1
|
Ying Q, Zhang X, Gu T, Zhang J, Dong Y, Feng W, Li D, Wu X, Wang F. Apatinib inhibits HTNV by stimulating TFEB-driven lysosome biogenesis to degrade viral protein. Antiviral Res 2025; 237:106124. [PMID: 40020878 DOI: 10.1016/j.antiviral.2025.106124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Hantaan Orthohantavirus (Hantaan virus, HTNV) infection causes hemorrhagic fever with renal syndrome (HFRS) in humans, posing a significant health threat. Currently, there are no long-lasting protective vaccines or specific antivirals available, creating an urgent need for effective antiviral treatments in the clinical management of HFRS. Given that viruses exploit multiple host factors for their replication, host-oriented inhibitors could offer promising therapeutic options. In our study, we screened a library of 2570 drugs and identified apatinib, a kinase inhibitor, as a potent suppressor of HTNV infection both in vitro and in vivo. Mechanistic studies revealed that apatinib exerts its antiviral effect by targeting transcription factor EB (TFEB). Specifically, apatinib inhibits the PI3K-Akt signaling pathway and reduces mTOR phosphorylation, which in turn downregulates TFEB phosphorylation. This facilitates the nuclear translocation of TFEB and enhances lysosomal function by upregulating the expression of lysosome-associated genes and promoting lysosome biogenesis. Consequently, there is an increase in lysosome-mediated viral nucleocapsid protein degradation. The ability of apatinib to stimulate this lysosome-driven antiviral mechanism presents a potential new therapeutic approach for viral infections and offers valuable insights into virus-host interactions during HTNV replication.
Collapse
Affiliation(s)
- Qikang Ying
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China
| | - Xiaoxiao Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China
| | - Tianle Gu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Junmei Zhang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Yuhang Dong
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China
| | - Wenjie Feng
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Dongjing Li
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China.
| | - Fang Wang
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Dubrulle J, Kauffman K, Soarimalala V, Randriamoria T, Goodman SM, Herrera J, Nunn C, Tortosa P. Effect of Land-Use on Hantavirus Infection Among Introduced and Endemic Small Mammals of Madagascar. Ecol Evol 2025; 15:e70914. [PMID: 40196405 PMCID: PMC11975053 DOI: 10.1002/ece3.70914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/04/2025] [Accepted: 01/16/2025] [Indexed: 04/09/2025] Open
Abstract
Hantaviruses are globally distributed zoonotic pathogens capable of causing fatal disease in humans. Addressing the risk of hantavirus spillover from animal reservoirs to humans requires identifying the local reservoirs (usually rodents and other small mammals) and the predictors of infection, such as habitat characteristics and human exposure. We screened a collection of 1663 terrestrial small mammals and 227 bats for hantavirus RNA, comprised of native and non-native species from northeastern Madagascar, trapped over 5 successive years. We specifically investigated the influence of diverse habitat types: villages, agricultural fields, regrowth areas, secondary and semi-intact forests on infection with hantaviruses. We detected Hantavirus RNA closely related to the previously described Anjozorobe virus in 9.5% of Rattus rattus sampled, with an absence of detection in other species. Land-use had a complex impact on hantavirus infections: intensive land-use positively correlated with the abundance of R. rattus and the average R. rattus body size varied between habitats. Larger individuals had a higher probability of infection, regardless of sex. Thus, villages and pristine forests which host the smallest, and hence, least infected rats, represent the lowest risk for hantavirus exposure to people while flooded rice fields which were home to the largest rats, and subsequently most infected rats, represent the greatest exposure risk. These findings provide new insights into the relationship between rat ecology and the gradients of hantavirus exposure risk for farmers in northeastern Madagascar as they work in different land-use types.
Collapse
Affiliation(s)
- Jérémy Dubrulle
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT)Université de la Réunion, CNRS 9192, INSERM 1187, IRD 249Sainte‐ClotildeRéunion IslandFrance
| | - Kayla Kauffman
- Department of Evolutionary AnthropologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | | | | | - Steven M. Goodman
- Association VahatraAntananarivoMadagascar
- Field Museum of Natural HistoryChicagoIllinoisUSA
| | - James Herrera
- Department of Evolutionary AnthropologyDuke UniversityDurhamNorth CarolinaUSA
| | - Charles Nunn
- Department of Evolutionary AnthropologyDuke UniversityDurhamNorth CarolinaUSA
- Duke Global Health Institute, Duke UniversityDurhamNorth CarolinaUSA
| | - Pablo Tortosa
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (UMR PIMIT)Université de la Réunion, CNRS 9192, INSERM 1187, IRD 249Sainte‐ClotildeRéunion IslandFrance
| |
Collapse
|
3
|
Ma K, Wu T, Guo W, Wang J, Ming Q, Zhu J, Wang H, Chen G, Wang X, Yan W, Luo X, Chen T, Ning Q. Clinical Characteristics and a Novel Prediction Nomogram (EASTAR) for Patients with Hemorrhagic Fever with Renal Syndrome: A Multicenter Retrospective Study. Trop Med Infect Dis 2025; 10:51. [PMID: 39998055 PMCID: PMC11860278 DOI: 10.3390/tropicalmed10020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/19/2025] [Accepted: 01/25/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The fatality rate of hemorrhagic fever with renal syndrome (HFRS), due to hantavirus transmitted by rodents, ranges from 1% to 12%. This study aims to delineate the clinical and laboratory characteristics of HFRS, identify factors associated with disease severity, and construct and validate a nomogram for prognosis prediction of HFRS in the central part of China. METHODS Out of 598 HFRS patients diagnosed via serology tests from four hospitals in Hubei Province, 551 were included. Clinical data were gathered and analyzed, followed by logistic univariate and multivariate analyses to identify independent prognostic factors. A nomogram was developed and validated to forecast the patient's prognosis. RESULTS Vaccination led to a notable drop in HFRS incidence from 2018 to 2019, and seasonal trends exhibited bimodal changes with peaks from May to July and November to January. The 30-day mortality rate was 4.17% (23/551). Red blood cell count (RBC), age, two-stage overlap, qSOFA ≥ 2, aspartate aminotransferase (AST), and three-stage overlap were identified as independent prognostic factors. A predictive risk classification system using a nomogram chart was developed, and Kaplan-Meier curves indicated that the new system accurately distinguished 30-day mortality among the three risk groups. CONCLUSIONS The risk score (EASTAR) system demonstrated good predictive performance for prognostic prediction, and it can be applied to quickly screen patients who require ICU admission.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan 430030, China; (K.M.); (T.W.); (W.G.); (H.W.); (G.C.); (X.W.); (W.Y.); (Q.N.)
| | - Ting Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan 430030, China; (K.M.); (T.W.); (W.G.); (H.W.); (G.C.); (X.W.); (W.Y.); (Q.N.)
| | - Wei Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan 430030, China; (K.M.); (T.W.); (W.G.); (H.W.); (G.C.); (X.W.); (W.Y.); (Q.N.)
| | - Jun Wang
- Department of Infectious Disease, Qianjiang City Central Hospital, 22, Zhanghua Zhong Road, Qianjiang 433100, China;
| | - Quan Ming
- Department of Infectious Disease, Yichang City Third People’s Hospital, 23, Gangyao Road, Yichang 443000, China;
| | - Jun Zhu
- Department of Infectious Disease, Xianning City Central Hospital, 228, Jingui Road, Xianning 437000, China;
| | - Hongwu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan 430030, China; (K.M.); (T.W.); (W.G.); (H.W.); (G.C.); (X.W.); (W.Y.); (Q.N.)
| | - Guang Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan 430030, China; (K.M.); (T.W.); (W.G.); (H.W.); (G.C.); (X.W.); (W.Y.); (Q.N.)
| | - Xiaojing Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan 430030, China; (K.M.); (T.W.); (W.G.); (H.W.); (G.C.); (X.W.); (W.Y.); (Q.N.)
| | - Weiming Yan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan 430030, China; (K.M.); (T.W.); (W.G.); (H.W.); (G.C.); (X.W.); (W.Y.); (Q.N.)
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology,1095, Jiefang Avenue, Wuhan 430030, China;
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan 430030, China; (K.M.); (T.W.); (W.G.); (H.W.); (G.C.); (X.W.); (W.Y.); (Q.N.)
| | - Qin Ning
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan 430030, China; (K.M.); (T.W.); (W.G.); (H.W.); (G.C.); (X.W.); (W.Y.); (Q.N.)
| |
Collapse
|
4
|
Ying Q, Zhang X, Wang S, Gu T, Zhang J, Feng W, Li D, Dong Y, Wu X, Wang F. A Novel HTNV Budding Inhibitor Interferes the Interaction Between Viral Glycoprotein and Host ESCRT Accessory Protein ALIX. J Med Virol 2025; 97:e70182. [PMID: 39868900 DOI: 10.1002/jmv.70182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 01/28/2025]
Abstract
Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics. In this study, we elucidated the functional role of the conserved YRTL motif within the glycoprotein Gn cytoplasmic tail of Orthohantavirus hantanense (Hantaan virus, HTNV), demonstrating that HTNV production is regulated by the interaction between YRTL and the ESCRT accessory protein ALIX (ALG-2 interacting protein X). Through virtual molecule docking screening, followed by in vitro and in vivo assays, we discovered a novel compound, AN-329, which disrupts the YRTL-ALIX interaction and effectively inhibits infectious HTNV production, as well as Crimean-Congo hemorrhagic fever virus (CCHFV) and Rift Valley fever virus (RVFV) VLP release. This makes AN-329 a promising therapeutic candidate for reducing viral dissemination. Given that YRTL is conserved across many hantaviruses, our findings may serve as a prototype for the development of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Qikang Ying
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China
| | - Xiaoxiao Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Military Medical University, Xi'an, China
| | - Tianle Gu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Junmei Zhang
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Wenjie Feng
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Dongjing Li
- College of Life Sciences, Yan'an University, Yan'an, China
| | - Yuhang Dong
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China
| | - Fang Wang
- Department of Microbiology, School of Basic Medicine, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Xu JQ, Zhang WY, Fu JJ, Fang XZ, Gao CG, Li C, Yao L, Li QL, Yang XB, Ren LH, Shu HQ, Peng K, Wu Y, Zhang DY, Qiu Y, Zhou X, Yao YM, Shang Y. Viral sepsis: diagnosis, clinical features, pathogenesis, and clinical considerations. Mil Med Res 2024; 11:78. [PMID: 39676169 PMCID: PMC11648306 DOI: 10.1186/s40779-024-00581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Sepsis, characterized as life-threatening organ dysfunction resulting from dysregulated host responses to infection, remains a significant challenge in clinical practice. Despite advancements in understanding host-bacterial interactions, molecular responses, and therapeutic approaches, the mortality rate associated with sepsis has consistently ranged between 10 and 16%. This elevated mortality highlights critical gaps in our comprehension of sepsis etiology. Traditionally linked to bacterial and fungal pathogens, recent outbreaks of acute viral infections, including Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), among other regional epidemics, have underscored the role of viral pathogenesis in sepsis, particularly when critically ill patients exhibit classic symptoms indicative of sepsis. However, many cases of viral-induced sepsis are frequently underdiagnosed because standard evaluations typically exclude viral panels. Moreover, these viruses not only activate conventional pattern recognition receptors (PRRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) but also initiate primary antiviral pathways such as cyclic guanosine monophosphate adenosine monophosphate (GMP-AMP) synthase (cGAS)-stimulator of interferon genes (STING) signaling and interferon response mechanisms. Such activations lead to cellular stress, metabolic disturbances, and extensive cell damage that exacerbate tissue injury while leading to a spectrum of clinical manifestations. This complexity poses substantial challenges for the clinical management of affected cases. In this review, we elucidate the definition and diagnosis criteria for viral sepsis while synthesizing current knowledge regarding its etiology, epidemiology, and pathophysiology, molecular mechanisms involved therein as well as their impact on immune-mediated organ damage. Additionally, we discuss clinical considerations related to both existing therapies and advanced treatment interventions, aiming to enhance the comprehensive understanding surrounding viral sepsis.
Collapse
Affiliation(s)
- Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wan-Ying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Ji Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng-Gang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chang Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi-Lan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Bo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Le-Hao Ren
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Qing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, 430072, China
| | - Ding-Yu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Qiu
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Xi Zhou
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Goens MM, Howard EL, Warner BM, Susta L, Wootton SK. Rapid Development of Small Rodent Animal Models for Infectious Disease Research Through Vectorized Receptor Molecule Expression. Viruses 2024; 16:1794. [PMID: 39599908 PMCID: PMC11599079 DOI: 10.3390/v16111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
The emergence and re-emergence of pathogens with pandemic potential has been a persistent issue throughout history. Recent decades have seen significant outbreaks of zoonotic viruses from members of the Coronaviridae, Filoviridae, Paramyxoviridae, Flaviviridae, and Togaviridae families, resulting in widespread infections. The continual emergence of zoonotic viral pathogens and associated infections highlights the need for prevention strategies and effective treatments. Central to this effort is the availability of suitable animal models, which are essential for understanding pathogenesis and assessing transmission dynamics. These animals are also critical for evaluating the safety and efficacy of novel vaccines or therapeutics and are essential in facilitating regulatory approval of new products. Rapid development of animal models is an integral aspect of pandemic response and preparedness; however, their establishment is fraught by several rate-limiting steps, including selection of a suitable species, the logistical challenges associated with sharing and disseminating transgenic animals (e.g., the time-intensive nature of breeding and maintaining colonies), the availability of technical expertise, as well as ethical and regulatory approvals. A method for the rapid development of relevant animal models that has recently gained traction, in large part due to the COVID-19 pandemic, is the use of gene therapy vectors to express human viral receptors in readily accessible laboratory animals to enable virus infection and development of clinical disease. These models can be developed rapidly on any genetic background, making mechanistic studies and accelerated evaluation of novel countermeasures possible. In this review, we will discuss important considerations for the effective development of animal models using viral vector approaches and review the current vector-based animal models for studying viral pathogenesis and evaluating prophylactic and therapeutic strategies, with an emphasis on models of SARS-CoV-2 infection based on the vectorized expression of human angiotensin-converting enzyme 2.
Collapse
Affiliation(s)
- Melanie M. Goens
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Erin L. Howard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bryce M. Warner
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Rd, Saskatoon, SK S7N 5E3, Canada;
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
7
|
Hooper JW, Kwilas SA, Josleyn M, Norris S, Hutter JN, Hamer M, Livezey J, Paolino K, Twomey P, Koren M, Keiser P, Moon JE, Nwaeze U, Koontz J, Ledesma-Feliciano C, Landry N, Wellington T. Phase 1 clinical trial of Hantaan and Puumala virus DNA vaccines delivered by needle-free injection. NPJ Vaccines 2024; 9:221. [PMID: 39551791 PMCID: PMC11570633 DOI: 10.1038/s41541-024-00998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Hantaan virus (HTNV) and Puumala virus (PUUV) are pathogenic zoonoses found in Asia and Europe, respectively. We conducted a randomized Phase 1 clinical trial of individual HTNV and PUUV DNA vaccines targeting the envelope glycoproteins (GnGc), as well as a combined HTNV/PUUV DNA vaccine delivered at varying doses using the PharmaJet Stratis® needle-free injection system (NCT02776761). Cohort 1 and 2 vaccines consisted of 2 mg/vaccination of HTNV or PUUV plasmid, respectively. Cohort 3 vaccine consisted of 2 mg/vaccination of 1:1 mixture of HTNV and PUUV vaccines. Vaccinations were administered on Days 0, 28, 56, and 168. The vaccines were safe and well tolerated. Neutralizing antibody responses were elicited in 7/7 (100%) subjects who received the HTNV DNA (Cohort 1) and 6/6 (100%) subjects who received the PUUV DNA (Cohort 2) vaccines alone. The combination vaccine resulted in 4/9 (44%) seroconversion against both viruses. After the first two vaccinations, the seroconversion rates for the HTNV and PUUV vaccines were >80%.
Collapse
Affiliation(s)
- Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA.
| | - Steven A Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Matthew Josleyn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Sarah Norris
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Jack N Hutter
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Melinda Hamer
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Jeffrey Livezey
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Kristopher Paolino
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Patrick Twomey
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Michael Koren
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Paul Keiser
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - James E Moon
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Ugo Nwaeze
- US Army Medical Research and Development Command Office of Regulated Activities, Fort Detrick, MD, 21702, USA
| | - Jason Koontz
- US Army Medical Research and Development Command Office of Regulated Activities, Fort Detrick, MD, 21702, USA
| | | | | | - Trevor Wellington
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| |
Collapse
|
8
|
Agrazal García J, Gordón de Isaacs L, Escalante-Barrios EL, Fàbregues S. Preventive Practices of Hantavirus in a Rural Community in Panama: An Explanatory Sequential Mixed Methods Study. J Transcult Nurs 2024; 35:425-435. [PMID: 38874220 DOI: 10.1177/10436596241259207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
INTRODUCTION Preventive care practices are a challenge in community care. This study examined hantavirus preventive practices and their relationship with personal and social factors, lifestyle, and cultural beliefs. METHOD An explanatory sequential mixed methods design, guided by Leininger's Theory of Culture Care Diversity and Universality, was used in two phases: (a) a cross-sectional relational design (n = 109) and (b) ethnonursing research (n = 30), in an endemic community in Panama. Univariate and bivariate analyses were used to analyze the quantitative data, whereas the Leininger's analysis model was used to analyze the qualitative data. RESULTS In the quantitative phase, the most frequent preventive practice was household hygiene, and the least frequent was vector control. Two of the eight preventive practices were associated with personal factors and two were associated with social factors. In the qualitative phase, lifestyle, beliefs, and context were found to influence the adoption of hantavirus preventive practices and help explain the quantitative findings. DISCUSSION Knowledge and understanding of the social and cultural contexts are essential for hantavirus prevention.
Collapse
|
9
|
Brocato RL, Wu H, Kwilas SA, Principe LM, Josleyn M, Shamblin J, Chivukula P, Bausch C, Luke T, Sullivan EJ, Hooper JW. Preclinical evaluation of a fully human, quadrivalent-hantavirus polyclonal antibody derived from a non-human source. mBio 2024; 15:e0160024. [PMID: 39258903 PMCID: PMC11481879 DOI: 10.1128/mbio.01600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Hantaviruses are rodent-borne viruses that cause severe disease in infected humans. In the New World, major hantaviruses include Andes virus (ANDV) and Sin Nombre virus (SNV) causing hantavirus pulmonary syndrome. In the Old World, major hantaviruses include Hantaan virus (HTNV) and Puumala virus (PUUV) causing hemorrhagic fever with renal syndrome. Here, we produced a pan-hantavirus therapeutic (SAB-163) comprised of fully human immunoglobulin purified from the plasma of transchromosomic bovines (TcB) vaccinated with hantavirus DNA plasmids coding for the major glycoproteins of ANDV, SNV, HTNV, and PUUV. SAB-163 has potent neutralizing antibodies (PRNT50 > 200,000) against the four targeted hantavirus and cross-neutralization against several other heterotypic hantaviruses. At a dosage of 10 mg/kg, SAB-163 is bioavailable in Syrian hamsters out to 70 days post-treatment with a half-life of 10-15 days. At this same dosage, SAB-163 administered 1 day before, or 5 days after exposure, protected all hamsters from lethal disease caused by ANDV. At a higher dose, partial but significant protection was achieved as late as day 6. SAB-163 also protected hamsters in the HTNV, PUUV, and SNV infection models when administered 1 day before or up to 3 days after challenge. This pan-hantavirus therapeutic is attractive because it is fully human, multi-targeted, safe, stable at 4°C, and effective in animal models. SAB-163 was evaluated for safety in GLP human tissue binding studies and a GLP rabbit toxicity study at 365 and 730 mg/kg and is investigational new drug enabled for phase 1 clinical trial(s). IMPORTANCE This candidate polyclonal human IgG product was produced using synthetic gene-based vaccines and transgenic cows. Having now gone through cGMP production, GLP safety testing, and efficacy testing in animals, SAB-163 is the world's most advanced anti-hantavirus antibody-based medical countermeasure, aside from convalescent human plasma. Importantly, SAB-163 targets the most prevalent hantaviruses on four continents.
Collapse
Affiliation(s)
- Rebecca L. Brocato
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Hua Wu
- SAB Biotherapeutics Inc., Sioux Falls, South Dakota, USA
| | - Steven A. Kwilas
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Lucia M. Principe
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Matthew Josleyn
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Joshua Shamblin
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | | | | | - Thomas Luke
- SAB Biotherapeutics Inc., Sioux Falls, South Dakota, USA
| | | | - Jay W. Hooper
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| |
Collapse
|
10
|
Ali L, Rauf S, Khan A, Rasool S, Raza RZ, Alshabrmi FM, Khan T, Suleman M, Waheed Y, Mohammad A, Agouni A. In silico design of multi-epitope vaccines against the hantaviruses by integrated structural vaccinology and molecular modeling approaches. PLoS One 2024; 19:e0305417. [PMID: 39042625 PMCID: PMC11265663 DOI: 10.1371/journal.pone.0305417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/29/2024] [Indexed: 07/25/2024] Open
Abstract
Hantaviruses are single-stranded RNA viruses belonging to the family Bunyaviridae that causes hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) worldwide. Currently, there is no effective vaccination or therapy available for the treatment of hantavirus, hence there is a dire need for research to formulate therapeutics for the disease. Computational vaccine designing is currently a highly accurate, time and cost-effective approach for designing effective vaccines against different diseases. In the current study, we shortlisted highly antigenic proteins i.e., envelope, and nucleoprotein from the proteome of hantavirus and subjected to the selection of highly antigenic epitopes to design of next-generation multi-epitope vaccine constructs. A highly antigenic and stable adjuvant was attached to the immune epitopes (T-cell, B-cell, and HTL) to design Env-Vac, NP-Vac, and Com-Vac constructs, which exhibit stronger antigenic, non-allergenic, and favorable physiochemical properties. Moreover, the 3D structures were predicted and docking analysis revealed robust interactions with the human Toll-like receptor 3 (TLR3) to initiate the immune cascade. The total free energy calculated for Env-Vac, NP-Vac, and Com-Vac was -50.02 kcal/mol, -24.13 kcal/mol, and -62.30 kcal/mol, respectively. In silico cloning, results demonstrated a CAI value for the Env-Vac, NP-Vac, and Com-Vac of 0.957, 0.954, and 0.956, respectively, while their corresponding GC contents were 65.1%, 64.0%, and 63.6%. In addition, the immune simulation results from three doses of shots released significant levels of IgG, IgM, interleukins, and cytokines, as well as antigen clearance over time, after receiving the vaccine and two booster doses. Our vaccines against Hantavirus were found to be highly immunogenic, inducing a robust immune response that demands experimental validation for clinical usage.
Collapse
Affiliation(s)
- Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Sobiah Rauf
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Samreen Rasool
- Department of Biochemistry, Government College University, Lahore, Pakistan
| | - Rabail Zehra Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Taimoor Khan
- Department of Radiation Oncology, University of California, San Francisco, United States of America
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Swat, Khyber Pakhtunkhwa, Pakistan
| | - Yasir Waheed
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Wang C, Chen L, Li X, Gu J, Xiang Y, Fang L, Chen L, Li Y. Development of an all-in-one real-time PCR assay for simultaneous detection of spotted fever group rickettsiae, severe fever with thrombocytopenia syndrome virus and hantaan virus prevalent in central China. PLoS Negl Trop Dis 2024; 18:e0012024. [PMID: 39012922 PMCID: PMC11280241 DOI: 10.1371/journal.pntd.0012024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Central China has been reported to be one of the most important endemic areas of zoonotic infection by spotted fever group rickettsiae (SFGR), severe fever with thrombocytopenia syndrome virus (SFTSV) and hantaan virus (HTNV). Due to similar clinical symptoms, it is challenging to make a definite diagnosis rapidly and accurately in the absence of microbiological tests. In the present study, an all-in-one real-time PCR assay was developed for the simultaneous detection of nucleic acids from SFGR, SFTSV and HTNV. Three linear standard curves for determining SFGR-ompA, SFTSV-L and HTNV-L were obtained within the range of 101-106 copies/μL, with the PCR amplification efficiencies ranging from 93.46% to 96.88% and the regression coefficients R2 of >0.99. The detection limit was 1.108 copies/μL for SFGR-ompA, 1.075 copies/μL for SFTSV-L and 1.006 copies/μL for HTNV-L, respectively. Both the within-run and within-laboratory coefficients of variation on the cycle threshold (Ct) values were within the range of 0.53%-2.15%. It was also found there was no statistical difference in the Ct values between single template and multiple templates (PSFGR-ompA = 0.186, PSFTSV-L = 0.612, PHTNV-L = 0.298). The sensitivity, specificity, positive and negative predictive value were all 100% for determining SFGR-ompA and SFTSV-L, 97%, 100%, 100% and 99.6% for HTNV-L, respectively. Therefore, the all-in-one real-time PCR assay appears to be a reliable, sensitive, rapid, high-throughput and low cost-effective method to diagnose the zoonotic infection by SFGR, SFTSV and HTNV.
Collapse
Affiliation(s)
- Cuixiang Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Liangjun Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Xingrong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jihong Gu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yating Xiang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Liang Fang
- Department of Wuhan EasyDiagnosis Biomedicine, Wuhan, China
| | - Lili Chen
- Department of Wuhan EasyDiagnosis Biomedicine, Wuhan, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, People’s Republic of China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, People’s Republic of China
| |
Collapse
|
12
|
Zhang H, Liu H, Wei J, Dang Y, Wang Y, Yang Q, Zhang L, Ye C, Wang B, Jin X, Cheng L, Ma H, Dong Y, Li Y, Bai Y, Lv X, Lei Y, Xu Z, Ye W, Zhang F. Single dose recombinant VSV based vaccine elicits robust and durable neutralizing antibody against Hantaan virus. NPJ Vaccines 2024; 9:28. [PMID: 38341504 DOI: 10.1038/s41541-024-00814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Hantaan virus (HTNV) is a pathogenic orthohantavirus prevalent in East Asia that is known to cause hemorrhagic fever with severe renal syndrome (HFRS), which has a high fatality rate. However, a Food and Drug Administration (FDA)-approved vaccine is not currently available against this virus. Although inactivated vaccines have been certified and used in endemic regions for decades, the neutralizing antibody (NAb) titer induced by inactivated vaccines is low and the immunization schedule is complicated, requiring at least three injections spanning approximately 6 months to 1 year. Replication-competent vesicular stomatitis virus (VSV)-based vaccines provide prolonged protection after a single injection. In this study, we successfully engineered the HTNV glycoprotein (GP) in the VSV genome by replacing the VSV-G open reading frame. The resulting recombinant (r) rVSV-HTNV-GP was rescued, and the immunogenicity of GP was similar to that of HTNV. BALB/c mice immunized with rVSV-HTNV-GP showed a high titer of NAb against HTNV after a single injection. Notably, the cross-reactive NAb response induced by rVSV-HTNV-GP against Seoul virus (an orthohantavirus) was higher than that induced by three sequential injections of inactivated vaccines. Upon challenge with HTNV, rVSV-HTNV-GP-immunized mice showed a profoundly reduced viral burden in multiple tissues, and inflammation in the lungs and liver was nearly undetectable. Moreover, a single injection of rVSV-HTNV-GP established a prolonged immunological memory status as the NAbs were sustained for over 1 year and provided long-term protection against HTNV infection. The findings of our study can support further development of an rVSV-HTNV-GP-based HTNV vaccine with a simplified immunization schedule.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Jing Wei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
- Center for Disease Control and Prevention of Shaanxi Province, Xi'an, Shaanxi, China
| | - Yamei Dang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Qiqi Yang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Chuantao Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Bin Wang
- Center of Clinical Aerospace Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Xiaolei Jin
- Student Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Hongwei Ma
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yinghui Li
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yinlan Bai
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Xin Lv
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China.
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China.
| |
Collapse
|
13
|
Ye W, Yan F. Editorial: Bunyaviruses - threats to health and economy. Front Cell Infect Microbiol 2024; 14:1369530. [PMID: 38371295 PMCID: PMC10869613 DOI: 10.3389/fcimb.2024.1369530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Affiliation(s)
- Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
14
|
Paulsen GC, Frenck R, Tomashek KM, Alarcon RM, Hensel E, Lowe A, Brocato RL, Kwilas SA, Josleyn MD, Hooper JW. Safety and Immunogenicity of an Andes Virus DNA Vaccine by Needle-Free Injection: A Randomized, Controlled Phase 1 Study. J Infect Dis 2024; 229:30-38. [PMID: 37380156 PMCID: PMC10786244 DOI: 10.1093/infdis/jiad235] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/23/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Andes virus (ANDV), a rodent-borne hantavirus, causes hantavirus pulmonary syndrome (HPS). The safety and immunogenicity of a novel ANDV DNA vaccine was evaluated. METHODS Phase 1, double-blind, dose-escalation trial randomly assigned 48 healthy adults to placebo or ANDV DNA vaccine delivered via needle-free jet injection. Cohorts 1 and 2 received 2 mg of DNA or placebo in a 3-dose (days 1, 29, 169) or 4-dose (days 1, 29, 57, 169) schedule, respectively. Cohorts 3 and 4 received 4 mg of DNA or placebo in the 3-dose and 4-dose schedule, respectively. Subjects were monitored for safety and neutralizing antibodies by pseudovirion neutralization assay (PsVNA50) and plaque reduction neutralization test (PRNT50). RESULTS While 98% and 65% of subjects had at least 1 local or systemic solicited adverse event (AE), respectively, most AEs were mild or moderate; no related serious AEs were detected. Cohorts 2, 3, and 4 had higher seroconversion rates than cohort 1 and seropositivity of at least 80% by day 197, sustained through day 337. PsVNA50 geometric mean titers were highest for cohort 4 on and after day 197. CONCLUSIONS This first-in-human candidate HPS vaccine trial demonstrated that an ANDV DNA vaccine was safe and induced a robust, durable immune response. Clinical Trials Registration. NCT03682107.
Collapse
Affiliation(s)
- Grant C Paulsen
- Division of Pediatric Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert Frenck
- Division of Pediatric Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kay M Tomashek
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rodolfo M Alarcon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Rebecca L Brocato
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Steve A Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Matthew D Josleyn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| |
Collapse
|
15
|
Gao Q, Wang S, Wang Q, Cao G, Fang C, Zhan B. Epidemiological characteristics and prediction model construction of hemorrhagic fever with renal syndrome in Quzhou City, China, 2005-2022. Front Public Health 2024; 11:1333178. [PMID: 38274546 PMCID: PMC10808376 DOI: 10.3389/fpubh.2023.1333178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
Background Hemorrhagic fever with renal syndrome (HFRS) is one of the 10 major infectious diseases that jeopardize human health and is distributed in more than 30 countries around the world. China is the country with the highest number of reported HFRS cases worldwide, accounting for 90% of global cases. The incidence level of HFRS in Quzhou is at the forefront of Zhejiang Province, and there is no specific treatment for it yet. Therefore, it is crucial to grasp the epidemiological characteristics of HFRS in Quzhou and establish a prediction model for HFRS to lay the foundation for early warning of HFRS. Methods Descriptive epidemiological methods were used to analyze the epidemic characteristics of HFRS, the incidence map was drawn by ArcGIS software, the Seasonal AutoRegressive Integrated Moving Average (SARIMA) and Prophet model were established by R software. Then, root mean square error (RMSE) and mean absolute error (MAE) were used to evaluate the fitting and prediction performances of the model. Results A total of 843 HFRS cases were reported in Quzhou City from 2005 to 2022, with the highest annual incidence rate in 2007 (3.93/100,000) and the lowest in 2022 (1.05/100,000) (P trend<0.001). The incidence is distributed in a seasonal double-peak distribution, with the first peak from October to January and the second peak from May to July. The incidence rate in males (2.87/100,000) was significantly higher than in females (1.32/100,000). Farmers had the highest number of cases, accounting for 79.95% of the total number of cases. The incidence is high in the northwest of Quzhou City, with cases concentrated on cultivated land and artificial land. The RMSE and MAE values of the Prophet model are smaller than those of the SARIMA (1,0,1) (2,1,0)12 model. Conclusion From 2005 to 2022, the incidence of HFRS in Quzhou City showed an overall downward trend, but the epidemic in high-incidence areas was still serious. In the future, the dynamics of HFRS outbreaks and host animal surveillance should be continuously strengthened in combination with the Prophet model. During the peak season, HFRS vaccination and health education are promoted with farmers as the key groups.
Collapse
Affiliation(s)
- Qing Gao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuangqing Wang
- Quzhou Center for Disease Control and Prevention, Quzhou, Zhejiang, China
| | - Qi Wang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guoping Cao
- Quzhou Center for Disease Control and Prevention, Quzhou, Zhejiang, China
| | - Chunfu Fang
- Quzhou Center for Disease Control and Prevention, Quzhou, Zhejiang, China
| | - Bingdong Zhan
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Quzhou Center for Disease Control and Prevention, Quzhou, Zhejiang, China
| |
Collapse
|
16
|
Ma H, Yang Y, Nie T, Yan R, Si Y, Wei J, Li M, Liu H, Ye W, Zhang H, Cheng L, Zhang L, Lv X, Luo L, Xu Z, Zhang X, Lei Y, Zhang F. Disparate macrophage responses are linked to infection outcome of Hantan virus in humans or rodents. Nat Commun 2024; 15:438. [PMID: 38200007 PMCID: PMC10781751 DOI: 10.1038/s41467-024-44687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Hantaan virus (HTNV) is asymptomatically carried by rodents, yet causes lethal hemorrhagic fever with renal syndrome in humans, the underlying mechanisms of which remain to be elucidated. Here, we show that differential macrophage responses may determine disparate infection outcomes. In mice, late-phase inactivation of inflammatory macrophage prevents cytokine storm syndrome that usually occurs in HTNV-infected patients. This is attained by elaborate crosstalk between Notch and NF-κB pathways. Mechanistically, Notch receptors activated by HTNV enhance NF-κB signaling by recruiting IKKβ and p65, promoting inflammatory macrophage polarization in both species. However, in mice rather than humans, Notch-mediated inflammation is timely restrained by a series of murine-specific long noncoding RNAs transcribed by the Notch pathway in a negative feedback manner. Among them, the lnc-ip65 detaches p65 from the Notch receptor and inhibits p65 phosphorylation, rewiring macrophages from the pro-inflammation to the pro-resolution phenotype. Genetic ablation of lnc-ip65 leads to destructive HTNV infection in mice. Thus, our findings reveal an immune-braking function of murine noncoding RNAs, offering a special therapeutic strategy for HTNV infection.
Collapse
Affiliation(s)
- Hongwei Ma
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
- Department of Anaesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Yongheng Yang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710038, China
| | - Rong Yan
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Yue Si
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Jing Wei
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
- Shaanxi Provincial Centre for Disease Control and Prevention, Xi'an, Shaanxi, 710054, China
| | - Mengyun Li
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - He Liu
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Wei Ye
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Hui Zhang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Linfeng Cheng
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Liang Zhang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Xin Lv
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China
| | - Limin Luo
- Department of Infectious Disease, Air Force Hospital of Southern Theatre Command, Guangzhou, Guangdong, 510602, China
| | - Zhikai Xu
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| | - Xijing Zhang
- Department of Anaesthesiology & Critical Care Medicine, Xijing Hospital, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| | - Yingfeng Lei
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| | - Fanglin Zhang
- Department of Microbiology & Pathogen Biology, School of Basic Medical Sciences, Air Force Medical University (the Fourth Military Medical University), Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
17
|
Kennedy M, Mctabi O, Rickman C. Hantavirus Cardiopulmonary syndrome: Another Reason to Avoid Mice. J Investig Med High Impact Case Rep 2024; 12:23247096241274572. [PMID: 39171739 PMCID: PMC11342309 DOI: 10.1177/23247096241274572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/22/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
Hantavirus cardiopulmonary syndrome is a severe illness transmitted by rodent excretions. We describe a case of a 24-year-old man who presented to the emergency department with cough, shortness of breath, chills, myalgias, nausea, and diarrhea. Physical examination and laboratory analysis revealed signs of respiratory distress and thrombocytopenia. The trajectory of his illness led to acute respiratory distress syndrome (ARDS) and hemodynamic instability. Serum testing was positive for hantavirus IgM and IgG antibodies. The patient was managed with supportive care and improved. This case highlights the importance of considering hantavirus when managing patients who develop thrombocytopenia, ARDS, and hemodynamic instability in the appropriate clinical setting.
Collapse
|
18
|
Afzal S, Ali L, Batool A, Afzal M, Kanwal N, Hassan M, Safdar M, Ahmad A, Yang J. Corrigendum: Hantavirus: an overview and advancements in therapeutic approaches for infection. Front Microbiol 2023; 14:1343080. [PMID: 38149269 PMCID: PMC10750826 DOI: 10.3389/fmicb.2023.1343080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2023.1233433.].
Collapse
Affiliation(s)
- Samia Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Anum Batool
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Momina Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Nida Kanwal
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | | | | | - Atif Ahmad
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Jing Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| |
Collapse
|
19
|
Jacob AT, Ziegler BM, Farha SM, Vivian LR, Zilinski CA, Armstrong AR, Burdette AJ, Beachboard DC, Stobart CC. Sin Nombre Virus and the Emergence of Other Hantaviruses: A Review of the Biology, Ecology, and Disease of a Zoonotic Pathogen. BIOLOGY 2023; 12:1413. [PMID: 37998012 PMCID: PMC10669331 DOI: 10.3390/biology12111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Sin Nombre virus (SNV) is an emerging virus that was first discovered in the Four Corners region of the United States in 1993. The virus causes a disease known as Hantavirus Pulmonary Syndrome (HPS), sometimes called Hantavirus Cardiopulmonary Syndrome (HCPS), a life-threatening illness named for the predominance of infection of pulmonary endothelial cells. SNV is one of several rodent-borne hantaviruses found in the western hemisphere with the capability of causing this disease. The primary reservoir of SNV is the deer mouse (Peromyscus maniculatus), and the virus is transmitted primarily through aerosolized rodent excreta and secreta. Here, we review the history of SNV emergence and its virus biology and relationship to other New World hantaviruses, disease, treatment, and prevention options.
Collapse
Affiliation(s)
- Andrew T. Jacob
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | | | - Stefania M. Farha
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Lyla R. Vivian
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Cora A. Zilinski
- Department of Biology, DeSales University, Center Valley, PA 18034, USA
| | | | - Andrew J. Burdette
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Dia C. Beachboard
- Department of Biology, DeSales University, Center Valley, PA 18034, USA
| | - Christopher C. Stobart
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
- Interdisciplinary Program in Public Health, Butler University, Indianapolis, IN 46208, USA
| |
Collapse
|
20
|
Afzal S, Ali L, Batool A, Afzal M, Kanwal N, Hassan M, Safdar M, Ahmad A, Yang J. Hantavirus: an overview and advancements in therapeutic approaches for infection. Front Microbiol 2023; 14:1233433. [PMID: 37901807 PMCID: PMC10601933 DOI: 10.3389/fmicb.2023.1233433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Hantaviruses are a significant and emerging global public health threat, impacting more than 200,000 individuals worldwide each year. The single-stranded RNA viruses belong to the Hantaviridae family and are responsible for causing two acute febrile diseases in humans: Hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). Currently, there are no licensed treatments or vaccines available globally for HTNV infection. Various candidate drugs have shown efficacy in increasing survival rates during the early stages of HTNV infection. Some of these drugs include lactoferrin, ribavirin, ETAR, favipiravir and vandetanib. Immunotherapy utilizing neutralizing antibodies (NAbs) generated from Hantavirus convalescent patients show efficacy against HTNV. Monoclonal antibodies such as MIB22 and JL16 have demonstrated effectiveness in protecting against HTNV infection. The development of vaccines and antivirals, used independently and/or in combination, is critical for elucidating hantaviral infections and the impact on public health. RNA interference (RNAi) arised as an emerging antiviral therapy, is a highly specific degrades RNA, with post-transcriptional mechanism using eukaryotic cells platform. That has demonstrated efficacy against a wide range of viruses, both in vitro and in vivo. Recent antiviral methods involve using small interfering RNA (siRNA) and other, immune-based therapies to target specific gene segments (S, M, or L) of the Hantavirus. This therapeutic approach enhances viral RNA clearance through the RNA interference process in Vero E6 cells or human lung microvascular endothelial cells. However, the use of siRNAs faces challenges due to their low biological stability and limited in vivo targeting ability. Despite their successful inhibition of Hantavirus replication in host cells, their antiviral efficacy may be hindered. In the current review, we focus on advances in therapeutic strategies, as antiviral medications, immune-based therapies and vaccine candidates aimed at enhancing the body's ability to control the progression of Hantavirus infections, with the potential to reduce the risk of severe disease.
Collapse
Affiliation(s)
- Samia Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Anum Batool
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Momina Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Nida Kanwal
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | | | | | - Atif Ahmad
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Jing Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| |
Collapse
|
21
|
Vial PA, Ferrés M, Vial C, Klingström J, Ahlm C, López R, Le Corre N, Mertz GJ. Hantavirus in humans: a review of clinical aspects and management. THE LANCET. INFECTIOUS DISEASES 2023; 23:e371-e382. [PMID: 37105214 DOI: 10.1016/s1473-3099(23)00128-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 04/29/2023]
Abstract
Hantavirus infections are part of the broad group of viral haemorrhagic fevers. They are also recognised as a distinct model of an emergent zoonotic infection with a global distribution. Many factors influence their epidemiology and transmission, such as climate, environment, social development, ecology of rodent hosts, and human behaviour in endemic regions. Transmission to humans occurs by exposure to infected rodents in endemic areas; however, Andes hantavirus is unique in that it can be transmitted from person to person. As hantaviruses target endothelial cells, they can affect diverse organ systems; increased vascular permeability is central to pathogenesis. The main clinical syndromes associated with hantaviruses are haemorrhagic fever with renal syndrome (HFRS), which is endemic in Europe and Asia, and hantavirus cardiopulmonary syndrome (HCPS), which is endemic in the Americas. HCPS and HFRS are separate clinical entities, but they share several features and have many overlapping symptoms, signs, and pathogenic alterations. For HCPS in particular, clinical outcomes are highly associated with early clinical suspicion, access to rapid diagnostic testing or algorithms for presumptive diagnosis, and prompt transfer to a facility with critical care units. No specific effective antiviral treatment is available.
Collapse
Affiliation(s)
- Pablo A Vial
- Programa Hantavirus y Zoonosis, Instituto de Ciencias e Innovación en Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Departamento de Pediatría Clínica Alemana de Santiago, Santiago, Chile.
| | - Marcela Ferrés
- Department of Pediatric Infectious Disease and Immunology, Infectious Disease and Molecular Virology Laboratory, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cecilia Vial
- Programa Hantavirus y Zoonosis, Instituto de Ciencias e Innovación en Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Jonas Klingström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - René López
- Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Departamento de Paciente Crítico Clínica Alemana, Santiago, Chile
| | - Nicole Le Corre
- Department of Pediatric Infectious Disease and Immunology, Infectious Disease and Molecular Virology Laboratory, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gregory J Mertz
- Department of Internal Medicine, UNM Health Sciences Center, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
22
|
Chen RX, Gong HY, Wang X, Sun MH, Ji YF, Tan SM, Chen JM, Shao JW, Liao M. Zoonotic Hantaviridae with Global Public Health Significance. Viruses 2023; 15:1705. [PMID: 37632047 PMCID: PMC10459939 DOI: 10.3390/v15081705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Hantaviridae currently encompasses seven genera and 53 species. Multiple hantaviruses such as Hantaan virus, Seoul virus, Dobrava-Belgrade virus, Puumala virus, Andes virus, and Sin Nombre virus are highly pathogenic to humans. They cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome or hantavirus pulmonary syndrome (HCPS/HPS) in many countries. Some hantaviruses infect wild or domestic animals without causing severe symptoms. Rodents, shrews, and bats are reservoirs of various mammalian hantaviruses. Recent years have witnessed significant advancements in the study of hantaviruses including genomics, taxonomy, evolution, replication, transmission, pathogenicity, control, and patient treatment. Additionally, new hantaviruses infecting bats, rodents, shrews, amphibians, and fish have been identified. This review compiles these advancements to aid researchers and the public in better recognizing this zoonotic virus family with global public health significance.
Collapse
Affiliation(s)
- Rui-Xu Chen
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Huan-Yu Gong
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Xiu Wang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Ming-Hui Sun
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Yu-Fei Ji
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Su-Mei Tan
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Ji-Ming Chen
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan 528225, China; (R.-X.C.); (H.-Y.G.); (X.W.); (M.-H.S.); (Y.-F.J.); (S.-M.T.)
| | - Ming Liao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510230, China
| |
Collapse
|
23
|
Wang R, Zhao XY, Liu XJ, Zhang M, Sun YT, Ning X, Xu J, Bu CY. Case Report: Multiple Organ Failure Caused by Hemorrhagic Fever with Renal Syndrome. Am J Trop Med Hyg 2023; 109:101-104. [PMID: 37188347 PMCID: PMC10323993 DOI: 10.4269/ajtmh.23-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS), a natural epidemic disease caused by hantavirus (HV), is one of the viral diseases that pose a major threat to our health. Considering the increasing number of atypical-onset cases reported in some countries, it is important to be familiar with the symptoms of HFRS and the signs of HV infection. This report describes the case of a 55-year-old man with complaints of fever, vomiting, and diarrhea. His symptoms showed no significant improvement after routine anti-infective, antipyretic, and other symptomatic supportive treatments administered at a local clinic. During these treatments, the patient had progressive oliguria; after 3 days, he also developed multiple organ failures, such as the liver and kidney, and was examined for positive serum IgM antibodies to hemorrhagic fever during treatment at our hospital. The patient was finally diagnosed with HFRS followed by multiple organ failure. After antiviral therapy, including ribavirin, piperacillin, and tazobactam, continuous renal replacement therapy, fluid metabolism adjustment, and related supportive therapy were administered, which improved his liver and kidney function. He was discharged on the 25th day after hospitalization. It is difficult to manage patients who develop multiple organ failure after HFRS. Moreover, this condition is rare in clinical settings, with fever being the initial indication. For diseases with unknown origin such as refractory fever and diarrhea, it is crucial to differentiate them from common pathogenic infection and HV infections to provide timely treatment that improves the prognosis of patients.
Collapse
Affiliation(s)
- Rui Wang
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiang-yang Zhao
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiao-jun Liu
- Department of Nosocomial Infection Management, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Miao Zhang
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yan-ting Sun
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiao Ning
- Department of Nosocomial Infection Management, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jian Xu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chan-yuan Bu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
24
|
Wang Y, Wei X, Jia R, Peng X, Zhang X, Yang M, Li Z, Guo J, Chen Y, Yin W, Zhang W, Wang Y. The Spatiotemporal Pattern and Its Determinants of Hemorrhagic Fever With Renal Syndrome in Northeastern China: Spatiotemporal Analysis. JMIR Public Health Surveill 2023; 9:e42673. [PMID: 37200083 DOI: 10.2196/42673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Hemorrhagic fever with renal syndrome (HFRS) is a significant zoonotic disease mainly transmitted by rodents. However, the determinants of its spatiotemporal patterns in Northeast China remain unclear. OBJECTIVE This study aimed to investigate the spatiotemporal dynamics and epidemiological characteristics of HFRS and detect the meteorological effect of the HFRS epidemic in Northeastern China. METHODS The HFRS cases of Northeastern China were collected from the Chinese Center for Disease Control and Prevention, and meteorological data were collected from the National Basic Geographic Information Center. Times series analyses, wavelet analysis, Geodetector model, and SARIMA model were performed to identify the epidemiological characteristics, periodical fluctuation, and meteorological effect of HFRS in Northeastern China. RESULTS A total of 52,655 HFRS cases were reported in Northeastern China from 2006 to 2020, and most patients with HFRS (n=36,558, 69.43%) were aged between 30-59 years. HFRS occurred most frequently in June and November and had a significant 4- to 6-month periodicity. The explanatory power of the meteorological factors to HFRS varies from 0.15 ≤ q ≤ 0.01. In Heilongjiang province, mean temperature with a 4-month lag, mean ground temperature with a 4-month lag, and mean pressure with a 5-month lag had the most explanatory power on HFRS. In Liaoning province, mean temperature with a 1-month lag, mean ground temperature with a 1-month lag, and mean wind speed with a 4-month lag were found to have an effect on HFRS, but in Jilin province, the most important meteorological factors for HFRS were precipitation with a 6-month lag and maximum evaporation with a 5-month lag. The interaction analysis of meteorological factors mostly showed nonlinear enhancement. The SARIMA model predicted that 8,343 cases of HFRS are expected to occur in Northeastern China. CONCLUSIONS HFRS showed significant inequality in epidemic and meteorological effects in Northeastern China, and eastern prefecture-level cities presented a high risk of epidemic. This study quantifies the hysteresis effects of different meteorological factors and prompts us to focus on the influence of ground temperature and precipitation on HFRS transmission in future studies, which could assist local health authorities in developing HFRS-climate surveillance, prevention, and control strategies targeting high-risk populations in China.
Collapse
Affiliation(s)
- Yanding Wang
- School of Public Health, China Medical University, Shenyang, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xianyu Wei
- School of Public Health, Anhui Medical University, Hefei, China
| | - Ruizhong Jia
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - XingYu Peng
- School of Public Health, China Medical University, Shenyang, China
| | - Xiushan Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Meitao Yang
- School of Public Health, China Medical University, Shenyang, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Zhiqiang Li
- School of Public Health, China Medical University, Shenyang, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinpeng Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yong Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Wenwu Yin
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenyi Zhang
- School of Public Health, China Medical University, Shenyang, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Yong Wang
- School of Public Health, China Medical University, Shenyang, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Shrivastava-Ranjan P, Jain S, Chatterjee P, Montgomery JM, Flint M, Albariño C, Spiropoulou CF. Development of a novel minigenome and recombinant VSV expressing Seoul hantavirus glycoprotein-based assays to identify anti-hantavirus therapeutics. Antiviral Res 2023; 214:105619. [PMID: 37142192 DOI: 10.1016/j.antiviral.2023.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Seoul virus (SEOV) is an emerging global health threat that can cause hemorrhagic fever with renal syndrome (HFRS), which results in case fatality rates of ∼2%. There are no approved treatments for SEOV infections. We developed a cell-based assay system to identify potential antiviral compounds for SEOV and generated additional assays to characterize the mode of action of any promising antivirals. To test if candidate antivirals targeted SEOV glycoprotein-mediated entry, we developed a recombinant reporter vesicular stomatitis virus expressing SEOV glycoproteins. To facilitate the identification of candidate antiviral compounds targeting viral transcription/replication, we successfully generated the first reported minigenome system for SEOV. This SEOV minigenome (SEOV-MG) screening assay will also serve as a prototype assay for discovery of small molecules inhibiting replication of other hantaviruses, including Andes and Sin Nombre viruses. Ours is a proof-of-concept study in which we tested several compounds previously reported to have activity against other negative-strand RNA viruses using our newly developed hantavirus antiviral screening systems. These systems can be used under lower biocontainment conditions than those needed for infectious viruses, and identified several compounds with robust anti-SEOV activity. Our findings have important implications for the development of anti-hantavirus therapeutics.
Collapse
Affiliation(s)
- Punya Shrivastava-Ranjan
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Shilpi Jain
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Payel Chatterjee
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M Montgomery
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - César Albariño
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
26
|
Li Z, Zhang H, Yu X, Zhang Y, Chen L. Construction of a Hantaan Virus Phage Antibody Library and Screening for Potential Neutralizing Activity. Viruses 2023; 15:v15051034. [PMID: 37243121 DOI: 10.3390/v15051034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
China is one of the main epidemic areas for hemorrhagic fever with renal syndrome (HFRS). Currently, there is no human antibody specific to Hantaan virus (HTNV) for the emergency prevention and treatment of HFRS. To prepare human antibodies with neutralizing activity, we established an anti-HTNV phage antibody library using phage display technology by transforming peripheral blood mononuclear cells (PBMCs) of patients with HFRS into B lymphoblastoid cell lines (BLCLs) and extracting cDNA from BLCLs that secreted neutralizing antibodies. Based on the phage antibody library, we screened HTNV-specific Fab antibodies with neutralizing activities. Our study provides a potential way forward for the emergency prevention of HTNV and specific treatment of HFRS.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
- Department of Medical Laboratory Technology, Xi'an Health School, Xi'an 710054, China
| | - Huiyuan Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
- Department of Immunology, Medicine School, Yan'an University, Yan'an 716000, China
| | - Xiaxia Yu
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
- Department of Immunology, Medicine School, Yan'an University, Yan'an 716000, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| |
Collapse
|
27
|
Lv CL, Tian Y, Qiu Y, Xu Q, Chen JJ, Jiang BG, Li ZJ, Wang LP, Hay SI, Liu W, Fang LQ. Dual seasonal pattern for hemorrhagic fever with renal syndrome and its potential determinants in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160339. [PMID: 36427712 DOI: 10.1016/j.scitotenv.2022.160339] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) continued to affect human health across Eurasia, which complicated by climate change has posed a challenge for the disease prevention measures. Nation-wide surveillance data of HFRS cases were collected during 2008-2020.The seasonality and epidemiological features were presented by combining the HFRS incidence and the endemic types data. Factors potentially involved in affecting incidence and shaping disease seasonality were investigated by generalized additive mixed model, distributed lag nonlinear model and multivariate meta-analysis. A total of 76 cities that reported totally 111,054 cases were analyzed. Three endemic types were determined, among them the Type I cities (Hantaan virus-dominant) were related to higher incidence level, showing one spike every year in Autumn-Winter season; Type II (Seoul virus-dominant) cities were related to lower incidence, showing one spike in Spring, while Type III (Hantaan/Seoul-mixed type) showed dual peaks with incidence lying between. Persistently heavy rainfall had significantly negative influence on HFRS incidence in Hantaan virus-dominant endemic area, while a significantly opposite effect was identified when continuously heavy rainfall induced floods, where temperature and relative humidity affected HFRS incidence via an approximately parabolic or linear manner, however few or no such effects was shown in Seoul virus-dominant endemic areas, which was more vulnerable to temperature variation. Dual seasonal pattern of HFRS was depended on the dominant genotypes of hantavirus, and impact of climate on HFRS was greater in Hantaan virus-dominant endemic areas, than in Seoul virus-dominant areas.
Collapse
Affiliation(s)
- Chen-Long Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yao Tian
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan Qiu
- Beijing Haidian District Center for Disease Control and Prevention, Beijing, China
| | - Qiang Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jin-Jin Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhong-Jie Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li-Ping Wang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, USA; Department of Health Metrics Sciences, School of Medicine, University of Washington, USA.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Li-Qun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
28
|
Recent Developments in NSG and NRG Humanized Mouse Models for Their Use in Viral and Immune Research. Viruses 2023; 15:v15020478. [PMID: 36851692 PMCID: PMC9962986 DOI: 10.3390/v15020478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Humanized mouse models have been widely used in virology, immunology, and oncology in the last decade. With advances in the generation of knockout mouse strains, it is now possible to generate animals in which human immune cells or human tissue can be engrafted. These models have been used for the study of human infectious diseases, cancers, and autoimmune diseases. In recent years, there has been an increase in the use of humanized mice to model human-specific viral infections. A human immune system in these models is crucial to understand the pathogenesis observed in human patients, which allows for better treatment design and vaccine development. Recent advances in our knowledge about viral pathogenicity and immune response using NSG and NRG mice are reviewed in this paper.
Collapse
|
29
|
Steininger P, Herbst L, Bihlmaier K, Willam C, Körper S, Schrezenmeier H, Klüter H, Pfister F, Amann K, Weiss S, Krüger DH, Zimmermann R, Korn K, Hofmann J, Harrer T. Fatal Puumala Hantavirus Infection in a Patient with Common Variable Immunodeficiency (CVID). Microorganisms 2023; 11:microorganisms11020283. [PMID: 36838248 PMCID: PMC9966676 DOI: 10.3390/microorganisms11020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Puumala hantavirus (PUUV) infections usually show a mild or moderate clinical course, but may sometimes also lead to life-threatening disease. Here, we report on a 60-year-old female patient with common variable immunodeficiency (CVID) who developed a fatal PUUV infection with persistent renal failure, thrombocytopenia, and CNS infection with impaired consciousness and tetraparesis. Hantavirus-specific antibodies could not be detected due to the humoral immunodeficiency. Diagnosis and virological monitoring were based on the quantitative detection of PUUV RNA in blood, cerebrospinal fluid, bronchial lavage, and urine, where viral RNA was found over an unusually extended period of one month. Due to clinical deterioration and virus persistence, treatment with ribavirin was initiated. Additionally, fresh frozen plasma (FFP) from convalescent donors with a history of PUUV infection was administered. Despite viral clearance, the clinical condition of the patient did not improve and the patient died on day 81 of hospitalization. This case underlines the importance of the humoral immune response for the course of PUUV disease and illustrates the need for PCR-based virus diagnostics in those patients. Due to its potential antiviral activity, convalescent plasma should be considered in the therapy of severe hantavirus diseases.
Collapse
Affiliation(s)
- Philipp Steininger
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence:
| | - Larissa Herbst
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Karl Bihlmaier
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Carsten Willam
- Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, 89081 Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, 89081 Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, 89081 Ulm, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Frederick Pfister
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sabrina Weiss
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Detlev H. Krüger
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Robert Zimmermann
- Department of Transfusion Medicine and Hemostaseology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Klaus Korn
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jörg Hofmann
- Institute of Virology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Thomas Harrer
- Infectious Disease and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
30
|
Tang K, Zhang Y, Zhang C, Hu H, Zhuang R, Jin B, Zhang Y, Ma Y. Hantaan virus-induced elevation of plasma osteoprotegerin and its clinical implications in hemorrhagic fever with renal syndrome. Int J Infect Dis 2023; 126:14-21. [PMID: 36371012 DOI: 10.1016/j.ijid.2022.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES The bleeding tendency is a hallmark of hemorrhagic fever with renal syndrome (HFRS) after Hantaan virus (HTNV) infection. Growing reports indicate the importance of osteoprotegerin (OPG) in vascular homeostasis, implying OPG might be involved in the pathogenesis of coagulopathy in patients with HFRS. METHODS Acute and convalescence plasmas of 32 patients with HFRS were collected. Enzyme-linked immunosorbent assays (ELISA) were used to detect plasma OPG levels and other parameters. The human umbilical vein endothelial cells were stimulated with HTNV and/or tumor necrosis factor-α (TNF-α) to explore the source of OPG. RESULTS Plasma OPG levels of patients with HFRS were elevated and correlated positively with the severity of HFRS and negatively with platelet counts. Abundant OPG was released from endothelial cells in response to TNF-α stimuli, along with HTNV infection, which was in accordance with the findings of positive correlations between plasma OPG and TNF-α or c-reactive protein. Importantly, plasma OPG levels correlated positively with activated partial thromboplastin time and the content of d-dimer. CONCLUSION These findings suggested that increased plasma OPG levels induced by HTNV might be an important factor for the severity of HFRS, and was likely involved in endothelium dysfunction and hemorrhagic disorder of HFRS, which might contribute to the pathogenesis of hemorrhage in HFRS.
Collapse
Affiliation(s)
- Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Haifeng Hu
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, China.
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
31
|
Ning T, Huang W, Min L, Yang Y, Liu S, Xu J, Zhang N, Xie SA, Zhu S, Wang Y. Pseudotyped Viruses for Orthohantavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:229-252. [PMID: 36920700 DOI: 10.1007/978-981-99-0113-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Orthohantaviruses, members of the Orthohantavirus genus of Hantaviridae family of the Bunyavirales order, are enveloped, negative-sense, single-stranded, tripartite RNA viruses. They are emerging zoonotic pathogens carried by small mammals including rodents, moles, shrews, and bats and are the etiologic agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) among humans. With the characteristics of low biological risk but strong operability, a variety of pseudotyped viruses have been constructed as alternatives to authentic orthohantaviruses to help delineate the roles of host factors in viral entry and other virus-host interactions, to assist in deciphering mechanisms of immune response and correlates of protection, to enhance our understanding of viral antigenic property, to characterize viral entry inhibitors, and to be developed as vaccines. In this chapter, we will discuss the general property of orthohantavirus, construction of pseudotyped orthohantaviruses based on different packaging systems, and their current applications.
Collapse
Affiliation(s)
- Tingting Ning
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Yi Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Junxuan Xu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Nan Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Si-An Xie
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China.
| | - Youchun Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming, China.
| |
Collapse
|
32
|
Exotic viral hepatitis: A review on epidemiology, pathogenesis, and treatment. J Hepatol 2022; 77:1431-1443. [PMID: 35817222 DOI: 10.1016/j.jhep.2022.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 12/04/2022]
Abstract
Certain "exotic" viruses are known to cause clinical diseases with potential liver involvement. These include viruses, beyond regular hepatotropic viruses (hepatitis A, -B(D), -C, -E, cytomegalovirus, Epstein-Barr virus), that can be found in (sub)tropical areas and can cause "exotic viral hepatitis". Transmission routes typically involve arthropods (Crimean Congo haemorrhagic fever, dengue, Rift Valley fever, yellow fever). However, some of these viruses are transmitted by the aerosolised excreta of rodents (Hantavirus, Lassa fever), or via direct contact or contact with bodily fluids (Ebola). Although some exotic viruses are associated with high fatality rates, such as Ebola for example, the clinical presentation of most exotic viruses can range from mild flu-like symptoms, in most cases, right through to being potentially fatal. A smaller percentage of people develop severe disease with haemorrhagic fever, possibly with (fulminant) hepatitis. Liver involvement is often caused by direct tropism for hepatocytes and Kupffer cells, resulting in virus-mediated and/or immune-mediated necrosis. In all exotic hepatitis viruses, PCR is the most sensitive diagnostic method. The determination of IgM/IgG antibodies is a reasonable alternative, but cross-reactivity can be a problem in the case of flaviviruses. Licenced vaccines are available for yellow fever and Ebola, and they are currently under development for dengue. Therapy for exotic viral hepatitis is predominantly supportive. To ensure that preventive measures can be introduced to control possible outbreaks, the timely detection of these viruses is very important.
Collapse
|
33
|
Liu T, Yang W, Li K, Guo S, Tian M, Fang X. Hemorrhagic Fever with Renal Syndrome Complicated with Acute Pancreatitis and Capillary Cholangitis: A Case Report. Infect Drug Resist 2022; 15:6755-6761. [DOI: 10.2147/idr.s386273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
|
34
|
Wang N, Yin JX, Zhang Y, Wu L, Li WH, Luo YY, Li R, Li ZW, Liu SQ. Genetic Evolution Analysis and Host Characteristics of Hantavirus in Yunnan Province, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13433. [PMID: 36294012 PMCID: PMC9603364 DOI: 10.3390/ijerph192013433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
For a long time, the epidemic situation of hemorrhagic fever with renal syndrome (HFRS) caused by hantavirus (HV) in Yunnan Province of China has been relatively severe. The molecular epidemiology and host characteristics of HV in Yunnan Province are still not completely clear, and the systematic and long-term investigation of the epidemic area is very limited. In this study, a total of 488 murine-shaped animals were captured in the three regions of Mile City, Mangshi City and Lianghe County in Yunnan Province, and then the type of HV was identified by multiplex real-time RT-PCR and sequenced. The results indicate that 2.46% of the murine-shaped animal specimens were infected with HV. A new subtype of Seoul virus (SEOV) was found in the rare rat species Rattus nitidus in Lianghe County, and the two strains of this new subtype were named YNLH-K40 and YNLH-K53. Through the phylogenetic analysis of this new subtype, it is shown that this new subtype is very similar to the type S5 of SEOV, which is previously described as the main cause for the high incidence of HFRS in Longquan City, Zhejiang Province, China. This new subtype is highly likely to cause human infection and disease. Therefore, in addition to further promoting the improvement of the HV gene database and strengthening the discovery and monitoring of the host animals in Yunnan Province, more attention should be paid to the pathogenic potential of the newly discovered HV type.
Collapse
|
35
|
Tamiya K, Kobayashi S, Yoshii K, Kariwa H. Analysis of the relationship between replication of the Hokkaido genotype of Puumala orthohantavirus and autophagy. Virus Res 2022; 318:198830. [DOI: 10.1016/j.virusres.2022.198830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/02/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
|
36
|
Fawcett SJ, Chen JS, Fawcett RW. Acute Hantavirus Infection Presenting with Fever and Altered Mentation in the Absence of Pulmonary or Renal Manifestations. Open Forum Infect Dis 2022; 9:ofac430. [PMID: 36119963 PMCID: PMC9472660 DOI: 10.1093/ofid/ofac430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022] Open
Abstract
Illness caused by hantaviruses is often severe and is typically characterized by diffuse pulmonary disease or renal insufficiency depending on the type of hantavirus. Here we report 2 cases of hantavirus infection that resulted in severe cognitive impairment but did not have any pulmonary or renal manifestations. These 2 cases may be indicative of previously underreported symptoms of hantavirus infection and might represent examples of hantavirus-related encephalopathy.
Collapse
Affiliation(s)
| | - Jeffrey S Chen
- Columbia Sands Medical Specialties, LLC , Redmond, OR , U.S
| | | |
Collapse
|
37
|
Wang B, Pei J, Zhang H, Li J, Dang Y, Liu H, Wang Y, Zhang L, Qi L, Yang Y, Cheng L, Dong Y, Qian A, Xu Z, Lei Y, Zhang F, Ye W. Dihydropyridine-derived calcium channel blocker as a promising anti-hantavirus entry inhibitor. Front Pharmacol 2022; 13:940178. [PMID: 36105208 PMCID: PMC9465303 DOI: 10.3389/fphar.2022.940178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Hantaviruses, the causative agent for two types of hemorrhagic fevers, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), are distributed from Eurasia to America. HFRS and HPS have mortality rates of up to 15% or 45%, respectively. Currently, no certified therapeutic has been licensed to treat hantavirus infection. In this study, we discovered that benidipine hydrochloride, a calcium channel blocker, inhibits the entry of hantaviruses in vitro. Moreover, an array of calcium channel inhibitors, such as cilnidipine, felodipine, amlodipine, manidipine, nicardipine, and nisoldipine, exhibit similar antiviral properties. Using pseudotyped vesicular stomatitis viruses harboring the different hantavirus glycoproteins, we demonstrate that benidipine hydrochloride inhibits the infection by both HFRS- and HPS-causing hantaviruses. The results of our study indicate the possibility of repurposing FDA-approved calcium channel blockers for the treatment of hantavirus infection, and they also indicate the need for further research in vivo.
Collapse
Affiliation(s)
- Bin Wang
- Center of Clinical Aerospace Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jiawei Pei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
- Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jia Li
- Department of Neurology, Xi’an International Medical Center Hospital, Xi’an, China
| | - Yamei Dang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Libin Qi
- Student Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuewu Yang
- Student Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Airong Qian
- Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Wei Ye, ; Fanglin Zhang, ; Yingfeng Lei,
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Wei Ye, ; Fanglin Zhang, ; Yingfeng Lei,
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Wei Ye, ; Fanglin Zhang, ; Yingfeng Lei,
| |
Collapse
|
38
|
Singh S, Numan A, Sharma D, Shukla R, Alexander A, Jain GK, Ahmad FJ, Kesharwani P. Epidemiology, virology and clinical aspects of hantavirus infections: an overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1815-1826. [PMID: 33886400 DOI: 10.1080/09603123.2021.1917527] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
At the end of 2019 and 2020s, a wave of coronavirus disease 19 (COVID-19) epidemics worldwide has catalyzed a new era of 'communicable infectious diseases'. However, the world is not currently prepared to deal with the growing burden of COVID-19, with the unexpected arrival of Hantavirus infection heading to the next several healthcare emergencies in public. Hantavirus is a significant class of zoonotic pathogens of negative-sense single-stranded ribonucleic acid (RNA). Hemorrhagic renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) are the two major clinical manifestations. Till date, there is no effective treatments or vaccines available, public awareness and precautionary measures can help to reduce the spread of hantavirus disease. In this study, we outline the epidemiology, virology, clinical aspects, and existing HFRS and HCPS management approaches. This review will give an understanding of virus-host interactions and will help for the early preparation and effective handling of further outbreaks in an ever-changing environment.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmacy, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, India
| | - Arshid Numan
- State Key Laboratory of ASIC and System, SIST, Fudan University, Shanghai, China
| | - Dinesh Sharma
- Pharmax Pharmaceuticals FZ LLC, Dubai Science Park - Al BarshaAl Barsha South, Dubai, United Arab Emirates
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Amit Alexander
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati, Sila Village, Nizsundarighopa, Changsari, Kamrup, Guwahati, Assam, India, 781101
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
39
|
Che L, Wang Z, Du N, Li L, Zhao Y, Zhang K, Liu Q. Evaluation of Serum Ferritin, Procalcitonin, and C-Reactive Protein for the Prediction of Severity and Mortality in Hemorrhagic Fever With Renal Syndrome. Front Microbiol 2022; 13:865233. [PMID: 35677912 PMCID: PMC9169039 DOI: 10.3389/fmicb.2022.865233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/08/2022] [Indexed: 01/08/2023] Open
Abstract
This study aimed to analyze the clinical significance of serum ferritin, procalcitonin (PCT), and C-reactive protein (CRP) in patients with hemorrhagic fever with renal syndrome (HFRS). The demographical, clinical, and laboratory data of 373 patients with HFRS in northeastern China were retrospectively analyzed. The levels of serum ferritin and PCT in severe patients (n = 108) were significantly higher than those in mild patients (n = 265, p < 0.001) and associated with HFRS severity. The area under the receiver operating characteristic curve (AUC) values of serum ferritin and PCT for predicting the severity of HFRS were 0.732 (95% CI 0.678-0.786, p < 0.001) and 0.824 (95% CI 0.773-0.875, p < 0.001), respectively, showing sensitivity and specificity of 0.75 and 0.88 for serum ferritin, and 0.76 and 0.60 for PCT. The CRP level in HFRS with bacterial co-infection (n = 115) was higher than that without bacterial co-infection (n = 258, p < 0.001). The AUC value of CRP for predicting bacterial co-infection was 0.588 (95% CI 0.525-0.652, p < 0.001), showing sensitivity and specificity of 0.43 and 0.76, respectively. The serum ferritin level in non-survivors (n = 14) was significantly higher than in survivors (n = 359, p < 0.001). The AUC value of serum ferritin for predicting mortality was 0.853 (95% CI 0.774-0.933, p < 0.001), showing sensitivity and specificity of 0.933 and 0.739. Serum ferritin and PCT have a robust association with HFRS severity and mortality, which may be promising predictors, and CRP is an effective biomarker to assess bacterial co-infection in HFRS.
Collapse
Affiliation(s)
- Lihe Che
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China.,Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zedong Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Na Du
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Liang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yinghua Zhao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Kaiyu Zhang
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Quan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China.,School of Life Sciences and Engineering, Foshan University, Foshan, China
| |
Collapse
|
40
|
Wen X, Zhang L, Liu Q, Xiao X, Huang W, Wang Y. Screening and Identification of HTNVpv Entry Inhibitors with High-throughput Pseudovirus-based Chemiluminescence. Virol Sin 2022; 37:531-537. [PMID: 35513270 PMCID: PMC9437608 DOI: 10.1016/j.virs.2022.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
Hantaviruses, such as Hantaan virus (HTNV) and Seoul virus, are the causative agents of Hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS), and are important zoonotic pathogens. China has the highest incidence of HFRS, which is mainly caused by HTNV and Seoul virus. No approved antiviral drugs are available for these hantaviral diseases. Here, a chemiluminescence-based high-throughput-screening (HTS) assay was developed and used to screen HTNV pseudovirus (HTNVpv) inhibitors in a library of 1813 approved drugs and 556 small-molecule compounds from traditional Chinese medicine sources. We identified six compounds with in vitro anti-HTNVpv activities in the low-micromolar range (EC50 values of 0.1–2.2 μmol/L; selectivity index of 40–900). Among the six selected compounds, cepharanthine not only showed good anti-HTNVpv activity in vitro but also inhibited HTNVpv-fluc infection in Balb/c mice 5 h after infection by 94% (180 mg/kg/d, P < 0.01), 93% (90 mg/kg/d, P < 0.01), or 92% (45 mg/kg/d, P < 0.01), respectively, in a bioluminescent imaging mouse model. A time-of-addition analysis suggested that the antiviral mechanism of cepharanthine involves the membrane fusion and entry phases. Overall, we have established a HTS method for antiviral drugs screening, and shown that cepharanthine is a candidate for HCPS and HFRS therapy. These findings may offer a starting point for the treatment of patients infected with hantaviruses. A chemiluminescence-based high-throughput-screening (HTS) assay was used to screen HTNV pseudovirus (HTNVpv) inhibitors. Cepharanthine showed good anti-HTNVpv activity in vitro and in vivo. A time-of-addition analysis suggested that cepharanthine involves the membrane fusion and entry phases.
Collapse
|
41
|
Gutiérrez Jaraa JP, Quezada MT. Modeling of hantavirus cardiopulmonary syndrome. Medwave 2022; 22:e8722. [DOI: 10.5867/medwave.2022.03.002526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/01/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Hantavirus cardiopulmonary syndrome is an infection caused by rodents of the Bunyanvirales family towards humans. This disease in Chile is considered endemic, which has a high fatality rate. At present, some studies show the contagion between people of the Andes virus, whose locality is concentrated in Argentina and Chile. Objectives Analyze the possibility of hantavirus transmission between humans using an SEIR-type mathematical model. Methods An SEIR (Susceptible, Exposed, Infectious and Recovered) mathematical model to express the dynamics of hantavirus disease is proposed, including the possibility of human-to-human transmission and the perception of risk. Results The peak of human-to-human contagion decreases by about 25% after increasing people’s perception of risk by reducing the rate of resistance to changeand increasing the speed of people’s reaction. Conclusions It is urgent to review risk communication strategies and prevention measures in the face of this possibility of massive human-tohuman infections, in addition to strengthening research and planning the development of a vaccine to protect populations exposed to this disease with a high fatality rate.
Collapse
|
42
|
Neutralizing Antibody Titers in Hospitalized Patients with Acute Puumala Orthohantavirus Infection Do Not Associate with Disease Severity. Viruses 2022; 14:v14050901. [PMID: 35632643 PMCID: PMC9143849 DOI: 10.3390/v14050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Nephropathia epidemica (NE), a mild form of haemorrhagic fever with renal syndrome (HFRS), is an acute febrile illness caused by Puumala orthohantavirus (PUUV). NE manifests typically with acute kidney injury (AKI), with a case fatality rate of about 0.1%. The treatment and management of hantavirus infections are mainly supportive, although neutralizing monoclonal antibodies and immune sera therapeutics are under investigation. In order to assess the potential use of antibody therapeutics in NE, we sought to determine the relationship between circulating PUUV neutralizing antibodies, PUUV nucleocapsid protein (N) IgG antibodies, and viral loads with markers of disease severity. The study included serum samples of extensively characterized patient cohorts (n = 116) from Tampere University Hospital, Finland. The results showed that upon hospitalization, most patients already had considerable neutralizing and anti-PUUV-N IgG antibody levels. However, contrary to expectations, neutralizing antibody titers from the first day of hospitalization did not appear to protect from AKI or correlate with more favorable disease outcomes. This indicates that further studies are needed to investigate the applicability of neutralizing antibodies as a therapy for hospitalized NE patients.
Collapse
|
43
|
Hofmann J, Loyen M, Faber M, Krüger DH. [Hantavirus Disease: An Update]. Dtsch Med Wochenschr 2022; 147:312-318. [PMID: 35291036 DOI: 10.1055/a-1664-7259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In addition to the well-known clinical early symptoms of hantavirus disease (fever, flank and abdominal pain as well as arthralgia), unusual neurological changes in the context of infection come into focus. The spectrum of neurological symptoms ranges from transient myopia to severe pareses in the context of Guillain-Barré syndrome. In endemic areas, rapid IgM tests for initial assessment are of certain value for differential diagnosis. For therapeutic approaches, only supportive measures up to transient dialysis are available.Molecular genetic analysis and comparison of hantavirus strains of patients and mice from the same geographical area allowed molecular characterization of different outbreak regions. In the meantime, the Puumala viruses of the main outbreak regions in Germany are molecularly well characterized; therefore, the nucleotide sequence of the virus strain detected in a patient makes it possible to draw conclusions about the geographic region where the patient's infection took place.The human pathogenic hantaviruses being prevalent in Germany are the Puumala virus (reservoir: bank vole) and the Dobrava-Belgrade virus, genotype Kurkino (reservoir: striped field mouse). Recently, the molecular detection of further hantaviruses in patients with hantavirus disease was achieved. It can be concluded that also the Seoul virus (reservoir: rats) and the Tulavirus (reservoir: field mouse and related species) occasionally cause hantavirus disease in Germany.New results revealed that human infections can occur not only by the generally accepted route of inhalation of virus-containing aerosols, but also by ingestion of virus-containing materials.For patients with hantavirus infection or disease, it can be assumed that they are not infectious for their environment. A new systematic review could not confirm a human-to-human transmission previously postulated for South American hantaviruses.While all known human pathogenic hantaviruses are transmitted by rodents, other hantaviruses have been recently detected in shrews, moles, and bats. The clinical significance of these new viruses is quite unclear as yet.
Collapse
Affiliation(s)
- Jörg Hofmann
- Institut für Virologie, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, 10117 Berlin
| | - Martin Loyen
- Klinik für Innere Medizin, Nephrologie und Dialyse, Herz-Jesu-Krankenhaus, Münster-Hiltrup
| | - Mirko Faber
- Abteilung für Infektionsepidemiologie, Robert Koch-Institut, Berlin
| | - Detlev H Krüger
- Institut für Virologie, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin, 10117 Berlin
| |
Collapse
|
44
|
Ismail S, Abbasi SW, Yousaf M, Ahmad S, Muhammad K, Waheed Y. Design of a Multi-Epitopes Vaccine against Hantaviruses: An Immunoinformatics and Molecular Modelling Approach. Vaccines (Basel) 2022; 10:378. [PMID: 35335010 PMCID: PMC8953224 DOI: 10.3390/vaccines10030378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Hantaviruses are negative-sense, enveloped, single-stranded RNA viruses of the family Hantaviridae. In recent years, rodent-borne hantaviruses have emerged as novel zoonotic viruses posing a substantial health issue and socioeconomic burden. In the current research, a reverse vaccinology approach was applied to design a multi-epitope-based vaccine against hantavirus. A set of 340 experimentally reported epitopes were retrieved from Virus Pathogen Database and Analysis Resource (ViPR) and subjected to different analyses such as antigenicity, allergenicity, solubility, IFN gamma, toxicity, and virulent checks. Finally, 10 epitopes which cleared all the filters used were linked with each other through specific GPGPG linkers to construct a multi-antigenic epitope vaccine. The designed vaccine was then joined to three different adjuvants-TLR4-agonist adjuvant, β-defensin, and 50S ribosomal protein L7/L12-using an EAAAK linker to boost up immune-stimulating responses and check the potency of vaccine with each adjuvant. The designed vaccine structures were modelled and subjected to error refinement and disulphide engineering to enhance their stability. To understand the vaccine binding affinity with immune cell receptors, molecular docking was performed between the designed vaccines and TLR4; the docked complex with a low level of global energy was then subjected to molecular dynamics simulations to validate the docking results and dynamic behaviour. The docking binding energy of vaccines with TLR4 is -29.63 kcal/mol (TLR4-agonist), -3.41 kcal/mol (β-defensin), and -11.03 kcal/mol (50S ribosomal protein L7/L12). The systems dynamics revealed all three systems to be highly stable with a root-mean-square deviation (RMSD) value within 3 Å. To test docking predictions and determine dominant interaction energies, binding free energies of vaccine(s)-TLR4 complexes were calculated. The net binding energy of the systems was as follows: TLR4-agonist vaccine with TLR4 (MM-GBSA, -1628.47 kcal/mol and MM-PBSA, -37.75 kcal/mol); 50S ribosomal protein L7/L12 vaccine with TLR4 complex (MM-GBSA, -194.62 kcal/mol and MM-PBSA, -150.67 kcal/mol); β-defensin vaccine with TLR4 complex (MM-GBSA, -9.80 kcal/mol and MM-PBSA, -42.34 kcal/mol). Finally, these findings may aid experimental vaccinologists in developing a very potent hantavirus vaccine.
Collapse
Affiliation(s)
- Saba Ismail
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| | - Sumra Wajid Abbasi
- NUMS Department of Biological Sciences, National University of Medical Sciences, Abid Majeed Rd, The Mall, Rawalpindi 46000, Pakistan;
| | - Maha Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan;
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan;
| |
Collapse
|
45
|
Abstract
Hantavirus induced hemorrhagic fever with renal syndrome (HFRS) is an emerging viral zoonosis affecting up to 200,000 humans annually worldwide. This review article is focused on recent advances in the mechanism, epidemiology, diagnosis, and treatment of hantavirus induced HFRS. The importance of interactions between viral and host factors in the design of therapeutic strategies is discussed. Hantavirus induced HFRS is characterized by thrombocytopenia and proteinuria of varying severities. The mechanism of kidney injury appears immunopathological with characteristic deterioration of endothelial cell function and compromised barrier functions of the vasculature. Although multidisciplinary research efforts have provided insights about the loss of cellular contact in the endothelium leading to increased permeability, the details of the molecular mechanisms remain poorly understood. The epidemiology of hantavirus induced renal failure is associated with viral species and the geographical location of the natural host of the virus. The development of vaccine and antiviral therapeutics is necessary to avoid potentially severe outbreaks of this zoonotic illness in the future. The recent groundbreaking approach to the SARS-CoV-2 mRNA vaccine has revolutionized the general field of vaccinology and has provided new directions for the use of this promising platform for widespread vaccine development, including the development of hantavirus mRNA vaccine. The combinational therapies specifically targeted to inhibit hantavirus replication and vascular permeability in infected patients will likely improve the disease outcome.
Collapse
|
46
|
Serum Cytokine Alterations Associated with Age of Patients with Nephropathia Epidemica. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4685288. [PMID: 35059462 PMCID: PMC8766188 DOI: 10.1155/2022/4685288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022]
Abstract
Nephropathia epidemica (NE) is a zoonotic disease caused by hantaviruses transmitted from rodents, endemic in the Republic of Tatarstan, Russia. The disease presents clinically with mild, moderate, and severe forms, and time-dependent febrile, oliguric, and polyuric stages of the disease are also recognized. The patient's cytokine responses have been suggested to play a central role in disease pathogenesis; however, little is known about the different patterns of cytokine expression in NE in cohorts of different ages and sexes. Serum samples and clinical records were collected from 139 patients and 57 controls (healthy donors) and were used to analyze 48 analytes with the Bio-Plex multiplex magnetic bead-based antibody detection kits. Principal component analysis of 137 patient and 55 controls (for which there was full data) identified two components that individually accounted for >15% of the total variance in results and together for 38% of the total variance. PC1 represented a proinflammatory TH17/TH2 cell antiviral cytokine profile and PC2 a more antiviral cytokine profile with patients tending to display one or the other of these. Severity of disease and stage of illness did not show any correlation with PC1 profiles; however, significant differences were seen in patients with high PC1 profiles vs. lower for a number of individual clinical parameters: High PC1 patients showed a reduced number of febrile days, but higher maximum urine output, higher creatinine levels, and lower platelet levels. Overall, the results of this study point towards a stronger proinflammatory profile occurring in younger NE patients, this being associated with markers of acute kidney injury and low levels of high-density cholesterol. This is consistent with previous work indicating that the pathology of NE is immune driven, with an inflammatory immune response being associated with disease and that this immune response is more extreme in younger patients.
Collapse
|
47
|
Ashique S, Sandhu NK, Das S, Haque SN, Koley K. Global Comprehensive Outlook of Hantavirus Contagion on Humans: A Review. Infect Disord Drug Targets 2022; 22:e050122199975. [PMID: 34986775 DOI: 10.2174/1871526522666220105110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/22/2022]
Abstract
Hantaviruses are rodent viruses that have been identified as etiologic agents of 2 diseases of humans: hemorrhagic fever with renal syndrome (HFRS) and nephropathiaepidemica (NE) in the Old World and Hantavirus pulmonary syndrome (HPS) in the New World. Orthohantavirus is a genus of sin- gle-stranded, enveloped, negative-sense RNA viruses in the family Hantaviridae of the order Bunyavi- rales. The important reservoir of Hantaviruses is rodents. Each virus serotype has its unique rodent host species and is transmitted to human beings with the aid of aerosolized virus, which is shed in urine, fae- ces and saliva and hardly by a bite of the contaminated host. Andes virus is the only Hantavirus identified to be transmitted from human-to-human and its major signs and symptoms include fever, headache, mus- cle aches, lungs filled with fluid etc. In the early 1993, this viral syndrome appeared in the Four Cor- ner location in the south western United States. The only accepted therapeutics for this virus is Ribavirin. Recently, serological examinations to identify Hantavirus antibodies have become most popular for in- vestigation among humans and rodent reservoirs.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Navjot K Sandhu
- Department of Pharmaceuti- cal Analysis, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Supratim Das
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Sk Niyamul Haque
- Department of Pharmaceutics, Gurunanak Insti- tute of Pharmaceutical Science and Technology, Kolkata, West Bengal-700110, India
| | - Kartick Koley
- Department of Pharmaceutics, Gurunanak Insti- tute of Pharmaceutical Science and Technology, Kolkata, West Bengal-700110, India
| |
Collapse
|
48
|
Koehler FC, Di Cristanziano V, Späth MR, Hoyer-Allo KJR, Wanken M, Müller RU, Burst V. OUP accepted manuscript. Clin Kidney J 2022; 15:1231-1252. [PMID: 35756741 PMCID: PMC9217627 DOI: 10.1093/ckj/sfac008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 01/18/2023] Open
Abstract
Hantavirus-induced diseases are emerging zoonoses with endemic appearances and frequent outbreaks in different parts of the world. In humans, hantaviral pathology is characterized by the disruption of the endothelial cell barrier followed by increased capillary permeability, thrombocytopenia due to platelet activation/depletion and an overactive immune response. Genetic vulnerability due to certain human leukocyte antigen haplotypes is associated with disease severity. Typically, two different hantavirus-caused clinical syndromes have been reported: hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). The primarily affected vascular beds differ in these two entities: renal medullary capillaries in HFRS caused by Old World hantaviruses and pulmonary capillaries in HCPS caused by New World hantaviruses. Disease severity in HFRS ranges from mild, e.g. Puumala virus-associated nephropathia epidemica, to moderate, e.g. Hantaan or Dobrava virus infections. HCPS leads to a severe acute respiratory distress syndrome with high mortality rates. Due to novel insights into organ tropism, hantavirus-associated pathophysiology and overlapping clinical features, HFRS and HCPS are believed to be interconnected syndromes frequently involving the kidneys. As there are no specific antiviral treatments or vaccines approved in Europe or the USA, only preventive measures and public awareness may minimize the risk of hantavirus infection. Treatment remains primarily supportive and, depending on disease severity, more invasive measures (e.g., renal replacement therapy, mechanical ventilation and extracorporeal membrane oxygenation) are needed.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - K Johanna R Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Manuel Wanken
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|
49
|
Ren F, Shen S, Wang Q, Wei G, Huang C, Wang H, Ning YJ, Zhang DY, Deng F. Recent Advances in Bunyavirus Reverse Genetics Research: Systems Development, Applications, and Future Perspectives. Front Microbiol 2021; 12:771934. [PMID: 34950119 PMCID: PMC8689132 DOI: 10.3389/fmicb.2021.771934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
Bunyaviruses are members of the Bunyavirales order, which is the largest group of RNA viruses, comprising 12 families, including a large group of emerging and re-emerging viruses. These viruses can infect a wide variety of species worldwide, such as arthropods, protozoans, plants, animals, and humans, and pose substantial threats to the public. In view of the fact that a better understanding of the life cycle of a highly pathogenic virus is often a precondition for developing vaccines and antivirals, it is urgent to develop powerful tools to unravel the molecular basis of the pathogenesis. However, biosafety level −3 or even −4 containment laboratory is considered as a necessary condition for working with a number of bunyaviruses, which has hampered various studies. Reverse genetics systems, including minigenome (MG), infectious virus-like particle (iVLP), and infectious full-length clone (IFLC) systems, are capable of recapitulating some or all steps of the viral replication cycle; among these, the MG and iVLP systems have been very convenient and effective tools, allowing researchers to manipulate the genome segments of pathogenic viruses at lower biocontainment to investigate the viral genome transcription, replication, virus entry, and budding. The IFLC system is generally developed based on the MG or iVLP systems, which have facilitated the generation of recombinant infectious viruses. The MG, iVLP, and IFLC systems have been successfully developed for some important bunyaviruses and have been widely employed as powerful tools to investigate the viral replication cycle, virus–host interactions, virus pathogenesis, and virus evolutionary process. The majority of bunyaviruses is generally enveloped negative-strand RNA viruses with two to six genome segments, of which the viruses with bipartite and tripartite genome segments have mostly been characterized. This review aimed to summarize current knowledge on reverse genetic studies of representative bunyaviruses causing severe diseases in humans and animals, which will contribute to the better understanding of the bunyavirus replication cycle and provide some hints for developing designed antivirals.
Collapse
Affiliation(s)
- Fuli Ren
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiongya Wang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Gang Wei
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Chaolin Huang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ding-Yu Zhang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
50
|
Li Z, Wang F, Liu Y, Zhai D, Zhang X, Ying Q, Jia M, Xue X, Meng J, Li J, Wu X, Li M. Coumarin Derivative N6 as a Novel anti-hantavirus Infection Agent Targeting AKT. Front Pharmacol 2021; 12:745646. [PMID: 34938178 PMCID: PMC8685952 DOI: 10.3389/fphar.2021.745646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022] Open
Abstract
Hantaviruses are globally emerging zoonotic viruses that can cause hemorrhagic fever with renal syndrome (HFRS) in Asia and Europe, which is primarily caused by Hantaan virus (HTNV) infection, results in profound morbidity and mortality. However, no specific treatment is available for this disease. Coumarin derivatives have been reported as antiviral molecules, while studies about the bioactivity of coumarin derivatives against HTNV infection are limited. To study the potential antiviral activity of coumarin derivatives, 126 coumarin derivatives are synthesized, and their inhibitory activity against HTNV is analyzed in vitro. Among these compounds, N6 inhibits HTNV with relatively high selectivity index at 10.9, and the viral titer of HTNV is reduced significantly after 5, 10, and 20 μM N6 treatments. Furthermore, the administration of N6 at the early stage of HTNV infection can inhibit the replication and production of infectious HTNV in host cell, this therapeutic efficacy is confirmed in HTNV-infected newborn mice at the early stage of infection. The molecular docking results show that N6 forms interactions with the key amino acid residues at its active site, and reveals several molecular interactions responsible for the observed affinity, and the treatment of N6 can inhibit the expression of p (Ser473)Akt and HTNV nucleocapsid protein significantly. As such, these observations demonstrate that coumarin derivative N6 might be used as a potential agent against HTNV infection.
Collapse
Affiliation(s)
- Zhoupeng Li
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Fang Wang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yongsheng Liu
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Dongshen Zhai
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Xiaoxiao Zhang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Qikang Ying
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Min Jia
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Xiaoyan Xue
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jingru Meng
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jing Li
- Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi'an University, Xi'an, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Mingkai Li
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
- Precision Pharmacy and Drug Development Center, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|