1
|
Lebedev M, Chan FY, Rackles E, Bellessem J, Mikeladze-Dvali T, Xavier Carvalho A, Zanin E. Anillin mediates unilateral furrowing during cytokinesis by limiting RhoA binding to its effectors. J Cell Biol 2025; 224:e202405182. [PMID: 40261302 PMCID: PMC12013513 DOI: 10.1083/jcb.202405182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 02/10/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
During unilateral furrow ingression, one side of the cytokinetic ring (leading edge) ingresses before the opposite side (lagging edge). Anillin mediates unilateral furrowing during cytokinesis in the one-cell C. elegans zygote by limiting myosin II accumulation in the ring. Here, we address the role of anillin in this process and show that anillin inhibits not only the accumulation of myosin II but also of other RhoA effectors by binding and blocking the RhoA effector site. The interaction between the anillin's RhoA-binding domain (RBD) and active RhoA is enhanced by the disordered linker region and differentially regulated at the leading and lagging edge, which together results in asymmetric RhoA signaling and accumulation of myosin II. In summary, we discover a RhoA GEF- and GAP-independent mechanism, where RhoA activity is limited by anillin binding to the RhoA effector site. Spatial fine-tuning of anillin's inhibitory role on RhoA signaling enables unilateral furrow ingression and contributes to animal development.
Collapse
Affiliation(s)
- Mikhail Lebedev
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fung-Yi Chan
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Elisabeth Rackles
- Department Biology II, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jennifer Bellessem
- Department Biology II, Ludwig-Maximilians University Munich, Munich, Germany
| | | | - Ana Xavier Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Esther Zanin
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department Biology II, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
2
|
Poliński P, Miret Cuesta M, Zamora-Moratalla A, Mantica F, Cantero-Recasens G, Viana C, Sabariego-Navarro M, Normanno D, Iñiguez LP, Morenilla-Palao C, Ordoño P, Bonnal S, Ellis JD, Gómez-Riera R, Fanlo-Ucar H, Yap DS, Martínez De Lagrán M, Fernández-Blanco Á, Rodríguez-Marin C, Permanyer J, Fölsz O, Dominguez-Sala E, Sierra C, Legutko D, Wojnacki J, Musoles Lleo JL, Cosma MP, Muñoz FJ, Blencowe BJ, Herrera E, Dierssen M, Irimia M. A highly conserved neuronal microexon in DAAM1 controls actin dynamics, RHOA/ROCK signaling, and memory formation. Nat Commun 2025; 16:4210. [PMID: 40328765 PMCID: PMC12056172 DOI: 10.1038/s41467-025-59430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Actin cytoskeleton dynamics is essential for proper nervous system development and function. A conserved set of neuronal-specific microexons influences multiple aspects of neurobiology; however, their roles in regulating the actin cytoskeleton are unknown. Here, we study a microexon in DAAM1, a formin-homology-2 (FH2) domain protein involved in actin reorganization. Microexon inclusion extends the linker region of the DAAM1 FH2 domain, altering actin polymerization. Genomic deletion of the microexon leads to neuritogenesis defects and increased calcium influx in differentiated neurons. Mice with this deletion exhibit postsynaptic defects, fewer immature dendritic spines, impaired long-term potentiation, and deficits in memory formation. These phenotypes are associated with increased RHOA/ROCK signaling, which regulates actin-cytoskeleton dynamics, and are partially rescued by treatment with a ROCK inhibitor. This study highlights the role of a conserved neuronal microexon in regulating actin dynamics and cognitive functioning.
Collapse
Affiliation(s)
- Patryk Poliński
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Marta Miret Cuesta
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gerard Cantero-Recasens
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Carlotta Viana
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Davide Normanno
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institute of Human Genetics, Univ Montpellier, CNRS, Montpellier, France
| | - Luis P Iñiguez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | - Sophie Bonnal
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Raúl Gómez-Riera
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Dominic S Yap
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Jon Permanyer
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Orsolya Fölsz
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduardo Dominguez-Sala
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- TecnoCampus, Universitat Pompeu Fabra, Department of Health Sciences, Mataró, Spain
| | - Cesar Sierra
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diana Legutko
- Nencki Institute of Experimental Biology, BRAINCITY, Warsaw, Poland
| | - José Wojnacki
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Juan Luis Musoles Lleo
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | | | - Mara Dierssen
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona, Spain.
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
3
|
Huynh-Cong E, Driscoll V, Ettou S, Keller K, Atakilit A, Taglienti ME, Kumar S, Weins A, Schumacher VA, Kreidberg JA. The integrin repertoire drives YAP-dependent epithelial:stromal interactions during injury of the kidney glomerulus. Nat Commun 2025; 16:3322. [PMID: 40199893 PMCID: PMC11978898 DOI: 10.1038/s41467-025-58567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
The kidney glomerulus is a filtration barrier in which capillary loop architecture depends on epithelial-stromal interactions between podocytes and mesangial cells. Podocytes are terminally differentiated cells within the glomerulus that express YAP and TAZ. Here we test the hypotheses that YAP and TAZ are required in podocytes to maintain capillary loop architecture and that shifts in the integrin repertoire during podocyte injury affect transcriptional activity of YAP and TAZ. Loss of YAP in podocytes of adult mice renders them more sensitive to injury, whereas loss of both YAP and TAZ in podocytes rapidly compromises the filtration barrier. α3β1 and αvβ5 are two prominent integrins on murine podocytes. Podocyte injury or loss of α3β1 leads to increased abundance of αvβ5 and nuclear localization of YAP. In vitro, blockade of αvβ5 decreases nuclear YAP. Increased αv integrins are found in human kidney disease. Thus, our studies demonstrate the crucial regulatory interplay between cell adhesion and transcriptional regulation as an important determinant of human disease.
Collapse
Affiliation(s)
- Evelyne Huynh-Cong
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
- for EHC: Evotec, Gottinggen, Germany
| | - Victoria Driscoll
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sandrine Ettou
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Keith Keller
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Amha Atakilit
- Lung Biology Center, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Mary E Taglienti
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
| | - Saurabh Kumar
- Department of Urology, Boston Children's Hospital, Boston, MA, USA
- for SK: University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Valerie A Schumacher
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- for VAS and JAK: Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| | - Jordan A Kreidberg
- Department of Urology, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- for VAS and JAK: Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
4
|
Guo JY, Xu K, Wang XH, Li XM, Ku YP, Zeng L, Wan B, Yang GY, Wang J, Chu BB, Pan JJ, Hao WB. Host factor DIAPH1 regulates pseudorabivirus replication by modulating the dynamics of cytoskeleton. Int J Biol Macromol 2025; 298:140112. [PMID: 39842589 DOI: 10.1016/j.ijbiomac.2025.140112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/05/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
As obligate parasites, viruses exploit host cell organelles and molecular components to complete their life cycle. Among which, viruses firstly hijack the cytoskeleton of host cells to ensure their efficiently cell entry and replication. Although formin family members play a key role in both microfilament and microtubule cytoskeletal remodeling, few studies addressed the detailed function and mechanism of formins in the process of viral infection. Here, we showed that sus scrofa DIAPH1 was involved in the regulation of cytoskeletal dynamics during PRV replication. Firstly, we found that DIAPH1 showed significant changes in the expression level and intracellular localization during PRV infection of PK-15 cells. Next, inhibition of DIAPH1 by RNA interference or small molecular inhibitor SMIFH2 was found to diminish the outcome of PRV infection. Besides, DIAPH1 partially co-localized with actin and tubulin in PRV-infected cells. Cross-talk occurred between microfilaments and microfilaments, which also had an influence on the intracellular localization of DIAPH1. What's more, inhibition of DIAPH1 induced the reorganization of microfilament and the stability of microtubule. These results suggested that DIAPH1 regulated PRV infection by remodeling microfilament and microtubule cytoskeletal dynamics.
Collapse
Affiliation(s)
- Jie-Yuan Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Kun Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Xiao-Han Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Xin-Man Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Yan-Pei Ku
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China; Henan University of Animal Husbandry and Economy, Zhengzhou 450047, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Jia-Jia Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China.
| | - Wen-Bo Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
5
|
Iu E, Bogatch A, Deng W, Humphries JD, Yang C, Valencia FR, Li C, McCulloch CA, Tanentzapf G, Svitkina TM, Humphries MJ, Plotnikov SV. A TRPV4-dependent calcium signaling axis governs lamellipodial actin architecture to promote cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.646012. [PMID: 40196692 PMCID: PMC11974816 DOI: 10.1101/2025.03.28.646012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cell migration is crucial for development and tissue homeostasis, while its dysregulation leads to severe pathologies. Cell migration is driven by the extension of actin-based lamellipodia protrusions, powered by actin polymerization, which is tightly regulated by signaling pathways, including Rho GTPases and Ca2+ signaling. While the importance of Ca2+ signaling in lamellipodia protrusions has been established, the molecular mechanisms linking Ca2+ to lamellipodia assembly are unknown. Here, we identify a novel Ca2+ signaling axis involving the mechano-gated channel TRPV4, which regulates lamellipodia protrusions in various cell types. Using Ca2+ and FRET imaging, we demonstrate that TRPV4-mediated Ca2+ influx upregulates RhoA activity within lamellipodia, which then facilitates formin-mediated actin assembly. Mechanistically, we identify CaMKII and TEM4 as key mediators relaying the TRPV4-mediated Ca2+ signal to RhoA. These data define a molecular pathway by which Ca2+ influx regulates small GTPase activity within a specific cellular domain - lamellipodia - and demonstrate the critical role in organizing the actin machinery and promoting cell migration in diverse biological contexts.
Collapse
Affiliation(s)
- Ernest Iu
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Bogatch
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Wenjun Deng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan D. Humphries
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fernando R. Valencia
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Chengyin Li
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tatyana M. Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Sergey V. Plotnikov
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Zhao B, Ye DM, Li S, Zhang Y, Zheng Y, Kang J, Wang L, Zhao N, Ahmad B, Sun J, Yu T, Wu H. FMNL3 Promotes Migration and Invasion of Breast Cancer Cells via Inhibiting Rad23B-Induced Ubiquitination of Twist1. J Cell Physiol 2025; 240:e31481. [PMID: 39582466 DOI: 10.1002/jcp.31481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Breast cancer is a heterogeneous malignant tumor, and its high metastasis rate depends on the abnormal activation of cell dynamics. Formin-like protein 3 (FMNL3) plays an important role in the formation of various cytoskeletons that participate in cell movement. The objective of this study was to explore the function of FMNL3 in breast cancer progression and endeavor to reveal the molecular mechanism of this phenomenon. We found that FMNL3 was abnormally highly expressed in aggressive breast cancer cells and tissues, and it significantly inhibited E-cadherin expression. FMNL3 could specifically interact with Twist1 rather than other epithelial-mesenchymal transition transcription factors (EMT-TFs). We also found that FMNL3 enhanced the repressive effect of Twist1 on CDH1 transcription in breast cancer cells. Further mechanism studies showed that FMNL3 suppressed the ubiquitin degradation of Twist1 by inhibiting the interaction between Twist1 and Rad23B, the ubiquitin transfer protein of Twist1. In vitro functional experiments, it was confirmed that FMNL3 promoted the migration and invasion of breast cancer cells by regulating Twist1. Furthermore, Twist1 could directly bind to the fmnl3 promoter to facilitate FMNL3 transcription. To conclude, this study indicated that FMNL3 acted as a pro-metastasis factor in breast cancer by promoting Twist1 stability to suppress CDH1 transcription.
Collapse
Affiliation(s)
- Binggong Zhao
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Dong-Man Ye
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Shujing Li
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Yong Zhang
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Yang Zheng
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Jie Kang
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Luhong Wang
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Nannan Zhao
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Bashir Ahmad
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| | - Jing Sun
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning, China
| | - Huijian Wu
- School of Bioengineering and Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
7
|
Gorla M, Guleria DS. Rho GTPase Signaling: A Molecular Switchboard for Regulating the Actin Cytoskeleton in Axon Guidance. J Cell Physiol 2025; 240:e70005. [PMID: 39888031 DOI: 10.1002/jcp.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
Axon pathfinding is a highly dynamic process regulated by the interactions between cell-surface guidance receptors and guidance cues present in the extracellular environment. During development, precise axon pathfinding is crucial for the formation of functional neural circuits. The spatiotemporal expression of axon guidance receptors helps the navigating axon make correct decisions in a complex environment comprising both attractive and repulsive guidance cues. Axon guidance receptors initiate distinct signaling cascades that eventually influence the cytoskeleton at the growing tip of an axon, called the growth cone. The actin cytoskeleton is the primary target of these guidance signals and plays a key role in growth cone motility, exploration, and behavior. Of the many regulatory molecules that modulate the actin cytoskeleton in response to distinct guidance signals, Rho GTPases play central roles. Rho GTPases are molecular switchboards; their ON (GTP-bound) and OFF (GDP-bound) switches are controlled by their interactions with proteins that regulate the exchange of GDP for GTP or with the proteins that promote GTP hydrolysis. Various upstream signals, including axon guidance signals, regulate the activity of these Rho GTPase switch regulators. As cycling molecular switches, Rho GTPases interact with and control the activities of downstream effectors, which directly influence actin reorganization in a context-dependent manner. A deeper exploration of the spatiotemporal dynamics of Rho GTPase signaling and the molecular basis of their involvement in regulating growth cone actin cytoskeleton can unlock promising therapeutic strategies for neurodevelopmental disorders linked to dysregulated Rho GTPase signaling. This review not only provides a comprehensive overview of the field but also highlights recent discoveries that have considerably advanced our understanding of the complex regulatory roles of Rho GTPases in modulating actin cytoskeleton arrangement at the growth cone during axon guidance.
Collapse
Affiliation(s)
- Madhavi Gorla
- National Institute of Animal Biotechnology, Hyderabad, India
| | | |
Collapse
|
8
|
Šoštar M, Marinović M, Filić V, Pavin N, Weber I. Oscillatory dynamics of Rac1 activity in Dictyostelium discoideum amoebae. PLoS Comput Biol 2024; 20:e1012025. [PMID: 39652619 DOI: 10.1371/journal.pcbi.1012025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/19/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Small GTPases of the Rho family play a central role in the regulation of cell motility by controlling the remodeling of the actin cytoskeleton. In the amoeboid cells of Dictyostelium discoideum, the active form of the Rho GTPase Rac1 regulates actin polymerases at the leading edge and actin filament bundling proteins at the posterior cortex of polarized cells. We monitored the spatiotemporal dynamics of Rac1 and its effector DGAP1 in vegetative amoebae using specific fluorescent probes. We observed that plasma membrane domains enriched in active Rac1 not only exhibited stable polarization, but also showed rotations and oscillations, whereas DGAP1 was depleted from these regions. To simulate the observed dynamics of the two proteins, we developed a mass-conserving reaction-diffusion model based on the circulation of Rac1 between the membrane and the cytoplasm coupled with its activation by GEFs, deactivation by GAPs and interaction with DGAP1. Our theoretical model accurately reproduced the experimentally observed dynamic patterns, including the predominant anti-correlation between active Rac1 and DGAP1. Significantly, the model predicted a new colocalization regime of these two proteins in polarized cells, which we confirmed experimentally. In summary, our results improve the understanding of Rac1 dynamics and reveal how the occurrence and transitions between different regimes depend on biochemical reaction rates, protein levels and cell size. This study not only expands our knowledge of the behavior of Rac1 GTPases in D. discoideum amoebae but also demonstrates how specific modes of interaction between Rac1 and its effector DGAP1 lead to their counterintuitively anti-correlated dynamics.
Collapse
Affiliation(s)
- Marko Šoštar
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maja Marinović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
9
|
Labat-de-Hoz L, Jiménez MÁ, Correas I, Alonso MA. Regulation of formin INF2 and its alteration in INF2-linked inherited disorders. Cell Mol Life Sci 2024; 81:463. [PMID: 39586895 PMCID: PMC11589041 DOI: 10.1007/s00018-024-05499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Formins are proteins that catalyze the formation of linear filaments made of actin. INF2, a formin, is crucial for correct vesicular transport, microtubule stability and mitochondrial division. Its activity is regulated by a complex of cyclase-associated protein and lysine-acetylated G-actin (KAc-actin), which helps INF2 adopt an inactive conformation through the association of its N-terminal diaphanous inhibitory domain (DID) with its C-terminal diaphanous autoinhibitory domain. INF2 activation can occur through calmodulin binding, KAc-actin deacetylation, G-actin binding, or association with the Cdc42 GTPase. Mutations in the INF2 DID are linked to focal segmental glomerulosclerosis (FSGS), affecting podocytes, and Charcot-Marie-Tooth disease, which affects Schwann cells and leads to axonal loss. At least 80 pathogenic DID variants of INF2 have been identified, with potential for many more. These mutations disrupt INF2 regulation, leading to excessive actin polymerization. This in turn causes altered intracellular trafficking, abnormal mitochondrial dynamics, and profound transcriptional reprogramming via the MRTF/SRF complex, resulting in mitotic abnormalities and p53-mediated cell death. This sequence of events could be responsible for progressive podocyte loss during glomerular degeneration in FSGS patients. Pharmacological targeting of INF2 or actin polymerization could offer the therapeutic potential to halt the progression of FSGS and improve outcomes for patients with INF2-linked disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química Física (IQF) Blas Cabrera, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
10
|
Scholz J, Stephan T, Pérez AG, Csiszár A, Hersch N, Fischer LS, Brühmann S, Körber S, Litschko C, Mijanovic L, Kaufmann T, Lange F, Springer R, Pich A, Jakobs S, Peckham M, Tarantola M, Grashoff C, Merkel R, Faix J. Decisive role of mDia-family formins in cell cortex function of highly adherent cells. SCIENCE ADVANCES 2024; 10:eadp5929. [PMID: 39475610 PMCID: PMC11524191 DOI: 10.1126/sciadv.adp5929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024]
Abstract
Cortical formins, pivotal for the assembly of linear actin filaments beneath the membrane, exert only minor effects on unconfined cell migration of weakly and moderately adherent cells. However, their impact on migration and mechanostability of highly adherent cells remains poorly understood. Here, we demonstrate that loss of cortical actin filaments generated by the formins mDia1 and mDia3 drastically compromises cell migration and mechanics in highly adherent fibroblasts. Biophysical analysis of the mechanical properties of the mutant cells revealed a markedly softened cell cortex in the poorly adherent state. Unexpectedly, in the highly adherent state, associated with a hyperstretched morphology with exaggerated focal adhesions and prominent high-strain stress fibers, they exhibited even higher cortical tension compared to control. Notably, misguidance of intracellular forces, frequently accompanied by stress-fiber rupture, culminated in the formation of tension- and contractility-induced macroapertures, which was instantly followed by excessive lamellipodial protrusion at the periphery, providing critical insights into mechanotransduction of mechanically stressed and highly adherent cells.
Collapse
Affiliation(s)
- Jonas Scholz
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Aina Gallemí Pérez
- Institute for Dynamics of Complex Systems, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Department LFPB, Göttingen, Germany
| | - Agnes Csiszár
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nils Hersch
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lisa S. Fischer
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sarah Körber
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Christof Litschko
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Lucija Mijanovic
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Kaufmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Felix Lange
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ronald Springer
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Pich
- Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Michelle Peckham
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Marco Tarantola
- Institute for Dynamics of Complex Systems, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Department LFPB, Göttingen, Germany
| | - Carsten Grashoff
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Ruiz-Navarro J, Fernández-Hermira S, Sanz-Fernández I, Barbeito P, Navarro-Zapata A, Pérez-Martínez A, Garcia-Gonzalo FR, Calvo V, Izquierdo Pastor M. Formin-like 1β phosphorylation at S1086 is necessary for secretory polarized traffic of exosomes at the immune synapse in Jurkat T lymphocytes. eLife 2024; 13:RP96942. [PMID: 39479958 PMCID: PMC11527432 DOI: 10.7554/elife.96942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
We analyzed here how formin-like 1 β (FMNL1β), an actin cytoskeleton-regulatory protein, regulates microtubule-organizing center (MTOC) and multivesicular bodies (MVB) polarization and exosome secretion at an immune synapse (IS) model in a phosphorylation-dependent manner. IS formation was associated with transient recruitment of FMNL1β to the IS, which was independent of protein kinase C δ (PKCδ). Simultaneous RNA interference of all FMNL1 isoforms prevented MTOC/MVB polarization and exosome secretion, which were restored by FMNL1βWT expression. However, expression of the non-phosphorylatable mutant FMNL1βS1086A did not restore neither MTOC/MVB polarization nor exosome secretion to control levels, supporting the crucial role of S1086 phosphorylation in MTOC/MVB polarization and exosome secretion. In contrast, the phosphomimetic mutant, FMNL1βS1086D, restored MTOC/MVB polarization and exosome secretion. Conversely, FMNL1βS1086D mutant did not recover the deficient MTOC/MVB polarization occurring in PKCδ-interfered clones, indicating that S1086 FMNL1β phosphorylation alone is not sufficient for MTOC/MVB polarization and exosome secretion. FMNL1 interference inhibited the depletion of F-actin at the central region of the immune synapse (cIS), which is necessary for MTOC/MVB polarization. FMNL1βWT and FMNL1βS1086D, but not FMNL1βS1086A expression, restored F-actin depletion at the cIS. Thus, actin cytoskeleton reorganization at the IS underlies the effects of all these FMNL1β variants on polarized secretory traffic. FMNL1 was found in the IS made by primary T lymphocytes, both in T cell receptor (TCR) and chimeric antigen receptor (CAR)-evoked synapses. Taken together, these results point out a crucial role of S1086 phosphorylation in FMNL1β activation, leading to cortical actin reorganization and subsequent control of MTOC/MVB polarization and exosome secretion.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | | | - Irene Sanz-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | - Pablo Barbeito
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | - Alfonso Navarro-Zapata
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, La Paz University HospitalMadridSpain
- Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Center (CNIO)MadridSpain
| | - Antonio Pérez-Martínez
- Translational Research in Pediatric Oncology, Hematopoietic Transplantation and Cell Therapy, IdiPAZ, La Paz University HospitalMadridSpain
- Pediatric Onco-Hematology Clinical Research Unit, Spanish National Cancer Center (CNIO)MadridSpain
- Department of Pediatric Hemato-Oncology, La Paz University HospitalMadridSpain
- Pediatric Department, Autonomous University of MadridMadridSpain
| | - Francesc R Garcia-Gonzalo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)MadridSpain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ)MadridSpain
| | - Víctor Calvo
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), CSIC-UAMMadridSpain
| | | |
Collapse
|
12
|
Petersen M, Dubielecka P. Adaptor protein Abelson interactor 1 in homeostasis and disease. Cell Commun Signal 2024; 22:468. [PMID: 39354505 PMCID: PMC11446139 DOI: 10.1186/s12964-024-01738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Dysregulation of Abelson interactor 1 (ABI1) is associated with various states of disease including developmental defects, pathogen infections, and cancer. ABI1 is an adaptor protein predominantly known to regulate actin cytoskeleton organization processes such as those involved in cell adhesion, migration, and shape determination. Linked to cytoskeleton via vasodilator-stimulated phosphoprotein (VASP), Wiskott-Aldrich syndrome protein family (WAVE), and neural-Wiskott-Aldrich syndrome protein (N-WASP)-associated protein complexes, ABI1 coordinates regulation of various cytoplasmic protein signaling complexes dysregulated in disease states. The roles of ABI1 beyond actin cytoskeleton regulation are much less understood. This comprehensive, protein-centric review describes molecular roles of ABI1 as an adaptor molecule in the context of its dysregulation and associated disease outcomes to better understand disease state-specific protein signaling and affected interconnected biological processes.
Collapse
Affiliation(s)
- Max Petersen
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
- Center for the Biology of Aging, Brown University, Providence, RI, USA
- Legoretta Cancer Center, Brown University, Providence, RI, USA
| | - Pat Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA.
- Center for the Biology of Aging, Brown University, Providence, RI, USA.
- Legoretta Cancer Center, Brown University, Providence, RI, USA.
| |
Collapse
|
13
|
Qiu C, Zhang L, Yong C, Hu R, Sun Y, Wang B, Fang L, Zhu GJ, Lu Q, Wang J, Ma X, Zhang L, Wan G. Stub1 promotes degradation of the activated Diaph3: A negative feedback regulatory mechanism of the actin nucleator. J Biol Chem 2024; 300:107813. [PMID: 39322015 PMCID: PMC11736009 DOI: 10.1016/j.jbc.2024.107813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
The formin protein Diaph3 is an actin nucleator that regulates numerous cytoskeleton-dependent cellular processes through the activation of actin polymerization. Expression and activity of Diaph3 is tightly regulated: lack of Diaph3 results in developmental defects and embryonic lethality in mice, while overexpression of Diaph3 causes auditory neuropathy. It is known that Diaph3 homophilic interactions include the intramolecular interaction of its Dia-inhibitory domain (DID)-diaphanous autoregulatory domain (DAD) domains and the intermolecular interactions of DD-DD domains or FH2-FH2 domains. However, the physiological significance of these interactions in Diaph3 protein stability and activity is not fully understood. In this study, we show that FH2-FH2 interaction promotes Diaph3 activity, while DID-DAD and DD-DD interactions inhibit Diaph3 activity through distinct mechanisms. DID-DAD interaction is responsible for the autoinhibition of Diaph3 protein, which is disrupted by binding of Rho GTPases. Interestingly, we find that DID-DAD interaction stabilizes the expression of each DID or DAD domain against proteasomal-mediated degradation. Disruption of DID-DAD interaction by RhoA binding or M1041A mutation causes increased Diaph3 activity and accelerated degradation of the activated Diaph3 protein. Further, the activated Diaph3 is ubiquitinated at K1142/1143/1144 lysine residues by the E3 ligase Stub1. Expression of Stub1 is causally related to the stability and activity of Diaph3. Knockdown of Stub1 in mouse cochlea results in hair cell stereocilia defects, neuronal degeneration, and hearing loss, resembling the phenotypes of mice overexpressing Diaph3. Thus, our study reports a novel regulatory mechanism of Diaph3 protein expression and activity whereby the active but not inactive Diaph3 is readily degraded to prevent excessive actin polymerization.
Collapse
Affiliation(s)
- Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Chenxuan Yong
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Ruixing Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yuecen Sun
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
| | - Busong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China
| | - Guang-Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Junguo Wang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| | - Xiaofeng Ma
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| | - Luping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital, Nantong University, Nantong, China.
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Medical School, Nanjing University, Nanjing, China; Research Institute of Otolaryngology, Nanjing, China.
| |
Collapse
|
14
|
Azizoglu ZB, Babayeva R, Haskologlu ZS, Acar MB, Ayaz-Guner S, Okus FZ, Alsavaf MB, Can S, Basaran KE, Canatan MF, Ozcan A, Erkmen H, Leblebici CB, Yilmaz E, Karakukcu M, Kose M, Canoz O, Özen A, Karakoc-Aydiner E, Ceylaner S, Gümüş G, Per H, Gumus H, Canatan H, Ozcan S, Dogu F, Ikinciogullari A, Unal E, Baris S, Eken A. DIAPH1-Deficiency is Associated with Major T, NK and ILC Defects in Humans. J Clin Immunol 2024; 44:175. [PMID: 39120629 PMCID: PMC11315734 DOI: 10.1007/s10875-024-01777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Loss of function mutations in Diaphanous related formin 1 (DIAPH1) are associated with seizures, cortical blindness, and microcephaly syndrome (SCBMS) and are recently linked to combined immunodeficiency. However, the extent of defects in T and innate lymphoid cells (ILCs) remain unexplored. Herein, we characterized the primary T, natural killer (NK) and helper ILCs of six patients carrying two novel loss of function mutation in DIAPH1 and Jurkat cells after DIAPH1 knockdown. Mutations were identified by whole exome sequencing. T-cell immunophenotyping, proliferation, migration, cytokine signaling, survival, and NK cell cytotoxicity were studied via flow cytometry-based assays, confocal microscopy, and real-time qPCR. CD4+ T cell proteome was analyzed by mass spectrometry. p.R351* and p.R322*variants led to a significant reduction in the DIAPH1 mRNA and protein levels. DIAPH1-deficient T cells showed proliferation, activation, as well as TCR-mediated signaling defects. DIAPH1-deficient PBMCs also displayed impaired transwell migration, defective STAT5 phosphorylation in response to IL-2, IL-7 and IL-15. In vitro generation/expansion of Treg cells from naïve T cells was significantly reduced. shRNA-mediated silencing of DIAPH1 in Jurkat cells reduced DIAPH1 protein level and inhibited T cell proliferation and IL-2/STAT5 axis. Additionally, NK cells from patients had diminished cytotoxic activity, function and IL-2/STAT5 axis. Lastly, DIAPH1-deficient patients' peripheral blood contained dramatically reduced numbers of all helper ILC subsets. DIAPH1 deficiency results in major functional defects in T, NK cells and helper ILCs underlining the critical role of formin DIAPH1 in the biology of those cell subsets.
Collapse
Affiliation(s)
- Zehra Busra Azizoglu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
| | - Royala Babayeva
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Zehra Sule Haskologlu
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | | | - Serife Ayaz-Guner
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Fatma Zehra Okus
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | | | - Salim Can
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Kemal Erdem Basaran
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | | | - Alper Ozcan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Hasret Erkmen
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Can Berk Leblebici
- Department of Medical Genetics, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Ebru Yilmaz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Musa Karakukcu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey
| | - Mehmet Kose
- Division of Pediatric Pulmonology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Ozlem Canoz
- Department of Pathology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Türkiye
| | - Ahmet Özen
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Elif Karakoc-Aydiner
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Serdar Ceylaner
- Intergen, Genetic, Rare and Undiagnosed Diseases, Diagnosis and Research Center, Ankara, Türkiye
| | - Gülsüm Gümüş
- Division of Pediatric Radiology, Department of Radiology, Erciyes University Faculty of Medicine, Kayseri, Türkiye
| | - Huseyin Per
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Hakan Gumus
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
| | - Servet Ozcan
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, 38039, Türkiye
| | - Figen Dogu
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Aydan Ikinciogullari
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Ekrem Unal
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, 38039, Turkey.
- School of Health Sciences, Hasan Kalyoncu University, Gaziantep, Türkiye.
- Medical Point Hospital, Pediatric Hematology Oncology and BMT Unit, Gaziantep, Türkiye.
| | - Safa Baris
- The Istanbul Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, The Isil Berat Barlan Center for Translational Medicine, Division of Pediatric Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Marmara University, Istanbul, Türkiye.
| | - Ahmet Eken
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38039, Türkiye.
- Genome and Stem Cell Center, Kayseri, 38039, Türkiye.
| |
Collapse
|
15
|
Lin KY, Gujar MR, Lin J, Ding WY, Huang J, Gao Y, Tan YS, Teng X, Christine LSL, Kanchanawong P, Toyama Y, Wang H. Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling. SCIENCE ADVANCES 2024; 10:eadl4694. [PMID: 39047090 PMCID: PMC11268418 DOI: 10.1126/sciadv.adl4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine filamentous actin (F-actin) structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of myocardin-related transcription factor, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G protein-coupled receptor Smog, G protein αq subunit, Rho1 guanosine triphosphatase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand folded gastrulation to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, an NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.
Collapse
Affiliation(s)
- Kun-Yang Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Mahekta R. Gujar
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wei Yung Ding
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiawen Huang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yang Gao
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Xiang Teng
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Low Siok Lan Christine
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore, 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
16
|
Peng Y, Du J, Li R, Günther S, Wettschureck N, Offermanns S, Wang Y, Schneider A, Braun T. RhoA-mediated G 12-G 13 signaling maintains muscle stem cell quiescence and prevents stem cell loss. Cell Discov 2024; 10:76. [PMID: 39009565 PMCID: PMC11251043 DOI: 10.1038/s41421-024-00696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/27/2024] [Indexed: 07/17/2024] Open
Abstract
Multiple processes control quiescence of muscle stem cells (MuSCs), which is instrumental to guarantee long-term replenishment of the stem cell pool. Here, we describe that the G-proteins G12-G13 integrate signals from different G-protein-coupled receptors (GPCRs) to control MuSC quiescence via activation of RhoA. Comprehensive screening of GPCR ligands identified two MuSC-niche-derived factors, endothelin-3 (ET-3) and neurotensin (NT), which activate G12-G13 signaling in MuSCs. Stimulation with ET-3 or NT prevented MuSC activation, whereas pharmacological inhibition of ET-3 or NT attenuated MuSC quiescence. Inactivation of Gna12-Gna13 or Rhoa but not of Gnaq-Gna11 completely abrogated MuSC quiescence, which depleted the MuSC pool and was associated with accelerated sarcopenia during aging. Expression of constitutively active RhoA prevented exit from quiescence in Gna12-Gna13 mutant MuSCs, inhibiting cell cycle entry and differentiation via Rock and formins without affecting Rac1-dependent MuSC projections, a hallmark of quiescent MuSCs. The study uncovers a critical role of G12-G13 and RhoA signaling for active regulation of MuSC quiescence.
Collapse
Affiliation(s)
- Yundong Peng
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Jingjing Du
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Member of the German Center for Cardiovascular Research (DZHK), member of the German Center for Lung Research (DZL), Berlin, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Member of the German Center for Cardiovascular Research (DZHK), member of the German Center for Lung Research (DZL), Berlin, Germany
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Andre Schneider
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Member of the German Center for Cardiovascular Research (DZHK), member of the German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
17
|
Wojnacki J, Quassollo G, Bordenave MD, Unsain N, Martínez GF, Szalai AM, Pertz O, Gundersen GG, Bartolini F, Stefani FD, Cáceres A, Bisbal M. Dual spatio-temporal regulation of axon growth and microtubule dynamics by RhoA signaling pathways. J Cell Sci 2024; 137:jcs261970. [PMID: 38910449 DOI: 10.1242/jcs.261970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024] Open
Abstract
RhoA plays a crucial role in neuronal polarization, where its action restraining axon outgrowth has been thoroughly studied. We now report that RhoA has not only an inhibitory but also a stimulatory effect on axon development depending on when and where exerts its action and the downstream effectors involved. In cultured hippocampal neurons, FRET imaging revealed that RhoA activity selectively localized in growth cones of undifferentiated neurites, whereas in developing axons it displayed a biphasic pattern, being low in nascent axons and high in elongating ones. RhoA-Rho kinase (ROCK) signaling prevented axon initiation but had no effect on elongation, whereas formin inhibition reduced axon extension without significantly altering initial outgrowth. In addition, RhoA-mDia signaling promoted axon elongation by stimulating growth cone microtubule stability and assembly, as opposed to RhoA-ROCK signaling, which restrained growth cone microtubule assembly and protrusion.
Collapse
Affiliation(s)
- José Wojnacki
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Gonzalo Quassollo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Martín D Bordenave
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Nicolás Unsain
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
| | - Gaby F Martínez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - Alfredo Cáceres
- Centro Investigación Medicina Traslacional Severo R Amuchástegui (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Av. Naciones Unidas 440, Córdoba 5016, Argentina
| | - Mariano Bisbal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
| |
Collapse
|
18
|
Cvrčková F, Ghosh R, Kočová H. Transmembrane formins as active cargoes of membrane trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3668-3684. [PMID: 38401146 PMCID: PMC11194305 DOI: 10.1093/jxb/erae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 02/26/2024]
Abstract
Formins are a large, evolutionarily old family of cytoskeletal regulators whose roles include actin capping and nucleation, as well as modulation of microtubule dynamics. The plant class I formin clade is characterized by a unique domain organization, as most of its members are transmembrane proteins with possible cell wall-binding motifs exposed to the extracytoplasmic space-a structure that appears to be a synapomorphy of the plant kingdom. While such transmembrane formins are traditionally considered mainly as plasmalemma-localized proteins contributing to the organization of the cell cortex, we review, from a cell biology perspective, the growing evidence that they can also, at least temporarily, reside (and in some cases also function) in endomembranes including secretory and endocytotic pathway compartments, the endoplasmic reticulum, the nuclear envelope, and the tonoplast. Based on this evidence, we propose that class I formins may thus serve as 'active cargoes' of membrane trafficking-membrane-embedded proteins that modulate the fate of endo- or exocytotic compartments while being transported by them.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Rajdeep Ghosh
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| | - Helena Kočová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, CZ 128 43 Praha 2, Czechia
| |
Collapse
|
19
|
Toscano E, Cimmino E, Pennacchio FA, Riccio P, Poli A, Liu YJ, Maiuri P, Sepe L, Paolella G. Methods and computational tools to study eukaryotic cell migration in vitro. Front Cell Dev Biol 2024; 12:1385991. [PMID: 38887515 PMCID: PMC11180820 DOI: 10.3389/fcell.2024.1385991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cellular movement is essential for many vital biological functions where it plays a pivotal role both at the single cell level, such as during division or differentiation, and at the macroscopic level within tissues, where coordinated migration is crucial for proper morphogenesis. It also has an impact on various pathological processes, one for all, cancer spreading. Cell migration is a complex phenomenon and diverse experimental methods have been developed aimed at dissecting and analysing its distinct facets independently. In parallel, corresponding analytical procedures and tools have been devised to gain deep insight and interpret experimental results. Here we review established experimental techniques designed to investigate specific aspects of cell migration and present a broad collection of historical as well as cutting-edge computational tools used in quantitative analysis of cell motion.
Collapse
Affiliation(s)
- Elvira Toscano
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Elena Cimmino
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Fabrizio A. Pennacchio
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Patrizia Riccio
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | | | - Yan-Jun Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Giovanni Paolella
- Department of Molecular Medicine and Medical Biotechnology, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
20
|
Pan MH, Zhang KH, Wu SL, Pan ZN, Sun MH, Li XH, Ju JQ, Luo SM, Ou XH, Sun SC. FMNL2 regulates actin for endoplasmic reticulum and mitochondria distribution in oocyte meiosis. eLife 2024; 12:RP92732. [PMID: 38747713 PMCID: PMC11095938 DOI: 10.7554/elife.92732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
During mammalian oocyte meiosis, spindle migration and asymmetric cytokinesis are unique steps for the successful polar body extrusion. The asymmetry defects of oocytes will lead to the failure of fertilization and embryo implantation. In present study, we reported that an actin nucleating factor Formin-like 2 (FMNL2) played critical roles in the regulation of spindle migration and organelle distribution in mouse and porcine oocytes. Our results showed that FMNL2 mainly localized at the oocyte cortex and periphery of spindle. Depletion of FMNL2 led to the failure of polar body extrusion and large polar bodies in oocytes. Live-cell imaging revealed that the spindle failed to migrate to the oocyte cortex, which caused polar body formation defects, and this might be due to the decreased polymerization of cytoplasmic actin by FMNL2 depletion in the oocytes of both mice and pigs. Furthermore, mass spectrometry analysis indicated that FMNL2 was associated with mitochondria and endoplasmic reticulum (ER)-related proteins, and FMNL2 depletion disrupted the function and distribution of mitochondria and ER, showing with decreased mitochondrial membrane potential and the occurrence of ER stress. Microinjecting Fmnl2-EGFP mRNA into FMNL2-depleted oocytes significantly rescued these defects. Thus, our results indicate that FMNL2 is essential for the actin assembly, which further involves into meiotic spindle migration and ER/mitochondria functions in mammalian oocytes.
Collapse
Affiliation(s)
- Meng-Hao Pan
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
- College of Veterinary Medicine, Northwest A&F UniversityShaanxiChina
| | - Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Si-Le Wu
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Ming-Hong Sun
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Xiao-Han Li
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| | - Shi-Ming Luo
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural UniversityNanjingChina
| |
Collapse
|
21
|
Jarosławska J, Kordas B, Miłowski T, Juranek JK. Mammalian Diaphanous1 signalling in neurovascular complications of diabetes. Eur J Neurosci 2024; 59:2628-2645. [PMID: 38491850 DOI: 10.1111/ejn.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
Over the past few decades, diabetes gradually has become one of the top non-communicable disorders, affecting 476.0 million in 2017 and is predicted to reach 570.9 million people in 2025. It is estimated that 70 to 100% of all diabetic patients will develop some if not all, diabetic complications over the course of the disease. Despite different symptoms, mechanisms underlying the development of diabetic complications are similar, likely stemming from deficits in both neuronal and vascular components supplying hyperglycaemia-susceptible tissues and organs. Diaph1, protein diaphanous homolog 1, although mainly known for its regulatory role in structural modification of actin and related cytoskeleton proteins, in recent years attracted research attention as a cytoplasmic partner of the receptor of advanced glycation end-products (RAGE) a signal transduction receptor, whose activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines in diabetes and its related complications. Both Diaph1 and RAGE are also a part of the RhoA signalling cascade, playing a significant role in the development of neurovascular disturbances underlying diabetes-related complications. In this review, based on the existing knowledge as well as compelling findings from our past and present studies, we address the role of Diaph1 signalling in metabolic stress and neurovascular degeneration in diabetic complications. In light of the most recent developments in biochemical, genomic and transcriptomic research, we describe current theories on the aetiology of diabetes complications, highlighting the function of the Diaph1 signalling system and its role in diabetes pathophysiology.
Collapse
Affiliation(s)
- Julia Jarosławska
- Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Tadeusz Miłowski
- Department of Emergency Medicine, School of Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Judyta K Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
22
|
Cerutti C, Lucotti S, Menendez ST, Reymond N, Garg R, Romero IA, Muschel R, Ridley AJ. IQGAP1 and NWASP promote human cancer cell dissemination and metastasis by regulating β1-integrin via FAK and MRTF/SRF. Cell Rep 2024; 43:113989. [PMID: 38536816 DOI: 10.1016/j.celrep.2024.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Attachment of circulating tumor cells to the endothelial cells (ECs) lining blood vessels is a critical step in cancer metastatic colonization, which leads to metastatic outgrowth. Breast and prostate cancers are common malignancies in women and men, respectively. Here, we observe that β1-integrin is required for human prostate and breast cancer cell adhesion to ECs under shear-stress conditions in vitro and to lung blood vessel ECs in vivo. We identify IQGAP1 and neural Wiskott-Aldrich syndrome protein (NWASP) as regulators of β1-integrin transcription and protein expression in prostate and breast cancer cells. IQGAP1 and NWASP depletion in cancer cells decreases adhesion to ECs in vitro and retention in the lung vasculature and metastatic lung nodule formation in vivo. Mechanistically, NWASP and IQGAP1 act downstream of Cdc42 to increase β1-integrin expression both via extracellular signal-regulated kinase (ERK)/focal adhesion kinase signaling at the protein level and by myocardin-related transcription factor/serum response factor (SRF) transcriptionally. Our results identify IQGAP1 and NWASP as potential therapeutic targets to reduce early metastatic dissemination.
Collapse
Affiliation(s)
- Camilla Cerutti
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK; Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge UB8 3PH, UK.
| | - Serena Lucotti
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sofia T Menendez
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK
| | - Nicolas Reymond
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK
| | - Ritu Garg
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK
| | - Ignacio A Romero
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Ruth Muschel
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Anne J Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK.
| |
Collapse
|
23
|
Lin KY, Gujar MR, Lin J, Ding WY, Huang J, Gao Y, Tan YS, Teng X, Christine LSL, Kanchanawong P, Toyama Y, Wang H. Astrocytes control quiescent NSC reactivation via GPCR signaling-mediated F-actin remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584337. [PMID: 38903085 PMCID: PMC11188063 DOI: 10.1101/2024.03.11.584337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The transitioning of neural stem cells (NSCs) between quiescent and proliferative states is fundamental for brain development and homeostasis. Defects in NSC reactivation are associated with neurodevelopmental disorders. Drosophila quiescent NSCs extend an actin-rich primary protrusion toward the neuropil. However, the function of the actin cytoskeleton during NSC reactivation is unknown. Here, we reveal the fine F-actin structures in the protrusions of quiescent NSCs by expansion and super-resolution microscopy. We show that F-actin polymerization promotes the nuclear translocation of Mrtf, a microcephaly-associated transcription factor, for NSC reactivation and brain development. F-actin polymerization is regulated by a signaling cascade composed of G-protein-coupled receptor (GPCR) Smog, G-protein αq subunit, Rho1 GTPase, and Diaphanous (Dia)/Formin during NSC reactivation. Further, astrocytes secrete a Smog ligand Fog to regulate Gαq-Rho1-Dia-mediated NSC reactivation. Together, we establish that the Smog-Gαq-Rho1 signaling axis derived from astrocytes, a NSC niche, regulates Dia-mediated F-actin dynamics in NSC reactivation.
Collapse
|
24
|
Ruiz-Navarro J, Blázquez-Cucharero S, Calvo V, Izquierdo M. Imaging the immune synapse: Three-dimensional analysis of the immune synapse. Methods Cell Biol 2024; 193:15-37. [PMID: 39919840 DOI: 10.1016/bs.mcb.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
T cell receptor (TCR) stimulation of T lymphocytes by antigen bound to the major histocompatibility complex (MHC) of an antigen-presenting cell (APC), together with the interaction of accessory molecules, induces the formation of the immunological synapse (IS), the convergence of secretion vesicles toward the centrosome, and the polarization of the centrosome to the IS. Upon IS formation, an initial increase in cortical filamentous actin (F-actin) at the IS takes place, followed by a decrease in F-actin density at the central region of the IS, which contains the secretory domain. These reversible, cortical actin cytoskeleton reorganization processes that characterize a mature IS occur during lytic granule secretion in cytotoxic T lymphocytes (CTL) and natural killer (NK) cells and cytokine-containing vesicle secretion in T-helper (Th) lymphocytes. Besides, IS formation constitutes the basis of a signaling platform that integrates signals and coordinates molecular interactions that are necessary for an appropriate antigen-specific immune response. In this chapter we deal with the three-dimensional (3D) analysis of the synaptic interface architecture, as well as the analysis of the localization of different markers at the IS.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | | | - Víctor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain.
| |
Collapse
|
25
|
Ruiz-Navarro J, Calvo V, Izquierdo M. Extracellular vesicles and microvilli in the immune synapse. Front Immunol 2024; 14:1324557. [PMID: 38268920 PMCID: PMC10806406 DOI: 10.3389/fimmu.2023.1324557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024] Open
Abstract
T cell receptor (TCR) binding to cognate antigen on the plasma membrane of an antigen-presenting cell (APC) triggers the immune synapse (IS) formation. The IS constitutes a dedicated contact region between different cells that comprises a signaling platform where several cues evoked by TCR and accessory molecules are integrated, ultimately leading to an effective TCR signal transmission that guarantees intercellular message communication. This eventually leads to T lymphocyte activation and the efficient execution of different T lymphocyte effector tasks, including cytotoxicity and subsequent target cell death. Recent evidence demonstrates that the transmission of information between immune cells forming synapses is produced, to a significant extent, by the generation and secretion of distinct extracellular vesicles (EV) from both the effector T lymphocyte and the APC. These EV carry biologically active molecules that transfer cues among immune cells leading to a broad range of biological responses in the recipient cells. Included among these bioactive molecules are regulatory miRNAs, pro-apoptotic molecules implicated in target cell apoptosis, or molecules triggering cell activation. In this study we deal with the different EV classes detected at the IS, placing emphasis on the most recent findings on microvilli/lamellipodium-produced EV. The signals leading to polarized secretion of EV at the synaptic cleft will be discussed, showing that the IS architecture fulfills a fundamental task during this route.
Collapse
Affiliation(s)
- Javier Ruiz-Navarro
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Víctor Calvo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Manuel Izquierdo
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
26
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
27
|
Soh JEC, Shimizu A, Sato A, Ogita H. Novel cardiovascular protective effects of RhoA signaling and its therapeutic implications. Biochem Pharmacol 2023; 218:115899. [PMID: 37907138 DOI: 10.1016/j.bcp.2023.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Ras homolog gene family member A (RhoA) belongs to the Rho GTPase superfamily, which was first studied in cancers as one of the essential regulators controlling cellular function. RhoA has long attracted attention as a key molecule involved in cell signaling and gene transcription, through which it affects cellular processes. A series of studies have demonstrated that RhoA plays crucial roles under both physiological states and pathological conditions in cardiovascular diseases. RhoA has been identified as an important regulator in cardiac remodeling by regulating actin stress fiber dynamics and cytoskeleton formation. However, its underlying mechanisms remain poorly understood, preventing definitive conclusions being drawn about its protective role in the cardiovascular system. In this review, we outline the characteristics of RhoA and its related signaling molecules, and present an overview of RhoA classical function and the corresponding cellular responses of RhoA under physiological and pathological conditions. Overall, we provide an update on the novel signaling under RhoA in the cardiovascular system and its potential clinical and therapeutic targets in cardiovascular medicine.
Collapse
Affiliation(s)
- Joanne Ern Chi Soh
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
28
|
Li Z, Su M, Xie X, Wang P, Bi H, Li E, Ren K, Dong L, Lv Z, Ma X, Liu Y, Zhao B, Peng Y, Liu J, Liu L, Yang J, Ji P, Mei Y. mDia formins form hetero-oligomers and cooperatively maintain murine hematopoiesis. PLoS Genet 2023; 19:e1011084. [PMID: 38157491 PMCID: PMC10756686 DOI: 10.1371/journal.pgen.1011084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
mDia formin proteins regulate the dynamics and organization of the cytoskeleton through their linear actin nucleation and polymerization activities. We previously showed that mDia1 deficiency leads to aberrant innate immune activation and induces myelodysplasia in a mouse model, and mDia2 regulates enucleation and cytokinesis of erythroblasts and the engraftment of hematopoietic stem and progenitor cells (HSPCs). However, whether and how mDia formins interplay and regulate hematopoiesis under physiological and stress conditions remains unknown. Here, we found that both mDia1 and mDia2 are required for HSPC regeneration under stress, such as serial plating, aging, and reconstitution after myeloid ablation. We showed that mDia1 and mDia2 form hetero-oligomers through the interactions between mDia1 GBD-DID and mDia2 DAD domains. Double knockout of mDia1 and mDia2 in hematopoietic cells synergistically impaired the filamentous actin network and serum response factor-involved transcriptional signaling, which led to declined HSPCs, severe anemia, and significant mortality in neonates and newborn mice. Our data demonstrate the potential roles of mDia hetero-oligomerization and their non-rodent functions in the regulation of HSPCs activity and orchestration of hematopoiesis.
Collapse
Affiliation(s)
- Zhaofeng Li
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Meng Su
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Xinshu Xie
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Pan Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Honghao Bi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ermin Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Lili Dong
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhiyi Lv
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Xuezhen Ma
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yijie Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuanliang Peng
- Department of Hematology, the Second Xiangya Hospital; Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University; Changsha, China
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital; Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University; Changsha, China
| | - Lu Liu
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yang Mei
- Hunan Provincial Key Laboratory of Animal Model and Molecular Medicine, Hunan University, Changsha, China
- School of Biomedical Sciences, Hunan University, Changsha, China
| |
Collapse
|
29
|
Colozza G, Lee H, Merenda A, Wu SHS, Català-Bordes A, Radaszkiewicz TW, Jordens I, Lee JH, Bamford AD, Farnhammer F, Low TY, Maurice MM, Bryja V, Kim J, Koo BK. Intestinal Paneth cell differentiation relies on asymmetric regulation of Wnt signaling by Daam1/2. SCIENCE ADVANCES 2023; 9:eadh9673. [PMID: 38000028 PMCID: PMC10672176 DOI: 10.1126/sciadv.adh9673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
The mammalian intestine is one of the most rapidly self-renewing tissues, driven by stem cells residing at the crypt bottom. Paneth cells form a major element of the niche microenvironment providing various growth factors to orchestrate intestinal stem cell homeostasis, such as Wnt3. Different Wnt ligands can selectively activate β-catenin-dependent (canonical) or -independent (noncanonical) signaling. Here, we report that the Dishevelled-associated activator of morphogenesis 1 (Daam1) and its paralogue Daam2 asymmetrically regulate canonical and noncanonical Wnt (Wnt/PCP) signaling. Daam1/2 interacts with the Wnt inhibitor RNF43, and Daam1/2 double knockout stimulates canonical Wnt signaling by preventing RNF43-dependent degradation of the Wnt receptor, Frizzled (Fzd). Single-cell RNA sequencing analysis revealed that Paneth cell differentiation is impaired by Daam1/2 depletion because of defective Wnt/PCP signaling. Together, we identified Daam1/2 as an unexpected hub molecule coordinating both canonical and noncanonical Wnt, which is fundamental for specifying an adequate number of Paneth cells.
Collapse
Affiliation(s)
- Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Heetak Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
| | | | - Szu-Hsien Sam Wu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Andrea Català-Bordes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Tomasz W. Radaszkiewicz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ingrid Jordens
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Ji-Hyun Lee
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
| | - Aileen-Diane Bamford
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Fiona Farnhammer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Division of Metabolism and Division of Oncology, University Children’s Hospital Zurich and Children’s Research Center, University of Zurich, 8032 Zurich, Switzerland
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), University Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Madelon M. Maurice
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Jihoon Kim
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
30
|
Gazsó-Gerhát G, Gombos R, Tóth K, Kaltenecker P, Szikora S, Bíró J, Csapó E, Asztalos Z, Mihály J. FRL and DAAM are required for lateral adhesion of interommatidial cells and patterning of the retinal floor. Development 2023; 150:dev201713. [PMID: 37997920 PMCID: PMC10690107 DOI: 10.1242/dev.201713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Optical insulation of the unit eyes (ommatidia) is an important prerequisite of precise sight with compound eyes. Separation of the ommatidia is ensured by pigment cells that organize into a hexagonal lattice in the Drosophila eye, forming thin walls between the facets. Cell adhesion, mediated by apically and latero-basally located junctional complexes, is crucial for stable attachment of these cells to each other and the basal lamina. Whereas former studies have focused on the formation and remodelling of the cellular connections at the apical region, here, we report a specific alteration of the lateral adhesion of the lattice cells, leaving the apical junctions largely unaffected. We found that DAAM and FRL, two formin-type cytoskeleton regulatory proteins, play redundant roles in lateral adhesion of the interommatidial cells and patterning of the retinal floor. We show that formin-dependent cortical actin assembly is crucial for latero-basal sealing of the ommatidial lattice. We expect that the investigation of these previously unreported eye phenotypes will pave the way toward a better understanding of the three-dimensional aspects of compound eye development.
Collapse
Affiliation(s)
- Gabriella Gazsó-Gerhát
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Rita Gombos
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Krisztina Tóth
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Péter Kaltenecker
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Szilárd Szikora
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Judit Bíró
- Aktogen Hungary Ltd., Szeged H-6726, Hungary
| | - Enikő Csapó
- Aktogen Hungary Ltd., Szeged H-6726, Hungary
| | - Zoltán Asztalos
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged H-6726, Hungary
| | - József Mihály
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
- Department of Genetics, University of Szeged, Szeged H-6726, Hungary
| |
Collapse
|
31
|
Gajardo T, Bernard M, Lô M, Turck E, Leveau C, El-Daher MT, Deslys A, Panikulam P, Menche C, Kurowska M, Le Lay G, Barbier L, Moshous D, Neven B, Farin HF, Fischer A, Ménasché G, de Saint Basile G, Vargas P, Sepulveda FE. Actin dynamics regulation by TTC7A/PI4KIIIα limits DNA damage and cell death under confinement. J Allergy Clin Immunol 2023; 152:949-960. [PMID: 37390900 DOI: 10.1016/j.jaci.2023.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND The actin cytoskeleton has a crucial role in the maintenance of the immune homeostasis by controlling various cellular processes, including cell migration. Mutations in TTC7A have been described as the cause of a primary immunodeficiency associated to different degrees of gut involvement and alterations in the actin cytoskeleton dynamics. OBJECTIVES This study investigates the impact of TTC7A deficiency in immune homeostasis. In particular, the role of the TTC7A/phosphatidylinositol 4 kinase type III α pathway in the control of leukocyte migration and actin dynamics. METHODS Microfabricated devices were leveraged to study cell migration and actin dynamics of murine and patient-derived leukocytes under confinement at the single-cell level. RESULTS We show that TTC7A-deficient lymphocytes exhibit an altered cell migration and reduced capacity to deform through narrow gaps. Mechanistically, TTC7A-deficient phenotype resulted from impaired phosphoinositide signaling, leading to the downregulation of the phosphoinositide 3-kinase/AKT/RHOA regulatory axis and imbalanced actin cytoskeleton dynamics. TTC7A-associated phenotype resulted in impaired cell motility, accumulation of DNA damage, and increased cell death in dense 3-dimensional gels in the presence of chemokines. CONCLUSIONS These results highlight a novel role of TTC7A as a critical regulator of lymphocyte migration. Impairment of this cellular function is likely to contribute to the pathophysiology underlying progressive immunodeficiency in patients.
Collapse
Affiliation(s)
- Tania Gajardo
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Mathilde Bernard
- UMR 144, Institut Curie, Paris, France; Institut Pierre-Gilles de Gennes, Paris Sciences and Letters Research University, Paris, France
| | - Marie Lô
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Elisa Turck
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Claire Leveau
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Marie-Thérèse El-Daher
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Alexandre Deslys
- Leukomotion Lab, Université de Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, F-75015 Paris, France
| | - Patricia Panikulam
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Mathieu Kurowska
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Gregoire Le Lay
- UMR 144, Institut Curie, Paris, France; Institut Pierre-Gilles de Gennes, Paris Sciences and Letters Research University, Paris, France
| | - Lucie Barbier
- UMR 144, Institut Curie, Paris, France; Institut Pierre-Gilles de Gennes, Paris Sciences and Letters Research University, Paris, France
| | - Despina Moshous
- Imagine Institute, Université de Paris Cité, Paris, France; Pediatric Immunology Hematology and Rheumatology Department, Université Paris Cité, Paris, France
| | - Bénédicte Neven
- Imagine Institute, Université de Paris Cité, Paris, France; Pediatric Immunology Hematology and Rheumatology Department, Université Paris Cité, Paris, France
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Alain Fischer
- Imagine Institute, Université de Paris Cité, Paris, France; Pediatric Immunology Hematology and Rheumatology Department, Université Paris Cité, Paris, France; Collège de France, Paris, France
| | - Gaël Ménasché
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Geneviève de Saint Basile
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France; Centre d'Etude des Déficits Immunitaires, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Pablo Vargas
- UMR 144, Institut Curie, Paris, France; Institut Pierre-Gilles de Gennes, Paris Sciences and Letters Research University, Paris, France; Leukomotion Lab, Université de Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, F-75015 Paris, France.
| | - Fernando E Sepulveda
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France; CNRS, Paris, France.
| |
Collapse
|
32
|
Lebedev M, Chan FY, Lochner A, Bellessem J, Osório DS, Rackles E, Mikeladze-Dvali T, Carvalho AX, Zanin E. Anillin forms linear structures and facilitates furrow ingression after septin and formin depletion. Cell Rep 2023; 42:113076. [PMID: 37665665 PMCID: PMC10548094 DOI: 10.1016/j.celrep.2023.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
During cytokinesis, a contractile ring consisting of unbranched filamentous actin (F-actin) and myosin II constricts at the cell equator. Unbranched F-actin is generated by formin, and without formin no cleavage furrow forms. In Caenorhabditis elegans, depletion of septin restores furrow ingression in formin mutants. How the cleavage furrow ingresses without a detectable unbranched F-actin ring is unknown. We report that, in this setting, anillin (ANI-1) forms a meshwork of circumferentially aligned linear structures decorated by non-muscle myosin II (NMY-2). Analysis of ANI-1 deletion mutants reveals that its disordered N-terminal half is required for linear structure formation and sufficient for furrow ingression. NMY-2 promotes the circumferential alignment of the linear ANI-1 structures and interacts with various lipids, suggesting that NMY-2 links the ANI-1 network with the plasma membrane. Collectively, our data reveal a compensatory mechanism, mediated by ANI-1 linear structures and membrane-bound NMY-2, that promotes furrowing when unbranched F-actin polymerization is compromised.
Collapse
Affiliation(s)
- Mikhail Lebedev
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Fung-Yi Chan
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anna Lochner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany
| | - Jennifer Bellessem
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Daniel S Osório
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisabeth Rackles
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Tamara Mikeladze-Dvali
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Ana Xavier Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Esther Zanin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
33
|
Hosseini K, Frenzel A, Fischer-Friedrich E. EMT induces characteristic changes of Rho GTPases and downstream effectors with a mitosis-specific twist. Phys Biol 2023; 20:066001. [PMID: 37652025 DOI: 10.1088/1478-3975/acf5bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a key cellular transformation for many physiological and pathological processes ranging from cancer over wound healing to embryogenesis. Changes in cell migration, cell morphology and cellular contractility were identified as hallmarks of EMT. These cellular properties are known to be tightly regulated by the actin cytoskeleton. EMT-induced changes of actin-cytoskeletal regulation were demonstrated by previous reports of changes of actin cortex mechanics in conjunction with modifications of cortex-associated f-actin and myosin. However, at the current state, the changes of upstream actomyosin signaling that lead to corresponding mechanical and compositional changes of the cortex are not well understood. In this work, we show in breast epithelial cancer cells MCF-7 that EMT results in characteristic changes of the cortical association of Rho-GTPases Rac1, RhoA and RhoC and downstream actin regulators cofilin, mDia1 and Arp2/3. In the light of our findings, we propose that EMT-induced changes in cortical mechanics rely on two hitherto unappreciated signaling paths-i) an interaction between Rac1 and RhoC and ii) an inhibitory effect of Arp2/3 activity on cortical association of myosin II.
Collapse
Affiliation(s)
- Kamran Hosseini
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Annika Frenzel
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Elisabeth Fischer-Friedrich
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- Faculty of Physics, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
34
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
35
|
Zhuang Y, Lv X, Cui K, Chai J, Zhang N. Early Solid Diet Supplementation Influences the Proteomics of Rumen Epithelium in Goat Kids. BIOLOGY 2023; 12:biology12050684. [PMID: 37237498 DOI: 10.3390/biology12050684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
It is well known that solid diet supplementation in early life can significantly promote rumen development and metabolic function in young ruminants. However, the changes in the expressed proteome and related metabolism in rumen epithelium in response to a supplemented solid diet remain unclear. In this study, rumen epithelial tissue from goats in three diet regimes including milk replacer only (MRO), milk replacer supplemented concentrate (MRC), and milk replacer supplemented concentrate plus alfalfa pellets (MCA) were collected for measurement of the expression of epithelial proteins using proteomic technology (six per group). The results showed that solid diet significantly improved the growth performance of goats, enhanced the ability of rumen fermentation, and promoted the development of epithelial papilla (p < 0.05). Proteome analysis revealed the distinct difference in the expressed protein in the MRC and MCA group compared with the MRO group (42 upregulated proteins and 79 downregulated proteins in MRC; 38 upregulated proteins and 73 downregulated proteins in MCA). Functional analysis showed that solid diet supplementation activated a variety of molecular functions in the epithelium, including protein binding, ATP binding, structural constituent of muscle, etc., in the MRC and MCA groups. Meanwhile, the expression of proteins related to fatty acid metabolism, the PPAR signaling pathway, valine, leucine, and isoleucine degradation, and butanoate metabolism were upregulated, being stimulated by solid feed. In contrast, the proteins associated with carbohydrate digestion and absorption and glycosaminoglycan degradation were downregulated. In addition, the protein expression of enzymes involved in ketone body synthesis in the rumen was generally activated, which was caused by solid feed. In summary, solid feed promoted the development of rumen epithelium by changing the expression of proteins related to fatty acid metabolism, energy synthesis, and signal transduction. The ketone body synthesis pathway might be the most important activated pathway, and provides energy for rumen development.
Collapse
Affiliation(s)
- Yimin Zhuang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaokang Lv
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Cui
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
36
|
Lehne F, Bogdan S. Swip-1 promotes exocytosis of glue granules in the exocrine Drosophila salivary gland. J Cell Sci 2023; 136:286884. [PMID: 36727484 PMCID: PMC10038153 DOI: 10.1242/jcs.260366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Exocytosis is a fundamental cellular process by which cells secrete cargos from their apical membrane into the extracellular lumen. Cargo release proceeds in sequential steps that depend on coordinated assembly and organization of an actin cytoskeletal network. Here, we identified the conserved actin-crosslinking protein Swip-1 as a novel regulator controlling exocytosis of glue granules in the Drosophila salivary gland. Real-time imaging revealed that Swip-1 is simultaneously recruited with F-actin onto secreting granules in proximity to the apical membrane. We observed that Swip-1 is rapidly cleared at the point of secretory vesicle fusion and colocalizes with actomyosin network around the fused vesicles. Loss of Swip-1 function impairs secretory cargo expulsion, resulting in strongly delayed secretion. Thus, our results uncover a novel role of Swip-1 in secretory vesicle compression and expulsion of cargo during regulated exocytosis. Remarkably, this function neither requires Ca2+ binding nor dimerization of Swip-1. Our data rather suggest that Swip-1 regulates actomyosin activity upstream of Rho-GTPase signaling to drive proper vesicle membrane crumpling and expulsion of cargo.
Collapse
Affiliation(s)
- Franziska Lehne
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, 35037 Marburg, Germany
| |
Collapse
|
37
|
Frank D, Moussi CJ, Ulferts S, Lorenzen L, Schwan C, Grosse R. Vesicle-Associated Actin Assembly by Formins Promotes TGFβ-Induced ANGPTL4 Trafficking, Secretion and Cell Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204896. [PMID: 36691769 PMCID: PMC10037683 DOI: 10.1002/advs.202204896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Vesicle trafficking has emerged as an important process driving tumor progression through various mechanisms. Transforming growth factor beta (TGFβ)-mediated secretion of Angiopoietin-like 4 (ANGPTL4) is important for cancer development. Here, Formin-like 2 (FMNL2) is identified to be necessary for ANGPTL4 trafficking and secretion in response to TGFβ. Protein kinase C (PKC)-dependent phosphorylation of FMNL2 downstream of TGFβ stimulation is required for cancer cell invasion as well as ANGPTL4 vesicle trafficking and secretion. Moreover, using super resolution microscopy, ANGPTL4 trafficking is actin-dependent with FMNL2 directly polymerizing actin at ANGPTL4-containing vesicles, which are associated with Rab8a and myosin Vb. This work uncovers a formin-controlled mechanism that transiently polymerizes actin directly at intracellular vesicles to facilitate their mobility. This mechanism may be important for the regulation of cancer cell metastasis and tumor progression.
Collapse
Affiliation(s)
- Dennis Frank
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Christel Jessica Moussi
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
- Deutsche Forschungsgemeinschaft Research Training GroupMembrane Plasticity in Tissue Development and RemodelingUniversity of Marburg35037MarburgGermany
| | - Svenja Ulferts
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Lina Lorenzen
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
- Centre for Integrative Biological Signalling Studies – CIBSS79104FreiburgGermany
| |
Collapse
|
38
|
Li Z, Wei X, Zhu Y. The prognostic value of DAAM2 in lower grade glioma, liver cancer, and breast cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03111-x. [PMID: 36790676 DOI: 10.1007/s12094-023-03111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Dishevelled-associated activator of morphogenesis 2 (DAAM2) is a formin protein and has a potential role in the tumor metastasis. The prognostic value of DAAM2 in pan-cancer is investigated in this study. METHODS TCGA and GTEx database were downloaded to perform bioinformatics analysis and ROC curves. Then we explored protein-protein interaction and GO-KEGG enrichment to figure out the protein pathways associated with DAAM2 and studied DAAM2-related immune infiltration and methylation. Fifteen pairs of BRCA clinical samples were enrolled to determine the expression and distribution of DAAM2 in BRCA sections by immunohistochemistry. Finally, BRCA cells were transfected with siRNA targeting DAAM2 and subsequently subject to cell proliferation, migration, and invasion assays. RESULTS DAAM2 was closely related to the diagnosis and clinical characteristics of lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), and breast cancer (BRCA). Survival curve analysis demonstrated DAAM2 served as a potential prognostic indicator of LGG and LIHC (P = 0.0029 and P = 0.025, respectively). DAAM2 was mainly participated in signaling pathways mediating cytoskeleton regulation and tumor development. The correlation of DAAM2 with tumor-infiltrating immune cells (TIICs) and methylation levels was conducive to the prediction of novel biomarkers of pan-carcinoma. DAAM2 was highly expressed in BRCA tissues than that in paracancerous tissues. The proliferation, invasion, and migration of BRCA cells were inhibited by DAAM2 siRNA. CONCLUSION DAAM2 had a specific value in foretelling the prognosis of LGG, LIHC, and BRCA. High expression level of DAAM2 has longer survival rates in LGG and LIHC. The knockdown of DAAM2 retards the proliferation, invasion, and migration of BRCA cells. This study provides a novel sight of DAAM2 into the exploration of a potential biomarker in pan-cancer.
Collapse
Affiliation(s)
- Zeying Li
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao Wei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
39
|
Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol 2023; 24:86-106. [PMID: 36104625 DOI: 10.1038/s41580-022-00530-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Cell invasion into the surrounding extracellular matrix or across tissue boundaries and endothelial barriers occurs in both physiological and pathological scenarios such as immune surveillance or cancer metastasis. Podosomes and invadopodia, collectively called 'invadosomes', are actin-based structures that drive the proteolytic invasion of cells, by forming highly regulated platforms for the localized release of lytic enzymes that degrade the matrix. Recent advances in high-resolution microscopy techniques, in vivo imaging and high-throughput analyses have led to considerable progress in understanding mechanisms of invadosomes, revealing the intricate inner architecture of these structures, as well as their growing repertoire of functions that extends well beyond matrix degradation. In this Review, we discuss the known functions, architecture and regulatory mechanisms of podosomes and invadopodia. In particular, we describe the molecular mechanisms of localized actin turnover and microtubule-based cargo delivery, with a special focus on matrix-lytic enzymes that enable proteolytic invasion. Finally, we point out topics that should become important in the invadosome field in the future.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany.
| | - Pasquale Cervero
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Hamburg, Germany
| | - Robert Eddy
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - John Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Li C, Zheng Z, Wu X, Xie Q, Liu P, Hu Y, Chen M, Liu L, Zhao W, Chen L, Guo J, Song Y. Stiff matrix induced srGAP2 tension gradients control migration direction in triple-negative breast cancer. Theranostics 2023; 13:59-76. [PMID: 36593959 PMCID: PMC9800732 DOI: 10.7150/thno.77313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Rationale: Cells migrating through interstitial matrix enables stiffening of the tumor micro-environment. To overcome the stiff resistance of extracellular matrix, aggressive cells require the extracellular mechanosensory activation and intracellular tension response. Mechanotransduction linker srGAP2 can synergistically control the mechanical-biochemical process of malignant cell migration. Methods: To mimic the tumor micro-environment containing abundant collagen fibers and moving durotaxis of triple-negative breast cancer cells, the stiff-directed matrix was established. The newly designed srGAP2 tension probe was used to real-time supervise srGAP2 tension in living cells. The phosphorylation sites responsible for srGAP2 tension were identified by phosphorylated mutagenesis. Transwell assays and Xenograft mouse model were performed to evaluate TNBC cells invasiveness in vitro and in vivo. Fluorescence staining and membrane protein isolation were used to detect protein localization. Results: The present study shows srGAP2 serves as a linker to transmit the mechanical signals among cytoskeleton and membrane. SrGAP2 exhibits tension gradients among different parts in the stiff-directionally migrating triple-negative breast cancer cells. Cells showing the polarized tension that increased in the leading edge move faster, particularly guided by the stiff interstitial matrix. The srGAP2 tension-directed cell migration results from the upstream events of PKCα-mediated phosphorylation at Ser206 in the F-bar domain of srGAP2. In addition, Syndecan-4 (SDC4), a transmembrane mechanoreceptor protein, drives PKCα regional recruit on the area of membrane trending deformation, which requires the distinct extent of extracellular mechanics. Conclusion: SDC4-PKCα polarized distribution leads to the intracellular tension gradient of srGAP2, presenting the extra- and intracellular physiochemical integration and essential for persistent cell migration in stiff matrix and caner progression. Targeting the srGAP2-related physicochemical signaling could be developed into the therapeutic strategies of inhibiting breast cancer cell invasion and durotaxis.
Collapse
Affiliation(s)
- Chen Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Zihui Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Xiang Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Department of Anesthesiology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315040, PR China
| | - Qiu Xie
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Ping Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213003, People's Republic of China
| | - Yunfeng Hu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Mei Chen
- Department of Pathology, Xuzhou Central Hospital, Xuzhou 221009, PR China
| | - Liming Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Wangxing Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Linlin Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Jun Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China.,✉ Corresponding authors: Jun Guo, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210023, Jiangsu, China. E-mail: ; Dr Ying Song, Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing 210029, China. E-mail:
| | - Ying Song
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,✉ Corresponding authors: Jun Guo, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing 210023, Jiangsu, China. E-mail: ; Dr Ying Song, Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Gulou District, Nanjing 210029, China. E-mail:
| |
Collapse
|
41
|
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology. Biochem Pharmacol 2022; 206:115321. [DOI: 10.1016/j.bcp.2022.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022]
|
42
|
Actin-Binding Proteins in Cardiac Hypertrophy. Cells 2022; 11:cells11223566. [PMID: 36428995 PMCID: PMC9688942 DOI: 10.3390/cells11223566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The heart reacts to a large number of pathological stimuli through cardiac hypertrophy, which finally can lead to heart failure. However, the molecular mechanisms of cardiac hypertrophy remain elusive. Actin participates in the formation of highly differentiated myofibrils under the regulation of actin-binding proteins (ABPs), which provides a structural basis for the contractile function and morphological change in cardiomyocytes. Previous studies have shown that the functional abnormality of ABPs can contribute to cardiac hypertrophy. Here, we review the function of various actin-binding proteins associated with the development of cardiac hypertrophy, which provides more references for the prevention and treatment of cardiomyopathy.
Collapse
|
43
|
Labat-de-Hoz L, Comas L, Rubio-Ramos A, Casares-Arias J, Fernández-Martín L, Pantoja-Uceda D, Martín MT, Kremer L, Jiménez MA, Correas I, Alonso MA. Structure and function of the N-terminal extension of the formin INF2. Cell Mol Life Sci 2022; 79:571. [PMID: 36306014 PMCID: PMC9616786 DOI: 10.1007/s00018-022-04581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
In INF2—a formin linked to inherited renal and neurological disease in humans—the DID is preceded by a short N-terminal extension of unknown structure and function. INF2 activation is achieved by Ca2+-dependent association of calmodulin (CaM). Here, we show that the N-terminal extension of INF2 is organized into two α-helices, the first of which is necessary to maintain the perinuclear F-actin ring and normal cytosolic F-actin content. Biochemical assays indicated that this helix interacts directly with CaM and contains the sole CaM-binding site (CaMBS) detected in INF2. The residues W11, L14 and L18 of INF2, arranged as a 1-4-8 motif, were identified as the most important residues for the binding, W11 being the most critical of the three. This motif is conserved in vertebrate INF2 and in the human population. NMR and biochemical analyses revealed that CaM interacts directly through its C-terminal lobe with the INF2 CaMBS. Unlike control cells, INF2 KO cells lacked the perinuclear F-actin ring, had little cytosolic F-actin content, did not respond to increased Ca2+ concentrations by making more F-actin, and maintained the transcriptional cofactor MRTF predominantly in the cytoplasm. Whereas expression of intact INF2 restored all these defects, INF2 with inactivated CaMBS did not. Our study reveals the structure of the N-terminal extension, its interaction with Ca2+/CaM, and its function in INF2 activation.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Comas
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Armando Rubio-Ramos
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Javier Casares-Arias
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Fernández-Martín
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - M Teresa Martín
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - Leonor Kremer
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | - M Angeles Jiménez
- Instituto de Química Física Rocasolano (IQFR), Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Department of Molecular Biology, Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular (CBM) Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
44
|
Thompson SB, Waldman MM, Jacobelli J. Polymerization power: effectors of actin polymerization as regulators of T lymphocyte migration through complex environments. FEBS J 2022; 289:6154-6171. [PMID: 34273243 PMCID: PMC8761786 DOI: 10.1111/febs.16130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/24/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022]
Abstract
During their life span, T cells are tasked with patrolling the body for potential pathogens. To do so, T cells migrate through numerous distinct anatomical sites and tissue environments with different biophysical characteristics. To migrate through these different environments, T cells use various motility strategies that rely on actin network remodeling to generate shape changes and mechanical forces. In this review, we initially discuss the migratory journey of T cells and then cover the actin polymerization effectors at play in T cells, and finally, we focus on the function of these effectors of actin cytoskeleton remodeling in mediating T-cell migration through diverse tissue environments. Specifically, we will discuss the current state of the field pertaining to our understanding of the roles in T-cell migration played by members of the three main families of actin polymerization machinery: the Arp2/3 complex; formin proteins; and Ena/VASP proteins.
Collapse
Affiliation(s)
- Scott B. Thompson
- Department of Immunology and Microbiology, University of Colorado School of Medicine
| | - Monique M. Waldman
- Department of Immunology and Microbiology, University of Colorado School of Medicine
- Barbara Davis Research Center, University of Colorado School of Medicine
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado School of Medicine
- Barbara Davis Research Center, University of Colorado School of Medicine
| |
Collapse
|
45
|
Wang H, Hu J, Yi K, Ma Z, Song X, Lee Y, Kalab P, Bershadsky AD, Miao Y, Li R. Dual control of formin-nucleated actin assembly by the chromatin and ER in mouse oocytes. Curr Biol 2022; 32:4013-4024.e6. [PMID: 35981539 PMCID: PMC9549573 DOI: 10.1016/j.cub.2022.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/23/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
The first asymmetric meiotic cell divisions in mouse oocytes are driven by formin 2 (FMN2)-nucleated actin polymerization around the spindle. In this study, we investigated how FMN2 is recruited to the spindle peripheral ER and how its activity is regulated in mouse meiosis I (MI) oocytes. We show that this process is regulated by the Ran GTPase, a conserved mediator of chromatin signal, and the ER-associated protein VAPA. FMN2 contains a nuclear localization sequence (NLS) within a domain (SLD) previously shown to be required for FMN2 localization to the spindle periphery. FMN2 NLS is bound to the importin α1/β complex, and the disruption of this interaction by RanGTP is required for FMN2 accumulation in the area proximal to the chromatin and the MI spindle. The importin-free FMN2 is then recruited to the surface of ER around the spindle through the binding of the SLD with the ER-membrane protein VAPA. We further show that FMN2 is autoinhibited through an intramolecular interaction between the SLD with the C-terminal formin homology 2 (FH2) domain that nucleates actin filaments. VAPA binding to SLD relieves the autoinhibition of FMN2, leading to localized actin polymerization. This dual control of formin-mediated actin assembly allows actin polymerization to initiate the movement of the meiotic spindle toward the cortex, an essential step in the maturation of the mammalian female gamete.
Collapse
Affiliation(s)
- HaiYang Wang
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jinrong Hu
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Kexi Yi
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - XinJie Song
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Yaelim Lee
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; Center for Cell Dynamics and Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
46
|
Ahangar P, Cowin AJ. Reforming the Barrier: The Role of Formins in Wound Repair. Cells 2022; 11:cells11182779. [PMID: 36139355 PMCID: PMC9496773 DOI: 10.3390/cells11182779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 12/04/2022] Open
Abstract
The restoration of an intact epidermal barrier after wound injury is the culmination of a highly complex and exquisitely regulated physiological process involving multiple cells and tissues, overlapping dynamic events and protein synthesis and regulation. Central to this process is the cytoskeleton, a system of intracellular proteins that are instrumental in regulating important processes involved in wound repair including chemotaxis, cytokinesis, proliferation, migration, and phagocytosis. One highly conserved family of cytoskeletal proteins that are emerging as major regulators of actin and microtubule nucleation, polymerization, and stabilization are the formins. The formin family includes 15 different proteins categorized into seven subfamilies based on three formin homology domains (FH1, FH2, and FH3). The formins themselves are regulated in different ways including autoinhibition, activation, and localization by a range of proteins, including Rho GTPases. Herein, we describe the roles and effects of the formin family of cytoskeletal proteins on the fundamental process of wound healing and highlight recent advances relating to their important functions, mechanisms, and regulation at the molecular and cellular levels.
Collapse
|
47
|
Ahangar P, Strudwick XL, Cowin AJ. Wound Healing from an Actin Cytoskeletal Perspective. Cold Spring Harb Perspect Biol 2022; 14:a041235. [PMID: 35074864 PMCID: PMC9341468 DOI: 10.1101/cshperspect.a041235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wound healing requires a complex cascade of highly controlled and conserved cellular and molecular processes. These involve numerous cell types and extracellular matrix molecules regulated by the actin cytoskeleton. This microscopic network of filaments is present within the cytoplasm of all cells and provides the shape and mechanical support required for cell movement and proliferation. Here, an overview of the processes of wound healing are described from the perspective of the cell in relation to the actin cytoskeleton. Key points of discussion include the role of actin, its binding proteins, signaling pathways, and events that play significant roles in the phases of wound healing. The identification of cytoskeletal targets that can be used to manipulate and improve wound healing is included as an emerging area of focus that may inform future therapeutic approaches to improve healing of complex wounds.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Allison J Cowin
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| |
Collapse
|
48
|
Bending over backwards: BAR proteins and the actin cytoskeleton in mammalian receptor-mediated endocytosis. Eur J Cell Biol 2022; 101:151257. [PMID: 35863103 DOI: 10.1016/j.ejcb.2022.151257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
The role of the actin cytoskeleton during receptor-mediated endocytosis (RME) has been well characterized in yeast for many years. Only more recently has the interplay between the actin cytoskeleton and RME been extensively explored in mammalian cells. These studies have revealed the central roles of BAR proteins in RME, and have demonstrated significant roles of BAR proteins in linking the actin cytoskeleton to this cellular process. The actin cytoskeleton generates and transmits mechanical force to promote the extension of receptor-bound endocytic vesicles into the cell. Many adaptor proteins link and regulate the actin cytoskeleton at the sites of endocytosis. This review will cover key effectors, adaptors and signalling molecules that help to facilitate the invagination of the cell membrane during receptor-mediated endocytosis, including recent insights gained on the roles of BAR proteins. The final part of this review will explore associations of alterations to genes encoding BAR proteins with cancer.
Collapse
|
49
|
Paes de Faria J, Vale-Silva RS, Fässler R, Werner HB, Relvas JB. Pinch2 regulates myelination in the mouse central nervous system. Development 2022; 149:275524. [DOI: 10.1242/dev.200597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The extensive morphological changes of oligodendrocytes during axon ensheathment and myelination involve assembly of the Ilk-Parvin-Pinch (IPP) heterotrimeric complex of proteins to relay essential mechanical and biochemical signals between integrins and the actin cytoskeleton. Binding of Pinch1 and Pinch2 isoforms to Ilk is mutually exclusive and allows the formation of distinct IPP complexes with specific signaling properties. Using tissue-specific conditional gene ablation in mice, we reveal an essential role for Pinch2 during central nervous system myelination. Unlike Pinch1 gene ablation, loss of Pinch2 in oligodendrocytes results in hypermyelination and in the formation of pathological myelin outfoldings in white matter regions. These structural changes concur with inhibition of Rho GTPase RhoA and Cdc42 activities and phenocopy aspects of myelin pathology observed in corresponding mouse mutants. We propose a dual role for Pinch2 in preventing an excess of myelin wraps through RhoA-dependent control of membrane growth and in fostering myelin stability via Cdc42-dependent organization of cytoskeletal septins. Together, these findings indicate that IPP complexes containing Pinch2 act as a crucial cell-autonomous molecular hub ensuring synchronous control of key signaling networks during developmental myelination.
Collapse
Affiliation(s)
- Joana Paes de Faria
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
| | - Raquel S. Vale-Silva
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto 3 , 4050-313 Porto , Portugal
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry 4 , 82152 Martinsried , Germany
| | - Hauke B. Werner
- Max Planck Institute of Experimental Medicine 5 Department of Neurogenetics , , D-37075 Gottingen , Germany
| | - João B. Relvas
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto 1 , 4200-135 Porto , Portugal
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto 2 , 4200-135 Porto , Portugal
- Faculty of Medicine, Universidade do Porto 6 Department of Biomedicine , , 4200-319 Porto , Portugal
| |
Collapse
|
50
|
Billault-Chaumartin I, Michon L, Anderson CA, Yde SE, Suarez C, Iwaszkiewicz J, Zoete V, Kovar DR, Martin SG. Actin assembly requirements of the formin Fus1 to build the fusion focus. J Cell Sci 2022; 135:jcs260289. [PMID: 35673994 PMCID: PMC9377709 DOI: 10.1242/jcs.260289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
In formin-family proteins, actin filament nucleation and elongation activities reside in the formin homology 1 (FH1) and FH2 domains, with reaction rates that vary by at least 20-fold between formins. Each cell expresses distinct formins that assemble one or several actin structures, raising the question of what confers each formin its specificity. Here, using the formin Fus1 in Schizosaccharomyces pombe, we systematically probed the importance of formin nucleation and elongation rates in vivo. Fus1 assembles the actin fusion focus, necessary for gamete fusion to form the zygote during sexual reproduction. By constructing chimeric formins with combinations of FH1 and FH2 domains previously characterized in vitro, we establish that changes in formin nucleation and elongation rates have direct consequences on fusion focus architecture, and that Fus1 native high nucleation and low elongation rates are optimal for fusion focus assembly. We further describe a point mutant in Fus1 FH2 that preserves native nucleation and elongation rates in vitro but alters function in vivo, indicating an additional FH2 domain property. Thus, rates of actin assembly are tailored for assembly of specific actin structures.
Collapse
Affiliation(s)
- Ingrid Billault-Chaumartin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Laetitia Michon
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| | - Caitlin A. Anderson
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah E. Yde
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Justyna Iwaszkiewicz
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Amphipôle Building, CH-1015 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Amphipôle Building, CH-1015 Lausanne, Switzerland
- Department of Oncology UNIL-CHUV, University of Lausanne, Ludwig Institute for Cancer Research, Route de la Corniche 9A, CH-1066 Epalinges, Switzerland
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sophie G. Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore building, CH-1015 Lausanne, Switzerland
| |
Collapse
|