1
|
Oloruntola OD, Oluwaniyi FS, Adeyeye SA, Falowo AB, Jimoh OA, Olarotimi OJ, Oloruntola DA, Osowe CO, Gbore FA. Aqueous Vernonia amygdalina leaf extract in drinking water mitigates aflatoxin B1 toxicity in broilers: effects on performance, biomarker analysis, and liver histology. Mycotoxin Res 2025; 41:323-337. [PMID: 39899266 DOI: 10.1007/s12550-025-00583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
This study evaluated aqueous Vernonia amygdalina leaf extract in drinking water as a mitigation strategy against Aflatoxin B1-induced toxicity in broilers, focusing on performance, haematology, serum biochemistry, pro-inflammatory cytokines, cellular stress markers, and liver histology. Two hundred and forty (240) day-old chicks (mixed sex), of the Cobb 500 breed were divided into four groups: control (CONT), AFB1-exposed (AFLB1), and two treatment groups (VE1AF and VE2AF) receiving 0.5 mg/kg AFB1 and Vernonia amygdalina aqueous extract at 1 g/L and 2 g/L, respectively. At 42 days, VE1AF and VE2AF chickens showed higher (P < 0.05) final weights and weight gains than CONT and AFLB1 groups. The red blood cells, packed cell volume, haemoglobin, and white blood cell counts were higher (P < 0.05) in CONT, VE1AF, and VE2AF groups compared to AFLB1. Mean cell volume, and mean cell haemaoglobin were higher (P < 0.05) in AFLB1 and VE2AF. Serum analysis revealed lower (P < 0.05) total protein, globulin, and albumin in AFLB1, which were restored by the extract. The tumor necrosis factor-α, interleukin-6, interleukin-1β, and interferon-γ, were elevated (P < 0.05) in AFLB1 but reduced in VE1AF and VE2AF. The heat shock protein 70, 8-hydroxy-2'-deoxyguanosine and adiponectin levels were higher (P < 0.05) in AFLB1, but were normalized by the extract in VE1AF and VE2AF. Leptin and triiodothyronine levels were significantly (P < 0.05) better in VE1AF and VE2AF, compared to AFLB1. Liver histology showed reduced inflammation in VE1AF and VE2AF, with near-normal hepatic architecture. In conclusion, Vernonia amygdalina leaf extract effectively counteracts AFB1 toxicity, enhancing overall health and performance in broiler chickens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Clement Oluwafemi Osowe
- Department of Animal Production and Health, The Federal University of Technology, Akure, Nigeria
| | | |
Collapse
|
2
|
Raz M, Bagherzadeh-Kasmani F, Karimi-Torshizi MA, Ghazaghi M, Mokhtarpour A, Mehri M. Boosting antioxidant defense and enhancing product quality by biochar and probiotics under chronic aflatoxicosis in quails. Poult Sci 2025; 104:105183. [PMID: 40273683 PMCID: PMC12051563 DOI: 10.1016/j.psj.2025.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025] Open
Abstract
Aflatoxins, particularly aflatoxin B1 (AFB1), are potent mycotoxins adversely affecting poultry performance, health, and product quality. Mitigation strategies are critical for poultry productivity. This study assessed the efficacy of Prosopis farcta biochar and Lactobacillus fermentum in mitigating AFB1-induced toxicity in quails, with a focus on performance, antioxidant status, and product quality. Two experiments were conducted with quails during growing (7-35 days) and laying (70-98 days) periods under five dietary treatments: Negative Control (basal diet), Positive Control (AFB1-contaminated diet), and AFB1 diets supplemented with Mycofix Plus, biochar, or biochar combined with L. fermentum. Growth performance, antioxidant status, meat and egg quality, and liver enzyme activity were evaluated. AFB1 significantly impaired performance, reduced meat and egg quality, and elevated oxidative stress and liver enzymes (P < 0.01). Supplementation with biochar, particularly in combination with L. fermentum, significantly alleviated these effects, improving body weight, glutathione peroxidase activity, and reducing malondialdehyde and liver enzyme levels (P < 0.01). Biochar and its combination with L. fermentum effectively mitigated aflatoxicosis in quails, enhancing health and productivity metrics. Integrating biochar and L. fermentum in poultry diets is a promising approach to managing mycotoxin challenges, improving economic and product quality outcomes in poultry systems.
Collapse
Affiliation(s)
- Majid Raz
- Department of Animal Science, College of Agriculture, University of Zabol, Zabol 98661-5538, Iran
| | | | | | - Mahmoud Ghazaghi
- Department of Animal Science, College of Agriculture, University of Zabol, Zabol 98661-5538, Iran
| | - Amir Mokhtarpour
- Special Domestic Animals Institute, Research Institute of Zabol, Zabol, Iran
| | - Mehran Mehri
- Department of Animal Science, College of Agriculture, University of Zabol, Zabol 98661-5538, Iran
| |
Collapse
|
3
|
Zhai T, Shen YD, Yu M, Liu JM, Wang S. Porous covalent architecture-involved luminescent smart hydrogel with target-responsive framework for signal-amplified inspection of aflatoxin B1. Mikrochim Acta 2025; 192:289. [PMID: 40205033 DOI: 10.1007/s00604-025-07145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Robust detection techniques combined with functional micro-/nano-entities can be an ideal solution for food-safety risk treatment related to aflatoxin B1 (AFB1). In this work, a porous covalent architecture-involved luminescent smart hydrogel with dynamic cross-linking and target-responsive framework was prepared for specific determination of AFB1 with remarkable sensitivity. Different from the existing hydrogel probe, the introduction of covalent organic frameworks (COFs) enhanced the hydrophobicity of hydrogel, enabling the selective capture of AFB1 with improved affinity while excluding large matrix molecules, thus creating an anti-interference detection environment. Additionally, the pH-responsive carbon dots (CDs) embedded in the smart hydrogel contributed to a dual signal amplification, induced by deconstruction of hydrogel to release the CDs and urease-catalyzed hydrolysis reaction to increase the pH, when the AFB1 presented. In view of this signal amplification and trace enrichment strategy, this smart hydrogel can achieve robust determination of AFB1 with a detection limit of 0.03 µM as well as good specificity. The method was validated using real-world samples, demonstrating excellent accuracy and precision compared to standard HPLC methods. This work not only advances the field of AFB1 detection but also provides a versatile and cost-effective platform that can be adapted for the detection of other toxins and biomolecules, addressing global food safety and environmental monitoring challenges.
Collapse
Affiliation(s)
- Tong Zhai
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin, 300071, China
| | - Yu-Di Shen
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin, 300071, China
| | - Miao Yu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin, 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin, 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
4
|
Kabalı S, Ünlü Söğüt M, Öner N, Kara A. Protective Effects of Propolis Supplementation on Aflatoxin B1-Induced Oxidative Stress, Antioxidant Status, Intestinal Barrier Damage, and Gut Microbiota in Rats. Mol Nutr Food Res 2025:e70052. [PMID: 40159764 DOI: 10.1002/mnfr.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Aflatoxin B1 (AFB1) is common in the diets of humans and animals and often leads to adverse health effects. Propolis, with its strong antioxidant activity, can reduce oxidative stress and modulate gut microbiota composition. However, the underlying mechanism by which propolis alleviates AFB1-induced intestinal barrier damage remains unclear. This study was designed to investigate the protective effects of oral propolis supplementation in AFB1-exposed rats. Thirty-two male Sprague-Dawley rats were divided into four groups: control, AFB1, propolis, and AFB1+propolis. After 4 weeks, serum oxidative stress markers were examined, and gut microbiota was analyzed by 16S rRNA sequencing. Intestinal sections were processed by Hematoxylin & Eosin staining, and the expression level of tight junction proteins was assessed by immunostaining. Propolis supplementation in AFB1-exposed rats tended to decrease oxidative stress, and it also restructured the gut microbiota by preventing a decrease in the relative abundances of Lactobacillus, Roseburia, and Phascolarctobacterium. Propolis restored intestinal permeability impaired by AFB1 by ameliorating intestinal morphological damage and increasing the expression levels of tight junction proteins. Propolis supplementation may contribute to the modulation of gut microbiota by alleviating oxidative stress and improving intestinal barrier damage in AFB1-exposed rats.
Collapse
Affiliation(s)
- Sevtap Kabalı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Türkiye
| | - Mehtap Ünlü Söğüt
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Türkiye
| | - Neslihan Öner
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erciyes University, Kayseri, Türkiye
| | - Ayça Kara
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye
| |
Collapse
|
5
|
Li T, Ji H, Sun J, Li Y, Xu Y, Ma W, Sun H. Analysis of fungal diversity in processed jujube products and the production of mycotoxins by typical toxigenic Aspergillus spp. Front Microbiol 2025; 16:1499686. [PMID: 40207152 PMCID: PMC11978838 DOI: 10.3389/fmicb.2025.1499686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Processed jujube products are susceptible to contamination by fungi such as Aspergillus spp., which produces mycotoxins that could lead to health problems in consumers. In this study, 58 samples of processed jujube products (including 5 types such as dried jujubes) were collected from different markets in Shihezi (Xinjiang, China). The fungal diversity and the fungi isolated from processed jujube products were systematically analyzed through high-throughput sequencing and molecular biological identification (based on the ITS and/or BenA and CaM regions). In total, the 105 strains of fungi were isolated and identified as belonging to the dominant genera were Aspergillus, Cladosporium, Alternaria, and Penicillium. High-throughput sequencing indicated that Alternaria, Didymella, Cladosporium, and Aspergillus were the dominant fungi in processed jujube products. ELISA showed that A. flavus produced about 19.3862-21.7583 μg/L, 6.5309-11.0411 μg/L, 0-15.4407 μg/L, 0-5.6354 μg/L, and 0-6.0545 μg/L of AFT, AFB1, AFB2, AFM1, and AFM2, respectively. In addition, concentrations of OTA produced by A. niger, A. tubingensis, and A. ochraceus were found to range from 5.2019 to 18.5207 μg/L. Therefore, the separation of Aspergillus with good mycotoxin-producing abilities from processed jujube products poses a latent threat to consumer health.
Collapse
Affiliation(s)
- Tianzhi Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Hua Ji
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jingtao Sun
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yinghao Li
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yue Xu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wenyi Ma
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Han Sun
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
6
|
Chen P, Han W, Li Y, Gao G, Yang H. Distance-Readout Paper-Based Microfluidic Chip with a DNA Hydrogel Valve for AFB1 Detection. Anal Chem 2025; 97:5975-5981. [PMID: 40072267 DOI: 10.1021/acs.analchem.4c05083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Accurate and rapid aflatoxin B1 (AFB1) detection is essential for ensuring the safety of food supplies. In this paper, we introduce a distance-readout paper-based microfluidic chip (DPMC) that offers a sensitive and reliable method for the detection of AFB1. The DPMC comprises a DNA hydrogel sensitive valve and a paper-based capillary channel. Upon exposure to AFB1, the hydrogel valve regulates the flow speed of the tested liquid into the capillary channel. Quantitative detection of AFB1 can be achieved without the need for complex instrumentation for external equipment by visually observing the distance traveled by the tested liquid through the capillary channel over a specified period. Under optimal conditions, the DPMC allows for quantitative detection of AFB1 solution concentrations ranging from 100 to 1000 pM by the naked eye, with a detection limit of 17.64 pM. This method has been successfully employed for quantitative detection of AFB1 in lotus seed samples, yielding a recovery rate between 85.2% and 118.4%. This approach provides a rapid, portable, sensitive, and highly selective visualization platform for on-site AFB1 detection.
Collapse
Affiliation(s)
- Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Wenhao Han
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing 100192, P. R. China
| | - Yansheng Li
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing 100192, P. R. China
- Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, P. R. China
| | - Guowei Gao
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing 100192, P. R. China
- Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100192, P. R. China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Robot Intelligent Laboratory of Traditional Chinese Medicine, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| |
Collapse
|
7
|
Guo X, Wang W, Jia B, Ni X, Zhuang H, Yoon SC, Gold S, Pokoo-Aikins A, Mitchell T, Bowker B, Ye J. Detection of aflatoxin B 1 level and revelation of its dynamic accumulation process using visible/near-infrared hyperspectral and microscopic imaging. Int J Food Microbiol 2025; 431:111065. [PMID: 39854958 DOI: 10.1016/j.ijfoodmicro.2025.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/26/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Understanding and controlling the dynamic process of aflatoxin B1 (AFB1) accumulation by Aspergillus flavus (A. flavus) remains challenging. In this study, the A. flavus development and AFB1 accumulation were investigated using visible/near-infrared (Vis/NIR) hyperspectral imaging (HSI) on culture media, Potato Dextrose Agar (PDA), PDA + l-glutamine (Gln), and PDA + rapamycin (RAPA). In addition, the levels of AFB1 in various heterogeneous regions of colonies were measured and their microscopic morphology was characterized. In the temporal and spatial domains, fungal colonies exhibited a concentric circular response pattern. A continuous increase in AFB1 content was observed in the PDA and PDA + Gln groups as culture time increased. The growth of A. flavus and aflatoxin accumulation were promoted by adding Gln to PDA. However, adding RAPA inhibited the development of fungi and the production of AFB1. The distribution of AFB1 across the fungal colony was uneven, and this heterogeneity was associated with the aging and autolysis of the hyphae. Principal component analysis showed that spectral bands of 480, 623, 674, 726 nm were related to the color changes of hyphae and spores during colony growth; however, wavelengths of 840, 882, 867, 972 nm were key bands related to changes in nutritional composition. Multiple preprocessing techniques and modeling methods employed to construct regression models for predicting AFB1 contents showed that the first-derivative and partial least squares regression (PLSR) provided the best results. A visualization map of AFB1 levels established using the optimal model showed a spatial pattern similar to the measurement results. This study highlights the application potential of Vis/NIR HSI for monitoring A. flavus growth and AFB1 content.
Collapse
Affiliation(s)
- Xiaohuan Guo
- Beijing Key Laboratory of Optimization Design for Modern Agriculture Equipment, College of Engineering, China Agriculture University, Beijing 100083, China
| | - Wei Wang
- Beijing Key Laboratory of Optimization Design for Modern Agriculture Equipment, College of Engineering, China Agriculture University, Beijing 100083, China.
| | - Beibei Jia
- Key Laboratory of Food Quality and Safety for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xinzhi Ni
- Crop Genetics and Breeding Research Unit, USDA-ARS, 2747 Davis Road, Tifton, GA 31793, USA
| | - Hong Zhuang
- Quality & Safety Assessment Research Unit, U. S. National Poultry Research Center, USDA-ARS, 950 College Station Rd., Athens, GA 30605, USA
| | - Seung-Chul Yoon
- Quality & Safety Assessment Research Unit, U. S. National Poultry Research Center, USDA-ARS, 950 College Station Rd., Athens, GA 30605, USA
| | - Scott Gold
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, USDA-ARS, 950 College Station Rd., Athens, GA 30605, USA
| | - Anthony Pokoo-Aikins
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, USDA-ARS, 950 College Station Rd., Athens, GA 30605, USA
| | - Trevor Mitchell
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, USDA-ARS, 950 College Station Rd., Athens, GA 30605, USA
| | - Brian Bowker
- Quality & Safety Assessment Research Unit, U. S. National Poultry Research Center, USDA-ARS, 950 College Station Rd., Athens, GA 30605, USA
| | - Jiawei Ye
- Beijing Key Laboratory of Optimization Design for Modern Agriculture Equipment, College of Engineering, China Agriculture University, Beijing 100083, China
| |
Collapse
|
8
|
Khouni H, Ben Salah-Abbès J, Badji T, Al-Amiery A, Durand N, Zinedine A, Abbès S, Riba A. Mycotoxins in preharvest, postharvest, and stored wheat grains collected from two climatic regions in Algeria. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2025:1-11. [PMID: 39973013 DOI: 10.1080/19393210.2025.2463484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Multi-mycotoxin analysis of 22 mycotoxins in 202 durum wheat samples collected in Algeria from 2019 to 2021 was performed by UHPLCMS/MS. Enniatins were present in 2 out of 45 wheat samples in the 2019 harvest, whereas in the harvest of 2020 37.6% of wheat samples were contaminated by ochratoxin A and/or beauvericin, deoxynivalenol (1076 µg/kg), fumonisin B1, enniatins, and zearalenone (most prevalent in 2020 and 2021 harvest). Mycotoxin contamination increased from 37.6% in 2020 to 55.2% in 2021 harvests. The most frequently observed mycotoxin co-occurrence was the combination of enniatin A1, enniatin B, and enniatin B1 (0.5-126 µg/kg) and DON (1307 µg/kg). AFB1 (0.4-2.6 µg/kg) was found in only one sample collected from the continental region. These results pointed to the necessity of frequent and regular wheat quality controls in order to better evaluate the risk regarding the Algerian population.
Collapse
Affiliation(s)
- Hayat Khouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algier, Algeria
| | - Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Tiziri Badji
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algier, Algeria
| | - Ahmed Al-Amiery
- Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, AUIQ, Nasiriyah, Iraq
| | - Noel Durand
- UMR 95 QualiSud, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Université de Montpellier, Avignon Université, Montpellier, France
| | - Abdellah Zinedine
- BIOMARE Laboratory, Applied Microbiology and Biotechnology, Chouaib Doukkali University, El Jadida, Morocco
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Amar Riba
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, Algier, Algeria
| |
Collapse
|
9
|
Cuccato M, Amminikutty N, Spalenza V, Conte V, Bagatella S, Greco D, D’Ascanio V, Gai F, Schiavone A, Avantaggiato G, Nebbia C, Girolami F. Innovative Mycotoxin Detoxifying Agents Decrease the Absorption Rate of Aflatoxin B1 and Counteract the Oxidative Stress in Broiler Chickens Exposed to Low Dietary Levels of the Mycotoxin. Toxins (Basel) 2025; 17:82. [PMID: 39998099 PMCID: PMC11861810 DOI: 10.3390/toxins17020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Aflatoxin B1 (AFB1) can impair the growth of chickens and reduce the quality of eggs and meat, resulting in significant economic losses. The inclusion of mycotoxin detoxifying agents (MyDA) with binding properties in the diet is an efficient tool to reduce their absorption rate in the gastrointestinal tract. Our aim was to investigate the ability of two innovative MyDA (SeOX, a feed additive featuring a tri-octahedral smectite mixed with lignocellulose, and CHS, a di-octahedral smectite functionalized with an organic non-toxic modifier) in both reducing the bio-accessibility and mitigating the adverse effects of AFB1 in broilers exposed for 10 days to concentrations approaching the European Union maximum limits in feed (0.02 mg/kg). The amount of AFB1 in the excreta of birds, collected over four consecutive days (starting on day 7), was significantly lower (p < 0.001) in the group exposed to AFB1 alone compared to the groups treated with either SeOX or CHS. The calculated bio-accessibility was decreased by nearly 30% with both MyDA. This positive effect was reflected by a significant reduction (p < 0.001) in the oxidative stress (measured as serum antioxidant capacity and hepatic lipid peroxidation) induced by AFB1. Although antioxidant enzyme activities and glutathione levels were unaffected by any treatment, AFB1 significantly induced (p < 0.001) the upregulation of CYP2A6 and the downregulation of Nrf2; the latter was reverted by each MyDA. Overall, these results demonstrate that the selected MyDA are effective in limiting the AFB1 absorption rate, thereby mitigating or even reverting the oxidative stress induced by AFB1 in broilers.
Collapse
Affiliation(s)
- Matteo Cuccato
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy; (M.C.); (N.A.); (V.S.); (V.C.); (A.S.); (F.G.)
| | - Neenu Amminikutty
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy; (M.C.); (N.A.); (V.S.); (V.C.); (A.S.); (F.G.)
| | - Veronica Spalenza
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy; (M.C.); (N.A.); (V.S.); (V.C.); (A.S.); (F.G.)
| | - Vanessa Conte
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy; (M.C.); (N.A.); (V.S.); (V.C.); (A.S.); (F.G.)
| | - Stefano Bagatella
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy; (M.C.); (N.A.); (V.S.); (V.C.); (A.S.); (F.G.)
| | - Donato Greco
- Institute of Sciences of Food Production, Italian National Research Council, 70126 Bari, Italy; (D.G.); (V.D.); (G.A.)
| | - Vito D’Ascanio
- Institute of Sciences of Food Production, Italian National Research Council, 70126 Bari, Italy; (D.G.); (V.D.); (G.A.)
| | - Francesco Gai
- Institute of Sciences of Food Production, National Research Council, 10095 Grugliasco, Italy;
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy; (M.C.); (N.A.); (V.S.); (V.C.); (A.S.); (F.G.)
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Production, Italian National Research Council, 70126 Bari, Italy; (D.G.); (V.D.); (G.A.)
| | - Carlo Nebbia
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy; (M.C.); (N.A.); (V.S.); (V.C.); (A.S.); (F.G.)
| | - Flavia Girolami
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, Italy; (M.C.); (N.A.); (V.S.); (V.C.); (A.S.); (F.G.)
| |
Collapse
|
10
|
Ji Y, Zhang Y, Si W, Guo J, Liu G, Wang C, Khan MZ, Zhao X, Liu W. Aflatoxin B1-Induced Apoptosis in Donkey Kidney via EndoG-Mediated Endoplasmic Reticulum Stress. Vet Sci 2025; 12:130. [PMID: 40005890 PMCID: PMC11860441 DOI: 10.3390/vetsci12020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Aflatoxin B1 (AFB1) is a prevalent environmental and forage contaminant that poses significant health risks to both humans and livestock due to its toxic effects on various organs and systems. Among its toxicological effects, nephrotoxicity is a hallmark of AFB1 exposure. However, the precise mechanisms underlying AFB1-induced kidney damage in donkeys remain poorly understood. To investigate this, we established a donkey model exposed to AFB1 by administering a diet supplemented with 1 mg AFB1/kg for 30 days. Kidney apoptosis was assessed using TUNEL staining, while gene expression and protein levels of Endonuclease G (EndoG), as well as genes related to endoplasmic reticulum (ER) stress and apoptosis, were quantified by RT-qPCR and Western blotting. Our findings indicate that AFB1 exposure resulted in significant kidney injury, apoptosis, and oxidative stress. Notably, AFB1 exposure upregulated the expression of EndoG and promoted its translocation to the ER, which subsequently induced ER stress and activated the mitochondrial apoptotic pathway. These results suggest that AFB1-induced kidney damage in donkeys is mediated through the oxidative stress and mitochondrial apoptosis pathways, primarily involving the EndoG-IRE1/ATF6-CHOP signaling axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xia Zhao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Wenqiang Liu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
11
|
Alqhtani AH, Al Sulaiman AR, Abudabos AE. Evaluating the effectiveness of Toxfin and Novasil as dietary aflatoxin-binding agents in broilers for sustaining hepatic antioxidant capacity and intestinal health status during aflatoxin B 1 exposure. Mycotoxin Res 2025; 41:25-35. [PMID: 39367956 DOI: 10.1007/s12550-024-00567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
To assess the efficacy of Toxfin and Novasil as aflatoxin-binding agents in broilers exposed to aflatoxin B1 (AFB1) from 11 to 30 days, 288 mixed-sex Ross 308 broiler chickens were randomly allocated to four dietary groups: control feed, control feed + 0.25 mg/kg AFB1, AFB1 feed + 0.3% Toxfin, and AFB1 feed + 0.3% Novasil. The evaluation encompassed growth performance for the grower (11-20 days), finisher (21-30 days), and overall (11-30 days) phases, carcass characteristics, serum biochemical components, liver function enzymes, hepatic antioxidant capacity, AFB1 residue in the liver and kidney, and ileal morphology at 30 days, and apparent nutrient digestibility during 29-30 days. Exposure to AFB1 significantly resulted in reduced growth efficiency, lowered carcass yields, liver hypertrophy, impaired metabolic and hepatic functions, liver oxidative stress, disrupted ileum architecture, diminished nutrient digestibility, and accumulated AFB1 in the liver and kidney. Conversely, supplementation of Toxfin or Novasil significantly augmented body weight gain (BWG) and reduced feed conversion ratio (FCR) during the finisher and overall phases, elevated BWG in the grower phase, heightened levels of glucose, hepatic protein, and glutathione peroxidase, declined malondialdehyde content, improved apparent metabolizable energy, and lowered AFB1 residues in the liver and kidney. Furthermore, Toxfin inclusion significantly reduced FCR during the grower phase, enhanced European production efficiency factor during the grower and overall phases, augmented dressing percentage, declined proportional liver weight, elevated concentrations of total protein, albumin, and total antioxidant capacity, heightened villus surface area, and boosted crude protein digestibility. To conclude, incorporating 0.3% Toxfin into broilers' feeds confers a more effectual safeguard than Novasil against the deleterious consequences of AFB1 exposure.
Collapse
Affiliation(s)
- Abdulmohsen H Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Ali R Al Sulaiman
- Environmental Protection Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, 11442, Riyadh, Saudi Arabia
| | - Ala E Abudabos
- Department of Agriculture, School of Agriculture and Applied Sciences, Alcorn State University, 1000 ASU Drive, Lorman, MS, 39096-7500, USA.
| |
Collapse
|
12
|
Vakili R, Zanghaneh A, Qharari F, Mortzavi F. Hydroalcoholic Extract of Saffron Petals, Yeast Cell Wall and Bentonite Reduce Contamination Effects With Aflatoxin B 1 and Ochratoxin A in Exposed Broilers. Vet Med Sci 2025; 11:e70122. [PMID: 39575531 PMCID: PMC11582473 DOI: 10.1002/vms3.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Contamination is not surprising in light of the ubiquitous nature of the fungi that produce aflatoxin and ochratoxin A. The presence of these toxins in the broiler diet leads to increased losses, an increased feed conversion ratio, and decreased productivity. OBJECTIVES This study aimed to investigate the effects of the use of hydroalcoholic extracts of saffron petals, yeast cell walls and bentonite in the diets of broiler chickens contaminated with aflatoxin B1 and ochratoxin A. METHODS In a completely randomised design, 350 one-day-old Ross 308 broilers were allocated into seven treatment groups and five replications: a negative control diet (without toxins or additives), a positive control diet (2.5 mg/kg aflatoxin + 2 mg/kg ochratoxin A (mg/kg) and diets containing toxins with a commercial toxin binder or yeast cell wall, processed bentonite or saffron petal extract alone or together. RESULTS Compared with those in the positive control treatment, the relative weights of the carcasses, breasts and drumsticks improved with the addition of toxic adsorbent compounds (p < 0.05). Compared with the control treatment, the inclusion of a toxin binder had a significant effect on the concentration of glucose (p < 0.05). The concentrations of alanine aminotransferase and gamma-glutamyltransferase enzymes in the yeast cell wall + processed bentonite + saffron petal extract treatment were lower than those in the other treatments (p < 0.05). Toxin adsorbent compounds significantly improved the morphology of the small intestine in chickens fed contaminated diets (p < 0.05). CONCLUSION The inclusion of toxic adsorbent compounds can reduce the negative effects caused by the presence of Aflatoxin B1 and Ocratoxin A. Saffron petal extract can potentially be used to modulate diets contaminated with Aflatoxin B1 and Ocratoxin A, which is best achieved with 750 mg/kg saffron petal extract along with 0.1% yeast cell wall extract and 1% processed bentonite.
Collapse
Affiliation(s)
- Reza Vakili
- Animal Science Department, Kashmar BranchIslamic Azad UniversityKashmarIran
| | - Ali Zanghaneh
- Animal Science Research DepartmentKhorassan Razavi Agricultural and Natural Resources Resources Research and Education Center of MashhadMashhadIran
| | - Faezeh Qharari
- Saffron InstituteUniversity of Torbat HeydariehTorbat HeydariehIran
| | - Fathmeh Mortzavi
- Research & Development DepartmentMakian Mokmel CompanyMashhadIran
| |
Collapse
|
13
|
Al-Nijir M, Chuck CJ, Bedford MR, Henk DA. Metabolic modelling uncovers the complex interplay between fungal probiotics, poultry microbiomes, and diet. MICROBIOME 2024; 12:267. [PMID: 39707513 DOI: 10.1186/s40168-024-01970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/07/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The search for alternatives to antibiotic growth promoters in poultry production has increased interest in probiotics. However, the complexity of the interactions between probiotics, gut microbiome, and the host hinders the development of effective probiotic interventions. This study explores metabolic modelling to examine the possibility of designing informed probiotic interventions within poultry production. RESULTS Genomic metabolic models of fungi were generated and simulated in the context of poultry gut microbial communities. The modelling approach correlated with short-chain fatty acid production, particularly in the caecum. Introducing fungi to poultry microbiomes resulted in strain-specific and diet-dependent effects on the gut microbiome. The impact of fungal probiotics on microbiome diversity and pathogen inhibition varied depending on the specific strain, resident microbiome composition, and host diet. This context-dependency highlights the need for tailored probiotic interventions that consider the unique characteristics of each poultry production environment. CONCLUSIONS This study demonstrates the potential of metabolic modelling to elucidate the complex interactions between probiotics, the gut microbiome, and diet in poultry. While the effects of specific fungal strains were found to be context-dependent, the approach itself provides a valuable tool for designing targeted probiotic interventions. By considering the specific characteristics of the host microbiome and dietary factors, this methodology could guide the deployment of effective probiotics in poultry production. However, the current work relies on computational predictions, and further in vivo validation studies are needed to confirm the efficacy of the identified probiotic candidates. Nonetheless, this study represents a significant step in using metabolic models to inform probiotic interventions in the poultry industry. Video Abstract.
Collapse
Affiliation(s)
- Montazar Al-Nijir
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | | | | - Daniel A Henk
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
14
|
Chen Z, Chen R, Ma X, Wu W, Huang Q, Ye W, Wu C, Yao B, Xu J, Qian L. A Multi-Enzyme Complex That Mitigates Hepatotoxicity, Improves Egg Production and Quality, and Enhances Gut and Liver Health in Laying Hens Exposed to Trace Aflatoxin B 1. Toxins (Basel) 2024; 16:517. [PMID: 39728775 PMCID: PMC11728630 DOI: 10.3390/toxins16120517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Aflatoxin B1 is a prevalent secondary hazardous metabolite generated by fungus present in feed ingredients and the surrounding environment: enzymes are currently being recognized as an efficient and promising approach to reducing the associated risks. The objective of this study was to assess the effects of varying doses of enzyme complexes on several parameters in laying hens that were exposed to aflatoxin. During an 8-week experiment, a total of 288 Yukou Jingfen No.6 laying hens were placed into four groups. These groups included a group treated with toxins (CON group) and groups supplemented with compound enzyme complexes at doses of 250 g/t (E1 group), 500 g/t (E2 group), and 1000 g/t (E3 group). The E2 and E3 groups exhibited a statistically significant 2.6% increase in egg production rate compared to the CON group (p < 0.05). In addition, the E2 group showed significant improvements in both the feed-to-egg ratio and egg weight (p < 0.05). In addition, the E2 and E3 groups showed improved hutch unit and egg white height compared to the control group (p < 0.05). The E2 and E3 groups showed a substantial rise in liver health indicators, namely serum alanine transaminase (ALT) and alkaline phosphatase (ALP) activity. On the other hand, malondialdehyde (MDA) was lowered, and total superoxide dismutase (T-SOD) and total antioxidant capacity (T-AOC) were raised. These findings were statistically significant (p < 0.05). The E2 and E3 groups showed notable enhancements in intestinal morphology, as evidenced by a rise in villus height and a decrease in crypt depth in all segments of the intestine (p < 0.05). Furthermore, analysis of 16S rRNA sequencing revealed that these participants had a higher prevalence and variety of microorganisms in their gut microbiota. More precisely, there was a significant rise in the abundance of Bacteroidota and a decline in Firmicutes at the level of the phylum. In general, the inclusion of the enzyme complex had advantageous impacts on performance, egg quality, intestinal morphology, intestinal barrier function, and intestinal flora in laying hens. Our results indicate that toxin-degrading enzymes, when used as feed additives, play a significant role in mitigating AFB1 contamination in diets and improving the production performance of laying hens.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.C.); (X.M.); (Q.H.)
| | - Rui Chen
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.W.); (W.Y.); (C.W.)
| | - Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.C.); (X.M.); (Q.H.)
| | - Wenzi Wu
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.W.); (W.Y.); (C.W.)
| | - Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.C.); (X.M.); (Q.H.)
| | - Wenxin Ye
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.W.); (W.Y.); (C.W.)
| | - Chulong Wu
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.W.); (W.Y.); (C.W.)
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China;
| | - Jianhong Xu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.C.); (X.M.); (Q.H.)
| |
Collapse
|
15
|
Kibugu J, Munga L, Mburu D, Maloba F, Auma JE, Grace D, Lindahl JF. Dietary Mycotoxins: An Overview on Toxicokinetics, Toxicodynamics, Toxicity, Epidemiology, Detection, and Their Mitigation with Special Emphasis on Aflatoxicosis in Humans and Animals. Toxins (Basel) 2024; 16:483. [PMID: 39591238 PMCID: PMC11598113 DOI: 10.3390/toxins16110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are secondary metabolites of filamentous fungi and ubiquitous dietary contaminants. Aflatoxins, a group of mycotoxins with high prevalence and toxicity, have raised a high level of public health concern, the most prevalent and toxic being aflatoxin B1 (AFB1). Many aspects appertaining to AFB1 poisoning are not well understood. Yet this information is necessary to devise appropriate surveillance and mitigation strategies against human and animal aflatoxicosis. This review provides an in-depth update of work carried out on mycotoxin poisoning, particularly aflatoxicosis in humans and animals, to identify gaps in knowledge. Hypotheses explaining the functional significance of mycotoxins in fungal biology and their dietary epidemiological data are presented and briefly discussed. The toxicology of aflatoxins and the challenges of their mitigation are discussed in depth. It was concluded that the identification of potential mycotoxin-hazard-prone food items and quantification of the associated risk of cancer ailments in humans is a prime priority. There is a dearth of reliable sampling methodologies for estimating AFB1 in animal feed. Data update on AFB1 in animal feed and its implication in animal production, mitigation strategies, and elucidation of risk factors to this hazard is required. To reduce the burden of aflatoxins, surveillance employing predictive technology, and biocontrol strategies seem promising approaches.
Collapse
Affiliation(s)
- James Kibugu
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu 00902, Kenya;
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Leonard Munga
- Department of Animal Science, School of Agriculture and Environmental Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - David Mburu
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Fredrick Maloba
- Department of Zoological Sciences, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Joanna E. Auma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu 00902, Kenya;
| | - Delia Grace
- Department of Biosciences, International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya;
- Natural Resources Institute, University of Greenwich, UK, Central Avenue, Chatham ME4 4TB, UK
| | - Johanna F. Lindahl
- Department of Animal Health and Antibiotic Strategies, Swedish Veterinary Agency, 75189 Uppsala, Sweden;
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
16
|
Seidler Y, Rimbach G, Lüersen K, Vinderola G, Ipharraguerre IR. The postbiotic potential of Aspergillus oryzae - a narrative review. Front Microbiol 2024; 15:1452725. [PMID: 39507340 PMCID: PMC11538067 DOI: 10.3389/fmicb.2024.1452725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The filamentous fungus Aspergillus oryzae has a long tradition in East Asian food processing. It is therefore not surprising that in recent years fermentation products of A. oryzae have attracted attention in the emerging field of postbiotics. This review aims to provide a comprehensive summary of the potential postbiotic effects of fermentation products from A. oryzae, by discussing possible mechanisms of action against the background of the molecular composition determined so far. In particular, cell wall constituents, enzymes, extracellular polymeric substances, and various metabolites found in A. oryzae fermentation preparations are described in detail. With reference to the generally assumed key targets of postbiotics, their putative beneficial bioactivities in modulating the microbiota, improving epithelial barrier function, influencing immune responses, metabolic reactions and signaling through the nervous system are assessed. Drawing on existing literature and case studies, we highlight A. oryzae as a promising source of postbiotics, particularly in the context of animal health and nutrition. Challenges and opportunities in quality control are also addressed, with a focus on the necessity for standardized methods to fully harness the potential of fungal-based postbiotics. Overall, this article sheds light on the emerging field of A. oryzae-derived postbiotics and emphasizes the need for further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Yvonne Seidler
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| | - Ignacio R. Ipharraguerre
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| |
Collapse
|
17
|
Javed A, Ajmal M, Hanif NQ, Akram A. Effects of inoculation of corn silage with Saccharomyces cerevisiae on silage fermentation characteristics, nutrient digestibility, mycoflora and aflatoxin production. Nat Prod Res 2024; 38:3488-3497. [PMID: 37647099 DOI: 10.1080/14786419.2023.2252154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/16/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
In the present study, fresh whole corn plants along with half milk kernels line were treated with live and hydrolysed yeast with different concentrations before ensiling and kept in airtight bags and then into mini silos in order to achieve anaerobic conditions for proper fermentation. The buckets were opened after different time intervals to characterise the material, quick acidification, dry matter recovery, and aerobic stability of silage respectively. Moreover, mycoflora and aflatoxin contamination were also analysed. The overall result reported that the silage quality was improved by the application of live and hydrolysed yeast. The best result was reported by the application of live yeast (T2: 10 g/kg) which significantly improved the fermentative, proximate, and digestibility parameters and reduced the mycoflora and aflatoxin contamination. Our results present promising new options for the use of natural compounds that may help to improve silage quality and reduce aflatoxin contamination.
Collapse
Affiliation(s)
- Anum Javed
- Department of Biology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Maryam Ajmal
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi
| | - Nafeesa Qudsia Hanif
- AgriPak Labs, Rawalpindi, Pakistan
- University Institute of Biochemistry & Biotechnology (UIBB) - PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Abida Akram
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi
| |
Collapse
|
18
|
Song C, Wang Z, Cao J, Dong Y, Chen Y. Hesperetin alleviates aflatoxin B1 induced liver toxicity in mice: Modulating lipid peroxidation and ferritin autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116854. [PMID: 39142113 DOI: 10.1016/j.ecoenv.2024.116854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
One of the ways Aflatoxin B1 damages the liver is through ferroptosis. Ferroptosis is characterized by the build-up of lipid peroxides and reactive oxygen species (ROS) due to an excess of iron. Dietary supplements have emerged as a promising strategy for treating ferroptosis in the liver. The flavonoid component hesperetin, which is mostly present in citrus fruits, has a number of pharmacological actions, such as those against liver fibrosis, cancer, and hyperglycemia. However, hesperetin's effects and mechanisms against hepatic ferroptosis are still unknown. In this study, 24 male C57BL/6 J mice were randomly assigned to CON, AFB1 (0.45 mg/kg/day), and AFB1+ hesperetin treatment groups (40 mg/kg/day). The results showed that hesperetin improved the structural damage of the mouse liver, down-regulated inflammatory factors (Cxcl1, Cxcl2, CD80, and F4/80), and alleviated liver fibrosis induced by aflatoxin B1. Hesperetin reduced hepatic lipid peroxidation induced by iron accumulation by up-regulating the levels of antioxidant enzymes (GPX4, GSH-Px, CAT, and T-AOC). It is worth noting that hesperetin not only improved lipid peroxidation but also maintained the dynamic balance of iron ions by reducing ferritin autophagy. Mechanistically, hesperetin's ability to regulate ferritin autophagy mostly depends on the PI3K/AKT/mTOR/ULK1 pathway. In AFB1-induced HepG2 cells, the addition of PI3K inhibitor (LY294002) and AKT inhibitor (Miransertib) confirmed that hesperetin regulated the PI3K/AKT/mTOR/ULK1 pathway to inhibit ferritin autophagy and reduced the degradation of ferritin in lysosomes. In summary, our results suggest that hesperetin not only regulates the antioxidant system but also inhibits AFB1-induced ferritin hyperautophagy, thereby reducing the accumulation of iron ions to mitigate lipid peroxidation. This work provides a fresh perspective on the mechanism behind hesperetin and AFB1-induced liver damage in mice.
Collapse
Affiliation(s)
- Chao Song
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
19
|
Li G, Wang H, Yang J, Qiu Z, Liu Y, Wang X, Yan H, He D. The protective effects of Lactobacillus SNK-6 on growth, organ health, and intestinal function in geese exposed to low concentration Aflatoxin B1. Poult Sci 2024; 103:103904. [PMID: 38880050 PMCID: PMC11228886 DOI: 10.1016/j.psj.2024.103904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a prevalent mycotoxin present in feed ingredients. In this study, we investigated the effects of Lactobacillus salivarius (L. salivarius) on the Landes geese exposed to AFB1. The 300 one-day-old Landes geese were randomly divided into five groups: The control group received a basic diet, while the other groups were fed a basic diet supplemented with 10 μg/kg AFB1, 10 μg/kg AFB1+ 4*108 cfu/g L. salivarius, 50 μg/kg AFB1, and 50 μg/kg AFB1 + 4*108 cfu/g L. salivarius for 63 d. Results showed that high level AFB1 exposure significantly decreased final BW and ADG, increased feed/gain ratio (F/G) and liver index (P < 0.05). L. salivarius improved levels of IL-1, IL-6, and IL-12 under low level of AFB1 exposure (P < 0.05), along with similar trends observed in serum IgA, IgG, IgM, T3, T4, TNF-ɑ, and EDT (P < 0.05). AFB1 exposure reduced jejunum villus high and villus high/crypt depth ratio, and suppressed expression of ZO-1, Occludin, and Claudin-1 mRNA, and significant improved with L. salivarius supplementation under low level AFB1 exposure (P < 0.05). AFB1 significantly increased expression levels of TLR3 and NF-kB1, with supplementation of L. salivarius showing significant improvement under low AFB1 exposure (P < 0.05). Cecal microbiota sequencing revealed that under low level AFB1 exposure, supplementation with L. salivarius increased the abundance of Bacteroidetes and Lactococcus. In summary, supplementation with 4*108 cfu/g L. salivarius under 10 μg/kg AFB1 exposure improved growth performance and immune capacity, enhanced jejunum morphology, reduced liver inflammation, altered the cecal microbial structure, and positively affected the growth and development of geese.
Collapse
Affiliation(s)
- Guangquan Li
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Huiying Wang
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Junhua Yang
- Institute for Agricultural Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhi Qiu
- Institute for Agricultural Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yi Liu
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Xianze Wang
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Huaxiang Yan
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Daqian He
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China.
| |
Collapse
|
20
|
Abudabos AE, Aljumaah RS, Alabdullatif AA, Al Sulaiman AR, Hakmi Z, Alharthi AS. Effectiveness of Hydrated Sodium Calcium Aluminosilicates and Discarded Date Pits as Dietary Adsorbents for Aflatoxin B1 in Enhancing Broiler Chicken Productive Performance, Hepatic Function, and Intestinal Health. Animals (Basel) 2024; 14:2124. [PMID: 39061586 PMCID: PMC11274099 DOI: 10.3390/ani14142124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The research aimed to evaluate how effective hydrated sodium calcium aluminosilicates (HSCASs) and discarded date pits (DDPs) are as dietary adsorbents for aflatoxin B1 (AFB1) in enhancing the performance and health of broiler chickens aged 16 to 30 days. A total of 240 Ross 308 straight-run broilers were randomly allocated into four dietary groups, each with 10 replicates: a control diet, a control diet with 1000 ppb AFB1, an AFB1-contaminated diet with 0.5% HSCAS, and an AFB1-contaminated diet with 4% DDP. Incorporating HSCASs or DDPs into the AFB1-contaminated diet resulted in significant improvements across various parameters, involving increased body weight, improved feed conversion ratio, higher dressing percentage, decreased relative weights of kidney and spleen, elevated serum levels of total protein, globulin, and glucose, reduced serum alanine aminotransferase activity, and heightened hepatic protein concentration and glutathione peroxidase activity, along with diminished hepatic malondialdehyde content and glutamic oxaloacetic transaminase activity. Moreover, both supplements led to increased ileal villus height and surface area, enhanced apparent nitrogen-corrected metabolizable energy digestibility, and decreased AFB1 residues in the liver and kidney. Moreover, the dietary inclusion of DDPs significantly decreased relative liver weight, raised serum albumin concentration, lowered serum alkaline phosphatase activity, enhanced hepatic total antioxidant capacity level, and augmented ileal villus width. Conversely, the dietary addition of HSCASs significantly heightened apparent crude protein digestibility. In conclusion, the inclusion of HSCASs and DDPs in AFB1-contaminated diets can mitigate the toxic effects of AFB1 on broiler chickens, with DDPs exhibiting additional advantages in optimizing liver function and gut morphology.
Collapse
Affiliation(s)
- Ala E. Abudabos
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (A.R.A.S.); (Z.H.)
- Department of Agriculture, School of Agriculture and Applied Sciences, Alcorn State University, 1000 ASU Drive, Lorman, MI 39096-7500, USA
| | - Riyadh S. Aljumaah
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (A.R.A.S.); (Z.H.)
| | - Abdulaziz A. Alabdullatif
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (A.R.A.S.); (Z.H.)
| | - Ali R. Al Sulaiman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (A.R.A.S.); (Z.H.)
- Environmental Protection Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Zafar Hakmi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (A.R.A.S.); (Z.H.)
| | - Abdulrahman S. Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (A.R.A.S.); (Z.H.)
| |
Collapse
|
21
|
Nazareth TDM, Soriano Pérez E, Luz C, Meca G, Quiles JM. Comprehensive Review of Aflatoxin and Ochratoxin A Dynamics: Emergence, Toxicological Impact, and Advanced Control Strategies. Foods 2024; 13:1920. [PMID: 38928866 PMCID: PMC11203094 DOI: 10.3390/foods13121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize a plethora of secondary metabolites. These metabolites, produced in response to environmental stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins. Mycotoxins, exemplified by those originating from Alternaria, Aspergillus, Penicillium, and Fusarium species, represent challenging hazards to both human and animal health, thus warranting stringent regulatory control. Despite regulatory frameworks, mycotoxin contamination remains a pressing global challenge, particularly within cereal-based matrices and their derived by-products, integral components of animal diets. Strategies aimed at mitigating mycotoxin contamination encompass multifaceted approaches, including biological control modalities, detoxification procedures, and innovative interventions like essential oils. However, hurdles persist, underscoring the imperative for innovative interventions. This review elucidated the prevalence, health ramifications, regulatory paradigms, and evolving preventive strategies about two prominent mycotoxins, aflatoxins and ochratoxin A. Furthermore, it explored the emergence of new fungal species, and biocontrol methods using lactic acid bacteria and essential mustard oil, emphasizing their efficacy in mitigating fungal spoilage and mycotoxin production. Through an integrative examination of these facets, this review endeavored to furnish a comprehensive understanding of the multifaceted challenges posed by mycotoxin contamination and the emergent strategies poised to ameliorate its impact on food and feed safety.
Collapse
Affiliation(s)
- Tiago de Melo Nazareth
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (E.S.P.); (C.L.); (G.M.); (J.M.Q.)
| | | | | | | | | |
Collapse
|
22
|
Salako AO, Atteh JO, Akande TO, Kolade IO, Bajomo ET, Adegoke A. Response of broilers to dietary inclusion of atoxigenic Aspergillus flavus strain as a biocontrol strategy of aflatoxin. Avian Pathol 2024; 53:218-225. [PMID: 38318791 DOI: 10.1080/03079457.2024.2316025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/03/2024] [Indexed: 02/07/2024]
Abstract
The objective of this trial was to evaluate how broilers responded to Aspergillus flavus strains that are toxigenic and atoxigenic. The study included four treatments in a 2 × 2 factorial design, with six replicates of 10 birds each. As a result of this study measuring feed intake (FI), weight gain (WG), feed conversion ratio (FCR), crude protein, ether extract, and crude fibre, the interaction was insignificant between the toxigenic and atoxigenic diets (P > 0.05). Consumption of toxigenic aflatoxin B1-500 ppb diet decreased FI and WG but increased FCR, and cost to produce live broiler weight (P < 0.05) compared to the control diets. The addition of atoxigenic strains to contaminated diets significantly offset (P < 0.05) the effects. Diets with or without 500 ppb toxigenic and atoxigenic A. flavus did not affect the relative weight g/100gBW of pancreas, gizzard and bursa of Fabricius. Dietary inclusion of 500 ppb toxigenic Aspergillus spp. increased the relative weight (P < 0.05) of the kidney, liver, spleen and thymus while atoxigenic dietary addition reduced the relative weight of the same organs (P < 0.05). Dietary inclusion of toxigenic and atoxigenic Aspergillus spp. did not significantly affect the haematological parameters measured (P < 0.05). Dietary inclusion of 500 ppb toxigenic Aspergillus elevated the urea, creatine, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) in the serum of the broilers (P < 0.05). A decrease was observed when atox igenic A. flavus was used in the intervention for urea, creatinine and AST (P < 0.05), whereas an insignificant reduction was observed for ALT and ALP (P ≤ 0.05). This study concluded that dietary atoxigenic strain improved broiler performance, digestibility, and blood parameters.
Collapse
Affiliation(s)
- Abiola Olayemi Salako
- Faculty of Agriculture, Department of Animal Production, University of Ilorin, Ilorin, Nigeria
| | - Job Olutimehin Atteh
- Faculty of Agriculture, Department of Animal Production, University of Ilorin, Ilorin, Nigeria
| | - Taiwo Oladoye Akande
- Faculty of Agriculture, Department of Animal Science, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Isiaka Oyeniyi Kolade
- Faculty of Agriculture, Department of Animal Production, University of Ilorin, Ilorin, Nigeria
| | - Eunice Tayo Bajomo
- Faculty of Agriculture, Department of Animal Production, University of Ilorin, Ilorin, Nigeria
| | - Adejoke Adegoke
- Faculty of Agriculture, Department of Animal Science, Obafemi Awolowo University, Ile Ife, Nigeria
| |
Collapse
|
23
|
Alwetaid MY, Almanaa TN, Bakheet SA, Ansari MA, Nadeem A, Attia SM, Hussein MH, Attia MSM, Ahmad SF. Aflatoxin B 1 exposure exacerbates chemokine receptor expression in the BTBR T + Itpr3 tf/J Mouse Model, unveiling insights into autism spectrum disorder: A focus on brain and spleen. Reprod Toxicol 2024; 126:108599. [PMID: 38679149 DOI: 10.1016/j.reprotox.2024.108599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant difficulties in social interaction, communication, and repeated stereotypic behaviour. Aflatoxin B1 (AFB1) is the most potent and well-known mycotoxin in various food sources. Despite its propensity to generate significant biochemical and structural changes in human and animal tissues, the influence of AFB1 on ASD has yet to be thoroughly studied. Mounting evidence indicates that chemokine receptors play a crucial function in the central nervous system and are implicated in developing several neuroinflammatory disorders. Chemokine receptors in individuals with ASD were elevated in the anterior cingulate gyrus astrocytes, cerebellum, and brain. METHODS The BTBR T+Itpr3tf/J (BTBR) mice are inbred strains that exhibit strong and consistently observed deficits in social interactions, characterized by excessive self-grooming and limited vocalization in social contexts. We examined the impact of AFB1 on CCR3-, CCR7-, CCR9-, CXCR3-, CXCR4-, and CXCR6-expressing I-A/I-E+ cells in the spleen of the BTBR mouse model of autism. We evaluated the mRNA levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 chemokine receptors in the brain. RESULTS The exposure to AFB1 in BTBR mice resulted in a significant rise in the number of I-A/I-E+CCR3+, I-A/I-E+CCR7+, I-A/I-E+CCR9+, I-A/I-E+CXCR3+, I-A/I-E+CXCR4+, and I-A/I-E+CXCR6+ cells. Furthermore, exposure to AFB1 increased mRNA expression levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 in the brain. CONCLUSIONS These findings highlight that AFB1 exposure increases the expression of chemokine receptors in BTBR mice, indicating the necessity for further research into AFB1's role in the development of ASD.
Collapse
Affiliation(s)
- Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
24
|
Fu Y, Wang Q, Guo Y, Koci M, Lu Z, Zeng X, Wang Y, Tang Y, Ma Q, Ji C, Zhao L. Pleurotus eryngii polysaccharides alleviate aflatoxin B 1-induced liver inflammation in ducks involving in remodeling gut microbiota and regulating SCFAs transport via the gut-liver axis. Int J Biol Macromol 2024; 271:132371. [PMID: 38750861 DOI: 10.1016/j.ijbiomac.2024.132371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/30/2024]
Abstract
Aflatoxin B1 (AFB1) is one of the most widespread contaminants in agricultural commodities. Pleurotus eryngii (PE) is widely used as a feed additive for its anti-inflammatory properties, and its major active substance is believed to be polysaccharides. This study aims to explore the underlying mechanism of dietary PE polysaccharides alleviating AFB1-induced toxicity in ducks. The major monosaccharide components of PE polysaccharides were identified as glucose, mannose, galactose, glucuronic acid, and fucose. The results showed that dietary PE polysaccharides could alleviate liver inflammation, alleviate intestinal barrier dysfunction, and change the imbalanced gut microbiota induced by AFB1 in ducks. However, PE polysaccharides failed to exert protective roles on the liver and intestine injury induced by AFB1 in antibiotic-treated ducks. The PE + AFB1-originated microbiota showed a positive effect on intestinal barrier and inflammation, the SCFAs transport via the gut-liver axis, and liver inflammation compared with the AFB1-originated microbiota in ducks. These findings provided a possible mechanism that PE polysaccharides alleviated AFB1-induced liver inflammation in ducks by remodeling gut microbiota, regulating microbiota-derived SCFAs transport via the gut-liver axis, and inhibiting inflammatory gene expressions in the liver, which may provide new insight for therapeutic methods against AFB1 exposure in animals.
Collapse
Affiliation(s)
- Yutong Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Matthew Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Zhengda Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Yu Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming yuan, Beijing 100193, PR China.
| |
Collapse
|
25
|
Pan H, Hu T, He Y, Zhong G, Wu S, Jiang X, Rao G, You Y, Ruan Z, Tang Z, Hu L. Curcumin attenuates aflatoxin B1-induced ileum injury in ducks by inhibiting NLRP3 inflammasome and regulating TLR4/NF-κB signaling pathway. Mycotoxin Res 2024; 40:255-268. [PMID: 38400893 DOI: 10.1007/s12550-024-00524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
Aflatoxin B1 (AFB1) is a widespread toxic contamination in feed for animals. The primary active component of turmeric, curcumin (Cur), is an antioxidant and an anti-inflammatory. However, it is yet unknown how AFB1 affects the intestinal epithelial barrier and whether Cur acts as a protective mechanism when exposed to AFB1. Here, we explored the mechanism of AFB1-induced intestinal injury from intestinal epithelial barrier, inflammation, pyroptosis, and intestinal flora, and evaluated the protective role of Cur. We found that AFB1 caused weight loss and intestinal morphological damage that is mainly characterized by shortened intestinal villi, deepened crypts, and damaged intestinal epithelium. Exposure to AFB1 decreased the expression of Claudin-1, MUC2, ZO-1, and Occludin and increased the expression of pyroptosis-related factors (NLRP3, GSDMD, Caspase-1, IL-1β, and IL-18) and inflammation-related factors (TLR4, NF-κB, IκB, IFN-γ, and TNF-α). Furthermore, ileal gut microbiota was altered, and simultaneously, the Lactobacillus abundance was decreased. The gut microbiota interacts with a wide range of physiologic functions and disease development in the host through its metabolites, and disturbances in gut microbial metabolism can cause functional impairment of the ileum. Meanwhile, Cur can ameliorate histological ileum injuries and intestinal flora disturbance caused by AFB1. We found that Cur reversed the effects of AFB1 through modulating both NLRP3 inflammasome and the TLR4/NF-κB signaling pathway. In conclusion, AFB1 can induce inflammatory damage and pyroptosis in duck ileum, while Cur has obviously protective effects on all the above damages.
Collapse
Affiliation(s)
- Hang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- College of Life Science, Yantai University, Yantai City, 264005, Shandong Province, China
| | - Ting Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying He
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, Guangxi, China
- Key Laboratory of China(Guangxi)-ASEAN Cross-border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xuanxuan Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gan Rao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yanli You
- College of Life Science, Yantai University, Yantai City, 264005, Shandong Province, China
| | - Zhiyan Ruan
- School of Pharmacy, Guangdong Food & Drug Vocational College, No. 321, Longdong North Road, Tianhe District, Guangzhou, 510520, Guangdong Province, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
26
|
Okasha H, Song B, Song Z. Hidden Hazards Revealed: Mycotoxins and Their Masked Forms in Poultry. Toxins (Basel) 2024; 16:137. [PMID: 38535803 PMCID: PMC10976275 DOI: 10.3390/toxins16030137] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/25/2025] Open
Abstract
The presence of mycotoxins and their masked forms in chicken feed poses a significant threat to both productivity and health. This review examines the multifaceted impacts of mycotoxins on various aspects of chicken well-being, encompassing feed efficiency, growth, immunity, antioxidants, blood biochemistry, and internal organs. Mycotoxins, toxic substances produced by fungi, can exert detrimental effects even at low levels of contamination. The hidden or masked forms of mycotoxins further complicate the situation, as they are not easily detected by conventional methods but can be converted into their toxic forms during digestion. Consequently, chickens are exposed to mycotoxin-related risks despite apparently low mycotoxin levels. The consequences of mycotoxin exposure in chickens include reduced feed efficiency, compromised growth rates, impaired immune function, altered antioxidant levels, disturbances in blood biochemical parameters, and adverse effects on internal organs. To mitigate these impacts, effective management strategies are essential, such as routine monitoring of feed ingredients and finished feeds, adherence to proper storage practices, and the implementation of feed detoxification methods and mycotoxin binders. Raising awareness of these hidden hazards is crucial for safeguarding chicken productivity and health.
Collapse
Affiliation(s)
- Hamada Okasha
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Bochen Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| |
Collapse
|
27
|
Putra RP, Astuti D, Respati AN, Ningsih N, Triswanto, Yano AA, Gading BMWT, Jayanegara A, Sholikin MM, Hassim HA, Azmi AFM, Adli DN, Irawan A. Protective effects of feed additives on broiler chickens exposed to aflatoxins-contaminated feed: a systematic review and meta-analysis. Vet Res Commun 2024; 48:225-244. [PMID: 37644237 DOI: 10.1007/s11259-023-10199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Aflatoxin contamination in feed is a common problem in broiler chickens. The present systematic review and meta-analysis examined the impact of aflatoxin-contaminated feed and the efficacy of various feed additives on the production performance of broiler chickens fed aflatoxin-contaminated feed (AF-feed). A total of 35 studies comprising 53 AF-feed experiments were selected following PRISMA guidelines. Feed additives included in the analyses were toxins binder (TB), mannan-oligosaccharides (MOS), organic acid (OA), probiotics (PRO), protein supplementation (PROT), phytobiotics (PHY), and additive mixture (MIX). Random effects model and a frequentist network meta-analysis (NMA) were performed to rank the efficacy of feed additives, reported as standardized means difference (SMD) at 95% confidence intervals (95% CI). Overall, broiler chickens fed AF-feed had significantly lower final body weight (BW) (SMD = 198; 95% CI = 198 to 238) and higher feed conversion ratio (SMD = 0.17; 95% CI = 0.13 to 0.21) than control. Treatments with TB, MOS, and PHY improved the BW of birds fed AF-feed (P < 0.05) to be comparable with non-contaminated feed or control. Predictions on final BW from the broiler-fed aflatoxin-contaminated diet were 15% lower than the control diet. Including feed additives in the aflatoxins diet could ameliorate the depressive effect. Remarkably, our network meta-analysis highlighted that TB was the highest-performing additive (P-score = 0.797) to remedy aflatoxicosis. Altogether, several additives, especially TB, are promising to ameliorate aflatoxicosis in broiler chickens, although the efficacy was low regarding the severity of the aflatoxicosis.
Collapse
Affiliation(s)
- Reza Pratama Putra
- Department of Agriculture and Horticulture, Province of Jambi, Jambi, 36122, Indonesia
- Animal Health Vocational Program, Jambi University, Muaro Jambi, 36361, Indonesia
| | - Dian Astuti
- Agrotechnology Innovation Center, Universitas Gadjah Mada, Sleman, 55573, Indonesia
| | - Adib Norma Respati
- Department of Animal Science, Politeknik Negeri Jember, Jember, 68101, Indonesia
| | - Niati Ningsih
- Department of Animal Science, Politeknik Negeri Jember, Jember, 68101, Indonesia
| | - Triswanto
- Department of Feed Technology, PT. Charoen Pokphand Indonesia, Jakarta Utara, 14350, Indonesia
| | - Aan Andri Yano
- Vocational School, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
| | | | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, 16680, Indonesia
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor, 16680, Indonesia
| | - Mohammad Miftakhus Sholikin
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor, 16680, Indonesia
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
- Meta-Analysis in Plant Science (MAPS) Research Group, Bandung, 40621, Indonesia
- Center For Tropical Animal Studies (CENTRAS), The Institute of Research and Community Empowerment of IPB (LPPM IPB), Bogor, 16680, Indonesia
| | - Hasliza Abu Hassim
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Institute of Tropical Agriculture and Food Security Universiti Putra Malaysia (UPM), Serdang, Selangor, 43400, Malaysia
| | - Amirul Faiz Mohd Azmi
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Institute of Tropical Agriculture and Food Security Universiti Putra Malaysia (UPM), Serdang, Selangor, 43400, Malaysia
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Sciences, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
| | - Danung Nur Adli
- Faculty of Animal Science, Universitas Brawijaya, Malang, 65145, Indonesia
| | - Agung Irawan
- Vocational School, Universitas Sebelas Maret, Surakarta, 57126, Indonesia.
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
28
|
Saleemi MK, Raza A, Khatoon A, Zubair M, Gul ST, Yongping X, Murtaza B, Muhammad F, Akhtar B, Jubeen F, Rizvi F, Zubair K, Ashraf A, Ijaz MN, Sultan A. Pathological effects of feeding aflatoxin-contaminated feed on immune status and reproductive performance of juvenile white leghorn males and its mitigation with ∝-tocopherol and Moringa oleifera. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2156-2166. [PMID: 38055172 DOI: 10.1007/s11356-023-31194-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/19/2023] [Indexed: 12/07/2023]
Abstract
This study was planned to detect the adverse pathological consequences of aflatoxin B1 in White Leghorn (WLH) layer breeder males. Eight-week-old male layer cockerels were separated into six experimental categories: A group was kept as negative control, offered with normal feed only; group B was fed with 400 ppb amount of aflatoxin, while groups F and D fed with normal feed and supplemented with vitamin E 100 ppm and 1% Moringa oleifera, respectively, whereas groups E and C were fed with 400 ppb aflatoxin containing feed and ameliorated with vitamin E 100 ppm and 1% Moringa oleifera, respectively. This study was continued for 2 months and immunologic disorders and reproductive parameters were observed during the trial. To find out immunological status lymphoproliferative response to phytohemagglutinin-P (PHA-P), antibody titers against sheep red blood cells (SRBCs) and carbon clear assay were performed by collecting samples from five birds from each group. The whole data was measured by ANOVA test, and group means were compared by DMR test by using M-Stat C software. Regarding the reproductive status, spermatogenesis, blood testosterone level, testes weight, testes histology, sperm motility, and morphology were negatively affected by aflatoxins, but these deviations positively ameliorated by vitamin E and Moringa. Vitamin E and Moringa found advantageous in boosting the immune status of affected bird. All the immunological parameters including antibody titers against sheed red blood cells, lymphoproliferative response to avian tuberculin and phagocytic potential of macrophages were suppressed by AFB1 however in control, Moringa and vitamin E groups these immunological responses were significantly higher.
Collapse
Affiliation(s)
| | - Ahmad Raza
- Department of Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Zubair
- Department of Veterinary Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Poonch, Rawalakot, Azad Kashmir, Pakistan
| | - Shafia Tehseen Gul
- Department of Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Xu Yongping
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian, 116024, China
| | - Faqir Muhammad
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Farhat Jubeen
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Farzana Rizvi
- Department of Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Khawar Zubair
- Department of Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Anas Ashraf
- Department of Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | | | - Asim Sultan
- Department of Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
29
|
Abdeen A, Elsabagh R, Elbasuni SS, Said AM, Abdelkader A, El-Far AH, Ibrahim SF, Mihaela O, Fericean L, Abdelfattah AM, El-Hewaity M, Elbarbary N, Kadah AY, Ibrahim SS. Microalgae ( Chlorella vulgaris) attenuates aflatoxin-associated renal injury. Front Pharmacol 2023; 14:1291965. [PMID: 38205372 PMCID: PMC10777483 DOI: 10.3389/fphar.2023.1291965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024] Open
Abstract
Introduction: Aflatoxins (AFT) are ubiquitous environmental pollutants that are extremely dangerous for both human beings as well as animals. A safe, effective, and considerate strategy is therefore credited with controlling AFT intoxication. Therefore, our study aimed to evaluate the mitigating properties of Chlorella vulgaris (ChV) against AFT-induced nephrotoxicity and altered egg quality. Methods: Quails were randomized into Control group (receiving a normal diet); ChV group (1 g/kg diet); AFT group (receiving an AFT-containing diet); and the AFT-ChV group were given both treatments. Results and discussion: AFT provoked kidney injury, exhibited by increased renal biochemical parameters and reduced protein levels. Malondialdehyde (MDA) levels dramatically increased as a consequence of AFT exposure, and glutathione (GSH) levels, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities were also decreased. Substantial up-modulation of the mRNA expression of the inflammatory cytokines (TNF-α, IL-1β, and IL-6) was additionally reported. Furthermore, AFT residues were detected in the egg compromising its quality and nutritional value. Contrarily, ChV supplemented diet suppressed the AFT-prompted oxidative stress and inflammation, together with enhancing the nutritional value and quality of eggs and decreasing AFT residues. These beneficial impacts are proposed to be attributed to its antioxidant and nutritional ingredients. The molecular docking dynamics confirmed the inflammatory and apoptotic protein targets for ChV. Our findings recommend that adding ChV supplements to foods might guard against nephrotoxicity brought on by AFT exposure.
Collapse
Affiliation(s)
- Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Rasha Elsabagh
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Sawsan S. Elbasuni
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Alshaimaa M. Said
- Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ostan Mihaela
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I" from Timișoara, Timișoara, Romania
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I" from Timișoara, Timișoara, Romania
| | - Abdelfattah M. Abdelfattah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohamed El-Hewaity
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkoum, Egypt
| | - Nady Elbarbary
- Department of Food Hygiene, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Amgad Y. Kadah
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Samar S. Ibrahim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
30
|
Chen L, Wen T, Cao A, Wang J, Pan H, Zhao R. Bile Acids Promote Hepatic Biotransformation and Excretion of Aflatoxin B1 in Broiler Chickens. Toxins (Basel) 2023; 15:694. [PMID: 38133198 PMCID: PMC10747845 DOI: 10.3390/toxins15120694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a hazardous mycotoxin that often contaminates animal feed and may potentially induce severe liver damage if ingested. The liver is the primary organ responsible for AFB1 detoxification through enzyme-catalyzed xenobiotic metabolism and bile acid (BA)-associated excretion. In this study, we sought to investigate whether exogenous BA improves hepatic AFB1 detoxification to alleviate AFB1-induced liver injury in broiler chickens. Five-day-old broiler chicks were randomly assigned to three groups. CON and AFB1 received a basal diet; AFB1 + BA received a basal diet with 250 mg/kg BA for 20 days. After a 3-day pre-feed, AFB1 and AFB1 + BA were daily gavaged with 250 μg/kg BW AFB1, while CON received gavage solvent for AFB1 treatment. Dietary BA supplementation protected chickens from AFB1-induced hepatic inflammation and oxidative stress. The hepatic biotransformation of AFB1 to its metabolite AFBO was improved, with accelerated excretion to the gallbladder and cecum. Accordantly, AFB1-induced down-regulation of detoxification genes, including cytochrome P450 enzymes, glutathione S-transferases, and the bile salt export pump, was rescued by BA supplementation. Moreover, liver X receptor α, suppressed by AFB1, was enhanced in BA-treated broiler chickens. These results indicate that dietary BA supplementation improves hepatic AFB1 detoxification and excretion through LXRα-involved regulation of xenobiotic enzymes.
Collapse
Affiliation(s)
- Liang Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China; (L.C.); (T.W.)
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Huaihua Institute of Agricultural Sciences, Huaihua 418000, China
| | - Tian Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China; (L.C.); (T.W.)
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Aizhi Cao
- Industrial Research Institute of Liver Health & Homeostatic Regulation, Shandong Longchang Animal Health Product Co., Ltd., Dezhou 253000, China; (A.C.)
| | - Jianmin Wang
- Industrial Research Institute of Liver Health & Homeostatic Regulation, Shandong Longchang Animal Health Product Co., Ltd., Dezhou 253000, China; (A.C.)
| | - Hua Pan
- Industrial Research Institute of Liver Health & Homeostatic Regulation, Shandong Longchang Animal Health Product Co., Ltd., Dezhou 253000, China; (A.C.)
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China; (L.C.); (T.W.)
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Industrial Research Institute of Liver Health & Homeostatic Regulation, Shandong Longchang Animal Health Product Co., Ltd., Dezhou 253000, China; (A.C.)
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China
| |
Collapse
|
31
|
Olarotimi OJ, Gbore FA, Adu OA, Oloruntola OD, Jimoh OA. Ameliorative effects of Sida acuta and vitamin C on serum DNA damage, pro-inflammatory and anti-inflammatory cytokines in roosters fed aflatoxin B 1 contaminated diets. Toxicon 2023; 236:107330. [PMID: 37944826 DOI: 10.1016/j.toxicon.2023.107330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
The ameliorative effects of Sida acuta leaf meal (SALM) and vitamin C on the serum pro-inflammatory and anti-inflammatory cytokines as well as DNA damage of cocks fed aflatoxin B1 (AFB1) contaminated diets were examined. The experiment was a completely randomized design with a total of 250 sexually mature Isa White cocks aged 24 weeks, randomly allotted into five experimental diets; each diet contained 5 replicates with 10 roosters. The diets were A (control/basal diet), B (A + 1 mg/kg AFB1), C (B + 200 mg/kg vitamin C), D (B + 2.5 g/kg SALM) and E (B + 5.0 g/kg SALM). Fresh and clean water was also provided for the whole experimental period of twelve weeks. Inclusion of 1 mg/kg AFB1 without vitamin C or SALM increased TNF-α and IL-1β as well as 8-OHdG and NF-κB in the serum significantly (P < 0.05) among the cocks on diet B. However, the fortification of AFB1 contaminated diets with vitamin C and SALM depressed serum TNF-α, IL-1β, 8-OHdG and NF-κB concentrations of the cocks significantly (P < 0.05). Conversely, serum IL-4 and IL-10 in birds given 1 mg/kg AFB1 without vitamin C or SALM decreased significantly (P < 0.05) in comparison with the roosters on the control. However, improvements (P < 0.05) in IL-4 and IL-10 concentrations with corresponding reduction (P < 0.05) in TNF-α, IL-1β, 8-OHdG and NF-κB concentrations were recorded among cocks fed Diets C, D and E, respectively. Therefore, dietary addition of SALM at the level used in this study was beneficial and has comparable effects with inorganic antioxidant (C vitamin) by significantly reducing the inflammatory cytokines and oxidative damage biomarkers as well as enhancing the anti-inflammatory cytokines thereby promoting the health status of the cocks fed AFB1 contaminated ration.
Collapse
Affiliation(s)
- Olumuyiwa Joseph Olarotimi
- Department of Animal Science, Faculty of Agriculture, Adekunle Ajasin University, P.M.B. 001, Akungba-Akoko, Nigeria.
| | - Francis Ayodeji Gbore
- Department of Animal Science, Faculty of Agriculture, Adekunle Ajasin University, P.M.B. 001, Akungba-Akoko, Nigeria
| | - Olufemi Adesanya Adu
- Department of Animal Production and Health, School of Agriculture and Agricultural Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Olugbenga David Oloruntola
- Department of Animal Science, Faculty of Agriculture, Adekunle Ajasin University, P.M.B. 001, Akungba-Akoko, Nigeria
| | - Olatunji Abubakar Jimoh
- Department of Agricultural Technology, The Federal Polytechnic Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
32
|
Maguey-González JA, Nava-Ramírez MDJ, Gómez-Rosales S, Ángeles MDL, Solís-Cruz B, Hernández-Patlán D, Merino-Guzmán R, Hernandez-Velasco X, Hernández-Ramírez JO, Loeza I, Senas-Cuesta R, Latorre JD, Vázquez-Durán A, Du X, Méndez-Albores A, Hargis BM, Téllez-Isaías G. Evaluation of the efficacy of humic acids to counteract the toxic effects of aflatoxin B1 in turkey poults. Front Vet Sci 2023; 10:1276754. [PMID: 37881447 PMCID: PMC10594991 DOI: 10.3389/fvets.2023.1276754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
This study aims to evaluate the efficacy of humic acid (HA) from worm compost as an adsorbent for aflatoxin B1 (AFB1) in turkey poults. The experiment involved the inclusion of 0.25% (w/w) HA in the diet of turkey poults consuming aflatoxin-contaminated feed (250 ng AFB1/g). A total of 350 1-day-old female Nicholas-700 turkey poults were randomly allocated to five equal groups: negative control (basal diet); positive control (basal diet + 250 ng AFB1/g; HA (basal diet + 0.25% HA); HA + AFB1 (basal diet + HA + 250 ng AFB1/g); and zeolite + AFB1 (basal diet + 0.25% zeolite + 250 ng AFB1/g). Each group had seven replicates of 10 poults (n = 70). The impact of HA addition was evaluated in terms of performance parameters, relative organ weights, liver histological lesions, and serum biochemical and hematological constituents. In general, the addition of HA improved body weight (BW), body weight gain (BWG), and feed conversion rate (FCR). Furthermore, HA effectively mitigated the toxic effects caused by AFB1 in the majority of the analyzed variables. The results indicated that HA effectively counteracted the AFB1-induced toxic effects in turkey poults. Based on these findings, it can be concluded that HA is capable of removing AFB1 from the contaminated diet.
Collapse
Affiliation(s)
- Jesús Adonai Maguey-González
- Posgrado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México (UNAM), Unidad de Posgrado, Ciudad Universitaria, Ciudad de México, México
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - María de Jesús Nava-Ramírez
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli, Estado de México, México
| | - Sergio Gómez-Rosales
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal (CENID-INIFAP), Km1 Carretera a Colon Ajuchitlán, Querétaro, México
| | - María de Lourdes Ángeles
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal (CENID-INIFAP), Km1 Carretera a Colon Ajuchitlán, Querétaro, México
| | - Bruno Solís-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, FES Cuautitlán, UNAM, Cuautitlán Izcalli, Estado de México, México
- División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Tultitlan, México
| | - Daniel Hernández-Patlán
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, FES Cuautitlán, UNAM, Cuautitlán Izcalli, Estado de México, México
- División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Tultitlan, México
| | - Rubén Merino-Guzmán
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de México, México
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de México, México
| | - Juan Omar Hernández-Ramírez
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli, Estado de México, México
| | - Ileana Loeza
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Roberto Senas-Cuesta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli, Estado de México, México
| | - Xiangwei Du
- Veterinary Medical Diagnostic Laboratory, Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli, Estado de México, México
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | |
Collapse
|
33
|
Ashraf W, Rehman A, Rabbani M, Shaukat W, Wang JS. Aflatoxins posing threat to food safety and security in Pakistan: Call for a one health approach. Food Chem Toxicol 2023; 180:114006. [PMID: 37652127 DOI: 10.1016/j.fct.2023.114006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/26/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Aflatoxins are among the most important mycotoxins due to their widespread occurrence and adverse impacts on humans and animals. These toxins and/or their metabolites cannot be destroyed with cooking or boiling methods. Therefore, consumption of aflatoxin-contaminated food may lead to impaired growth, compromised immunity, stomach and liver cancer, and acute toxicity. These adverse effects along with food wastage might have detrimental consequences on a country's economy. Several studies from Pakistan reported a high prevalence of aflatoxins in food and feed commodities (Range; milk = 0.6-99.4%, cereals, and grains = 0.38-41%, animal feed = 31-100%). Notably, Pakistan reported very high figures of impaired child growth-stunted 40.2%, wasted 17.7% and underweight 28.9%-that could be associated with the higher aflatoxin prevalence in food items. Importantly, high aflatoxins prevalence, i.e. 100%, 69% and 60.5%, in children has been reported in Pakistan. Food and feed are more prone to aflatoxin contamination due to Pakistan's hot and humid climate; however, limited awareness, inadequate policy framework, and weak implementation mechanisms are the major obstacles to effective control. This review will discuss aflatoxins prevalence, associated risk factors, adverse health effects, required regulatory regime, and effective control strategies adopting the One Health approach to ensure food safety and security.
Collapse
Affiliation(s)
- Waseela Ashraf
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences Lahore, 54000, Pakistan; Department of Environmental Health Science, The University of Georgia, Athens, GA, USA; Health Services Academy, Islamabad, 44000, Pakistan
| | - Abdul Rehman
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences Lahore, 54000, Pakistan.
| | - Masood Rabbani
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Waseem Shaukat
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, T2N4N1, Alberta, Canada
| | - Jia-Sheng Wang
- Department of Environmental Health Science, The University of Georgia, Athens, GA, USA
| |
Collapse
|
34
|
Zou Y, Liu SB, Zhang Q, Tan HZ. Effects of Aflatoxin B 1 on growth performance, carcass traits, organ index, blood biochemistry and oxidative status in Chinese yellow chickens. J Vet Med Sci 2023; 85:1015-1022. [PMID: 37482424 PMCID: PMC10539818 DOI: 10.1292/jvms.23-0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
In this study, the effects of different levels of aflatoxin B1 (AFB1) on the growth performance, carcass traits, organ index, blood biochemistry, and antioxidant capacity of yellow-feathered broilers were investigated to provide a reference for the application of AFB1-containing feed ingredients. In this test, yellow-feathered broilers were chosen as the research objects and divided into five treatment groups, with seven replicates in each group and 75 broilers in each replicate. The AFB1 concentration in the diets of groups 1 to 5 were 1.5 μg/kg, 15 μg/kg, 30 μg/kg, 45 μg/kg, and 60 μg/kg, respectively. The results showed that when dietary AFB1 levels were greater than 45 μg/kg, the feed conversion ratios of broilers of 1-21, 22-42, and 43-63 days of age increased (P<0.05). When dietary AFB1 levels were 30 μg/kg, liver glutathione peroxidase (GPx) activity was decreased (P<0.05), and serum transaminase (AST) activity was increased (P<0.05). Overall, dietary AFB1 levels had negative effects on growth performance, antioxidant capacity, blood biochemistry, and liver metabolism in yellow-feathered broilers. Based on using growth performance as the effect index, AFB1 levels in the diets of yellow-feathered broilers should not exceed 45 μg/kg. Based on using antioxidant capacity, liver function, and blood biochemistry as effect indexes, AFB1 levels in the diets of yellow-feathered broilers should not exceed 30 μg/kg.
Collapse
Affiliation(s)
- Yi Zou
- Poultry Business Division of Wens Foodstuff Group Co., Ltd., Ministry of Agriculture Key Laboratory of Animal Nutrition and Healthy Cultivation, Department of Poultry Nutrition and Feed Science, Guangdong Province, China
| | - Song-Bai Liu
- Poultry Business Division of Wens Foodstuff Group Co., Ltd., Ministry of Agriculture Key Laboratory of Animal Nutrition and Healthy Cultivation, Department of Poultry Nutrition and Feed Science, Guangdong Province, China
| | - Qi Zhang
- Poultry Business Division of Wens Foodstuff Group Co., Ltd., Ministry of Agriculture Key Laboratory of Animal Nutrition and Healthy Cultivation, Department of Poultry Nutrition and Feed Science, Guangdong Province, China
| | - Hui-Ze Tan
- Poultry Business Division of Wens Foodstuff Group Co., Ltd., Ministry of Agriculture Key Laboratory of Animal Nutrition and Healthy Cultivation, Department of Poultry Nutrition and Feed Science, Guangdong Province, China
| |
Collapse
|
35
|
Boutefaha Z, Diab KA, Gheraibia S, El-Nekeety AA, Belattar N, Hassan ME, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Screening of the phytochemical constituents of Teucrium polium extract and evaluation of their prophylactic role against the oxidative damage and cytotoxicity of Aflatoxin B 1 in rats. Toxicon 2023; 233:107252. [PMID: 37597789 DOI: 10.1016/j.toxicon.2023.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Aflatoxin B1 (AFB1) is common carcinogen causing acute and chronic hepatocyte injuries. This study aimed to determine the bioactive components of Teucrium polium methanolic extract (TPE) and to evaluate their protective role against AFB1-induced oxidative damage, cytotoxicity, and genotoxicity in rats. Six groups of male albino rats were treated orally for 4 weeks including the control group, the ِAFB1-treated group (80 μg/kg b.w.), the groups treated with low (LD) or high (HD) dose TPE (50 or 100 mg/kg b.w.), and the groups treated with AFB1 plus TEP (LD) or TPE (HD). Blood and serum samples were collected for different assays. The GC-MS identified 34 compounds, the major compounds were pinene, germacrene D, α-cadinol, α-thujene, epi-bicyclosesquiphellandrene, and limonene. Animals that received AFB1 showed significant changes in all indicators of oxidative stress, biochemistry, cytokines, MNPCEs, comet tail formation in bone marrow, mRNA expression of inflammatory-related genes, Nrf2, and iNOS beside histological changes in the liver. TPE at the two doses tested showed insignificant changes in all tested parameters. The extract could normalize most of these parameters and the hepatic structure in AFB1-treated animals in a dose-dependent fashion. therefore, we concluded that TPE supplementation is effective for protection against AFB1 in endemic areas.
Collapse
Affiliation(s)
- Zineddine Boutefaha
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif 1, Algeria
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Sara Gheraibia
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif 1, Algeria
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Noureddine Belattar
- Laboratory of Applied Biochemistry, Faculty of Sciences of Nature and Life, Ferhat Abbes University, Setif 1, Algeria
| | - Marwa E Hassan
- Toxicology Dept., Research Institute of Medical Entomology, Giza, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
36
|
Geevarghese AV, Kasmani FB, Dolatyabi S. Curcumin and curcumin nanoparticles counteract the biological and managemental stressors in poultry production: An updated review. Res Vet Sci 2023; 162:104958. [PMID: 37517298 DOI: 10.1016/j.rvsc.2023.104958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Antibiotics have the potential to have both direct and indirect detrimental impacts on animal and human health. For instance, antibiotic residues and pathogenic resistance against the drug are very common in poultry because of antibiotics used in their feed. It is necessary to use natural feed additives as effective alternatives instead of synthetic antibiotics. Curcumin, a polyphenol compound one of the natural compounds from the rhizomes of turmeric (Curcuma spp.) and has been suggested to have several therapeutic benefits in the treatment of human diseases. Curcumin exhibited some positive responses such as growth promoter, antioxidant, antibacterial, antiviral, anticoccidial, anti-stress, and immune modulator activities. Curcumin played a pivotal role in regulating the structure of the intestinal microbiome for health promotion and the treatment of intestinal dysbiosis. It is suggested that curcumin alone or a combination with other feed additives could be a dietary strategy to improve poultry health and productivity.
Collapse
Affiliation(s)
- Abin V Geevarghese
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India.
| | | | - Sara Dolatyabi
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Ohio, USA
| |
Collapse
|
37
|
Hernández-Martínez SP, Delgado-Cedeño A, Ramos-Zayas Y, Franco-Molina MA, Méndez-Zamora G, Marroquín-Cardona AG, Kawas JR. Aluminosilicates as a Double-Edged Sword: Adsorption of Aflatoxin B 1 and Sequestration of Essential Trace Minerals in an In Vitro Gastrointestinal Poultry Model. Toxins (Basel) 2023; 15:519. [PMID: 37755945 PMCID: PMC10534799 DOI: 10.3390/toxins15090519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/28/2023] Open
Abstract
Aflatoxins can cause intoxication and poisoning in animals and humans. Among these molecules, aflatoxin B1 (AFB1) is the most dangerous because of its carcinogenic and mutagenic properties. To mitigate these effects, clay adsorbents are commonly included in the diet of animals to adsorb the carcinogens and prevent their absorption in the gastrointestinal tract. In this study, four clays, three smectites (C-1, C-2, and C-3), and one zeolite (C-4), were compared as adsorbents of AFB1 and trace inorganic nutrients using an in vitro gastrointestinal model for poultry. Characterization of the clays using Fourier transform infrared spectroscopy revealed characteristic bands of smectites in C-1, C-2, and C-3 (stretching vibrations of Si-O, Al-O-Si, and Si-O-Si). The C-4 presented bands related to the bending vibration of structural units (Si-O-Si and Al-O-Si). X-ray diffraction analysis showed that C-1 is a montmorillonite, C-2 is a beidellite, C-3 is a beidellite-Ca-montmorillonite, and C-4 is a clinoptilolite. The elemental compositions of the clays showed alumina, silica, iron, calcium, and sodium contents. The cation exchange capacity was higher in C-3 clay (60.2 cmol(+)/kg) in contrast with the other clays. The AFB1 adsorption of C-1 was the highest (98%; p ˂ 0.001), followed by C-2 (94%). However, all the clays also sequestered trace inorganic nutrients (Fe, Mn, Zn, and Se). Both smectites, montmorillonite and beidellite, were the most suitable for use as adsorbents of AFB1.
Collapse
Affiliation(s)
- Sara Paola Hernández-Martínez
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Escobedo 66050, Nuevo León, Mexico; (S.P.H.-M.); (G.M.-Z.)
- MNA de México, Juárez 67250, Nuevo León, Mexico; (A.D.-C.); (Y.R.-Z.)
| | | | - Yareellys Ramos-Zayas
- MNA de México, Juárez 67250, Nuevo León, Mexico; (A.D.-C.); (Y.R.-Z.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Escobedo 66050, Nuevo León, Mexico
| | | | - Gerardo Méndez-Zamora
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Escobedo 66050, Nuevo León, Mexico; (S.P.H.-M.); (G.M.-Z.)
| | | | - Jorge R. Kawas
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Escobedo 66050, Nuevo León, Mexico; (S.P.H.-M.); (G.M.-Z.)
- MNA de México, Juárez 67250, Nuevo León, Mexico; (A.D.-C.); (Y.R.-Z.)
| |
Collapse
|
38
|
Lu Q, Hu Y, Nabi F, Li Z, Janyaro H, Zhu W, Liu J. Effect of Penthorum Chinense Pursh Compound on AFB1-Induced Immune Imbalance via JAK/STAT Signaling Pathway in Spleen of Broiler Chicken. Vet Sci 2023; 10:521. [PMID: 37624308 PMCID: PMC10459701 DOI: 10.3390/vetsci10080521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Aflatoxin B1(AFB1) is the main secondary metabolite produced by Aspergillus flavus, which is highly toxic, carcinogenic, mutagenic and teratogenic. It can induce immune imbalance in animals or humans. Penthorum chinense Pursh (PCP) is a traditional herbal plant that has been used as a hepatoprotective drug with a long history in China. Based on the theory of traditional Chinese Medicine, we prepared Penthorum chinense Pursh Compound (PCPC) by combining four herbal medicines: 5 g Penthorum chinense Pursh, 5 g Radix bupleuri, 1 g Artemisia capillaris Thunb and 1 g Radix glycyrrhizae. The role of the Penthorum chinense Pursh Compound (PCPC) in preventing AFB1-induced immune imbalance in broiler chickens was studied. A total of 180 broiler chickens were equally distributed in six groups: controls, AFB1, YCHD and high-, medium- and low-dose PCPC treatment groups. After 28 days, broilers were anesthetized, and serum spleen and thymus samples were collected for analysis. Results show that AFB1 significantly increased and decreased the relative organ weight of the spleen and thymus, respectively. Pathological section of hematoxylin/eosin (H&E) stained spleen sections showed that AFB1 resulted in splenic tissue damage. Both the serum levels of Immunoglobulin A (IgA) and Immunoglobulin G (IgG) were suppressed in the AFB1 group. IL-6 was elevated in the AFB1 group. The balance between pro-inflammatory cytokines (IFN-γ and IL-2) and anti-inflammatory cytokine (IL-4) was disturbed by AFB1. The apoptosis-related protein and JAK/STAT pathway-related gene expression indicated that AFB1-induced apoptosis via JAK/STAT pathway. PCPC has proven its immunoprotective effects by preventing AFB1-induced immune imbalance. PCPC can be applied as a novel immune-modulating medicine in broiler chickens. It can be applied as a novel immune modulator in veterinary clinical practice.
Collapse
Affiliation(s)
- Qin Lu
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China;
| | - Yu Hu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Y.H.); (F.N.); (Z.L.)
- Wanzhou District Livestock Industry Development Center, Chongqing 404020, China
| | - Fazul Nabi
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Y.H.); (F.N.); (Z.L.)
| | - Zhenzhen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Y.H.); (F.N.); (Z.L.)
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China
| | - Habibullah Janyaro
- Department of Veterinary Surgery, Shaheed Benazir Bhutto University of Veterinary and Animal Science, Sakrand 67210, Pakistan;
| | - Wenyan Zhu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Juan Liu
- Immunology Research Center of Medical Research Institute, Southwest University, Chongqing 402460, China;
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Y.H.); (F.N.); (Z.L.)
| |
Collapse
|
39
|
Abd El-Fattah W, Alfaifi MY, Alkabli J, Ramadan HA, Shati AA, Elbehairi SEI, Elshaarawy RFM, Kamal I, Saleh MM. Immobilization of ZnO-TiO 2 Nanocomposite into Polyimidazolium Amphiphilic Chitosan Film, Targeting Improving Its Antimicrobial and Antibiofilm Applications. Antibiotics (Basel) 2023; 12:1110. [PMID: 37508206 PMCID: PMC10376717 DOI: 10.3390/antibiotics12071110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
This study presents a green protocol for the fabrication of a multifunctional smart nanobiocomposite (NBC) (ZnO-PIACSB-TiO2) for secure antimicrobial and antibiofilm applications. First, shrimp shells were upgraded to a polyimidazolium amphiphilic chitosan Schiff base (PIACSB) through a series of physicochemical processes. After that, the PIACSB was used as an encapsulating and coating agent to manufacture a hybrid NBC in situ by co-encapsulating ZnONPs and TiO2NPs. The physicochemical and visual characteristics of the new NBC were investigated by spectral, microscopic, electrical, and thermal methods. The antimicrobial indices revealed that the newly synthesized, PIACSB-coated TiO2-ZnO nanocomposite is an exciting antibiotic due to its amazing antimicrobial activity (MIC/MBC→0.34/0.68 μg/mL, 0.20/0.40 μg/mL, and 0.15/0.30 μg/mL working against S. aureus, E. coli, and P. aeruginosa, respectively) and antifungal capabilities. Additionally, ZnO-PIACSB-TiO2 is a potential fighter of bacterial biofilms, with the results being superior to those of the positive control (Cipro), which worked against S. aureus (only 8.7% ± 1.9 biofilm growth), E. coli (only 1.4% ± 1.1 biofilm growth), and P. aeruginosa (only 0.85% ± 1.3 biofilm growth). Meanwhile, the NBC exhibits excellent biocompatibility, as evidenced by its IC50 values against both L929 and HSF (135 and 143 µg/mL), which are significantly higher than those of the MIC doses (0.24-24.85 µg/mL) that work against all tested microbes, as well as the uncoated nanocomposite (IC50 = 19.36 ± 2.04 and 23.48 ± 1.56 µg/mL). These findings imply that the new PIACSB-coated nanocomposite film may offer promising multifunctional food packaging additives to address the customer demand for safe, eco-friendly food products with outstanding antimicrobial and antibiofilm capabilities.
Collapse
Affiliation(s)
- Wesam Abd El-Fattah
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42521, Egypt
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; (A.A.S.); (S.E.I.E.)
| | - Jafar Alkabli
- Department of Chemistry, College of Sciences and Arts—Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia;
| | - Heba A. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt;
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; (A.A.S.); (S.E.I.E.)
| | - Serag Eldin I. Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; (A.A.S.); (S.E.I.E.)
| | - Reda F. M. Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University, Suez 43533, Egypt
- Institute for Inorganic Chemistry and Structural Chemistry, Düsseldorf University, 40225 Düsseldorf, Germany
| | - Islam Kamal
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt;
| | - Moustafa M. Saleh
- Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt;
| |
Collapse
|
40
|
Jaćević V, Dumanović J, Alomar SY, Resanović R, Milovanović Z, Nepovimova E, Wu Q, Franca TCC, Wu W, Kuča K. Research update on aflatoxins toxicity, metabolism, distribution, and detection: A concise overview. Toxicology 2023; 492:153549. [PMID: 37209941 DOI: 10.1016/j.tox.2023.153549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Serious health risks associated with the consumption of food products contaminated with aflatoxins (AFs) are worldwide recognized and depend predominantly on consumed AF concentration by diet. A low concentration of aflatoxins in cereals and related food commodities is unavoidable, especially in subtropic and tropic regions. Accordingly, risk assessment guidelines established by regulatory bodies in different countries help in the prevention of aflatoxin intoxication and the protection of public health. By assessing the maximal levels of aflatoxins in food products which are a potential risk to human health, it's possible to establish appropriate risk management strategies. Regarding, a few factors are crucial for making a rational risk management decision, such as toxicological profile, adequate information concerning the exposure duration, availability of routine and some novel analytical techniques, socioeconomic factors, food intake patterns, and maximal allowed levels of each aflatoxin in different food products which may be varied between countries.
Collapse
Affiliation(s)
- Vesna Jaćević
- Department for Experimental Pharmacology and Toxicology, National Poison Control Centre, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic.
| | - Jelena Dumanović
- Medical Faculty of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia
| | - Suliman Y Alomar
- King Saud University, College of Science, Zoology Department, Riyadh, 11451, Saudi Arabia
| | - Radmila Resanović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia
| | - Zoran Milovanović
- Special Police Unit, Ministry of Interior, Trebevićka 12/A, 11 030 Belgrade, Serbia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, 1 Nanhuan Road, 434023 Jingzhou, Hubei, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Tanos Celmar Costa Franca
- Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro, RJ 22290-270, Brazil; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Kamil Kuča
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
41
|
Mączka W, Twardawska M, Grabarczyk M, Wińska K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics (Basel) 2023; 12:antibiotics12050824. [PMID: 37237727 DOI: 10.3390/antibiotics12050824] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The main purpose of this article is to present the latest research related to selected biological properties of carvacrol, such as antimicrobial, anti-inflammatory, and antioxidant activity. As a monoterpenoid phenol, carvacrol is a component of many essential oils and is usually found in plants together with its isomer, thymol. Carvacrol, either alone or in combination with other compounds, has a strong antimicrobial effect on many different strains of bacteria and fungi that are dangerous to humans or can cause significant losses in the economy. Carvacrol also exerts strong anti-inflammatory properties by preventing the peroxidation of polyunsaturated fatty acids by inducing SOD, GPx, GR, and CAT, as well as reducing the level of pro-inflammatory cytokines in the body. It also affects the body's immune response generated by LPS. Carvacrol is considered a safe compound despite the limited amount of data on its metabolism in humans. This review also discusses the biotransformations of carvacrol, because the knowledge of the possible degradation pathways of this compound may help to minimize the risk of environmental contamination with phenolic compounds.
Collapse
Affiliation(s)
- Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Martyna Twardawska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
42
|
Zhang J, Tang X, Cai Y, Zhou WW. Mycotoxin Contamination Status of Cereals in China and Potential Microbial Decontamination Methods. Metabolites 2023; 13:metabo13040551. [PMID: 37110209 PMCID: PMC10143121 DOI: 10.3390/metabo13040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The presence of mycotoxins in cereals can pose a significant health risk to animals and humans. China is one of the countries that is facing cereal contamination by mycotoxins. Treating mycotoxin-contaminated cereals with established physical and chemical methods can lead to negative effects, such as the loss of nutrients, chemical residues, and high energy consumption. Therefore, microbial detoxification techniques are being considered for reducing and treating mycotoxins in cereals. This paper reviews the contamination of aflatoxins, zearalenone, deoxynivalenol, fumonisins, and ochratoxin A in major cereals (rice, wheat, and maize). Our discussion is based on 8700 samples from 30 provincial areas in China between 2005 and 2021. Previous research suggests that the temperature and humidity in the highly contaminated Chinese cereal-growing regions match the growth conditions of potential antagonists. Therefore, this review takes biological detoxification as the starting point and summarizes the methods of microbial detoxification, microbial active substance detoxification, and other microbial inhibition methods for treating contaminated cereals. Furthermore, their respective mechanisms are systematically analyzed, and a series of strategies for combining the above methods with the treatment of contaminated cereals in China are proposed. It is hoped that this review will provide a reference for subsequent solutions to cereal contamination problems and for the development of safer and more efficient methods of biological detoxification.
Collapse
Affiliation(s)
- Jing Zhang
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xi Tang
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yifan Cai
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
43
|
Computational Studies of Aflatoxin B 1 (AFB 1): A Review. Toxins (Basel) 2023; 15:toxins15020135. [PMID: 36828449 PMCID: PMC9967988 DOI: 10.3390/toxins15020135] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Aflatoxin B1 (AFB1) exhibits the most potent mutagenic and carcinogenic activity among aflatoxins. For this reason, AFB1 is recognized as a human group 1 carcinogen by the International Agency of Research on Cancer. Consequently, it is essential to determine its properties and behavior in different chemical systems. The chemical properties of AFB1 can be explored using computational chemistry, which has been employed complementarily to experimental investigations. The present review includes in silico studies (semiempirical, Hartree-Fock, DFT, molecular docking, and molecular dynamics) conducted from the first computational study in 1974 to the present (2022). This work was performed, considering the following groups: (a) molecular properties of AFB1 (structural, energy, solvent effects, ground and the excited state, atomic charges, among others); (b) theoretical investigations of AFB1 (degradation, quantification, reactivity, among others); (c) molecular interactions with inorganic compounds (Ag+, Zn2+, and Mg2+); (d) molecular interactions with environmentally compounds (clays); and (e) molecular interactions with biological compounds (DNA, enzymes, cyclodextrins, glucans, among others). Accordingly, in this work, we provide to the stakeholder the knowledge of toxicity of types of AFB1-derivatives, the structure-activity relationships manifested by the bonds between AFB1 and DNA or proteins, and the types of strategies that have been employed to quantify, detect, and eliminate the AFB1 molecule.
Collapse
|
44
|
Sureshbabu A, Smirnova E, Karthikeyan A, Moniruzzaman M, Kalaiselvi S, Nam K, Goff GL, Min T. The impact of curcumin on livestock and poultry animal's performance and management of insect pests. Front Vet Sci 2023; 10:1048067. [PMID: 36816192 PMCID: PMC9936197 DOI: 10.3389/fvets.2023.1048067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Plant-based natural products are alternative to antibiotics that can be employed as growth promoters in livestock and poultry production and attractive alternatives to synthetic chemical insecticides for insect pest management. Curcumin is a natural polyphenol compound from the rhizomes of turmeric (Curcuma spp.) and has been suggested to have a number of therapeutic benefits in the treatment of human diseases. It is also credited for its nutritional and pesticide properties improving livestock and poultry production performances and controlling insect pests. Recent studies reported that curcumin is an excellent feed additive contributing to poultry and livestock animal growth and disease resistance. Also, they detailed the curcumin's growth-inhibiting and insecticidal activity for reducing agricultural insect pests and insect vector-borne human diseases. This review aims to highlight the role of curcumin in increasing the growth and development of poultry and livestock animals and in controlling insect pests. We also discuss the challenges and knowledge gaps concerning curcumin use and commercialization as a feed additive and insect repellent.
Collapse
Affiliation(s)
- Anjana Sureshbabu
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
| | - Elena Smirnova
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
| | - Senthil Kalaiselvi
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Kiwoong Nam
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Gaelle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea,*Correspondence: Taesun Min ✉
| |
Collapse
|
45
|
Sang R, Ge B, Li H, Zhou H, Yan K, Wang W, Cui Q, Zhang X. Taraxasterol alleviates aflatoxin B 1-induced liver damage in broiler chickens via regulation of oxidative stress, apoptosis and autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114546. [PMID: 36646010 DOI: 10.1016/j.ecoenv.2023.114546] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Aflatoxin B1 (AFB1) is the most dangerous and abundant mycotoxin, which is toxic to almost all animals, and poultry is more sensitive to AFB1 toxicity. Ingesting AFB1-contaminated feed can cause significant liver damage and brings serious harm to poultry, which greatly restricts the development of the poultry industry. The present research was implemented to explore the intervention effect and its mechanism of taraxasterol on liver damage induced by AFB1 in broiler chickens. The liver damage model in broiler chickens was established by feeding 0.5 mg/kg AFB1 feed, and taraxasterol (25, 50 and 100 mg/kg BW, respectively) was given in the drinking water for 21 days. The growth performance, liver function, oxidative stress, apoptosis and autophagy were evaluated. The results showed that taraxasterol increased BW and reduced feed-to-gain ratio of broiler chickens induced by AFB1. Taraxasterol improved the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), total bilirubin (TBIL) and alkaline phosphatase (ALP), and attenuated hepatic histopathological changes induced by AFB1. Meantime, taraxasterol down-regulated cytochrome P450 (CYP450) enzyme system CYP1A1 and CYP2A6 mRNA expression, inhibited the overproduction of reactive oxygen species (ROS) and malondialdehyde (MDA), and enhanced the activities of antioxidant enzymes glutathione (GSH) and catalase (CAT) and the content of antioxidant superoxide dismutase (SOD) of the liver in broiler chickens induced by AFB1. Furthermore, taraxasterol up-regulated the mRNA and protein expression of hepatic nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1), and down-regulated the expression of hepatic kelch like ECH associated protein 1 (Keap1) induced by AFB1 in Keap1/Nrf2 signaling pathway. The ultrastructural observation and RT-qPCR results found that taraxasterol inhibited apoptosis of hepatocytes, up-regulated the expression of B-cell lymphoma-2 (Bcl-2) mRNA and down-regulated the expression of Bax and caspase3 mRNA. Further, taraxasterol restored the autophagy of hepatocytes and down-regulated the mRNA expression of phosphatidylinositol 3-kinase K (PI3K), protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in AFB1-induced liver of broiler chickens. The above results indicate that taraxasterol alleviates liver damage induced by AFB1 in broiler chickens through regulation of Keap1/Nrf2 signaling pathway to exert its antioxidant effect, mitochondrial apoptosis pathway to improve anti-apoptotic ability and PI3K/AKT/mTOR pathway to restore autophagy.
Collapse
Affiliation(s)
- Rui Sang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Bingjie Ge
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Haifeng Li
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Hongyuan Zhou
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Kexin Yan
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Wei Wang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Qichao Cui
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| | - Xuemei Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin 133002, PR China.
| |
Collapse
|
46
|
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20220072. [PMID: 37323623 PMCID: PMC10190953 DOI: 10.1002/exp.20220072] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
The methodological advancements in surface-enhanced Raman scattering (SERS) technique with nanoscale materials based on noble metals, Au, Ag, and their bimetallic alloy Au-Ag, has enabled the highly efficient sensing of chemical and biological molecules at very low concentration values. By employing the innovative various type of Au, Ag nanoparticles and especially, high efficiency Au@Ag alloy nanomaterials as substrate in SERS based biosensors have revolutionized the detection of biological components including; proteins, antigens antibodies complex, circulating tumor cells, DNA, and RNA (miRNA), etc. This review is about SERS-based Au/Ag bimetallic biosensors and their Raman enhanced activity by focusing on different factors related to them. The emphasis of this research is to describe the recent developments in this field and conceptual advancements behind them. Furthermore, in this article we apex the understanding of impact by variation in basic features like effects of size, shape varying lengths, thickness of core-shell and their influence of large-scale magnitude and morphology. Moreover, the detailed information about recent biological applications based on these core-shell noble metals, importantly detection of receptor binding domain (RBD) protein of COVID-19 is provided.
Collapse
Affiliation(s)
- Gul Awiaz
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
47
|
Humic Acids Preparation, Characterization, and Their Potential Adsorption Capacity for Aflatoxin B 1 in an In Vitro Poultry Digestive Model. Toxins (Basel) 2023; 15:toxins15020083. [PMID: 36828398 PMCID: PMC9962053 DOI: 10.3390/toxins15020083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Vermicompost was used for humic acid (HA) preparation, and the adsorption of aflatoxin B1 (AFB1) was investigated. Two forms of HA were evaluated, natural HA and sodium-free HA (SFHA). As a reference, a non-commercial zeolitic material was employed. The adsorbents were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), energy-dispersive X-ray spectroscopy (EDS), zeta potential (ζ-potential), scanning electron microscopy (SEM), and point of zero charge (pHpzc). The adsorbent capacity of the materials when added to an AFB1-contaminated diet (100 µg AFB1/kg) was evaluated using an in vitro model that simulates the digestive tract of chickens. Characterization results revealed the primary functional groups in HA and SFHA were carboxyl and phenol. Furthermore, adsorbents have a highly negative ζ-potential at the three simulated pH values. Therefore, it appears the main influencing factors for AFB1 adsorption are electrostatic interactions and hydrogen bonding. Moreover, the bioavailability of AFB1 in the intestinal section was dramatically decreased when sorbents were added to the diet (0.2%, w/w). The highest AFB1 adsorption percentages using HA and SFHA were 97.6% and 99.7%, respectively. The zeolitic material had a considerable adsorption (81.5%). From these results, it can be concluded that HA and SFHA from vermicompost could be used as potential adsorbents to remove AFB1 from contaminated feeds.
Collapse
|
48
|
Zhang Y, Wang M, Dong H, Yang T. Effects of peroxisome proliferator activated receptor-α agonist on growth performance, blood profiles, gene expression related to liver fat metabolism in broilers fed diets containing corn naturally contaminated with mycotoxins. Front Vet Sci 2023; 9:1103185. [PMID: 36686165 PMCID: PMC9848495 DOI: 10.3389/fvets.2022.1103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
This study was conducted to determine the subclinical symptom of broilers exposure to mycotxoins from corn naturally contaminated, and the preventive effect with peroxisome proliferator activated receptor-α (PPARα) agonist (Wy-14643) supplementation. A total of 360 one-day -old male Arbor Acres broilers were randomly distributed into 4 treatments with 9 replicates of 10 birds. Dietary treatments included: treatment 1, normal corn diets group, treatment 2, normal corn + Wy-14643 diets group, treatment 3, mycotoxin-contaminated corn diets group, treatment 4, mycotoxin-contaminated corn + Wy-14643 diets group. The supplementation of Wy-14643 was added at the expense of 1 and 2 mg/kg in starter and grower diets, respectively. Birds fed mycotoxin diets had lower (P < 0.05) final body weight (BW), Body weight gain (BWG), feed intake (FI), and had higher (P < 0.05) feed conversion ratio (FCR). Feeding mycotoxin diets reduced (P < 0.05) the levels of serum superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT), total antioxidative capacity (T-AOC) and high-density lipoprotein cholesterol (HDL-C), but higher malondialdehyde (MDA), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and fatty acid synthetase (FAS). The supplementation of Wy-14643 increased (P < 0.05) the level of serum T-AOC, but reduced (P < 0.05) TG and LDL-C. Interactive effect was not observed (P > 0.05) in growth performance and blood profiles. The relative expression of PPARα mRNA and 3-Hydroxy-3-MethylGlutaryl-CO enzyme A (HMGCoA) mRNA was higher (P < 0.05) in treatment 3 and treatment 4 than treatment 1 and treatment 2, and there was significant difference (P <0.05) between treatment 3 and treatment 4. There was significant difference (P < 0.05) between groups of the relative expression of recombinant carnitine palmitoyl transferase 1 (CPT1) mRNA. The relative expression of acyl CoA oxidase (ACO) mRNA was higher (P < 0.05) in treatment 1 and treatment 4 than treatment 2 and treatment 3, and there was significant difference (P < 0.05) between treatment 1 and treatment 4. The relative expression of apolipoprotein A (APO-A) mRNA was higher (P < 0.05) in treatment 1 and treatment 4 than treatment 2 and treatment 3. The relative expression of sterol regulatory element binding protein (SREBP) mRNA was lower (P < 0.05) in treatment 2, treatment 3 and treatment 4 than treatment 1, and there was significant difference (P < 0.05) between treatment 3 and treatment 4. Overall, feeding naturally contaminated mycotoxin diets caused negative effects on growth performance and blood profiles, while diet supplementation with Wy-14643 alleviate the detrimental effects on gene and expression related to liver fat metabolism in broilers.
Collapse
|
49
|
Degradation of aflatoxins in apple juice by pulsed light and the analysis of their degradation products. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Potekhina RM, Tarasova EY, Matrosova LE, Khammadov NI, Saifutdinov AM, Ermolaeva OK, Tanaseva SA, Mishina NN, Nigmatulin GN, Mukharlyamova AZ, Smolentsev SY, Semenov EI. A Case of Laying Hens Mycosis Caused by Fusarium proliferatum. Vet Med Int 2023; 2023:5281260. [PMID: 37168542 PMCID: PMC10164870 DOI: 10.1155/2023/5281260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/09/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023] Open
Abstract
In this article, we present the first case report of a chicken mycosis caused by F. proliferatum occurred on a private farm in the Russian Federation. Lesions on the skin of the legs and scallops were reported. The object of this study was samples of feed and pathological material from sick hens-layers. Mycological analysis included determination of the total number of fungi (TNF) and identification and determination of the toxicity and pathogenicity of the isolates. The identification of the isolate was carried out taking into account direct microscopy, morphological features, and the method of molecular genetic analysis. Microscopic fungi of the genus Penicillium and Rhizopus were isolated by mycological analysis of the feed. The test feed was nontoxic. Mycological examination of pathological material (scrapings from the combs and affected legs) identified an isolate of Fusarium proliferatum, which showed toxicity on biological objects (protozoa, rabbits) and pathogenicity (white mice). Dermal application of F. proliferatum suspension was accompanied by reddening of the rabbit skin. Intraperitoneal injection of fungal spores caused mycosis in white mice. Polymerase chain reaction (PCR) made it possible to identify this type of microscopic fungus (F. proliferatum) with high accuracy in the samples under study. The research results allow us to consider F. proliferatum as a cause of poultry disease against the background of predisposing factors in the form of desquamation of the stratum corneum of the skin against the background of immunosuppression and metabolic disorders caused by an imbalance in the diet.
Collapse
Affiliation(s)
- Ramziya M. Potekhina
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Evgenya Yu. Tarasova
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Lilia E. Matrosova
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Nail I. Khammadov
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Alexander M. Saifutdinov
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Olga K. Ermolaeva
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Svetlana A. Tanaseva
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Nailya N. Mishina
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Gali N. Nigmatulin
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | - Aisylu Z. Mukharlyamova
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| | | | - Eduard I. Semenov
- Federal Center for Toxicological, Radiation and Biological Safety, Kazan 420075, Nauchnyi Gorodok-2, Russia
| |
Collapse
|