1
|
Liu X, Luo C, Yang Z, Zhao T, Yuan L, Xie Q, Liao Q, Liao X, Wang L, Yuan J, Wu N, Sun C, Yan H, Luo H, Shu Y. A Recombinant Mosaic HAs Influenza Vaccine Elicits Broad-Spectrum Immune Response and Protection of Influenza a Viruses. Vaccines (Basel) 2024; 12:1008. [PMID: 39340038 PMCID: PMC11435869 DOI: 10.3390/vaccines12091008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The annual co-circulation of two influenza A subtypes, H1N1 and H3N2, viruses in humans poses significant public health threats worldwide. However, the continuous antigenic drift and shift of influenza viruses limited the effectiveness of current seasonal influenza vaccines, necessitating the development of new vaccines against both seasonal and pandemic viruses. One potential solution to this challenge is to improve inactivated vaccines by including multiple T-cell epitopes. In this study, we designed stabilized trimeric recombinant mosaic HA proteins named HAm, which contain the most potential HA T-cell epitopes of seasonal influenza A virus. We further evaluated the antigenicity, hemagglutinin activity, and structural integrity of HAm and compared its immunogenicity and efficacy to a commercial quadrivalent inactivated influenza vaccine (QIV) in mice. Our results demonstrated that the HAm vaccine was able to induce broadly cross-reactive antibodies and T-cell responses against homologous, heterologous, and heterosubtypic influenza-naive mice. Additionally, the HAm antigens outperformed QIV vaccine antigens by eliciting protective antibodies against panels of antigenically drifted influenza vaccine strains from 2009 to 2024 and protecting against ancestral viruses' lethal challenge. These results suggest that the HAm vaccine is a promising potential candidate for future universal seasonal and pandemic influenza vaccine development.
Collapse
Affiliation(s)
- Xuejie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhuolin Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Tianyi Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Qijun Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Liangliang Wang
- National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jianhui Yuan
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, China
| | - Nan Wu
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Huacheng Yan
- Center for Disease Control and Prevention of Southern Military Theatre, Guangzhou 510610, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College, Ministry of Education), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology of Chinese Academy of Medical Science (CAMS)/Peking Union Medical College (PUMC), Beijing 100730, China
| |
Collapse
|
2
|
Abdelwahab WM, Auclair S, Borgogna T, Siram K, Riffey A, Bazin HG, Cottam HB, Hayashi T, Evans JT, Burkhart DJ. Co-Delivery of a Novel Lipidated TLR7/8 Agonist and Hemagglutinin-Based Influenza Antigen Using Silica Nanoparticles Promotes Enhanced Immune Responses. Pharmaceutics 2024; 16:107. [PMID: 38258117 PMCID: PMC10819884 DOI: 10.3390/pharmaceutics16010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Co-delivery of antigens and adjuvants to the same antigen-presenting cells (APCs) can significantly improve the efficacy and safety profiles of vaccines. Here, we report amine-grafted silica nanoparticles (A-SNP) as a tunable vaccine co-delivery platform for TLR7/8 agonists along with the recombinant influenza antigen hemagglutinin H7 (H7) to APCs. A-SNP of two different sizes (50 and 200 nm) were prepared and coated with INI-4001 at different coating densities, followed by co-adsorption of H7. Both INI-4001 and H7 showed >90% adsorption to the tested A-SNP formulations. TNF-α and IFN-α cytokine release by human peripheral blood mononuclear cells as well as TNF-α, IL-6, and IL-12 release by mouse bone marrow-derived dendritic cells revealed that the potency of the INI-4001-adsorbed A-SNP (INI-4001/A-SNP) formulations was improved relative to aqueous formulation control. This improved potency was dependent on particle size and ligand coating density. In addition, slow-release profiles of INI-4001 were measured from INI-4001/A-SNP formulations in plasma with 30-50% INI-4001 released after 7 days. In vivo murine immunization studies demonstrated significantly improved H7-specific humoral and Th1/Th17-polarized T cell immune responses with no observed adverse reactions. Low-density 50 nm INI-4001/A-SNP elicited significantly higher IFN-γ and IL-17 induction over that of the H7 antigen-only group and INI-4001 aqueous formulation controls. In summary, this work introduces an effective and biocompatible SNP-based co-delivery platform that enhances the immunogenicity of TLR7/8 agonist-adjuvanted subunit influenza vaccines.
Collapse
Affiliation(s)
- Walid M. Abdelwahab
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sarah Auclair
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Timothy Borgogna
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Karthik Siram
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Alexander Riffey
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Hélène G. Bazin
- Inimmune Corporation, 1121 East Broadway, Missoula, MT 59812, USA;
| | - Howard B. Cottam
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA (T.H.)
| | - Tomoko Hayashi
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA (T.H.)
| | - Jay T. Evans
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Inimmune Corporation, 1121 East Broadway, Missoula, MT 59812, USA;
| | - David J. Burkhart
- Center for Translational Medicine, University of Montana, Missoula, MT 59812, USA (K.S.); (A.R.); (J.T.E.)
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Inimmune Corporation, 1121 East Broadway, Missoula, MT 59812, USA;
| |
Collapse
|
3
|
Liu X, Zhao T, Wang L, Yang Z, Luo C, Li M, Luo H, Sun C, Yan H, Shu Y. A mosaic influenza virus-like particles vaccine provides broad humoral and cellular immune responses against influenza A viruses. NPJ Vaccines 2023; 8:132. [PMID: 37679361 PMCID: PMC10485063 DOI: 10.1038/s41541-023-00728-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
The development of a universal influenza vaccine to elicit broad immune responses is essential in reducing disease burden and pandemic impact. In this study, the mosaic vaccine design strategy and genetic algorithms were utilized to optimize the seasonal influenza A virus (H1N1, H3N2) hemagglutinin (HA) and neuraminidase (NA) antigens, which also contain most potential T-cell epitopes. These mosaic immunogens were then expressed as virus-like particles (VLPs) using the baculovirus expression system. The immunogenicity and protection effectiveness of the mosaic VLPs were compared to the commercial quadrivalent inactivated influenza vaccine (QIV) in the mice model. Strong cross-reactive antibody responses were observed in mice following two doses of vaccination with the mosaic VLPs, with HI titers higher than 40 in 15 of 16 tested strains as opposed to limited cross HI antibody levels with QIV vaccination. After a single vaccination, mice also show a stronger level of cross-reactive antibody responses than the QIV. The QIV vaccinations only elicited NI antibodies to a small number of vaccine strains, and not even strong NI antibodies to its corresponding vaccine components. In contrast, the mosaic VLPs caused robust NI antibodies to all tested seasonal influenza virus vaccine strains. Here, we demonstrated the mosaic vaccines induces stronger cross-reactive antibodies and robust more T-cell responses compared to the QIV. The mosaic VLPs also provided protection against challenges with ancestral influenza A viruses of both H1 and H3 subtypes. These findings indicated that the mosaic VLPs were a promising strategy for developing a broad influenza vaccine in future.
Collapse
Affiliation(s)
- Xuejie Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Tianyi Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Zhuolin Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Chuming Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Minchao Li
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China.
| | - Huacheng Yan
- Center for Disease Control and Prevention of Southern Military Theatre, 510610, Guangzhou, China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, 518107, Shenzhen, China.
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
4
|
Gianchecchi E, Torelli A, Piu P, Bonifazi C, Ganfini L, Montomoli E. Flow cytometry as an integrative method for the evaluation of vaccine immunogenicity: A validation approach. Biochem Biophys Rep 2023; 34:101472. [PMID: 37153861 PMCID: PMC10160688 DOI: 10.1016/j.bbrep.2023.101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
The applied bioanalytical assays used for the evaluation of human immune responses from samples collected during clinical trials must be well characterized, fully validated and properly documented to provide reliable results. Even though recommendations for the standardization of flow cytometry instrumentation and assay validation for its clinical application have been published by several organizations, definitive guidelines are not available yet. The aim of the present paper is to provide a validation approach for flow cytometry, examining parameters such as linearity, relative accuracy, repeatability, intermediate precision, range and detection limits and specificity, in order to demonstrate and document its applicability for clinical research purposes and its possible use as one of the methods for the evaluation of vaccine immunogenicity.
Collapse
Affiliation(s)
| | - Alessandro Torelli
- CSL Seqirus, Via Del Pozzo 3/A, S. Martino, 53035, Monteriggioni, SI, Italy
| | | | - Carolina Bonifazi
- VisMederi S.r.l., Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Emanuele Montomoli
- VisMederi S.r.l., Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Janssens Y, Joye J, Waerlop G, Clement F, Leroux-Roels G, Leroux-Roels I. The role of cell-mediated immunity against influenza and its implications for vaccine evaluation. Front Immunol 2022; 13:959379. [PMID: 36052083 PMCID: PMC9424642 DOI: 10.3389/fimmu.2022.959379] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022] Open
Abstract
Influenza vaccines remain the most effective tools to prevent flu and its complications. Trivalent or quadrivalent inactivated influenza vaccines primarily elicit antibodies towards haemagglutinin and neuraminidase. These vaccines fail to induce high protective efficacy, in particular in older adults and immunocompromised individuals and require annual updates to keep up with evolving influenza strains (antigenic drift). Vaccine efficacy declines when there is a mismatch between its content and circulating strains. Current correlates of protection are merely based on serological parameters determined by haemagglutination inhibition or single radial haemolysis assays. However, there is ample evidence showing that these serological correlates of protection can both over- or underestimate the protective efficacy of influenza vaccines. Next-generation universal influenza vaccines that induce cross-reactive cellular immune responses (CD4+ and/or CD8+ T-cell responses) against conserved epitopes may overcome some of the shortcomings of the current inactivated vaccines by eliciting broader protection that lasts for several influenza seasons and potentially enhances pandemic preparedness. Assessment of cellular immune responses in clinical trials that evaluate the immunogenicity of these new generation vaccines is thus of utmost importance. Moreover, studies are needed to examine whether these cross-reactive cellular immune responses can be considered as new or complementary correlates of protection in the evaluation of traditional and next-generation influenza vaccines. An overview of the assays that can be applied to measure cell-mediated immune responses to influenza with their strengths and weaknesses is provided here.
Collapse
Affiliation(s)
- Yorick Janssens
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Jasper Joye
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Frédéric Clement
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
| | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University, Ghent, Belgium
- Center for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
- *Correspondence: Isabel Leroux-Roels,
| |
Collapse
|
6
|
An epitope-optimized human H3N2 influenza vaccine induces broadly protective immunity in mice and ferrets. NPJ Vaccines 2022; 7:65. [PMID: 35739199 PMCID: PMC9226166 DOI: 10.1038/s41541-022-00492-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/16/2022] [Indexed: 12/03/2022] Open
Abstract
There is a crucial need for an improved H3N2 influenza virus vaccine due to low vaccine efficacy rates and increased morbidity and mortality associated with H3N2-dominated influenza seasons. Here, we utilize a computational design strategy to produce epitope-optimized, broadly cross-reactive H3 hemagglutinins in order to create a universal H3N2 influenza vaccine. The Epigraph immunogens are designed to maximize the viral population frequency of epitopes incorporated into the immunogen. We compared our Epigraph H3 vaccine to the traditional egg-based inactivated influenza vaccine from 2018-19, FluZone. Epigraph vaccination-induced stronger cross-reactive antibody responses than FluZone against 18 H3N2 viruses isolated from 1968 to 2019 in both mice and ferrets, with protective hemagglutination inhibition titers against 93-100% of the contemporary H3N2 strains compared to only 27% protection measured from FluZone. In addition, Epigraph vaccination-induced strong cross-reactive T-cell immunity which significantly contributes to protection against lethal influenza virus infection. Finally, Epigraph vaccination protected ferrets from influenza disease after challenge with two H3N2 viruses. The superior cross-reactive immunity induced by these Epigraph immunogens supports their development as a universal H3N2 influenza vaccine.
Collapse
|
7
|
Sun H, He T, Wu Y, Yuan H, Ning J, Zhang Z, Deng X, Li B, Wu C. Cytotoxin-Associated Gene A-Negative Helicobacter pylori Promotes Gastric Mucosal CX3CR1+CD4+ Effector Memory T Cell Recruitment in Mice. Front Microbiol 2022; 13:813774. [PMID: 35154057 PMCID: PMC8829513 DOI: 10.3389/fmicb.2022.813774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Helicobacter pylori can cause many kinds of gastric disorders, ranging from gastritis to gastric cancer. Cytotoxin-associated gene A (CagA)+H. pylori is more likely to cause gastric histopathologic damage than CagA–H. pylori. However, the underlying mechanism needs to be further investigated. Materials and methods Mice were intragastrically administered equal amounts of CagA+ or CagA–H. pylori. Four weeks later, 24 chemokines in stomachs were measured using a mouse chemokine array, and the phenotypes of the recruited gastric CD4+ T cells were analyzed. The migration pathway was evaluated. Finally, the correlation between each pair among the recruited CD4+ T cell sub-population, H. pylori colonization level, and histopathologic damage score were determined by Pearson correlation analysis. Results The concentration of chemokines, CCL3 and CX3CL1, were significantly elevated in CagA–H. pylori-infected gastric mucosa than in CagA+H. pylori-infected gastric mucosa. Among them, CX3CL1 secreted by gastric epithelial cells, which was elicited more effectively by CagA–H. pylori than by the CagA+ strain, dramatically promoted mucosal CD4+ T cell migration. The expression of CX3CR1, the only known receptor of CX3CL1, was upregulated on the surface of gastric CD4+ T cells in CagA–H. pylori-infected stomach. In addition, most of the CX3CR1-positive gastric CD4+ T cells were CD44+CD69–CCR7– effector memory T cells (Tem). Pearson correlation analysis showed that the recruited CX3CR1+CD4+ Tem cell population was negatively correlated with H. pylori colonization level and histopathologic damage score. Conclusion CagA–H. pylori promotes gastric mucosal CX3CR1+CD4+ Tem recruitment in mice.
Collapse
Affiliation(s)
- Heqiang Sun
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yanan Wu
- Peking University People’s Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jie Ning
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhenhua Zhang
- Department of Gastroenterology of the 305 Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Xinli Deng
- Department of Laboratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Bin Li,
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Chao Wu,
| |
Collapse
|
8
|
Influenza Vaccine: An Engineering Vision from Virological Importance to Production. BIOTECHNOL BIOPROC E 2022; 27:714-738. [PMID: 36313971 PMCID: PMC9589582 DOI: 10.1007/s12257-022-0115-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 01/26/2023]
Abstract
According to data from the World Health Organization (WHO) every year, millions of people are affected by flu. Flu is a disease caused by influenza viruses. For preventing this, seasonal influenza vaccinations are widely considered the most efficient way to protect against the negative effects of the flu. To date, there is no "one-size-fits-all" vaccine that can be effective all over the world to protect against all seasonal or pandemic influenza virus types. Because influenza virus transforms its genetic structure and it can emerges as immunogenically new (antigenic drift) which causes epidemics or new virus subtype (antigenic shift) which causes pandemics. As a result, annual revaccination or new subtype viral vaccine development is required. Currently, three types of vaccines (inactivated, live attenuated, and recombinant) are approved in different countries. These can be named "conventional influenza vaccines" and their production are based on eggs or cell culture. Although, there is good effort to develop new influenza vaccines for broader and longer period of time protection. In this sense these candidate vaccines are called "universal influenza vaccines". In this article, after we mentioned the short history of flu then virus morphology and infection, we explained the diseases caused by the influenza virus in humans. Afterward, we explained in detail the production methods of available influenza vaccines, types of bioreactors used in cell culture based production, conventional and new vaccine types, and development strategies for better vaccines.
Collapse
|
9
|
Rothlauf PW, Li Z, Pishesha N, Xie YJ, Woodham AW, Bousbaine D, Kolifrath SC, Verschoor VL, Ploegh HL. Noninvasive Immuno-PET Imaging of CD8 + T Cell Behavior in Influenza A Virus-Infected Mice. Front Immunol 2021; 12:777739. [PMID: 34804069 PMCID: PMC8595544 DOI: 10.3389/fimmu.2021.777739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Immuno-positron emission tomography (immuno-PET) is a noninvasive imaging method that enables tracking of immune cells in living animals. We used a nanobody that recognizes mouse CD8α and labeled it with 89Zr to image mouse CD8+ T cells in the course of an infection with influenza A virus (IAV). The CD8+ signal showed a strong increase in the mediastinal lymph node (MLN) and thymus as early as 4 days post-infection (dpi), and as early as 6 dpi in the lungs. Over the course of the infection, CD8+ T cells were at first distributed diffusely throughout the lungs and then accumulated more selectively in specific regions of the lungs. These distributions correlated with morbidity as mice reached the peak of weight loss over this interval. CD8+ T cells obtained from control or IAV-infected mice showed a difference in their distribution and migration when comparing their fate upon labeling ex vivo with 89Zr-labeled anti-CD8α nanobody and transfer into infected versus control animals. CD8+ T cells from infected mice, upon transfer, appear to be trained to persist in the lungs, even of uninfected mice. Immuno-PET imaging thus allows noninvasive, dynamic monitoring of the immune response to infectious agents in living animals.
Collapse
Affiliation(s)
- Paul W Rothlauf
- Program in Virology, Harvard Medical School, Boston, MA, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Zeyang Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Society of Fellows, Harvard University, Cambridge, MA, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, United States
| | - Yushu Joy Xie
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Andrew W Woodham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Djenet Bousbaine
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Stephen C Kolifrath
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Vincent L Verschoor
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Renu S, Feliciano-Ruiz N, Patil V, Schrock J, Han Y, Ramesh A, Dhakal S, Hanson J, Krakowka S, Renukaradhya GJ. Immunity and Protective Efficacy of Mannose Conjugated Chitosan-Based Influenza Nanovaccine in Maternal Antibody Positive Pigs. Front Immunol 2021; 12:584299. [PMID: 33746943 PMCID: PMC7969509 DOI: 10.3389/fimmu.2021.584299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Parenteral administration of killed/inactivated swine influenza A virus (SwIAV) vaccine in weaned piglets provides variable levels of immunity due to the presence of preexisting virus specific maternal derived antibodies (MDA). To overcome the effect of MDA on SwIAV vaccine in piglets, we developed an intranasal deliverable killed SwIAV antigen (KAg) encapsulated chitosan nanoparticles called chitosan-based NPs encapsulating KAg (CS NPs-KAg) vaccine. Further, to target the candidate vaccine to dendritic cells and macrophages which express mannose receptor, we conjugated mannose to chitosan (mCS) and formulated KAg encapsulated mCS nanoparticles called mannosylated chitosan-based NPs encapsulating KAg (mCS NPs-KAg) vaccine. In MDA-positive piglets, prime-boost intranasal inoculation of mCS NPs-KAg vaccine elicited enhanced homologous (H1N2-OH10), heterologous (H1N1-OH7), and heterosubtypic (H3N2-OH4) influenza virus-specific secretory IgA (sIgA) antibody response in nasal passage compared to CS NPs-KAg vaccinates. In vaccinated upon challenged with a heterologous SwIAV H1N1, both mCS NPs-KAg and CS NPs-KAg vaccinates augmented H1N2-OH10, H1N1-OH7, and H3N2-OH4 virus-specific sIgA antibody responses in nasal swab, lung lysate, and bronchoalveolar lavage (BAL) fluid; and IgG antibody levels in lung lysate and BAL fluid samples. Whereas, the multivalent commercial inactivated SwIAV vaccine delivered intramuscularly increased serum IgG antibody response. In mCS NPs-KAg and CS NPs-KAg vaccinates increased H1N2-OH10 but not H1N1-OH7 and H3N2-OH4-specific serum hemagglutination inhibition titers were observed. Additionally, mCS NPs-KAg vaccine increased specific recall lymphocyte proliferation and cytokines IL-4, IL-10, and IFNγ gene expression compared to CS NPs-KAg and commercial SwIAV vaccinates in tracheobronchial lymph nodes. Consistent with the immune response both mCS NPs-KAg and CS NPs-KAg vaccinates cleared the challenge H1N1-OH7 virus load in upper and lower respiratory tract more efficiently when compared to commercial vaccine. The virus clearance was associated with reduced gross lung lesions. Overall, mCS NP-KAg vaccine intranasal immunization in MDA-positive pigs induced a robust cross-reactive immunity and offered protection against influenza virus.
Collapse
Affiliation(s)
- Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Ninoshkaly Feliciano-Ruiz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Veerupaxagouda Patil
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Jennifer Schrock
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Yi Han
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Anikethana Ramesh
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Juliette Hanson
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| | - Steven Krakowka
- The Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Gourapura J. Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH, United States
- Department of Veterinary Preventive Medicine, Wooster, OH, United States
| |
Collapse
|
11
|
Puksuriwong S, Ahmed MS, Sharma R, Krishnan M, Leong S, Lambe T, McNamara PS, Gilbert SC, Zhang Q. Modified Vaccinia Ankara-Vectored Vaccine Expressing Nucleoprotein and Matrix Protein 1 (M1) Activates Mucosal M1-Specific T-Cell Immunity and Tissue-Resident Memory T Cells in Human Nasopharynx-Associated Lymphoid Tissue. J Infect Dis 2021; 222:807-819. [PMID: 31740938 PMCID: PMC7399703 DOI: 10.1093/infdis/jiz593] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence supports a critical role of CD8+ T-cell immunity against influenza. Activation of mucosal CD8+ T cells, particularly tissue-resident memory T (TRM) cells recognizing conserved epitopes would mediate rapid and broad protection. Matrix protein 1 (M1) is a well-conserved internal protein. Methods We studied the capacity of modified vaccinia Ankara (MVA)–vectored vaccine expressing nucleoprotein (NP) and M1 (MVA-NP+M1) to activate M1-specific CD8+ T-cell response, including TRM cells, in nasopharynx-associated lymphoid tissue from children and adults. Results After MVA-NP+M1 stimulation, M1 was abundantly expressed in adenotonsillar epithelial cells and B cells. MVA-NP+M1 activated a marked interferon γ–secreting T-cell response to M1 peptides. Using tetramer staining, we showed the vaccine activated a marked increase in M158–66 peptide-specific CD8+ T cells in tonsillar mononuclear cells of HLA-matched individuals. We also demonstrated MVA-NP+M1 activated a substantial increase in TRM cells exhibiting effector memory T-cell phenotype. On recall antigen recognition, M1-specific T cells rapidly undergo cytotoxic degranulation, release granzyme B and proinflammatory cytokines, leading to target cell killing. Conclusions MVA-NP+M1 elicits a substantial M1-specific T-cell response, including TRM cells, in nasopharynx-associated lymphoid tissue, demonstrating its strong capacity to expand memory T-cell pool exhibiting effector memory T-cell phenotype, therefore offering great potential for rapid and broad protection against influenza reinfection.
Collapse
Affiliation(s)
- Suttida Puksuriwong
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Muhammad S Ahmed
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Ravi Sharma
- ENT Departments, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Madhan Krishnan
- ENT Departments, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Sam Leong
- ENT Departments, Aintree University Hospital, Liverpool, United Kingdom
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Paul S McNamara
- Institute of Child Health, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Sarah C Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Qibo Zhang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
12
|
Bullard BL, Corder BN, DeBeauchamp J, Rubrum A, Korber B, Webby RJ, Weaver EA. Epigraph hemagglutinin vaccine induces broad cross-reactive immunity against swine H3 influenza virus. Nat Commun 2021; 12:1203. [PMID: 33619277 PMCID: PMC7900167 DOI: 10.1038/s41467-021-21508-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 01/27/2021] [Indexed: 01/09/2023] Open
Abstract
Influenza A virus infection in swine impacts the agricultural industry in addition to its zoonotic potential. Here, we utilize epigraph, a computational algorithm, to design a universal swine H3 influenza vaccine. The epigraph hemagglutinin proteins are delivered using an Adenovirus type 5 vector and are compared to a wild type hemagglutinin and the commercial inactivated vaccine, FluSure. In mice, epigraph vaccination leads to significant cross-reactive antibody and T-cell responses against a diverse panel of swH3 isolates. Epigraph vaccination also reduces weight loss and lung viral titers in mice after challenge with three divergent swH3 viruses. Vaccination studies in swine, the target species for this vaccine, show stronger levels of cross-reactive antibodies and T-cell responses after immunization with the epigraph vaccine compared to the wild type and FluSure vaccines. In both murine and swine models, epigraph vaccination shows superior cross-reactive immunity that should be further investigated as a universal swH3 vaccine.
Collapse
Affiliation(s)
- Brianna L Bullard
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
| | - Brigette N Corder
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA
| | | | - Adam Rubrum
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Eric A Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
13
|
Mara K, Dai M, Brice AM, Alexander MR, Tribolet L, Layton DS, Bean AGD. Investigating the Interaction between Negative Strand RNA Viruses and Their Hosts for Enhanced Vaccine Development and Production. Vaccines (Basel) 2021; 9:vaccines9010059. [PMID: 33477334 PMCID: PMC7830660 DOI: 10.3390/vaccines9010059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
The current pandemic has highlighted the ever-increasing risk of human to human spread of zoonotic pathogens. A number of medically-relevant zoonotic pathogens are negative-strand RNA viruses (NSVs). NSVs are derived from different virus families. Examples like Ebola are known for causing severe symptoms and high mortality rates. Some, like influenza, are known for their ease of person-to-person transmission and lack of pre-existing immunity, enabling rapid spread across many countries around the globe. Containment of outbreaks of NSVs can be difficult owing to their unpredictability and the absence of effective control measures, such as vaccines and antiviral therapeutics. In addition, there remains a lack of essential knowledge of the host–pathogen response that are induced by NSVs, particularly of the immune responses that provide protection. Vaccines are the most effective method for preventing infectious diseases. In fact, in the event of a pandemic, appropriate vaccine design and speed of vaccine supply is the most critical factor in protecting the population, as vaccination is the only sustainable defense. Vaccines need to be safe, efficient, and cost-effective, which is influenced by our understanding of the host–pathogen interface. Additionally, some of the major challenges of vaccines are the establishment of a long-lasting immunity offering cross protection to emerging strains. Although many NSVs are controlled through immunisations, for some, vaccine design has failed or efficacy has proven unreliable. The key behind designing a successful vaccine is understanding the host–pathogen interaction and the host immune response towards NSVs. In this paper, we review the recent research in vaccine design against NSVs and explore the immune responses induced by these viruses. The generation of a robust and integrated approach to development capability and vaccine manufacture can collaboratively support the management of outbreaking NSV disease health risks.
Collapse
|
14
|
Toy R, Keenum MC, Pradhan P, Phang K, Chen P, Chukwu C, Nguyen LAH, Liu J, Jain S, Kozlowski G, Hosten J, Suthar MS, Roy K. TLR7 and RIG-I dual-adjuvant loaded nanoparticles drive broadened and synergistic responses in dendritic cells in vitro and generate unique cellular immune responses in influenza vaccination. J Control Release 2020; 330:866-877. [PMID: 33160004 DOI: 10.1016/j.jconrel.2020.10.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Abstract
Although the existing flu vaccines elicit strong antigen-specific antibody responses, they fail to provide effective, long term protection - partly due to the absence of robust cellular memory immunity. We hypothesized that co-administration of combination adjuvants, mirroring the flu-virus related innate signaling pathways, could elicit strong cellular immunity. Here, we show that the small molecule adjuvant R848 and the RNA adjuvant PUUC, targeting endosomal TLR7s and cytoplasmic RLRs respectively, when delivered together in polymer nanoparticles (NP), elicits a broadened immune responses in mouse bone marrow-derived dendritic cells (mBMDCs) and a synergistic response in both mouse and human plasmacytoid dendritic cells (pDCs). In mBMDCs, NP-R848-PUUC induced both NF-κB and interferon signaling. Interferon responses to co-delivered R848 and PUUC were additive in human peripheral blood mononuclear cells (PBMCs) and synergistic in human FLT3-differentiated mBMDCs and CAL-1 pDCs. Vaccination with NPs loaded with H1N1 Flu antigen, R848, and PUUC increased percentage of CD8+ T-cells in the lungs, percentage of antigen-specific CD4-T-cells in the spleen, and enhanced overall cytokine-secreting T cell percentages upon antigen restimulation. Also, in the spleen, T lymphopenia, especially after in vitro restimulation with dual adjuvants, was observed, indicating highly antigen-reactive T cells. Our results demonstrate that simultaneous engagement of TLR7 and RIG-I pathways using particulate carriers is a potential approach to improve cellular immunity in flu vaccination.
Collapse
Affiliation(s)
- Randall Toy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - M Cole Keenum
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Pallab Pradhan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Katelynn Phang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Patrick Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Chinwendu Chukwu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Lily Anh H Nguyen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jiaying Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sambhav Jain
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Gabrielle Kozlowski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Justin Hosten
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
15
|
Corder BN, Bullard BL, Poland GA, Weaver EA. A Decade in Review: A Systematic Review of Universal Influenza Vaccines in Clinical Trials during the 2010 Decade. Viruses 2020; 12:E1186. [PMID: 33092070 PMCID: PMC7589362 DOI: 10.3390/v12101186] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
On average, there are 3-5 million severe cases of influenza virus infections globally each year. Seasonal influenza vaccines provide limited protection against divergent influenza strains. Therefore, the development of a universal influenza vaccine is a top priority for the NIH. Here, we report a comprehensive summary of all universal influenza vaccines that were tested in clinical trials during the 2010-2019 decade. Of the 1597 studies found, 69 eligible clinical trials, which investigated 27 vaccines, were included in this review. Information from each trial was compiled for vaccine target, vaccine platform, adjuvant inclusion, clinical trial phase, and results. As we look forward, there are currently three vaccines in phase III clinical trials which could provide significant improvement over seasonal influenza vaccines. This systematic review of universal influenza vaccine clinical trials during the 2010-2019 decade provides an update on the progress towards an improved influenza vaccine.
Collapse
Affiliation(s)
- Brigette N. Corder
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| | - Brianna L. Bullard
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| | - Gregory A. Poland
- Mayo Vaccine Research Group, General Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA;
| | - Eric A. Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, 4240 Fair Street, Lincoln, NE 68503, USA; (B.N.C.); (B.L.B.)
| |
Collapse
|
16
|
Van Den Eeckhout B, Van Hoecke L, Burg E, Van Lint S, Peelman F, Kley N, Uzé G, Saelens X, Tavernier J, Gerlo S. Specific targeting of IL-1β activity to CD8 + T cells allows for safe use as a vaccine adjuvant. NPJ Vaccines 2020; 5:64. [PMID: 32714571 PMCID: PMC7378068 DOI: 10.1038/s41541-020-00211-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 06/19/2020] [Indexed: 11/08/2022] Open
Abstract
Annual administration and reformulation of influenza vaccines is required for protection against seasonal infections. However, the induction of strong and long-lasting T cells is critical to reach broad and potentially lifelong antiviral immunity. The NLRP3 inflammasome and its product interleukin-1β (IL-1β) are pivotal mediators of cellular immune responses to influenza, yet, overactivation of these systems leads to side effects, which hamper clinical applications. Here, we present a bypass around these toxicities by targeting the activity of IL-1β to CD8+ T cells. Using this approach, we demonstrate safe inclusion of IL-1β as an adjuvant in vaccination strategies, leading to full protection of mice against a high influenza virus challenge dose by raising potent T cell responses. In conclusion, this paper proposes a class of IL-1β-based vaccine adjuvants and also provides further insight in the mechanics of cellular immune responses driven by IL-1β.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Lien Van Hoecke
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Elianne Burg
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sandra Van Lint
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Frank Peelman
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Niko Kley
- Orionis Biosciences Inc, Waltham, MA 02451 USA
| | - Gilles Uzé
- CNRS 5235, University of Montpellier, 34090 Montpellier, France
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Orionis Biosciences Inc, Waltham, MA 02451 USA
| | - Sarah Gerlo
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Kostinov MP, Akhmatova NK, Khromova EA, Kostinova AM. Cytokine Profile in Human Peripheral Blood Mononuclear Leukocytes Exposed to Immunoadjuvant and Adjuvant-Free Vaccines Against Influenza. Front Immunol 2020; 11:1351. [PMID: 32695114 PMCID: PMC7339108 DOI: 10.3389/fimmu.2020.01351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
Background: In the last decade, adjuvant-containing vaccines, exerting different effects on the immune system, including the production of cytokines, which are one of the most important regulatory systems of the body, are introduced into practice. Objectives: An effect of the immunoadjuvant polymer-subunit and adjuvant-free vaccines against influenza on the cytokine profile of mononuclear leukocytes in 27 healthy women was studied. Methods: The study of cytokine profile in human peripheral blood mononuclear leukocytes exposed to vaccines against influenza virus was determined by flow cytometry method (Cytomix FC-500, Beckman Coulter, USA) using the Multiplex-13 test system (Bender MedSystems, Austria). Results: It was established that all the studied vaccines leaded to somewhat increased levels of Th1/Th2/Th17/Th9/Th22 cytokines in the culture fluid of peripheral blood mononuclear leukocytes (PBML), which indicates the activation of both humoral and cellular immunity. An immunoadjuvant vaccine has been shown to be superior in activating the synthesis of Th1 (IL-12, INF-g, IL-2, IL-6, IL-1β, TNF-α) cytokines, IL-9 and IL-22, while the subunit vaccine was superior in activating the synthesis of IL-4, and split vaccine-of IL-5. Conclusions: Immunoadjuvant vaccine is superior in terms of inducing cellular immune effectors to a greater extent compared to subunit and split vaccines.
Collapse
Affiliation(s)
- Mikhail Petrovich Kostinov
- Department of Immunology, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
- Department of Immunology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nelli Kimovna Akhmatova
- Department of Immunology, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia
| | | | | |
Collapse
|
18
|
Romeli S, Hassan SS, Yap WB. Multi-Epitope Peptide-Based and Vaccinia-Based Universal Influenza Vaccine Candidates Subjected to Clinical Trials. Malays J Med Sci 2020; 27:10-20. [PMID: 32788837 PMCID: PMC7409566 DOI: 10.21315/mjms2020.27.2.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022] Open
Abstract
In light of the limited protection conferred by current influenza vaccines, immunisation using universal influenza vaccines has been proposed for protection against all or most influenza sub-types. The fundamental principle of universal influenza vaccines is based on conserved antigens found in most influenza strains, such as matrix 2, nucleocapsid, matrix 1 and stem of hemagglutinin proteins. These antigens trigger cross-protective immunity against different influenza strains. Many researchers have attempted to produce the conserved epitopes of these antigens in the form of peptides in the hope of generating universal influenza vaccine candidates that can broadly induce cross-reactive protection against influenza viral infections. However, peptide vaccines are poorly immunogenic when applied individually owing to their small molecular sizes. Hence, strategies, such as combining peptides as multi-epitope vaccines or presenting peptides on vaccinia virus particles, are employed. This review discusses the clinical and laboratory findings of several multi-epitope peptide vaccine candidates and vaccinia-based peptide vaccines. The majority of these vaccine candidates have reached the clinical trial phase. The findings in this study will indeed shed light on the applicability of universal influenza vaccines to prevent seasonal and pandemic influenza outbreaks in the near future.
Collapse
Affiliation(s)
- Syazwani Romeli
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Center of Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Wei Boon Yap
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Center of Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Misra RS, Nayak JL. The Importance of Vaccinating Children and Pregnant Women against Influenza Virus Infection. Pathogens 2019; 8:pathogens8040265. [PMID: 31779153 PMCID: PMC6963306 DOI: 10.3390/pathogens8040265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Influenza virus infection is responsible for significant morbidity and mortality in the pediatric and pregnant women populations, with deaths frequently caused by severe influenza-associated lower respiratory tract infection and acute respiratory distress syndrome (ARDS). An appropriate immune response requires controlling the viral infection through activation of antiviral defenses, which involves cells of the lung and immune system. High levels of viral infection or high levels of inflammation in the lower airways can contribute to ARDS. Pregnant women and young children, especially those born prematurely, may develop serious complications if infected with influenza virus. Vaccination against influenza will lead to lower infection rates and fewer complications, even if the vaccine is poorly matched to circulating viral strains, with maternal vaccination offering infants protection via antibody transmission through the placenta and breast milk. Despite the health benefits of the influenza vaccine, vaccination rates around the world remain well below targets. Trust in the use of vaccines among the public must be restored in order to increase vaccination rates and decrease the public health burden of influenza.
Collapse
Affiliation(s)
- Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14623, USA
- Correspondence:
| | - Jennifer L Nayak
- Department of Pediatrics Division of Pediatric Infectious Diseases, The University of Rochester Medical Center, Rochester, NY 14623, USA;
| |
Collapse
|
20
|
Nagant C, Barbezange C, Dedeken L, Besse-Hammer T, Thomas I, Mahadeb B, Efira A, Ferster A, Corazza F. Alteration of humoral, cellular and cytokine immune response to inactivated influenza vaccine in patients with Sickle Cell Disease. PLoS One 2019; 14:e0223991. [PMID: 31600331 PMCID: PMC6786629 DOI: 10.1371/journal.pone.0223991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction Patients suffering from Sickle Cell Disease (SCD) are at increased risk for complications due to influenza virus. Annual influenza vaccination is strongly recommended but few clinical studies have assessed its immunogenicity in individuals with SCD. The aim of this study was to explore the biological efficacy of annual influenza vaccination in SCD patients by characterizing both their humoral and cell-mediated immunity against influenza antigen. We also aimed to investigate these immunological responses among SCD individuals according to their treatment (hydroxyurea (HU), chronic blood transfusions (CT), both HU and CT or none of them). Methods Seventy-two SCD patients (49 receiving HU, 9 on CT, 7 with both and 7 without treatment) and 30 healthy controls were included in the study. All subjects received the tetravalent influenza α-RIX-Tetra® vaccine from the 2016–2017 or 2017–2018 season. Results Protective anti-influenza HAI titers were obtained for the majority of SCD patients one month after vaccination but seroconversion rates in patient groups were strongly decreased compared to controls. Immune cell counts, particularly cellular memory including memory T and memory B cells, were greatly reduced in SCD individuals. Functional activation assays confirmed a poorer CD8+ T cell memory. We also document an imbalance of cytokines after influenza vaccination in SCD individuals with an INFγ/IL-10 ratio (Th1-type/Treg-type response) significantly lower in the SCD cohort. Conclusion SCD patients undergoing CT showed altered immune regulation as compared to other treatment subgroups. Altogether, the cytokine imbalance, the high regulatory T cell levels and the low memory lymphocyte subset levels observed in the SCD cohort, namely for those on CT, suggest a poor ability of SCD patients to fight against influenza infection. Nevertheless, our serological data support current clinical practice for annual influenza vaccination, though immunogenicity to other vaccines involving immunological memory might be hampered in SCD patients and should be further investigated.
Collapse
Affiliation(s)
- Carole Nagant
- Immunology Department, LHUB-ULB, Université libre de Bruxelles, Brussels, Belgium
- * E-mail:
| | | | - Laurence Dedeken
- Department of Hematology Oncology, Hôpital Universitaire des Enfants Reine Fabiola, Université libre de Bruxelles, Brussels, Belgium
| | - Tatiana Besse-Hammer
- Department of Hematology Oncology, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | | | - Bhavna Mahadeb
- Microbiology Department, LHUB-ULB, Université libre de Bruxelles, Brussels, Belgium
| | - André Efira
- Department of Hematology Oncology, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - Alice Ferster
- Department of Hematology Oncology, Hôpital Universitaire des Enfants Reine Fabiola, Université libre de Bruxelles, Brussels, Belgium
| | - Francis Corazza
- Immunology Department, LHUB-ULB, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
21
|
Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J Clin Virol 2019; 119:44-52. [DOI: 10.1016/j.jcv.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023]
|
22
|
Yakuboğulları N, Genç R, Çöven F, Nalbantsoy A, Bedir E. Development of adjuvant nanocarrier systems for seasonal influenza A (H3N2) vaccine based on Astragaloside VII and gum tragacanth (APS). Vaccine 2019; 37:3638-3645. [PMID: 31155418 DOI: 10.1016/j.vaccine.2019.05.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/25/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023]
Abstract
Adjuvants are chemical/biological substances that are used in vaccines to increase the immunogenicity of antigens. A few adjuvants have been developed for use in human vaccines because of their limitations including lack of efficacy, unacceptable local or systemic toxicity, the difficulty of manufacturing, poor stability, and high cost. For that reasons, novel adjuvants/adjuvant systems are under search. Astragaloside VII (AST-VII), isolated from Astragalus trojanus, exhibited significant cellular and humoral immune responses. The polysaccharides (APS) obtained from the roots of Astragalus species have been used in traditional Chinese medicine and possess strong immunomodulatory properties. In the present study, the immunomodulatory effects of a newly developed nanocarrier system (APNS: APS containing carrier) and its AST-VII containing formulation (ANS: AST-VII + APNS), on seasonal influenza A (H3N2) vaccine were investigated. Inactivated H3N2 alone or its combinations with test compounds/formulations were intramuscularly injected into Swiss albino mice. Four weeks after immunization, the immune responses were evaluated in terms of antibody and cytokine responses as well as splenocyte proliferation. APNS demonstrated Th2 mediated response by increasing IgG1 antibody titers, whereas ANS showed response towards Th1/Th2 balance and Th17 by producing of IFN-γ, IL-17A and IgG2a. Based on these results, we propose that APNS and ANS are good candidates to be utilized in seasonal influenza A vaccines as adjuvants/carrier systems.
Collapse
Affiliation(s)
- Nilgün Yakuboğulları
- Izmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35433 Gülbahçe, Urla, Izmir, Turkey
| | - Rükan Genç
- Mersin University, Faculty of Engineering, Department of Chemical Engineering, 33343 Mersin, Turkey
| | - Fethiye Çöven
- Bornova Veterinary Control and Research Institute, 35100 Bornova, Izmir, Turkey
| | - Ayşe Nalbantsoy
- Ege University, Faculty of Engineering, Department of Bioengineering, 35100 Bornova, Izmir, Turkey.
| | - Erdal Bedir
- Izmir Institute of Technology, Faculty of Engineering, Department of Bioengineering, 35433 Gülbahçe, Urla, Izmir, Turkey.
| |
Collapse
|
23
|
Monette A, Mouland AJ. T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:175-263. [PMID: 30635091 PMCID: PMC7104940 DOI: 10.1016/bs.ircmb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous epidemiological surveillance of existing and emerging viruses and their associated disorders is gaining importance in light of their abilities to cause unpredictable outbreaks as a result of increased travel and vaccination choices by steadily growing and aging populations. Close surveillance of outbreaks and herd immunity are also at the forefront, even in industrialized countries, where previously eradicated viruses are now at risk of re-emergence due to instances of strain recombination, contractions in viral vector geographies, and from their potential use as agents of bioterrorism. There is a great need for the rational design of current and future vaccines targeting viruses, with a strong focus on vaccine targeting of adaptive immune effector memory T cells as the gold standard of immunity conferring long-lived protection against a wide variety of pathogens and malignancies. Here, we review viruses that have historically caused large outbreaks and severe lethal disorders, including respiratory, gastric, skin, hepatic, neurologic, and hemorrhagic fevers. To observe trends in vaccinology against these viral disorders, we describe viral genetic, replication, transmission, and tropism, host-immune evasion strategies, and the epidemiology and health risks of their associated syndromes. We focus on immunity generated against both natural infection and vaccination, where a steady shift in conferred vaccination immunogenicity is observed from quantifying activated and proliferating, long-lived effector memory T cell subsets, as the prominent biomarkers of long-term immunity against viruses and their associated disorders causing high morbidity and mortality rates.
Collapse
|
24
|
CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection. J Virol 2018; 92:JVI.00377-18. [PMID: 29669836 DOI: 10.1128/jvi.00377-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/13/2018] [Indexed: 01/21/2023] Open
Abstract
Pulmonary CD4 T cells are critical in respiratory virus control, both by delivering direct effector function and through coordinating responses of other immune cells. Recent studies have shown that following influenza virus infection, virus-specific CD4 T cells are partitioned between pulmonary vasculature and lung tissue. However, very little is known about the peptide specificity or functional differences of CD4 T cells within these two compartments. Using a mouse model of influenza virus infection in conjunction with intravascular labeling in vivo, the cell surface phenotype, epitope specificity, and functional potential of the endogenous polyclonal CD4 T cell response was examined by tracking nine independent CD4 T cell epitope specificities. These studies revealed that tissue-localized CD4 cells were globally distinct from vascular cells in expression of markers associated with transendothelial migration, residency, and micropositioning. Despite these differences, there was little evidence for remodeling of the viral epitope specificity or cytokine potential as cells transition from vasculature to the highly inflamed lung tissue. Our studies also distinguished cells in the pulmonary vasculature from peripheral circulating CD4 T cells, providing support for the concept that the pulmonary vasculature does not simply reflect circulating cells that are trapped within the narrow confines of capillary vessels but rather is enriched in transitional cells primed in the draining lymph node that have specialized potential to enter the lung tissue.IMPORTANCE CD4 T cells convey a multitude of functions in immunity to influenza, including those delivered in the lymph node and others conveyed by CD4 T cells that leave the lymph node, enter the blood, and extravasate into the lung tissue. Here, we show that the transition of recently primed CD4 cells detected in the lung vasculature undergo profound changes in expression of markers associated with tissue localization as they establish residence in the lung. However, this transition does not edit CD4 T cell epitope specificity or the cytokine potential of the CD4 T cells. Thus, CD4 T cells that enter the infected lung can convey diverse functions and have a sufficiently broad viral antigen specificity to detect the complex array of infected cells within the infected tissue, offering the potential for more effective protective function.
Collapse
|
25
|
Clemens EB, van de Sandt C, Wong SS, Wakim LM, Valkenburg SA. Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020018. [PMID: 29587436 PMCID: PMC6027237 DOI: 10.3390/vaccines6020018] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Next-generation vaccines that utilize T cells could potentially overcome the limitations of current influenza vaccines that rely on antibodies to provide narrow subtype-specific protection and are prone to antigenic mismatch with circulating strains. Evidence from animal models shows that T cells can provide heterosubtypic protection and are crucial for immune control of influenza virus infections. This has provided hope for the design of a universal vaccine able to prime against diverse influenza virus strains and subtypes. However, multiple hurdles exist for the realisation of a universal T cell vaccine. Overall primary concerns are: extrapolating human clinical studies, seeding durable effective T cell resident memory (Trm), population human leucocyte antigen (HLA) coverage, and the potential for T cell-mediated immune escape. Further comprehensive human clinical data is needed during natural infection to validate the protective role T cells play during infection in the absence of antibodies. Furthermore, fundamental questions still exist regarding the site, longevity and duration, quantity, and phenotype of T cells needed for optimal protection. Standardised experimental methods, and eventually simplified commercial assays, to assess peripheral influenza-specific T cell responses are needed for larger-scale clinical studies of T cells as a correlate of protection against influenza infection. The design and implementation of a T cell-inducing vaccine will require a consensus on the level of protection acceptable in the community, which may not provide sterilizing immunity but could protect the individual from severe disease, reduce the length of infection, and potentially reduce transmission in the community. Therefore, increasing the standard of care potentially offered by T cell vaccines should be considered in the context of pandemic preparedness and zoonotic infections, and in combination with improved antibody vaccine targeting methods. Current pandemic vaccine preparedness measures and ongoing clinical trials under-utilise T cell-inducing vaccines, reflecting the myriad questions that remain about how, when, where, and which T cells are needed to fight influenza virus infection. This review aims to bring together basic fundamentals of T cell biology with human clinical data, which need to be considered for the implementation of a universal vaccine against influenza that harnesses the power of T cells.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Carolien van de Sandt
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sook San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sophie A Valkenburg
- HKU Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|