1
|
Sáez-Llorens X, deAntonio R, López-Medina E, López P, Masuda T, Mendelman PM, Sherwood J, Baehner F, Borkowski A. Safety and immunogenicity of a bivalent norovirus vaccine candidate in infants from 6 weeks to 5 months of age: A phase 2, randomized, double-blind trial. Hum Vaccin Immunother 2025; 21:2450878. [PMID: 39803784 PMCID: PMC11730628 DOI: 10.1080/21645515.2025.2450878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
As infants suffer significant morbidity and mortality due to norovirus-related acute gastroenteritis (AGE), we assessed four formulations of the bivalent virus-like particle (VLP) vaccine candidate (HIL-214) in Panamanian and Colombian infants. 360 infants aged 6 weeks to 5 months were randomly allocated to 8 groups to receive three doses of HIL-214 or two doses of HIL-214 and one dose of placebo (Days 1, 56 and 112), where HIL-214 doses contained 15/15, 15/50, 50/50 or 50/150 μg of GI.1/GII.4c genotype VLPs and 0.5 mg Al(OH)3. Solicited injection-site and systemic adverse events (AE) were collected within 7 days after each dose, unsolicited AEs were collected within 28 days after each, and serious AEs throughout the study. Pan-Ig and histoblood group antigen-blocking antibodies (HBGA) were measured on Days 1, 56, 84, and 140. All formulations were well-tolerated causing mainly mild-to-moderate transient solicited AEs, most frequently local pain and irritability/fussiness, but no vaccine-related serious AEs. Two doses of each formulation induced high titers of high avidity Pan-Ig and also HBGA antibodies; a third dose increased titers against both antigens and the avidity of Pan-Ig antibodies against GII.4c but not against GI.1. Two and three doses of HIL-214 were well-tolerated and induced potent immune responses at 4-6 months of age supporting further clinical assessment to protect against norovirus-related AGE.
Collapse
Affiliation(s)
- Xavier Sáez-Llorens
- Cevaxin, The Panama Clinic, Panama City, Panama
- Department of Infectious Diseases, Hospital del Niño Dr. José Renán Esquivel, Panama City, Panama
- Sistema Nacional de Investigación (SNI), National Secretariat of Science, Technology and Innovation (SENACYT), Panama City, Panama
| | | | - Eduardo López-Medina
- Centro de Estudios en Infectología Pediátrica S.A.S, Cali, Valle del Cauca, Colombia
| | - Pío López
- Centro de Estudios en Infectología Pediátrica S.A.S, Cali, Valle del Cauca, Colombia
| | - Taisei Masuda
- Clinical Development, Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | - Jim Sherwood
- Clinical Development, Takeda Pharmaceuticals International AG, Zurich, Switzerland
- Clinical Development, HilleVax GmbH, Glattpark-Zurich, Switzerland
| | - Frank Baehner
- Clinical Development, Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | - Astrid Borkowski
- Clinical Development, Takeda Pharmaceuticals International AG, Zurich, Switzerland
- Clinical Development, HilleVax GmbH, Glattpark-Zurich, Switzerland
| |
Collapse
|
2
|
Leroux-Roels G, Atmar RL, Cramer JP, Escudero I, Borkowski A. Persistence of the Immune Response to an Intramuscular Bivalent (GI.1/GII.4) Norovirus Vaccine in Adults. Vaccines (Basel) 2025; 13:82. [PMID: 39852862 PMCID: PMC11768790 DOI: 10.3390/vaccines13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Major global economic and health burdens due to norovirus gastroenteritis could be addressed by an effective vaccine. METHODS In this study, 428 adult recipients of various compositions of the norovirus vaccine candidate, HIL-214, were followed for 5 years, to assess immune responses to its virus-like particle antigens, GI.1 and GII.4c. Serum antibodies and peripheral-blood antibody-secreting cells (ASCs) were measured. This report focuses on the single-dose 15/50 (µg GI.1/GII.4c) composition, which had been selected for further clinical development. RESULTS For single-dose 15/50 recipients (N = 105), GI.1-specific and GII.4c-specific histoblood-group antigen-blocking (HBGA) antibodies appeared to have persisted to 5 years, waning from a peak at 4 to 8 weeks, and plateauing above baseline after 3 years. From 3 to 5 years, GI.1-specific GMTs ranged between 53 (95%CI, 40-71) and 60 (95%CI, 46-77; N = 69-97) and were approximately 2-fold above the baseline GMT (24 (95%CI, 20-28); N = 105). GII.4c-specific GMTs ranged between 103 (95%CI, 77-138) and 114 (95%CI, 86-152; N = 70-97) and were above baseline, but by less than 2-fold (70 (95%CI, 53-92); N = 105). Similar kinetics were observed for pan-Ig titers and ASCs in a subset. Similar kinetics were also observed for HBGA and pan-Ig titers in recipients of other 15/50 dosages. CONCLUSIONS Immune responses to HIL-214 in adults appear to persist for five years.
Collapse
Affiliation(s)
- Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, 9000 Ghent, Belgium;
| | - Robert L. Atmar
- Departments of Medicine and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jakob P. Cramer
- Clinical Development, Takeda Pharmaceuticals International AG, Farman Strasse 11, Opfikon, 8152 Zurich, Switzerland; (J.P.C.); (I.E.)
- Clinical Development, Coalition for Epidemic Preparedness Innovations (CEPI), Gibbs Building, 215 Euston Road, London NW1 2BE, UK
| | - Ian Escudero
- Clinical Development, Takeda Pharmaceuticals International AG, Farman Strasse 11, Opfikon, 8152 Zurich, Switzerland; (J.P.C.); (I.E.)
- Clinical Development, Takeda Vaccines, 75 Sidney St., Cambridge, MA 02139, USA
| | - Astrid Borkowski
- Clinical Development, Takeda Pharmaceuticals International AG, Farman Strasse 11, Opfikon, 8152 Zurich, Switzerland; (J.P.C.); (I.E.)
- HilleVax AG, Boulevard Lilienthal 42, Opfikon, 8152 Zurich, Switzerland
| |
Collapse
|
3
|
Wang F, Zhang Q, An R, Lyu C, Xu J, Wang D. Reactive species of plasma-activated water for murine norovirus 1 inactivation. Food Res Int 2024; 194:114877. [PMID: 39232515 DOI: 10.1016/j.foodres.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Human norovirus (HuNoV), the leading cause of foodborne acute gastroenteritis, poses a serious threat to public health. Traditional disinfection methods lead to destructions of food properties and functions, and/or environmental contaminations. Green and efficient approaches are urgently needed to disinfect HuNoV. Plasma-activated water (PAW) containing amounts of reactive species is an emerging nonthermal and eco-friendly disinfectant towards the pathogenic microorganisms. However, the disinfection efficacy and mechanism of PAW on HuNoV has not yet been studied. Murine norovirus 1 (MNV-1) is one of the most commonly used HuNoV surrogates to evaluate the efficacy of disinfectants. In the current study, the inactivation efficacy of MNV-1 by PAW was investigated. The results demonstrated that PAW significantly inactivated MNV-1, reducing the viral titer from approximately 6 log10 TCID50/mL to non-detectable level. The decreased pH, increased oxidation-reduction potential (ORP) and conductivity of PAW were observed compared with that of deionized water. Compositional analysis revealed that hydrogen peroxide (H2O2), nitrate (NO3-) and hydroxyl radical (OH) were the functional reactive species in MNV-1 inactivation. L-histidine could scavenge most of the inactivation effect in a concentration-dependent manner. Moreover, PAW could induce damage to viral proteins. Part of MNV-1 particles was destroyed, while others were structurally intact without infectiousness. After 45 days of storage at 4 °C, PAW generated with 80 % O2 and 100 % O2 could still reduce over 4 log10 TCID50/mL of the viral titer. In addition, PAW prepared using hard water induced approximately 6 log10 TCID50/mL reduction of MNV-1. PAW treatment of MNV-1-inoculated blueberries reduced the viral titer from 3.79 log10 TCID50/mL to non-detectable level. Together, findings of the current study uncovered the crucial reactive species in PAW inactivate MNV-1 and provided a potential disinfection strategy to combat HuNoV in foods, water, and environment.
Collapse
Affiliation(s)
- Fengqing Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Ran An
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenang Lyu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jialun Xu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dapeng Wang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Ma J, Chen Q, Yuan F, Cao M, Gao J, Yang C, Tan M, Xian R, Gao L, Kuai W. Prevalence and genotype distribution of norovirus in Ningxia Hui Autonomous Region, China, from 2011 to 2022. Virol J 2024; 21:232. [PMID: 39334155 PMCID: PMC11430420 DOI: 10.1186/s12985-024-02498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The norovirus (NoV) genome is diverse. Therefore, this study explored the epidemiological characteristics and genetic features of NoV in Ningxia Hui Autonomous Region, China, from 2011 to 2022 to clarify the genetic diversity in this region. Stool samples were screened for NoV and then sequenced and genotyped. In total, 1,788 of 13,083 specimens were NoV -positive (13.67%); 204 (1.56%) and 1,584 (12.11%) cases were GI and GII, respectively. Additionally, 559 were NoV infection with other viruses (4.27%), primarily with rotavirus (277/559, 49.55%). The NoV incidence rate was the highest among children aged 0-2 years (18.09%, 1054/5,828) and lowest among adults aged 45-64 years (110/1,495, 7.36%); it was also higher in the winter and spring than in the other seasons. GI.3[P3] was the dominant GI genotype. The dominant GII genotype changed roughly every two years. In the GII group, GII.4 was the most common genotype (46.79%), followed by GII.3 (21.34%), GII.2 (12.34%), and GII.17 (9.77%). There were three variants of GII.4 Den Haag, GII.4 New Orleans and GII.4 Sydney identified in the detected GII.4 strains, with GII.4 Sydney dominating. The GII.4 (87.36%), GII.3 (86.35%), and GII.2 (72.92%) strains were primarily detected in children, whereas it was the GII.17 (52.63%) strain in adults. Overall, the NoV genotypes in the Ningxia Hui Autonomous Region were diverse. Primarily, GII groups were dominant, but this changed over time.
Collapse
Affiliation(s)
- Jiangtao Ma
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China.
| | - Qian Chen
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
| | - Fang Yuan
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
| | - Min Cao
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
| | - Jianwei Gao
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
| | - Cong Yang
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
| | - Ming Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Viral Disease Control and Prevention, Beijing, 102206, China
| | - Ran Xian
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
- School of Public Health, Ningxia Medical University, Yinchuan, 750001, China
| | - Lei Gao
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
- School of Public Health, Ningxia Medical University, Yinchuan, 750001, China
| | - Wenhe Kuai
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
| |
Collapse
|
5
|
Omatola CA, Mshelbwala PP, Okolo MLO, Onoja AB, Abraham JO, Adaji DM, Samson SO, Okeme TO, Aminu RF, Akor ME, Ayeni G, Muhammed D, Akoh PQ, Ibrahim DS, Edegbo E, Yusuf L, Ocean HO, Akpala SN, Musa OA, Adamu AM. Noroviruses: Evolutionary Dynamics, Epidemiology, Pathogenesis, and Vaccine Advances-A Comprehensive Review. Vaccines (Basel) 2024; 12:590. [PMID: 38932319 PMCID: PMC11209302 DOI: 10.3390/vaccines12060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Noroviruses constitute a significant aetiology of sporadic and epidemic gastroenteritis in human hosts worldwide, especially among young children, the elderly, and immunocompromised patients. The low infectious dose of the virus, protracted shedding in faeces, and the ability to persist in the environment promote viral transmission in different socioeconomic settings. Considering the substantial disease burden across healthcare and community settings and the difficulty in controlling the disease, we review aspects related to current knowledge about norovirus biology, mechanisms driving the evolutionary trends, epidemiology and molecular diversity, pathogenic mechanism, and immunity to viral infection. Additionally, we discuss the reservoir hosts, intra-inter host dynamics, and potential eco-evolutionary significance. Finally, we review norovirus vaccines in the development pipeline and further discuss the various host and pathogen factors that may complicate vaccine development.
Collapse
Affiliation(s)
- Cornelius Arome Omatola
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | | | - Anyebe Bernard Onoja
- Department of Virology, University College Hospital, Ibadan 211101, Oyo State, Nigeria
| | - Joseph Oyiguh Abraham
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - David Moses Adaji
- Department of Biotechnology Science and Engineering, University of Alabama, Huntsville, AL 35899, USA
| | - Sunday Ocholi Samson
- Department of Molecular Biology, Biotechnology, and Biochemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| | - Therisa Ojomideju Okeme
- Department of Biological Sciences, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Ruth Foluke Aminu
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Monday Eneojo Akor
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Gideon Ayeni
- Department of Biochemistry, Kogi State University, Anyigba 272102, Kogi State, Nigeria
| | - Danjuma Muhammed
- Epidemiology and Public Health Unit, Department of Biology, Universiti Putra, Seri Kembangan 43300, Malaysia
| | - Phoebe Queen Akoh
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Emmanuel Edegbo
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Lamidi Yusuf
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | | | - Sumaila Ndah Akpala
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
- Department of Biotechnology, Federal University Lokoja, Lokoja 260101, Kogi State, Nigeria
| | - Oiza Aishat Musa
- Department of Microbiology, Kogi State University, Anyigba 272102, Kogi State, Nigeria; (C.A.O.)
| | - Andrew Musa Adamu
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, QLD, Australia
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville 4811, QLD, Australia
- Centre for Tropical Biosecurity, James Cook University, Townsville 4811, QLD, Australia
| |
Collapse
|
6
|
Ushijima H, Hoque SA, Akari Y, Pham NTK, Phan T, Nishimura S, Kobayashi M, Sugita K, Okitsu S, Komoto S, Thongprachum A, Khamrin P, Maneekarn N, Hayakawa S. Molecular Evolution of GII.P31/GII.4_Sydney_2012 Norovirus over a Decade in a Clinic in Japan. Int J Mol Sci 2024; 25:3619. [PMID: 38612429 PMCID: PMC11011564 DOI: 10.3390/ijms25073619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Norovirus (NoV) genogroup II, polymerase type P31, capsid genotype 4, Sydney_2012 variant (GII.P31/GII.4_Sydney_2012) has been circulating at high levels for over a decade, raising the question of whether this strain is undergoing molecular alterations without demonstrating a substantial phylogenetic difference. Here, we applied next-generation sequencing to learn more about the genetic diversity of 14 GII.P31/GII.4_Sydney_2012 strains that caused epidemics in a specific region of Japan, with 12 from Kyoto and 2 from Shizuoka, between 2012 and 2022, with an emphasis on amino acid (aa) differences in all three ORFs. We found numerous notable aa alterations in antigenic locations in the capsid region (ORF2) as well as in other ORFs. In all three ORFs, earlier strains (2013-2016) remained phylogenetically distinct from later strains (2019-2022). This research is expected to shed light on the evolutionary properties of dominating GII.P31/GII.4_Sydney_2012 strains, which could provide useful information for viral diarrhea prevention and treatment.
Collapse
Affiliation(s)
- Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Yuki Akari
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Ngan Thi Kim Pham
- College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan;
| | - Tung Phan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | - Kumiko Sugita
- Sugita Children Clinic, Ibaraki, Osaka 567-0035, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| | - Satoshi Komoto
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- Center for Infectious Disease Research, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan
- Division of One Health, Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Yufu, Oita 879-5593, Japan
| | | | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine and Emerging and Re-Emerging Diarrheal Viruses Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine and Emerging and Re-Emerging Diarrheal Viruses Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Itabashi, Tokyo 173-8610, Japan
| |
Collapse
|
7
|
Flynn TG, Olortegui MP, Kosek MN. Viral gastroenteritis. Lancet 2024; 403:862-876. [PMID: 38340741 DOI: 10.1016/s0140-6736(23)02037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/17/2023] [Accepted: 09/18/2023] [Indexed: 02/12/2024]
Abstract
Since the discovery of norovirus in 1972 as a cause of what was contemporarily known as acute infectious non-bacterial gastroenteritis, scientific understanding of the viral gastroenteritides has continued to evolve. It is now recognised that a small number of viruses are the predominant cause of acute gastroenteritis worldwide, in both high-income and low-income settings. Although treatment is still largely restricted to the replacement of fluid and electrolytes, improved diagnostics have allowed attribution of illness, enabling both targeted treatment of individual patients and prioritisation of interventions for populations worldwide. Questions remain regarding specific genetic and immunological factors underlying host susceptibility, and the optimal clinical management of patients who are susceptible to severe or prolonged manifestations of disease. Meanwhile, the worldwide implementation of rotavirus vaccines has led to substantial reductions in morbidity and mortality, and spurred interest in vaccine development to diminish the impact of the most prevalent viruses that are implicated in this syndrome.
Collapse
Affiliation(s)
- Thomas G Flynn
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | - Margaret N Kosek
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Kim NE, Kim MJ, Park BJ, Kwon JW, Lee JM, Park JH, Song YJ. A DNA vaccine against GII.4 human norovirus VP1 induces blocking antibody production and T cell responses. Vaccine 2024; 42:1392-1400. [PMID: 38320930 DOI: 10.1016/j.vaccine.2024.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
Human noroviruses (HuNoVs) are highly contagious and a leading cause of epidemics of acute gastroenteritis worldwide. Among the various HuNoV genotypes, GII.4 is the most prevalent cause of outbreaks. However, no vaccines have been approved for HuNoVs to date. DNA vaccines are proposed to serve as an ideal platform against HuNoV since they can be easily produced and customized to express target proteins. In this study, we constructed a CMV/R vector expressing a major structural protein, VP1, of GII.4 HuNoV (CMV/R-GII.4 HuNoV VP1). Transfection of CMV/R-GII.4 HuNoV VP1 into human embryonic kidney 293T (HEK293T) cells resulted in successful expression of VP1 proteins in vitro. Intramuscular or intradermal immunization of mice with the CMV/R-GII.4 HuNoV VP1 construct elicited the production of blocking antibodies and activation of T cell responses against GII.4 HuNoV VP1. Our collective data support the utility of CMV/R-GII.4 HuNoV VP1 as a promising DNA vaccine candidate against GII.4 HuNoV.
Collapse
Affiliation(s)
- Na-Eun Kim
- Department of Life Science, Gachon University, Seongnam-Si, South Korea
| | - Mun-Jin Kim
- Department of BioNano Technology, Gachon University, Seongnam-Si, South Korea
| | - Bum Ju Park
- Department of Life Science, Gachon University, Seongnam-Si, South Korea
| | - Jung Won Kwon
- Department of Life Science, Gachon University, Seongnam-Si, South Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon University, Seongnam-Si, South Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-Si, South Korea.
| |
Collapse
|
9
|
Chavda VP, Vuppu S, Mishra T, Kamaraj S, Sharma N, Punetha S, Sairam A, Vaghela D, Dargahi N, Apostolopoulos V. Combatting infectious diarrhea: innovations in treatment and vaccination strategies. Expert Rev Vaccines 2024; 23:246-265. [PMID: 38372023 DOI: 10.1080/14760584.2023.2295015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/11/2023] [Indexed: 02/20/2024]
Abstract
INTRODUCTION The escalating prevalence of infectious diseases is an important cause of concern in society. Particularly in several developing countries, infectious diarrhea poses a major problem, with a high fatality rate, especially among young children. The condition is divided into four classes, namely, acute diarrhea, invasive diarrhea, acute bloody diarrhea, and chronic diarrhea. Various pathogenic agents, such as bacteria, viruses, protozoans, and helminths, contribute to the onset of this condition. AREAS COVERED The review discusses the scenario of infectious diarrhea, the prevalent types, as well as approaches to management including preventive, therapeutic, and vaccination strategies. The vaccination techniques are extensively discussed including the available vaccines, their advantages as well as limitations. EXPERT OPINION There are several approaches available to develop new-improved vaccines. In addition, route of immunization is important and aerosols/nasal sprays, oral route, skin patches, powders, and liquid jets to minimize needles can be used. Plant-based vaccines, such as rice, might save packing and refrigeration costs by being long-lasting, non-refrigerable, and immunogenic. Future research should utilize predetermined PCR testing intervals and symptom monitoring to identify persistent pathogens after therapy and symptom remission.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad, Gujarat, India
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sathvika Kamaraj
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nikita Sharma
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Swati Punetha
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Sairam
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dixa Vaghela
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Immunology Program, Sunshine Hospital Campus, Saint Albans, Victoria, Australia
| |
Collapse
|
10
|
Wang J, Ji ZH, Zhang SB, Yang ZR, Sun XQ, Zhang H. Asymptomatic norovirus infection during outbreaks in China: A systematic review and meta-analysis. J Med Virol 2024; 96:e29393. [PMID: 38235934 DOI: 10.1002/jmv.29393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/05/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
Acute gastroenteritis outbreaks may be caused by the excretion of norovirus (NoV) from asymptomatic individuals. Despite numerous studies involving asymptomatic NoV infection during outbreaks in China, a comprehensive assessment of its role has not been conducted, which is critical for emergency management. Our objective was to assess the prevalence of asymptomatic NoV infection during outbreaks in China. We conducted a comprehensive search of multiple databases, including PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure, China Wanfang, and China Weipu, between January 1, 1997 and June 19, 2023. The retrieved articles and their references underwent screening, which utilized polymerase chain reaction-based assays for the detection of NoV in asymptomatic individuals during outbreaks that occurred in China. The primary summary data were the prevalence of asymptomatic NoV infection in outbreaks. We generated pooled estimates of asymptomatic prevalence in the population as a whole and in subgroups by using random-effect models. Of the 97 articles included, the pooled asymptomatic prevalence of NoV among 5117 individuals in outbreaks was 17.6% (95% confidence interval [CI]: 14.1-21.3). The asymptomatic prevalence of NoV GII (17.1%, 95% CI: 12.9-21.5) was similar to that of NoV GI (22.0%, 95% CI: 12.8-32.4). However, the proportion of asymptomatic individuals involved in NoV GII (57.44%) was significantly higher than that of NoV GI (5.12%), and NoV GII (75.26%) was reported much more frequently than NoV GI (14.43%) in the included articles. Meta-regression analysis of 11 possible influencing factors (geographic region, setting, season, sample type, genotype, transmission route, occupation, age, per capita income, study quality, and cases definition) showed that the source of heterogeneity might be related to the outbreak settings, per capita income, and study quality (p = 0.037, 0.058, and 0.026, respectively). Of particular note was the asymptomatic prevalence peaked in preschoolers (27.8%), afterward, it fell into trough in elementary and junior school children (10.5%), before the second peak located in adults (17.8%), and the elderly (25.2%). Prevalent genotypes reported include GII.4, followed by GII.17, GII.2, GII.3, GII.6, and so forth. The estimated asymptomatic prevalence of NoV during outbreaks in China was as high as 17.6%, with NoV GII dominating. In addition, genetic subtypes of NoV in outbreaks should be detected whenever possible. The role of asymptomatic individuals in NoV outbreaks cannot be ignored. This knowledge will help governments develop public health policies and emergency response strategies for outbreaks, assess the burden, and develop vaccines.
Collapse
Affiliation(s)
- Jun Wang
- Department of Clinical Laboratory, Jiaozhou Central Hospital, Qingdao, Shandong, China
| | - Zhen-Hao Ji
- Department of Prevention of Infectious Diseases, Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Shao-Bai Zhang
- Institute for Prevention and Control of Viral Diseases, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Zu-Rong Yang
- Department of Epidemiology, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xue-Qiang Sun
- Department of Surgery Emergency, Jiaozhou Hospital, East Hospital Affiliated to Tongji University, Qingdao, Shandong, China
| | - Hui Zhang
- Department of Prevention of Infectious Diseases, Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Sousa JLC, Albuquerque HMT, Silva AMS. Drug Discovery Based on Oxygen and Nitrogen (Non-)Heterocyclic Compounds Developed @LAQV-REQUI MTE/Aveiro. Pharmaceuticals (Basel) 2023; 16:1668. [PMID: 38139794 PMCID: PMC10747949 DOI: 10.3390/ph16121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Artur Silva's research group has a long history in the field of medicinal chemistry. The development of new synthetic methods for oxygen (mostly polyphenols, e.g., 2- and 3-styrylchromones, xanthones, flavones) and nitrogen (e.g., pyrazoles, triazoles, acridones, 4-quinolones) heterocyclic compounds in order to be assessed as antioxidant, anti-inflammatory, antidiabetic, and anticancer agents has been the main core work of our research interests. Additionally, the synthesis of steroid-type compounds as anti-Alzheimer drugs as well as of several chromophores as important dyes for cellular imaging broadened our research scope. In this review article, we intend to provide an enlightened appraisal of all the bioactive compounds and their biological properties that were synthesized and studied by our research group in the last two decades.
Collapse
Affiliation(s)
| | | | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.L.C.S.); (H.M.T.A.)
| |
Collapse
|
12
|
Kabue JP, Khumela R, Meader E, Baroni de Moraes MT, Traore AN, Potgieter N. Norovirus-Associated Gastroenteritis Vesikari Score and Pre-Existing Salivary IgA in Young Children from Rural South Africa. Viruses 2023; 15:2185. [PMID: 38005863 PMCID: PMC10674611 DOI: 10.3390/v15112185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Norovirus (NoV) is the leading cause of viral gastroenteritis, mostly affecting young children worldwide. However, limited data are available to determine the severity of norovirus-associated AGE (acute gastroenteritis) and to correlate it with the NoV-specific IgA antibodies' level. Between October 2019 and September 2021, two hundred stool samples were randomly collected from symptomatic cases for the vesikari score and NoV-specific IgA assessment in young children from rural South Africa. Additionally, one hundred saliva specimens were concomitantly sampled within the same cohort to evaluate the NoV-specific salivary IgA levels. In addition, 50 paired saliva and stool samples were simultaneously collected from asymptomatic children to serve as controls. NoV strains in stool samples were detected using real-time RT-PCR, amplified, and genotyped with RT-PCR and Sanger sequencing. ELISA using NoV VLP (virus-like particles) GII.4 as antigens was performed on the saliva specimens. Dehydrated children were predominantly those with NoV infections (65/74, 88%; p < 0.0001). NoV-positive infections were significantly associated with the severe diarrhea cases having a high vesikari score (55%, 33/60) when compared to the non-severe diarrheal score (29.3%, 41/140; p < 0.0308). NoV of the GII genogroup was mainly detected in severe diarrhea cases (50.9%, 30/59; p = 0.0036). The geometric means of the NoV-specific IgA level were higher in the asymptomatic NoV-infected group (0.286) as compared to the symptomatic group (0.174). This finding suggests that mucosal immunity may not protect the children from the NoV infection. However, the findings indicated the contribution of the pre-existing NoV-specific IgA immune response in reducing the severity of diarrheal disease. A high vesikari score of AGE associated with the NoV GII genogroup circulating in the study area underscores the need for an appropriate treatment of AGE based on the severity level of NoV-associated clinical symptoms in young children.
Collapse
Affiliation(s)
- Jean-Pierre Kabue
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| | - Ronewa Khumela
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| | - Emma Meader
- Clinical Microbiology, Pathology Department, East Kent Hospitals University NHS Foundation Trust, Ashford TN24 OLZ, UK;
| | - Marcia Terezinha Baroni de Moraes
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Avenida Brazil, 4365-Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Afsatou Ndama Traore
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| | - Natasha Potgieter
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (R.K.); (A.N.T.); (N.P.)
| |
Collapse
|
13
|
Lewis MA, Cortés-Penfield NW, Ettayebi K, Patil K, Kaur G, Neill FH, Atmar RL, Ramani S, Estes MK. Standardization of an antiviral pipeline for human norovirus in human intestinal enteroids demonstrates nitazoxanide has no to weak antiviral activity. Antimicrob Agents Chemother 2023; 67:e0063623. [PMID: 37787556 PMCID: PMC10583671 DOI: 10.1128/aac.00636-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/02/2023] [Indexed: 10/04/2023] Open
Abstract
Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis. In immunocompetent hosts, symptoms usually resolve within 3 days; however, in immunocompromised persons, HuNoV infection can become persistent, debilitating, and sometimes life-threatening. There are no licensed therapeutics for HuNoV due to a near half-century delay in its cultivation. Treatment for chronic HuNoV infection in immunosuppressed patients anecdotally includes nitazoxanide, a broad-spectrum antimicrobial licensed for treatment of parasite-induced gastroenteritis. Despite its off-label use for chronic HuNoV infection, nitazoxanide has not been clearly demonstrated to be an effective treatment. In this study, we standardized a pipeline for antiviral testing using multiple human small intestinal enteroid lines representing different intestinal segments and evaluated whether nitazoxanide inhibits replication of five HuNoV strains in vitro. Nitazoxanide did not exhibit high selective antiviral activity against any HuNoV strain tested, indicating it is not an effective antiviral for HuNoV infection. Human intestinal enteroids are further demonstrated as a model to serve as a preclinical platform to test antivirals against HuNoVs to treat gastrointestinal disease. Abstr.
Collapse
Affiliation(s)
- Miranda A. Lewis
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Nicolás W. Cortés-Penfield
- Department of Medicine, Infectious Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Gurpreet Kaur
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Frederick H. Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
14
|
Waerlop G, Janssens Y, Jacobs B, Jarczowski F, Diessner A, Leroux-Roels G, Klimyuk V, Leroux-Roels I, Thieme F. Immune responses in healthy adults elicited by a bivalent norovirus vaccine candidate composed of GI.4 and GII.4 VLPs without adjuvant. Front Immunol 2023; 14:1188431. [PMID: 37435073 PMCID: PMC10331465 DOI: 10.3389/fimmu.2023.1188431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
The development of an efficacious vaccine against norovirus is of paramount importance given its potential to reduce the global burden of norovirus-associated morbidity and mortality. Here, we report a detailed immunological analysis of a phase I, double-blind, placebo-controlled clinical trial performed on 60 healthy adults, ages 18 to 40. Total serum immunoglobulin and serum IgA against vaccine strains and cross-reactive serum IgG against non-vaccine strains were measured by enzyme immunoassays, whereas cell-mediated immune responses were quantified using intracellular cytokine staining by flow cytometry. A significant increase in humoral and cellular responses, e.g., IgA and CD4+ polypositive T cells, was triggered by the GI.4 Chiba 407 (1987) and GII.4 Aomori 2 (2006) VLP-based norovirus vaccine candidate rNV-2v, which is formulated without adjuvant. No booster effect was observed after the second administration in the pre-exposed adult study population. Furthermore, a cross-reactive immune response was elicited, as shown by IgG titers against GI.3 (2002), GII.2 OC08154 (2008), GII.4 (1999), GII.4 Sydney (2012), GII.4 Washington (2018), GII.6 Maryland (2018), and GII.17 Kawasaki 308 (2015). Due to viral infection via mucosal gut tissue and the high variety of potentially relevant norovirus strains, a focus should be on IgA and cross-protective humoral and cell-mediated responses in the development of a broadly protective, multi-valent norovirus vaccine. Clinical trial registration https://clinicaltrials.gov, identifier NCT05508178. EudraCT number: 2019-003226-25.
Collapse
Affiliation(s)
- Gwenn Waerlop
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Yorick Janssens
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Bart Jacobs
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | | | | | - Geert Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | | | - Isabel Leroux-Roels
- Center for Vaccinology (CEVAC), Ghent University and University Hospital, Ghent, Belgium
| | - Frank Thieme
- Icon Genetics GmbH, a Denka Company, Halle, Germany
| |
Collapse
|
15
|
Deng Y, He T, Li B, Yuan H, Zhang F, Wu H, Ning J, Zhang Y, Zhai A, Wu C. Linear epitopes on the capsid protein of norovirus commonly elicit high antibody response among past-infected individuals. Virol J 2023; 20:115. [PMID: 37280660 DOI: 10.1186/s12985-023-02087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Human norovirus (HuNoV) is the leading cause of acute nonbacterial gastroenteritis globally, and its infection is usually self-limited, so most people become past Norovirus (NoV)-infected individuals. It is known that some antibody responses may play a critical role in preventing viral infection and alleviating disease; however, the characteristics and functions of particular antibody responses in persons with previous infections are not fully understood. Capsid proteins, including VP1 and VP2, are crucial antigenic components of NoV and may regulate antibody immune responses, while epitope-specific antibody responses to capsid proteins have not been comprehensively characterized. METHODS We prepared purified VP1 and VP2 proteins by ion exchange chromatography and measured serum antigen-specific IgG levels in 398 individuals by ELISA. Overlapping 18-mer peptides covering the full length of VP1 and VP2 were synthesized, and then we identified linear antigenic epitopes from 20 subjects with strong IgG positivity. Subsequently, specific antibody responses to these epitopes were validated in 185 past infected individuals, and the conservation of epitopes was analyzed. Finally, we obtained epitope-specific antiserum by immunizing mice and expressed virus-like particles (VLPs) in an insect expression system for a blockade antibody assay to evaluate the receptor-blocking ability of epitope-specific antibodies. RESULTS The IgG responses of VP1 were significantly stronger than those of VP2, both of which had high positive rates of over 80%. The overall positive rate of VP1-IgG and/or VP2-IgG was approximately 94%, which may be past NoV-infected individuals. Four linear antigenic B-cell epitopes of capsid proteins were identified, namely, VP1199-216, VP1469-492, VP297-120, and VP2241-264, all of which were conserved. The IgG response rates of the above epitopes in past NoV-infected individuals were 38.92%, 22.16%, 8.11% and 28.11%, respectively. In addition, VP1199-216- and VP1469-492-specific antibodies can partially block the binding of VLPs to the receptor histo-blood group antigen (HBGA). CONCLUSION This is the first study to describe specific antibody responses of VP2 and to identify its B-cell epitopes. Our findings offer data for a more thorough understanding of norovirus capsid protein-specific IgG responses and could provide useful information for designing and developing vaccines.
Collapse
Affiliation(s)
- Yilin Deng
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, China
| | - Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, China
| | - Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, China
| | - Fang Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, China
| | - Hui Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, China
| | - Jie Ning
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, China
| | - Yanping Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, China
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, China
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
16
|
Yu Z, Shao Q, Xu Z, Chen C, Li M, Jiang Y, Cheng D. Immunogenicity and Blocking Efficacy of Norovirus GII.4 Recombinant P Protein Vaccine. Vaccines (Basel) 2023; 11:1053. [PMID: 37376442 DOI: 10.3390/vaccines11061053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Noroviruses (NoVs) are the main cause of acute gastroenteritis in all ages worldwide. The aim of this study was to produce the recombinant P protein of norovirus and to demonstrate its blocking effect. In this study, the engineered strains were induced to express the P protein of NoVs GII.4, which was identified using SDS-PAGE and ELISA as having the capacity to bind to histo-blood group antigens (HBGAs). Rabbits were immunized to obtain neutralizing antibodies. ELISA and ISC-RT-qPCR were used to determine the blocking efficacy of the neutralizing antibody to human norovirus (HuNoV) and murine norovirus (MNV). The recombinant P protein (35 KD) was obtained, and the neutralizing antibody was successfully prepared. The neutralizing antibody could block the binding of the P protein and HuNoV to HBGAs. Neutralizing antibodies can also block MNV invasion into host cells RAW264.7. The recombinant P protein expressed in E. coli can induce antibodies to block HuNoV and MNV. The recombinant P protein of NoVs GII.4 has the value of vaccine development.
Collapse
Affiliation(s)
- Zhendi Yu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qingyi Shao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhangkai Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chenghao Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mingfan Li
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Jiang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dongqing Cheng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
17
|
Lewis MA, Cortés-Penfield NW, Ettayebi K, Patil K, Kaur G, Neill FH, Atmar RL, Ramani S, Estes MK. A Standardized Antiviral Pipeline for Human Norovirus in Human Intestinal Enteroids Demonstrates No Antiviral Activity of Nitazoxanide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.542011. [PMID: 37293103 PMCID: PMC10245936 DOI: 10.1101/2023.05.23.542011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis. In immunocompetent hosts, symptoms usually resolve within three days; however, in immunocompromised persons, HuNoV infection can become persistent, debilitating, and sometimes life-threatening. There are no licensed therapeutics for HuNoV due to a near half-century delay in its cultivation. Treatment for chronic HuNoV infection in immunosuppressed patients anecdotally includes nitazoxanide, a broad-spectrum antimicrobial licensed for treatment of parasite-induced gastroenteritis. Despite its off-label use for chronic HuNoV infection, nitazoxanide has not been clearly demonstrated to be an effective treatment. In this study, we established a standardized pipeline for antiviral testing using multiple human small intestinal enteroid (HIE) lines representing different intestinal segments and evaluated whether nitazoxanide inhibits replication of 5 HuNoV strains in vitro . Nitazoxanide did not exhibit high selective antiviral activity against any HuNoV strains tested, indicating it is not an effective antiviral for norovirus infection. HIEs are further demonstrated as a model to serve as a pre-clinical platform to test antivirals against human noroviruses to treat gastrointestinal disease.
Collapse
Affiliation(s)
- Miranda A. Lewis
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
| | | | - Khalil Ettayebi
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Ketki Patil
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Gurpreet Kaur
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Frederick H. Neill
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Robert L. Atmar
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Sasirekha Ramani
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Mary K. Estes
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX 77030
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
18
|
Kher G, Sabin C, Lun JH, Devant JM, Ruoff K, Koromyslova AD, von Itzstein M, Pancera M, Hansman GS. Direct Blockade of the Norovirus Histo-Blood Group Antigen Binding Pocket by Nanobodies. J Virol 2023; 97:e0183322. [PMID: 36971561 PMCID: PMC10134814 DOI: 10.1128/jvi.01833-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 03/29/2023] Open
Abstract
Noroviruses are the leading cause of outbreaks of acute gastroenteritis. These viruses usually interact with histo-blood group antigens (HBGAs), which are considered essential cofactors for norovirus infection. This study structurally characterizes nanobodies developed against the clinically important GII.4 and GII.17 noroviruses with a focus on the identification of novel nanobodies that efficiently block the HBGA binding site. Using X-ray crystallography, we have characterized nine different nanobodies that bound to the top, side, or bottom of the P domain. The eight nanobodies that bound to the top or side of the P domain were mainly genotype specific, while one nanobody that bound to the bottom cross-reacted against several genotypes and showed HBGA blocking potential. The four nanobodies that bound to the top of the P domain also inhibited HBGA binding, and structural analysis revealed that these nanobodies interacted with several GII.4 and GII.17 P domain residues that commonly engaged HBGAs. Moreover, these nanobody complementarity-determining regions (CDRs) extended completely into the cofactor pockets and would likely impede HBGA engagement. The atomic level information for these nanobodies and their corresponding binding sites provide a valuable template for the discovery of additional "designer" nanobodies. These next-generation nanobodies would be designed to target other important genotypes and variants, while maintaining cofactor interference. Finally, our results clearly demonstrate for the first time that nanobodies directly targeting the HBGA binding site can function as potent norovirus inhibitors. IMPORTANCE Human noroviruses are highly contagious and a major problem in closed institutions, such as schools, hospitals, and cruise ships. Reducing norovirus infections is challenging on multiple levels and includes the frequent emergence of antigenic variants, which complicates designing effective, broadly reactive capsid therapeutics. We successfully developed and characterized four norovirus nanobodies that bound at the HBGA pockets. Compared with previously developed norovirus nanobodies that inhibited HBGA through disrupted particle stability, these four novel nanobodies directly inhibited HBGA engagement and interacted with HBGA binding residues. Importantly, these new nanobodies specifically target two genotypes that have caused the majority of outbreaks worldwide and consequently would have an enormous benefit if they could be further developed as norovirus therapeutics. To date, we have structurally characterized 16 different GII nanobody complexes, a number of which block HBGA binding. These structural data could be used to design multivalent nanobody constructs with improved inhibition properties.
Collapse
Affiliation(s)
- Gargi Kher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Charles Sabin
- Schaller Research Group, University of Heidelberg, DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Jennifer H. Lun
- Schaller Research Group, University of Heidelberg, DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Jessica M. Devant
- Schaller Research Group, University of Heidelberg, DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Kerstin Ruoff
- Schaller Research Group, University of Heidelberg, DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Anna D. Koromyslova
- Schaller Research Group, University of Heidelberg, DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Grant S. Hansman
- Schaller Research Group, University of Heidelberg, DKFZ, Heidelberg, Germany
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| |
Collapse
|
19
|
Wang J, Ma Y, Li J, Peng R, Mao T, Sun X, Duan Z. An oral NoV-rAd5 vaccine with built-in dsRNA adjuvant elicits systemic immune responses in mice. Int Immunopharmacol 2023; 116:109801. [PMID: 36780828 DOI: 10.1016/j.intimp.2023.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/13/2023]
Abstract
Norovirus (NoV) is an enteric pathogen notorious for causing epidemics of acute gastroenteritis. An effective vaccine against NoV is therefore urgently needed. A short double-stranded RNA (dsRNA) has been described that acts as a retinoic-acid-inducible gene-I agonist to induce the production of type I interferon; it also exhibits adjuvant activity. Using built-in dsRNA of different lengths (DS1 and DS2), we developed a recombinant adenovirus 5 (rAd5) expressing NoV VP1, and evaluated its immunogenicity following oral administration in a mouse model. An in vitro study demonstrated that the dsRNA adjuvants significantly enhanced VP1 protein expression in infected cells. The oral administration of both rAd5-VP1-DS vaccines elicited high serum levels of VP1-specific IgG and blocking antibodies, as well as strong and long-lasting mucosal immunity. There was no apparent difference in immunostimulatory effects in immunised mice between the two dsRNA adjuvants. This study indicates that an oral NoV-rAd5 vaccine with a built-in dsRNA adjuvant may be developed to prevent NoV infection in humans.
Collapse
Affiliation(s)
- Jindong Wang
- Department of Pathogenic Biology, Weifang Medical University, Weifang 261053, China; National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yalin Ma
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Jinsong Li
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Rui Peng
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Tongyao Mao
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaoman Sun
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhaojun Duan
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
20
|
Kawagishi T, Sánchez-Tacuba L, Feng N, Costantini VP, Tan M, Jiang X, Green KY, Vinjé J, Ding S, Greenberg HB. Mucosal and systemic neutralizing antibodies to norovirus induced in infant mice orally inoculated with recombinant rotaviruses. Proc Natl Acad Sci U S A 2023; 120:e2214421120. [PMID: 36821582 PMCID: PMC9992845 DOI: 10.1073/pnas.2214421120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
Rotaviruses (RVs) preferentially replicate in the small intestine and frequently cause severe diarrheal disease, and the following enteric infection generally induces variable levels of protective systemic and mucosal immune responses in humans and other animals. Rhesus rotavirus (RRV) is a simian RV that was previously used as a human RV vaccine and has been extensively studied in mice. Although RRV replicates poorly in the suckling mouse intestine, infection induces a robust and protective antibody response. The recent availability of plasmid only-based RV reverse genetics systems has enabled the generation of recombinant RVs expressing foreign proteins. However, recombinant RVs have not yet been experimentally tested as potential vaccine vectors to immunize against other gastrointestinal pathogens in vivo. This is a newly available opportunity because several live-attenuated RV vaccines are already widely administered to infants and young children worldwide. To explore the feasibility of using RV as a dual vaccine vector, we rescued replication-competent recombinant RRVs harboring bicistronic gene segment 7 that encodes the native RV nonstructural protein 3 (NSP3) protein and a human norovirus (HuNoV) VP1 protein or P domain from the predominant genotype GII.4. The rescued viruses expressed HuNoV VP1 or P protein in infected cells in vitro and elicited systemic and local antibody responses to HuNoV and RRV following oral infection of suckling mice. Serum IgG and fecal IgA from infected suckling mice bound to and neutralized both RRV and HuNoV. These findings have encouraging practical implications for the design of RV-based next-generation multivalent enteric vaccines to target HuNoV and other human enteric pathogens.
Collapse
Affiliation(s)
- Takahiro Kawagishi
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA94304
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
| | - Liliana Sánchez-Tacuba
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA94304
| | - Ningguo Feng
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA94304
| | - Veronica P. Costantini
- National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA30333
| | - Ming Tan
- Divison of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - Xi Jiang
- Divison of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - Kim Y. Green
- Laboratory of Infectious Disease, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jan Vinjé
- National Calicivirus Laboratory, Centers for Disease Control and Prevention, Atlanta, GA30333
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
| | - Harry B. Greenberg
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Veterans Affairs, VA Palo Alto Health Care System, Palo Alto, CA94304
| |
Collapse
|
21
|
Philip AA, Patton JT. Generation of Recombinant Rotaviruses Expressing Human Norovirus Capsid Proteins. J Virol 2022; 96:e0126222. [PMID: 36314817 PMCID: PMC9682992 DOI: 10.1128/jvi.01262-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Rotavirus, a segmented double-stranded RNA virus of the Reoviridae family, is a primary cause of acute gastroenteritis in young children. In countries where rotavirus vaccines are widely used, norovirus (NoV) has emerged as the major cause of acute gastroenteritis. Towards the goal of creating a combined rotavirus-NoV vaccine, we explored the possibility of generating recombinant rotaviruses (rRVs) expressing all or portions of the NoV GII.4 VP1 capsid protein. This was accomplished by replacing the segment 7 NSP3 open reading frame with a cassette encoding, sequentially, NSP3, a 2A stop-restart translation element, and all or portions (P, P2) of NoV VP1. In addition to successfully recovering rRVs with modified SA11 segment 7 RNAs encoding NoV capsid proteins, analogous rRVs were recovered through modification of the segment 7 RNA of the RIX4414 vaccine strain. An immunoblot assay confirmed that rRVs expressed NoV capsid proteins as independent products. Moreover, VP1 expressed by rRVs underwent dimerization and was recognized by conformational-dependent anti-VP1 antibodies. Serially passaged rRVs that expressed the NoV P and P2 were genetically stable, retaining additional sequences of up to 1.1 kbp without change. However, serially passaged rRVs containing the longer 1.6-kb VP1 sequence were less stable and gave rise to virus populations with segment 7 RNAs lacking VP1 coding sequences. Together, these studies suggest that it may be possible to develop combined rotavirus-NoV vaccines using modified segment 7 RNA to express NoV P or P2. In contrast, development of potential rotavirus-NoV vaccines expressing NoV VP1 will need additional efforts to improve genetic stability. IMPORTANCE Rotavirus (RV) and norovirus (NoV) are the two most important causes of acute viral gastroenteritis (AGE) in infants and young children. While the incidence of RV AGE has been brought under control in many countries through the introduction of universal mass vaccination with live attenuated RV vaccines, similar highly effective NoV vaccines are not available. To pursue the development of a combined RV-NoV vaccine, we examined the potential of using RV as an expression vector of all or portions of the NoV capsid protein VP1. Our results showed that by replacing the NSP3 open reading frame in RV genome segment 7 RNA with a coding cassette for NSP3, a 2A stop-restart translation element, and VP1, recombinant RVs can be generated that express NoV capsid proteins. These findings raise the possibility of developing new generations of RV-based combination vaccines that provide protection against a second enteric pathogen, such as NoV.
Collapse
Affiliation(s)
- Asha A. Philip
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - John T. Patton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
22
|
Epidemiology of Norovirus in the First 2 Years of Life in an Australian Community-based Birth Cohort. Pediatr Infect Dis J 2022; 41:878-884. [PMID: 36223234 DOI: 10.1097/inf.0000000000003667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Noroviruses are a leading cause of acute gastroenteritis across all age groups in Australia. We explored the epidemiology of symptomatic and asymptomatic norovirus infection and assessed risk factors and the related healthcare burden in Australian children during their first 2 years of life. METHODS Participants in the Observational Research in Childhood Infectious Diseases birth cohort provided weekly stool swabs, daily gastrointestinal symptoms (vomiting and loose stools) observations and healthcare data. Swabs were batch-tested for norovirus genogroups (GI and GII) using real-time polymerase chain reaction assays. RESULTS Overall, 158 children returned 11,124 swabs. There were 221 infection episodes, of which 183 (82.8%) were GII. The incidence rate was 0.90 infections per child-year [95% confidence interval (CI): 0.74-1.09]. The symptomatic infection incidence rate was 0.39 per child-year (95% CI: 0.31-0.48), peaking between ages 6 and 11 months [0.58 (95% CI: 0.41-0.81)]. Incidence increased significantly with age and childcare attendance. Of 209 episodes with symptom diary data, 82 (39.2%) were symptomatic; of these 70 (85.4%) were associated with vomiting and 29 (35.4%) with diarrhea. Forty-one percent of symptomatic episodes required healthcare, including 4 emergency department presentations and 1 hospitalization. Children with initial infections had almost twice the risk of seeking primary healthcare compared to subsequent infections (adjusted risk ratio 1.92; 95% CI: 1.01-3.65). CONCLUSIONS Norovirus infections, particularly GII, are common in Australian children 6-23 months of age. Estimates of norovirus incidence, including symptomatic infections and healthcare utilization in community settings in young children, are crucial for planning norovirus vaccine programs and determining vaccine effectiveness.
Collapse
|
23
|
Qian W, Huang J, Wang T, Fan C, Kang J, Zhang Q, Li Y, Chen S. Ultrasensitive and visual detection of human norovirus genotype GII.4 or GII.17 using CRISPR-Cas12a assay. Virol J 2022; 19:150. [PMID: 36115975 PMCID: PMC9482751 DOI: 10.1186/s12985-022-01878-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
Background Integrating CRISPR-Cas12a sensors with isothermal signal amplification can be exploited to develop low-cost, disposable, and ultrasensitive assays for the diagnostics of human pathogens. Methods RT-RAA-Cas12a-mediated real-time or end-point fluorescent and lateral flow strip (LFS) assays for direct detection of norovirus (NOV) genotype GII.4 or GII.17 were explored. Results The results showed that our RT-RAA-Cas12a-mediated fluorescent and LFS assay could detect NOV GII.4 or GII.17 by targeting the viral protein 1 gene. Our RT-RAA-Cas12a-mediated fluorescent and LFS assay can specifically detect NOV GII.4 or GII.17 with no cross-reactivity for other related viruses. The low limit of detection could reach 0.1 copies/μL within approximately 30–40 min, and the results were visualized using an ultraviolet light illuminator or on a LFS without complex equipment. In addition, our RT-RAA-Cas12a-mediated fluorescent and LFS assay provided a visual and faster alternative to real-time RT-PCR assay, with 95.7% and 94.3% positive predictive agreement and 100% negative predictive agreement. Conclusions Together, our RT-RAA-Cas12a-mediated approach would have a great potential for point-of-care diagnostics of NOV GII.4 and/or GII.17 in resource-limited settings.
Collapse
|
24
|
A highly quantitative detection system for cell entry of human norovirus-like particles based on the complementation of NanoLuc luciferase. Virology 2022; 573:23-28. [DOI: 10.1016/j.virol.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022]
|
25
|
Hou W, Lv L, Wang Y, Xing M, Guo Y, Xie D, Wei X, Zhang X, Liu H, Ren J, Zhou D. 6-Valent Virus-Like Particle-Based Vaccine Induced Potent and Sustained Immunity Against Noroviruses in Mice. Front Immunol 2022; 13:906275. [PMID: 35711416 PMCID: PMC9197435 DOI: 10.3389/fimmu.2022.906275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Norovirus is a major cause of acute gastroenteritis worldwide, and no vaccine is currently available. The genetic and antigenic diversity of Norovirus presents challenges for providing broad immune protection, which calls for a multivalent vaccine application. In this study, we investigated the possibility of developing a virus-like particle (VLP)-based 6-valent Norovirus vaccine candidate (Hexa-VLPs) that covers GI.1, GII.2, GII.3, GII.4, GII.6, and GII.17 genotypes. Hexa-VLPs (30 µg) adjuvanted with 500 µg of aluminum hydroxide (alum) were selected as the optimal immunization dose after a dose-escalation study. Potent and long-lasting blockade antibody responses were induced by 2-or 3-shot Hexa-VLPs, especially for the emerging GII.P16-GII.2 and GII.17 (Kawasaki 2014) genotypes. Hexa-VLPs plus alum elicited Th1/Th2 mixed yet Th2-skewed immune responses, characterized by an IgG1-biased subclass profile and significant IL-4+ T-cell activation. Notably, simultaneous immunization with a mixture of six VLPs revealed no immunological interference among the component antigens. These results demonstrate that Hexa-VLPs are promising broad-spectrum vaccines to provide immunoprotection against major GI/GII epidemic strains in the future.
Collapse
Affiliation(s)
- Wenli Hou
- Key Laboratory of Bio resource and Eco-environment, College of Life Science, Sichuan University, Chengdu, China
| | - Lihui Lv
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yihan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yingying Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Di Xie
- R&D Centre, Chengdu Kanghua Biological Products Co., Ltd, Chengdu, China
| | - Xin Wei
- R&D Centre, Chengdu Kanghua Biological Products Co., Ltd, Chengdu, China
| | - Xiuyue Zhang
- Key Laboratory of Bio resource and Eco-environment, College of Life Science, Sichuan University, Chengdu, China
| | - Hui Liu
- R&D Centre, Chengdu Kanghua Biological Products Co., Ltd, Chengdu, China
- *Correspondence: Dongming Zhou, ; Jiling Ren, ; Hui Liu,
| | - Jiling Ren
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- *Correspondence: Dongming Zhou, ; Jiling Ren, ; Hui Liu,
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- *Correspondence: Dongming Zhou, ; Jiling Ren, ; Hui Liu,
| |
Collapse
|
26
|
OUP accepted manuscript. Glycobiology 2022; 32:496-505. [DOI: 10.1093/glycob/cwac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
|
27
|
Chu PY, Huang HW, Boonchan M, Tyan YC, Louis KL, Lee KM, Motomura K, Ke LY. Mass Spectrometry-Based System for Identifying and Typing Norovirus Major Capsid Protein VP1. Viruses 2021; 13:v13112332. [PMID: 34835138 PMCID: PMC8624548 DOI: 10.3390/v13112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022] Open
Abstract
Norovirus-associated diseases are the most common foodborne illnesses worldwide. Polymerase chain reaction-based methods are the primary diagnostics for clinical samples; however, the high mutation rate of norovirus makes viral amplification and genotyping challenging. Technological advances in mass spectrometry (MS) make it a promising tool for identifying disease markers. Besides, the superior sensitivity of MS and proteomic approaches may enable the detection of all variants. Thus, this study aimed to establish an MS-based system for identifying and typing norovirus. We constructed three plasmids containing the major capsid protein VP1 of the norovirus GII.4 2006b, 2006a, and 2009a strains to produce virus-like particles for use as standards. Digested peptide signals were collected using a nano-flow ultra-performance liquid chromatography mass spectrometry (nano-UPLC/MSE) system, and analyzed by ProteinLynx Global SERVER and TREE-PUZZLE software. Results revealed that the LC/MSE system had an excellent coverage rate: the system detected more than 94% of amino acids of 3.61 femtomole norovirus VP1 structural protein. In the likelihood-mapping analysis, the proportions of unresolved quartets were 2.9% and 4.9% in the VP1 and S domains, respectively, which is superior to the 15.1% unresolved quartets in current PCR-based methodology. In summary, the use of LC/MSE may efficiently monitor genotypes, and sensitively detect structural and functional mutations of noroviruses.
Collapse
Affiliation(s)
- Pei-Yu Chu
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-Y.C.); (K.L.L.)
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Hui-Wen Huang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
| | - Michittra Boonchan
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi 11004, Thailand;
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Kevin Leroy Louis
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-Y.C.); (K.L.L.)
| | - Kun-Mu Lee
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Kazushi Motomura
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi 11004, Thailand;
- Division of Public Health, Osaka Institute of Public Health, Osaka 543-0026, Japan
- Correspondence: (K.M.); (L.-Y.K.); Tel.: +81-669721321 (K.M.); +886-73121101 (ext. 2297) (L.-Y.K.)
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-Y.C.); (K.L.L.)
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Center for Lipid Biosciences, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (K.M.); (L.-Y.K.); Tel.: +81-669721321 (K.M.); +886-73121101 (ext. 2297) (L.-Y.K.)
| |
Collapse
|
28
|
Identification of Human Norovirus GII.3 Blockade Antibody Epitopes. Viruses 2021; 13:v13102058. [PMID: 34696487 PMCID: PMC8539815 DOI: 10.3390/v13102058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/06/2023] Open
Abstract
Human noroviruses are a common pathogen causing acute gastroenteritis worldwide. Among all norovirus genotypes, GII.3 is particularly prevalent in the pediatric population. Here we report the identification of two distinct blockade antibody epitopes on the GII.3 capsid. We generated a panel of monoclonal antibodies (mAbs) from mice immunized with virus-like particle (VLP) of a GII.3 cluster 3 strain. Two of these mAbs, namely 8C7 and 8D1, specifically bound the parental GII.3 VLP but not VLPs of GII.4, GII.17, or GI.1. In addition, 8C7 and 8D1 efficiently blocked GII.3 VLP binding with its ligand, histo-blood group antigens (HBGA). These data demonstrate that 8C7 and 8D1 are GII.3-specific blockade antibodies. By using a series of chimeric VLPs, we mapped the epitopes of 8C7 and 8D1 to residues 385-400 and 401-420 of the VP1 capsid protein, respectively. These two blockade antibody epitopes are highly conserved among GII.3 cluster 3 strains. Structural modeling shows that the 8C7 epitope partially overlaps with the HBGA binding site (HBS) while the 8D1 epitope is spatially adjacent to HBS. These findings may enhance our understanding of the immunology and evolution of GII.3 noroviruses.
Collapse
|
29
|
Zweigart MR, Becker-Dreps S, Bucardo F, González F, Baric RS, Lindesmith LC. Serological Humoral Immunity Following Natural Infection of Children with High Burden Gastrointestinal Viruses. Viruses 2021; 13:2033. [PMID: 34696463 PMCID: PMC8538683 DOI: 10.3390/v13102033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute gastroenteritis (AGE) is a major cause of morbidity and mortality worldwide, resulting in an estimated 440,571 deaths of children under age 5 annually. Rotavirus, norovirus, and sapovirus are leading causes of childhood AGE. A successful rotavirus vaccine has reduced rotavirus hospitalizations by more than 50%. Using rotavirus as a guide, elucidating the determinants, breath, and duration of serological antibody immunity to AGE viruses, as well as host genetic factors that define susceptibility is essential for informing development of future vaccines and improving current vaccine candidates. Here, we summarize the current knowledge of disease burden and serological antibody immunity following natural infection to inform further vaccine development for these three high-burden viruses.
Collapse
Affiliation(s)
- Mark R. Zweigart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Sylvia Becker-Dreps
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
- Department of Family Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Filemón Bucardo
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Fredman González
- Department of Microbiology, National Autonomous University of Nicaragua, León 21000, Nicaragua; (F.B.); (F.G.)
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| | - Lisa C. Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA; (M.R.Z.); (S.B.-D.)
| |
Collapse
|
30
|
Advances in Vaccine Development. Vaccines (Basel) 2021; 9:vaccines9091036. [PMID: 34579273 PMCID: PMC8472877 DOI: 10.3390/vaccines9091036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
The Special Issue titled "Advances in Vaccine Development" contains articles, reviews, and a perspective on advances in vaccine delivery and expression, nanovaccines, epitopes, proteins and adjuvants, and new vaccine platforms [...].
Collapse
|