1
|
Jansen S, Cadar D, Hey JC, Helms M, Lange U, Horváth B, Jöst H, Pfitzner WP, Schmidt-Chanasit J, Lühken R, Heitmann A. The impact of temperature and insect-specific viruses on the transmission of alphaviruses by Aedes japonicus japonicus. Microbiol Spectr 2025:e0266824. [PMID: 40304470 DOI: 10.1128/spectrum.02668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Arthropod-borne virus (arbovirus) infections are increasing globally, and invasive mosquito species are spreading. Since the end of the last century, Aedes japonicus has continued to spread in Europe as well as in North America. Aedes japonicus is known to be able to transmit several viruses, but extensive information about the vector competence of Ae. japonicus for alphaviruses is missing. Therefore, we infected field-caught Ae. japonicus mosquitoes from Germany with different alphaviruses that occur in areas with either tropical or moderate temperatures and are clustered as arthritogenic or encephalitic alphaviruses. Additionally, we studied the influence of temperature and natural infections with insect-specific viruses (ISVs) on the vector competence of Ae. japonicus. Transmission of chikungunya virus was exclusively observed at the high-temperature profile of 27° ± 5°C, with a low transmission rate of 2.9%. Transmission of Sindbis virus and western equine encephalitis virus was observed at all investigated temperature profiles with higher transmission rates of 32%-57%. We identified seven different ISVs in the investigated Ae. japonicus mosquitoes, showing that coinfections with ISVs are very common. The interplay between arbovirus infections and concurrent multiple ISV infections is highly complex, and additional research is required to fully elucidate the detailed mechanisms underlying the outcomes of this study. IMPORTANCE The spread of invasive mosquito species like Aedes japonicus poses a significant public health risk, particularly in the context of rising global temperatures and the growing prevalence of arbovirus infections. This study provides critical insights into the ability of Aedes japonicus to transmit alphaviruses such as chikungunya, Sindbis, and western equine encephalitis under different temperature conditions. The identification of multiple insect-specific viruses co-infecting the mosquitoes highlights the complexity of arbovirus transmission and underscores the need for further research. Understanding the interplay between environmental factors like temperature and viral coinfections is essential for predicting and mitigating future outbreaks. This work advances our knowledge of vector competence, which is helpful for developing strategies for risk assessment.
Collapse
Affiliation(s)
- Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Hamburg, Germany
| | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Jana Christina Hey
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Michelle Helms
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Unchana Lange
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Balázs Horváth
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Wolf-Peter Pfitzner
- Kommunale Aktionsgemeinschaft zur Bekämpfung der Schnakenplage e. V. (KABS), Speyer, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Hamburg, Germany
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Lantz AM, Baxter VK. Neuropathogenesis of Old World Alphaviruses: Considerations for the Development of Medical Countermeasures. Viruses 2025; 17:261. [PMID: 40007016 PMCID: PMC11860675 DOI: 10.3390/v17020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Chikungunya virus (CHIKV) and other alphaviruses that primarily induce arthritogenic disease in humans, known as "Old World" alphaviruses, present an emerging public health concern as geographic ranges of mosquito vectors expand due to climate change. While a vaccine against CHIKV has recently been approved by several countries in North America and Europe, access to effective preventative countermeasures against disease induced by Old World alphaviruses remains elusive for the most vulnerable populations. Furthermore, treatment options continue to be limited to supportive care. Atypical neurological disease manifestations caused by Old World alphaviruses, which make up as many as 25% of the cases in some CHIKV outbreaks, present special challenges when considering strategies for developing effective countermeasures. This review focuses on Old World alphaviruses, specifically CHIKV, Ross River virus, O'nyoug-nyoug virus, and Mayaro virus, concentrating on the atypical neurological disease manifestations they may cause. Our current understanding of Old World alphavirus neuropathogenesis, gained from human cases and preclinical animal models, is discussed, including viral and host factors' roles in disease development. The current state of alphavirus preventatives and treatments, both virus-targeting and host-directed therapies, is then summarized and discussed in the context of addressing neurological disease induced by Old World alphaviruses.
Collapse
|
3
|
Qu J, Schinkel M, Chiggiato L, Rosendo Machado S, Overheul GJ, Miesen P, van Rij RP. The Hsf1-sHsp cascade has pan-antiviral activity in mosquito cells. Commun Biol 2025; 8:123. [PMID: 39863754 PMCID: PMC11762766 DOI: 10.1038/s42003-024-07435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world's population at risk. Blocking virus replication in mosquitoes is a promising approach to prevent arbovirus transmission, the development of which requires in-depth knowledge of virus-host interactions and mosquito immunity. By integrating multi-omics data, we find that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topologically associated domain in the genome of the Aedes aegypti mosquito. This Hsf1-sHsp cascade acts as an early response against chikungunya virus infection and shows pan-antiviral activity against chikungunya, Sindbis, and dengue virus as well as the insect-specific Agua Salud alphavirus in Ae. aegypti cells and against chikungunya virus and O'nyong-nyong virus in Aedes albopictus and Anopheles gambiae cells, respectively. Our comprehensive in vitro data suggest that Hsf1 could serve as a promising target for the development of novel intervention strategies to limit arbovirus transmission by mosquitoes.
Collapse
Affiliation(s)
- Jieqiong Qu
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michelle Schinkel
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisa Chiggiato
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samara Rosendo Machado
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Lühken R, Rauhöft L, Pluskota B, Lange U, Helms M, Becker N, Schmidt-Chanasit J, Kuhn C, Tannich E, Jansen S, Heitmann A. High vector competence for chikungunya virus but heavily reduced locomotor activity of Aedes albopictus from Germany at low temperatures. Parasit Vectors 2024; 17:502. [PMID: 39633401 PMCID: PMC11619113 DOI: 10.1186/s13071-024-06594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The incidence of human infections caused by arthropod-borne viruses, such as the chikungunya virus (CHIKV), has increased globally due to a number of factors, such as climate change and globalization. The exotic mosquito species Aedes albopictus is a significant vector for CHIKV, raising concerns about its transmission potential in temperate regions, including Central Europe. We have therefore investigated the vector competence of Ae. albopictus for CHIKV at constant and fluctuating temperatures between 15 °C and 24 °C to assess the transmission risk in Europe. METHODS Aedes albopictus mosquitoes were reared and artificially infected with CHIKV. Infection rates and transmission efficiencies (TEs) were determined after 14 days of incubation at constant and fluctuating (± 5 °C) mean temperatures of 15 °C, 18 °C, 21 °C and 24 °C. In addition, mosquito locomotor activity was measured under the same fluctuating temperature conditions. A risk map for CHIKV transmission in Europe was generated combining temperature data and the current distribution of Ae. albopictus. RESULTS CHIKV transmission was observed at all tested temperatures. The highest TEs were recorded at fluctuating temperatures of 18 °C (54.3%) and 21 °C (58.6%), while the lowest TE was observed at a constant temperature of 15 °C (5.6%). TEs at fluctuating temperatures of 15 °C and 24 °C were the same (32.5%). Mosquito activity showed a nocturnal unimodal activity pattern with a peak during the start of the scotophase (hour 20). The proportion of active mosquitoes per hour increased with temperature and was nearly zero at 15 °C. The risk map indicated that regions in Southern and Central Europe, including recently invaded areas north of the Alps, have temperatures theoretically allowing CHIKV transmission for at least some days per year. CONCLUSIONS While CHIKV can be transmitted by Ae. albopictus at 15 °C, the activity of this mosquito is strongly decreased at this temperature, likely reducing the transmission risk. These findings emphasize the importance of considering both vector competence and mosquito activity when assessing the risk of arbovirus transmission in temperate regions. Further studies are needed to validate these laboratory findings under field conditions.
Collapse
Affiliation(s)
- Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | - Leif Rauhöft
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Björn Pluskota
- Kommunale Aktionsgemeinschaft zur Bekämpfung der Schnakenplage (KABS E.V.), Speyer, Germany
| | - Unchana Lange
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michelle Helms
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Norbert Becker
- Institute for Dipterology (IfD), Speyer, Germany
- Center for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany
| | - Carola Kuhn
- German Environment Agency (UBA), Berlin, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
5
|
Mayer J, Köhm M, Wahle M. [Acute polyarthritis after a stay in the Caribbean]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024; 65:1270-1272. [PMID: 39287694 PMCID: PMC11632024 DOI: 10.1007/s00108-024-01773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 09/19/2024]
Abstract
A 59-year-old female patient presented with acute polyarthritis after a holiday in the Caribbean. In addition, constitutional symptoms as well as myalgia and arthralgia were reported. Imaging demonstrated synovitis of the wrist and fingers without erosive changes. Immunoserological findings were normal with no evidence of autoimmune disease or vasculitis. Further evaluation revealed serological evidence of chikungunya virus infection.
Collapse
Affiliation(s)
- Johannes Mayer
- 3. Med. Klinik, Sektion Rheumatologie & Klinische Immunologie, Universitätsklinikum Augsburg, Stenglinstraße 2, 86156, Augsburg, Deutschland
| | - Michaela Köhm
- Medizinische Klinik II, Abteilung Rheumatologie, Universitätsklinikum Frankfurt, Goethe-Universität, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Deutschland
| | - Matthias Wahle
- 3. Med. Klinik, Sektion Rheumatologie & Klinische Immunologie, Universitätsklinikum Augsburg, Stenglinstraße 2, 86156, Augsburg, Deutschland.
| |
Collapse
|
6
|
Freppel W, Silva LA, Stapleford KA, Herrero LJ. Pathogenicity and virulence of chikungunya virus. Virulence 2024; 15:2396484. [PMID: 39193780 PMCID: PMC11370967 DOI: 10.1080/21505594.2024.2396484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted, RNA virus that causes an often-severe musculoskeletal illness characterized by fever, joint pain, and a range of debilitating symptoms. The virus has re-emerged as a global health threat in recent decades, spreading from its origin in Africa across Asia and the Americas, leading to widespread outbreaks impacting millions of people. Despite more than 50 years of research into the pathogenesis of CHIKV, there is still no curative treatment available. Current management of CHIKV infections primarily involves providing supportive care to alleviate symptoms and improve the patient's quality of life. Given the ongoing threat of CHIKV, there is an urgent need to better understand its pathogenesis. This understanding is crucial for deciphering the mechanisms underlying the disease and for developing effective strategies for both prevention and management. This review aims to provide a comprehensive overview of CHIKV and its pathogenesis, shedding light on the complex interactions of viral genetics, host factors, immune responses, and vector-related factors. By exploring these intricate connections, the review seeks to contribute to the knowledge base surrounding CHIKV, offering insights that may ultimately lead to more effective prevention and management strategies for this re-emerging global health threat.
Collapse
Affiliation(s)
- Wesley Freppel
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| | - Laurie A. Silva
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth A. Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lara J. Herrero
- Institute for Biomedicine and Glycomics, Gold Coast Campus, Griffith University, Southport, Australia
| |
Collapse
|
7
|
Rai P, Webb EM, Paulson SL, Kang L, Weger‐Lucarelli J. Obesity's Unexpected Influence: Reduced Alphavirus Transmission and Altered Immune Activation in the Vector. J Med Virol 2024; 96:e70032. [PMID: 39466902 PMCID: PMC11600488 DOI: 10.1002/jmv.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are emerging/re-emerging alphaviruses transmitted by Aedes spp. mosquitoes and responsible for recent disease outbreaks in the Americas. The capacity of these viruses to cause epidemics is frequently associated with increased mosquito transmission, which in turn is governed by virus-host-vector interactions. Although many studies have explored virus-vector interactions, significant gaps remain in understanding how vertebrate host factors influence alphavirus transmission by mosquitoes. We previously showed that obesity, a ubiquitous vertebrate host biological factor, reduces alphavirus transmission potential in mosquitoes. We hypothesized that alphavirus-infected obese bloodmeals altered immune genes and/or pathways in mosquitoes, thereby inhibiting virus transmission. To test this, we conducted RNA sequencing (RNA-seq) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) on midgut RNA from mosquitoes fed on alphavirus-infected lean and obese mice. This approach aimed to identify potential antiviral or proviral genes and pathways altered in mosquitoes after consuming infected obese bloodmeals. We found upregulation of the Toll pathway and downregulation of several metabolic and other genes in mosquitoes fed on alphavirus-infected obese bloodmeals. Through gene knockdown studies, we demonstrated the antiviral role of Toll pathway and proviral roles of AAEL009965 and fatty acid synthase (FASN) in the transmission of alphaviruses by mosquitoes. Therefore, this study utilized obesity to identify factors influencing alphavirus transmission by mosquitoes and this research approach may pave the way for designing broadly effective antiviral measures to combat mosquito-borne viruses, such as releasing transgenic mosquitoes deficient in the identified genes.
Collapse
Affiliation(s)
- Pallavi Rai
- Department of Biomedical Sciences and PathobiologyVirginia TechBlacksburgVirginiaUSA
- Center for Emerging, Zoonotic, and Arthropod‐Borne PathogensVirginia TechBlacksburgVirginiaUSA
| | - Emily M. Webb
- Center for Emerging, Zoonotic, and Arthropod‐Borne PathogensVirginia TechBlacksburgVirginiaUSA
- Department of EntomologyFralin Life Sciences Institute, Virginia TechBlacksburgVirginiaUSA
| | - Sally L. Paulson
- Department of EntomologyFralin Life Sciences Institute, Virginia TechBlacksburgVirginiaUSA
| | - Lin Kang
- Department of Biomedical Sciences and PathobiologyVirginia TechBlacksburgVirginiaUSA
- Biomedical ResearchEdward Via College of Osteopathic MedicineMonroeLos AngelesUSA
- College of PharmacyUniversity of Louisiana MonroeMonroeLos AngelesUSA
| | - James Weger‐Lucarelli
- Department of Biomedical Sciences and PathobiologyVirginia TechBlacksburgVirginiaUSA
- Center for Emerging, Zoonotic, and Arthropod‐Borne PathogensVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
8
|
Weber WC, Streblow DN, Coffey LL. Chikungunya Virus Vaccines: A Review of IXCHIQ and PXVX0317 from Pre-Clinical Evaluation to Licensure. BioDrugs 2024; 38:727-742. [PMID: 39292392 PMCID: PMC11530495 DOI: 10.1007/s40259-024-00677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Chikungunya virus is an emerging mosquito-borne alphavirus that causes febrile illness and arthritic disease. Chikungunya virus is endemic in 110 countries and the World Health Organization estimates that it has caused more than 2 million cases of crippling acute and chronic arthritis globally since it re-emerged in 2005. Chikungunya virus outbreaks have occurred in Africa, Asia, Indian Ocean islands, South Pacific islands, Europe, and the Americas. Until recently, no specific countermeasures to prevent or treat chikungunya disease were available. To address this need, multiple vaccines are in human trials. These vaccines use messenger RNA-lipid nanoparticles, inactivated virus, and viral vector approaches, with a live-attenuated vaccine VLA1553 and a virus-like particle PXVX0317 in phase III testing. In November 2023, the US Food and Drug Administration (FDA) approved the VLA1553 live-attenuated vaccine, which is marketed as IXCHIQ. In June 2024, Health Canada approved IXCHIQ, and in July 2024, IXCHIQ was approved by the European Commission. On August 13, 2024, the US FDA granted priority review for PXVX0317. The European Medicine Agency is considering accelerated assessment review of PXVX0317, with potential for approval by both agencies in 2025. In this review, we summarize published data from pre-clinical and clinical trials for the IXCHIQ and PXVX0317 vaccines. We also discuss unanswered questions including potential impacts of pre-existing chikungunya virus immunity on vaccine safety and immunogenicity, whether long-term immunity can be achieved, safety in children, pregnant, and immunocompromised individuals, and vaccine efficacy in people with previous exposure to other emerging alphaviruses in addition to chikungunya virus.
Collapse
Affiliation(s)
- Whitney C Weber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Lark L Coffey
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis One Shields Avenue, Davis One Shields Avenue, 5327 VM3A, Davis, CA, 95616, USA.
| |
Collapse
|
9
|
Ali Mude AS, Nageye YA, Bello KE. Current Epidemiological Status of Chikungunya Virus Infection in East Africa: A Systematic Review and Meta-Analysis. J Trop Med 2024; 2024:7357911. [PMID: 39492843 PMCID: PMC11530290 DOI: 10.1155/2024/7357911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Background: The incidence of Chikungunya in tropical Africa is still of major epidemiological significance. This study aims to determine the prevalence of chikungunya in East Africa through a systematic review and meta-analysis of published studies. Methods: We conducted a comprehensive search across six electronic databases-Web of Science, PubMed, ScienceDirect, Scopus, and Google Scholar-using specific keywords to address the worldwide impact of chikungunya following the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. A meta-analysis was performed on our eligible studies using the random effect model. Results: Our search returned 40 eligible articles involving 4122 Chikungunya cases in 13 East African nations. These studies, conducted between 2014 and 2024 across 13 East African nations, provided diverse data on chikungunya prevalence. The overall pooled prevalence of chikungunya in East Africa was 20.6% (95% CI: 18.8%-22.5% and I 2 = 99.62%). Subgroup analyses revealed variations in prevalence across different countries, study designs, detection methods, and publication years. Notably, Rwanda and Djibouti exhibited high prevalence rates of 63.0% and 50.4%, respectively, while Kenya and Somalia reported a moderate prevalence of 12.2%. The detection methods also influenced prevalence rates, with RT-PCR studies indicating a higher prevalence (28.3%) compared to ELISA (19.3%). Conclusion: The study highlights the significant burden of chikungunya in East Africa, and the findings underscore the need for targeted public health interventions and improved surveillance to manage and control chikungunya outbreaks in the region.
Collapse
Affiliation(s)
- Abdirasak Sharif Ali Mude
- Department of Microbiology and Laboratory Science, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu 252, Somalia
| | - Yahye Ahmed Nageye
- Department of Microbiology and Laboratory Science, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu 252, Somalia
| | - Kizito Eneye Bello
- Department of Microbiology, Faculty of Natural Science, Kogi State (Prince Abubakar Audu) University, Anyigba PMB 1008, Kogi State, Nigeria
| |
Collapse
|
10
|
Laroche L, Bañuls AL, Charrel R, Fontaine A, Ayhan N, Prudhomme J. Sand flies and Toscana virus: Intra-vector infection dynamics and impact on Phlebotomus perniciosus life-history traits. PLoS Negl Trop Dis 2024; 18:e0012509. [PMID: 39321202 PMCID: PMC11458028 DOI: 10.1371/journal.pntd.0012509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/07/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
Toscana virus (TOSV) is a leading cause of summer viral meningitis in Southern Europe (Central Italy, south of France, Spain and Portugal) and can cause severe neurological cases. Within the Mediterranean basin, it is transmitted by hematophagous sand flies belonging to the Phlebotomus genus. Despite the identification of the primary TOSV vectors, the viral developmental cycle in vector species remains largely unknown. Limited research has been conducted on transmission dynamics and the vector competence and vectorial capacity of the principal TOSV vector, Phlebotomus perniciosus. In this context, we investigated the intra-vector TOSV infection dynamics in Ph. perniciosus, as well as its impact on the vector life history traits. Female sand flies were experimentally infected with TOSV through an artificial blood meal. Systemic dissemination of the virus was observed approximately three days post-infection, potentially resulting in a short extrinsic incubation period. Moreover, the study revealed a longer hatching time for eggs laid by infected females. This research brought additional experimental insights regarding the vector competence of Ph. perniciosus but also provided the first insight into TOSV developmental cycle and its impact on the vector. These findings prompt further exploration of TOSV transmission dynamics, raise new hypotheses on the virus transmission and highlight the importance of follow-up studies.
Collapse
Affiliation(s)
- Lison Laroche
- MIVEGEC, Université de Montpellier – IRD – CNRS, Centre IRD, Montpellier, France
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Anne-Laure Bañuls
- MIVEGEC, Université de Montpellier – IRD – CNRS, Centre IRD, Montpellier, France
| | - Rémi Charrel
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Albin Fontaine
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Unité de virologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Nazli Ayhan
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Centre National de Référence des Arbovirus, Marseille, France
| | - Jorian Prudhomme
- MIVEGEC, Université de Montpellier – IRD – CNRS, Centre IRD, Montpellier, France
- Université de Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé Environnement Travail), UMR_S 1085, Rennes, France
| |
Collapse
|
11
|
Brito RMDM, de Melo MF, Fernandes JV, Valverde JG, Matta Guedes PM, de Araújo JMG, Nascimento MSL. Acute Chikungunya Virus Infection Triggers a Diverse Range of T Helper Lymphocyte Profiles. Viruses 2024; 16:1387. [PMID: 39339863 PMCID: PMC11437511 DOI: 10.3390/v16091387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus causing acute febrile illness with severe joint pain, often leading to chronic arthralgia. This study investigated the adaptive immune responses during the early stages of symptomatic acute CHIKV infection, focusing on the transcription factors and cytokines linked to Th1, Th2, Th17, and Treg cells. Thirty-six individuals were enrolled: nine healthy controls and 27 CHIKV-positive patients confirmed by qRT-PCR. Blood samples were analyzed for the mRNA expression of transcription factors (Tbet, GATA3, FoxP3, STAT3, RORγt) and cytokines (IFN-γ, IL-4, IL-17, IL-22, TGF-β, IL-10). The results showed the significant upregulation of Tbet, GATA3, FoxP3, STAT3, and RORγt in CHIKV-positive patients, with RORγt displaying the highest increase. Correspondingly, cytokines IFN-γ, IL-4, IL-17, and IL-22 were upregulated, while TGF-β was downregulated. Principal component analysis (PCA) confirmed the distinct immune profiles between CHIKV-positive and healthy individuals. A correlation analysis indicated that higher Tbet expression correlated with a lower viral load, whereas FoxP3 and TGF-β were associated with higher viral loads. Our study sheds light on the intricate immune responses during acute CHIKV infection, characterized by a mixed Th1, Th2, Th17, and Treg response profile. These results emphasize the complex interplay between different adaptive immune responses and how they may contribute to the pathogenesis of Chikungunya fever.
Collapse
Affiliation(s)
| | - Marília Farias de Melo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Joanna Gardel Valverde
- Institute of Tropical Medicine of Rio Grande do Norte, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Paulo Marcos Matta Guedes
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Josélio Maria Galvão de Araújo
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
12
|
Gierek M, Ochała-Gierek G, Woźnica AJ, Zaleśny G, Jarosz A, Niemiec P. Winged Threat on the Offensive: A Literature Review Due to the First Identification of Aedes japonicus in Poland. Viruses 2024; 16:703. [PMID: 38793584 PMCID: PMC11125806 DOI: 10.3390/v16050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Genetic studies preceded by the observation of an unknown mosquito species in Mikołów (Poland) confirmed that it belongs to a new invasive species in Polish fauna, Aedes japonicus (Theobald, 1901), a known vector for numerous infectious diseases. Ae. japonicus is expanding its geographical presence, raising concerns about potential disease transmission given its vector competence for chikungunya virus, dengue virus, West Nile virus, and Zika virus. This first genetically confirmed identification of Ae. japonicus in Poland initiates a comprehensive review of the literature on Ae. japonicus, its biology and ecology, and the viral infections transmitted by this species. This paper also presents the circumstances of the observation of Ae. japonicus in Poland and a methodology for identifying this species.
Collapse
Affiliation(s)
- Marcin Gierek
- Center for Burns Treatment, 41-100 Siemianowice Śląskie, Poland;
| | | | - Andrzej Józef Woźnica
- Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 5B i 7A, 51-631 Wrocław, Poland;
| | - Grzegorz Zaleśny
- Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska St. 5B i 7A, 51-631 Wrocław, Poland;
| | - Alicja Jarosz
- Department of Biochemistry and Medical Genetics, School of Health Sciences, Medical University of Silesia in Katowice, ul. Medykow 18, 40-752 Katowice, Poland;
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, School of Health Sciences, Medical University of Silesia in Katowice, ul. Medykow 18, 40-752 Katowice, Poland;
| |
Collapse
|
13
|
de Lima RC, Valente LMM, Familiar Macedo D, de-Oliveira-Pinto LM, dos Santos FB, Mazzei JL, Siani AC, Nunes PCG, de Azeredo EL. Antiviral and Virucidal Activities of Uncaria tomentosa (Cat's Claw) against the Chikungunya Virus. Viruses 2024; 16:369. [PMID: 38543735 PMCID: PMC10974475 DOI: 10.3390/v16030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 05/23/2024] Open
Abstract
Uncaria tomentosa (UT) is a medicinal plant popularly known as cat's claw belonging to the Rubiaceae family that has been reported to display antiviral and anti-inflammatory activities. The chikungunya virus (CHIKV) outbreaks constitute a Brazilian public health concern. CHIKV infection develops an abrupt onset of fever, usually accompanied by a skin rash, besides incapacitating polyarthralgia. There is no vaccine available or treatment for CHIKV infection. The present study evaluates the hydroalcoholic extract of UT bark as a potential antiviral against CHIKV. The in vitro antiviral activity of the UT extract against the Brazilian CHIKV strain was assessed using quantitative reverse transcription polymerase chain reaction, flow cytometry, and plaque assay. Results obtained demonstrated that UT inhibits CHIKV infection in a dose-dependent manner. At the non-cytotoxic concentration of 100 µg/mL, UT exhibited antiviral activity above 90% as determined by plaque reduction assay, and it reduced the viral cytopathic effect. Similarly, a significant virucidal effect of 100 µg/mL UT was observed after 24 and 48 h post-infection. This is the first report on the antiviral activity of UT against CHIKV infection, and the data presented here suggests UT as a potential antiviral to treat CHIKV infection.
Collapse
Affiliation(s)
- Raquel Curtinhas de Lima
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - Ligia Maria Marino Valente
- Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brazil;
| | - Débora Familiar Macedo
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - Luzia Maria de-Oliveira-Pinto
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - Flavia Barreto dos Santos
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - José Luiz Mazzei
- Laboratório de Tecnologia para Biodiversidade em Saúde, Instituto de Tecnologia de Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil; (J.L.M.); (A.C.S.)
| | - Antonio Carlos Siani
- Laboratório de Tecnologia para Biodiversidade em Saúde, Instituto de Tecnologia de Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil; (J.L.M.); (A.C.S.)
| | - Priscila Conrado Guerra Nunes
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| | - Elzinandes Leal de Azeredo
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (R.C.d.L.); (D.F.M.); (L.M.d.-O.-P.); (F.B.d.S.); (P.C.G.N.)
| |
Collapse
|
14
|
Grabenstein JD, Tomar AS. Global geotemporal distribution of chikungunya disease, 2011-2022. Travel Med Infect Dis 2023; 54:102603. [PMID: 37307983 DOI: 10.1016/j.tmaid.2023.102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/06/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chikungunya virus is a mosquito-borne alphavirus, transmitted by Aedes mosquitoes. Humans serve as the primary reservoir. Chikungunya infections typically appear with an abrupt onset of fever, rash, and severe joint pain. Some 40% of cases develop chronic rheumatologic complications that can persist months to years. OBJECTIVES To improve precision of risk characterization by analyzing cases of chikungunya by year and by country and depicting this geotemporal distribution in map form. METHOD Chikungunya case counts by year were compiled from national or regional health authorities from 2011 to 2022. These data were augmented by published reviews plus the Program for Monitoring Emerging Diseases (ProMED). Country-level distribution was categorized into four groups based on recency and magnitude. Data for India were mapped on a per-state basis. RESULTS The global map depicts distribution of chikungunya disease from 2011 through 2022. Most cases are reported in tropical and subtropical areas, but notable exceptions include the northern coast of the Mediterranean Sea. Countries of high recency and frequency include India, Brazil, Sudan, and Thailand. Countries with high frequency, but few cases reported in 2019-22 include many Latin American and Caribbean countries. Subnational foci are discussed in general and mapped for India. The range of Aedes mosquitoes is broader than the geography where chikungunya infection is typically diagnosed. CONCLUSIONS These maps help identify geographical regions where residents or travelers are at greatest risk of chikungunya. Once vaccines are licensed to help prevent chikungunya, maps like these can help guide future vaccine decision-making.
Collapse
|
15
|
Puhl AC, Fernandes RS, Godoy AS, Gil LHVG, Oliva G, Ekins S. The protein disulfide isomerase inhibitor 3-methyltoxoflavin inhibits Chikungunya virus. Bioorg Med Chem 2023; 83:117239. [PMID: 36940609 PMCID: PMC10150329 DOI: 10.1016/j.bmc.2023.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Chikungunya virus (CHIKV) is the etiological agent of chikungunya fever, a (re)emerging arbovirus infection, that causes severe and often persistent arthritis, as well as representing a serious health concern worldwide for which no antivirals are currently available. Despite efforts over the last decade to identify and optimize new inhibitors or to reposition existing drugs, no compound has progressed to clinical trials for CHIKV and current prophylaxis is based on vector control, which has shown limited success in containing the virus. Our efforts to rectify this situation were initiated by screening 36 compounds using a replicon system and ultimately identified the natural product derivative 3-methyltoxoflavin with activity against CHIKV using a cell-based assay (EC50 200 nM, SI = 17 in Huh-7 cells). We have additionally screened 3-methyltoxoflavin against a panel of 17 viruses and showed that it only additionally demonstrated inhibition of the yellow fever virus (EC50 370 nM, SI = 3.2 in Huh-7 cells). We have also showed that 3-methyltoxoflavin has excellent in vitro human and mouse microsomal metabolic stability, good solubility and high Caco-2 permeability and it is not likely to be a P-glycoprotein substrate. In summary, we demonstrate that 3-methyltoxoflavin has activity against CHIKV, good in vitro absorption, distribution, metabolism and excretion (ADME) properties as well as good calculated physicochemical properties and may represent a valuable starting point for future optimization to develop inhibitors for this and other related viruses.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Rafaela S. Fernandes
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, SP, 13563-120, Brazil
| | - Andre S. Godoy
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, SP, 13563-120, Brazil
| | - Laura H. V. G. Gil
- Department of Virology, Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Av. Prof. Moraes Rego, s/n - Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, SP, 13563-120, Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| |
Collapse
|
16
|
Aedes aegypti in Southern Brazil: Spatiotemporal Distribution Dynamics and Association with Climate and Environmental Factors. Trop Med Infect Dis 2023; 8:tropicalmed8020077. [PMID: 36828493 PMCID: PMC9961474 DOI: 10.3390/tropicalmed8020077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
In Brazil, the mosquito Aedes (Stegomyia) aegypti is considered the main vector of the dengue, chikungunya, and Zika arbovirus transmission. Recent epidemiological studies in southern Brazil have shown an increase in the incidence of dengue, raising concerns over epidemiological control, monitoring, and surveys. Therefore, this study aimed at performing a historical spatiotemporal analysis of the Ae. aegypti house indices (HI) in southern Brazil over the last 19 years. As vector infestation was associated with climatic and environmental variables, HI data from the Brazilian Ministry of Health, climate data from the Giovanni web-based application, and environmental data from the Mapbiomas project were used in this study. Our results showed an expressive increase in the number of HI surveys in the municipalities confirming the vector presence, as compared to those in 2017. Environmental variables, such as urban infrastructure, precipitation, temperature, and humidity, were positively correlated with the Ae. aegypti HI. This was the first study to analyze Ae. aegypti HI surveys in municipalities of southern Brazil, and our findings could help in developing and planning disease control strategies to improve public health.
Collapse
|
17
|
Ruiz UEA, Santos IA, Grosche VR, Fernandes RS, de Godoy AS, Torres JDA, Freire MCLC, Mesquita NCDMR, Guevara-Vega M, Nicolau-Junior N, Sabino-Silva R, Mineo TWP, Oliva G, Jardim ACG. Imidazonaphthyridine effects on Chikungunya virus replication: Antiviral activity by dependent and independent of interferon type 1 pathways. Virus Res 2023; 324:199029. [PMID: 36565816 PMCID: PMC10194360 DOI: 10.1016/j.virusres.2022.199029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The Chikungunya virus (CHIKV) causes Chikungunya fever, a disease characterized by symptoms such as arthralgia/polyarthralgia. Currently, there are no antivirals approved against CHIKV, emphasizing the need to develop novel therapies. The imidazonaphthyridine compound (RO8191), an interferon-α (IFN-α) agonist, was reported as a potent inhibitor of HCV. Here RO8191 was investigated for its potential to inhibit CHIKV replication in vitro. RO8191 inhibited CHIKV infection in BHK-21 and Vero-E6 cells with a selectivity index (SI) of 12.3 and 37.3, respectively. Additionally, RO8191 was capable to protect cells against CHIKV infection, inhibit entry by virucidal activity, and strongly impair post-entry steps of viral replication. An effect of RO8191 on CHIKV replication was demonstrated in BHK-21 through type-1 IFN production mechanism and in Vero-E6 cells which has a defective type-1 IFN production, also suggesting a type-1 IFN independent mode of action. Molecular docking calculations demonstrated interactions of RO8191 with the CHIKV E proteins, corroborated by the ATR-FTIR assay, and with non-structural proteins, supported by the CHIKV-subgenomic replicon cells assay.
Collapse
Affiliation(s)
| | - Igor Andrade Santos
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil; Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Campus São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | - Marco Guevara-Vega
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Nilson Nicolau-Junior
- Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Robinson Sabino-Silva
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo (USP), São Carlos, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil; Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Campus São José do Rio Preto, SP, Brazil.
| |
Collapse
|
18
|
Abstract
Viruses utilize a plethora of strategies to manipulate the host pathways and hijack host machineries for efficient replication. Several DNA and few RNA viruses are reported to interact with proteins involved in DNA damage responses (DDRs). As the DDR pathways have never been explored in alphaviruses, this investigation intended to understand the importance of the DDR pathways in chikungunya virus (CHIKV) infection in vitro, in vivo, and ex vivo models. The study revealed that CHIKV infection activated the Chk2 and Chk1 proteins associated with the DDR signaling pathways in Vero, RAW264.7, and C2C12 cells. The comet assay revealed an increase in DNA damage by 95%. Inhibition of both ATM-ATR kinases by the ATM/ATR kinase inhibitor (AAKi) showed a drastic reduction in the viral particle formation in vitro. Next, the treatment of CHIKV-infected C57BL/6 mice with this drug reduced the disease score substantially with a 93% decrease in the viral load. The same was observed in human peripheral blood mononuclear cell (hPBMC)-derived monocyte-macrophage populations. Additionally, silencing of Chk2 and Chk1 reduced viral progeny formation by 91.2% and 85.5%, respectively. Moreover, CHIKV-nsP2 was found to interact with Chk2 and Chk1 during CHIKV infection. Furthermore, CHIKV infection induced cell cycle arrest in G1 and G2 phases. In conclusion, this work demonstrated for the first time the mechanistic insights regarding the induction of the DDR pathways by CHIKV that might contribute to the designing of effective therapeutics for the control of this virus infection in the future. IMPORTANCE Being intracellular parasites, viruses require several host cell machineries for effectively replicating their genome, along with virus-encoded enzymes. One of the strategies involves hijacking of the DDR pathways. Several DNA and few RNA viruses interact with the cellular proteins involved in the DDR pathways; however, reports regarding the involvement of Chk2 and Chk1 in alphavirus infection are limited. This is the first study to report that modulation of DDR pathways is crucial for effective CHIKV infection. It also reveals an interaction of CHIKV-nsP2 with two crucial host factors, namely, Chk2 and Chk1, for efficient viral infection. Interestingly, CHIKV infection was found to cause DNA damage and arrest the cell cycle in G1 and G2 phases for efficient viral infection. This information might facilitate the development of effective therapeutics for controlling CHIKV infection in the future.
Collapse
|
19
|
MALDI-TOF MS: An effective tool for a global surveillance of dengue vector species. PLoS One 2022; 17:e0276488. [PMID: 36264911 PMCID: PMC9584457 DOI: 10.1371/journal.pone.0276488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Dengue, Zika and chikungunya viruses cause significant human public health burdens in the world. These arboviruses are transmitted by vector mosquito species notably Aedes aegypti and Aedes albopictus. In the Pacific region, more vector species of arboviruses belonging to the Scutellaris Group are present. Due to the expansion of human travel and international trade, the threat of their dispersal in other world regions is on the rise. Strengthening of entomological surveillance ensuring rapid detection of introduced vector species is therefore required in order to avoid their establishment and the risk of arbovirus outbreaks. This surveillance relies on accurate species identification. The aim of this study was to assess the use of the Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) as a tool for an international identification and surveillance of these mosquito vectors of arboviruses. Field-mosquitoes belonging to 8 species (Ae. aegypti, Ae. albopictus, Aedes polynesiensis, Aedes scutellaris, Aedes pseudoscutellaris, Aedes malayensis, Aedes futunae and Culex quinquefasciatus) from 6 countries in the Pacific, Asian and Madagascar, were included in this study. Analysis provided evidence that a MALDI-TOF database created using mosquitoes from the Pacific region allowed suitable identification of mosquito species from the other regions. This technic was as efficient as the DNA sequencing method in identifying mosquito species. Indeed, with the exception of two Ae. pseudoscutellaris, an exact species identification was obtained for all individual mosquitoes. These findings highlight that the MALDI-TOF MS is a promising tool that could be used for a global comprehensive arbovirus vector surveillance.
Collapse
|
20
|
Gomes de Azevedo-Quintanilha I, Campos MM, Teixeira Monteiro AP, Dantas do Nascimento A, Calheiros AS, Oliveira DM, Dias SSG, Soares VC, Santos JDC, Tavares I, Lopes Souza TM, Hottz ED, Bozza FA, Bozza PT. Increased platelet activation and platelet-inflammasome engagement during chikungunya infection. Front Immunol 2022; 13:958820. [PMID: 36189282 PMCID: PMC9520464 DOI: 10.3389/fimmu.2022.958820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Chikungunya fever is a viral disease transmitted by mosquitoes of the genus Aedes. The infection is usually symptomatic and most common symptoms are fever accompanied by joint pain and swelling. In most cases symptoms subside within a week. However, severe prolonged and disabling joint pain, that may persist for several months, even years, are reported. Although the pathogenesis of Chikungunya infection is not fully understood, the evolution to severe disease seems to be associated with the activation of immune mechanisms and the action of inflammatory mediators. Platelets are recognized as inflammatory cells with fundamental activities in the immune response, maintenance of vascular stability and pathogenicity of several inflammatory and infectious diseases. Although the involvement of platelets in the pathogenesis of viral diseases has gained attention in recent years, their activation in Chikungunya has not been explored. The aim of this study was to analyze platelet activation and the possible role of platelets in the amplification of the inflammatory response during Chikungunya infection. We prospectively included 132 patients attended at the Quinta D’Or hospital and 25 healthy volunteers during the 2016 epidemic in Rio de Janeiro, Brazil. We observed increased expression of CD62P on the surface of platelets, as well as increased plasma levels of CD62P and platelet-derived inflammatory mediators indicating that the Chikungunya infection leads to platelet activation. In addition, platelets from chikungunya patients exhibit increased expression of NLRP3, caspase 4, and cleaved IL-1β, suggestive of platelet-inflammasome engagement during chikungunya infection. In vitro experiments confirmed that the Chikungunya virus directly activates platelets. Moreover, we observed that platelet activation and soluble p-selectin at the onset of symptoms were associated with development of chronic forms of the disease. Collectively, our data suggest platelet involvement in the immune processes and inflammatory amplification triggered by the infection.
Collapse
Affiliation(s)
- Isaclaudia Gomes de Azevedo-Quintanilha
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Patricia T. Bozza, ; Isaclaudia Gomes de Azevedo-Quintanilha,
| | - Mariana Macedo Campos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Alessandra Dantas do Nascimento
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Andrea Surrage Calheiros
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Douglas Mathias Oliveira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Suelen Silva Gomes Dias
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Vinicius Cardoso Soares
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Julia da Cunha Santos
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Isabel Tavares
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Thiago Moreno Lopes Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS) and National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), FIOCRUZ, Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Laboratório de Imunotrombose, Departamento de Bioquimica, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Fernando A. Bozza
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Patricia T. Bozza, ; Isaclaudia Gomes de Azevedo-Quintanilha,
| |
Collapse
|
21
|
Calvez E, Bounmany P, Somlor S, Xaybounsou T, Viengphouthong S, Keosenhom S, Brey PT, Lacoste V, Grandadam M. Multiple chikungunya virus introductions in Lao PDR from 2014 to 2020. PLoS One 2022; 17:e0271439. [PMID: 35839218 PMCID: PMC9286254 DOI: 10.1371/journal.pone.0271439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
The first documented chikungunya virus (CHIKV) outbreak in Lao People’s Democratic Republic (Lao PDR) occurred in 2012–2013. Since then, several imported and a few autochthonous cases were identified by the national arbovirus surveillance network. The present study aimed to summarize the main genetic features of the CHIKV strains detected in Lao PDR between 2014 and 2020. Samples from Lao patients presenting symptoms compatible with a CHIKV infection were centralized in Vientiane Capital city for real-time RT-PCR screening. Molecular epidemiology was performed by sequencing the E2-6K-E1 region. From 2014 to 2020, two Asian lineage isolates (e.g. French Polynesia; Indonesia), one ECSA-IOL lineage isolate (e.g. Thailand) and one unclassified (e.g. Myanmar) were imported in Vientiane Capital city. Sequences from the autochthonous cases recorded in the Central and Southern parts of the country between July and September 2020 belonged to the ECSA-IOL lineage and clustered with CHIKV strains recently detected in neighboring countries. These results demonstrate the multiple CHIKV introductions in Lao PDR since 2014 and provide evidence for sporadic and time-limited circulation of CHIKV in the country. Even if the circulation of CHIKV seems to be geographically and temporally limited in Lao PDR, the development of international tourism and trade may cause future outbreaks of CHIKV in the country and at the regional level.
Collapse
Affiliation(s)
- Elodie Calvez
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
- * E-mail:
| | - Phaithong Bounmany
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Somphavanh Somlor
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Thonglakhone Xaybounsou
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Souksakhone Viengphouthong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Sitsana Keosenhom
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Paul T. Brey
- Medical Entomology and Vector-Borne Disease Unit, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Vincent Lacoste
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Marc Grandadam
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| |
Collapse
|
22
|
Verma J, Hasan A, Sunil S, Subbarao N. In silico identification and in vitro antiviral validation of potential inhibitors against Chikungunya virus. J Comput Aided Mol Des 2022; 36:521-536. [PMID: 35789450 DOI: 10.1007/s10822-022-00463-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
The Chikungunya virus (CHIKV) has become endemic in the Africa, Asia and Indian subcontinent, with its continuous re-emergence causing a significant public health crisis. The unavailability of specific antivirals and vaccines against the virus has highlighted an urgent need for novel therapeutics. In the present study, we have identified small molecule inhibitors targeting the envelope proteins of the CHIKV to interfere with the fusion process, eventually inhibiting the cell entry of the virus particles. We employed high throughput computational screening of large datasets against two different binding sites in the E1-E2 dimer to identify potential candidate inhibitors. Among them, four high affinity inhibitors were selected to confirm their anti-CHIKV activity in the in vitro assay. Quercetin derivatives, Taxifolin and Rutin, binds to the E1-E2 dimer at different sites and display inhibition of CHIKV infection with EC50 values 3.6 μM and 87.67 μM, respectively. Another potential inhibitor with ID ChemDiv 8015-3006 binds at both the target sites and shows anti-CHIKV activity at EC50 = 41 μM. The results show dose-dependent inhibitory effects of Taxifolin, Rutin and ChemDiv 8015-3006 against the CHIKV with minimal cytotoxicity. In addition, molecular dynamics studies revealed the structural stability of these inhibitors at their respective binding sites in the E1-E2 protein. In conclusion, our study reports Taxifolin, Rutin and ChemDiv 8015-3006 as potential inhibitors of the CHIKV entry. Also, this study suggests a few potential candidate inhibitors which could serve as a template to design envelope protein specific CHIKV entry inhibitors.
Collapse
Affiliation(s)
- Jyoti Verma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abdul Hasan
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
23
|
Global prevalence of dengue and chikungunya coinfection: A systematic review and meta-analysis of 43,341 participants. Acta Trop 2022; 231:106408. [PMID: 35305942 DOI: 10.1016/j.actatropica.2022.106408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/05/2022] [Accepted: 03/12/2022] [Indexed: 11/20/2022]
Abstract
Dengue and chikungunya virus are important arboviruses of public health concern. In the past decades, they have accounted for numerous outbreaks of dengue and chikungunya in different parts of the world. Several cases of concurrent infection of dengue and chikungunya have been documented. However, the true burden of this concurrent infection is unknown. Here, a systematic review and meta-analysis of published data on the prevalence of dengue and chikungunya coinfection in the human population was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis. Six electronic databases (Web of science, Embase, PubMed, ScienceDirect, Scopus, and Google Scholar) were searched without year or language restrictions for relevant studies. The study protocol was registered with PROSPERO (CRD42020175344). Eighty-three studies involving a total of 43,341 participants were included. The random-effects model was employed to calculate the summary estimates. A pooled global prevalence of 2.5% (95% CI: 1.8-3.4) was obtained for dengue and chikungunya coinfection. Males and females appear to be coinfected at a fairly similar rate. Among the regions, Asia accounted for the highest prevalence (3.3%, 95% CI: 2.3-4.6) while North America was the least (0.8%, 95% CI: 0.3-2.4). The prevalence estimates varied across different countries. A much higher prevalence rates were obtained for Colombia (37.4%, 95% CI: 9.1-78.1), Madagascar (18.2%, 95% CI: 10.1-30.6), Laos (12.5%, 95% CI: 5.3-26.7), Maldives (4.5%, 95% CI: 1.5-13.0) and Thailand (3.7%, 95% CI: 0.4-26.3). This first extensive systematic review and meta-analysis reveals dengue and chikungunya coinfection as a global problem worthy of consideration. It is therefore pertinent that both infections be assessed during diagnosis, mosquito vector control practices be implemented, and vaccine development strides be supported globally.
Collapse
|
24
|
Kusari M, Dey L, Mukhopadhyay A. ChikvInt: A Chikungunya Virus-Host Protein-Protein Interaction Database. Lett Appl Microbiol 2022; 74:992-1000. [PMID: 35174520 DOI: 10.1111/lam.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
Chikungunya is a fast mutating virus causing Chikungunya virus disease (ChikvD) with a significant load of disability-adjusted life years (DALY) around the world. The outbreak of this virus is significantly higher in the tropical countries. Several experiments have identified crucial viral-host protein-protein interactions (PPIs) between Chikungunya Virus (Chikv) and the human host. However, no standard database that catalogs this PPI information exists. Here we develop a Chikv-Human PPI database, ChikvInt, to facilitate understanding ChikvD disease pathogenesis and the progress of vaccine studies. ChikvInt consists of 109 interactions and is available at www.chikvint.com.
Collapse
Affiliation(s)
- Mitrajyoti Kusari
- Dept. of Computer Science & Engg, University of Kalyani, Kalyani, India
| | - Lopamudra Dey
- Dept. of Computer Science & Engg, Heritage Institute of Technology, Kolkata, India
| | | |
Collapse
|
25
|
Vector Competence of the Invasive Mosquito Species Aedes koreicus for Arboviruses and Interference with a Novel Insect Specific Virus. Viruses 2021; 13:v13122507. [PMID: 34960776 PMCID: PMC8704790 DOI: 10.3390/v13122507] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/01/2022] Open
Abstract
The global spread of invasive mosquito species increases arbovirus infections. In addition to the invasive species Aedes albopictus and Aedes japonicus, Aedes koreicus has spread within Central Europe. Extensive information on its vector competence is missing. Ae. koreicus from Germany were investigated for their vector competence for chikungunya virus (CHIKV), Zika virus (ZIKV) and West Nile virus (WNV). Experiments were performed under different climate conditions (27 ± 5 °C; 24 ± 5 °C) for fourteen days. Ae. koreicus had the potential to transmit CHIKV and ZIKV but not WNV. Transmission was exclusively observed at the higher temperature, and transmission efficiency was rather low, at 4.6% (CHIKV) or 4.7% (ZIKV). Using a whole virome analysis, a novel mosquito-associated virus, designated Wiesbaden virus (WBDV), was identified in Ae. koreicus. Linking the WBDV infection status of single specimens to their transmission capability for the arboviruses revealed no influence on ZIKV transmission. In contrast, a coinfection of WBDV and CHIKV likely has a boost effect on CHIKV transmission. Due to its current distribution, the risk of arbovirus transmission by Ae. koreicus in Europe is rather low but might gain importance, especially in regions with higher temperatures. The impact of WBDV on arbovirus transmission should be analyzed in more detail.
Collapse
|
26
|
Wolbachia detection in Aedes aegypti using MALDI-TOF MS coupled to artificial intelligence. Sci Rep 2021; 11:21355. [PMID: 34725401 PMCID: PMC8560810 DOI: 10.1038/s41598-021-00888-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022] Open
Abstract
The mosquito Aedes aegypti is the major vector of arboviruses like dengue, Zika and chikungunya viruses. Attempts to reduce arboviruses emergence focusing on Ae. aegypti control has proven challenging due to the increase of insecticide resistances. An emerging strategy which consists of releasing Ae. aegypti artificially infected with Wolbachia in natural mosquito populations is currently being developed. The monitoring of Wolbachia-positive Ae. aegypti in the field is performed in order to ensure the program effectiveness. Here, the reliability of the Matrix‑Assisted Laser Desorption Ionization‑Time Of Flight (MALDI‑TOF) coupled with the machine learning methods like Convolutional Neural Network (CNN) to detect Wolbachia in field Ae. aegypti was assessed for the first time. For this purpose, laboratory reared and field Ae. aegypti were analyzed. The results showed that the CNN recognized Ae. aegypti spectral patterns associated with Wolbachia-infection. The MALDI-TOF coupled with the CNN (sensitivity = 93%, specificity = 99%, accuracy = 97%) was more efficient than the loop-mediated isothermal amplification (LAMP), and as efficient as qPCR for Wolbachia detection. It therefore represents an interesting method to evaluate the prevalence of Wolbachia in field Ae. aegypti mosquitoes.
Collapse
|
27
|
Segura NA, Muñoz AL, Losada-Barragán M, Torres O, Rodríguez AK, Rangel H, Bello F. Minireview: Epidemiological impact of arboviral diseases in Latin American countries, arbovirus-vector interactions and control strategies. Pathog Dis 2021; 79:6354781. [PMID: 34410378 DOI: 10.1093/femspd/ftab043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes are the most crucial insects in public health due to their vector capacity and competence to transmit pathogens, including arboviruses, bacterias and parasites. Re-emerging and emerging arboviral diseases, such as yellow fever virus (YFV), dengue virus (DENV), zika virus (ZIKV), and chikungunya virus (CHIKV), constitute one of the most critical health public concerns in Latin America. These diseases present a significant incidence within the human settlements increasing morbidity and mortality events. Likewise, among the different genus of mosquito vectors of arboviruses, those of the most significant medical importance corresponds to Aedes and Culex. In Latin America, the mosquito vector species of YFV, DENV, ZIKV, and CHIKV are mainly Aedes aegypti and Ae. Albopictus. Ae. aegypti is recognized as the primary vector in urban environments, whereas Ae. albopictus, recently introduced in the Americas, is more prone to rural settings. This minireview focuses on what is known about the epidemiological impact of mosquito-borne diseases in Latin American countries, with particular emphasis on YFV, DENV, ZIKV and CHIKV, vector mosquitoes, geographic distribution, and vector-arbovirus interactions. Besides, it was analyzed how climate change and social factors have influenced the spread of arboviruses and the control strategies developed against mosquitoes in this continent.
Collapse
Affiliation(s)
- Nidya A Segura
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Ana L Muñoz
- PhD Program of Health Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | | | - Orlando Torres
- Faculty of Veterinary, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | - Anny K Rodríguez
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá 110231, Colombia
| | - Héctor Rangel
- Laboratory of Molecular Virology, Instituto Venezolano de Investigaciones Científicas, Caracas 1204, Venezuela
| | - Felio Bello
- Faculty of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, Bogotá 110141, Colombia
| |
Collapse
|
28
|
Gupta S, Mishra KP, Gupta R, Singh SB. Andrographolide - A prospective remedy for chikungunya fever and viral arthritis. Int Immunopharmacol 2021; 99:108045. [PMID: 34435582 DOI: 10.1016/j.intimp.2021.108045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 12/14/2022]
Abstract
AIM Andrographolide, the major bioactive compound of the plant Andrographis paniculata, exerts anti-inflammatory, cyto-, neuro- and hepato-protective effects. Traditional remedies for infectious diseases include A. paniculata for maladies like fever, pain, rashes which are associated with chikungunya and other arboviral diseases. Since andrographolide and A. paniculata have potent antiviral properties, the present review aims to provide a comprehensive report of symptoms and immunological molecules involved in chikungunya virus (CHIKV) infection and the therapeutic role of andrographolide in the mitigation of chikungunya and associated symptoms. MATERIALS AND METHODS Studies on the therapeutic role of A. paniculata and andrographolide in chikungunya and other viral infections published between 1991 and 2021 were searched on various databases. RESULTS AND DISCUSSION The havoc created by chikungunya is due to the associated debilitating symptoms including arthralgia and myalgia which sometimes remains for years. The authors reviewed and summarized the various symptoms and immunological molecules related to CHIKV replication and associated inflammation, oxidative and unfolded protein stress, apoptosis and arthritis. Additionally, the authors suggested andrographolide as a remedy for chikungunya and other arboviral infections by highlighting its role in the regulation of molecules involved in unfolded protein response pathway, immunomodulation, inflammation, virus multiplication, oxidative stress, apoptosis and arthritis. CONCLUSION The present review demonstrated the major complications associated with chikungunya and the role of andrographolide in alleviating the chikungunya associated symptoms to encourage further investigations using this promising compound towards early development of an anti-CHIKV drug. Chemical Compound studied: andrographolide (PubChem CID: 5318517).
Collapse
Affiliation(s)
- Swati Gupta
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research (ICMR), Ansari Nagar, New Delhi 110029, India.
| | - K P Mishra
- Defence Research and Development Organization (DRDO)-HQ, Rajaji Marg, New Delhi 110011, India
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - S B Singh
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
29
|
Kiser LM, Sokoloski KJ, Hardy RW. Interactions between capsid and viral RNA regulate Chikungunya virus translation in a host-specific manner. Virology 2021; 560:34-42. [PMID: 34023723 PMCID: PMC8206026 DOI: 10.1016/j.virol.2021.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Alphaviruses are positive sense, RNA viruses commonly transmitted by an arthropod vector to a mammalian or avian host. In recent years, a number of the Alphavirus members have reemerged as public health concerns. Transmission from mosquito vector to vertebrate hosts requires an understanding of the interaction between the virus and both vertebrate and insect hosts to develop rational intervention strategies. The current study uncovers a novel role for capsid protein during Chikungunya virus replication whereby the interaction with viral RNA in the E1 coding region regulates protein synthesis processes early in infection. Studies done in both the mammalian and mosquito cells indicate that interactions between viral RNA and capsid protein have functional consequences that are host species specific. Our data support a vertebrate-specific role for capsid:vRNA interaction in temporally regulating viral translation in a manner dependent on the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Lauren M Kiser
- Department of Biology, College of Arts and Sciences, Indiana University, Bloomington, IN, USA
| | - Kevin J Sokoloski
- Department of Microbiology and Immunology and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA
| | - Richard W Hardy
- Department of Biology, College of Arts and Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
30
|
Abdullah N, Ahemad N, Aliazis K, Khairat JE, Lee TC, Abdul Ahmad SA, Adnan NAA, Macha NO, Hassan SS. The Putative Roles and Functions of Indel, Repetition and Duplication Events in Alphavirus Non-Structural Protein 3 Hypervariable Domain (nsP3 HVD) in Evolution, Viability and Re-Emergence. Viruses 2021; 13:v13061021. [PMID: 34071712 PMCID: PMC8228767 DOI: 10.3390/v13061021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022] Open
Abstract
Alphavirus non-structural proteins 1–4 (nsP1, nsP2, nsP3, and nsP4) are known to be crucial for alphavirus RNA replication and translation. To date, nsP3 has been demonstrated to mediate many virus–host protein–protein interactions in several fundamental alphavirus mechanisms, particularly during the early stages of replication. However, the molecular pathways and proteins networks underlying these mechanisms remain poorly described. This is due to the low genetic sequence homology of the nsP3 protein among the alphavirus species, especially at its 3′ C-terminal domain, the hypervariable domain (HVD). Moreover, the nsP3 HVD is almost or completely intrinsically disordered and has a poor ability to form secondary structures. Evolution in the nsP3 HVD region allows the alphavirus to adapt to vertebrate and insect hosts. This review focuses on the putative roles and functions of indel, repetition, and duplication events that have occurred in the alphavirus nsP3 HVD, including characterization of the differences and their implications for specificity in the context of virus–host interactions in fundamental alphavirus mechanisms, which have thus directly facilitated the evolution, adaptation, viability, and re-emergence of these viruses.
Collapse
Affiliation(s)
- Nurshariza Abdullah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Konstantinos Aliazis
- Institute of Immunology and Immunotherapy, Centre for Liver and Gastrointestinal Research, University of Birmingham, Birmingham B15 2TT, UK;
| | - Jasmine Elanie Khairat
- Institute of Biological Sciences, Faculty of Science, University Malaya, Kuala Lumpur 50603, Malaysia;
| | - Thong Chuan Lee
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia;
| | - Siti Aisyah Abdul Ahmad
- Immunogenetic Unit, Allergy and Immunology Research Center, Institute for Medical Research, Ministry of Health Malaysia, Shah Alam 40170, Selangor, Malaysia;
| | - Nur Amelia Azreen Adnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Nur Omar Macha
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia; (N.A.); (N.A.A.A.); (N.O.M.)
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- Correspondence: ; Tel.: +60-3-5514-6340
| |
Collapse
|
31
|
de Thoisy B, Duron O, Epelboin L, Musset L, Quénel P, Roche B, Binetruy F, Briolant S, Carvalho L, Chavy A, Couppié P, Demar M, Douine M, Dusfour I, Epelboin Y, Flamand C, Franc A, Ginouvès M, Gourbière S, Houël E, Kocher A, Lavergne A, Le Turnier P, Mathieu L, Murienne J, Nacher M, Pelleau S, Prévot G, Rousset D, Roux E, Schaub R, Talaga S, Thill P, Tirera S, Guégan JF. Ecology, evolution, and epidemiology of zoonotic and vector-borne infectious diseases in French Guiana: Transdisciplinarity does matter to tackle new emerging threats. INFECTION GENETICS AND EVOLUTION 2021; 93:104916. [PMID: 34004361 DOI: 10.1016/j.meegid.2021.104916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
French Guiana is a European ultraperipheric region located on the northern Atlantic coast of South America. It constitutes an important forested region for biological conservation in the Neotropics. Although very sparsely populated, with its inhabitants mainly concentrated on the Atlantic coastal strip and along the two main rivers, it is marked by the presence and development of old and new epidemic disease outbreaks, both research and health priorities. In this review paper, we synthetize 15 years of multidisciplinary and integrative research at the interface between wildlife, ecosystem modification, human activities and sociodemographic development, and human health. This study reveals a complex epidemiological landscape marked by important transitional changes, facilitated by increased interconnections between wildlife, land-use change and human occupation and activity, human and trade transportation, demography with substantial immigration, and identified vector and parasite pharmacological resistance. Among other French Guianese characteristics, we demonstrate herein the existence of more complex multi-host disease life cycles than previously described for several disease systems in Central and South America, which clearly indicates that today the greater promiscuity between wildlife and humans due to demographic and economic pressures may offer novel settings for microbes and their hosts to circulate and spread. French Guiana is a microcosm that crystallizes all the current global environmental, demographic and socioeconomic change conditions, which may favor the development of ancient and future infectious diseases.
Collapse
Affiliation(s)
- Benoît de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana.
| | - Olivier Duron
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France; Centre de Recherche en Écologie et Évolution de la Santé, Montpellier, France
| | - Loïc Epelboin
- Infectious Diseases Department, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Lise Musset
- Laboratoire de Parasitologie, Centre Collaborateur OMS Pour La Surveillance Des Résistances Aux Antipaludiques, Centre National de Référence du Paludisme, Pôle zones Endémiques, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Philippe Quénel
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR-S 1085 Rennes, France
| | - Benjamin Roche
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France; Centre de Recherche en Écologie et Évolution de la Santé, Montpellier, France
| | - Florian Binetruy
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France
| | - Sébastien Briolant
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Université, IRD, SSA, AP-HM, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), France; IHU Méditerranée Infection, Marseille, France
| | | | - Agathe Chavy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana
| | - Pierre Couppié
- Dermatology Department, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Magalie Demar
- TBIP, Université de Guyane, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR 9017-CIIL Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Maylis Douine
- Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Isabelle Dusfour
- Département de Santé Globale, Institut Pasteur, Paris, France; Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana
| | - Yanouk Epelboin
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana
| | - Claude Flamand
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana; Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Alain Franc
- UMR BIOGECO, INRAE, Université de Bordeaux, Cestas, France; Pleiade, EPC INRIA-INRAE-CNRS, Université de Bordeaux Talence, France
| | - Marine Ginouvès
- TBIP, Université de Guyane, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR 9017-CIIL Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Sébastien Gourbière
- UMR 5096 Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, Perpignan, France
| | - Emeline Houël
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, Cayenne, France
| | - Arthur Kocher
- Transmission, Infection, Diversification & Evolution Group, Max-Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Laboratoire Evolution et Diversité Biologique (UMR 5174), Université de Toulouse, CNRS, IRD, UPS, Toulouse, France
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana
| | - Paul Le Turnier
- Service de Maladies Infectieuses et Tropicales, Hôtel Dieu - INSERM CIC 1413, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Luana Mathieu
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR-S 1085 Rennes, France
| | - Jérôme Murienne
- Laboratoire Evolution et Diversité Biologique (UMR 5174), Université de Toulouse, CNRS, IRD, UPS, Toulouse, France
| | - Mathieu Nacher
- Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Stéphane Pelleau
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR-S 1085 Rennes, France; Malaria: Parasites and Hosts, Institut Pasteur, Paris, France
| | - Ghislaine Prévot
- TBIP, Université de Guyane, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR 9017-CIIL Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Dominique Rousset
- Laboratoire de Virologie, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana
| | - Emmanuel Roux
- ESPACE-DEV (Institut de Recherche pour le Développement, Université de la Réunion, Université des Antilles, Université de Guyane, Université de Montpellier, Montpellier, France; International Joint Laboratory "Sentinela" Fundação Oswaldo Cruz, Universidade de Brasília, Institut de Recherche pour le Développement, Rio de Janeiro RJ-21040-900, Brazil
| | - Roxane Schaub
- TBIP, Université de Guyane, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR 9017-CIIL Centre d'Infection et d'Immunité de Lille, Lille, France; Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Stanislas Talaga
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France; Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana
| | - Pauline Thill
- Service Universitaire des Maladies Infectieuses et du Voyageur, Centre Hospitalier Dron, Tourcoing, France
| | - Sourakhata Tirera
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana
| | - Jean-François Guégan
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France; UMR ASTRE, INRAE, CIRAD, Université de Montpellier, Montpellier, France.
| |
Collapse
|
32
|
Anggraeni YM, Garjito TA, Prihatin MT, Handayani SW, Negari KS, Yanti AO, Hidajat MC, Prastowo D, Satoto TBT, Manguin S, Gavotte L, Frutos R. Fast Expansion of the Asian-Pacific Genotype of the Chikungunya Virus in Indonesia. Front Cell Infect Microbiol 2021; 11:631508. [PMID: 33968797 PMCID: PMC8098665 DOI: 10.3389/fcimb.2021.631508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Chikungunya is repeatedly affecting Indonesia through successive outbreaks. The Asian genotype has been present in Asia since the late 1950s while the ECSA-IOL (East/Central/South Africa - Indian Ocean Lineage) genotype invaded Asia in 2005. In order to determine the extension of the circulation of the chikungunya virus (CHIKV) in Indonesia, mosquitoes were collected in 28 different sites from 12 Indonesian provinces in 2016-2017. The E1 subunit of the CHIKV envelope gene was sequenced while mosquitoes were genotyped using the mitochondrial cox1 (cytochrome C oxidase subunit 1) gene to determine whether a specific population was involved in the vectoring of CHIKV. A total of 37 CHIKV samples were found in 28 Aedes aegypti, 8 Aedes albopictus and 1 Aedes butleri out of 15,362 samples collected and tested. These viruses, like all Indonesian CHIKV since 2000, belonged to a genotype we propose to call the Asian-Pacific genotype. It also comprises the Yap isolates and viruses having emerged in Polynesia, the Caribbean and South America. They differ from the CHIKV of the Asian genotype found earlier in Indonesia indicating a replacement. These results raise the question of the mechanisms behind this fast and massive replacement.
Collapse
Affiliation(s)
- Yusnita Mirna Anggraeni
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Triwibowo Ambar Garjito
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
- HSM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Mega Tyas Prihatin
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Sri Wahyuni Handayani
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Kusumaningtyas Sekar Negari
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Ary Oktsari Yanti
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Muhammad Choirul Hidajat
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Dhian Prastowo
- Institute for Vector and Reservoir Control Research and Development, National Institute of Health Research and Development, the Ministry of Health of Indonesia, Salatiga, Indonesia
| | - Tri Baskoro Tunggul Satoto
- Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Sylvie Manguin
- HSM, University of Montpellier, CNRS, IRD, Montpellier, France
| | | | | |
Collapse
|
33
|
Chikungunya Manifestations and Viremia in Patients WhoPresented to the Fever Clinic at Bangkok Hospital for Tropical Diseases during the 2019 Outbreak in Thailand. Trop Med Infect Dis 2021; 6:tropicalmed6010012. [PMID: 33494514 PMCID: PMC7924391 DOI: 10.3390/tropicalmed6010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
Chikungunya virus is an Alphavirus belonging to the family Togaviridae that is transmitted to humans by an infected Aedes mosquito. Patients develop fever, inflammatory arthritis, and rash during the acute stage of infection. Although the illness is self-limiting, atypical and severe cases are not uncommon, and 60% may develop chronic symptoms that persist for months or even for longer durations. Having a distinct periodical epidemiologic outbreak pattern, chikungunya virus reappeared in Thailand in December 2018. Here, we describe a cohort of acute chikungunya patients who had presented to the Bangkok Hospital for Tropical Diseases during October 2019. Infection was detected by a novel antigen kit and subsequently confirmed by real-time RT-PCR using serum collected at presentation to the Fever Clinic. Other possible acute febrile illnesses such as influenza, dengue, and malaria were excluded. We explored the sequence of clinical manifestations at presentation during the acute phase and associated the viral load with the clinical findings. Most of the patients were healthy individuals in their forties. Fever and arthralgia were the predominant clinical manifestations found in this patient cohort, with a small proportion of patients with systemic symptoms. Higher viral loads were associated with arthralgia, and arthralgia with the involvement of the large joints was more common in female patients.
Collapse
|
34
|
The Genetic Basis for Salivary Gland Barriers to Arboviral Transmission. INSECTS 2021; 12:insects12010073. [PMID: 33467430 PMCID: PMC7830681 DOI: 10.3390/insects12010073] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Arthropod-borne viruses (arboviruses) infect mosquito salivary glands and then escape to saliva prior to virus transmission. Arbovirus transmission from mosquitoes can be modulated by salivary gland infection barriers (SGIBs) and salivary gland escape barriers (SGEBs). We determined the influence of SGIBs and SGEBs by estimating the quantitative genetic contributions of Aedes aegypti half-sib families (Mapastepec, Mexico) infected with three dengue 2 (DENV2), two chikungunya (CHIKV), and two Zika (ZIKV) genotypes. We determined virus titer per salivary gland and saliva at seven days post-infection and virus prevalence in the half-sib population. CHIKV or ZIKV genotypes did not present SGIB, whereas DENV2 genotypes showed low rates of SGIB. However, virus titer and prevalence due to additive genetic factors in the half-sib family displayed a significant narrow-sense heritability (h2) for SGIB in two of the three DENV2 genotypes and one CHIKV and one ZIKV genotype. SGEBs were detected in all seven virus strains: 60-88% of DENV2 and 48-62% of CHIKV or ZIKV genotype infections. SGEB h2 was significant for all CHIKV or ZIKV genotypes but not for any of the DENV2 genotypes. SGIBs and SGEBs exhibited classical gene-by-gene interaction dynamics and are influenced by genetic factors in the mosquito and the virus.
Collapse
|
35
|
Merwaiss F, Filomatori CV, Susuki Y, Bardossy ES, Alvarez DE, Saleh MC. Chikungunya Virus Replication Rate Determines the Capacity of Crossing Tissue Barriers in Mosquitoes. J Virol 2021; 95:e01956-20. [PMID: 33148794 PMCID: PMC7925089 DOI: 10.1128/jvi.01956-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging and rapidly spreading pathogen transmitted by mosquitoes. The emergence of new epidemic variants of the virus is associated with genetic evolutionary traits, including duplication of repeated RNA elements in the 3' untranslated region (UTR) that seemingly favor transmission by mosquitoes. The transmission potential of a given variant results from a complex interplay between virus populations and anatomical tissue barriers in the mosquito. Here, we used the wild-type CHIKV Caribbean strain and an engineered mutant harboring a deletion in the 3' UTR to dissect the interactions of virus variants with the anatomical barriers that impede transmission during the replication cycle of the virus in Aedes mosquitoes. Compared to the 3'-UTR mutant, we observed that the wild-type virus had a short extrinsic incubation period (EIP) after an infectious blood meal and was expectorated into mosquito saliva much more efficiently. We found that high viral titers in the midgut are not sufficient to escape the midgut escape barrier. Rather, viral replication kinetics play a crucial role in determining midgut escape and the transmission ability of CHIKV. Finally, competition tests in mosquitoes coinfected with wild-type and mutant viruses revealed that both viruses successfully colonized the midgut, but wild-type viruses effectively displaced mutant viruses during systemic infection due to their greater efficiency of escaping from the midgut into secondary tissues. Overall, our results uncover a link between CHIKV replication kinetics and the effect of bottlenecks on population diversity, as slowly replicating variants are less able to overcome the midgut escape barrier.IMPORTANCE It is well established that selective pressures in mosquito vectors impose population bottlenecks for arboviruses. Here, we used a CHIKV Caribbean lineage mutant carrying a deletion in the 3' UTR to study host-virus interactions in vivo in the epidemic mosquito vector Aedes aegypti We found that the mutant virus had a delayed replication rate in mosquitoes, which lengthened the extrinsic incubation period (EIP) and reduced fitness relative to the wild-type virus. As a result, the mutant virus displayed a reduced capacity to cross anatomical barriers during the infection cycle in mosquitoes, thus reducing the virus transmission rate. Our findings show how selective pressures act on CHIKV noncoding regions to select variants with shorter EIPs that are preferentially transmitted by the mosquito vector.
Collapse
Affiliation(s)
- Fernando Merwaiss
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Institut Pasteur, Viruses and RNA Interference Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Claudia V Filomatori
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Yasutsugu Susuki
- Institut Pasteur, Viruses and RNA Interference Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Eugenia S Bardossy
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - María-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| |
Collapse
|
36
|
High-Throughput Method for Detection of Arbovirus Infection of Saliva in Mosquitoes Aedes aegypti and Ae. albopictus. Viruses 2020; 12:v12111343. [PMID: 33238619 PMCID: PMC7700541 DOI: 10.3390/v12111343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 01/03/2023] Open
Abstract
Vector competence refers to the ability of a vector to acquire, maintain, and transmit a pathogen. Collecting mosquito saliva in medium-filled capillary tubes has become the standard for approximating arbovirus transmission. However, this method is time-consuming and labor-intensive. Here we compare the capillary tube method to an alternative high-throughput detection method the collection of saliva on paper cards saturated with honey, with (FTA card) and without (filter paper) reagents for the preservation of nucleic acid for Aedes aegypti and Aedes albopictus mosquitoes infected with two emerging genotypes of the chikungunya virus (CHIKV). Model results showed that the Asian genotype CHIKV dissemination in the harvested legs of both Ae. aegypti and Ae. albopictus increased the odds of females having a positive salivary infection and higher salivary viral titers, while for the IOL genotype the same effect was observed only for Ae. aegypti. Of the three tested detection methods, the FTA card was significantly more effective at detecting infected saliva of Ae. aegypti and Ae. albopictus females than the capillary tube and filter paper was as effective as the capillary tube for the Asian genotype. We did not find significant effects of the detection method in detecting higher viral titer for both Asian and IOL genotypes. Our results are discussed in light of the limitations of the different tested detection methods.
Collapse
|
37
|
Transcriptomic analyses of Aedes aegypti cultured cells and ex vivo midguts in response to an excess or deficiency of heme: a quest for transcriptionally-regulated heme transporters. BMC Genomics 2020; 21:604. [PMID: 32867680 PMCID: PMC7460771 DOI: 10.1186/s12864-020-06981-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/11/2020] [Indexed: 12/26/2022] Open
Abstract
Background Aedes aegypti is the principle vector of many arboviruses, including dengue virus and Zika virus, which are transmitted when an infected female mosquito takes a blood meal in order to initiate vitellogenesis. During blood digestion, ~ 10 mM heme-iron is ingested into the midgut lumen. While heme acts as both a nutrient and signaling molecule during blood digestion, it can also be highly toxic if left unchaperoned. Both signaling by, and degradation of, heme are intracellular processes, occurring in the nucleus and cytoplasm, respectively. However, the precise mechanism of heme uptake into the midgut epithelium is not currently known. Results We used next generation RNA sequencing with the goal to identify genes that code for membrane bound heme import protein(s) responsible for heme uptake into the midgut epithelium. Heme deprivation increased uptake of a heme fluorescent analog in cultured cells, while treatment of midguts with an excess of heme decreased uptake, confirming physiological changes were occurring in these heme-sensitive cells/tissues prior to sequencing. A list of candidate genes was assembled for each of the experimental sample sets, which included Aag2 and A20 cultured cells as well as midgut tissue, based on the results of a differential expression analysis, soft cluster analysis and number of predicted transmembrane domains. Lastly, the functions related to heme transport were examined through RNAi knockdown. Conclusions Despite a large number of transmembrane domain containing genes differentially expressed in response to heme, very few were highly differentially expressed in any of the datasets examined. RNAi knockdown of a subset of candidates resulted in subtle changes in heme uptake, but minimal overall disruption to blood digestion/egg production. These results could indicate that heme import in Ae. aegypti may be controlled by a redundant system of multiple distinct transport proteins. Alternatively, heme membrane bound transport in Ae. aegypti could be regulated post-translationally.
Collapse
|
38
|
|
39
|
Azar SR, Campos RK, Bergren NA, Camargos VN, Rossi SL. Epidemic Alphaviruses: Ecology, Emergence and Outbreaks. Microorganisms 2020; 8:E1167. [PMID: 32752150 PMCID: PMC7464724 DOI: 10.3390/microorganisms8081167] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past century, the emergence/reemergence of arthropod-borne zoonotic agents has been a growing public health concern. In particular, agents from the genus Alphavirus pose a significant risk to both animal and human health. Human alphaviral disease presents with either arthritogenic or encephalitic manifestations and is associated with significant morbidity and/or mortality. Unfortunately, there are presently no vaccines or antiviral measures approved for human use. The present review examines the ecology, epidemiology, disease, past outbreaks, and potential to cause contemporary outbreaks for several alphavirus pathogens.
Collapse
Affiliation(s)
- Sasha R. Azar
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Rafael K. Campos
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | | | - Vidyleison N. Camargos
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Shannan L. Rossi
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
40
|
Filomatori CV, Merwaiss F, Bardossy ES, Alvarez DE. Impact of alphavirus 3'UTR plasticity on mosquito transmission. Semin Cell Dev Biol 2020; 111:148-155. [PMID: 32665176 DOI: 10.1016/j.semcdb.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
Abstract
Alphaviruses such as chikungunya and western equine encephalitis viruses are important human pathogens transmitted by mosquitoes that have recently caused large epidemic and epizootic outbreaks. The epidemic potential of alphaviruses is often related to enhanced mosquito transmission. Tissue barriers and antiviral responses impose bottlenecks to viral populations in mosquitoes. Substitutions in the envelope proteins and the presence of repeated sequence elements (RSEs) in the 3'UTR of epidemic viruses were proposed to be specifically associated to efficient replication in mosquito vectors. Here, we discuss the molecular mechanisms that originated RSEs, the evolutionary forces that shape the 3'UTR of alphaviruses, and the significance of RSEs for mosquito transmission. Finally, the presence of RSEs in the 3'UTR of viral genomes appears as evolutionary trait associated to mosquito adaptation and emerges as a common feature among viruses from the alphavirus and flavivirus genera.
Collapse
Affiliation(s)
- Claudia V Filomatori
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina
| | - Fernando Merwaiss
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina
| | - Eugenia S Bardossy
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Argentina.
| |
Collapse
|
41
|
Distinct New York City Aedes albopictus Mosquito Populations Display Differences in Salivary Gland Protein D7 Diversity and Chikungunya Virus Replication. Viruses 2020; 12:v12070698. [PMID: 32605312 PMCID: PMC7411853 DOI: 10.3390/v12070698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
In an increasingly interconnected world, the exposure and subsequent spread of emergent viruses has become inevitable. This is particularly true for Aedes (Ae.) mosquito-vectored viruses, whose range has increased over the past decade from tropical to temperate regions. However, it is unclear if all populations of Ae. mosquitoes in temperate New York City are able to successfully replicate and transmit arboviruses. To answer this question, we reared Ae. albopictus mosquitoes living in a temperate climate from three locations in New York City. We first sequenced the salivary antiviral protein D7 from individual mosquitoes in each population and found single nucleotide variants that are both shared and unique for each Ae. albopictus population. We then fed each population chikungunya virus (CHIKV) via an artificial blood meal. All three mosquito populations could be infected with CHIKV, yet viral titers differed between populations at 7 days post infection. Moreover, we found that these mosquitoes could transmit CHIKV to mice, and that virus RNA reached the saliva as early as two days post infection. Upon sequencing of the saliva CHIKV genomic RNA, we found mutations at sites correlated with increased transmission and virulence. These studies show that NYC Ae. albopictus populations can be infected with and transmit CHIKV, CHIKV is able to evolve in these mosquitoes, and that host salivary factors display population-specific diversity. Taken together, these studies highlight the need to study how distinct mosquito populations control viral infections, both at the virus and host level.
Collapse
|
42
|
de la Cruz-Castro IX, Nava-Aguilera E, Morales-Pérez A, Betanzos-Reyes ÁF, Flores-Moreno M, Morales-Nava L, Balanzar-Martínez A, Serrano-de Los Santos FR, Andersson N. Factors Associated with Chikungunya Relapse in Acapulco, Mexico: A Cross-Sectional Study. Vector Borne Zoonotic Dis 2020; 20:782-787. [PMID: 32552425 DOI: 10.1089/vbz.2020.2615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: To estimate the occurrence of self-reported chikungunya relapse and identify associated factors. Materials and Methods: A cross-sectional study in December 2015 included 1305 homes in eight urban clusters considered representative of Acapulco in southern Mexico. Administered questionnaires collated information on 5870 individuals, including sociodemographic variables, a history of chronic conditions, and the self-reporting of chikungunya. Bivariate and multivariate analyses relied on a cluster-adjusted Mantel-Haenszel procedure to identify the factors associated with chikungunya and its relapse. Results: Some 66% (3531/5870) of the population reported suffering chikungunya and 31.1% (1098/3531) reported a relapse. Factors associated with relapse included the severity of the chikungunya case (odds ratio [OR]: 3.35; clusters adjusted 95% confidence interval [95% CIca]: 3.16-3.55); history of arthralgia (OR: 2.96; 95% CIca: 2.27-3.86); age 30 years or older (OR: 1.85; 95% CIca: 1.72-1.98); female (OR: 1.64; 95% CIca: 1.42-1.90); and higher education households (OR: 1.18; 95% CIca: 1.11-1.27). Conclusions: The high occurrence of chikungunya and its relapse are a public health problem. The factors associated with relapse do not immediately suggest specific prevention strategies but emphasize the dire need for effective approaches to vector control.
Collapse
Affiliation(s)
| | - Elizabeth Nava-Aguilera
- Centro de Investigación de Enfermedades Tropicales (CIET), Universidad Autónoma de Guerrero, Acapulco, Guerrero, México
| | - Arcadio Morales-Pérez
- Centro de Investigación de Enfermedades Tropicales (CIET), Universidad Autónoma de Guerrero, Acapulco, Guerrero, México
| | - Ángel Francisco Betanzos-Reyes
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Miguel Flores-Moreno
- Centro de Investigación de Enfermedades Tropicales (CIET), Universidad Autónoma de Guerrero, Acapulco, Guerrero, México
| | - Liliana Morales-Nava
- Centro de Investigación de Enfermedades Tropicales (CIET), Universidad Autónoma de Guerrero, Acapulco, Guerrero, México
| | - Alejandro Balanzar-Martínez
- Centro de Investigación de Enfermedades Tropicales (CIET), Universidad Autónoma de Guerrero, Acapulco, Guerrero, México
| | | | - Neil Andersson
- Centro de Investigación de Enfermedades Tropicales (CIET), Universidad Autónoma de Guerrero, Acapulco, Guerrero, México.,Department of Family Medicine, McGill University, Montreal, Canada
| |
Collapse
|
43
|
Arif M, Tauran P, Kosasih H, Pelupessy NM, Sennang N, Mubin RH, Sudarmono P, Tjitra E, Murniati D, Alam A, Gasem MH, Aman AT, Lokida D, Hadi U, Parwati KTM, Lau CY, Neal A, Karyana M. Chikungunya in Indonesia: Epidemiology and diagnostic challenges. PLoS Negl Trop Dis 2020; 14:e0008355. [PMID: 32479497 PMCID: PMC7289446 DOI: 10.1371/journal.pntd.0008355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/11/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is often overlooked as an etiology of fever in tropical and sub-tropical regions. Lack of diagnostic testing capacity in these areas combined with co-circulation of clinically similar pathogens such as dengue virus (DENV), hinders CHIKV diagnosis. To better address CHIKV in Indonesia, an improved understanding of epidemiology, clinical presentation, and diagnostic approaches is needed. METHODOLOGY/PRINCIPAL FINDINGS Acutely hospitalized febrile patients ≥1-year-old were enrolled in a multi-site observational cohort study conducted in Indonesia from 2013 to 2016. Demographic and clinical data were collected at enrollment; blood specimens were collected at enrollment, once during days 14 to 28, and three months after enrollment. Plasma samples negative for DENV by serology and/or molecular assays were screened for evidence of acute CHIKV infection (ACI) by serology and molecular assays. To address the co-infection of DENV and CHIKV, DENV cases were selected randomly to be screened for evidence of ACI. ACI was confirmed in 40/1,089 (3.7%) screened subjects, all of whom were DENV negative. All 40 cases initially received other diagnoses, most commonly dengue fever, typhoid fever, and leptospirosis. ACI was found at five of the seven study cities, though evidence of prior CHIKV exposure was observed in 25.2% to 45.9% of subjects across sites. All subjects were assessed during hospitalization as mildly or moderately ill, consistent with the Asian genotype of CHIKV. Subjects with ACI had clinical presentations that overlapped with other common syndromes, atypical manifestations of disease, or persistent or false-positive IgM against Salmonella Typhi. Two of the 40 cases were possibly secondary ACI. CONCLUSIONS/SIGNIFICANCE CHIKV remains an underdiagnosed acute febrile illness in Indonesia. Public health measures should support development of CHIKV diagnostic capacity. Improved access to point-of-care diagnostic tests and clinical training on presentations of ACI will facilitate appropriate case management such as avoiding unneccessary treatments or antibiotics, early response to control mosquito population and eventually reducing disease transmission.
Collapse
Affiliation(s)
- Mansyur Arif
- Faculty of Medicine, Universitas Hasanuddin/Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Patricia Tauran
- Faculty of Medicine, Universitas Hasanuddin/Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Herman Kosasih
- *Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
| | - Ninny Meutia Pelupessy
- Faculty of Medicine, Universitas Hasanuddin/Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Nurhayana Sennang
- Faculty of Medicine, Universitas Hasanuddin/Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Risna Halim Mubin
- Faculty of Medicine, Universitas Hasanuddin/Dr. Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Pratiwi Sudarmono
- Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Emiliana Tjitra
- National Institute of Health Research and Development (NIHRD), Ministry of Health, Jakarta, Indonesia
| | | | - Anggraini Alam
- Hasan Sadikin Hospital–Faculty of Medicine Universitas Padjadjaran, Bandung, Indonesia
| | | | - Abu Tholib Aman
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Lokida
- Tangerang District Hospital, Tangerang, Indonesia
| | - Usman Hadi
- Dr. Soetomo Academic General Hospital–Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | | | - Chuen-Yen Lau
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Aaron Neal
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Muhammad Karyana
- *Indonesia Research Partnership on Infectious Disease (INA-RESPOND), Jakarta, Indonesia
- National Institute of Health Research and Development (NIHRD), Ministry of Health, Jakarta, Indonesia
| |
Collapse
|
44
|
Anwar S, Mourosi JT, Khan MF, Hosen MJ. Prediction of Epitope-Based Peptide Vaccine Against the Chikungunya Virus by Immuno-informatics Approach. Curr Pharm Biotechnol 2020; 21:325-340. [PMID: 31721709 DOI: 10.2174/1389201020666191112161743] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/16/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chikungunya is an arthropod-borne viral disease characterized by abrupt onset of fever frequently accompanied by joint pain, which has been identified in over 60 countries in Africa, the Americas, Asia, and Europe. METHODS Regardless of the availability of molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet. In the present study, a combination of B-cell and T-cell epitope predictions, followed by molecular docking simulation approach has been carried out to design a potential epitope-based peptide vaccine, which can trigger a critical immune response against the viral infections. RESULTS A total of 52 sequences of E1 glycoprotein from the previously reported isolates of Chikungunya outbreaks were retrieved and examined through in silico methods to identify a potential B-cell and T-cell epitope. From the two separate epitope prediction servers, five potential B-cell epitopes were selected, among them "NTQLSEAHVEKS" was found highly conserved across strains and manifests high antigenicity with surface accessibility, flexibility, and hydrophilicity. Similarly, two highly conserved, non-allergenic, non-cytotoxic putative T-cell epitopes having maximum population coverage were screened to bind with the HLA-C 12*03 molecule. Molecular docking simulation revealed potential T-cell based epitope "KTEFASAYR" as a vaccine candidate for this virus. CONCLUSION A combination of these B-cell and T-cell epitope-based vaccine can open up a new skyline with broader therapeutic application against Chikungunya virus with further experimental and clinical investigation.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.,Maternal and Child Health Program, Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8440 112 St. NW, Edmonton, AB T6G 2R7, Canada
| | - Jarin T Mourosi
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.,Microbial and Cellular Biology Program, Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064, United States
| | - Md Fahim Khan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mohammad J Hosen
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
45
|
Abstract
Introduction: Chikungunya virus (CHIKV), a reemerging human arthropod borne virus, can causes global epidemic outbreaks and has become a serious health concern due to the unavailability of any antiviral therapy/vaccine. Extensive research has been conducted to target different proteins from CHIKV to curtail the spread of virus.Areas covered: This review provides an overview of the granted patents including the current status of antiviral strategies targeting CHIKV.Expert opinion: Under the current scenario, potential molecules and different approaches have been utilized to suppress CHIKV infection. MV-CHIKV and VRC-CHKVLP059-00-VP vaccine candidates have successfully completed phase I clinical trials and ribavirin (inhibitor) has shown significant inhibition of CHIKV replication and could be the most promising candidates. The drug resistance and toxicity can be modulated by using the inhibitors/drugs in combination. Moreover, nanoparticle formulations can improve the efficacy and bioavailability of drugs.
Collapse
Affiliation(s)
- Ritu Ghildiyal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, U P, India
| | - Reema Gabrani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, U P, India
| |
Collapse
|
46
|
Vairo F, Haider N, Kock R, Ntoumi F, Ippolito G, Zumla A. Chikungunya: Epidemiology, Pathogenesis, Clinical Features, Management, and Prevention. Infect Dis Clin North Am 2020; 33:1003-1025. [PMID: 31668189 DOI: 10.1016/j.idc.2019.08.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chikungunya, a zoonotic disease caused by the Chikungunya virus (CHIKV), is transmitted by infected Aedes spp mosquitoes. CHIKV has now spread to more than 100 countries and is listed on the WHO Blueprint priority pathogens. After an incubation period of 1 to 12 days, symptoms similar to other febrile infections appear, with a sudden onset of high fever, nausea, polyarthralgia, myalgia, widespread skin rash, and conjunctivitis. Serious complications include myocarditis, uveitis, retinitis, hepatitis, acute renal disease, severe bullous lesions, meningoencephalitis, Guillain-Barré syndrome, myelitis, and cranial nerve palsies. Treatment is supportive; there is no specific antiviral treatment and no effective vaccine.
Collapse
Affiliation(s)
- Francesco Vairo
- National Institute for Infectious Diseases, "Lazzaro Spallanzani"Istituto di ricovero e cura a carattere scientifico - IRCCS, Via Portuense 292, 00149, Rome, Italy.
| | - Najmul Haider
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Richard Kock
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Faculty of Sciences and Techniques, University Marien Ngouabi, PO Box 69, Brazzaville, Congo; Institute for Tropical Medicine, University of Tübingen, Wilhelmstraße 27 72074, Tübingen, Germany
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases, "Lazzaro Spallanzani"Istituto di ricovero e cura a carattere scientifico - IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Alimuddin Zumla
- Center for Clinical Microbiology, University College London, Royal Free Campus 2nd Floor, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
47
|
Poh CM, Chan YH, Ng LFP. Role of T Cells in Chikungunya Virus Infection and Utilizing Their Potential in Anti-Viral Immunity. Front Immunol 2020; 11:287. [PMID: 32153590 PMCID: PMC7046835 DOI: 10.3389/fimmu.2020.00287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes hallmark debilitating polyarthralgia, fever, and rash in patients. T cell-mediated immunity, especially CD4+ T cells, are known to participate in the pathogenic role of CHIKV immunopathology. The other T cell subsets, notably CD8+, NKT, and gamma-delta (γδ) T cells, can also contribute to protective immunity, but their effect is not actuated during the natural course of infection. This review serves to consolidate and discuss the multifaceted roles of these T cell subsets during acute and chronic phases of CHIKV infection, and highlight gaps in the current literature. Importantly, the unique characteristics of skin-resident memory T cells are outlined to propose novel prophylactic strategies that utilize their properties to provide adequate, lasting protection.
Collapse
Affiliation(s)
- Chek Meng Poh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
48
|
Robert MA, Stewart-Ibarra AM, Estallo EL. Climate change and viral emergence: evidence from Aedes-borne arboviruses. Curr Opin Virol 2020; 40:41-47. [PMID: 32569752 PMCID: PMC7305058 DOI: 10.1016/j.coviro.2020.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Climate change is leading to increases in global temperatures and erratic precipitation patterns, both of which are contributing to the expansion of mosquito-borne arboviruses and the populations of the mosquitos that vector them. Herein, we review recent evidence of emergence and expansion of arboviruses transmitted by Aedes mosquitos that has been driven in part by environmental changes. We present as a case study of recent work from Córdoba, Argentina, where dengue has been actively emerging in the past decade. We review recent empirical and modeling studies that aim to understand the impact of climate on future expansion of arboviruses, and we highlight gaps in empirical studies linking climate to arbovirus transmission at regional levels.
Collapse
Affiliation(s)
- Michael A Robert
- Department of Mathematics, Physics, and Statistics, University of the Sciences, Philadelphia, PA, 19104, United States.
| | - Anna M Stewart-Ibarra
- Inter-American Institute for Global Change Research (IAI), Montevideo, Department of Montevideo, Uruguay
| | - Elizabet L Estallo
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT) CONICET- Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield1611, CP (X5016GCA), Ciudad Universitaria, Córdoba Capital, Argentina
| |
Collapse
|
49
|
Weaver SC, Chen R, Diallo M. Chikungunya Virus: Role of Vectors in Emergence from Enzootic Cycles. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:313-332. [PMID: 31594410 DOI: 10.1146/annurev-ento-011019-025207] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chikungunya virus (CHIKV), a re-emerging mosquito-borne arbovirus, has caused millions of cases of severe, often chronic arthralgia during recent outbreaks. In Africa, circulation in sylvatic, enzootic cycles involves several species of arboreal mosquito vectors that transmit among diverse nonhuman primates and possibly other amplifying hosts. Most disease occurs when CHIKV emerges into a human-amplified cycle involving Aedes aegypti and sometimes Aedes albopictus transmission and extensive spread via travelers. Epidemiologic studies suggest that the transition from enzootic to epidemic cycles begins when people are infected via spillover in forests. However, efficient human amplification likely only ensues far from enzootic habitats where peridomestic vector and human densities are adequate. Recent outbreaks have been enhanced by mutations that adapt CHIKV for more efficient infection of Ae. albopictus, allowing for geographic expansion. However, epistatic interactions, sometimes resulting from founder effects following point-source human introductions, have profound effects on transmission efficiency, making CHIKV emergence somewhat unpredictable.
Collapse
Affiliation(s)
- Scott C Weaver
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-0610, USA;
| | - Rubing Chen
- Institute for Human Infections and Immunity, World Reference Center for Emerging Viruses and Arboviruses, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555-0610, USA;
| | - Mawlouth Diallo
- Medical Entomology Unit, Institut Pasteur Dakar, B.P. 220 Dakar, Senegal
| |
Collapse
|
50
|
[Arthropod-borne viruses (arboviruses)]. Uirusu 2020; 70:3-14. [PMID: 33967110 DOI: 10.2222/jsv.70.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
"Arbovirus" is a term for a virus transmitted to mammals by hematophagous arthropods; arboviruses; replicate in both mammals and arthropods. Since the life cycle of arboviruses is highly dependent on arthropods, control of the arthropods (vectors) is generally considered important for the control of arbovirus infection. Various pathogens that cause diseases in the medical and veterinary fields are grouped into arboviruses with a history of their discoveries since the early 20th century. Furthermore, because of recent advances in sequencing technology, new arboviruses have been discovered one after another. Here we would like to overview the known arboviruses and their infections.
Collapse
|