control Release 2024; 366:812-833. [PMID: 38101753 DOI: 10.1016/j.jconrel.2023.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
In the past decade RNA-based therapies such as small interfering RNA (siRNA) and messenger RNA (mRNA) have emerged as new and ground-breaking therapeutic agents for the treatment and prevention of many conditions from viral infection to cancer. Most clinically approved RNA therapies are parenterally administered which impacts patient compliance and adds to healthcare costs. Pulmonary administration via inhalation is a non-invasive means to deliver RNA and offers an attractive alternative to injection. Nebulisation is a particularly appealing method due to the capacity to deliver large RNA doses during tidal breathing. In this review, we discuss the unique physiological barriers presented by the lung to efficient nebulised RNA delivery and approaches adopted to circumvent this problem. Additionally, the different types of nebulisers are evaluated from the perspective of their suitability for RNA delivery. Furthermore, we discuss recent preclinical studies involving nebulisation of RNA and analysis in in vitro and in vivo settings. Several studies have also demonstrated the importance of an effective delivery vector in RNA nebulisation therefore we assess the variety of lipid, polymeric and hybrid-based delivery systems utilised to date. We also consider the outlook for nebulised RNA medicinal products and the hurdles which must be overcome for successful clinical translation. In summary, nebulised RNA delivery has demonstrated promising potential for the treatment of several lung-related conditions such as asthma, COPD and cystic fibrosis, to which the mode of delivery is of crucial importance for clinical success.
Collapse
Affiliation(s)
- Michael T Neary
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | | | - Piotr S Kowalski
- School of Pharmacy, University College Cork, Ireland; APC Microbiome, University College Cork, Cork, Ireland
| | | | - Abina M Crean
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - Katie B Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland.
| |
Collapse
|
33
|
Cain MD, Klein NR, Jiang X, Salimi H, Wu Q, Miller MJ, Klimstra WB, Klein RS. Post-exposure intranasal IFNα suppresses replication and neuroinvasion of Venezuelan Equine Encephalitis virus within olfactory sensory neurons. J Neuroinflammation 2024; 21:24. [PMID: 38233868 PMCID: PMC10792865 DOI: 10.1186/s12974-023-02960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Venezuelan Equine Encephalitis virus (VEEV) may enter the central nervous system (CNS) within olfactory sensory neurons (OSN) that originate in the nasal cavity after intranasal exposure. While it is known that VEEV has evolved several mechanisms to inhibit type I interferon (IFN) signaling within infected cells, whether this inhibits virologic control during neuroinvasion along OSN has not been studied. METHODS We utilized an established murine model of intranasal infection with VEEV and a repository of scRNAseq data from IFN-treated OSN to assess the cellular targets and IFN signaling responses after VEEV exposure. RESULTS We found that immature OSN, which express higher levels of the VEEV receptor LDLRAD3 than mature OSN, are the first cells infected by VEEV. Despite rapid VEEV neuroinvasion after intranasal exposure, olfactory neuroepithelium (ONE) and olfactory bulb (OB) IFN responses, as assessed by evaluation of expression of interferon signaling genes (ISG), are delayed for up to 48 h during VEEV neuroinvasion, representing a potential therapeutic window. Indeed, a single intranasal dose of recombinant IFNα triggers early ISG expression in both the nasal cavity and OB. When administered at the time of or early after infection, IFNα treatment delayed onset of sequelae associated with encephalitis and extended survival by several days. VEEV replication after IFN treatment was also transiently suppressed in the ONE, which inhibited subsequent invasion into the CNS. CONCLUSIONS Our results demonstrate a critical and promising first evaluation of intranasal IFNα for the treatment of human encephalitic alphavirus exposures.
Collapse
Affiliation(s)
- Matthew D Cain
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - N Rubin Klein
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoping Jiang
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hamid Salimi
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Qingping Wu
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark J Miller
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - William B Klimstra
- Department of Immunology and Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robyn S Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Departments of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Departments of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
34
|
Wu TY, Huang CC, Tsai HC, Lin TK, Chen PY, Darge HF, Hong ZX, Harn HJ, Lin SZ, Lai JY, Chen YS. Mucin-mediated mucosal retention via end-terminal modified Pluronic F127-based hydrogel to increase drug accumulation in the lungs. BIOMATERIALS ADVANCES 2024; 156:213722. [PMID: 38101076 DOI: 10.1016/j.bioadv.2023.213722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Noninvasive lung drug delivery is critical for treating respiratory diseases. Pluronic-based copolymers have been used as multifunctional materials for medical and biological applications. However, the Pluronic F127-based hydrogel is rapidly degraded, adversely affecting the mechanical stability for prolonged drug release. Therefore, this study designed two thermosensitive copolymers by modifying the Pluronic F127 terminal groups with carboxyl (ADF127) or amine groups (EDF127) to improve the viscosity and storage modulus of drug formulations. β-alanine and ethylenediamine were conjugated at the terminal of Pluronic F127 using a two-step acetylation process, and the final copolymers were characterized using 1H nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectra. According to the 1H NMR spectra, Pluronic F127 was functionalized to form ADF127 and EDF127 with 85 % and 71 % functionalization degrees, respectively. Rheological studies revealed that the ADF127 (15 wt%) and EDF127 (15 wt%) viscosities increased from 1480 Pa.s (Pluronic F127) to 1700 Pa.s and 1800 Pa.s, respectively. Furthermore, the elastic modulus of ADF127 and EDF127 increased, compared with that of native Pluronic F127 with the addition of 5 % mucin, particularly for ADF127, thereby signifying the stronger adhesive nature of ADF127 and EDF127 with mucin. Additionally, ADF127 and EDF127 exhibited a decreased gelation temperature, decreasing from 33 °C (Pluronic F127 at 15 wt%) to 24 °C. Notably, the in vitro ADF127 and EDF127 drug release was prolonged (95 %; 48 h) by the hydrogel encapsulation of the liposome-Bdph combined with mucin, and the intermolecular hydrogen bonding between the mucin and the hydrogel increased the retention time and stiffness of the hydrogels. Furthermore, ADF127 and EDF127 incubated with NIH-3T3 cells exhibited biocompatibility within 2 mg/mL, compared with Pluronic F127. The nasal administration method was used to examine the biodistribution of the modified hydrogel carrying liposomes or exosomes with fluorescence using the IVIS system. Drug accumulation in the lungs decreased in the following order: ADF127 > EDF127 > liposomes or exosomes alone. These results indicated that the carboxyl group-modified Pluronic F127 enabled well-distributed drug accumulation in the lungs, which is beneficial for intranasal administration routes in treating diseases such as lung fibrosis.
Collapse
Affiliation(s)
- Tsung-Yun Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Chun-Chiang Huang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 302, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Tzu-Kai Lin
- Department of Dermatology, Skin Institute, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Department of Dermatology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan, ROC
| | - Pei-Yu Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Haile Fentahun Darge
- Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Zhen-Xiang Hong
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Centre for Ocular Research & Education (CORE), School of Optometry and Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Department of Pathology, Hualien Tzu Chi Hospital, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan, ROC
| | - Yu-Shuan Chen
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan, ROC; Tzu Chi University of Science and Technology, Hualien 970, Taiwan, ROC.
| |
Collapse
|
35
|
Yousfan A, Al Rahwanji MJ, Hanano A, Al-Obaidi H. A Comprehensive Study on Nanoparticle Drug Delivery to the Brain: Application of Machine Learning Techniques. Mol Pharm 2024; 21:333-345. [PMID: 38060692 PMCID: PMC10762658 DOI: 10.1021/acs.molpharmaceut.3c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 01/02/2024]
Abstract
The delivery of drugs to specific target tissues and cells in the brain poses a significant challenge in brain therapeutics, primarily due to limited understanding of how nanoparticle (NP) properties influence drug biodistribution and off-target organ accumulation. This study addresses the limitations of previous research by using various predictive models based on collection of large data sets of 403 data points incorporating both numerical and categorical features. Machine learning techniques and comprehensive literature data analysis were used to develop models for predicting NP delivery to the brain. Furthermore, the physicochemical properties of loaded drugs and NPs were analyzed through a systematic analysis of pharmacodynamic parameters such as plasma area under the curve. The analysis employed various linear models, with a particular emphasis on linear mixed-effect models (LMEMs) that demonstrated exceptional accuracy. The model was validated via the preparation and administration of two distinct NP formulations via the intranasal and intravenous routes. Among the various modeling approaches, LMEMs exhibited superior performance in capturing underlying patterns. Factors such as the release rate and molecular weight had a negative impact on brain targeting. The model also suggests a slightly positive impact on brain targeting when the drug is a P-glycoprotein substrate.
Collapse
Affiliation(s)
- Amal Yousfan
- The
School of Pharmacy, University of Reading, Reading RG6 6AD, U.K.
- Department
of Pharmaceutics and Pharmaceutical Technology, Pharmacy College, Al Andalus University for Medical Sciences, Tartus, AL Kadmous 00000, Syria
| | - Mhd Jawad Al Rahwanji
- Department
of Computer Science, Saarland University, Saarbrücken, Saarbrücken 66123, Germany
| | - Abdulsamie Hanano
- Department
of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus 00000, Syria
| | - Hisham Al-Obaidi
- The
School of Pharmacy, University of Reading, Reading RG6 6AD, U.K.
| |
Collapse
|
36
|
Sharma D, Pooja, Nirban S, Ojha S, Kumar T, Jain N, Mohamad N, Kumar P, Pandey M. Nano vs Resistant Tuberculosis: Taking the Lung Route. AAPS PharmSciTech 2023; 24:252. [PMID: 38049695 DOI: 10.1208/s12249-023-02708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
Tuberculosis (TB) is among the top 10 infectious diseases worldwide. It is categorized among the leading killer diseases that are the reason for the death of millions of people globally. Although a standardized treatment regimen is available, non-adherence to treatment has increased multi-drug resistance (MDR) and extensive drug-resistant (XDR) TB development. Another challenge is targeting the death of TB reservoirs in the alveoli via conventional treatment. TB Drug resistance may emerge as a futuristic restraint of TB with the scarcity of effective Anti-tubercular drugs. The paradigm change towards nano-targeted drug delivery systems is mostly due to the absence of effective therapy and increased TB infection recurrent episodes with MDR. The emerging field of nanotechnology gave an admirable opportunity to combat MDR and XDR via accurate diagnosis with effective treatment. The new strategies targeting the lung via the pulmonary route may overcome the new incidence of MDR and enhance patient compliance. Therefore, this review highlights the importance and recent research on pulmonary drug delivery with nanotechnology along with prevalence, the need for the development of nanotechnology, beneficial aspects of nanomedicine, safety concerns of nanocarriers, and clinical studies.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Pooja
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Sunita Nirban
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Smriti Ojha
- Department of Pharmaceutical Science and Technology, Madan Mohan Malaviya University of Technology, Gorakhpur, India
| | - Tarun Kumar
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Najwa Mohamad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor Darul Ehsan, Malaysia
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
37
|
Salehi T, Raeisi Estabragh MA, Salarpour S, Ohadi M, Dehghannoudeh G. Absorption enhancer approach for protein delivery by various routes of administration: a rapid review. J Drug Target 2023; 31:950-961. [PMID: 37842966 DOI: 10.1080/1061186x.2023.2271680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
As bioactive molecules, peptides and proteins are essential in living organisms, including animals and humans. Defects in their function lead to various diseases in humans. Therefore, the use of proteins in treating multiple diseases, such as cancers and hepatitis, is increasing. There are different routes to administer proteins, which have limitations due to their large and hydrophilic structure. Another limitation is the presence of biological and lipophilic membranes that do not allow proteins to pass quickly. There are different strategies to increase the absorption of proteins from these biological membranes. One of these strategies is to use compounds as absorption enhancers. Absorption enhancers are compounds such as surfactants, phospholipids and cyclodextrins that increase protein passage through the biological membrane and their absorption by different mechanisms. This review focuses on using other absorption enhancers and their mechanism in protein administration routes.
Collapse
Affiliation(s)
- Toktam Salehi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Raeisi Estabragh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
38
|
Verboni M, Perinelli DR, Buono A, Campana R, Sisti M, Duranti A, Lucarini S. Sugar-Based Monoester Surfactants: Synthetic Methodologies, Properties, and Biological Activities. Antibiotics (Basel) 2023; 12:1500. [PMID: 37887201 PMCID: PMC10604170 DOI: 10.3390/antibiotics12101500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Glycolipids are biocompatible and biodegradable amphiphilic compounds characterized by a great scientific interest for their potential applications in various technological areas, including pharmaceuticals, cosmetics, agriculture, and food production. This report summarizes the available synthetic methodologies, physicochemical properties, and biological activity of sugar fatty acid ester surfactants, with a particular focus on 6-O-glucose, 6-O-mannose, 6-O-sucrose, and 6'-O-lactose ones. In detail, the synthetic approaches to this class of compounds, such as enzymatic lipase-catalyzed and traditional chemical (e.g., acyl chloride, Steglich, Mitsunobu) esterifications, are reported. Moreover, aspects related to the surface activity of these amphiphiles, such as their ability to decrease surface tension, critical micelle concentration, and emulsifying and foaming ability, are described. Biological applications with a focus on the permeability-enhancing effect across the skin or mucosa, antimicrobial and antifungal activities, as well as antibiofilm properties, are also presented. The information reported here on sugar-based ester surfactants is helpful to broaden the interest and the possible innovative applications of this class of amphiphiles in different technological fields in the future.
Collapse
Affiliation(s)
- Michele Verboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Alessandro Buono
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Maurizio Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| |
Collapse
|
39
|
Zhao J, Yang J, Jiao J, Wang X, Zhao Y, Zhang L. Biomedical applications of artificial exosomes for intranasal drug delivery. Front Bioeng Biotechnol 2023; 11:1271489. [PMID: 37744256 PMCID: PMC10513441 DOI: 10.3389/fbioe.2023.1271489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Intranasal administration offers a feasible, non-invasive method of delivering therapeutic drugs to the brain, allowing therapeutic pharmaceuticals to be administered directly to the central nervous system by bypassing the blood-brain barrier. Furthermore, exosomes are naturally occurring cell-derived nanovesicles that can serve as carriers for a variety of chemical compounds. Many studies have focused on artificial exosomes as innovative medication delivery methods. As a result, trans-nasal delivery of artificial exosomes might be employed to treat brain illnesses in a novel method. This review will outline the drug delivery mechanism of artificial extracellular vesicles, emphasize its advantages as a nasal drug carrier, particularly its application as a novel nanocarriers in brain diseases, and focus on its prospective application in chronic inflammatory nose disorders. Finally, artificial exosomes may become a unique drug delivery mode for clinical therapeutic usage.
Collapse
Affiliation(s)
- Jinming Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jingxing Yang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Otorhinolaryngology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jian Jiao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yan Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
40
|
Babu SR, Shekara HH, Sahoo AK, Harsha Vardhan PV, Thiruppathi N, Venkatesh MP. Intranasal nanoparticulate delivery systems for neurodegenerative disorders: a review. Ther Deliv 2023; 14:571-594. [PMID: 37691577 DOI: 10.4155/tde-2023-0019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Neurodegenerative diseases are a significant cause of mortality worldwide, and the blood-brain barrier (BBB) poses a significant challenge for drug delivery. An intranasal route is a prominent approach among the various methods to bypass the BBB. There are different pathways involved in intranasal drug delivery. The drawbacks of this method include mucociliary clearance, enzymatic degradation and poor drug permeation. Novel nanoformulations and intranasal drug-delivery devices offer promising solutions to overcome these challenges. Nanoformulations include polymeric nanoparticles, lipid-based nanoparticles, microspheres, liposomes and noisomes. Additionally, intranasal devices could be utilized to enhance drug-delivery efficacy. Therefore, intranasal drug-delivery systems show potential for treating neurodegenerative diseases through trigeminal or olfactory pathways, which can significantly improve patient outcomes.
Collapse
Affiliation(s)
- Someshbabu Ramesh Babu
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Harshith Hosahalli Shekara
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Ashish Kumar Sahoo
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Pyda Venkata Harsha Vardhan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Nitheesh Thiruppathi
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Madhugiri Prakash Venkatesh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Faculty of Pharmaceutical Sciences, UCSI University, Kaula Lampur, Malaysia
| |
Collapse
|
41
|
Zhang X, Wang M, Liu Z, Wang Y, Chen L, Guo J, Zhang W, Zhang Y, Yu C, Bie T, Yu Y, Guan B. Transnasal-brain delivery of nanomedicines for neurodegenerative diseases. FRONTIERS IN DRUG DELIVERY 2023; 3. [DOI: 10.3389/fddev.2023.1247162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Neurodegenerative diseases (NDs) have become a serious global health problem as the population ages. Traditionally, treatment strategies for NDs have included oral and intravenous administration; however, the blood–brain barrier (BBB) can prevent drugs from reaching the brain, rendering the treatment incomplete and the effect unsatisfactory. Additionally, the prolonged or excessive use of drugs that can cross the BBB can damage liver and kidney function. Recent studies have shown that nose-to-brain drug delivery can noninvasively bypass the BBB, allowing drugs to enter the brain through the olfactory or trigeminal nerve pathways; additionally, nanoparticle carriers can enhance drug delivery. This review introduces drug carrier nanoparticles for nose-to-brain delivery systems, compares the advantages and disadvantages of different nanoparticles, and discusses the factors influencing nose-to-brain nanomedicine delivery and enhancement strategies. We also summarize nose-to-brain delivery and nanomedicines for treating NDs, the current challenges of this approach, and the future promise of nanomedicine-based ND treatment.
Collapse
|
42
|
Cherait A, Banks WA, Vaudry D. The Potential of the Nose-to-Brain Delivery of PACAP for the Treatment of Neuronal Disease. Pharmaceutics 2023; 15:2032. [PMID: 37631246 PMCID: PMC10459484 DOI: 10.3390/pharmaceutics15082032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Research on the neuroprotective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) and its use as a therapeutic agent has grown over the past 30 years. Both in vitro and in vivo experiments have shown that PACAP exerts a strong neuroprotective effect in many central and peripheral neuronal diseases. Various delivery routes have been employed from intravenous (IV) injections to intracerebroventricular (ICV) administration, leading either to systemic or topical delivery of the peptide. Over the last decade, a growing interest in the use of intranasal (IN) administration of PACAP and other therapeutic agents has emerged as an alternative delivery route to target the brain. The aim of this review is to summarize the findings on the neuroprotective effect of PACAP and to discuss how the IN administration of PACAP could contribute to target the effects of this pleiotropic peptide.
Collapse
Affiliation(s)
- Asma Cherait
- Univ Rouen Normandie, Inserm U1245, Medical Faculty, Normandie Univ, F-76000 Rouen, France;
- Department of Second Cycle, Higher School of Agronomy Mostaganem, Mostaganem 27000, Algeria
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Sciences, University of Badji Mokhtar Annaba, B.P. 12, Annaba 23000, Algeria
| | - William A. Banks
- Geriatric Research Educational and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - David Vaudry
- Univ Rouen Normandie, Inserm U1245, Medical Faculty, Normandie Univ, F-76000 Rouen, France;
- Univ Rouen Normandie, Inserm US51, Regional Cell Imaging Platform of Normandy (PRIMACEN), Sciences and Technologies Faculty, Normandie Univ, F-76000 Rouen, France
| |
Collapse
|
43
|
AbdEl-haq M, Kumar A, Ait Mohand FE, Kravchenko-Balasha N, Rottenberg Y, Domb AJ. Paclitaxel Delivery to the Brain for Glioblastoma Treatment. Int J Mol Sci 2023; 24:11722. [PMID: 37511480 PMCID: PMC10380674 DOI: 10.3390/ijms241411722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The development of paclitaxel-loaded polymeric nanoparticles for the treatment of brain tumors was investigated. Poly(lactide-glycolide) (PLGA) nanoparticles containing 10% w/w paclitaxel with a particle size of 216 nm were administered through intranasal and intravenous routes to male Sprague-Dawley rats at a dose of 5 mg/kg. Both routes of administration showed appreciable accumulation of paclitaxel in brain tissue, liver, and kidney without any sign of toxicity. The anti-proliferative effect of the nanoparticles on glioblastoma tumor cells was comparable to that of free paclitaxel.
Collapse
Affiliation(s)
- Muhammad AbdEl-haq
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Awanish Kumar
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Fatima-ezzahra Ait Mohand
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel (N.K.-B.)
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel (N.K.-B.)
| | - Yakir Rottenberg
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Abraham J. Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
44
|
Matera MG, Calzetta L, Rinaldi B, Cazzola M, Rogliani P. Strategies for overcoming the biological barriers associated with the administration of inhaled monoclonal antibodies for lung diseases. Expert Opin Drug Deliv 2023; 20:1085-1095. [PMID: 37715502 DOI: 10.1080/17425247.2023.2260310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) should be administered by inhalation rather than parenterally to improve their efficiency in lung diseases. However, the pulmonary administration of mAbs in terms of aerosol technology and the formulation for inhalation is difficult. AREAS COVERED The feasible or suitable strategies for overcoming the barriers associated with administering mAbs are described. EXPERT OPINION Providing mAbs via inhalation to individuals with lung disorders is still difficult. However, inhalation is a desirable method for mAb delivery. Inhaled mAb production needs to be well thought out. The illness, the patient group(s), the therapeutic molecule selected, its interaction with the biological barriers in the lungs, the formulation, excipients, and administration systems must all be thoroughly investigated. Therefore, to create inhaled mAbs that are stable and efficacious, it will be essential to thoroughly examine the problems linked to instability and protein aggregation. More excipients will also need to be manufactured, expanding the range of formulation design choices. Another crucial requirement is for novel carriers for topical delivery to the lungs since carriers might significantly enhance proteins' stability and pharmacokinetic profile.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Diseases and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Barbara Rinaldi
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
45
|
Cain MD, Klein NR, Jiang X, Klein RS. Post-exposure intranasal IFNα suppresses replication and neuroinvasion of Venezuelan Equine Encephalitis virus within olfactory sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547169. [PMID: 37425867 PMCID: PMC10327097 DOI: 10.1101/2023.06.30.547169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Venezuelan Equine Encephalitis virus (VEEV) may enter the central nervous system (CNS) within olfactory sensory neurons (OSN) that originate in the nasal cavity after intranasal exposure. While it is known that VEEV has evolved several mechanisms to inhibit type I interferon (IFN) signaling within infected cells, whether this inhibits virologic control during neuroinvasion along OSN has not been studied. Here, we utilized an established murine model of intranasal infection with VEEV to assess the cellular targets and IFN signaling responses after VEEV exposure. We found that immature OSN, which express higher levels of the VEEV receptor LDLRAD3 than mature OSN, are the first cells infected by VEEV. Despite rapid VEEV neuroinvasion after intranasal exposure, olfactory neuroepithelium (ONE) and olfactory bulb (OB) IFN responses, as assessed by evaluation of expression of interferon signaling genes (ISG), are delayed for up to 48 hours during VEEV neuroinvasion, representing a potential therapeutic window. Indeed, a single intranasal dose of recombinant IFNα triggers early ISG expression in both the nasal cavity and OB. When administered at the time of or early after infection, IFNα treatment delayed onset of sequelae associated with encephalitis and extended survival by several days. VEEV replication after IFN treatment was also transiently suppressed in the ONE, which inhibited subsequent invasion into the CNS. Our results demonstrate a critical and promising first evaluation of intranasal IFNα for the treatment of human encephalitic alphavirus exposures.
Collapse
Affiliation(s)
- Matthew D. Cain
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - N. Rubin Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoping Jiang
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Robyn S. Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
46
|
Perkušić M, Nižić Nodilo L, Ugrina I, Špoljarić D, Jakobušić Brala C, Pepić I, Lovrić J, Safundžić Kučuk M, Trenkel M, Scherließ R, Zadravec D, Kalogjera L, Hafner A. Chitosan-Based Thermogelling System for Nose-to-Brain Donepezil Delivery: Optimising Formulation Properties and Nasal Deposition Profile. Pharmaceutics 2023; 15:1660. [PMID: 37376108 DOI: 10.3390/pharmaceutics15061660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Donepezil nasal delivery strategies are being continuously investigated for advancing therapy in Alzheimer's disease. The aim of this study was to develop a chitosan-based, donepezil-loaded thermogelling formulation tailored to meet all the requirements for efficient nose-to-brain delivery. A statistical design of the experiments was implemented for the optimisation of the formulation and/or administration parameters, with regard to formulation viscosity, gelling and spray properties, as well as its targeted nasal deposition within the 3D-printed nasal cavity model. The optimised formulation was further characterised in terms of stability, in vitro release, in vitro biocompatibility and permeability (using Calu-3 cells), ex vivo mucoadhesion (using porcine nasal mucosa), and in vivo irritability (using slug mucosal irritation assay). The applied research design resulted in the development of a sprayable donepezil delivery platform characterised by instant gelation at 34 °C and olfactory deposition reaching a remarkably high 71.8% of the applied dose. The optimised formulation showed prolonged drug release (t1/2 about 90 min), mucoadhesive behaviour, and reversible permeation enhancement, with a 20-fold increase in adhesion and a 1.5-fold increase in the apparent permeability coefficient in relation to the corresponding donepezil solution. The slug mucosal irritation assay demonstrated an acceptable irritability profile, indicating its potential for safe nasal delivery. It can be concluded that the developed thermogelling formulation showed great promise as an efficient donepezil brain-targeted delivery system. Furthermore, the formulation is worth investigating in vivo for final feasibility confirmation.
Collapse
Affiliation(s)
- Mirna Perkušić
- Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Laura Nižić Nodilo
- Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | | | | - Cvijeta Jakobušić Brala
- Department of Physical Chemistry, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Ivan Pepić
- Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| | | | - Marie Trenkel
- Department of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Kiel University, 24118 Kiel, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Faculty of Mathematics and Natural Sciences, Kiel University, 24118 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| | - Dijana Zadravec
- Department of Diagnostic and Interventional Radiology, University Hospital Center Sestre Milosrdnice, University of Zagreb School of Dental Medicine, 10000 Zagreb, Croatia
| | - Livije Kalogjera
- ORL/HNS Department, University Hospital Center Sestre Milosrdnice, Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Anita Hafner
- Department of Pharmaceutical Technology, University of Zagreb Faculty of Pharmacy and Biochemistry, 10000 Zagreb, Croatia
| |
Collapse
|
47
|
Taléns-Visconti R, de Julián-Ortiz JV, Vila-Busó O, Diez-Sales O, Nácher A. Intranasal Drug Administration in Alzheimer-Type Dementia: Towards Clinical Applications. Pharmaceutics 2023; 15:pharmaceutics15051399. [PMID: 37242641 DOI: 10.3390/pharmaceutics15051399] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer-type dementia (ATD) treatments face limitations in crossing the blood-brain barrier and systemic adverse effects. Intranasal administration offers a direct route to the brain via the nasal cavity's olfactory and trigeminal pathways. However, nasal physiology can hinder drug absorption and limit bioavailability. Therefore, the physicochemical characteristics of formulations must be optimized by means of technological strategies. Among the strategies that have been explored, lipid-based nanosystems, particularly nanostructured lipid carriers, are promising in preclinical investigations with minimal toxicity and therapeutic efficacy due to their ability to overcome challenges associated with other nanocarriers. We review the studies of nanostructured lipid carriers for intranasal administration in the treatment of ATD. Currently, no drugs for intranasal administration in ATD have marketing approval, with only three candidates, insulin, rivastigmine and APH-1105, being clinically investigated. Further studies with different candidates will eventually confirm the potential of the intranasal route of administration in the treatment of ATD.
Collapse
Affiliation(s)
- Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
| | - Jesus Vicente de Julián-Ortiz
- Molecular Topology and Drug Design Research Unit, Department of Physical Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
| | - Ofelia Vila-Busó
- Colloids Research Unit, Department of Physical Chemistry, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
| | - Octavio Diez-Sales
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Amparo Nácher
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| |
Collapse
|
48
|
Vasquez-Martínez N, Guillen D, Moreno-Mendieta SA, Sanchez S, Rodríguez-Sanoja R. The Role of Mucoadhesion and Mucopenetration in the Immune Response Induced by Polymer-Based Mucosal Adjuvants. Polymers (Basel) 2023; 15:1615. [PMID: 37050229 PMCID: PMC10097111 DOI: 10.3390/polym15071615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Mucus is a viscoelastic gel that acts as a protective barrier for epithelial surfaces. The mucosal vehicles and adjuvants need to pass through the mucus layer to make drugs and vaccine delivery by mucosal routes possible. The mucoadhesion of polymer particle adjuvants significantly increases the contact time between vaccine formulations and the mucosa; then, the particles can penetrate the mucus layer and epithelium to reach mucosa-associated lymphoid tissues. This review presents the key findings that have aided in understanding mucoadhesion and mucopenetration while exploring the influence of physicochemical characteristics on mucus-polymer interactions. We describe polymer-based particles designed with mucoadhesive or mucopenetrating properties and discuss the impact of mucoadhesive polymers on local and systemic immune responses after mucosal immunization. In future research, more attention paid to the design and development of mucosal adjuvants could lead to more effective vaccines.
Collapse
Affiliation(s)
- Nathaly Vasquez-Martínez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
- Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México, Circuito de Posgrado, C.U., Coyoacán, Mexico City 04510, Mexico
| | - Daniel Guillen
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| | - Silvia Andrea Moreno-Mendieta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
- Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México, Circuito de Posgrado, C.U., Coyoacán, Mexico City 04510, Mexico
- Consejo Nacional de Ciencia y Tecnología, Benito Juárez, Mexico City 03940, Mexico
| | - Sergio Sanchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| |
Collapse
|
49
|
Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv Colloid Interface Sci 2023; 314:102871. [PMID: 36958181 DOI: 10.1016/j.cis.2023.102871] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized.
Collapse
Affiliation(s)
- Pablo Graván
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Aixa Aguilera-Garrido
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK.
| | | |
Collapse
|
50
|
Kumar A, Zhou L, Godse S, Sinha N, Ma D, Parmar K, Kumar S. Intranasal delivery of darunavir improves brain drug concentrations in mice for effective HIV treatment. Biochem Biophys Rep 2023; 33:101408. [DOI: 10.1016/j.bbrep.2022.101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
|