1
|
Alakhras NS, Moreland CA, Wong LC, Raut P, Kamalakaran S, Wen Y, Siegel RW, Malherbe LP. Essential role of pre-existing humoral immunity in TLR9-mediated type I IFN response to recombinant AAV vectors in human whole blood. Front Immunol 2024; 15:1354055. [PMID: 39007143 PMCID: PMC11240241 DOI: 10.3389/fimmu.2024.1354055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
Recombinant adeno-associated virus (AAV) vectors have emerged as the preferred platform for gene therapy of rare human diseases. Despite the clinical promise, host immune responses to AAV vectors and transgene remain a major barrier to the development of successful AAV-based human gene therapies. Here, we assessed the human innate immune response to AAV9, the preferred serotype for AAV-mediated gene therapy of the CNS. We showed that AAV9 induced type I interferon (IFN) and IL-6 responses in human blood from healthy donors. This innate response was replicated with AAV6, required full viral particles, but was not observed in every donor. Depleting CpG motifs from the AAV transgene or inhibiting TLR9 signaling reduced type I IFN response to AAV9 in responding donors, highlighting the importance of TLR9-mediated DNA sensing for the innate response to AAV9. Remarkably, we further demonstrated that only seropositive donors with preexisting antibodies to AAV9 capsid mounted an innate immune response to AAV9 in human whole blood and that anti-AAV9 antibodies were necessary and sufficient to promote type I IFN release and plasmacytoid dendritic (pDC) cell activation in response to AAV9. Thus, our study reveals a previously unidentified requirement for AAV preexisting antibodies for TLR9-mediated type I IFN response to AAV9 in human blood.
Collapse
Affiliation(s)
- Nada S. Alakhras
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | | | - Li Chin Wong
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly, New York, NY, United States
| | - Priyam Raut
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly, New York, NY, United States
| | - Sid Kamalakaran
- Prevail Therapeutics, a wholly owned subsidiary of Eli Lilly, New York, NY, United States
| | - Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Robert W. Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| | - Laurent P. Malherbe
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, United States
| |
Collapse
|
2
|
Ruengket P, Roytrakul S, Tongthainan D, Taruyanon K, Sangkharak B, Limudomporn P, Pongsuchart M, Udom C, Fungfuang W. Serum proteomic profile of wild stump-tailed macaques (Macaca arctoides) infected with malaria parasites in Thailand. PLoS One 2023; 18:e0293579. [PMID: 37910477 PMCID: PMC10619813 DOI: 10.1371/journal.pone.0293579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
The number of patients infected with simian malaria is gradually increasing in many countries of Southeast Asia and South America. The most important risk factor for a zoonotic spillover event of malarial infection is mostly influenced by the interaction between humans, monkeys, and vectors. In this study, we determine the protein expression profile of a wild stump-tailed macaque (Macaca arctoides) from a total of 32 blood samples collected from Prachuap Kiri Khan Province, Thailand. The malarial parasite was analyzed using nested polymerase chain reaction (PCR) assays by dividing the samples into three groups: non-infected, mono-infected, and multiple-infected. The identification and differential proteomic expression profiles were determined using liquid chromatography with tandem mass spectrometry (LC-MS/MS) and bioinformatics tools. A total of 9,532 proteins (total proteins) were identified with the filter-based selection methods analysis, and a subset of 440 proteins were found to be different between each group. Within these proteins, the GhostKOALA functional enrichment analysis indicated that 142 important proteins were associated with either of the organismal system (28.87%), genetic information processing (23.24%), environmental information processing (16.20%), metabolism (13.38%), cellular processes (11.97%), or causing human disease (6.34%). Additionally, using interaction network analysis, nine potential reporter proteins were identified. Here, we report the first study on the protein profiles differentially expressed in the serum of wild stump-tailed macaques between non, mono, and multiple malarial infected living in a natural transmission environment. Our findings demonstrate that differentially expressed proteins implicated in host defense through lipid metabolism, involved with TGF pathway were suppressed, while those with the apoptosis pathway, such as cytokines and proinflammation signals were increased. Including the parasite's response via induced hemolysis and disruption of myeloid cells. A greater understanding of the fundamental processes involved in a malarial infection and host response can be crucial for developing diagnostic tools, medication development, and therapies to improve the health of those affected by the disease.
Collapse
Affiliation(s)
- Pakorn Ruengket
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, Rajamongala University of Technology Tawan-ok, Chonburi, Thailand
| | - Kanokwan Taruyanon
- Department of National Parks, Wildlife Conservation Division Protected Areas Regional Office, Wildlife and Plant Conservation, Ratchaburi, Thailand
| | - Bencharong Sangkharak
- Department of National Parks, Wildlife Conservation Division, Wildlife and Plant Conservation, Bangkok, Thailand
| | - Paviga Limudomporn
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| | - Mongkol Pongsuchart
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| | - Chanya Udom
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| | - Wirasak Fungfuang
- Faculty of Science, Department of Zoology, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Gupta A, Skjefte M, Muppidi P, Sikka R, Pandey M, Bharti PK, Gupta H. Unravelling the Influence of Host Genetic Factors on Malaria Susceptibility in Asian Populations. Acta Trop 2023; 249:107055. [PMID: 39491156 DOI: 10.1016/j.actatropica.2023.107055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Malaria is a deadly blood-borne disease caused by a Plasmodium parasite. Infection results in various forms of malaria, including an asymptomatic state, uncomplicated disease, or severe disease. Severe malaria (SM) is particularly prevalent among young children and is a significant cause of mortality. SM is associated with the sequestration of parasitized erythrocytes in the microvasculature of vital host organs, disrupting the normal functioning of the immune system. Although the exact mechanisms of malaria pathogenesis are yet to be fully understood, researchers have been investigating the role of host genetics in determining the severity of the disease and the outcome of infection. The objective of this study is to identify specific host genes that have been examined for their association with malaria in Asian populations and pinpoint those most likely to influence susceptibility. Through an extensive screening process, a total of 982 articles were initially identified, and after careful review, 40 articles discussing 68 genes were included in this review. By constructing a network of protein-protein interactions (PPIs), we identified six key proteins (TNF, IL6, TLR4, IL1β, IL10, and IL8) that exhibited substantial interactions (more than 30 edges), suggesting their potential as significant targets for influencing malaria susceptibility. Notably, these six proteins have been previously identified as crucial components of the immune response, associated with malaria susceptibility, and capable of affecting different clinical forms of the disease. Identifying genes that contribute to malaria susceptibility or resistance holds the promise of enhancing the diagnosis and treatment of this debilitating illness. Such knowledge has the potential to pave the way for more targeted and effective strategies in combating malaria, particularly in Asian populations where controlling Plasmodium vivax is challenging, and India contributes the highest number of cases. By understanding the genetic factors underlying malaria vulnerability, we can develop interventions that are tailored to the specific needs of Asian populations, ultimately leading to better outcomes in the fight against this disease.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Malia Skjefte
- Population Services International, Malaria Department, Washington, DC, USA
| | - Pranavi Muppidi
- GKT School of Medical Education, King's College London, London, UK
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Manju Pandey
- Department of Medicine, K. D. Medical College Hospital & Research Center, Mathura, Uttar Pradesh, India
| | - Praveen Kumar Bharti
- ICMR- National Institute of Malaria Research (ICMR-NIMR), Dwarka, New Delhi, India
| | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| |
Collapse
|
4
|
Grabbe M, Conejeros I, Velásquez ZD, Hasheminasab SS, Kamena F, Wehrend A, Gärtner U, Taubert A, Hermosilla CR. Cryptosporidium parvum-induced neutrophil extracellular traps in neonatal calves is a stage-independent process. Front Vet Sci 2023; 10:1256726. [PMID: 37662980 PMCID: PMC10470472 DOI: 10.3389/fvets.2023.1256726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Infections with the apicomplexan obligate intracellular parasite Cryptosporidium parvum lead to cryptosporidiosis-a worldwide zoonotic infection. C. parvum is one of the most common diarrheal pathogens in young calves, which are the main reservoir of the pathogen. Cryptosporidiosis leads to severe economic losses in the calf industry and being a major contributor to diarrhea morbidity and mortality in children. Polymorphonuclear neutrophils (PMN) are part of the innate immune system. Their effector mechanisms directed against invasive parasites include phagocytosis, production of antimicrobial molecules as well as the formation of so-called neutrophil extracellular traps (NETs). Like other leukocytes of the innate immune system, PMN are thus able to release chromatin fibers enriched with antimicrobial granular molecules extracellularly thereby immobilizing and partially killing invasive bacteria, viruses, fungi and parasites. Methods In vitro interactions of neonatal bovine PMN and C. parvum-oocysts and sporozoites were illustrated microscopically via scanning electron microscopy- and live cell imaging 3D holotomographic microscopy analyses. C. parvum-triggered NETosis was quantified via extracellular DNA measurements as well as verified via detection of NET-typical molecules [histones, neutrophil elastase (NE)] through immunofluorescence microscopy analysis. To verify the role of ATP in neonatal-derived NETosis, inhibition experiments were performed with NF449 (purinergic receptor antagonist with high specificity to P2X1 receptor). Results and discussion Using immunofluorescence- and SEM-based analyses, we demonstrate here for the first time that neonate bovine PMN are capable of forming NETs against C. parvum-sporozoites and oocysts, thus as a stage-independent cell death process. Our data further showed that C. parvum strongly induces suicidal neonatal NETosis in a P2X1-dependent manner, suggesting anti-cryptosporidial effects not only through firm sporozoite ensnarement and hampered sporozoite excystation, but also via direct exposure to NETs-associated toxic components.
Collapse
Affiliation(s)
- Magdalena Grabbe
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Zahady D. Velásquez
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Seyed Sajjad Hasheminasab
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Faustin Kamena
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Axel Wehrend
- Clinic for Obstetrics, Gynaecology and Andrology of Large and Small Animals With Veterinary Ambulance, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Rodrigo Hermosilla
- Institute of Parasitology, Biomedical Center Seltersberg (BFS), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Du Y, Hu Z, Luo Y, Wang HY, Yu X, Wang RF. Function and regulation of cGAS-STING signaling in infectious diseases. Front Immunol 2023; 14:1130423. [PMID: 36825026 PMCID: PMC9941744 DOI: 10.3389/fimmu.2023.1130423] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
The efficacious detection of pathogens and prompt induction of innate immune signaling serve as a crucial component of immune defense against infectious pathogens. Over the past decade, DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have emerged as key mediators of type I interferon (IFN) and nuclear factor-κB (NF-κB) responses in health and infection diseases. Moreover, both cGAS-STING pathway and pathogens have developed delicate strategies to resist each other for their survival. The mechanistic and functional comprehension of the interplay between cGAS-STING pathway and pathogens is opening the way for the development and application of pharmacological agonists and antagonists in the treatment of infectious diseases. Here, we briefly review the current knowledge of DNA sensing through the cGAS-STING pathway, and emphatically highlight the potent undertaking of cGAS-STING signaling pathway in the host against infectious pathogenic organisms.
Collapse
Affiliation(s)
- Yang Du
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yien Luo
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Helen Y. Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| | - Rong-Fu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Olatunde AC, Cornwall DH, Roedel M, Lamb TJ. Mouse Models for Unravelling Immunology of Blood Stage Malaria. Vaccines (Basel) 2022; 10:1525. [PMID: 36146602 PMCID: PMC9501382 DOI: 10.3390/vaccines10091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria comprises a spectrum of disease syndromes and the immune system is a major participant in malarial disease. This is particularly true in relation to the immune responses elicited against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection. Mouse models of malaria are commonly used to dissect the immune mechanisms underlying disease. While no single mouse model of Plasmodium infection completely recapitulates all the features of malaria in humans, collectively the existing models are invaluable for defining the events that lead to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium infection that are available, and highlight some of the main contributions these models have made with regards to identifying immune mechanisms of parasite control and the immunopathogenesis of malaria.
Collapse
Affiliation(s)
| | | | | | - Tracey J. Lamb
- Department of Pathology, University of Utah, Emma Eccles Jones Medical Research Building, 15 N Medical Drive E, Room 1420A, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Pohl K, Cockburn IA. Innate immunity to malaria: The good, the bad and the unknown. Front Immunol 2022; 13:914598. [PMID: 36059493 PMCID: PMC9437427 DOI: 10.3389/fimmu.2022.914598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Malaria is the cause of 600.000 deaths annually. However, these deaths represent only a tiny fraction of total malaria cases. Repeated natural infections with the causative agent, Plasmodium sp. parasites, induce protection from severe disease but not sterile immunity. Thus, immunity to Plasmodium is incomplete. Conversely, immunization with attenuated sporozoite stage parasites can induce sterile immunity albeit after multiple vaccinations. These different outcomes are likely to be influenced strongly by the innate immune response to different stages of the parasite lifecycle. Even small numbers of sporozoites can induce a robust proinflammatory type I interferon response, which is believed to be driven by the sensing of parasite RNA. Moreover, induction of innate like gamma-delta cells contributes to the development of adaptive immune responses. Conversely, while blood stage parasites can induce a strong proinflammatory response, regulatory mechanisms are also triggered. In agreement with this, intact parasites are relatively weakly sensed by innate immune cells, but isolated parasite molecules, notably DNA and RNA can induce strong responses. Thus, the innate response to Plasmodium parasite likely represents a trade-off between strong pro-inflammatory responses that may potentiate immunity and regulatory processes that protect the host from cytokine storms that can induce life threatening illness.
Collapse
Affiliation(s)
- Kai Pohl
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Berlin, Berlin, Germany
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University Canberra, Canberra, ACT, Australia
| | - Ian A. Cockburn
- Division of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University Canberra, Canberra, ACT, Australia
- *Correspondence: Ian A. Cockburn,
| |
Collapse
|
8
|
Hasheminasab SS, Conejeros I, D. Velásquez Z, Borggrefe T, Gärtner U, Kamena F, Taubert A, Hermosilla C. ATP Purinergic Receptor P2X1-Dependent Suicidal NETosis Induced by Cryptosporidium parvum under Physioxia Conditions. BIOLOGY 2022; 11:biology11030442. [PMID: 35336816 PMCID: PMC8945010 DOI: 10.3390/biology11030442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/23/2022]
Abstract
Cryptosporidiosis is a zoonotic intestinal disease that affects humans, wildlife, and neonatal cattle, caused by Cryptosporidium parvum. Neutrophil extracellular traps (NETs), also known as suicidal NETosis, are a powerful and ancient innate effector mechanism by which polymorphonuclear neutrophils (PMN) battle parasitic organisms like protozoa and helminths. Here, C. parvum oocysts and live sporozoites were utilized to examine suicidal NETosis in exposed bovine PMN under both 5% O2 (physiological conditions within small intestinal tract) and 21% O2 (normal hyperoxic conditions in research facilities). Both sporozoites and oocysts induced suicidal NETosis in exposed PMN under physioxia (5% O2) and hyperoxia (21% O2). Besides, C. parvum-induced suicidal NETosis was affirmed by total break of PMN, co-localization of extracellular DNA decorated with pan-histones (H1A, H2A/H2B, H3, H4) and neutrophil elastase (NE) by means of confocal- and immunofluorescence microscopy investigations. C. parvum-triggered NETs entrapped sporozoites and impeded sporozoite egress from oocysts covered by released NETs, according to scanning electron microscopy (SEM) examination. Live cell 3D-holotomographic microscopy analysis visualized early parasite-induced PMN morphological changes, such as the formation of membrane protrusions towards C. parvum while undergoing NETosis. Significant reduction of C. parvum-induced suicidal NETosis was measured after PMN treatments with purinergic receptor P2X1 inhibitor NF449, under both oxygen circumstances, this receptor was found to play a critical role in the induction of NETs, indicating its importance. Similarly, inhibition of PMN glycolysis via 2-deoxy glucose treatments resulted in a reduction of C. parvum-triggered suicidal NETosis but not significantly. Extracellular acidification rates (ECAR) and oxygen consumption rates (OCR) were not increased in C. parvum-exposed cells, according to measurements of PMN energetic state. Treatments with inhibitors of plasma membrane monocarboxylate transporters (MCTs) of lactate failed to significantly reduce C. parvum-mediated NET extrusion. Concerning Notch signaling, no significant reduction was detected after PMN treatments with two specific Notch inhibitors, i.e., DAPT and compound E. Overall, we here describe for the first time the pivotal role of ATP purinergic receptor P2X1 in C. parvum-mediated suicidal NETosis under physioxia (5% O2) and its anti-cryptosporidial properties.
Collapse
Affiliation(s)
- Seyed Sajjad Hasheminasab
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (Z.D.V.); (A.T.); (C.H.)
- Correspondence: ; Tel.: +49-1781012564
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (Z.D.V.); (A.T.); (C.H.)
| | - Zahady D. Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (Z.D.V.); (A.T.); (C.H.)
| | - Tilman Borggrefe
- Institute of Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Faustin Kamena
- Laboratory for Molecular Parasitology, Department of Microbiology and Parasitology, University of Buea, Buea P.O. Box 63, Cameroon;
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (Z.D.V.); (A.T.); (C.H.)
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, 35392 Giessen, Germany; (I.C.); (Z.D.V.); (A.T.); (C.H.)
| |
Collapse
|
9
|
Smith RL, Goddard A, Boddapati A, Brooks S, Schoeman JP, Lack J, Leisewitz A, Ackerman H. Experimental Babesia rossi infection induces hemolytic, metabolic, and viral response pathways in the canine host. BMC Genomics 2021; 22:619. [PMID: 34399690 PMCID: PMC8369750 DOI: 10.1186/s12864-021-07889-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Babesia rossi is a leading cause of morbidity and mortality among the canine population of sub-Saharan Africa, but pathogenesis remains poorly understood. Previous studies of B. rossi infection were derived from clinical cases, in which neither the onset of infection nor the infectious inoculum was known. Here, we performed controlled B. rossi inoculations in canines and evaluated disease progression through clinical tests and whole blood transcriptomic profiling. Results Two subjects were administered a low inoculum (104 parasites) while three received a high (108 parasites). Subjects were monitored for 8 consecutive days; anti-parasite treatment with diminazene aceturate was administered on day 4. Blood was drawn prior to inoculation as well as every experimental day for assessment of clinical parameters and transcriptomic profiles. The model recapitulated natural disease manifestations including anemia, acidosis, inflammation and behavioral changes. Rate of disease onset and clinical severity were proportional to the inoculum. To analyze the temporal dynamics of the transcriptomic host response, we sequenced mRNA extracted from whole blood drawn on days 0, 1, 3, 4, 6, and 8. Differential gene expression, hierarchical clustering, and pathway enrichment analyses identified genes and pathways involved in response to hemolysis, metabolic changes, and several arms of the immune response including innate immunity, adaptive immunity, and response to viral infection. Conclusions This work comprehensively characterizes the clinical and transcriptomic progression of B. rossi infection in canines, thus establishing a large mammalian model of severe hemoprotozoal disease to facilitate the study of host-parasite biology and in which to test novel anti-disease therapeutics. The knowledge gained from the study of B. rossi in canines will not only improve our understanding of this emerging infectious disease threat in domestic dogs, but also provide insight into the pathobiology of human diseases caused by Babesia and Plasmodium species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07889-4.
Collapse
Affiliation(s)
- Rachel L Smith
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Amelia Goddard
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Arun Boddapati
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20894, USA.,Advanced Biomedical Computational Science (ABCS), Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Steven Brooks
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA
| | - Johan P Schoeman
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa
| | - Justin Lack
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20894, USA.,Advanced Biomedical Computational Science (ABCS), Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Andrew Leisewitz
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
| | - Hans Ackerman
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
10
|
Naing C, Wong ST, Aung HH. Toll-like receptor 9 and 4 gene polymorphisms in susceptibility and severity of malaria: a meta-analysis of genetic association studies. Malar J 2021; 20:302. [PMID: 34217314 PMCID: PMC8255014 DOI: 10.1186/s12936-021-03836-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/27/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Malaria is still a major public health problem in sub-Saharan Africa and South-east Asia. The clinical presentations of malaria infection vary from a mild febrile illness to life-threatening severe malaria. Toll like receptors (TLRs) are postulated to be involved in the innate immune responses to malaria. Individual studies showed inconclusive findings. This study aimed to assess the role of TLR4 (D299G, T399I) and TLR9 (T1237C, T1486C) in severity or susceptibility of malaria by meta-analysis of data from eligible studies. METHODS Relevant case-control studies that assessed the association between TLR 4/9 and malaria either in susceptibility or progression were searched in health-related electronic databases. Quality of included studies was evaluated with Newcastle-Ottawa scale. Pooled analyses for specific genetic polymorphisms were done under five genetic models. Stratified analysis was done by age and geographical region (Asian countries vs non-Asian countries). RESULTS Eleven studies (2716 cases and 2376 controls) from nine endemic countries were identified. Five studies (45.4%) obtained high score in quality assessment. Overall, a significant association between TLR9 (T1486C) and severity of malaria is observed in allele model (OR: 1.26, 95% CI: 1.08-1.48, I2 = 0%) or homozygous model (OR: 1.55, 95% CI: 1.08-2.28, I2 = 0%). For TLR9 (T1237C), a significant association with severity of malaria is observed in in heterozygous model (OR:1.89, 95% CI: 1.11-3.22, I2 = 75%). On stratifications, TLR9 (T1486C) is only significantly associated with a subgroup of children of non-Asian countries under allele model (OR: 1.25, 95% CI: 1.02-1.38), while 1237 is with a subgroup of adults from Asian countries under heterozygous model (OR: 2.0, 95% CI: 1.09-3.64, I2 = 39%). Regarding the susceptibility to malaria, TLR9 (T1237C) is significantly associated only with the children group under recessive model (OR: 2.21, 95% CI: 1.06-4.57, I2=85%) and homozygous model (OR: 1.49, 95% CI: 1.09-2.0, I2 = 0%). For TLR4 (D299G, T399I), none is significantly associated with either severity of malaria or susceptibility to malaria under any genetic models. CONCLUSIONS The findings suggest that TLR 9 (T1486C and T1237C) seems to influence the progression of malaria, under certain genetic models and in specific age group of people from specific geographical region. TLR 9 (T1237C) also plays a role in susceptibility to malaria under certain genetic models and only with children of non-Asian countries. To substantiate these, future well designed studies with larger samples across endemic countries are needed.
Collapse
Affiliation(s)
- Cho Naing
- Institute for Research, Development and Innovation (IRDI), International Medical University, 5700, Kuala Lumpur, Malaysia. .,Faculty of Tropical Heath and Medicine, James Cook University, Queensland, Australia.
| | - Siew Tung Wong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Htar Htar Aung
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Loughland JR, Woodberry T, Oyong D, Piera KA, Amante FH, Barber BE, Grigg MJ, William T, Engwerda CR, Anstey NM, McCarthy JS, Boyle MJ, Minigo G. Reduced circulating dendritic cells in acute Plasmodium knowlesi and Plasmodium falciparum malaria despite elevated plasma Flt3 ligand levels. Malar J 2021; 20:97. [PMID: 33593383 PMCID: PMC7888183 DOI: 10.1186/s12936-021-03642-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium falciparum malaria increases plasma levels of the cytokine Fms-like tyrosine kinase 3 ligand (Flt3L), a haematopoietic factor associated with dendritic cell (DC) expansion. It is unknown if the zoonotic parasite Plasmodium knowlesi impacts Flt3L or DC in human malaria. This study investigated circulating DC and Flt3L associations in adult malaria and in submicroscopic experimental infection. Methods Plasma Flt3L concentration and blood CD141+ DC, CD1c+ DC and plasmacytoid DC (pDC) numbers were assessed in (i) volunteers experimentally infected with P. falciparum and in Malaysian patients with uncomplicated (ii) P. falciparum or (iii) P. knowlesi malaria. Results Plasmodium knowlesi caused a decline in all circulating DC subsets in adults with malaria. Plasma Flt3L was elevated in acute P. falciparum and P. knowlesi malaria with no increase in a subclinical experimental infection. Circulating CD141+ DCs, CD1c+ DCs and pDCs declined in all adults tested, for the first time extending the finding of DC subset decline in acute malaria to the zoonotic parasite P. knowlesi. Conclusions In adults, submicroscopic Plasmodium infection causes no change in plasma Flt3L but does reduce circulating DCs. Plasma Flt3L concentrations increase in acute malaria, yet this increase is insufficient to restore or expand circulating CD141+ DCs, CD1c+ DCs or pDCs. These data imply that haematopoietic factors, yet to be identified and not Flt3L, involved in the sensing/maintenance of circulating DC are impacted by malaria and a submicroscopic infection. The zoonotic P. knowlesi is similar to other Plasmodium spp in compromising DC in adult malaria.
Collapse
Affiliation(s)
- Jessica R Loughland
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia. .,QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Tonia Woodberry
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Damian Oyong
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Kim A Piera
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bridget E Barber
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Gleneagles Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,Gleneagles Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Gleneagles Hospital, Kota Kinabalu, Sabah, Malaysia.,Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia.,Queen Elizabeth Hospital-Clinical Research Centre, Ministry of Health, Kota Kinabalu, Malaysia
| | | | - Nicholas M Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,Royal Darwin Hospital, Darwin, Australia
| | | | - Michelle J Boyle
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Gabriela Minigo
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia. .,College of Health and Human Sciences, Charles Darwin University, Darwin, Australia.
| |
Collapse
|
12
|
Muñoz-Caro T, Gibson AJ, Conejeros I, Werling D, Taubert A, Hermosilla C. The Role of TLR2 and TLR4 in Recognition and Uptake of the Apicomplexan Parasite Eimeria bovis and Their Effects on NET Formation. Pathogens 2021; 10:pathogens10020118. [PMID: 33498871 PMCID: PMC7912269 DOI: 10.3390/pathogens10020118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Bovine polymorphonuclear neutrophils (PMN) constitutively express the Toll-like receptors (TLRs) TLR2 and TLR4 and have been shown to generate Neutrophil extracellular traps (NETs) upon exposure to Eimeria bovis. The present work investigated the role of TLR2 and TLR4 in the recognition and uptake of E. bovis sporozoites, IL-8 production and neutrophil extracellular trap (NET) formation. METHODS TLR expression was performed by flow cytometric analysis on PMN exposed to live carboxyfluorescein succinimidyl ester (CFSE)-stained sporozoites. Supernatants of PMN exposed to different E. bovis sporozoite preparations and antigens in the absence or presence of TLR antibodies were assessed for IL-8 secretion. Cells were exposed to sporozoite preparations and assessed for the activation of transcription factor NF-κB using a luciferase reporter assay. Immunofluorescence analysis was done to investigate TLR2 and TLR4 surface expression and NET formation on bovine PMN exposed to vital sporozoites. RESULTS we observed significantly increased TLR2 and TLR4 expression with a mean increase in expression that was greater for TLR2 than TLR4. This upregulation neither inhibited nor promoted sporozoite phagocytosis by bovine PMN. Live sporozoites together with anti-TLR2 mAb resulted in a significant enhancement of IL-8 production. NF-κB activation was more strongly induced in TLR2-HEK cells than in TLR4/MD2-HEK cells exposed to heat-killed sporozoites and antigens. Immunofluorescence analysis showed TLR-positive signals on the surface of PMN and concomitant NET formation. CONCLUSIONS This is the first report on E. bovis-induced concomitant TLR2 and TLR4 expression during bovine PMN-derived NETosis.
Collapse
Affiliation(s)
- Tamara Muñoz-Caro
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (T.M.-C.); (I.C.); (A.T.)
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Talca 3460000, Chile
| | - Amanda J. Gibson
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK; (A.J.G.); (D.W.)
- Centre of Excellence in Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Wales SY23 3FD, UK
| | - Iván Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (T.M.-C.); (I.C.); (A.T.)
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK; (A.J.G.); (D.W.)
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (T.M.-C.); (I.C.); (A.T.)
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (T.M.-C.); (I.C.); (A.T.)
- Correspondence:
| |
Collapse
|
13
|
Turner TC, Arama C, Ongoiba A, Doumbo S, Doumtabé D, Kayentao K, Skinner J, Li S, Traore B, Crompton PD, Götz A. Dendritic cell responses to Plasmodium falciparum in a malaria-endemic setting. Malar J 2021; 20:9. [PMID: 33407502 PMCID: PMC7787131 DOI: 10.1186/s12936-020-03533-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
Background Plasmodium falciparum causes the majority of malaria cases worldwide and children in sub-Saharan Africa are the most vulnerable group affected. Non-sterile clinical immunity that protects from symptoms develops slowly and is relatively short-lived. Moreover, current malaria vaccine candidates fail to induce durable high-level protection in endemic settings, possibly due to the immunomodulatory effects of the malaria parasite itself. Because dendritic cells play a crucial role in initiating immune responses, the aim of this study was to better understand the impact of cumulative malaria exposure as well as concurrent P. falciparum infection on dendritic cell phenotype and function. Methods In this cross-sectional study, the phenotype and function of dendritic cells freshly isolated from peripheral blood samples of Malian adults with a lifelong history of malaria exposure who were either uninfected (n = 27) or asymptomatically infected with P. falciparum (n = 8) was assessed. Additionally, plasma cytokine and chemokine levels were measured in these adults and in Malian children (n = 19) with acute symptomatic malaria. Results With the exception of lower plasmacytoid dendritic cell frequencies in asymptomatically infected Malian adults, peripheral blood dendritic cell subset frequencies and HLA-DR surface expression did not differ by infection status. Peripheral blood myeloid dendritic cells of uninfected Malian adults responded to in vitro stimulation with P. falciparum blood-stage parasites by up-regulating the costimulatory molecules HLA-DR, CD80, CD86 and CD40 and secreting IL-10, CXCL9 and CXCL10. In contrast, myeloid dendritic cells of asymptomatically infected Malian adults exhibited no significant responses above the uninfected red blood cell control. IL-10 and CXCL9 plasma levels were elevated in both asymptomatic adults and children with acute malaria. Conclusions The findings of this study indicate that myeloid dendritic cells of uninfected adults with a lifelong history of malaria exposure are able to up-regulate co-stimulatory molecules and produce cytokines. Whether mDCs of malaria-exposed individuals are efficient antigen-presenting cells capable of mounting an appropriate immune response remains to be determined. The data also highlights IL-10 and CXCL9 as important factors in both asymptomatic and acute malaria and add to the understanding of asymptomatic P. falciparum infections in malaria-endemic areas.
Collapse
Affiliation(s)
- Triniti C Turner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Charles Arama
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, 91094, Bamako, Mali
| | - Aissata Ongoiba
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, 91094, Bamako, Mali
| | - Safiatou Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, 91094, Bamako, Mali
| | - Didier Doumtabé
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, 91094, Bamako, Mali
| | - Kassoum Kayentao
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, 91094, Bamako, Mali
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako, 91094, Bamako, Mali
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| | - Anton Götz
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA.
| |
Collapse
|
14
|
He X, Xia L, Tumas KC, Wu J, Su XZ. Type I Interferons and Malaria: A Double-Edge Sword Against a Complex Parasitic Disease. Front Cell Infect Microbiol 2020; 10:594621. [PMID: 33344264 PMCID: PMC7738626 DOI: 10.3389/fcimb.2020.594621] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Type I interferons (IFN-Is) are important cytokines playing critical roles in various infections, autoimmune diseases, and cancer. Studies have also shown that IFN-Is exhibit 'conflicting' roles in malaria parasite infections. Malaria parasites have a complex life cycle with multiple developing stages in two hosts. Both the liver and blood stages of malaria parasites in a vertebrate host stimulate IFN-I responses. IFN-Is have been shown to inhibit liver and blood stage development, to suppress T cell activation and adaptive immune response, and to promote production of proinflammatory cytokines and chemokines in animal models. Different parasite species or strains trigger distinct IFN-I responses. For example, a Plasmodium yoelii strain can stimulate a strong IFN-I response during early infection, whereas its isogenetic strain does not. Host genetic background also greatly influences IFN-I production during malaria infections. Consequently, the effects of IFN-Is on parasitemia and disease symptoms are highly variable depending on the combination of parasite and host species or strains. Toll-like receptor (TLR) 7, TLR9, melanoma differentiation-associated protein 5 (MDA5), and cyclic GMP-AMP synthase (cGAS) coupled with stimulator of interferon genes (STING) are the major receptors for recognizing parasite nucleic acids (RNA/DNA) to trigger IFN-I responses. IFN-I levels in vivo are tightly regulated, and various novel molecules have been identified to regulate IFN-I responses during malaria infections. Here we review the major findings and progress in ligand recognition, signaling pathways, functions, and regulation of IFN-I responses during malaria infections.
Collapse
Affiliation(s)
- Xiao He
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Lu Xia
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Keyla C. Tumas
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Osii RS, Otto TD, Garside P, Ndungu FM, Brewer JM. The Impact of Malaria Parasites on Dendritic Cell-T Cell Interaction. Front Immunol 2020; 11:1597. [PMID: 32793231 PMCID: PMC7393936 DOI: 10.3389/fimmu.2020.01597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Malaria is caused by apicomplexan parasites of the genus Plasmodium. While infection continues to pose a risk for the majority of the global population, the burden of disease mainly resides in Sub-Saharan Africa. Although immunity develops against disease, this requires years of persistent exposure and is not associated with protection against infection. Repeat infections occur due to the parasite's ability to disrupt or evade the host immune responses. However, despite many years of study, the mechanisms of this disruption remain unclear. Previous studies have demonstrated a parasite-induced failure in dendritic cell (DCs) function affecting the generation of helper T cell responses. These T cells fail to help B cell responses, reducing the production of antibodies that are necessary to control malaria infection. This review focuses on our current understanding of the effect of Plasmodium parasite on DC function, DC-T cell interaction, and T cell activation. A better understanding of how parasites disrupt DC-T cell interactions will lead to new targets and approaches to reinstate adaptive immune responses and enhance parasite immunity.
Collapse
Affiliation(s)
- Rowland S Osii
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom.,KEMRI-CGMRC/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Thomas D Otto
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Francis M Ndungu
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom.,KEMRI-CGMRC/Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - James M Brewer
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
16
|
Babatunde KA, Yesodha Subramanian B, Ahouidi AD, Martinez Murillo P, Walch M, Mantel PY. Role of Extracellular Vesicles in Cellular Cross Talk in Malaria. Front Immunol 2020; 11:22. [PMID: 32082312 PMCID: PMC7005784 DOI: 10.3389/fimmu.2020.00022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Malaria infection caused by the Plasmodium species is a complex disease in which a fine balance between host and parasite factors determine the disease severity. While in some individuals, the infection will trigger only a mild and uncomplicated disease, other individuals will develop severe complications which lead to death. Extracellular vesicles (EVs) secreted by infected red blood cells (iRBCs), as well as other host cells, are important regulators of the balance that determines the disease outcome. In addition, EVs constitute a robust mode of cell-to-cell communication by transferring signaling cargoes between parasites, and between parasites and host, without requiring cellular contact. The transfer of membrane and cytosolic proteins, lipids, DNA, and RNA through EVs not only modulate the immune response, it also mediates cellular communication between parasites to synchronize the transmission stage. Here, we review the recent progress in understanding EV roles during malaria.
Collapse
Affiliation(s)
- Kehinde Adebayo Babatunde
- Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States.,Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | | | - Ambroise Dioum Ahouidi
- Laboratory of Bacteriology and Virology, Le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal.,Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | | | - Michael Walch
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Pierre-Yves Mantel
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
17
|
Dobbs KR, Crabtree JN, Dent AE. Innate immunity to malaria-The role of monocytes. Immunol Rev 2020; 293:8-24. [PMID: 31840836 PMCID: PMC6986449 DOI: 10.1111/imr.12830] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Monocytes are innate immune cells essential for host protection against malaria. Upon activation, monocytes function to help reduce parasite burden through phagocytosis, cytokine production, and antigen presentation. However, monocytes have also been implicated in the pathogenesis of severe disease through production of damaging inflammatory cytokines, resulting in systemic inflammation and vascular dysfunction. Understanding the molecular pathways influencing the balance between protection and pathology is critical. In this review, we discuss recent data regarding the role of monocytes in human malaria, including studies of innate sensing of the parasite, immunometabolism, and innate immune training. Knowledge gained from these studies may guide rational development of novel antimalarial therapies and inform vaccine development.
Collapse
Affiliation(s)
- Katherine R. Dobbs
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| | - Juliet N. Crabtree
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Arlene E. Dent
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
- Division of Pediatric Infectious Diseases, University Hospitals Rainbow Babies and Children’s Hospital, Cleveland, OH, USA
| |
Collapse
|
18
|
Kumar R, Loughland JR, Ng SS, Boyle MJ, Engwerda CR. The regulation of CD4
+
T cells during malaria. Immunol Rev 2019; 293:70-87. [DOI: 10.1111/imr.12804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Rajiv Kumar
- Centre of Experimental Medicine and Surgery Institute of Medical Sciences Banaras Hindu University Varanasi UP India
- Department of Medicine Institute of Medical Sciences Banaras Hindu University Varanasi UP India
| | - Jessica R. Loughland
- Human Malaria Immunology Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Susanna S. Ng
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Michelle J. Boyle
- Human Malaria Immunology Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Christian R. Engwerda
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| |
Collapse
|
19
|
Akilesh HM, Buechler MB, Duggan JM, Hahn WO, Matta B, Sun X, Gessay G, Whalen E, Mason M, Presnell SR, Elkon KB, Lacy-Hulbert A, Barnes BJ, Pepper M, Hamerman JA. Chronic TLR7 and TLR9 signaling drives anemia via differentiation of specialized hemophagocytes. Science 2019; 363:363/6423/eaao5213. [PMID: 30630901 DOI: 10.1126/science.aao5213] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/04/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022]
Abstract
Cytopenias are an important clinical problem associated with inflammatory disease and infection. We show that specialized phagocytes that internalize red blood cells develop in Toll-like receptor 7 (TLR7)-driven inflammation. TLR7 signaling caused the development of inflammatory hemophagocytes (iHPCs), which resemble splenic red pulp macrophages but are a distinct population derived from Ly6Chi monocytes. iHPCs were responsible for anemia and thrombocytopenia in TLR7-overexpressing mice, which have a macrophage activation syndrome (MAS)-like disease. Interferon regulatory factor 5 (IRF5), associated with MAS, participated in TLR7-driven iHPC differentiation. We also found iHPCs during experimental malarial anemia, in which they required endosomal TLR and MyD88 signaling for differentiation. Our findings uncover a mechanism by which TLR7 and TLR9 specify monocyte fate and identify a specialized population of phagocytes responsible for anemia and thrombocytopenia associated with inflammation and infection.
Collapse
Affiliation(s)
- Holly M Akilesh
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA.,Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew B Buechler
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA.,Department of Immunology, University of Washington, Seattle, WA, USA
| | - Jeffrey M Duggan
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA.,Department of Immunology, University of Washington, Seattle, WA, USA
| | - William O Hahn
- Department of Immunology, University of Washington, Seattle, WA, USA.,Division of Allergy and Infectious Disease, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bharati Matta
- Center for Autoimmune, Musculoskeletal and Hematopoietic Disease, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Xizhang Sun
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Griffin Gessay
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Elizabeth Whalen
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Michael Mason
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Scott R Presnell
- Systems Immunology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Keith B Elkon
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA.,Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Adam Lacy-Hulbert
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA.,Department of Immunology, University of Washington, Seattle, WA, USA
| | - Betsy J Barnes
- Center for Autoimmune, Musculoskeletal and Hematopoietic Disease, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Jessica A Hamerman
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA. .,Department of Immunology, University of Washington, Seattle, WA, USA
| |
Collapse
|
20
|
Sengupta A, Keswani T, Sarkar S, Ghosh S, Mukherjee S, Bhattacharyya A. Autophagic induction modulates splenic plasmacytoid dendritic cell mediated immune response in cerebral malarial infection model. Microbes Infect 2019; 21:475-484. [PMID: 31185303 DOI: 10.1016/j.micinf.2019.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Splenic plasmacytoid dendritic cells (pDC) possess the capability to harbor live replicative Plasmodium parasite. Isolated splenic pDC from infected mice causes malaria when transferred to naïve mice. Incomplete autophagic degradation might cause poor antigen processing and poor immune response. Induction of autophagic flux by rapamycin treatment led to better prognosis by boosting pDC centered immune response against the pathogen. Splenic pDC from rapamycin-treated infected mice, caused less parasitemia in naïve mice. The downregulation of adhesion with unaltered phagocytic potential of the cells post autophagic induction restricted excessive parasite burden within them. Rapamycin-treated pDC played a better role in antigen presentation. They showed higher expression of co-stimulatory molecules CD80, CD86, DEC205, MHCI. Rapamycin-treated pDC induced CD28 expression on CD8+ T cells and suppressed FasL level. This cells also influenced differentiation of effector, memory T cell population. The increase in IL10: TNFα ratio, Treg: Th17 ratio and lowering of myeloid DC: plasmacytoid DC ratio was observed. It shifted the overaggressive inflammation mediated Th1 pathway that is reported to incur host damage, to a better well-balanced cytokine profile exhibiting Th2 pathway. Autophagic flux induction within pDC proved to be beneficial in combating malarial pathogenicity.
Collapse
Affiliation(s)
- Anirban Sengupta
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Tarun Keswani
- Basic and Clinical Immunology of Parasitic Diseases, Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre of Infection and Immunity Lille, F-59000 Lille, France, 1 Rue du Professeur Calmette, 59019, Lille, France.
| | - Samrat Sarkar
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Soubhik Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Saikat Mukherjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
21
|
Ali S, Mann-Nüttel R, Schulze A, Richter L, Alferink J, Scheu S. Sources of Type I Interferons in Infectious Immunity: Plasmacytoid Dendritic Cells Not Always in the Driver's Seat. Front Immunol 2019; 10:778. [PMID: 31031767 PMCID: PMC6473462 DOI: 10.3389/fimmu.2019.00778] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Type I Interferons (IFNs) are hallmark cytokines produced in immune responses to all classes of pathogens. Type I IFNs can influence dendritic cell (DC) activation, maturation, migration, and survival, but also directly enhance natural killer (NK) and T/B cell activity, thus orchestrating various innate and adaptive immune effector functions. Therefore, type I IFNs have long been considered essential in the host defense against virus infections. More recently, it has become clear that depending on the type of virus and the course of infection, production of type I IFN can also lead to immunopathology or immunosuppression. Similarly, in bacterial infections type I IFN production is often associated with detrimental effects for the host. Although most cells in the body are thought to be able to produce type I IFN, plasmacytoid DCs (pDCs) have been termed the natural "IFN producing cells" due to their unique molecular adaptations to nucleic acid sensing and ability to produce high amounts of type I IFN. Findings from mouse reporter strains and depletion experiments in in vivo infection models have brought new insights and established that the role of pDCs in type I IFN production in vivo is less important than assumed. Production of type I IFN, especially the early synthesized IFNβ, is rather realized by a variety of cell types and cannot be mainly attributed to pDCs. Indeed, the cell populations responsible for type I IFN production vary with the type of pathogen, its tissue tropism, and the route of infection. In this review, we summarize recent findings from in vivo models on the cellular source of type I IFN in different infectious settings, ranging from virus, bacteria, and fungi to eukaryotic parasites. The implications from these findings for the development of new vaccination and therapeutic designs targeting the respectively defined cell types are discussed.
Collapse
Affiliation(s)
- Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Anja Schulze
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Lisa Richter
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Judith Alferink
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
22
|
Coch C, Hommertgen B, Zillinger T, Daßler-Plenker J, Putschli B, Nastaly M, Kümmerer BM, Scheunemann JF, Schumak B, Specht S, Schlee M, Barchet W, Hoerauf A, Bartok E, Hartmann G. Human TLR8 Senses RNA From Plasmodium falciparum-Infected Red Blood Cells Which Is Uniquely Required for the IFN-γ Response in NK Cells. Front Immunol 2019; 10:371. [PMID: 30972055 PMCID: PMC6445952 DOI: 10.3389/fimmu.2019.00371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/14/2019] [Indexed: 01/03/2023] Open
Abstract
During blood-stage malaria, the innate immune system initiates the production of pro-inflammatory cytokines, including IFN-γ, that are critical to host defense and responsible for severe disease. Nonetheless, the innate immune pathways activated during this process in human malaria remain poorly understood. Here, we identify TLR8 as an essential sensor of Plasmodium falciparum-infected red blood cells (iRBC). In human immune cells, iRBC and RNA purified from iRBC were detected by TLR8 but not TLR7 leading to IFN-γ induction in NK cells. While TLR7 and 9 have been shown to lead to IFN-γ in mice, our data demonstrate that TLR8 was the only TLR capable of inducing IFN-γ release in human immune cells. This unique capacity was mediated by the release of IL-12p70 and bioactive IL-18 from monocytes, the latter via a hitherto undescribed pathway. Altogether, our data are the first reported activation of TLR8 by protozoan RNA and demonstrate both the critical role of TLR8 in human blood-stage malaria and its unique functionality in the human immune system. Moreover, our study offers important evidence that mouse models alone may not be sufficient to describe the human innate immune response to malaria.
Collapse
Affiliation(s)
- Christoph Coch
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Benjamin Hommertgen
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zillinger
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Juliane Daßler-Plenker
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Bastian Putschli
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Maximilian Nastaly
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Johanna F Scheunemann
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Beatrix Schumak
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Sabine Specht
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Martin Schlee
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Winfried Barchet
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.,Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Eva Bartok
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Gunther Hartmann
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
23
|
Yap XZ, Lundie RJ, Beeson JG, O'Keeffe M. Dendritic Cell Responses and Function in Malaria. Front Immunol 2019; 10:357. [PMID: 30886619 PMCID: PMC6409297 DOI: 10.3389/fimmu.2019.00357] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/12/2019] [Indexed: 12/24/2022] Open
Abstract
Malaria remains a serious threat to global health. Sustained malaria control and, eventually, eradication will only be achieved with a broadly effective malaria vaccine. Yet a fundamental lack of knowledge about how antimalarial immunity is acquired has hindered vaccine development efforts to date. Understanding how malaria-causing parasites modulate the host immune system, specifically dendritic cells (DCs), key initiators of adaptive and vaccine antigen-based immune responses, is vital for effective vaccine design. This review comprehensively summarizes how exposure to Plasmodium spp. impacts human DC function in vivo and in vitro. We have highlighted the heterogeneity of the data observed in these studies, compared and critiqued the models used to generate our current understanding of DC function in malaria, and examined the mechanisms by which Plasmodium spp. mediate these effects. This review highlights potential research directions which could lead to improved efficacy of existing vaccines, and outlines novel targets for next-generation vaccine strategies to target malaria.
Collapse
Affiliation(s)
- Xi Zen Yap
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Rachel J Lundie
- Burnet Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Parkville, VIC, Australia.,Department of Microbiology and Central Clinical School, Monash University, Clayton, VIC, Australia
| | - Meredith O'Keeffe
- Burnet Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
24
|
Yap XZ, Lundie RJ, Feng G, Pooley J, Beeson JG, O'Keeffe M. Different Life Cycle Stages of Plasmodium falciparum Induce Contrasting Responses in Dendritic Cells. Front Immunol 2019; 10:32. [PMID: 30766530 PMCID: PMC6365426 DOI: 10.3389/fimmu.2019.00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/08/2019] [Indexed: 12/02/2022] Open
Abstract
Dendritic cells are key linkers of innate and adaptive immunity. Efficient dendritic cell activation is central to the acquisition of immunity and the efficacy of vaccines. Understanding how dendritic cells are affected by Plasmodium falciparum blood-stage parasites will help to understand how immunity is acquired and maintained, and how vaccine responses may be impacted by malaria infection or exposure. This study investigates the response of dendritic cells to two different life stages of the malaria parasite, parasitized red blood cells and merozoites, using a murine model. We demonstrate that the dendritic cell responses to merozoites are robust whereas dendritic cell activation, particularly CD40 and pro-inflammatory cytokine expression, is compromised in the presence of freshly isolated parasitized red blood cells. The mechanism of dendritic cell suppression by parasitized red blood cells is host red cell membrane-independent. Furthermore, we show that cryopreserved parasitized red blood cells have a substantially reduced capacity for dendritic cell activation.
Collapse
Affiliation(s)
- Xi Zen Yap
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Rachel J Lundie
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Gaoqian Feng
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne Pooley
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Meredith O'Keeffe
- Burnet Institute, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
25
|
Barboza R, Hasenkamp L, Barateiro A, Murillo O, Peixoto EPM, Lima FA, Reis AS, Gonçalves LA, Epiphanio S, Marinho CRF. Fetal-Derived MyD88 Signaling Contributes to Poor Pregnancy Outcomes During Gestational Malaria. Front Microbiol 2019; 10:68. [PMID: 30761111 PMCID: PMC6362412 DOI: 10.3389/fmicb.2019.00068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/15/2019] [Indexed: 12/17/2022] Open
Abstract
Placental malaria (PM) remains a severe public health problem in areas of high malaria transmission. Despite the efforts to prevent infection poor outcomes in Plasmodium endemic areas, there is still a considerable number of preterm births and newborns with low birth weight resulting from PM. Although local inflammation triggered in response to malaria is considered crucial in inducing placental damage, little is known about the differential influence of maternal and fetal immune responses to the disease progression. Therefore, using a PM mouse model, we sought to determine the contribution of maternal and fetal innate immune responses to PM development. For this, we conducted a series of cross-breeding experiments between mice that had differential expression of the MyD88 adaptor protein to obtain mother and correspondent fetuses with distinct genetic backgrounds. By evaluating fetal weight and placental vascular spaces, we have shown that the expression of MyD88 in fetal tissue has a significant impact on PM outcomes. Our results highlighted the existence of a distinct contribution of maternal and fetal immune responses to PM onset. Thus, contributing to the understanding of how inflammatory processes lead to the dysregulation of placental homeostasis ultimately impairing fetal development.
Collapse
Affiliation(s)
- Renato Barboza
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Lutero Hasenkamp
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - André Barateiro
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Oscar Murillo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Erika Paula Machado Peixoto
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Flávia Afonso Lima
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Aramys Silva Reis
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Lígia Antunes Gonçalves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sabrina Epiphanio
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudio R F Marinho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Gowda DC, Wu X. Parasite Recognition and Signaling Mechanisms in Innate Immune Responses to Malaria. Front Immunol 2018; 9:3006. [PMID: 30619355 PMCID: PMC6305727 DOI: 10.3389/fimmu.2018.03006] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Malaria caused by the Plasmodium family of parasites, especially P.falciparum and P. vivax, is a major health problem in many countries in the tropical and subtropical regions of the world. The disease presents a wide array of systemic clinical conditions and several life-threatening organ pathologies, including the dreaded cerebral malaria. Like many other infectious diseases, malaria is an inflammatory response-driven disease, and positive outcomes to infection depend on finely tuned regulation of immune responses that efficiently clear parasites and allow protective immunity to develop. Immune responses initiated by the innate immune system in response to parasites play key roles both in protective immunity development and pathogenesis. Initial pro-inflammatory responses are essential for clearing infection by promoting appropriate cell-mediated and humoral immunity. However, elevated and prolonged pro-inflammatory responses owing to inappropriate cellular programming contribute to disease conditions. A comprehensive knowledge of the molecular and cellular mechanisms that initiate immune responses and how these responses contribute to protective immunity development or pathogenesis is important for developing effective therapeutics and/or a vaccine. Historically, in efforts to develop a vaccine, immunity to malaria was extensively studied in the context of identifying protective humoral responses, targeting proteins involved in parasite invasion or clearance. The innate immune response was thought to be non-specific. However, during the past two decades, there has been a significant progress in understanding the molecular and cellular mechanisms of host-parasite interactions and the associated signaling in immune responses to malaria. Malaria infection occurs at two stages, initially in the liver through the bite of a mosquito, carrying sporozoites, and subsequently, in the blood through the invasion of red blood cells by merozoites released from the infected hepatocytes. Soon after infection, both the liver and blood stage parasites are sensed by various receptors of the host innate immune system resulting in the activation of signaling pathways and production of cytokines and chemokines. These immune responses play crucial roles in clearing parasites and regulating adaptive immunity. Here, we summarize the knowledge on molecular mechanisms that underlie the innate immune responses to malaria infection.
Collapse
Affiliation(s)
- D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Xianzhu Wu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
27
|
Costa AG, Ramasawmy R, Val FFA, Ibiapina HNS, Oliveira AC, Tarragô AM, Garcia NP, Heckmann MIO, Monteiro WM, Malheiro A, Lacerda MVG. Polymorphisms in TLRs influence circulating cytokines production in Plasmodium vivax malaria. Cytokine 2018; 110:374-380. [DOI: 10.1016/j.cyto.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/22/2018] [Accepted: 04/07/2018] [Indexed: 02/08/2023]
|
28
|
Wu X, Gowda NM, Kawasawa YI, Gowda DC. A malaria protein factor induces IL-4 production by dendritic cells via PI3K-Akt-NF-κB signaling independent of MyD88/TRIF and promotes Th2 response. J Biol Chem 2018; 293:10425-10434. [PMID: 29666186 PMCID: PMC6036203 DOI: 10.1074/jbc.ac118.001720] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/06/2018] [Indexed: 11/06/2022] Open
Abstract
Dendritic cells (DC) and cytokines produced by DC play crucial roles in inducing and regulating pro-/anti-inflammatory and Th1/Th2 responses. DC are known to produce a Th1-promoting cytokine, interleukin (IL)-12, in response to malaria and other pathogenic infections, but it is thought that DC do not produce Th2-promoting cytokine, IL-4. Here, we show that a protein factor of malaria parasites induces IL-4 responses by CD11chiMHCIIhiCD3ϵ-CD49b-CD19-FcϵRI- DC via PI3K-Akt-NF-κB signaling independent of TLR-MyD88/TRIF. Malaria parasite-activated DC induced IL-4 responses by T cells both in vitro and in vivo, favoring Th2, and il-4-deficient DC were unable to induce IL-4 expression by T cells. Interestingly, lethal parasites, Plasmodium falciparum and Plasmodium berghei ANKA, induced IL-4 response primarily by CD8α- DC, whereas nonlethal Plasmodium yoelii induced IL-4 by both CD8α+ and CD8α- DC. In both P. berghei ANKA- and P. yoelii-infected mice, IL-4-expressing CD8α- DC did not express IL-12, but a distinct CD8α- DC subset expressed IL-12. In P. berghei ANKA infection, CD8α+ DC expressed IL-12 but not IL-4, whereas in P. yoelii infection, CD8α+ DC expressed IL-4 but not IL-12. These differential IL-4 and IL-12 responses by DC subsets may contribute to different Th1/Th2 development and clinical outcomes in lethal and nonlethal malaria. Our results for the first time demonstrate that a malaria protein factor induces IL-4 production by DC via PI3K-Akt-NF-κB signaling, revealing signaling and molecular mechanisms that initiate and promote Th2 development.
Collapse
Affiliation(s)
- Xianzhu Wu
- From the Department of Biochemistry and Molecular Biology and
| | - Nagaraj M Gowda
- From the Department of Biochemistry and Molecular Biology and
| | - Yuka I Kawasawa
- From the Department of Biochemistry and Molecular Biology and
- the Department of Pharmacology and the Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - D Channe Gowda
- From the Department of Biochemistry and Molecular Biology and
| |
Collapse
|
29
|
Sebina I, Haque A. Effects of type I interferons in malaria. Immunology 2018; 155:176-185. [PMID: 29908067 DOI: 10.1111/imm.12971] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/28/2022] Open
Abstract
Type I interferons (IFNs) are a family of cytokines with a wide range of biological activities including anti-viral and immune-regulatory functions. Here, we focus on the protozoan parasitic disease malaria, and examine the effects of type I IFN-signalling during Plasmodium infection of humans and experimental mice. Since the 1960s, there have been many studies in this area, but a simple explanation for the role of type I IFN has not emerged. Although epidemiological data are consistent with roles for type I IFN in influencing malaria disease severity, functional proof of this remains sparse in humans. Several different rodent-infective Plasmodium species have been employed in in vivo studies of parasite-sensing, experimental cerebral malaria, lethal malaria, liver-stage infection, and adaptive T-cell and B-cell immunity. A range of different outcomes in these studies suggests a delicately balanced, multi-faceted and highly complex role for type I IFN-signalling in malaria. This is perhaps unsurprising given the multiple parasite-sensing pathways that can trigger type I IFN production, the multiple isoforms of IFN-α/β that can be produced by both immune and non-immune cells, the differential effects of acute versus chronic type I IFN production, the role of low level 'tonic' type I IFN-signalling, and that signalling can occur via homodimeric IFNAR1 or heterodimeric IFNAR1/2 receptors. Nevertheless, the data indicate that type I IFN-signalling controls parasite numbers during liver-stage infection, and depending on host-parasite genetics, can be either detrimental or beneficial to the host during blood-stage infection. Furthermore, type I IFN can promote cytotoxic T lymphocyte immune pathology and hinder CD4+ T helper cell-dependent immunity during blood-stage infection. Hence, type I IFN-signalling plays highly context-dependent roles in malaria, which can be beneficial or detrimental to the host.
Collapse
Affiliation(s)
- Ismail Sebina
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
30
|
Feintuch CM, Tare A, Cusumano LR, Benayoun J, Ryu S, Sixpence A, Seydel K, Laufer M, Taylor T, Suh Y, Daily JP. Type I Interferon Receptor Variants in Gene Regulatory Regions are Associated with Susceptibility to Cerebral Malaria in Malawi. Am J Trop Med Hyg 2018; 98:1692-1698. [PMID: 29637882 DOI: 10.4269/ajtmh.17-0887] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cerebral malaria (CM) remains an important cause of morbidity and mortality. Risk for developing CM partially depends on host genetic factors, including variants encoded in the type I interferon (IFN) receptor 1 (IFNAR1). Type I IFNs bind to IFNAR1 resulting in increased expression of IFN responsive genes, which modulate innate and adaptive immune responses. To comprehensively study IFNAR1 genetic variant associations in Malawians with CM or uncomplicated malaria, we used a tag single nucleotide polymorphism approach, based on the HapMap Yoruba in Ibadan, Nigeria, population database. We identified three novel (rs914142, rs12626750, and rs1041867) and one previously published (Chr21:34696785 [C > G]) IFNAR1 variants to be associated with CM. Some of these variants are in gene regulatory regions. Chr21:34696785 (C > G) is in a region encoding histone modifications and transcription factor-binding sites, which suggests gene regulatory activity. Rs12626750 is predicted to bind embryonic lethal abnormal vision system-like RNA-binding protein 1, a RNA-binding protein which can increase the type I IFN response. Furthermore, we examined these variants in an expression quantitative trait loci database and found that a protective variant, rs914142, is associated with lower expression of IFNAR1, whereas the CM-associated variant rs12626750 was associated with increased IFNAR1 expression, suggesting that activation of the type I IFN pathway may contribute to pathogenesis of CM. Future functional studies of IFNAR1 variants are now needed to clarify the role of this pathway in severe malarial diseases.
Collapse
Affiliation(s)
| | - Archana Tare
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Lucas R Cusumano
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Jacqueline Benayoun
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Seungjin Ryu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Alick Sixpence
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Karl Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan.,Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Miriam Laufer
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan.,Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Johanna P Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
31
|
Kalantari P. The Emerging Role of Pattern Recognition Receptors in the Pathogenesis of Malaria. Vaccines (Basel) 2018; 6:vaccines6010013. [PMID: 29495555 PMCID: PMC5874654 DOI: 10.3390/vaccines6010013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 11/16/2022] Open
Abstract
Despite a global effort to develop an effective vaccine, malaria is still a significant health problem. Much of the pathology of malaria is immune mediated. This suggests that host immune responses have to be finely regulated. The innate immune system initiates and sets the threshold of the acquired immune response and determines the outcome of the disease. Yet, our knowledge of the regulation of innate immune responses during malaria is limited. Theoretically, inadequate activation of the innate immune system could result in unrestrained parasite growth. Conversely, hyperactivation of the innate immune system, is likely to cause excessive production of proinflammatory cytokines and severe pathology. Toll-like receptors (TLRs) have emerged as essential receptors which detect signature molecules and shape the complex host response during malaria infection. This review will highlight the mechanisms by which Plasmodium components are recognized by innate immune receptors with particular emphasis on TLRs. A thorough understanding of the complex roles of TLRs in malaria may allow the delineation of pathological versus protective host responses and enhance the efficacy of anti-malarial treatments and vaccines.
Collapse
Affiliation(s)
- Parisa Kalantari
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
32
|
Mahanta A, Ganguli P, Barah P, Sarkar RR, Sarmah N, Phukan S, Bora M, Baruah S. Integrative Approaches to Understand the Mastery in Manipulation of Host Cytokine Networks by Protozoan Parasites with Emphasis on Plasmodium and Leishmania Species. Front Immunol 2018. [PMID: 29527208 PMCID: PMC5829655 DOI: 10.3389/fimmu.2018.00296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Diseases by protozoan pathogens pose a significant public health concern, particularly in tropical and subtropical countries, where these are responsible for significant morbidity and mortality. Protozoan pathogens tend to establish chronic infections underscoring their competence at subversion of host immune processes, an important component of disease pathogenesis and of their virulence. Modulation of cytokine and chemokine levels, their crosstalks and downstream signaling pathways, and thereby influencing recruitment and activation of immune cells is crucial to immune evasion and subversion. Many protozoans are now known to secrete effector molecules that actively modulate host immune transcriptome and bring about alterations in host epigenome to alter cytokine levels and signaling. The complexity of multi-dimensional events during interaction of hosts and protozoan parasites ranges from microscopic molecular levels to macroscopic ecological and epidemiological levels that includes disrupting metabolic pathways, cell cycle (Toxoplasma and Theileria sp.), respiratory burst, and antigen presentation (Leishmania spp.) to manipulation of signaling hubs. This requires an integrative systems biology approach to combine the knowledge from all these levels to identify the complex mechanisms of protozoan evolution via immune escape during host-parasite coevolution. Considering the diversity of protozoan parasites, in this review, we have focused on Leishmania and Plasmodium infections. Along with the biological understanding, we further elucidate the current efforts in generating, integrating, and modeling of multi-dimensional data to explain the modulation of cytokine networks by these two protozoan parasites to achieve their persistence in host via immune escape during host-parasite coevolution.
Collapse
Affiliation(s)
- Anusree Mahanta
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India.,Institute of Stem Cell Biology and Regenerative Medicine, Bengaluru, India
| | - Piyali Ganguli
- Chemical Engineering and Process Development, CSIR- National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL Campus, Pune, India
| | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR- National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NCL Campus, Pune, India
| | - Neelanjana Sarmah
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Saurav Phukan
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Mayuri Bora
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Shashi Baruah
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
33
|
Peron G, de Lima Thomaz L, Camargo da Rosa L, Thomé R, Cardoso Verinaud LM. Modulation of dendritic cell by pathogen antigens: Where do we stand? Immunol Lett 2018; 196:91-102. [PMID: 29427742 DOI: 10.1016/j.imlet.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) are essential players in the activation of T cells and in the development of adaptive immune response towards invading pathogens. Upon antigen (Ag) recognition of Pathogen Associated Molecular Patterns (PAMPs) by their receptors (PRRs), DCs are activated and acquire an inflammatory profile. DCs have the ability to direct the profile of helper T (Th) cells towards Th1, Th2, Th17, Th9 and regulatory (Treg) cells. Each subset of Th cells presents a unique gene expression signature and is endowed with the ability to conduct or suppress effector cells in inflammation. Pathogens target DCs during infection. Many studies demonstrated that antigens and molecules derived from pathogens have the ability to dampen DC maturation and activation, leading these cells to a permissive state or tolerogenic profile (tolDCs). Although tolDCs may represent a hindrance in infection control, they could be positively used to modulate inflammatory disorders, such as autoimmune diseases. In this review, we focus on discussing findings that use pathogen-antigen modulated DCs and tolDCs in prophylactics and therapeutics approaches for vaccination against infectious diseases or inflammatory disorders.
Collapse
Affiliation(s)
- Gabriela Peron
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil.
| | - Livia de Lima Thomaz
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Larissa Camargo da Rosa
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Rodolfo Thomé
- Department of Neurology, Thomas Jefferson University, Philadelphia, USA
| | - Liana Maria Cardoso Verinaud
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
34
|
Gallego-Marin C, Schrum JE, Andrade WA, Shaffer SA, Giraldo LF, Lasso AM, Kurt-Jones EA, Fitzgerald KA, Golenbock DT. Cyclic GMP-AMP Synthase Is the Cytosolic Sensor of Plasmodium falciparum Genomic DNA and Activates Type I IFN in Malaria. THE JOURNAL OF IMMUNOLOGY 2017; 200:768-774. [PMID: 29212905 DOI: 10.4049/jimmunol.1701048] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/06/2017] [Indexed: 01/04/2023]
Abstract
Innate immune receptors have a key role in the sensing of malaria and initiating immune responses. As a consequence of infection, systemic inflammation emerges and is directly related to signs and symptoms during acute disease. We have previously reported that plasmodial DNA is the primary driver of systemic inflammation in malaria, both within the phagolysosome and in the cytosol of effector cells. In this article, we demonstrate that Plasmodium falciparum genomic DNA delivered to the cytosol of human monocytes binds and activates cyclic GMP-AMP synthase (cGAS). Activated cGAS synthesizes 2'3'-cGAMP, which we subsequently can detect using liquid chromatography-tandem mass spectrometry. 2'3'-cGAMP acts as a second messenger for STING activation and triggers TBK1/IRF3 activation, resulting in type I IFN production in human cells. This induction of type I IFN was independent of IFI16. Access of DNA to the cytosolic compartment is mediated by hemozoin, because incubation of purified malaria pigment with DNase abrogated IFN-β induction. Collectively, these observations implicate cGAS as an important cytosolic sensor of P. falciparum genomic DNA and reveal the role of the cGAS/STING pathway in the induction of type I IFN in response to malaria parasites.
Collapse
Affiliation(s)
- Carolina Gallego-Marin
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605.,Centro Internacional de Entrenamiento e Investigaciones Medicas, Cali 760001, Colombia
| | - Jacob E Schrum
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Warrison A Andrade
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Scott A Shaffer
- Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA 01545; and.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lina F Giraldo
- Centro Internacional de Entrenamiento e Investigaciones Medicas, Cali 760001, Colombia
| | - Alvaro M Lasso
- Centro Internacional de Entrenamiento e Investigaciones Medicas, Cali 760001, Colombia
| | - Evelyn A Kurt-Jones
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Douglas T Golenbock
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
35
|
Abstract
Dendritic cells (DCs) are activated by pathogens to initiate and shape immune responses. We found that the activation of DCs by Plasmodium falciparum, the main causative agent of human malaria, induces a highly unusual phenotype by which DCs up-regulate costimulatory molecules and secretion of chemokines, but not of cytokines typical of inflammatory responses (IL-1β, IL-6, IL-10, TNF). Similar results were obtained with DCs obtained from malaria-naïve US donors and malaria-experienced donors from Mali. Contact-dependent cross-talk between the main DC subsets, plasmacytoid and myeloid DCs (mDCs) was necessary for increased chemokine and IFN-α secretion in response to the parasite. Despite the absence of inflammatory cytokine secretion, mDCs incubated with P. falciparum-infected erythrocytes activated antigen-specific naïve CD4+ T cells to proliferate and secrete Th1-like cytokines. This unexpected response of human mDCs to P. falciparum exhibited a transcriptional program distinct from a classical LPS response, pointing to unique P. falciparum-induced activation pathways that may explain the uncharacteristic immune response to malaria.
Collapse
|
36
|
Costa AG, Ramasawmy R, Ibiapina HNS, Sampaio VS, Xábregas LA, Brasil LW, Tarragô AM, Almeida ACG, Kuehn A, Vitor-Silva S, Melo GC, Siqueira AM, Monteiro WM, Lacerda MVG, Malheiro A. Association of TLR variants with susceptibility to Plasmodium vivax malaria and parasitemia in the Amazon region of Brazil. PLoS One 2017; 12:e0183840. [PMID: 28850598 PMCID: PMC5574562 DOI: 10.1371/journal.pone.0183840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/11/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Plasmodium vivax malaria (Pv-malaria) is still considered a neglected disease despite an alarming number of individuals being infected annually. Malaria pathogenesis occurs with the onset of the vector-parasite-host interaction through the binding of pathogen-associated molecular patterns (PAMPs) and receptors of innate immunity, such as toll-like receptors (TLRs). The triggering of the signaling cascade produces an elevated inflammatory response. Genetic polymorphisms in TLRs are involved in susceptibility or resistance to infection, and the identification of genes involved with Pv-malaria response is important to elucidate the pathogenesis of the disease and may contribute to the formulation of control and elimination tools. METHODOLOGY/PRINCIPAL FINDINGS A retrospective case-control study was conducted in an intense transmission area of Pv-malaria in the state of Amazonas, Brazil. Genetic polymorphisms (SNPs) in different TLRs, TIRAP, and CD14 were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis in 325 patients infected with P. vivax and 274 healthy individuals without malaria history in the prior 12 months from the same endemic area. Parasite load was determined by qPCR. Simple and multiple logistic/linear regressions were performed to investigate association between the polymorphisms and the occurrence of Pv-malaria and parasitemia. The C/T (TLR5 R392StopCodon) and T/T (TLR9 -1486C/T) genotypes appear to be risk factors for infection by P. vivax (TLR5: C/C vs. C/T [OR: 2.116, 95% CI: 1.054-4.452, p = 0.031]; TLR9: C/C vs. T/T [OR: 1.919, 95% CI: 1.159-3.177, p = 0.010]; respectively). Fever (COEF = 7599.46, 95% CI = 3063.80-12135.12, p = 0.001) and the C/C genotype of TLR9 -1237C/T (COEF = 17006.63, 95% CI = 3472.83-30540.44, p = 0.014) were independently associated with increased parasitemia in patients with Pv-malaria. CONCLUSIONS Variants of TLRs may predispose individuals to infection by P. vivax. The TLR5 R392StopCodon and TLR9 -1486C/T variants are associated with susceptibility to Pv-malaria. Furthermore, the TLR9 variant -1237C/C correlates with high parasitemia.
Collapse
Affiliation(s)
- Allyson Guimarães Costa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Universidade Nilton Lins (UNINILTONLINS), Manaus, AM, Brasil
| | - Hiochelson Najibe Santos Ibiapina
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Vanderson Souza Sampaio
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Lilyane Amorim Xábregas
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Larissa Wanderley Brasil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Andréa Monteiro Tarragô
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Anne Cristine Gomes Almeida
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Andrea Kuehn
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
- Barcelona Centre for International Health Research (CRESIB), Barcelona Global Health Institute (ISGLOBAL), Barcelona, Spain
| | - Sheila Vitor-Silva
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Gisely Cardoso Melo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - André Machado Siqueira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
| | - Marcus Vinicius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM, Brazil
- Instituto de Pesquisas Leônidas & Maria Deane, FIOCRUZ-Amazônia, Manaus, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Laboratório de Genômica, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
37
|
TLR4-Mediated Placental Pathology and Pregnancy Outcome in Experimental Malaria. Sci Rep 2017; 7:8623. [PMID: 28819109 PMCID: PMC5561130 DOI: 10.1038/s41598-017-08299-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Malaria-associate pregnancy has a significant impact on infant morbidity and mortality. The detrimental effects of malaria infection during pregnancy have been shown to correlate with immune activation in the placental tissue. Herein we sought to evaluate the effect of Toll-like receptors (TLRs) activation on placental malaria (PM) development by using the Plasmodium berghei NK65GFP infection model. We observed that activation of the innate immune system by parasites leads to PM due to local inflammation. We identified TLR4 activation as the main pathway involved in the inflammatory process in the placental tissue since the absence of functional TLR4 in mice leads to a decrease in the pro-inflammatory responses, which resulted in an improved pregnancy outcome. Additionally, a similar result was obtained when infected pregnant mice were treated with IAXO-101, a TLR4/CD14 blocker. Together, this study illustrates the importance of TLR4 signalling for the generation of the severe inflammatory response involved in PM pathogenesis. Therefore, our results implicate that TLR4 blockage could be a potential candidate for therapeutic interventions to reduce malaria-induced pathology both in the mother and the fetus.
Collapse
|
38
|
Loughland JR, Minigo G, Sarovich DS, Field M, Tipping PE, Montes de Oca M, Piera KA, Amante FH, Barber BE, Grigg MJ, William T, Good MF, Doolan DL, Engwerda CR, Anstey NM, McCarthy JS, Woodberry T. Plasmacytoid dendritic cells appear inactive during sub-microscopic Plasmodium falciparum blood-stage infection, yet retain their ability to respond to TLR stimulation. Sci Rep 2017; 7:2596. [PMID: 28572564 PMCID: PMC5453946 DOI: 10.1038/s41598-017-02096-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are activators of innate and adaptive immune responses that express HLA-DR, toll-like receptor (TLR) 7, TLR9 and produce type I interferons. The role of human pDC in malaria remains poorly characterised. pDC activation and cytokine production were assessed in 59 malaria-naive volunteers during experimental infection with 150 or 1,800 P. falciparum-parasitized red blood cells. Using RNA sequencing, longitudinal changes in pDC gene expression were examined in five adults before and at peak-infection. pDC responsiveness to TLR7 and TLR9 stimulation was assessed in-vitro. Circulating pDC remained transcriptionally stable with gene expression altered for 8 genes (FDR < 0.07). There was no upregulation of co-stimulatory molecules CD86, CD80, CD40, and reduced surface expression of HLA-DR and CD123 (IL-3R-α). pDC loss from the circulation was associated with active caspase-3, suggesting pDC apoptosis during primary infection. pDC remained responsive to TLR stimulation, producing IFN-α and upregulating HLA-DR, CD86, CD123 at peak-infection. In clinical malaria, pDC retained HLA-DR but reduced CD123 expression compared to convalescence. These data demonstrate pDC retain function during a first blood-stage P. falciparum exposure despite sub-microscopic parasitaemia downregulating HLA-DR. The lack of evident pDC activation in both early infection and malaria suggests little response of circulating pDC to infection.
Collapse
Affiliation(s)
- Jessica R Loughland
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia.
| | - Gabriela Minigo
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia
| | - Derek S Sarovich
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia.,Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Matt Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Peta E Tipping
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia.,Royal Darwin Hospital, Darwin, Australia
| | | | - Kim A Piera
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Bridget E Barber
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia.,Infectious Diseases Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Matthew J Grigg
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia.,Infectious Diseases Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Unit, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia.,Sabah Department of Health, Kota Kinabalu, Sabah, Malaysia
| | | | - Denise L Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Nicholas M Anstey
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia.,Royal Darwin Hospital, Darwin, Australia
| | | | - Tonia Woodberry
- Menzies School of Health Research, Darwin, Australia and Charles Darwin University, Darwin, Australia
| |
Collapse
|
39
|
Early Immune Regulatory Changes in a Primary Controlled Human Plasmodium vivax Infection: CD1c + Myeloid Dendritic Cell Maturation Arrest, Induction of the Kynurenine Pathway, and Regulatory T Cell Activation. Infect Immun 2017; 85:IAI.00986-16. [PMID: 28320838 DOI: 10.1128/iai.00986-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/15/2017] [Indexed: 01/03/2023] Open
Abstract
Plasmodium vivax malaria remains a major public health problem. The requirements for acquisition of protective immunity to the species are not clear. Dendritic cells (DC) are essential for immune cell priming but also perform immune regulatory functions, along with regulatory T cells (Treg). An important function of DC involves activation of the kynurenine pathway via indoleamine 2,3-dioxygenase (IDO). Using a controlled human experimental infection study with blood-stage P. vivax, we characterized plasmacytoid DC (pDC) and myeloid DC (mDC) subset maturation, CD4+ CD25+ CD127lo Treg activation, and IDO activity. Blood samples were collected from six healthy adults preinoculation, at peak parasitemia (day 14; ∼31,400 parasites/ml), and 24 and 48 h after antimalarial treatment. CD1c+ and CD141+ mDC and pDC numbers markedly declined at peak parasitemia, while CD16+ mDC numbers appeared less affected. HLA-DR expression was selectively reduced on CD1c+ mDC, increased on CD16+ mDC, and was unaltered on pDC. Plasma IFN-γ increased significantly and was correlated with an increased kynurenine/tryptophan (KT) ratio, a measure of IDO activity. At peak parasitemia, Treg presented an activated CD4+ CD25+ CD127lo CD45RA- phenotype and upregulated TNFR2 expression. In a mixed-effects model, the KT ratio was positively associated with an increase in activated Treg. Our data demonstrate that a primary P. vivax infection exerts immune modulatory effects by impairing HLA-DR expression on CD1c+ mDC while activating CD16+ mDC. Induction of the kynurenine pathway and increased Treg activation, together with skewed mDC maturation, suggest P. vivax promotes an immunosuppressive environment, likely impairing the development of a protective host immune response.
Collapse
|
40
|
Ademolue TW, Aniweh Y, Kusi KA, Awandare GA. Patterns of inflammatory responses and parasite tolerance vary with malaria transmission intensity. Malar J 2017; 16:145. [PMID: 28399920 PMCID: PMC5387356 DOI: 10.1186/s12936-017-1796-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/01/2017] [Indexed: 01/29/2023] Open
Abstract
Background In individuals living in malaria-endemic regions, parasitaemia thresholds for the onset of clinical symptoms vary with transmission intensity. The mechanisms that mediate this relationship are however, unclear. Since inflammatory responses to parasite infection contribute to the clinical manifestation of malaria, this study investigated inflammatory cytokine responses in children with malaria from areas of different transmission intensities (ranging from low to high). Methods Blood samples were obtained from children confirmed with malaria at community hospitals in three areas with differing transmission intensities. Cytokine levels were assessed using the Luminex®-based magnetic bead array system, and levels were compared across sites using appropriate statistical tests. The relative contributions of age, gender, parasitaemia and transmission intensity on cytokine levels were investigated using multivariate regression analysis. Results Parasite density increased with increasing transmission intensity in children presenting to hospital with symptomatic malaria, indicating that the parasitaemia threshold for clinical malaria increases with increasing transmission intensity. Furthermore, levels of pro-inflammatory cytokines, including tumour necrosis factor alpha (TNF-α), interferon-gamma (IFN-γ), interleukin (IL)-1β, IL-2, IL-6, IL-8, and IL-12, decreased with increasing transmission intensity, and correlated significantly with parasitaemia levels in the low transmission area but not in high transmission areas. Similarly, levels of anti-inflammatory cytokines, including IL-4, IL-7, IL-10 and IL-13, decreased with increasing transmission intensity, with IL-10 showing strong correlation with parasitaemia levels in the low transmission area. Multiple linear regression analyses revealed that transmission intensity was a stronger predictor of cytokine levels than age, gender and parasitaemia. Conclusion Taken together, the data demonstrate a strong relationship between the prevailing transmission intensity, parasitaemia levels and the magnitude of inflammatory responses induced during clinical malaria. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1796-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Temitope W Ademolue
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Yaw Aniweh
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Kwadwo A Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Gordon A Awandare
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana. .,Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
41
|
van Tong H, Brindley PJ, Meyer CG, Velavan TP. Parasite Infection, Carcinogenesis and Human Malignancy. EBioMedicine 2016; 15:12-23. [PMID: 27956028 PMCID: PMC5233816 DOI: 10.1016/j.ebiom.2016.11.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Cancer may be induced by many environmental and physiological conditions. Infections with viruses, bacteria and parasites have been recognized for years to be associated with human carcinogenicity. Here we review current concepts of carcinogenicity and its associations with parasitic infections. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic while the protozoan Trypanosoma cruzi, the causing agent of Chagas disease, has a dual role in the development of cancer, including both carcinogenic and anticancer properties. Although malaria per se does not appear to be causative in carcinogenesis, it is strongly associated with the occurrence of endemic Burkitt lymphoma in areas holoendemic for malaria. The initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by the Epstein-Barr virus. Observations suggest that Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas. This review provides an overview of the mechanisms of parasitic infection-induced carcinogenicity. The helminth diseases schistosomiasis, opisthorchiasis, and clonorchiasis are highly carcinogenic. Trypanosoma cruzi has a dual role in cancer development including both carcinogenic and anticancer properties. Initiation of Plasmodium falciparum related endemic Burkitt lymphoma requires additional transforming events induced by EBV. Strongyloides stercoralis may be a relevant co-factor in HTLV-1-related T cell lymphomas.
We searched MEDLINE database and PubMed for articles from 1970 through June 30, 2016. Search terms used in various combinations were “parasite infection”, “carcinogenesis”, “cancer”, “human malignancy”, “parasite and cancer”, “infection-associated cancer”, “parasite-associated cancer” “schistosomiasis”, “opisthorchiasis”, “malaria”, “Chagas disease”, and “strongyloidiasis”. Articles resulting from these searches and relevant references cited in those articles were selected based on their related topics and were reviewed. Abstracts and reports from meetings were also included. Articles published in English were included.
Collapse
Affiliation(s)
- Hoang van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Biomedical and Pharmaceutical Applied Research Center, Vietnam Military Medical University, Hanoi, Vietnam.
| | - Paul J Brindley
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, D.C., USA
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Health Focus GmbH, Potsdam, Germany; Duy Tan University, Da Nang, Viet Nam; Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Viet Nam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Duy Tan University, Da Nang, Viet Nam; Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Viet Nam.
| |
Collapse
|
42
|
Sebina I, James KR, Soon MSF, Fogg LG, Best SE, de Labastida Rivera F, Montes de Oca M, Amante FH, Thomas BS, Beattie L, Souza-Fonseca-Guimaraes F, Smyth MJ, Hertzog PJ, Hill GR, Hutloff A, Engwerda CR, Haque A. IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection. PLoS Pathog 2016; 12:e1005999. [PMID: 27812214 PMCID: PMC5094753 DOI: 10.1371/journal.ppat.1005999] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/13/2016] [Indexed: 01/19/2023] Open
Abstract
Parasite-specific antibodies protect against blood-stage Plasmodium infection. However, in malaria-endemic regions, it takes many months for naturally-exposed individuals to develop robust humoral immunity. Explanations for this have focused on antigenic variation by Plasmodium, but have considered less whether host production of parasite-specific antibody is sub-optimal. In particular, it is unclear whether host immune factors might limit antibody responses. Here, we explored the effect of Type I Interferon signalling via IFNAR1 on CD4+ T-cell and B-cell responses in two non-lethal murine models of malaria, P. chabaudi chabaudi AS (PcAS) and P. yoelii 17XNL (Py17XNL) infection. Firstly, we demonstrated that CD4+ T-cells and ICOS-signalling were crucial for generating germinal centre (GC) B-cells, plasmablasts and parasite-specific antibodies, and likewise that T follicular helper (Tfh) cell responses relied on B cells. Next, we found that IFNAR1-signalling impeded the resolution of non-lethal blood-stage infection, which was associated with impaired production of parasite-specific IgM and several IgG sub-classes. Consistent with this, GC B-cell formation, Ig-class switching, plasmablast and Tfh differentiation were all impaired by IFNAR1-signalling. IFNAR1-signalling proceeded via conventional dendritic cells, and acted early by limiting activation, proliferation and ICOS expression by CD4+ T-cells, by restricting the localization of activated CD4+ T-cells adjacent to and within B-cell areas of the spleen, and by simultaneously suppressing Th1 and Tfh responses. Finally, IFNAR1-deficiency accelerated humoral immune responses and parasite control by boosting ICOS-signalling. Thus, we provide evidence of a host innate cytokine response that impedes the onset of humoral immunity during experimental malaria. Plasmodium parasites cause malaria by invading, replicating within, and rupturing out of red blood cells. Natural immunity to malaria, which depends on generating Plasmodium-specific antibodies, often takes years to develop. Explanations for this focus on antigenic variation by the parasite, but consider less whether antibody responses themselves may be sub-optimal. Surprisingly little is known about how Plasmodium-specific antibody responses are generated in the host, and whether these can be enhanced. Using mouse models, we found that cytokine-signalling via the receptor IFNAR1 delayed the production of Plasmodium-specific antibody responses. IFNAR1-signalling hindered the resolution of infection, and acted early via conventional dendritic cells to restrict CD4+ T-cell activation and their interactions with B-cells. Thus, we reveal that an innate cytokine response, which occurs during blood-stage Plasmodium infection in humans, obstructs the onset of antibody–mediated immunity during experimental malaria.
Collapse
Affiliation(s)
- Ismail Sebina
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, School of Medicine PhD Program, Herston, Queensland, Australia
| | - Kylie R. James
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, School of Medicine PhD Program, Herston, Queensland, Australia
| | - Megan S. F. Soon
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Lily G. Fogg
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Shannon E. Best
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Fabian de Labastida Rivera
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Marcela Montes de Oca
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Fiona H. Amante
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Bryce S. Thomas
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Lynette Beattie
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Mark J. Smyth
- Immunity in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute Herston, Queensland, Australia
| | - Paul J. Hertzog
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Geoffrey R. Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Andreas Hutloff
- Chronic Immune Reactions, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Christian R. Engwerda
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ashraful Haque
- Malaria Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- * E-mail:
| |
Collapse
|
43
|
Hirako IC, Ataide MA, Faustino L, Assis PA, Sorensen EW, Ueta H, Araújo NM, Menezes GB, Luster AD, Gazzinelli RT. Splenic differentiation and emergence of CCR5 +CXCL9 +CXCL10 + monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun 2016; 7:13277. [PMID: 27808089 PMCID: PMC5097164 DOI: 10.1038/ncomms13277] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/16/2016] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells have an important role in immune surveillance. After being exposed to microbial components, they migrate to secondary lymphoid organs and activate T lymphocytes. Here we show that during mouse malaria, splenic inflammatory monocytes differentiate into monocyte-derived dendritic cells (MO-DCs), which are CD11b+F4/80+CD11c+MHCIIhighDC-SIGNhighLy6c+ and express high levels of CCR5, CXCL9 and CXCL10 (CCR5+CXCL9/10+ MO-DCs). We propose that malaria-induced splenic MO-DCs take a reverse migratory route. After differentiation in the spleen, CCR5+CXCL9/10+ MO-DCs traffic to the brain in a CCR2-independent, CCR5-dependent manner, where they amplify the influx of CD8+ T lymphocytes, leading to a lethal neuropathological syndrome. Cerebral malaria is an often fatal complication of Plasmodium infection involving accumulation of inflammatory leukocytes in the central nervous system. Here the authors map the development and trafficking of CCR5+ monocyte-derived dendritic cells from the spleen to the brains of Plasmodium berghei ANKA infected mice.
Collapse
Affiliation(s)
- Isabella C Hirako
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil.,Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Marco A Ataide
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil.,Departamento de Bioquímica e Imunologia and Centro de Biologia Gastrointestinal, Departamento de Morfologia, Universidade Federal of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte MG 31270-901, Brazil
| | - Lucas Faustino
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Patricia A Assis
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil
| | - Elizabeth W Sorensen
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Hisashi Ueta
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Natalia M Araújo
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil.,Departamento de Bioquímica e Imunologia and Centro de Biologia Gastrointestinal, Departamento de Morfologia, Universidade Federal of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte MG 31270-901, Brazil
| | - Gustavo B Menezes
- Departamento de Bioquímica e Imunologia and Centro de Biologia Gastrointestinal, Departamento de Morfologia, Universidade Federal of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte MG 31270-901, Brazil
| | - Andrew D Luster
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Ricardo T Gazzinelli
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil.,Departamento de Bioquímica e Imunologia and Centro de Biologia Gastrointestinal, Departamento de Morfologia, Universidade Federal of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte MG 31270-901, Brazil.,Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01655, USA
| |
Collapse
|
44
|
Spaulding E, Fooksman D, Moore JM, Saidi A, Feintuch CM, Reizis B, Chorro L, Daily J, Lauvau G. STING-Licensed Macrophages Prime Type I IFN Production by Plasmacytoid Dendritic Cells in the Bone Marrow during Severe Plasmodium yoelii Malaria. PLoS Pathog 2016; 12:e1005975. [PMID: 27792766 PMCID: PMC5085251 DOI: 10.1371/journal.ppat.1005975] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023] Open
Abstract
Malaria remains a global health burden causing significant morbidity, yet the mechanisms underlying disease outcomes and protection are poorly understood. Herein, we analyzed the peripheral blood of a unique cohort of Malawian children with severe malaria, and performed a comprehensive overview of blood leukocytes and inflammatory mediators present in these patients. We reveal robust immune cell activation, notably of CD14+ inflammatory monocytes, NK cells and plasmacytoid dendritic cells (pDCs) that is associated with very high inflammation. Using the Plasmodium yoelii 17X YM surrogate mouse model of lethal malaria, we report a comparable pattern of immune cell activation and inflammation and found that type I IFN represents a key checkpoint for disease outcomes. Compared to wild type mice, mice lacking the type I interferon (IFN) receptor exhibited a significant decrease in immune cell activation and inflammatory response, ultimately surviving the infection. We demonstrate that pDCs were the major producers of systemic type I IFN in the bone marrow and the blood of infected mice, via TLR7/MyD88-mediated recognition of Plasmodium parasites. This robust type I IFN production required priming of pDCs by CD169+ macrophages undergoing activation upon STING-mediated sensing of parasites in the bone marrow. pDCs and macrophages displayed prolonged interactions in this compartment in infected mice as visualized by intravital microscopy. Altogether our findings describe a novel mechanism of pDC activation in vivo and precise stepwise cell/cell interactions taking place during severe malaria that contribute to immune cell activation and inflammation, and subsequent disease outcomes. The Plasmodium parasite is the number one killer among human parasitic diseases worldwide. Protection is associated with length of exposure for people living in endemic areas, with severe disease primarily affecting young children. Inflammation is a key component in the pathophysiology in malaria, and disease severity has been linked to the degree of activation of the immune system. However, the underlying mechanisms of protection and disease outcomes remain poorly understood. We provide a comprehensive analysis of peripheral blood immune cells obtained from a cohort of children with severe malaria. Our results show heightened inflammation and immune cell activation, in particular for monocytes, natural killer cells, and plasmacytoid dendritic cells (pDCs). We have also utilized a mouse model of lethal malaria that recapitulates many features identified in this cohort of severe malaria patients to examine drivers of immune cell activation and inflammation. Our studies provide evidence that type I interferon (IFN) acts as an early switch in inducing a potent inflammatory response in the infected host. Type I IFN production is massively produced in the bone marrow and the blood of infected mice by plasmacytoid dendritic cells (pDCs), a subset of DCs. We also demonstrate that resident macrophages in the bone marrow, control type I IFN production by the pDCs. We define how both myeloid cells “sense” the parasite to initiate the host immune response and report a previously uncharacterized physical interaction between pDCs and macrophages in the bone marrow as visualized by intravital microscopy in vivo. Our results define cellular processes underlying the marked inflammation of severe malaria and could open novel therapeutic opportunities to improve outcomes in this important human infectious disease.
Collapse
Affiliation(s)
- Emily Spaulding
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, United States Of America
| | - David Fooksman
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, United States Of America
- Albert Einstein College of Medicine, Department of Pathology, Bronx, NY, United States Of America
| | - Jamie M. Moore
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, United States Of America
| | - Alex Saidi
- University of Malawi College of Medicine, Blantyre Malaria Project, Blantyre, Malawi
| | - Catherine M. Feintuch
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, United States Of America
- Albert Einstein College of Medicine, Department of Medicine, Division of Infectious Diseases, Bronx, NY, United States Of America
| | - Boris Reizis
- New York University Medical Center, Department of Pathology and Department of Medicine, New York, NY, United States Of America
| | - Laurent Chorro
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, United States Of America
| | - Johanna Daily
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, United States Of America
- Albert Einstein College of Medicine, Department of Medicine, Division of Infectious Diseases, Bronx, NY, United States Of America
| | - Grégoire Lauvau
- Albert Einstein College of Medicine, Department of Microbiology and Immunology, Bronx, NY, United States Of America
- * E-mail:
| |
Collapse
|
45
|
TLR4 and TLR9 signals stimulate protective immunity against blood-stage Plasmodium yoelii infection in mice. Exp Parasitol 2016; 170:73-81. [PMID: 27646627 DOI: 10.1016/j.exppara.2016.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/01/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023]
Abstract
The mechanisms regulating the induction of protective immunity against blood-stage malaria remain unclear. Resistant DBA/2 mouse develops a higher Th1 response compared with a susceptible BALB/c strain during Plasmodium yoelii (Py) infection. It is known that the T helper cell response is initiated and polarized by dendritic cells (DCs) of the innate immune system, during which TLR4 and TLR9 are important receptors for the innate recognition of the malaria parasite and its products. We hypothesized that TLR4/9 may play critical roles in the induction of protective immunity against Py infection. We used TLR4/9 antagonists and agonists to study their effects on mouse resistance to Py infection. We found that the administration of an antagonist prior to infection aggravated disease outcomes, impaired DC functions and suppressed the pro-inflammatory response to Py infection in resistant DBA/2 mice. Treatment with the TLR4 agonist lipopolysaccharide (LPS) but not TLR9 agonist significantly improved the survival rate of susceptible Py-infected BALB/c mice. LPS administration promoted the activation and expansion of DCs and drove a Th1-biased response. Our data demonstrate the important roles of TLR4/9 signals in inducing resistance to malaria parasites and provide evidence for the rational use of TLR agonists to potentiate protective immunity against Plasmodium infection.
Collapse
|
46
|
Immune activation and induction of memory: lessons learned from controlled human malaria infection with Plasmodium falciparum. Parasitology 2016; 143:224-35. [PMID: 26864135 DOI: 10.1017/s0031182015000761] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Controlled human malaria infections (CHMIs) are a powerful tool to assess the efficacy of drugs and/or vaccine candidates, but also to study anti-malarial immune responses at well-defined time points after infection. In this review, we discuss the insights that CHMI trials have provided into early immune activation and regulation during acute infection, and the capacity to induce and maintain immunological memory. Importantly, these studies show that a single infection is sufficient to induce long-lasting parasite-specific T- and B-cell memory responses, and suggest that blood-stage induced regulatory responses can limit inflammation both in ongoing and potentially future infections. As future perspective of investigation in CHMIs, we discuss the role of innate cell subsets, the interplay between innate and adaptive immune activation and the potential modulation of these responses after natural pre-exposure.
Collapse
|
47
|
Profoundly Reduced CD1c+ Myeloid Dendritic Cell HLA-DR and CD86 Expression and Increased Tumor Necrosis Factor Production in Experimental Human Blood-Stage Malaria Infection. Infect Immun 2016; 84:1403-1412. [PMID: 26902728 DOI: 10.1128/iai.01522-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/13/2016] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are sentinels of the immune system that uniquely prime naive cells and initiate adaptive immune responses. CD1c (BDCA-1) myeloid DCs (CD1c(+) mDCs) highly express HLA-DR, have a broad Toll-like receptor (TLR) repertoire, and secrete immune modulatory cytokines. To better understand immune responses to malaria, CD1c(+) mDC maturation and cytokine production were examined in healthy volunteers before and after experimental intravenous Plasmodium falciparum infection with 150- or 1,800-parasite-infected red blood cells (pRBCs). After either dose, CD1c(+) mDCs significantly reduced HLA-DR expression in prepatent infections. Circulating CD1c(+) mDCs did not upregulate HLA-DR after pRBC or TLR ligand stimulation and exhibited reduced CD86 expression. At peak parasitemia, CD1c(+) mDCs produced significantly more tumor necrosis factor (TNF), whereas interleukin-12 (IL-12) production was unchanged. Interestingly, only the 1,800-pRBC dose caused a reduction in the circulating CD1c(+) mDC count with evidence of apoptosis. The 1,800-pRBC dose produced no change in T cell IFN-γ or IL-2 production at peak parasitemia or at 3 weeks posttreatment. Overall, CD1c(+) mDCs are compromised by P. falciparum exposure, with impaired HLA-DR and CD86 expression, and have an increased capacity for TNF but not IL-12 production. A first prepatent P. falciparum infection is sufficient to modulate CD1c(+) mDC responsiveness, likely contributing to hampered effector T cell cytokine responses and assisting parasite immune evasion.
Collapse
|
48
|
Dendritic Cells and Their Multiple Roles during Malaria Infection. J Immunol Res 2016; 2016:2926436. [PMID: 27110574 PMCID: PMC4823477 DOI: 10.1155/2016/2926436] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/06/2016] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) play a central role in the initiation of adaptive immune responses, efficiently presenting antigens to T cells. This ability relies on the presence of numerous surface and intracellular receptors capable of sensing microbial components as well as inflammation and on a very efficient machinery for antigen presentation. In this way, DCs sense the presence of a myriad of pathogens, including Plasmodium spp., the causative agent of malaria. Despite many efforts to control this infection, malaria is still responsible for high rates of morbidity and mortality. Different groups have shown that DCs act during Plasmodium infection, and data suggest that the phenotypically distinct DCs subsets are key factors in the regulation of immunity during infection. In this review, we will discuss the importance of DCs for the induction of immunity against the different stages of Plasmodium, the outcomes of DCs activation, and also what is currently known about Plasmodium components that trigger such activation.
Collapse
|
49
|
Bujila I, Schwarzer E, Skorokhod O, Weidner JM, Troye-Blomberg M, Östlund Farrants AK. Malaria-derived hemozoin exerts early modulatory effects on the phenotype and maturation of human dendritic cells. Cell Microbiol 2016; 18:413-23. [PMID: 26348250 DOI: 10.1111/cmi.12521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 01/15/2023]
Abstract
Plasmodium falciparum (P. falciparum)-induced effects on the phenotype of human dendritic cells (DC) could contribute to poor induction of long-lasting protective immunity against malaria. DC ability to present antigens to naïve T cells, thus initiating adaptive immune responses depends on complex switches in chemokine receptors, production of soluble mediators and expression of molecules enabling antigen-presentation and maturation. To examine the cellular basis of these processes in the context of malaria, we performed detailed analysis of early events following exposure of human monocyte-derived DC to natural hemozoin (nHZ) and the synthetic analog of its heme core, β-hematin. DC exposed to either molecule produced high levels of the inflammatory chemokine MCP-1, showed continuous high expression of the inflammatory chemokine receptor CCR5, no upregulation of the lymphoid homing receptor CCR7 and no cytoskeletal actin redistribution with loss of podosomes. DC partially matured as indicated by increased expression of major histocompatibility complex (MHC) class II and CD86 following nHZ and β-hematin exposure, however there was a lack in expression of the maturation marker CD83 following nHZ but not β-hematin exposure. Overall our data demonstrate that exposure to nHZ partially impairs the capacity of DC to mature, an effect in part differential to β-hematin.
Collapse
Affiliation(s)
- Ioana Bujila
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| | - Evelin Schwarzer
- Department of Oncology, University of Torino, Via Santena 5, Turin, 10126, Italy
| | - Oleksii Skorokhod
- Department of Oncology, University of Torino, Via Santena 5, Turin, 10126, Italy
| | - Jessica M Weidner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| | - Marita Troye-Blomberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| | - Ann-Kristin Östlund Farrants
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, 106 91, Sweden
| |
Collapse
|
50
|
Abstract
Naturally acquired immunity to the blood-stage of the malaria parasite develops slowly in areas of high endemicity, but is not sterilizing. It manifests as a reduction in parasite density and clinical symptoms. Immunity as a result of blood-stage vaccination has not yet been achieved in humans, although there are many animal models where vaccination has been successful. The development of a blood-stage vaccine has been complicated by a number of factors including limited knowledge of human-parasite interactions and which antigens and immune responses are critical for protection. Opinion is divided as to whether this vaccine should aim to accelerate the acquisition of responses acquired following natural exposure, or whether it should induce a different response. Animal and experimental human models suggest that cell-mediated immune responses can control parasite growth, but these responses can also contribute to significant immunopathology if unregulated. They are largely ignored in most blood-stage malaria vaccine development strategies. Here, we discuss key observations relating to cell-mediated immune responses in the context of experimental human systems and field studies involving naturally exposed individuals and how this may inform the development of a blood-stage malaria vaccine.
Collapse
|