1
|
Sun Z, Zhao W, Fei X, He B, Shi L, Zhang Z, Cai S. Static magnetic field inhibits epithelial mesenchymal transition and metastasis of glioma. Sci Rep 2025; 15:12430. [PMID: 40216876 PMCID: PMC11992211 DOI: 10.1038/s41598-025-96047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Gliomas exhibit suboptimal responses to conventional treatments, with tumor cell migration remaining a significant challenge in therapy. Epithelial-mesenchymal transition (EMT) is crucial for glioma cell invasion, and transforming growth factor β1(TGF-β1) is a key factor promoting proliferation, migration, and EMT in glioblastoma (GBM). Although magnetic fields are widely used in the diagnosis and treatment of various diseases, their effects on EMT in glioma cells remain unclear. In this study, we investigated whether a static magnetic field (SMF) could inhibit EMT and metastasis in glioma cells. Cellular functional assays using the U251 and U87 glioma cell lines were performed to investigate their functional and phenotypic changes. Results showed that TGF-β1 treatment increased the invasion and migration capabilities of glioma cells, while simultaneously reducing apoptosis. However, when SMF was combined with TGF-β1 treatment, a significant reduction in cell migration and invasion was observed, along with an increase in apoptosis. Additionally, this combination treatment significantly decreased the protein expression of mesenchymal markers N-cadherin and β-catenin, as well as reduced the levels of the matrix metalloproteinase (MMP)-2. Collectively, these findings suggest that SMFs may attenuate glioma cell metastasis by inhibiting EMT. Therefore, SMFs could represent a promising therapeutic strategy for diminishing glioma metastasis.
Collapse
Affiliation(s)
- Ziyu Sun
- Department of Neurosurgery, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, People's Republic of China
| | - Wenxuan Zhao
- Department of Neurosurgery, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, People's Republic of China
| | - Xifeng Fei
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, People's Republic of China
| | - Bao He
- Department of Neurosurgery, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, People's Republic of China
| | - Lei Shi
- Department of Neurosurgery, Gusu School, Nanjing Medical University, The First People's Hospital of Kunshan, Suzhou, People's Republic of China.
| | - Zhen Zhang
- Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, China Medical University, Gusu School Nanjing Medical University, Suzhou, People's Republic of China.
| | - Shizhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Wang L, Gu M, Zhang X, Kong T, Liao J, Zhang D, Li J. Recent Advances in Nanoenzymes Based Therapies for Glioblastoma: Overcoming Barriers and Enhancing Targeted Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413367. [PMID: 39854126 PMCID: PMC11905078 DOI: 10.1002/advs.202413367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/14/2024] [Indexed: 01/26/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor originating from glial cells, characterized by high recurrence rates and poor patient prognosis. The heterogeneity and complex biology of GBM, coupled with the protective nature of the blood-brain barrier (BBB), significantly limit the efficacy of traditional therapies. The rapid development of nanoenzyme technology presents a promising therapeutic paradigm for the rational and targeted treatment of GBM. In this review, the underlying mechanisms of GBM pathogenesis are comprehensively discussed, emphasizing the impact of the BBB on treatment strategies. Recent advances in nanoenzyme-based approaches for GBM therapy are explored, highlighting how these nanoenzymes enhance various treatment modalities through their multifunctional capabilities and potential for precise drug delivery. Finally, the challenges and therapeutic prospects of translating nanoenzymes from laboratory research to clinical application, including issues of stability, targeting efficiency, safety, and regulatory hurdles are critically analyzed. By providing a thorough understanding of both the opportunities and obstacles associated with nanoenzyme-based therapies, future research directions are aimed to be informed and contribute to the development of more effective treatments for GBM.
Collapse
Affiliation(s)
- Liyin Wang
- Shengjing Hospital of China Medical UniversityLiaoning110004China
| | - Min Gu
- Shengjing Hospital of China Medical UniversityLiaoning110004China
| | - Xiaoli Zhang
- Shengjing Hospital of China Medical UniversityLiaoning110004China
| | | | - Jun Liao
- Institute of Systems BiomedicineBeijing Key Laboratory of Tumor Systems BiologySchool of Basic Medical SciencesPeking UniversityBeijing100191China
| | - Dan Zhang
- Shengjing Hospital of China Medical UniversityLiaoning110004China
| | - Jingwu Li
- The First Hospital of China Medical UniversityLiaoning110001China
| |
Collapse
|
3
|
Baldión PA, Díaz CA, Betancourt DE. Myricetin Modulates Matrix Metalloproteinases Expression Induced by TEGDMA in Human Odontoblast-Like Cells. J Biomed Mater Res A 2025; 113:e37872. [PMID: 39893556 DOI: 10.1002/jbm.a.37872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/15/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025]
Abstract
The activity of matrix metalloproteinases (MMPs) plays a crucial role in the aging of the resin-dentin interface. The in situ action of MMP-2 and MMP-9 has been confirmed in the process of dentin-collagen degradation. However, the involvement of dental pulp cells in MMP secretion as a response to oxidative stress induced by contact with resin monomers has not been fully elucidated. Myricetin (MYR), like proanthocyanidin (PAC), has antioxidant properties and may help prevent extracellular matrix degradation. The objective was to evaluate the effect of MYR on the MMP expression and activity in response to reactive oxygen species (ROS) increase induced by triethylene glycol dimethacrylate (TEGDMA) in human odontoblast-like cells (hOLCs). hOLCs differentiated from dental pulp mesenchymal stem cells were exposed to TEGDMA released from dentin blocks using a barrier model with transwell inserts for 18, 24, and 36 h. Intracellular oxidation was evaluated using the 2',7'-dichlorofluorescein probe. The effect of 600 μM MYR on the MMP-2 and MMP-9 expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The extracellular MMP levels were quantified using enzyme-linked immunosorbent assay, and their activation by means of a proteolytic fluorometric assay. The results were analyzed by one-way analysis of variance and Tukey's post hoc test, p ≤ 0.05. TEGDMA exposure increased intracellular ROS and upregulated MMP-2 and MMP-9 mRNA in hOLCs (p < 0.001). The levels of MMPs increased significantly 24 h after TEGDMA exposure (p = 0.013). These secreted proteases exhibited high activation ability. MYR reduced ROS production and downregulated MMP expression and activity at both mRNA and protein levels, similar to the effect found for PAC, which was used as a control. A relationship was observed between MMP-2 and MMP-9 expression, secretion, and early activation with ROS increase due to TEGDMA exposure. MYR showed potential as a therapeutic strategy to control MMP expression and modulate redox imbalance, offering a protective effect on cellular response.
Collapse
Affiliation(s)
- Paula Alejandra Baldión
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Aldemar Díaz
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego Enrique Betancourt
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
4
|
Sipos TC, Attila K, Kocsis L, Bălașa A, Chinezu R, Baróti BÁ, Pap Z. Clinicopathological Parameters and Immunohistochemical Profiles in Correlation with MRI Characteristics in Glioblastomas. Int J Mol Sci 2024; 25:13043. [PMID: 39684754 PMCID: PMC11642654 DOI: 10.3390/ijms252313043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma is considered the most aggressive tumor of the central nervous system. The tumor microenvironment includes several components, such as endothelial cells, immune cells, and extracellular matrix components like matrix metalloproteinase-9 (MMP-9), which facilitates the proliferation of endothelial cells with pro-angiogenic roles. The MRI characteristics of glioblastomas can contribute to determining the prognosis. The aim of this study was to analyze the relationship between tumor angiogenesis in glioblastomas in association with MMP-9 immunoexpression. The results were correlated with the Ki-67 proliferation index, p53 immunoexpression, and the mutational status of IDH1 and ATRX, as well as MRI imaging data. This retrospective study included forty-four patients diagnosed with glioblastoma at the Department of Pathology, Târgu Mureș County Emergency Clinical Hospital. MMP-9 immunoexpression was observed in approximately half of the cases, more frequently in patients over 65 years old. Comparing the imaging data with the immunohistochemical results, we observed that the median tumor volume was higher in glioblastomas with IDH1 and p53 mutations, ATRX wild-type status, negative MMP-9 expression, and high Ki-67 proliferation indexes. The median values of MVD-CD34 and MVD-CD105 were higher in cases with extensive peritumoral edema in the contralateral hemisphere. Additionally, ATRX mutations were frequently associated with a more pronounced deviation of the median structures. To statistically validate the associations between MRI and the histopathological features of glioblastomas, further studies with larger cohorts are required.
Collapse
Affiliation(s)
- Tamás-Csaba Sipos
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania; (T.-C.S.); (L.K.); (Z.P.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Kövecsi Attila
- Pathology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
| | - Lóránd Kocsis
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania; (T.-C.S.); (L.K.); (Z.P.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Adrian Bălașa
- Neurosurgery Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania; (A.B.); (R.C.)
- Neurosurgery Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
| | - Rareș Chinezu
- Neurosurgery Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania; (A.B.); (R.C.)
- Neurosurgery Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
| | - Beáta Ágota Baróti
- Radiology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania;
- Radiology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
| | - Zsuzsánna Pap
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania; (T.-C.S.); (L.K.); (Z.P.)
| |
Collapse
|
5
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Wszołek A, Gutowska I. Is Fluoride Blameless?-The Influence of Fluorine Compounds on the Invasiveness of the Human Glioma-like Cell Line U-87. Int J Mol Sci 2024; 25:12773. [PMID: 39684484 DOI: 10.3390/ijms252312773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma remains one of the most treatment-resistant and malignant human cancers. Given the documented harmful effects of fluoride on the developing central nervous system and the rising incidence of brain tumors, especially among children, it is pertinent to explore the role of environmental toxins, including fluoride compounds, in the context of brain cancer. This study represents the first investigation into the influence of fluoride on mechanisms related to the invasiveness of human glioblastoma cells. We examined the effects of sodium fluoride (NaF) exposure on the migratory and invasive abilities of the U-87 human glioblastoma cell line, assessing levels of metalloproteinases MMP-2 and MMP-9 secreted by these cells. Additionally, the activation of metabolic pathways associated with invasiveness, including AKT and NF-κB, was analyzed. Our results suggest that the effects induced by NaF at physiologically high concentrations (0.1-10 µM) in U-87 glioblastoma cells may promote a pro-invasive phenotype.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agata Wszołek
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, 70-453 Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
6
|
Habanjar O, Nehme R, Goncalves-Mendes N, Cueff G, Blavignac C, Aoun J, Decombat C, Auxenfans C, Diab-Assaf M, Caldefie-Chézet F, Delort L. The obese inflammatory microenvironment may promote breast DCIS progression. Front Immunol 2024; 15:1384354. [PMID: 39072314 PMCID: PMC11272476 DOI: 10.3389/fimmu.2024.1384354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Ductal carcinoma in situ (DCIS), characterized by a proliferation of neoplastic cells confined within the mammary ducts, is distinctly isolated from the surrounding stroma by an almost uninterrupted layer of myoepithelial cells (MECs) and by the basement membrane. Heightened interactions within the adipose microenvironment, particularly in obese patients, may play a key role in the transition from DCIS to invasive ductal carcinoma (IDC), which is attracting growing interest in scientific research. Adipose tissue undergoes metabolic changes in obesity, impacting adipokine secretion and promoting chronic inflammation. This study aimed to assess the interactions between DCIS, including in situ cancer cells and MECs, and the various components of its inflammatory adipose microenvironment (adipocytes and macrophages). Methods To this end, a 3D co-culture model was developed using bicellular bi-fluorescent DCIS-like tumoroids, adipose cells, and macrophages to investigate the influence of the inflammatory adipose microenvironment on DCIS progression. Results The 3D co-culture model demonstrated an inhibition of the expression of genes involved in apoptosis (BAX, BAG1, BCL2, CASP3, CASP8, and CASP9), and an increase in genes related to cell survival (TP53, JUN, and TGFB1), inflammation (TNF-α, PTGS2, IL-6R), invasion and metastasis (TIMP1 and MMP-9) in cancer cells of the tumoroids under inflammatory conditions versus a non-inflammatory microenvironment. On the contrary, it confirmed the compromised functionality of MECs, resulting in the loss of their protective effects against cancer cells. Adipocytes from obese women showed a significant increase in the expression of all studied myofibroblast-associated genes (myoCAFs), such as FAP and α-SMA. In contrast, adipocytes from normal-weight women expressed markers of inflammatory fibroblast phenotypes (iCAF) characterized by a significant increase in the expression of LIF and inflammatory cytokines such as TNF-α, IL-1β, IL-8, and CXCL-10. These changes also influenced macrophage polarization, leading to a pro-inflammatory M1 phenotype. In contrast, myoCAF-associated adipocytes, and the cancer-promoting microenvironment polarized macrophages towards an M2 phenotype, characterized by high CD163 receptor expression and IL-10 and TGF-β secretion. Discussion Reciprocal interactions between the tumoroid and its microenvironment, particularly in obesity, led to transcriptomic changes in adipocytes and macrophages, may participate in breast cancer progression while disrupting the integrity of the MEC layer. These results underlined the importance of adipose tissue in cancer progression.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Rawan Nehme
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Gwendal Cueff
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Christelle Blavignac
- Université Clermont-Auvergne, Centre d’Imagerie Cellulaire Santé (CCIS), Clermont-Ferrand, France
| | - Jessy Aoun
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | | | - Céline Auxenfans
- Banque de tissus et de cellules, Hôpital Edouard-Herriot, Lyon, France
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Moléculaire et Pharmacologie Anticancéreuse, Faculté des Sciences II, Université libanaise Fanar, Beirut, Lebanon
| | | | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, Clermont-Ferrand, France
| |
Collapse
|
7
|
Vo HVT, Nguyen YT, Kim N, Lee HJ. Vitamin A, D, E, and K as Matrix Metalloproteinase-2/9 Regulators That Affect Expression and Enzymatic Activity. Int J Mol Sci 2023; 24:17038. [PMID: 38069361 PMCID: PMC10707015 DOI: 10.3390/ijms242317038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Fat-soluble vitamins (vitamin A, D, E, and K) assume a pivotal role in maintaining human homeostasis by virtue of their enzymatic functions. The daily inclusion of these vitamins is imperative to the upkeep of various physiological processes including vision, bone health, immunity, and protection against oxidative stress. Current research highlights fat-soluble vitamins as potential therapeutics for human diseases, especially cancer. Fat-soluble vitamins exert their therapeutic effects through multiple pathways, including regulation of matrix metalloproteinases' (MMPs) expression and enzymatic activity. As MMPs have been reported to be involved in the pathology of various diseases, such as cancers, cardiovascular diseases, and neurological disorders, regulating the expression and/or activity of MMPs could be considered as a potent therapeutic strategy. Here, we summarize the properties of fat-soluble vitamins and their potential as promising candidates capable of effectively modulating MMPs through multiple pathways to treat human diseases.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
| | - Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
- Kongju National University Institute of Science Education, Kongju National University, Gongju 32588, Republic of Korea
- Kongju National University’s Physical Fitness for Health Research Lab (KNUPFHR), Kongju National University, Gongju 32588, Republic of Korea
| |
Collapse
|
8
|
Boltman T, Meyer M, Ekpo O. Diagnostic and Therapeutic Approaches for Glioblastoma and Neuroblastoma Cancers Using Chlorotoxin Nanoparticles. Cancers (Basel) 2023; 15:3388. [PMID: 37444498 DOI: 10.3390/cancers15133388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma multiforme (GB) and high-risk neuroblastoma (NB) are known to have poor therapeutic outcomes. As for most cancers, chemotherapy and radiotherapy are the current mainstay treatments for GB and NB. However, the known limitations of systemic toxicity, drug resistance, poor targeted delivery, and inability to access the blood-brain barrier (BBB), make these treatments less satisfactory. Other treatment options have been investigated in many studies in the literature, especially nutraceutical and naturopathic products, most of which have also been reported to be poorly effective against these cancer types. This necessitates the development of treatment strategies with the potential to cross the BBB and specifically target cancer cells. Compounds that target the endopeptidase, matrix metalloproteinase 2 (MMP-2), have been reported to offer therapeutic insights for GB and NB since MMP-2 is known to be over-expressed in these cancers and plays significant roles in such physiological processes as angiogenesis, metastasis, and cellular invasion. Chlorotoxin (CTX) is a promising 36-amino acid peptide isolated from the venom of the deathstalker scorpion, Leiurus quinquestriatus, demonstrating high selectivity and binding affinity to a broad-spectrum of cancers, especially GB and NB through specific molecular targets, including MMP-2. The favorable characteristics of nanoparticles (NPs) such as their small sizes, large surface area for active targeting, BBB permeability, etc. make CTX-functionalized NPs (CTX-NPs) promising diagnostic and therapeutic applications for addressing the many challenges associated with these cancers. CTX-NPs may function by improving diffusion through the BBB, enabling increased localization of chemotherapeutic and genotherapeutic drugs to diseased cells specifically, enhancing imaging modalities such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), optical imaging techniques, image-guided surgery, as well as improving the sensitization of radio-resistant cells to radiotherapy treatment. This review discusses the characteristics of GB and NB cancers, related treatment challenges as well as the potential of CTX and its functionalized NP formulations as targeting systems for diagnostic, therapeutic, and theranostic purposes. It also provides insights into the potential mechanisms through which CTX crosses the BBB to bind cancer cells and provides suggestions for the development and application of novel CTX-based formulations for the diagnosis and treatment of GB and NB in the future.
Collapse
Affiliation(s)
- Taahirah Boltman
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Okobi Ekpo
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
9
|
Sousa LR, Oliveira AGS, Arantes A, Junqueira JGM, Alexandre GP, Severino VGP, Reis RM, Kim B, Ribeiro RIMA. Acetogenins-Rich Fractions of Annona coriacea Suppress Human Glioblastoma Viability and Migration by Regulating Necroptosis and MMP-2 Activity In Vitro. Molecules 2023; 28:molecules28093809. [PMID: 37175219 PMCID: PMC10179884 DOI: 10.3390/molecules28093809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma (GBM) is an incurable primary brain tumor with a poor prognosis. Resection, radiation therapy, and temozolomide (TMZ) are insufficient to increase survival, making the treatment limited. Thus, the search for more effective and specific treatments is essential, making plants a promising source for elucidating new anti-glioblastoma compounds. Accordingly, this study investigated the effects of four fractions of hexane and ethyl acetate extract of Annona coriacea Mart., enriched with acetogenins, against GBM cell lines. All four fractions were selectively cytotoxic to GBM cells when compared to TMZ. Moreover, A. coriacea fractions delayed cell migration; reduced cytoplasmic projections, the metalloproteinase 2 (MMP-2) activity; and induced morphological changes characteristic of necroptosis, possibly correlated with the increase in receptor-interacting protein kinase 1 and 3 (RIP-1 and RIP-3), apoptosis-inducing factor (AIF), and the non-activation of cleaved caspase 8. The present findings reinforce that fractions of A. coriacea Mart. should be considered for more studies focusing treatment of GBM.
Collapse
Affiliation(s)
- Lorena R Sousa
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| | - Ana Gabriela S Oliveira
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| | - Antônio Arantes
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| | - João Gabriel M Junqueira
- Institute of Chemistry, Federal University of Goiás (UFG), University Campus, Goiânia 74968-755, GO, Brazil
| | - Gerso P Alexandre
- Institute of Chemistry, Federal University of Goiás (UFG), University Campus, Goiânia 74968-755, GO, Brazil
| | - Vanessa G P Severino
- Institute of Chemistry, Federal University of Goiás (UFG), University Campus, Goiânia 74968-755, GO, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Bonglee Kim
- College of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Rosy I M A Ribeiro
- Experimental Pathology Laboratory, Federal University of São João del Rei (UFSJ), 400, Sebastião Gonçalves Coelho, Chanadour, Divinópolis 35501-296, MG, Brazil
| |
Collapse
|
10
|
Anticancer Mechanism of Flavonoids on High-Grade Adult-Type Diffuse Gliomas. Nutrients 2023; 15:nu15040797. [PMID: 36839156 PMCID: PMC9964830 DOI: 10.3390/nu15040797] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
High-grade adult-type diffuse gliomas are the most common and deadliest malignant adult tumors of the central nervous system. Despite the advancements in the multimodality treatment of high-grade adult-type diffuse gliomas, the five-year survival rates still remain poor. The biggest challenge in treating high-grade adult-type diffuse gliomas is the intra-tumor heterogeneity feature of the glioma tumors. Introducing dietary flavonoids to the current high-grade adult-type diffuse glioma treatment strategies is crucial to overcome this challenge, as flavonoids can target several molecular targets. This review discusses the anticancer mechanism of flavonoids (quercetin, rutin, chrysin, apigenin, naringenin, silibinin, EGCG, genistein, biochanin A and C3G) through targeting molecules associated with high-grade adult-type diffuse glioma cell proliferation, apoptosis, oxidative stress, cell cycle arrest, migration, invasion, autophagy and DNA repair. In addition, the common molecules targeted by the flavonoids such as Bax, Bcl-2, MMP-2, MMP-9, caspase-8, caspase-3, p53, p38, Erk, JNK, p38, beclin-1 and LC3B were also discussed. Moreover, the clinical relevance of flavonoid molecular targets in high-grade adult-type diffuse gliomas is discussed with comparison to small molecules inhibitors: ralimetinib, AMG232, marimastat, hydroxychloroquine and chloroquine. Despite the positive pre-clinical results, further investigations in clinical studies are warranted to substantiate the efficacy and safety of the use of flavonoids on high-grade adult-type diffuse glioma patients.
Collapse
|
11
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Gutowska I. Fluoride in the Central Nervous System and Its Potential Influence on the Development and Invasiveness of Brain Tumours-A Research Hypothesis. Int J Mol Sci 2023; 24:1558. [PMID: 36675073 PMCID: PMC9866357 DOI: 10.3390/ijms24021558] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The purpose of this review is to attempt to outline the potential role of fluoride in the pathogenesis of brain tumours, including glioblastoma (GBM). In this paper, we show for the first time that fluoride can potentially affect the generally accepted signalling pathways implicated in the formation and clinical course of GBM. Fluorine compounds easily cross the blood-brain barrier. Enhanced oxidative stress, disruption of multiple cellular pathways, and microglial activation are just a few examples of recent reports on the role of fluoride in the central nervous system (CNS). We sought to present the key mechanisms underlying the development and invasiveness of GBM, as well as evidence on the current state of knowledge about the pleiotropic, direct, or indirect involvement of fluoride in the regulation of these mechanisms in various tissues, including neural and tumour tissue. The effects of fluoride on the human body are still a matter of controversy. However, given the growing incidence of brain tumours, especially in children, and numerous reports on the effects of fluoride on the CNS, it is worth taking a closer look at these mechanisms in the context of brain tumours, including gliomas.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Centre, Institute of Biology, University of Szczecin, Wąska 13 St., 71-415 Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| |
Collapse
|
12
|
Ng MY, Lin T, Chao SC, Chu PM, Yu CC. Potential Therapeutic Applications of Natural Compounds in Diabetes-Associated Periodontitis. J Clin Med 2022; 11:jcm11133614. [PMID: 35806899 PMCID: PMC9267692 DOI: 10.3390/jcm11133614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is a major worldwide health burden. DM is a metabolic disease characterized by chronic hyperglycemia, and if left untreated, can lead to various complications. Individuals with uncontrolled DM are more susceptible to periodontitis due to both a hyper-inflammatory host response and an impaired immune response. Periodontitis, on the other hand, may exacerbate DM by increasing both local and systemic inflammatory components of DM-related complications. The current standard for periodontal treatment in diabetes-associated periodontitis (DP) focuses mostly on reducing bacterial load and less on controlling the excessive host response, and hence, may not be able to resolve DP completely. Over the past decade, natural compounds have emerged as an adjunct approach for modulating the host immune response with the hope of curing DP. The anti-oxidant, anti-inflammatory, and anti-diabetic characteristics of natural substances are well-known, and they can be found in regularly consumed foods and drinks, as well as plants. The pathophysiology of DP and the treatment benefits of various bioactive extracts for DP will be covered in this review.
Collapse
Affiliation(s)
- Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yi-lan, Luodong 265501, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Correspondence: ; Tel.: +886-4-2471-8668
| |
Collapse
|
13
|
Godau B, Stefanek E, Gharaie SS, Amereh M, Pagan E, Marvdashti Z, Libert-Scott E, Ahadian S, Akbari M. Non-destructive mechanical assessment for optimization of 3D bioprinted soft tissue scaffolds. iScience 2022; 25:104251. [PMID: 35521534 PMCID: PMC9062268 DOI: 10.1016/j.isci.2022.104251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 10/25/2022] Open
Abstract
Characterizing the mechanical properties of engineered tissue constructs provides powerful insight into the function of engineered tissues for their desired application. Current methods of mechanical characterization of soft hydrogels used in tissue engineering are often destructive and ignore the effect of 3D bioprinting on the overall mechanical properties of a whole tissue construct. This work reports on using a non-destructive method of viscoelastic analysis to demonstrate the influence of bioprinting strategy on mechanical properties of hydrogel tissue scaffolds. Structure-function relationships are developed for common 3D bioprinting parameters such as printed fiber size, printed scaffold pattern, and bioink formulation. Further studies include mechanical properties analysis during degradation, real-time monitoring of crosslinking, mechanical characterization of multi-material scaffolds, and monitoring the effect of encapsulated cell growth on the mechanical strength of 3D bioprinted scaffolds. We envision this method of characterization opening a new wave of understanding and strategy in tissue engineering.
Collapse
Affiliation(s)
- Brent Godau
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Evan Stefanek
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Sadaf Samimi Gharaie
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Meitham Amereh
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Erik Pagan
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Zohreh Marvdashti
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Eryn Libert-Scott
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada.,Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| |
Collapse
|
14
|
Rado M, Flepisi B, Fisher D. The Effect of Normoxic and Hypoxic U-87 Glioblastoma Paracrine Secretion on the Modulation of Brain Endothelial Cells. Cells 2022; 11:276. [PMID: 35053392 PMCID: PMC8773645 DOI: 10.3390/cells11020276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a highly invasive brain tumour, characterized by its ability to secrete factors promoting its virulence. Brain endothelial cells (BECs) in the GBM environment are physiologically modulated. The present study investigated the modulatory effects of normoxically and hypoxically induced glioblastoma U-87 cell secretions on BECs. METHODS Conditioned media (CM) were derived by cultivating U-87 cells under hypoxic incubation (5% O2) and normoxic incubation (21% O2). Treated bEnd.3 cells were evaluated for mitochondrial dehydrogenase activity, mitochondrial membrane potential (ΔΨm), ATP production, transendothelial electrical resistance (TEER), and endothelial tight-junction (ETJ) gene expression over 96 h. RESULTS The coculture of bEnd.3 cells with U-87 cells, or exposure to either hypoxic or normoxic U-87CM, was associated with low cellular viability. The ΔΨm in bEnd.3 cells was hyperpolarized after hypoxic U-87CM treatment (p < 0.0001). However, normoxic U-87CM did not affect the state of ΔΨm. BEC ATP levels were reduced after being cocultured with U-87 cells, or with hypoxic and normoxic CM (p < 0.05). Suppressed mitochondrial activity in bEnd.3 cells was associated with increased transendothelial permeability, while bEnd.3 cells significantly increased the gene expression levels of ETJs (p < 0.05) when treated with U-87CM. CONCLUSIONS Hypoxic and normoxic glioblastoma paracrine factors differentially suppressed mitochondrial activity in BECs, increasing the BECs' barrier permeability.
Collapse
Affiliation(s)
- Mariam Rado
- Medical Bioscience Department, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa;
| | - Brian Flepisi
- Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, 9 Bophelo Road, Pretoria 0002, South Africa;
| | - David Fisher
- Medical Bioscience Department, Faculty of Natural Sciences, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa;
| |
Collapse
|
15
|
Clementino-Neto J, da Silva JKS, de Melo Bastos Cavalcante C, da Silva-Júnior PF, David CC, de Araújo MV, Mendes CB, de Queiroz AC, da Silva ECO, de Souza ST, da Silva Fonseca EJ, da Silva TMS, de Amorim Camara C, Moura-Neto V, de Araújo-Júnior JX, da Silva-Júnior EF, da-Silva AX, Alexandre-Moreira MS. In vitro antitumor activity of dialkylamine-1,4-naphthoquinones toward human glioblastoma multiforme cells. NEW J CHEM 2022. [DOI: 10.1039/d1nj05915g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we evaluated the in vitro antitumor activity of dialkylamino-1,4-naphthoquinones (1a–n) toward human glioblastoma multiforme cells (GBM02).
Collapse
Affiliation(s)
- José Clementino-Neto
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - João Kaycke Sarmento da Silva
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Cibelle de Melo Bastos Cavalcante
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Paulo Fernando da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Cibelle Cabral David
- Laboratory of Bioactive Compounds Synthesis, Molecular Sciences Department, Federal Rural University of Pernambuco, Campus Dois Irmãos, Dom Manuel de Medeiros Street, Recife 57171-900, PE, Brazil
| | - Morgana Vital de Araújo
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Carmelita Bastos Mendes
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Aline Cavalcanti de Queiroz
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Microbiology, Immunology and Parasitology, Complex Of Medical Sciences And Nursing, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, AL, Brazil
| | - Elaine Cristina Oliveira da Silva
- Laboratory of Characterization and Microscopy of Materials, Institute of Physics, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió, 57072, AL, Brazil
| | - Samuel Teixeira de Souza
- Laboratory of Characterization and Microscopy of Materials, Institute of Physics, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió, 57072, AL, Brazil
| | - Eduardo Jorge da Silva Fonseca
- Laboratory of Characterization and Microscopy of Materials, Institute of Physics, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió, 57072, AL, Brazil
| | - Tânia Maria Sarmento da Silva
- Laboratory of Bioactive Compounds Synthesis, Molecular Sciences Department, Federal Rural University of Pernambuco, Campus Dois Irmãos, Dom Manuel de Medeiros Street, Recife 57171-900, PE, Brazil
| | - Celso de Amorim Camara
- Laboratory of Bioactive Compounds Synthesis, Molecular Sciences Department, Federal Rural University of Pernambuco, Campus Dois Irmãos, Dom Manuel de Medeiros Street, Recife 57171-900, PE, Brazil
| | - Vivaldo Moura-Neto
- State Institute of Brain Paulo Niemeyer, Rezende Street, Rio de Janeiro 20231-092, RJ, Brazil
| | - João Xavier de Araújo-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
- Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Adriana Ximenes da-Silva
- Laboratory of Electrophysiology and Brain Metabolism, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| | - Magna Suzana Alexandre-Moreira
- Laboratory of Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, AL, Brazil
| |
Collapse
|
16
|
Matyśniak D, Chumak V, Nowak N, Kukla A, Lehka L, Oslislok M, Pomorski P. P2X7 receptor: the regulator of glioma tumor development and survival. Purinergic Signal 2021; 18:135-154. [PMID: 34964926 PMCID: PMC8850512 DOI: 10.1007/s11302-021-09834-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022] Open
Abstract
P2X7 is an ionotropic nucleotide receptor, forming the cation channel upon ATP stimulation. It can also function as a large membrane pore as well as transmit ATP-dependent signal without forming a channel at all. P2X7 activity in somatic cells is well-known, but remains poorly studied in glioma tumors. The current paper presents the comprehensive study of P2X7 activity in C6 and glioma cell line showing the wide range of effects the receptor has on glioma biology. We observed that P2X7 stimulation boosts glioma cell proliferation and increases cell viability. P2X7 activation promoted cell adhesion, mitochondria depolarization, and reactive oxygen species overproduction in C6 cells. P2X7 receptor also influenced glioma tumor growth in vivo via activation of pro-survival signaling pathways and ATP release. Treatment with Brilliant Blue G, a selective P2X7 antagonist, effectively inhibited glioma tumor development; decreased the expression of negative prognostic cancer markers pro-survival and epithelial-mesenchymal transition (EMT)-related proteins; and modulated the immune response toward glioma tumor in vivo. Finally, pathway-specific enrichment analysis of the microarray data from human patients also showed an upregulation of P2X7 receptor in gliomas from grades I to III. The presented results shed more light on the role of P2X7 receptor in the biology of this disease.
Collapse
Affiliation(s)
- Damian Matyśniak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Vira Chumak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
- Regenerative Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Artur Kukla
- Silesian University of Technology, Gliwice, Poland
| | - Lilya Lehka
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Magdalena Oslislok
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Pomorski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
| |
Collapse
|
17
|
Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int J Mol Sci 2021; 23:ijms23010146. [PMID: 35008569 PMCID: PMC8745566 DOI: 10.3390/ijms23010146] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell-matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.
Collapse
|
18
|
Differential Effects of Normoxic versus Hypoxic Derived Breast Cancer Paracrine Factors on Brain Endothelial Cells. BIOLOGY 2021; 10:biology10121238. [PMID: 34943153 PMCID: PMC8698446 DOI: 10.3390/biology10121238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022]
Abstract
Simple Summary The potential of breast cancer to spread to the brain increases the clinical complications of the disease; breast cancer is considered to have the second-highest capacity to spread to the brain after lung cancer. The brain is protected by highly specialized endothelial cells, forming a barrier against the entry of circulating molecules and cells. The ability of breast cancer cells to penetrate the protective endothelial barrier is still not completely understood. Here, we aimed to investigate the effect of breast cancer cells on the brain’s endothelial cells. We showed that breast cancer cells induce changes in endothelial cells by releasing factors that target the mitochondria, affecting the endothelial cells and their attachment to each other and, therefore, their function as a protective barrier of the brain. Understanding the mechanism that breast cancer cells utilize to affect endothelial cells under normoxic and hypoxic conditions contributes to the development of treatments to prevent the metastasis of cancer cells to the brain. Abstract Background: The blood-brain barrier (BBB) is a central nervous system protective barrier formed primarily of endothelial cells that regulate the entry of substances and cells from entering the brain. However, the BBB integrity is disrupted in disease, including cancer, allowing toxic substances, molecules, and circulating cells to enter the brain. This study aimed to determine the mitochondrial changes in brain endothelial cells co-cultured with cancer cells. Method: Brain endothelial cells (bEnd.3) were co-cultivated with various concentrations of breast cancer (MCF7) conditioned media (CM) generated under normoxic (21% O2) and hypoxic conditions (5% O2). The mitochondrial activities (including; dehydrogenases activity, mitochondrial membrane potential (ΔΨm), and ATP generation) were measured using Polarstar Omega B.M.G-Plate reader. Trans-endothelial electrical resistance (TEER) was evaluated using the EVOM system, followed by quantifying gene expression of the endothelial tight junction (ETJs) using qPCR. Results: bEnd.3 cells had reduced cell viability after 72 h and 96 h exposure to MCF7CM under hypoxic and normoxic conditions. The ΔΨm in bEnd.3 cells were hyperpolarized after exposure to the hypoxic MCF7CM (p < 0.0001). However, the normoxic MCF7CM did not significantly affect the state of ΔΨm in bEnd.3 cells. ATP levels in bEnd.3 co-cultured with hypoxic and normoxic MCF7CM was significantly reduced (p < 0.05). The changes in brain endothelial mitochondrial activity were associated with a decrease in TEER of bEnd.3 monolayer co-cultured with MCF7CM under hypoxia (p = 0.001) and normoxia (p < 0.05). The bEnd.3 cells exposed to MCF7CM significantly increased the gene expression level of ETJs (p < 0.05). Conclusions: MCF7CM modulate mitochondrial activity in brain endothelial cells, affecting the brain endothelial barrier function.
Collapse
|
19
|
Sanders S, Herpai DM, Rodriguez A, Huang Y, Chou J, Hsu FC, Seals D, Mott R, Miller LD, Debinski W. The Presence and Potential Role of ALDH1A2 in the Glioblastoma Microenvironment. Cells 2021; 10:2485. [PMID: 34572134 PMCID: PMC8468822 DOI: 10.3390/cells10092485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant glioma. Therapeutic targeting of GBM is made more difficult due to its heterogeneity, resistance to treatment, and diffuse infiltration into the brain parenchyma. Better understanding of the tumor microenvironment should aid in finding more effective management of GBM. GBM-associated macrophages (GAM) comprise up to 30% of the GBM microenvironment. Therefore, exploration of GAM activity/function and their specific markers are important for developing new therapeutic agents. In this study, we identified and evaluated the expression of ALDH1A2 in the GBM microenvironment, and especially in M2 GAM, though it is also expressed in reactive astrocytes and multinucleated tumor cells. We demonstrated that M2 GAM highly express ALDH1A2 when compared to other ALDH1 family proteins. Additionally, GBM samples showed higher expression of ALDH1A2 when compared to low-grade gliomas (LGG), and this expression was increased upon tumor recurrence both at the gene and protein levels. We demonstrated that the enzymatic product of ALDH1A2, retinoic acid (RA), modulated the expression and activity of MMP-2 and MMP-9 in macrophages, but not in GBM tumor cells. Thus, the expression of ALDH1A2 may promote the progressive phenotype of GBM.
Collapse
Affiliation(s)
- Stephanie Sanders
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| | - Denise M. Herpai
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| | - Analiz Rodriguez
- Department of Neurosurgery, Jackson T. Stephens Spine and Neuroscience Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yue Huang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| | - Jeff Chou
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC 27157, USA;
| | - Darren Seals
- Biology Department, Appalachian State University, Boone, NC 28608, USA;
| | - Ryan Mott
- Department of Pathology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA;
| | - Lance D. Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| |
Collapse
|
20
|
Maugeri G, D’Amico AG, Saccone S, Federico C, Rasà DM, Caltabiano R, Broggi G, Giunta S, Musumeci G, D’Agata V. Effect of PACAP on Hypoxia-Induced Angiogenesis and Epithelial-Mesenchymal Transition in Glioblastoma. Biomedicines 2021; 9:biomedicines9080965. [PMID: 34440169 PMCID: PMC8392618 DOI: 10.3390/biomedicines9080965] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts different effects in various human cancer. In glioblastoma (GBM), PACAP has been shown to interfere with the hypoxic micro-environment through the modulation of hypoxia-inducible factors via PI3K/AKT and MAPK/ERK pathways inhibition. Considering that hypoxic tumor micro-environment is strictly linked to angiogenesis and Epithelial–Mesenchymal transition (EMT), in the present study, we have investigated the ability of PACAP to regulate these events. Results have demonstrated that PACAP and its related receptor, PAC1R, are expressed in hypoxic area of human GBM colocalizing either in epithelial or mesenchymal cells. By using an in vitro model of GBM cells, we have observed that PACAP interferes with hypoxic/angiogenic pathway by reducing vascular-endothelial growth factor (VEGF) release and inhibiting formation of vessel-like structures in H5V endothelial cells cultured with GBM-conditioned medium. Moreover, PACAP treatment decreased the expression of mesenchymal markers such as vimentin, matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) as well as CD44 in GBM cells by affecting their invasiveness. In conclusion, our study provides new insights regarding the multimodal role of PACAP in GBM malignancy.
Collapse
Affiliation(s)
- Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (D.M.R.); (S.G.); (G.M.)
| | | | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, 95123 Catania, Italy; (S.S.); (C.F.)
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology, University of Catania, 95123 Catania, Italy; (S.S.); (C.F.)
| | - Daniela Maria Rasà
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (D.M.R.); (S.G.); (G.M.)
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10124 Turin, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (R.C.); (G.B.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (R.C.); (G.B.)
| | - Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (D.M.R.); (S.G.); (G.M.)
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (D.M.R.); (S.G.); (G.M.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, 95100 Catania, Italy; (G.M.); (D.M.R.); (S.G.); (G.M.)
- Correspondence: ; Tel.: +39-095-3782147; Fax: +39-095-3782046
| |
Collapse
|
21
|
D’Amico AG, Maugeri G, Vanella L, Pittalà V, Reglodi D, D’Agata V. Multimodal Role of PACAP in Glioblastoma. Brain Sci 2021; 11:994. [PMID: 34439613 PMCID: PMC8391398 DOI: 10.3390/brainsci11080994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the deadliest form of brain tumors. To date, the GBM therapeutical approach consists of surgery, radiation-therapy and chemotherapy combined with molecules improving cancer responsiveness to treatments. In this review, we will present a brief overview of the GBM classification and pathogenesis, as well as the therapeutic approach currently used. Then, we will focus on the modulatory role exerted by pituitary adenylate cyclase-activating peptide, known as PACAP, on GBM malignancy. Specifically, we will describe PACAP ability to interfere with GBM cell proliferation, as well as the tumoral microenvironment. Considering its anti-oncogenic role in GBM, synthesis of PACAP agonist molecules may open new perspectives for combined therapy to existing gold standard treatment.
Collapse
Affiliation(s)
- Agata Grazia D’Amico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (L.V.); (V.P.)
| | - Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy;
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (L.V.); (V.P.)
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.G.D.); (L.V.); (V.P.)
| | - Dora Reglodi
- MTA-PTE PACAP Research Group, Department of Anatomy, University of Pécs Medical School, 7624 Pécs, Hungary;
| | - Velia D’Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy;
| |
Collapse
|
22
|
Cyclooxygenase Inhibition Alters Proliferative, Migratory, and Invasive Properties of Human Glioblastoma Cells In Vitro. Int J Mol Sci 2021; 22:ijms22094297. [PMID: 33919029 PMCID: PMC8122446 DOI: 10.3390/ijms22094297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Prostaglandin E2 (PGE2) is known to increase glioblastoma (GBM) cell proliferation and migration while cyclooxygenase (COX) inhibition decreases proliferation and migration. The present study investigated the effects of COX inhibitors and PGE2 receptor antagonists on GBM cell biology. Cells were grown with inhibitors and dose response, viable cell counting, flow cytometry, cell migration, gene expression, Western blotting, and gelatin zymography studies were performed. The stimulatory effects of PGE2 and the inhibitory effects of ibuprofen (IBP) were confirmed in GBM cells. The EP2 and EP4 receptors were identified as important mediators of the actions of PGE2 in GBM cells. The concomitant inhibition of EP2 and EP4 caused a significant decrease in cell migration which was not reverted by exogenous PGE2. In T98G cells exogenous PGE2 increased latent MMP2 gelatinolytic activity. The inhibition of COX1 or COX2 caused significant alterations in MMP2 expression and gelatinolytic activity in GBM cells. These findings provide further evidence for the importance of PGE2 signalling through the EP2 and the EP4 receptor in the control of GBM cell biology. They also support the hypothesis that a relationship exists between COX1 and MMP2 in GBM cells which merits further investigation as a novel therapeutic target for drug development.
Collapse
|
23
|
Kim JM, Park J, Noh EM, Song HK, Kang SY, Jung SH, Kim JS, Park BH, Lee YR, Youn HJ. Bruton's agammaglobulinemia tyrosine kinase (Btk) regulates TPA‑induced breast cancer cell invasion via PLCγ2/PKCβ/NF‑κB/AP‑1‑dependent matrix metalloproteinase‑9 activation. Oncol Rep 2021; 45:56. [PMID: 33760219 PMCID: PMC7962096 DOI: 10.3892/or.2021.8007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Bruton's agammaglobulinemia tyrosine kinase (BTK) is an important cytoplasmic tyrosine kinase involved in B-lymphocyte development, differentiation, and signaling. Activated protein kinase C (PKC), in turn, induces the activation of mitogen-activated protein kinase (MAPK) signaling, which promotes cell proliferation, viability, apoptosis, and metastasis. This effect is associated with nuclear factor-κB (NF-κB) activation, suggesting an anti-metastatic effect of BTK inhibitors on MCF-7 cells that leads to the downregulation of matrix metalloproteinase (MMP)-9 expression. However, the effect of BTK on breast cancer metastasis is unknown. In this study, the anti-metastatic activity of BTK inhibitors was examined in MCF-7 cells focusing on MMP-9 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated MCF-7 cells. The expression and activity of MMP-9 in MCF-7 cells were investigated using quantitative polymerase chain reaction analysis, western blotting, and zymography. Cell invasion and migration were investigated using the Matrigel invasion and cell migration assays. BTK inhibitors [ibrutinib (10 µM), CNX-774 (10 µM)] significantly attenuated TPA-induced cell invasion and migration in MCF-7 cells and inhibited the activation of the phospholipase Cγ2/PKCβ signaling pathways. In addition, small interfering RNA specific for BTK suppressed MMP-9 expression and cell metastasis. Collectively, results of the present study indicated that BTK suppressed TPA-induced MMP-9 expression and cell invasion/migration by activating the MAPK or IκB kinase/NF-κB/activator protein-1 pathway. The results clarify the mechanism of action of BTK in cancer cell metastasis by regulating MMP-9 expression in MCF-7 cells.
Collapse
Affiliation(s)
- Jeong-Mi Kim
- Department of Biochemistry, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeollabuk 560‑182, Republic of Korea
| | - Jinny Park
- Department of Internal Medicine, Division of Hematology, Gil Medical Center, Gachon University College of Medicine, Incheon 405‑760, Republic of Korea
| | - Eun-Mi Noh
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 570‑749, Republic of Korea
| | - Hyun-Kyung Song
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 570‑749, Republic of Korea
| | - Sang Yull Kang
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Jeonbuk National University and Biomedical Research Institute, Jeonju, Jeollabuk 560‑182, Republic of Korea
| | - Sung Hoo Jung
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Jeonbuk National University and Biomedical Research Institute, Jeonju, Jeollabuk 560‑182, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeollabuk 560‑182, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology and Director of Center for Meta Inflammation Research, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 570‑749, Republic of Korea
| | - Hyun Jo Youn
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Jeonbuk National University and Biomedical Research Institute, Jeonju, Jeollabuk 560‑182, Republic of Korea
| |
Collapse
|
24
|
Liu C, Chen L, Wang W, Qin D, Jia C, Yuan M, Wang H, Guo Y, Zhu J, Zhou Y, Zhao H, Liu T. Emodin Suppresses the Migration and Invasion of Melanoma Cells. Biol Pharm Bull 2021; 44:771-779. [PMID: 33731543 DOI: 10.1248/bpb.b20-00807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Emodin (1,3,8-trihydroxy-6-methylanthraquinone), as an active ingredient in rhubarb roots and rhizomes, has been reported to possess various pharmacological properties including anti-tumor effects. Recent studies have confirmed that emodin inhibited cell proliferation and induced apoptosis of cancer cells. However, the inhibitory effect of emodin on the migration and invasion of melanoma cells and its underlying mechanism are still unclear. In the study, we observed the impercipient effects of emodin in B16F10 and A375 melanoma cells with strong metastatic abilities, focusing on the functions and mechanisms of migration and invasion of B16F10 and A375 melanoma cells. Cell counting kit-8 (CCK-8), colony formation test and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining tests confirmed that emodin possessed anti-proliferative and pro-apoptotic activities in B16F10 and A375 cells. The inhibitory effects on the migration and invasion of B16F10 and A375 cells were proved by wound healing assay and Transwell methods. Moreover, immunofluorescence assay approved the decrease in protein expression of matrix metalloproteinas (MMP)-2/-9 by emodin, and Western blot analyses revealed that emodin could increase the Bax/Bcl-2 ratio and inhibit the MMP-2/-9 protein expression and Wnt/β-catenin pathway in a dose-depended manner. BML-284, as an agonist of Wnt/β-catenin signaling pathway, reversed the effects of emodin on cell growth, migration and invasion in B16F10 cells. These findings may suggest that emodin treatment can be a promising therapeutic strategy for melanoma with highly metastatic abilities.
Collapse
Affiliation(s)
- Chi Liu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Hua Dong Hospital Affiliated to Fu Dan University
| | - Liang Chen
- Department of Plastic and Reconstructive Surgery, Hua Dong Hospital Affiliated to Fu Dan University
| | - Wanchen Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Hua Dong Hospital Affiliated to Fu Dan University
| | - Dengke Qin
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Hua Dong Hospital Affiliated to Fu Dan University
| | - Chuanlong Jia
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Hua Dong Hospital Affiliated to Fu Dan University
| | - Mingjie Yuan
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Hua Dong Hospital Affiliated to Fu Dan University
| | - Heng Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Hua Dong Hospital Affiliated to Fu Dan University
| | - Yu Guo
- Department of Plastic and Reconstructive Surgery, Hua Dong Hospital Affiliated to Fu Dan University
| | - Jingjing Zhu
- Department of Plastic and Reconstructive Surgery, Hua Dong Hospital Affiliated to Fu Dan University
| | - Yiqun Zhou
- Department of Plastic and Reconstructive Surgery, Hua Dong Hospital Affiliated to Fu Dan University
| | - Haiguang Zhao
- Department of Plastic and Reconstructive Surgery, Hua Dong Hospital Affiliated to Fu Dan University
| | - Tianyi Liu
- Department of Plastic and Reconstructive Surgery, Hua Dong Hospital Affiliated to Fu Dan University
| |
Collapse
|
25
|
Hua D, Tang L, Wang W, Tang S, Yu L, Zhou X, Wang Q, Sun C, Shi C, Luo W, Jiang Z, Li H, Yu S. Improved Antiglioblastoma Activity and BBB Permeability by Conjugation of Paclitaxel to a Cell-Penetrative MMP-2-Cleavable Peptide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001960. [PMID: 33552853 PMCID: PMC7856885 DOI: 10.1002/advs.202001960] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/12/2020] [Indexed: 05/25/2023]
Abstract
In order to solve the problems of receptor promiscuity and poor blood-brain barrier (BBB) penetration in the treatment of glioblastomas (GBM), a novel dual-functional nanocomplex drug delivery system is developed based on the strategy of peptide-drug conjugates. In this study, SynB3-PVGLIG-PTX is designed and screened out by matrix metalloproteinase-2 (MMP-2), to which it exhibits the best affinity. The MMP-2-sensitive peptide (PVGLIG) and a cell-penetration peptide (SynB3) are combined to form a dual-functional peptide. Moreover, as a drug-peptide nanocomplex, SynB3-PVGLIG-PTX exhibited a high potential to form an aggregation with good solubility that can release paclitaxel (PTX) through the cleavage of MMP-2. From a functional perspective, it is found that SynB3-PVGLIG-PTX can specifically inhibit the proliferation, migration, and invasion of GBM cells in vitro in the presence of MMP-2, in contrast to that observed in MMP-2 siRNA transfected cells. Further investigation in vivo shows that SynB3-PVGLIG-PTX easily enters the brain of U87MG xenograft nude mice and can generate a better suppressive effect on GBM through a controlled release of PTX from SynB3-PVGLIG-PTX compared with PTX and temozolomide. Thus, it is proposed that SynB3-PVGLIG-PTX can be used as a novel drug-loading delivery system to treat GBM due to its specificity and BBB permeability.
Collapse
Affiliation(s)
- Dan Hua
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Lida Tang
- Tianjin Institute of Pharmaceutical ResearchTianjin300301China
| | - Weiting Wang
- Tianjin Institute of Pharmaceutical ResearchTianjin300301China
| | - Shengan Tang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)School of PharmacyTianjin Medical UniversityTianjin300070China
| | - Lin Yu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences of Tianjin Medical UniversityTianjin300070China
| | - Xuexia Zhou
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Qian Wang
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Cuiyun Sun
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Cuijuan Shi
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Wenjun Luo
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Zhendong Jiang
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Huining Li
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| | - Shizhu Yu
- Department of NeuropathologyTianjin Neurological InstituteTianjin Medical University General HospitalTianjin300052China
- Tianjin Key Laboratory of InjuriesVariations and Regeneration of the Nervous SystemTianjin300052China
- Key Laboratory of Post‐trauma Neuro‐repair and Regeneration in Central Nervous SystemMinistry of EducationTianjin300052China
| |
Collapse
|
26
|
Sharma S, Kalra H, Akundi RS. Extracellular ATP Mediates Cancer Cell Migration and Invasion Through Increased Expression of Cyclooxygenase 2. Front Pharmacol 2021; 11:617211. [PMID: 33584298 PMCID: PMC7873692 DOI: 10.3389/fphar.2020.617211] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment plays a major role in the ability of the tumor cells to undergo metastasis. A major player of tumors gaining metastatic property is the inflammatory protein, cyclooxygenase 2 (COX-2). Several tumors show upregulation of this protein, which has been implicated in mediating metastasis in various cancer types such as of colon, breast and lung. In this report, we show that the concentration of extracellular ATP (eATP) is increased in response to cell death mediated by chemotherapeutic agents such as doxorubicin. By using three different cell-lines-HeLa (cervical), IMR-32 (neuronal) and MCF-7 (breast)-we show that this eATP goes on to act on purinergic (P2) receptors. Among the various P2 receptors expressed in these cells we identified P2X7, in IMR-32 and MCF-7 cells, and P2Y12, in HeLa cells, as important in modulating cell migration and invasion. Downstream of the P2 receptor activation, both p42/44 mitogen-activated protein kinase (MAPK) and the p38 MAPK are activated in these cells. These result in an increase in the expression of COX-2 mRNA and protein. We also observe an increase in the activity of matrix metalloproteinase 2 (MMP-2) enzyme in these cells. Blocking the P2 receptors not only blocks migration and invasion, but also COX-2 synthesis and MMP-2 activity. Our results show the link between purinergic receptors and COX-2 expression. Increased levels of ATP in the tumor microenvironment, therefore, leads to increased COX-2 expression, which, in turn, affords migratory and invasive properties to the tumor. This provides P2 receptor-based anti-inflammatory drugs (PBAIDs) a potential opportunity to be explored as cancer therapeutics.
Collapse
Affiliation(s)
- Shilpa Sharma
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Harshit Kalra
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
27
|
Eastman AJ, Vrana EN, Grimaldo MT, Jones AD, Rogers LM, Alcendor DJ, Aronoff DM. Cytotrophoblasts suppress macrophage-mediated inflammation through a contact-dependent mechanism. Am J Reprod Immunol 2020; 85:e13352. [PMID: 32969101 DOI: 10.1111/aji.13352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
PROBLEM Gestational membrane (GM) infection provokes inflammation and can result in preterm prelabor rupture of membranes (PPROM). The choriodecidual layer of the GM includes decidual stromal cells (DSC), cytotrophoblasts (CTB), and macrophages (Mφ). Our laboratory has previously shown that DSCs suppress Mφ TNF-α production through secreted prostaglandin E2 . We hypothesized that CTBs would also inhibit Mφ cytokine expression through secreted mediators. METHOD OF STUDY THP.1 Mφ-like cells with an NF-κB reporter construct or human blood monocyte-derived Mφ were co-cultured with the Jeg3 CTB cell line or primary human CTBs and challenged with group B streptococcus (GBS) or Toll-like receptor (TLR) agonists. Conditioned medium generated from CTB cultures was applied to Mφ cultures before infection or treatment. Alternatively, CTBs were co-incubated with, but physically separated from, Mφ and GBS or TLR-stimulated. NF-κB was assessed via alkaline phosphatase assay, and proinflammatory mediators were assessed by qRT-PCR and ELISA. RESULTS CTBs suppressed GBS- or TLR-stimulated Mφ NF-κB activity, and TNF-α and MMP9 production. Direct physical contact between CTBs and Mφ was required for full immunosuppression. Immunosuppression could be overcome by increasing the ratio of Mφ to CTB. CONCLUSIONS CTBs limit Mφ NF-κB activation and production of TNF-α and MMP9 through an as-yet unknown, cell-to-cell contact-mediated mechanism. This suppression is distinct from the PGE2 -mediated Mφ TNF-α suppression by DSC, suggesting that DSCs and CTBs regulate Mφ inflammation through distinct mechanisms. How Mφ integrates these signals in an intact GM will be paramount to determining causes and prevention of PPROM.
Collapse
Affiliation(s)
- Alison J Eastman
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erin N Vrana
- Vanderbilt University Medical School, Vanderbilt University, Nashville, TN, USA
| | - Maria T Grimaldo
- Texas A&M University, College of Agriculture and Life Sciences, College Station, TX, USA
| | - Amanda D Jones
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa M Rogers
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - David M Aronoff
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Department of Obstetrics and Gynecology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
28
|
Portela M, Mitchell T, Casas-Tintó S. Cell-to-cell communication mediates glioblastoma progression in Drosophila. Biol Open 2020; 9:bio053405. [PMID: 32878880 PMCID: PMC7541342 DOI: 10.1242/bio.053405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/23/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive and lethal tumour of the central nervous system (CNS). GB cells grow rapidly and display a network of projections, ultra-long tumour microtubes (TMs), that mediate cell to cell communication. GB-TMs infiltrate throughout the brain, enwrap neurons and facilitate the depletion of the signalling molecule wingless (Wg)/WNT from the neighbouring healthy neurons. GB cells establish a positive feedback loop including Wg signalling upregulation that activates cJun N-terminal kinase (JNK) pathway and matrix metalloproteases (MMPs) production, which in turn promote further TMs infiltration, GB progression and neurodegeneration. Thus, cellular and molecular signals other than primary mutations emerge as central players of GB. Using a Drosophila model of GB, we describe the temporal organisation of the main cellular events that occur in GB, including cell-to-cell interactions, neurodegeneration and TM expansion. We define the progressive activation of JNK pathway signalling in GB mediated by the receptor Grindelwald (Grnd) and activated by the ligand Eiger (Egr)/TNFα produced by surrounding healthy brain tissue. We propose that cellular interactions of GB with the healthy brain tissue precede TM expansion and conclude that non-autonomous signals facilitate GB progression. These results contribute to deciphering the complexity and versatility of these incurable tumours.
Collapse
Affiliation(s)
- Marta Portela
- Molecular, Cellular and Developmental Neurobiology Department, Instituto Cajal-CSIC, Av. del Doctor Arce, 37, 28002 Madrid, Spain
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, 3086 Melbourne, Australia
| | - Teresa Mitchell
- Molecular, Cellular and Developmental Neurobiology Department, Instituto Cajal-CSIC, Av. del Doctor Arce, 37, 28002 Madrid, Spain
| | - Sergio Casas-Tintó
- Molecular, Cellular and Developmental Neurobiology Department, Instituto Cajal-CSIC, Av. del Doctor Arce, 37, 28002 Madrid, Spain
| |
Collapse
|
29
|
Asad AS, Nicola Candia AJ, Gonzalez N, Zuccato CF, Seilicovich A, Candolfi M. The role of the prolactin receptor pathway in the pathogenesis of glioblastoma: what do we know so far? Expert Opin Ther Targets 2020; 24:1121-1133. [PMID: 32896197 DOI: 10.1080/14728222.2020.1821187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Prolactin (PRL) and its receptor (PRLR) have been associated with the development of hormone-dependent tumors and have been detected in glioblastoma (GBM) biopsies. GBM is the most common and aggressive primary brain tumor in adults and the prognosis for patients is dismal; hence researchers are exploring the PRLR pathway as a therapeutic target in this disease. Areas covered: This paper explores the effects of PRLR activation on the biology of GBM, the correlation between PRL and PRLR expression and GBM progression and survival in male and female patients. Finally, we discuss how a better understanding of the PRLR pathway may allow the development of novel treatments for GBM. Expert opinion: We propose PRL and PRLR as potential prognosis biomarkers and therapeutic targets in GBM. Local administration of PRLR inhibitors using gene therapy may offer a beneficial strategy for targeting GBM cells disseminated in the non-neoplastic brain; however, efficacy and safety require careful and extensive evaluation. The data depicted herein underline the need to (i) improve our understanding of sexual dimorphism in GBM, and (ii) develop accurate preclinical models that take into consideration different hormonal contexts, specific genetic alterations, and tumor grades.
Collapse
Affiliation(s)
- Antonela S Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Alejandro J Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Camila F Zuccato
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina.,departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires , Buenos Aires, Argentina
| |
Collapse
|
30
|
Falco MM, Peña-Chilet M, Loucera C, Hidalgo MR, Dopazo J. Mechanistic models of signaling pathways deconvolute the glioblastoma single-cell functional landscape. NAR Cancer 2020; 2:zcaa011. [PMID: 34316686 PMCID: PMC8210212 DOI: 10.1093/narcan/zcaa011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Single-cell RNA sequencing is revealing an unexpectedly large degree of heterogeneity in gene expression levels across cell populations. However, little is known on the functional consequences of this heterogeneity and the contribution of individual cell fate decisions to the collective behavior of the tissues these cells are part of. Here, we use mechanistic modeling of signaling circuits, which reveals a complex functional landscape at single-cell level. Different clusters of neoplastic glioblastoma cells have been defined according to their differences in signaling circuit activity profiles triggering specific cancer hallmarks, which suggest different functional strategies with distinct degrees of aggressiveness. Moreover, mechanistic modeling of effects of targeted drug inhibitions at single-cell level revealed, how in some cells, the substitution of VEGFA, the target of bevacizumab, by other expressed proteins, like PDGFD, KITLG and FGF2, keeps the VEGF pathway active, insensitive to the VEGFA inhibition by the drug. Here, we describe for the first time mechanisms that individual cells use to avoid the effect of a targeted therapy, providing an explanation for the innate resistance to the treatment displayed by some cells. Our results suggest that mechanistic modeling could become an important asset for the definition of personalized therapeutic interventions.
Collapse
Affiliation(s)
- Matías M Falco
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - María Peña-Chilet
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Carlos Loucera
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Marta R Hidalgo
- Unidad de Bioinformática y Bioestadística, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013 Sevilla, Spain
| |
Collapse
|
31
|
Perrone L, Sampaolo S, Melone MAB. Bioactive Phenolic Compounds in the Modulation of Central and Peripheral Nervous System Cancers: Facts and Misdeeds. Cancers (Basel) 2020; 12:cancers12020454. [PMID: 32075265 PMCID: PMC7072310 DOI: 10.3390/cancers12020454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Efficacious therapies are not available for the cure of both gliomas and glioneuronal tumors, which represent the most numerous and heterogeneous primary cancers of the central nervous system (CNS), and for neoplasms of the peripheral nervous system (PNS), which can be divided into benign tumors, mainly represented by schwannomas and neurofibromas, and malignant tumors of the peripheral nerve sheath (MPNST). Increased cellular oxidative stress and other metabolic aspects have been reported as potential etiologies in the nervous system tumors. Thus polyphenols have been tested as effective natural compounds likely useful for the prevention and therapy of this group of neoplasms, because of their antioxidant and anti-inflammatory activity. However, polyphenols show poor intestinal absorption due to individual intestinal microbiota content, poor bioavailability, and difficulty in passing the blood-brain barrier (BBB). Recently, polymeric nanoparticle-based polyphenol delivery improved their gastrointestinal absorption, their bioavailability, and entry into defined target organs. Herein, we summarize recent findings about the primary polyphenols employed for nervous system tumor prevention and treatment. We describe the limitations of their application in clinical practice and the new strategies aimed at enhancing their bioavailability and targeted delivery.
Collapse
Affiliation(s)
- Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania “Luigi Vanvitelli”, Via Sergio Pansini, 5 80131 Naples, Italy; (L.P.); (S.S.)
- Department of Chemistry and Biology, University Grenoble Alpes, 38400 Saint-Martin-d’Hères, France
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania “Luigi Vanvitelli”, Via Sergio Pansini, 5 80131 Naples, Italy; (L.P.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania “Luigi Vanvitelli”, Via Sergio Pansini, 5 80131 Naples, Italy; (L.P.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, BioLife Building (015-00)1900 North 12th Street, Philadelphia, PA 19122-6078, USA
- Correspondence:
| |
Collapse
|
32
|
Han H, Zhan Z, Xu J, Song Z. TMEFF2 inhibits pancreatic cancer cells proliferation, migration, and invasion by suppressing phosphorylation of the MAPK signaling pathway. Onco Targets Ther 2019; 12:11371-11382. [PMID: 31920328 PMCID: PMC6939404 DOI: 10.2147/ott.s210619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
PURPOSE This paper studied the effect of TMEFF2 expression on pancreatic cancer and its mechanism. METHODS A total of 72 pancreatic cancer patients were enrolled. AsPC1 and Panc1 cells were transfected. SB203580 was used to treat AsPC1 cells. CCK8 assay, colony formation analysis, Transwell experiment and Tunel test were performed. In vivo studies in nude mice were conducted. Immunohistochemistry, qRT-PCR and Western blot were used to detect genes expression. RESULTS TMEFF2 was downregulated in pancreatic cancer tissues and cells (P<0.001). Low TMEFF2 expression was associated with larger tumor size and advanced stage and poor differentiation (P<0.01). Compared with the NC group, AsPC1 and Panc1 cells of the TMEFF2 group exhibited much lower OD450 values, colony number, tumor volume and weight, migration and invasion cell numbers, obviously higher E-cadherin protein expression, lower Snail, Vimentin, MMP-2 and MMP-9 proteins expression, lower phosphorylation level of MAPK signaling pathway, and more apoptotic cells. AsPC1 cells of the SB203580 group showed much lower OD450 value when compared with the siTMEFF2 group. Significantly decreased colony number, migration and invasion number, higher E-cadherin protein expression and lower Snail, Vimentin, MMP-2 and MMP-9 proteins expression were found in AsPC1 cells of the siTMEFF2+ SB203580 group when compared with the siTMEFF2+ DMSO group. CONCLUSION TMEFF2 inhibits pancreatic cancer cells proliferation, migration, and invasion by suppressing the phosphorylation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Hongchao Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Shanghai No. 10 People’s Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
- Department of General Surgery, Yancheng Third People’s Hospital, Yancheng, People’s Republic of China
| | - Zhilin Zhan
- Department of Hepatobiliary Surgery, Chizhou People’s Hospital, Chizhou, People’s Republic of China
| | - Jie Xu
- Department of General Surgery, Yancheng Third People’s Hospital, Yancheng, People’s Republic of China
| | - Zhenshun Song
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Shanghai No. 10 People’s Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
33
|
Asad AS, Nicola Candia AJ, Gonzalez N, Zuccato CF, Abt A, Orrillo SJ, Lastra Y, De Simone E, Boutillon F, Goffin V, Seilicovich A, Pisera DA, Ferraris MJ, Candolfi M. Prolactin and its receptor as therapeutic targets in glioblastoma multiforme. Sci Rep 2019; 9:19578. [PMID: 31862900 PMCID: PMC6925187 DOI: 10.1038/s41598-019-55860-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
Although prolactin (PRL) and its receptor (PRLR) have been detected in glioblastoma multiforme (GBM), their role in its pathogenesis remains unclear. Our aim was to explore their contribution in GBM pathogenesis. We detected PRL and PRLR in all GBM cell lines tested. PRLR activation or overexpression using plasmid transfection increased proliferation, viability, clonogenicity, chemoresistance and matrix metalloproteinase activity in GBM cells, while PRLR antagonist ∆1–9-G129R-hPRL reduced their proliferation, viability, chemoresistance and migration. Meta-analysis of transcriptomic data indicated that PRLR was expressed in all grade II-III glioma (GII-III) and GBM samples. PRL was upregulated in GBM biopsies when compared to GII-III. While in the general population tumour PRL/PRLR expression did not correlate with patient survival, biological sex-stratified analyses revealed that male patients with PRL+/PRLRHIGH GBM performed worse than PRL+/PRLRLOW GBM. In contrast, all male PRL+/PRLRHIGH GII-III patients were alive whereas only 30% of PRL+/PRLRLOW GII-III patients survived after 100 months. Our study suggests that PRLR may be involved in GBM pathogenesis and could constitute a therapeutic target for its treatment. Our findings also support the notion that sexual dimorphism should be taken into account to improve the care of GBM patients.
Collapse
Affiliation(s)
- Antonela Sofía Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Javier Nicola Candia
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR), Universidad Nacional de Rosario, Rosario, Argentina
| | - Camila Florencia Zuccato
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Araceli Abt
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Santiago Jordi Orrillo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yael Lastra
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emilio De Simone
- Cátedra de Fisiología Animal, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florence Boutillon
- Inserm U1151, Institut Necker Enfants Malades (INEM), Faculty of Medicine, University Paris Descartes, Paris, France
| | - Vincent Goffin
- Inserm U1151, Institut Necker Enfants Malades (INEM), Faculty of Medicine, University Paris Descartes, Paris, France
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Alberto Pisera
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Jimena Ferraris
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, Ramírez-Camacho MA, Alvarez-Sánchez ME. Role of Matrix Metalloproteinases in Angiogenesis and Cancer. Front Oncol 2019; 9:1370. [PMID: 31921634 PMCID: PMC6915110 DOI: 10.3389/fonc.2019.01370] [Citation(s) in RCA: 610] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
During angiogenesis, new vessels emerge from existing endothelial lined vessels to promote the degradation of the vascular basement membrane and remodel the extracellular matrix (ECM), followed by endothelial cell migration, and proliferation and the new generation of matrix components. Matrix metalloproteinases (MMPs) participate in the disruption, tumor neovascularization, and subsequent metastasis while tissue inhibitors of metalloproteinases (TIMPs) downregulate the activity of these MMPs. Then, the angiogenic response can be directly or indirectly mediated by MMPs through the modulation of the balance between pro- and anti-angiogenic factors. This review analyzes recent knowledge on MMPs and their participation in angiogenesis.
Collapse
Affiliation(s)
- Saray Quintero-Fabián
- Multidisciplinary Research Laboratory, Military School of Graduate of Health, Mexico City, Mexico
| | - Rodrigo Arreola
- Psychiatric Genetics Department, National Institute of Psychiatry "Ramón de la Fuente", Clinical Research Branch, Mexico City, Mexico
| | | | - Julio César Torres-Romero
- Biochemistry and Molecular Genetics Laboratory, Facultad de Química de la Universidad Autónoma de Yucatán, Merida, Mexico
| | - Victor Arana-Argáez
- Pharmacology Laboratory, Facultad de Química de la Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Julio Lara-Riegos
- Biochemistry and Molecular Genetics Laboratory, Facultad de Química de la Universidad Autónoma de Yucatán, Merida, Mexico
| | | | | |
Collapse
|
35
|
Thompson EG, Sontheimer H. Acetylcholine Receptor Activation as a Modulator of Glioblastoma Invasion. Cells 2019; 8:cells8101203. [PMID: 31590360 PMCID: PMC6829263 DOI: 10.3390/cells8101203] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Grade IV astrocytomas, or glioblastomas (GBMs), are the most common malignant primary brain tumor in adults. The median GBM patient survival of 12–15 months has remained stagnant, in spite of treatment strategies, making GBMs a tremendous challenge clinically. This is at least in part due to the complex interaction of GBM cells with the brain microenvironment and their tendency to aggressively infiltrate normal brain tissue. GBMs frequently invade supratentorial brain regions that are richly innervated by neurotransmitter projections, most notably acetylcholine (ACh). Here, we asked whether ACh signaling influences the biology of GBMs. We examined the expression and function of known ACh receptors (AChRs) in large GBM datasets, as well as, human GBM cell lines and patient-derived xenograft lines. Using RNA-Seq data from the “The Cancer Genome Atlas” (TCGA), we confirmed the expression of AChRs and demonstrated the functionality of these receptors in GBM cells with time-lapse calcium imaging. AChR activation did not alter cell proliferation or migration, however, it significantly increased cell invasion through complex extracellular matrices. This was due to the enhanced activity of matrix metalloproteinase-9 (MMP-9) from GBM cells, which we found to be dependent on an intracellular calcium-dependent mechanism. Consistent with these findings, AChRs were significantly upregulated in regions of GBM infiltration in situ (Ivy Glioblastoma Atlas Project) and elevated expression of muscarinic AChR M3 correlated with reduced patient survival (TCGA). Data from the Repository for Molecular Brain Neoplasia Data (REMBRANDT) dataset also showed the co-expression of choline transporters, choline acetyltransferase, and vesicular acetylcholine transporters, suggesting that GBMs express all the proteins required for ACh synthesis and release. These findings identify ACh as a modulator of GBM behavior and posit that GBMs may utilize ACh as an autocrine signaling molecule.
Collapse
Affiliation(s)
- Emily G Thompson
- Glial Biology in Health, Disease and Cancer Center, Fralin Biomedical Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA.
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Harald Sontheimer
- Glial Biology in Health, Disease and Cancer Center, Fralin Biomedical Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA.
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
36
|
Benedicto A, Herrero A, Romayor I, Marquez J, Smedsrød B, Olaso E, Arteta B. Liver sinusoidal endothelial cell ICAM-1 mediated tumor/endothelial crosstalk drives the development of liver metastasis by initiating inflammatory and angiogenic responses. Sci Rep 2019; 9:13111. [PMID: 31511625 PMCID: PMC6739321 DOI: 10.1038/s41598-019-49473-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
The prometastatic stroma generated through tumor cells/host cells interaction is critical for metastatic growth. To elucidate the role of ICAM-1 on the crosstalk between tumor and primary liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs), implicated in tumor adhesion and angiogenesis, we performed in vitro cocultures and an in vivo model of liver metastasis of colorectal cancer (CRC). ICAM-1 blockade in the LSECs decreased the adhesion and transmigration of tumor cells through an LSEC in vitro and vivo. Cocultures of C26 cells and LSECs contained higher amounts of IL-1β, IL-6, PGE-2, TNF-α and ICAM-1 than monocultures. C26 cells incubated with sICAM-1 secreted higher amounts of PGE-2, IL-6, VEGF, and MMPs, while enhanced the migration of LSECs and HSCs. HSCs cultures activated by media from C26 cells pretreated with sICAM-1 contained the largest amounts of VEGF and MMPs. C26 cell activation with sICAM-1 enhanced their metastasizing potential in vivo, while tumor LFA-1 blockade reduced tumor burden and LSECs and HSC-derived myofibroblasts recruitment. In vivo ICAM-1 silencing produced similar results. These findings uncover LSEC ICAM-1 as a mediator of the CRC metastatic cascade in the liver and identifies it as target for the inhibition of liver colonization and metastatic progression.
Collapse
Affiliation(s)
- Aitor Benedicto
- Department of Cellular Biology and Histology, University of the Basque Country, School of Medicine and Nursing, 48940, Leioa, Bizkaia, Spain.
| | - Alba Herrero
- Department of Cellular Biology and Histology, University of the Basque Country, School of Medicine and Nursing, 48940, Leioa, Bizkaia, Spain
| | - Irene Romayor
- Department of Cellular Biology and Histology, University of the Basque Country, School of Medicine and Nursing, 48940, Leioa, Bizkaia, Spain
| | - Joana Marquez
- Department of Cellular Biology and Histology, University of the Basque Country, School of Medicine and Nursing, 48940, Leioa, Bizkaia, Spain
| | - Bård Smedsrød
- Department of Medical Biology, Vascular Biology Research Group, University of Tromsø, Tromsø, Norway
| | - Elvira Olaso
- Department of Cellular Biology and Histology, University of the Basque Country, School of Medicine and Nursing, 48940, Leioa, Bizkaia, Spain
| | - Beatriz Arteta
- Department of Cellular Biology and Histology, University of the Basque Country, School of Medicine and Nursing, 48940, Leioa, Bizkaia, Spain
| |
Collapse
|
37
|
Zhou WY, Zhang MM, Liu C, Kang Y, Wang JO, Yang XH. Long noncoding RNA LINC00473 drives the progression of pancreatic cancer via upregulating programmed death-ligand 1 by sponging microRNA-195-5p. J Cell Physiol 2019; 234:23176-23189. [PMID: 31206665 DOI: 10.1002/jcp.28884] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/25/2022]
Abstract
Pancreatic cancer (PC) is a great health burden to patients owing to its poor overall survival rate. Long noncoding RNAs (lncRNAs) interact with microRNAs (miRs) to participate in tumorigenesis. Therefore, we aim to uncover the role and related mechanism of LINC00473 in PC through the modulation of miR-195-5p and programmed death-ligand 1 (PD-L1). Increased LINC00473 and PD-L1 but declined miR-195-5p were determined in PC tissues and cell lines, and it was found that LINC00473 mainly situated in the cytoplasm. Also, miR-195-5p was verified to bind with both LINC00473 and PD-L1. Next, with the aim to examine the ability of LINC00473, miR-195-5p, and PD-L1 on the PC progression, the expression of LINC00473, miR-195-5p and PD-L1 were altered with mimics, inhibitors, overexpression vectors or siRNAs in PC cells and cocultured CD8+ T cells. It was demonstrated that LINC00473 sponged miR-195-5p to upregulate PD-L1 expression. More important, the obtained results revealed that LINC00473 silencing or miR-195-5p upregulation elevated the expression of Bcl-2 associated X protein (Bax), interferon (IFN)-γ, and interleukin (IL)-4 but reduced the expression of B-cell lymphoma-2 (Bcl-2), matrix metalloproteinase (MMP)-2, MMP-9, and IL-10, thus inducing the enhancement of the apoptosis as along with the inhibition of proliferation, invasion, and migration of the PC cells. LINC00473 silencing or miR-195-5p elevation activated the CD8+ T cells. Taken together, LINC00473 silencing blocked the PC progression through enhancing miR-195-5p-targeted downregulation of PD-L1. This finding offers new therapeutic options for treating this devastating disease.
Collapse
Affiliation(s)
- Wen-Yang Zhou
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ming-Ming Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chang Liu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jin-Ou Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiang-Hong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
38
|
Nowicki MO, Hayes JL, Chiocca EA, Lawler SE. Proteomic Analysis Implicates Vimentin in Glioblastoma Cell Migration. Cancers (Basel) 2019; 11:cancers11040466. [PMID: 30987208 PMCID: PMC6521049 DOI: 10.3390/cancers11040466] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/22/2019] [Accepted: 03/29/2019] [Indexed: 01/18/2023] Open
Abstract
We previously showed lithium chloride (LiCl) and other inhibitors of glycogen synthase kinase-3 (GSK-3) including 6-bromo-indirubin-3-oxime (BIO), can block glioblastoma (GBM) cell migration. To investigate the mechanisms involved we used two-dimensional difference in-gel electrophoresis (2D-DIGE) and mass spectrometry to identify proteins altered after treatment of U251 GBM cells with 20 mM LiCl. Downregulation of the intermediate filament protein vimentin was the most significant change identified. Analysis of patient tumor samples revealed that vimentin is expressed abundantly in GBM, and is prognostic especially in lower grade tumors. Additionally, siRNA-mediated vimentin knockdown impaired GBM migration. Western blotting showed that treatment with LiCl or small molecule GSK-3 inhibitors led to the rapid downregulation of detergent soluble vimentin levels across a panel of GBM-derived cells. Fluorescence reactivation after photobleaching (FRAP) microscopy studies showed a significant reduction in the ability of the vimentin cytoskeleton to recover from photo-bleaching in the presence of LiCl or BIO. Biochemical studies revealed that GSK-3 and vimentin directly interact, and analysis of vimentin revealed a GSK-3 consensus phosphorylation site. We conclude that anti-migratory compounds with the ability to inhibit GSK-3 have effects on vimentin cytoskeletal dynamics, which may play a role in their anti-invasive activity.
Collapse
Affiliation(s)
- Michal O Nowicki
- Harvey W. Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Josie L Hayes
- Harvey W. Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - E Antonio Chiocca
- Harvey W. Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sean E Lawler
- Harvey W. Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Zhang H, Ma Y, Wang H, Xu L, Yu Y. MMP-2 expression and correlation with pathology and MRI of glioma. Oncol Lett 2018; 17:1826-1832. [PMID: 30675244 PMCID: PMC6341586 DOI: 10.3892/ol.2018.9806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023] Open
Abstract
The expression of matrix metalloproteinase-2 (MMP-2) in brain glioma and its correlation with patients' clinicopathological characteristics and magnetic resonance imaging (MRI) features were investigated. A total of 104 patients with brain glioma admitted and treated in the First Affiliated Hospital of Anhui Medical University from June 2010 to September 2014 were randomly enrolled. MRI examination was performed before operation. Immunohistochemistry (IHC) was used to detect the expression levels of MMP-2 in brain glioma tissues and paired normal brain tissues after operation and to analyze the associations of MMP-2 expression with the clinicopathological characteristics of brain glioma and survival time of patients. The relationship between MMP-2 expression and preoperative MRI features of glioma was analyzed. The positive rate of MMP-2 expression in brain glioma was 73.08% (76/104), while that in paired normal brain tissues was only 12.5% (13/104), obviously lower than that in brain glioma tissues (P<0.05). The MMP-2 expression in the body of glioma was not related to the patients' sex, age, tumor location and pathological type (P>0.05), but there was a significant correlation with the tumor diameter and pathological grade of the patients (P<0.05). Analysis by Cox model suggested that tumor diameter, pathological grade and MMP-2 were independent prognostic factors for glioma (P<0.05). The overall survival (OS) of patients in the positive MMP-2 expression group was 16.4 months, while the OS in the negative MMP-2 expression group was 20.16 months, and the difference between the two groups was statistically significant (P<0.05). The positive expression of MMP-2 in glioma was closely related to the uniformity of MRI signal for tumor, tumor diameter, severity of peritumoral edema, degree of enhancement and pathological grade of tumor (P<0.05). MMP-2 is highly expressed in brain glioma, and it is a negative factor for prognosis. Therefore, the MRI manifestations of glioma can reflect to some extent the intensity of MMP-2 expression.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yunxia Ma
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Haibao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Liyan Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
40
|
Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics 2018; 10:E181. [PMID: 30304861 PMCID: PMC6321593 DOI: 10.3390/pharmaceutics10040181] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The poor prognosis and rapid recurrence of glioblastoma (GB) are associated to its fast-growing process and invasive nature, which make difficult the complete removal of the cancer infiltrated tissues. Additionally, GB heterogeneity within and between patients demands a patient-focused method of treatment. Thus, the implementation of nanotechnology is an attractive approach considering all anatomic issues of GB, since it will potentially improve brain drug distribution, due to the interaction between the blood⁻brain barrier and nanoparticles (NPs). In recent years, theranostic techniques have also been proposed and regarded as promising. NPs are advantageous for this application, due to their respective size, easy surface modification and versatility to integrate multiple functional components in one system. The design of nanoparticles focused on therapeutic and diagnostic applications has increased exponentially for the treatment of cancer. This dual approach helps to understand the location of the tumor tissue, the biodistribution of nanoparticles, the progress and efficacy of the treatment, and is highly useful for personalized medicine-based therapeutic interventions. To improve theranostic approaches, different active strategies can be used to modulate the surface of the nanotheranostic particle, including surface markers, proteins, drugs or genes, and take advantage of the characteristics of the microenvironment using stimuli responsive triggers. This review focuses on the different strategies to improve the GB treatment, describing some cell surface markers and their ligands, and reports some strategies, and their efficacy, used in the current research.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| |
Collapse
|
41
|
All-Trans Retinoic Acid Enhances Matrix Metalloproteinase 2 Expression and Secretion in Human Myeloid Leukemia THP-1 Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5971080. [PMID: 30225259 PMCID: PMC6129365 DOI: 10.1155/2018/5971080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
All-trans retinoic acid (ATRA) is an effective drug for the induction therapy of acute promyelocytic leukemia. However, the treatment is associated with adverse events such as retinoic acid syndrome (RAS) in some patients, whose histologic characteristics included organ infiltration by leukemic cells. Matrix metalloproteinase 2 (MMP-2) is often upregulated in tumor cells and plays a role in tumor cell migration and invasion by degrading the extracellular matrix. In this study, we examined the possible modulatory effects of ATRA on MMP-2 expression and secretion in human myeloid leukemia cell line THP-1. The cells were treated with various concentrations of ATRA, and MMP-2 expression and secretion were examined. MMP-2 expression and secretion started to increase with ATRA concentration as low as 0.1 nM and gradually increased thereafter. Agonists of retinoic acid receptor (RAR) or retinoid X receptor (RXR) alone could enhance MMP-2 secretion, and RAR or RXR antagonists alone could reverse ATRA-induced MMP-2 secretion. ATRA increased intracellular calcium ion levels, and a calcium-channel blocker inhibited ATRA-induced MMP-2 secretion. Dexamethasone suppressed ATRA-induced MMP-2 secretion. Our results suggest that ATRA enhances MMP-2 expression and secretion in human myeloid leukemia THP-1 cells in a calcium ion dependent manner through RAR/RXR signaling pathways, and this enhanced expression and secretion may be associated with the possible mechanisms of RAS.
Collapse
|
42
|
Simões LR, Sangiogo G, Tashiro MH, Generoso JS, Faller CJ, Dominguini D, Mastella GA, Scaini G, Giridharan VV, Michels M, Florentino D, Petronilho F, Réus GZ, Dal-Pizzol F, Zugno AI, Barichello T. Maternal immune activation induced by lipopolysaccharide triggers immune response in pregnant mother and fetus, and induces behavioral impairment in adult rats. J Psychiatr Res 2018; 100:71-83. [PMID: 29494891 DOI: 10.1016/j.jpsychires.2018.02.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/05/2018] [Accepted: 02/08/2018] [Indexed: 12/27/2022]
Abstract
Evidence suggest that prenatal immune system disturbance contributes largely to the pathophysiology of neuropsychiatric disorders. We investigated if maternal immune activation (MIA) could induce inflammatory alterations in fetal brain and pregnant rats. Adult rats subjected to MIA also were investigated to evaluate if ketamine potentiates the effects of infection. On gestational day 15, Wistar pregnant rats received lipopolysaccharide (LPS) to induce MIA. After 6, 12 and 24 h, fetus brain, placenta, and amniotic fluid were collected to evaluate early effects of LPS. MIA increased oxidative stress and expression of metalloproteinase in the amniotic fluid and fetal brain. The blood brain barrier (BBB) integrity in the hippocampus and cortex as well integrity of placental barrier (PB) in the placenta and fetus brain were dysregulated after LPS induction. We observed elevated pro- and anti-inflammatory cytokines after LPS in fetal brain. Other group of rats from postnatal day (PND) 54 after LPS received injection of ketamine at the doses of 5, 15, and 25 mg/kg. On PND 60 rats were subjected to the memories tests, spontaneous locomotor activity, and pre-pulse inhibition test (PPI). Rats that receive MIA plus ketamine had memory impairment and a deficit in the PPI. Neurotrophins were increased in the hippocampus and reduced in the prefrontal cortex in the LPS plus ketamine group. MIA induced oxidative stress and inflammatory changes that could be, at least in part, related to the dysfunction in the BBB and PB permeability of pregnant rats and offspring. Besides, this also generates behavioral deficits in the rat adulthood's that are potentiated by ketamine.
Collapse
Affiliation(s)
- Lutiana Roque Simões
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo Sangiogo
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Michael Hikaru Tashiro
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cristiano Julio Faller
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo Antunes Mastella
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Giselli Scaini
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Vijayasree Vayalanellore Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Drielly Florentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, SC, Brazil
| | - Gislaine Zilli Réus
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.
| |
Collapse
|
43
|
Paeoniflorin Inhibits Migration and Invasion of Human Glioblastoma Cells via Suppression Transforming Growth Factor β-Induced Epithelial-Mesenchymal Transition. Neurochem Res 2018; 43:760-774. [PMID: 29423667 PMCID: PMC5842263 DOI: 10.1007/s11064-018-2478-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/08/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022]
Abstract
Paeoniflorin (PF) is a polyphenolic compound derived from Radix Paeoniae Alba thathas anti-cancer activities in a variety of human malignancies including glioblastoma. However, the underlying mechanisms have not been fully elucidated. Epithelial to mesenchymal transition (EMT), characterized as losing cell polarity, plays an essential role in tumor invasion and metastasis. TGFβ, a key member of transforming growth factors, has been demonstrated to contribute to glioblastoma aggressiveness through inducing EMT. Therefore, the present studies aim to investigate whether PF suppresses the expression of TGFβ and inhibits EMT that plays an important role in anti-glioblastoma. We found that PF dose-dependently downregulates the expression of TGFβ, enhances apoptosis, reduces cell proliferation, migration and invasion in three human glioblastoma cell lines (U87, U251, T98G). These effects are enhanced in TGFβ siRNA treated cells and abolished in cells transfected with TGFβ lentiviruses. In addition, other EMT markers such as snail, vimentin and N-cadherin were suppressed by PF in these cell lines and in BALB/c nude mice injected with U87 cells. The expression of MMP2/9, EMT markers, are also dose-dependently reduced in PF treated cells and in U87 xenograft mouse model. Moreover, the tumor sizes are reduced by PF treatment while there is no change in body weight. These results indicate that PF is a potential novel drug target for the treatment of glioblastoma by suppression of TGFβ signaling pathway and inhibition of EMT.
Collapse
|
44
|
Abstract
PURPOSE Given its extremely poor prognosis, there is a pressing need for an improved understanding of the biology of glioblastoma multiforme (GBM), including the roles of tumor subpopulations that may contribute to their growth rate and therapy resistance. The most malignant phenotypes of GBM have been ascribed to the presence of subpopulations of cancer stem cells (CSCs), which are resistant to chemotherapeutic drugs and ionizing radiation and which promote invasiveness and metastasis. The mechanisms by which the CSC state is obtained and by which it promotes tumor maintenance are only beginning to emerge. We hypothesize that M2 polarized macrophages may affect CSC phenotypes via cell-cell communication. METHODS We investigated the interplay between glioma CSCs and macrophages via co-culture. The invasiveness of CSCs in the absence and presence of macrophages was assessed using collagen degradation and Transwell migration assays. The role of STAT3 as a CSC phenotypic mediator was assessed using siRNA-mediated gene silencing. RESULTS We found that the levels of a M2 macrophage-specific secreted cytokine, TGF-β1, were elevated in the presence of CSCs, regardless of whether the cells were plated as contacting or non-contacting co-cultures. In addition, we found that the co-culture resulted in enhanced expression of M2 markers in macrophages that were previously polarized to the M1 phenotype. siRNA-mediated STAT3 silencing was found to reduce the chemo-responsiveness and migratory abilities of the CSCs. Combination treatment of STAT3 siRNA and DNA alkylating agents was found to further abrogate CSC functions. CONCLUSIONS Our data indicate that the co-culture of CSCs and macrophages results in bi-directional signaling that alters the phenotypes of both cell types. These results provide an explanation for recently observed effects of macrophages on GBM tumor cell growth, motility and therapeutic resistance, and suggest potential therapeutic strategies to disrupt the CSC phenotype by impairing its communication with macrophages.
Collapse
Affiliation(s)
- Leora M Nusblat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Molly J Carroll
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Charles M Roth
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA. .,Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
45
|
Franco C, Patricia HR, Timo S, Claudia B, Marcela H. Matrix Metalloproteinases as Regulators of Periodontal Inflammation. Int J Mol Sci 2017; 18:ijms18020440. [PMID: 28218665 PMCID: PMC5343974 DOI: 10.3390/ijms18020440] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/26/2022] Open
Abstract
Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the 'protease web' is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules-such as cytokines, chemokines, and growth factors, among others-regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation.
Collapse
Affiliation(s)
- Cavalla Franco
- Department of Conservative Dentistry, School of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
- Department of Biological Sciences, School of Dentistry of Bauru, University of São Paulo (FOB/USP), Bauru, São Paulo 17012-901, Brazil.
- Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, TX 77054, USA.
| | - Hernández-Ríos Patricia
- Department of Conservative Dentistry, School of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
| | - Sorsa Timo
- Department of Oral and Maxillofacial Diseases, Helsinki University and Helsinki University Central Hospital, Helsinki 00290, Finland.
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge 14183, Sweden.
| | - Biguetti Claudia
- Department of Biological Sciences, School of Dentistry of Bauru, University of São Paulo (FOB/USP), Bauru, São Paulo 17012-901, Brazil.
- Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, TX 77054, USA.
| | - Hernández Marcela
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
- Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile.
| |
Collapse
|