1
|
Kovalyova Y, De Leon C, Krasowska-Zoladek A, Suon S, Wong J, Young S, Lee Heberling J, Price L, Berger R, Magliaro B, Cheng YS, Peier A, Rothman DM, Walji A, Smith S, Marcus J, Han X, Usenovic M. Promoting Secretion of Pathological Tau Species Using an Induced Proximity Platform That Engages the Autophagy Pathway. ACS Chem Neurosci 2025. [PMID: 40344401 DOI: 10.1021/acschemneuro.5c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
Intracellular accumulation of aberrantly phosphorylated aggregated tau protein can contribute to neuronal dysfunction associated with many neurodegenerative diseases. Thus, removing such tau species is an attractive therapeutic hypothesis for these diseases. Targeted protein degradation (TPD) strategies leveraging the autophagy-lysosome pathway (ALP) are promising approaches to decrease protein aggregates by designating them for degradation. Here, we developed a novel heterobifunctional molecule, MRL828, combining a tau pathology-binding ligand and modified guanine moiety based on the autophagy-targeting chimaera technology to selectively designate aggregated tau proteins for clearance via the ALP. Surprisingly, the MRL828-dependent decrease in intracellular tau aggregates was dependent on the autophagosome, but not the lysosome. MRL828 treatment led to autophagosome-dependent secretion of oligomeric and phosphorylated tau species, suggesting a reduction of intracellular tau aggregates via secretory autophagy rather than degradation via the ALP. This work highlights a novel mechanism of action (MOA) of an ALP-based heterobifunctional molecule and a potential new strategy for the cellular removal of proteins of interest.
Collapse
Affiliation(s)
| | - Cesar De Leon
- Chemical Biology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Sokreine Suon
- Neuroscience, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jacky Wong
- Neuroscience, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Seth Young
- Chemical Biology, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Laura Price
- Quantitative Biosciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Raphaëlle Berger
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Brian Magliaro
- Quantitative Biosciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yu-Shan Cheng
- Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Andrea Peier
- Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Deborah M Rothman
- Chemical Biology, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Abbas Walji
- Discovery Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Sean Smith
- Neuroscience, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jacob Marcus
- Neuroscience, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Xiaoqing Han
- Chemical Biology, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Marija Usenovic
- Neuroscience, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
2
|
Ma J, Han C, Lv Y, Cai H. Non-Linear Relationship Between Fasting C-Peptide and Retinopathy in Patients with Type 2 Diabetes Mellitus - A Retrospective Study. Diabetes Metab Syndr Obes 2025; 18:1035-1045. [PMID: 40226442 PMCID: PMC11988194 DOI: 10.2147/dmso.s501361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
Background Previous research has demonstrated that fasting C-peptide (FCP) serves as a protective element against diabetic retinopathy. But the protective effect of elevated FCP levels against diabetic retinopathy (DR) remains uncertain when these levels exceed specific thresholds. This research aimed to investigate the intrinsic link between FCP concentration and DR in individuals with T2DM. Methods A total of 1661 individuals diagnosed with type 2 diabetes participated in this observational analysis, where DR was assessed as the primary outcome and categorized according to FCP levels. Curve fitting analysis and two-part linear regression models were applied to assess the relationship between DR and FCP, and exploratory analysis was conducted to identify the threshold. Results Our study found a non-linear relationship between the two, as well as a threshold effect at an FCP of 4.11 ng/mL. Below the critical value, each 1 ng/mL increase in FCP levels was associated with a 24% lower risk of DR (OR: 0.74, 95% CI: 0.64-0.86). Above the cutoff, the relationship did not reach statistical significance (OR: 1.52, 95% CI: 0.87-2.66). Conclusion There was a nonlinear relationship between FCP level and DR risk, which was negatively correlated at first but stabilized at a lower level when FCP>4.11 ng/mL.
Collapse
Affiliation(s)
- Jicai Ma
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, People’s Republic of China
| | - Cong Han
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, People’s Republic of China
| | - Yuanyuan Lv
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, People’s Republic of China
| | - Hanqing Cai
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, 130041, People’s Republic of China
| |
Collapse
|
3
|
Sastre J, Pérez S, Sabater L, Rius-Pérez S. Redox signaling in the pancreas in health and disease. Physiol Rev 2025; 105:593-650. [PMID: 39324871 DOI: 10.1152/physrev.00044.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
This review addresses oxidative stress and redox signaling in the pancreas under healthy physiological conditions as well as in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. Physiological redox homeodynamics is maintained mainly by NRF2/KEAP1, NF-κB, protein tyrosine phosphatases, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), and normal autophagy. Depletion of reduced glutathione (GSH) in the pancreas is a hallmark of acute pancreatitis and is initially accompanied by disulfide stress, which is characterized by protein cysteinylation without increased glutathione oxidation. A cross talk between oxidative stress, MAPKs, and NF-κB amplifies the inflammatory cascade, with PP2A and PGC1α as key redox regulatory nodes. In acute pancreatitis, nitration of cystathionine-β synthase causes blockade of the transsulfuration pathway leading to increased homocysteine levels, whereas p53 triggers necroptosis in the pancreas through downregulation of sulfiredoxin, PGC1α, and peroxiredoxin 3. Chronic pancreatitis exhibits oxidative distress mediated by NADPH oxidase 1 and/or CYP2E1, which promotes cell death, fibrosis, and inflammation. Oxidative stress cooperates with mutant KRAS to initiate and promote pancreatic adenocarcinoma. Mutant KRAS increases mitochondrial reactive oxygen species (ROS), which trigger acinar-to-ductal metaplasia and progression to pancreatic intraepithelial neoplasia (PanIN). ROS are maintained at a sufficient level to promote cell proliferation, while avoiding cell death or senescence through formation of NADPH and GSH and activation of NRF2, HIF-1/2α, and CREB. Redox signaling also plays a fundamental role in differentiation, proliferation, and insulin secretion of β-cells. However, ROS overproduction promotes β-cell dysfunction and apoptosis in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Hospital Clínico, Department of Surgery, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
4
|
Chaichana C, Pramyothin P, Treesuwan W, Jangtawee P, Yindeengam A, Kaewmanee S, Vanavichit A, Krittayaphong R. Impact of 3 G rice on plasma glucose, insulin, and gastrointestinal hormones in patients with obesity or type 2 diabetes: A non-randomized experimental study. Obes Res Clin Pract 2025; 19:101-107. [PMID: 40037945 DOI: 10.1016/j.orcp.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
OBJECTIVE To evaluate the effects of a novel grain variety 3 G rice compared to traditional white rice on postprandial glycemia, insulinemia, and gastrointestinal hormones in individuals with obesity and type 2 diabetes (T2D). METHODS A non-randomized experimental study was conducted with 20 participants with obesity (without diabetes) and 20 patients with T2D. Each participant consumed meals containing 50 g of carbohydrates from either 3 G rice or white rice. Plasma glucose, insulin, and gastrointestinal hormone levels were measured at baseline and intervals up to 120 min post-consumption. RESULTS Among participants with obesity, plasma glucose levels were significantly lower at 90 and 120 after 3 G compared to white rice (0.52 ± 0.04 vs. 2.58 ± 0.37 mmol/L, p < 0.001 at 90 min and 0.06 ± 0.02 vs. 1.47 ± 0.26 mmol/L, p = 0.003 at 120 min). In contrast, plasma insulin levels were markedly higher following 3 G rice consumption at 90-120 min (p = 0.003). Gastrointestinal hormones were significantly elevated after 3 G rice intake compared to white rice, with GLP-1 levels showing sustained increases from 60 to 120 min (p = 0.019). In T2D patients, 3 G rice consumption led to a modest reduction in plasma glucose at 120 min (5.15 ± 0.49 mmol/L for white rice vs. 3.57 ± 0.35 mmol/L for 3 G rice, p = 0.0262) without significant effect on other parameters. CONCLUSION 3 G rice significantly improved postprandial glycemic control and enhanced gastrointestinal hormone responses in individuals with obesity. These findings highlight the promise of 3 G rice as a dietary intervention for managing postprandial glycemia and insulin sensitivity.
Collapse
Affiliation(s)
- Chartchai Chaichana
- Siriraj Center of Research Excellence for Diabetes and Obesity, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpoj Pramyothin
- Division of Nutrition, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Witcha Treesuwan
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, Bangkok, Thailand
| | - Preechaya Jangtawee
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ahthit Yindeengam
- Her Majesty's Cardiac Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saroch Kaewmanee
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Apichart Vanavichit
- Rice Science Center, Kasetsart University, Kamphangsaen, Nakhon Pathom, Thailand
| | - Rungroj Krittayaphong
- Division of Cardiology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Tian K, Ang LC, Choudhary P, Choo JCJ, Bee YM, Goh SY, Teh MM. High incidence of low interstitial fluid glucose among type 2 diabetes patients with chronic kidney disease (CKD) despite adhering to appropriate glycated haemoglobin targets-has time come for robust integration of interstitial fluid glucose targets into glycaemic guidelines? Diabet Med 2025; 42:e15438. [PMID: 39301988 DOI: 10.1111/dme.15438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
AIM We aim to compare the burden of Level 1 (<4 mmol/L) and Level 2 (<3 mmol/L) hypoglycaemia between type 2 diabetes (T2D) patients with and without chronic kidney disease (CKD). METHODS T2D subjects with and without CKD (eGFR<60 mL/min/1.73 m2) were recruited from a tertiary-care hospital. Subjects wore the Freestyle Libre-Pro sensor for 2 weeks. The number of hypoglycaemic events and intra-day difference in Level 1 and 2 hypoglycaemias were compared between the cohorts. RESULTS We recruited 134 subjects: 74 with CKD (44 M:30F) and 60 without CKD (36 M:24F), with no difference in HbA1c between the two cohorts (66 ± 20 vs 64 ± 16 mmol/mol, p = 0.529). The CKD cohort had increased level 1 (OR 1.73, p = 0.011), level 2 hypoglycaemias (OR 2.16, p = 0.002), and glycaemic variability than the non-CKD cohort (35.3 ± 9.5 vs 32.3 ± 6.8%). The CKD cohort had more level 2 hypoglycaemia events nocturnally compared to day at 1.9 ± 3.1 vs. 1.4 ± 2.5 events/person within the two week sensor wearing period (p = 0.022), whereas there was no significant intra-day difference in the number of such events within the non-CKD cohort. CONCLUSIONS The CKD cohort has a greater burden of hypoglycaemia despite being treated to similar HbA1c targets. The greater number of nocturnal events warrants safety concern. Interstitial fluid glucose targets should be incorporated into the glycaemic guidelines for T2D patients with CKD.
Collapse
Affiliation(s)
- Kristy Tian
- Department of Endocrinology, Singapore General Hospital, Singapore
| | - Li Chang Ang
- Medicine Academic Clinical Programme, Singapore General Hospital, Singapore
| | - Pratik Choudhary
- Leicester Diabetes Center, University of Leicester, Leicester, United Kingdom
| | | | - Yong Mong Bee
- Department of Endocrinology, Singapore General Hospital, Singapore
| | - Su-Yen Goh
- Department of Endocrinology, Singapore General Hospital, Singapore
| | - Ming Ming Teh
- Department of Endocrinology, Singapore General Hospital, Singapore
| |
Collapse
|
6
|
Orellano MS, Scelza-Figueredo A, Lameroli Mauriz L, Sétula C, Argañarás M, Atorrasagasti C, Perone MJ, Andreone L. A dissociated glucocorticoid receptor modulator mitigates glucolipotoxicity in the endocrine pancreas and peripheral tissues: Preclinical data from a mouse model of diet-induced type 2 diabetes. Life Sci 2025; 362:123363. [PMID: 39761744 DOI: 10.1016/j.lfs.2024.123363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
AIMS Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models. This study aimed to evaluate whether the administration of CpdA can attenuate GLT effects and improve pathophysiological parameters in a murine model of T2D/MS. MAIN METHODS Eight-week-old male C57BL/6NCrl mice were fed either a standard chow diet or a high-fat/high-sucrose diet (HFHS) for 15 weeks. From week 5 of feeding, each group received i.p. injections of CpdA (2.5 μg/g) or vehicle three times a week. We also examined CpdA in vitro effect against GLT using the insulinoma cell line INS-1E and naïve isolated mouse islets. KEY FINDINGS CpdA administration in HFHS fed mice improved glucose homeostasis and insulin sensitivity with no apparent side effects. CpdA treatment also preserved pancreatic islet architecture and insulin expression, while reducing hepatic steatosis and visceral adipose tissue inflammation induced by HFHS diet. In vitro assays in INS-1E cells and naïve isolated mouse islets demonstrated that CpdA counteracted GLT-induced inhibition of glucose-stimulated insulin secretion and supported the expression of key β-cell identity genes under GLT conditions. SIGNIFICANCE These findings highlight the potential protective effect of CpdA in preserving β-cell functionality and peripheral tissue physiology in the context of T2D/MS.
Collapse
Affiliation(s)
- Miranda Sol Orellano
- Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina
| | - Andrea Scelza-Figueredo
- Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina
| | - Lucía Lameroli Mauriz
- Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina; Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina
| | - Carolina Sétula
- Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina
| | - Milagros Argañarás
- Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina
| | - Catalina Atorrasagasti
- Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina; Experimental Hepatology and Gene Therapy Program, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina
| | - Marcelo Javier Perone
- Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina
| | - Luz Andreone
- Immuno-Endocrinology, Diabetes & Metabolism Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET - Universidad Austral, Pilar, Argentina; Facultad de Ciencias Biomédicas, , Universidad Austral, Pilar, Argentina.
| |
Collapse
|
7
|
Lee MH, Febriana E, Lim M, Baig S, Shen L, Dalakoti M, Chew N, Loh TP, Chan M, Chia KS, Kong APS, Cook AR, Halter JB, Magkos F, Toh SA. Performance of the 1 h oral glucose tolerance test in predicting type 2 diabetes and association with impaired β-cell function in Asians: a national prospective cohort study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2025; 54:101278. [PMID: 39840148 PMCID: PMC11750441 DOI: 10.1016/j.lanwpc.2024.101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Background Postprandial glucose concentration 1-h (1 h-PG) after an oral glucose tolerance test (OGTT) has similar or superior performance to 2 h-PG in predicting type-2 diabetes mellitus (T2DM) in several populations, and is simpler to obtain in clinical practice. However, studies in Asians are scarce. We investigated the utility of elevated baseline 1 h-PG in predicting T2DM incidence within three years, and its relationship with β-cell function in 1250 non-diabetic Asian participants. Methods Participants underwent an OGTT, an intravenous glucose challenge and a hyperinsulinemic-euglycemic clamp to determine glucose tolerance, acute insulin response (AIR) and insulin sensitivity at baseline. OGTTs were repeated every six months until study completion to monitor T2DM conversion. Findings The area under the receiver operating characteristic curve of 1 h-PG was not significantly different from 2 h-PG (AUC1h-PG = 0.883 vs. AUC2h-PG = 0.907; ΔAUC = -0.024, P = 0.124) and the optimal 1 h-PG cut-off was ≥10.7 mmol/L. When groups of high/low 1 h-PG and 2 h-PG at baseline were compared, AIR and disposition index were significantly lower in groups with high 1 h-PG, and both had a stronger correlation with 1 h-PG, indicating that impaired β-cell function was more strongly associated with elevated 1 h-PG than 2 h-PG. Interpretation The ability of 1 h-PG to detect Asians at risk of developing T2DM within three years is on par with 2 h-PG and the optimal cut-off is 10.7 mmol/L. Elevated 1 h-PG is associated with β-cell dysfunction. We conclude that 1 h-PG can be considered as a primary OGTT time point to identify Asians at risk for T2DM, allowing for screening at a reduced time and cost, and with lower patient burden. Funding National Medical Research Council (NMRC), Ministry of Health (MOH; Singapore) Industry Alignment Fund [NMRC/MOHIAFCat1/0048/2016] and Janssen Pharmaceuticals Inc. (USA).
Collapse
Affiliation(s)
- Michelle H. Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- NOVI Health, Singapore
| | - Eveline Febriana
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maybritte Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, National University Hospital, Singapore
| | - Sonia Baig
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Liang Shen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mayank Dalakoti
- Department of Medicine, Ng Teng Fong General Hospital, Singapore
- Department of Cardiology, National University Heart Centre, Singapore
| | - Nicholas Chew
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Heart Centre, Singapore
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, Singapore
| | - Mark Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Cardiology, National University Heart Centre, Singapore
| | - Kee Seng Chia
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Alice Pik-Shan Kong
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong SAR, China
| | - Alex R. Cook
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Jeffrey B. Halter
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Geriatric and Palliative Medicine, University of Michigan, USA
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Sue-Anne Toh
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- NOVI Health, Singapore
- Department of Medicine, National University Hospital, Singapore
| |
Collapse
|
8
|
Rangraze IR, El-Tanani M, Arman Rabbani S, Babiker R, Matalka II, Rizzo M. Diabetes and its Silent Partner: A Critical Review of Hyperinsulinemia and its Complications. Curr Diabetes Rev 2025; 21:e15733998311738. [PMID: 39192649 DOI: 10.2174/0115733998311738240813110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 08/29/2024]
Abstract
In this complex realm of diabetes, hyperinsulinemia is no longer regarded as just a compensatory response to insulin resistance but rather has evolved into an integral feature. This comprehensive review provides a synthesis of the current literature, including various aspects associated with hyperinsulinemia in diabetic complications. Hyperinsulinemia has been shown to be more than just a compensatory mechanism, and the key findings demonstrate how hyperinsulinism affects the development of cardiovascular events as well as microvascular complications. Additionally, recognizing hyperinsulinemia as a modifiable factor, the diabetes management paradigm shifts towards cognitive ones that consider the use of lifestyle modifications in combination with newer pharmacotherapies and precision medicine approaches. These findings have crucial implications for the clinical work, requiring a careful appreciation of hyperinsulinemia's changing aspects as well as incorporation in personalized treatment protocol. In addition, the review focuses on bigger issues related to public health, showing that prevention and early diagnosis will help reduce the burden of complications. Research implications favor longitudinal studies, biomarker discovery, and the study of emerging treatment modalities; clinical practice should adopt global evaluations, patient education, and precision medicine adaptation. Finally, this critical review provides an overview of the underlying processes of hyperinsulinemia in diabetes and its overall health effects.
Collapse
Affiliation(s)
- Imran Rashid Rangraze
- Internal Medicine Department, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Rasal- Khaimah, United Arab Emirates
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Syed Arman Rabbani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Rasha Babiker
- Physiology Department, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras-al-Khaimah, United Arab Emirates
| | - Ismail I Matalka
- Department of Pathology, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Moon DO. MetAP2 as a Therapeutic Target for Obesity and Type 2 Diabetes: Structural Insights, Mechanistic Roles, and Inhibitor Development. Biomolecules 2024; 14:1572. [PMID: 39766279 PMCID: PMC11673396 DOI: 10.3390/biom14121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) and obesity are globally prevalent metabolic disorders characterized by insulin resistance, impaired glucose metabolism, and excessive adiposity. Methionine aminopeptidase 2 (MetAP2), an intracellular metalloprotease, has emerged as a promising therapeutic target due to its critical role in regulating lipid metabolism, energy balance, and protein synthesis. This review provides a comprehensive analysis of MetAP2, including its structural characteristics, catalytic mechanism, and functional roles in the pathophysiology of T2DM and obesity. The unique architecture of MetAP2's active site and its interactions with substrates are examined to elucidate its enzymatic function. The review also explores the development of MetAP2 inhibitors, focusing on their mechanisms of action, preclinical and clinical findings, and therapeutic potential. Special emphasis is placed on docking studies to analyze the binding interactions of six key inhibitors (fumagillin, TNP-470, beloranib, ZGN-1061, indazole, and pyrazolo[4,3-b]indole) with MetAP2, revealing their structural determinants for efficacy and specificity. These findings underscore the potential of MetAP2 as a therapeutic target and provide valuable insights for the rational design of next-generation inhibitors to address obesity and T2DM.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
10
|
Elmitwalli O, Darwish R, Al-Jabery L, Algahiny A, Roy S, Butler AE, Hasan AS. The Emerging Role of p21 in Diabetes and Related Metabolic Disorders. Int J Mol Sci 2024; 25:13209. [PMID: 39684919 DOI: 10.3390/ijms252313209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
In the context of cell cycle inhibition, anti-proliferation, and the dysregulation observed in certain cancer pathologies, the protein p21 assumes a pivotal role. p21 links DNA damage responses to cellular processes such as apoptosis, senescence, and cell cycle arrest, primarily functioning as a regulator of the cell cycle. However, accumulating empirical evidence suggests that p21 is both directly and indirectly linked to a number of different metabolic processes. Intriguingly, recent investigations indicate that p21 significantly contributes to the pathogenesis of diabetes. In this review, we present a comprehensive evaluation of the scientific literature regarding the involvement of p21 in metabolic processes, diabetes etiology, pancreatic function, glucose homeostasis, and insulin resistance. Furthermore, we provide an encapsulated overview of therapies that target p21 to alleviate metabolic disorders. A deeper understanding of the complex interrelationship between p21 and diabetes holds promise for informing current and future therapeutic strategies to address this rapidly escalating health crisis.
Collapse
Affiliation(s)
- Omar Elmitwalli
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Radwan Darwish
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Lana Al-Jabery
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Ahmed Algahiny
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Sornali Roy
- Department of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Alexandra E Butler
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| | - Ammar S Hasan
- Department of Postgraduate Studies and Research, Royal College of Surgeons in Ireland-Medical University of Bahrain Busaiteen, Adliya P.O. Box 15503, Bahrain
| |
Collapse
|
11
|
Fu Z, Jiang S, Sun Y, Zheng S, Zong L, Li P. Cut&tag: a powerful epigenetic tool for chromatin profiling. Epigenetics 2024; 19:2293411. [PMID: 38105608 PMCID: PMC10730171 DOI: 10.1080/15592294.2023.2293411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Analysis of transcription factors and chromatin modifications at the genome-wide level provides insights into gene regulatory processes, such as transcription, cell differentiation and cellular response. Chromatin immunoprecipitation is the most popular and powerful approach for mapping chromatin, and other enzyme-tethering techniques have recently become available for living cells. Among these, Cleavage Under Targets and Tagmentation (CUT&Tag) is a relatively novel chromatin profiling method that has rapidly gained popularity in the field of epigenetics since 2019. It has also been widely adapted to map chromatin modifications and TFs in different species, illustrating the association of these chromatin epitopes with various physiological and pathological processes. Scalable single-cell CUT&Tag can be combined with distinct platforms to distinguish cellular identity, epigenetic features and even spatial chromatin profiling. In addition, CUT&Tag has been developed as a strategy for joint profiling of the epigenome, transcriptome or proteome on the same sample. In this review, we will mainly consolidate the applications of CUT&Tag and its derivatives on different platforms, give a detailed explanation of the pros and cons of this technique as well as the potential development trends and applications in the future.
Collapse
Affiliation(s)
- Zhijun Fu
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Sanjie Jiang
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Yiwen Sun
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Shanqiao Zheng
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| | - Liang Zong
- BGI Tech Solutions Co, Ltd. BGI-Wuhan, Wuhan, China
| | - Peipei Li
- BGI Tech Solutions Co, Ltd. BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
12
|
Anyiam O, Phillips B, Quinn K, Wilkinson D, Smith K, Atherton P, Idris I. Reply - "Letter to the Editor-Very-low calorie diet and Semaglutide: Synergy and long-term impact on type 2 diabetes management". Clin Nutr 2024; 43:241-242. [PMID: 39515068 DOI: 10.1016/j.clnu.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Oluwaseun Anyiam
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Derby, DE22 3DT, UK; Department of Endocrinology and Diabetes, University Hospitals Derby and Burton NHS Foundation Trust, Derby, DE22 3NE, UK
| | - Bethan Phillips
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Katie Quinn
- College of Agriculture, Food & Nutrition, University College Dublin, Ireland
| | - Daniel Wilkinson
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Kenneth Smith
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Derby, DE22 3DT, UK
| | - Philip Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Derby, DE22 3DT, UK.
| | - Iskandar Idris
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Derby, DE22 3DT, UK; Department of Endocrinology and Diabetes, University Hospitals Derby and Burton NHS Foundation Trust, Derby, DE22 3NE, UK.
| |
Collapse
|
13
|
Joshi N, Baloch KM, Rukh S, Khan AM, Muskan F, Kumari V, Khan H, Zeeshan M, Azam G, Khalid S, Anwar IB, Ahmed IF, Nishat SM, Gandhi F. Unlocking the potential of glucagon-like peptide-1 receptor agonists in revolutionizing type 2 diabetes management: a comprehensive review. Ann Med Surg (Lond) 2024; 86:7255-7264. [PMID: 39649934 PMCID: PMC11623894 DOI: 10.1097/ms9.0000000000002712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024] Open
Abstract
Diabetes mellitus (DM) is a long-term metabolic disorder caused by inadequate production and resistance to insulin. The prevalence of DM is rapidly increasing, with type 2 diabetes (T2D) accounting for more than 90% of cases. Despite new treatments, many patients with T2D do not meet their glycemic targets due to clinical inertia. This review provides an overview of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) in the management of T2D. The review synthesizes data from clinical trials and meta-analyses on the efficacy, safety, and cost-effectiveness of GLP-1 RAs. It also discusses the mechanisms of action, classification, and barriers to adherence and persistence in therapy. GLP-1 RAs improve glycemic control by lowering A1C levels and promoting weight loss. They have cardioprotective effects and may reduce endothelial inflammation, oxidative stress, and blood pressure. Adherence to GLP-1 RAs is better with once-weekly injections, though gastrointestinal side effects and cost can affect persistence. Semaglutide and liraglutide have shown significant weight reduction, with semaglutide being particularly effective. GLP-1 RAs are cost-effective due to reduced healthcare costs associated with fewer hospitalizations and lower mortality rates. Safety concerns include gastrointestinal issues, pancreatitis, and rare cases of diabetic retinopathy and thyroid C-cell tumors. For clinical practice, GLP-1 RAs represent a valuable option not only for glycemic control but also for weight management and cardiovascular protection. Incorporating GLP-1 RAs into treatment plans can improve patient outcomes, and optimizing dosing regimens and addressing barriers such as cost and side effects are crucial to enhancing patient adherence and long-term treatment success.
Collapse
Affiliation(s)
- Nandan Joshi
- Department of Internal Medicine, Surat Municipal Institute of Medical Education and Research, Surat, India
| | - Kanwal Mir Baloch
- Department of Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Shah Rukh
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Abdul Moiz Khan
- Department of Internal Medicine, Sahiwal Medical College, Sahiwal, Pakistan
| | - Fnu Muskan
- Department of Internal Medicine, Khairpur Medical College, Khairpur, Pakistan
| | - Verkha Kumari
- Department of Internal Medicine, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Hasher Khan
- Department of Internal Medicine, Dow Medical College, Karachi, Pakistan
| | - Mohd Zeeshan
- Department of Internal Medicine, Career Institute of Medical Sciences and Hospital, Lucknow, India
| | - Ghufran Azam
- Department of Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Saif Khalid
- Department of Internal Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Insa Binte Anwar
- Department of Internal Medicine, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Iqra Furqan Ahmed
- Department of Internal Medicine, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Syeed Mahmud Nishat
- Department of Internal Medicine, Shaheed Suhrawardy Medical College, Dhaka, Bangladesh
| | - Fenil Gandhi
- Department of Family Medicine, PGY2, Lower Bucks Hospital, Bristol, PA, USA
| |
Collapse
|
14
|
Wang J, Shen Y, Chen H, Guan J, Li Z, Liu X, Guo S, Wang L, Yan B, Jin C, Li H, Guo T, Sun Y, Zhang W, Zhang Z, Tian Y, Tian Z. Non-lethal sonodynamic therapy inhibits high glucose and palmitate-induced macrophage inflammasome activation through mtROS-DRP1-mitophagy pathway. FASEB J 2024; 38:e70178. [PMID: 39556373 DOI: 10.1096/fj.202402008r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/18/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Obesity plays a crucial role in the development and progression of type 2 diabetes mellitus (T2DM) by causing excessive release of free fatty acid from adipose tissue, which in turn leads to systemic infiltration of macrophages. In individuals with T2DM, the infiltration of macrophages into pancreatic islets results in islet inflammation that impairs beta cell function, as evidenced by increased apoptosis and decreased glucose-stimulated insulin secretion. The present study aimed to investigate the effects of non-lethal sonodynamic therapy (NL-SDT) on bone marrow-derived macrophages (BMDMs) exposed to high glucose and palmitic acid (HG/PA). These findings indicate that NL-SDT facilitates the expression of DRP1 through the transient production of mitochondrial ROS, which subsequently promotes mitophagy. This mitophagy was shown to limit the activation of the NLRP3 inflammasome and the secretion of IL-1β in BMDMs exposed to HG/PA. In co-culture experiments, beta cells exhibited significant dysfunction when interacting with HG/PA-treated BMDMs. However, this dysfunction was markedly alleviated when the BMDMs had undergone NL-SDT treatment. Moreover, NL-SDT was found to lower blood glucose levels and elevate serum insulin concentrations in db/db mice. Furthermore, NL-SDT effectively reduced the infiltration of F4/80-positive macrophages and the expression of CASP1 within islets. These findings provide fundamental insights into the mechanisms through which NL-SDT may serve as a promising approach for the treatment of T2DM.
Collapse
Affiliation(s)
- Jiayu Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Yicheng Shen
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Heyu Chen
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Jinwei Guan
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Zhitao Li
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Xianna Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Shuyuan Guo
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
- Department of Cardiology, 1st Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P. R. China
| | - Linxin Wang
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
- Department of Cardiology, 1st Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P. R. China
| | - Baoyue Yan
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Chenrun Jin
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - He Li
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Tian Guo
- Medical College of Jining Medical University, Jining, P. R. China
| | - Yun Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| | - Zhiguo Zhang
- School of Physics, Harbin Institute of Technology, Harbin, P. R. China
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, P. R. China
| | - Ye Tian
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
- Department of Cardiology, 1st Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, P. R. China
| | - Zhen Tian
- Department of Pathophysiology, Harbin Medical University, Harbin, P. R. China
- Key Laboratory of Acoustic, Optical, Electrical and Magnetic Diagnostics and Treatment of Cardiovascular Diseases in Heilongjiang Province, Harbin, P. R. China
| |
Collapse
|
15
|
Kosmas CE, Sourlas A, Oikonomakis K, Zoumi EA, Papadimitriou A, Kostara CE. Biomarkers of insulin sensitivity/resistance. J Int Med Res 2024; 52:03000605241285550. [PMCID: PMC11475114 DOI: 10.1177/03000605241285550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025] Open
Abstract
In recent years, remarkable advancements in elucidating the intricate molecular underpinnings of type 2 diabetes mellitus (T2D) have been achieved. Insulin resistance (IR) has been unequivocally acknowledged as the driving pathogenetic mechanism of T2D, preceding disease onset by several years. Nonetheless, diagnostic tools for ascertaining IR are lacking in current clinical practice, representing a critical unmet need; use of the hyperinsulinemic-euglycemic glucose clamp, widely accepted as the gold standard method for evaluating IR at present, is cumbersome in a clinical setting. Thus, the development of well-validated, reliable, and affordable biomarkers of IR has attracted considerable attention from the research community. The biomarkers under investigation can be divided into two major categories: (1) indices or ratios, comprising parameters obtained from a basic or comprehensive metabolic panel and/or derived from anthropometric measurements, and (2) circulating molecules implicated in pathophysiological processes associated with IR. Furthermore, numerous novel biomarkers, including markers of β-cell dysfunction, radiographic quantification of excess visceral adipose tissue, T2D prediction models, certain microRNAs and metabolomic biomarkers, have also provided promising preliminary results. This narrative review aims to present current evidence pertaining to the most notable and exciting biomarkers of IR that are under rigorous evaluation.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Second Department of Cardiology, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | - Christina E Kostara
- Laboratory of Clinical Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
16
|
Tong X, Yagan M, Hu R, Nevills S, Doss TD, Stein RW, Balamurugan AN, Gu G. Metabolic Stress Levels Influence the Ability of Myelin Transcription Factors to Regulate β-Cell Identity and Survival. Diabetes 2024; 73:1662-1672. [PMID: 39058602 PMCID: PMC11417441 DOI: 10.2337/db23-0528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
A hallmark of type 2 diabetes (T2D) is endocrine islet β-cell failure, which can occur via cell dysfunction, loss of identity, and/or death. How each is induced remains largely unknown. We used mouse β-cells deficient for myelin transcription factors (Myt TFs; including Myt1, -2, and -3) to address this question. We previously reported that inactivating all three Myt genes in pancreatic progenitor cells (MytPancΔ) caused β-cell failure and late-onset diabetes in mice. Their lower expression in human β-cells is correlated with β-cell dysfunction, and single nucleotide polymorphisms in MYT2 and MYT3 are associated with a higher risk of T2D. We now show that these Myt TF-deficient postnatal β-cells also dedifferentiate by reactivating several progenitor markers. Intriguingly, mosaic Myt TF inactivation in only a portion of islet β-cells did not result in overt diabetes, but this created a condition where Myt TF-deficient β-cells remained alive while activating several markers of Ppy-expressing islet cells. By transplanting MytPancΔ islets into the anterior eye chambers of immune-compromised mice, we directly show that glycemic and obesity-related conditions influence cell fate, with euglycemia inducing several Ppy+ cell markers and hyperglycemia and insulin resistance inducing additional cell death. These findings suggest that the observed β-cell defects in T2D depend not only on their inherent genetic/epigenetic defects but also on the metabolic load. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Mahircan Yagan
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Ruiying Hu
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Simone Nevills
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Teri D. Doss
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Roland W. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Appakalai N. Balamurugan
- Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH
| | - Guoqiang Gu
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
17
|
Ghusn W, Salameh Y, Abi Mosleh K, Shah M, Storm AC, Abu Dayyeh BK, Ghanem OM. Using Pre-operative Insulin Dose to Predict Diabetes Remission After Roux-En-Y Gastric Bypass and Sleeve Gastrectomy. Surg Innov 2024; 31:484-492. [PMID: 39105388 DOI: 10.1177/15533506241273368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
BACKGROUND Obesity is intricately associated with type-2 diabetes (T2D) and other cardiovascular conditions, increasing morbidity, mortality, and health care costs. Metabolic and bariatric surgeries (MBS) have shown promising results in significant weight loss and T2D remission, but existing predictive scores for post-MBS diabetes remission do not consider insulin dosage, potentially overlooking a critical factor. METHODS A retrospective analysis of patients with T2D who underwent Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG). The study focused on insulin dosage impact, divided into quartiles, on remission rates post-MBS. The effectiveness of RYGB vs SG was compared within insulin dose quartiles with up to 5 years of follow up. RESULTS A total of 508 patients (64% female, 94.9% White, mean age 53.5 ± 10.5 years, BMI (46.0 ± 8.3 kg/m2) were included in the analysis. This study demonstrates a profound association between insulin dosage quartiles and T2D remission after MBS. Patients with lower insulin requirements showed superior remission rates; those in the lowest quartile had remission rates of 73%, 70%, and 62% at 1, 3, and 5 years, respectively, compared to 34%, 37%, and 36% in the highest quartile (P < 0.001 across all intervals). RYGB surgery showed a significantly better remission in the second and third insulin quartiles, suggesting its effectiveness over SG for patients with mid-range insulin requirements. CONCLUSION This study underscores the importance of considering insulin dosage when predicting T2D remission post-MBS. The findings advocate for a more nuanced selection of MBS procedures based on individual insulin profiles, potentially enhancing diabetes remission outcomes.
Collapse
Affiliation(s)
- Wissam Ghusn
- Department of Internal Medicine, Boston University, Boston, MA, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yara Salameh
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Kamal Abi Mosleh
- Department of Surgery, Division of Metabolic and Abdominal Wall Reconstructive Surgery, Mayo Clinic, Rochester, MN, USA
| | - Meera Shah
- Department of Medicine, Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Andrew C Storm
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Barham K Abu Dayyeh
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Omar M Ghanem
- Department of Surgery, Division of Metabolic and Abdominal Wall Reconstructive Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
Dietrich JW, Abood A, Dasgupta R, Anoop S, Jebasingh FK, Spurgeon R, Thomas N, Boehm BO. A novel simple disposition index (SPINA-DI) from fasting insulin and glucose concentration as a robust measure of carbohydrate homeostasis. J Diabetes 2024; 16:e13525. [PMID: 38169110 PMCID: PMC11418405 DOI: 10.1111/1753-0407.13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
AIMS The widely used dynamic disposition index, derived from oral glucose tolerance testing, is an integrative measure of the homeostatic performance of the insulin-glucose feedback control. Its collection is, however, time consuming and expensive. We, therefore, pursued the question if such a measure can be calculated at baseline/fasting conditions using plasma concentrations of insulin and glucose. METHODS A new fasting-based disposition index (structure parameter inference approach-disposition index [SPINA-DI]) was calculated as the product of the reconstructed insulin receptor gain (SPINA-GR) times the secretory capacity of pancreatic beta cells (SPINA-GBeta). The novel index was evaluated in computer simulations and in three independent, multiethnic cohorts. The objectives were distribution in various populations, diagnostic performance, reliability and correlation to established physiological biomarkers of carbohydrate metabolism. RESULTS Mathematical and in-silico analysis demonstrated SPINA-DI to mirror the hyperbolic relationship between insulin sensitivity and beta-cell function and to represent an optimum of the homeostatic control. It significantly correlates to the oral glucose tolerance test based disposition index and other important physiological parameters. Furthermore, it revealed higher discriminatory power for the diagnosis of (pre)diabetes and superior retest reliability than other static and dynamic function tests of glucose homeostasis. CONCLUSIONS SPINA-DI is a novel simple reliable and inexpensive marker of insulin-glucose homeostasis suitable for screening purposes and a wider clinical application.
Collapse
Affiliation(s)
- Johannes W. Dietrich
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef HospitalRuhr University BochumBochumGermany
- Diabetes Centre Bochum/Hattingen, St. Elisabeth‐Hospital BlankensteinHattingenGermany
- Centre for Rare Endocrine Diseases, Ruhr Centre for Rare Diseases (CeSER)Ruhr University Bochum and Witten/Herdecke UniversityBochumGermany
- Centre for Diabetes TechnologyCatholic Hospitals BochumBochumGermany
| | - Assjana Abood
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef HospitalRuhr University BochumBochumGermany
- Diabetes Centre Bochum/Hattingen, St. Elisabeth‐Hospital BlankensteinHattingenGermany
- Centre for Rare Endocrine Diseases, Ruhr Centre for Rare Diseases (CeSER)Ruhr University Bochum and Witten/Herdecke UniversityBochumGermany
- Centre for Diabetes TechnologyCatholic Hospitals BochumBochumGermany
| | - Riddhi Dasgupta
- Department of Endocrinology, Diabetes and MetabolismChristian Medical CollegeVelloreIndia
| | - Shajith Anoop
- Department of Endocrinology, Diabetes and MetabolismChristian Medical CollegeVelloreIndia
| | - Felix K. Jebasingh
- Department of Endocrinology, Diabetes and MetabolismChristian Medical CollegeVelloreIndia
| | - R. Spurgeon
- Department of EndocrinologyBangalore Baptist HospitalBangaloreIndia
| | - Nihal Thomas
- Department of Endocrinology, Diabetes and MetabolismChristian Medical CollegeVelloreIndia
| | - Bernhard O. Boehm
- Lee Kong Chian School of MedicineNanyang Technological University SingaporeSingaporeSingapore
- King's College LondonSchool of Life Course & Population SciencesLondonUK
| |
Collapse
|
19
|
Boye KS, Poon JL, Landó LF, Sapin H, Huh R, Wang M, Williamson S, Patel H. Tirzepatide Improved Health-Related Quality of Life Compared with Insulin Lispro in Basal Insulin-Treated Adults with Type 2 Diabetes and Inadequate Glycaemic Control: A Randomised Controlled Phase 3b Trial (SURPASS-6). Diabetes Ther 2024; 15:2039-2059. [PMID: 39008236 PMCID: PMC11330430 DOI: 10.1007/s13300-024-01620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
INTRODUCTION Patients with type 2 diabetes (T2D) who require intensification of basal insulin therapy need treatment options that can improve their health-related quality of life (HRQoL) and translate into better outcomes. These analyses compared patient-reported outcomes (PROs) in patients with T2D receiving tirzepatide or insulin lispro. METHODS The randomised, open-label, multinational, phase 3b SURPASS-6 trial (NCT04537923) was conducted at 135 medical research centres and hospitals in 15 countries and compared two recommended treatment intensification strategies in people with T2D and inadequate glycaemic control on basal insulin: addition of once-weekly tirzepatide versus addition of prandial insulin lispro. Randomisation was stratified by country, baseline glycated haemoglobin level and metformin use. PROs were measured using the Short Form-36 Health Survey version 2 (SF-36v2) acute form (secondary outcome), EQ-5D-5L, Ability to Perform Physical Activities of Daily Living (APPADL) questionnaire and Impact of Weight on Self-Perceptions (IW-SP) questionnaire (tertiary/exploratory outcomes). PROs were compared for the tirzepatide-pooled dose group (5, 10 and 15 mg) and each tirzepatide dose group versus insulin lispro at 52 weeks using the modified intention-to-treat efficacy analysis set. RESULTS Between 19 October 2020 and 01 November 2022, 2267 people were assessed and 1428 participants with T2D were randomised. At 52 weeks, participants in the tirzepatide-pooled group had statistically significant improved scores across all SF-36v2 domains and both component summary scores compared with insulin lispro-treated participants (p < 0.05), with the largest differences observed in the general health, vitality and mental health domains. Statistically significant improved APPADL and IW-SP total scores, as well as EQ visual analogue scale and EQ-5D-5L index scores (after adjustment for baseline scores), were observed in tirzepatide-pooled participants compared with insulin lispro-treated participants. CONCLUSIONS In adult patients with T2D and inadequate glycaemic control with basal insulin, tirzepatide treatment was associated with greater improvements in HRQoL than prandial insulin therapy in addition to clinically significant improvements in glycaemic and body weight-related parameters.
Collapse
Affiliation(s)
- Kristina Secnik Boye
- Eli Lilly and Company, Indianapolis, IN, USA.
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | | | | | | | - Ruth Huh
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Hiren Patel
- Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
20
|
Nakhleh A, Halfin E, Shehadeh N. Remission of type 2 diabetes mellitus. World J Diabetes 2024; 15:1384-1389. [PMID: 39099816 PMCID: PMC11292336 DOI: 10.4239/wjd.v15.i7.1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 07/08/2024] Open
Abstract
The surge in type 2 diabetes mellitus (T2DM) is tightly linked to obesity, leading to ectopic fat accumulation in internal organs. Weight management has become a cornerstone of T2DM treatment, with evidence suggesting that significant weight loss can induce remission. Remission, defined as sustained hemoglobin (HbA1c) below 6.5% for at least 3 months without medication, can be achieved through various approaches, including lifestyle, medical, and surgical interventions. Metabolic bariatric surgery offers significant remission rates, particularly for patients with severe obesity. Intensive lifestyle modifications, including low-calorie diets and exercise, have also demonstrated significant potential. Medications like incretin-based agents show robust results in improving beta-cell function, achieving glycemic control, and promoting weight loss. While complete remission without medication may not be attainable for everyone, especially those with severe insulin resistance or deficiency, early and aggressive glycemic control remains a crucial strategy. Maintaining HbA1c below 6.5% from the time of diagnosis reduces the risk of long-term complications and mortality. Moreover, considering a broader definition of remission, encompassing individuals with sustained control on medication, could offer a more comprehensive and inclusive approach to managing this chronic disease.
Collapse
Affiliation(s)
- Afif Nakhleh
- Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa 3109601, Israel
- Diabetes and Endocrinology Clinic, Maccabi Healthcare Services, Haifa 3299001, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Elya Halfin
- Diabetes and Endocrinology Clinic, Maccabi Healthcare Services, Haifa 3299001, Israel
| | - Naim Shehadeh
- Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa 3109601, Israel
- Diabetes and Endocrinology Clinic, Maccabi Healthcare Services, Haifa 3299001, Israel
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
21
|
Katsuyama H, Hakoshima M, Heshiki T, Iida S, Adachi H, Yanai H. Real-world effectiveness of imeglimin in patients with type 2 diabetes: A retrospective longitudinal study in Japan. Diabetes Res Clin Pract 2024; 213:111752. [PMID: 38908549 DOI: 10.1016/j.diabres.2024.111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE To examine the real-world effects of imeglimin on glycemic control and other metabolic factors in patients with type 2 diabetes (T2DM). METHODS A retrospective longitudinal study was conducted based on a chart review. We recruited patients with T2DM who took imeglimin continuously for at least 3 months. Data on various metabolic parameters were collected at the first prescription of imeglimin and at 3, 6 and 12 months after the initiation of imeglimin. Statistical comparisons were performed using paired t-tests. RESULTS 68 patients were eligible for this study. HbA1c decreased by 0.7 % at 3 months, 1.1 % at 6 months and 1.0 % by 12 months after the initiation of imeglimin. The decreases in HbA1c were observed regardless of age, gender, body mass index, duration of diabetes, renal function and concomitant use of hypoglycemic agents. There were also significant decreases in body weight, low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C) and non-HDL-C during imeglimin treatment. CONCLUSIONS This is the first report showing the long-term effects of imeglimin in a real-world setting. We confirmed the glucose-lowering effects of imeglimin. Furthermore, favorable effects of imeglimin on body weight and serum lipids were also suggested.
Collapse
Affiliation(s)
- Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan.
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Takahiro Heshiki
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Sakura Iida
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| |
Collapse
|
22
|
Khatri R, Machart P, Bonn S. DISSECT: deep semi-supervised consistency regularization for accurate cell type fraction and gene expression estimation. Genome Biol 2024; 25:112. [PMID: 38689377 PMCID: PMC11061925 DOI: 10.1186/s13059-024-03251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Cell deconvolution is the estimation of cell type fractions and cell type-specific gene expression from mixed data. An unmet challenge in cell deconvolution is the scarcity of realistic training data and the domain shift often observed in synthetic training data. Here, we show that two novel deep neural networks with simultaneous consistency regularization of the target and training domains significantly improve deconvolution performance. Our algorithm, DISSECT, outperforms competing algorithms in cell fraction and gene expression estimation by up to 14 percentage points. DISSECT can be easily adapted to other biomedical data types, as exemplified by our proteomic deconvolution experiments.
Collapse
Affiliation(s)
- Robin Khatri
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Pierre Machart
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
23
|
Kim NY, Lee H, Kim S, Kim YJ, Lee H, Lee J, Kwak SH, Lee S. The clinical relevance of a polygenic risk score for type 2 diabetes mellitus in the Korean population. Sci Rep 2024; 14:5749. [PMID: 38459065 PMCID: PMC10923897 DOI: 10.1038/s41598-024-55313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
The clinical utility of a type 2 diabetes mellitus (T2DM) polygenic risk score (PRS) in the East Asian population remains underexplored. We aimed to examine the potential prognostic value of a T2DM PRS and assess its viability as a clinical instrument. We first established a T2DM PRS for 5490 Korean individuals using East Asian Biobank data (269,487 samples). Subsequently, we assessed the predictive capability of this T2DM PRS in a prospective longitudinal study with baseline data and data from seven additional follow-ups. Our analysis showed that the T2DM PRS could predict the transition of glucose tolerance stages from normal glucose tolerance to prediabetes and from prediabetes to T2DM. Moreover, T2DM patients in the top-decile PRS group were more likely to be treated with insulin (hazard ratio = 1.69, p value = 2.31E-02) than were those in the remaining PRS groups. T2DM PRS values were significantly high in the severe diabetes subgroup, characterized by insulin resistance and β -cell dysfunction (p value = 0.0012). The prediction models with the T2DM PRS had significantly greater Harrel's C-indices than did corresponding models without it. By utilizing prospective longitudinal study data and extensive clinical risk factor information, our analysis provides valuable insights into the multifaceted clinical utility of the T2DM PRS.
Collapse
Affiliation(s)
- Na Yeon Kim
- Graduate School of Data Science, Seoul National University, Seoul, South Korea
| | - Haekyung Lee
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, South Korea
| | - Sehee Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, South Korea
| | - Ye-Jee Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, South Korea
| | - Hyunsuk Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Junhyeong Lee
- Graduate School of Data Science, Seoul National University, Seoul, South Korea
| | - Soo Heon Kwak
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul, South Korea.
| |
Collapse
|
24
|
Cherian CM, Reeves HR, De Silva D, Tsao S, Marshall KE, Rideout EJ. Consideration of sex as a biological variable in diabetes research across twenty years. Biol Sex Differ 2024; 15:19. [PMID: 38409052 PMCID: PMC10895746 DOI: 10.1186/s13293-024-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Sex differences exist in the risk of developing type 1 and type 2 diabetes, and in the risk of developing diabetes-associated complications. Sex differences in glucose homeostasis, islet and β cell biology, and peripheral insulin sensitivity have also been reported. Yet, we lack detailed information on the mechanisms underlying these differences, preventing the development of sex-informed therapeutic strategies for persons living with diabetes. To chart a path toward greater inclusion of biological sex as a variable in diabetes research, we first need a detailed assessment of common practices in the field. METHODS We developed a scoring system to evaluate the inclusion of biological sex in manuscripts published in Diabetes, a journal published by the American Diabetes Association. We chose Diabetes as this journal focuses solely on diabetes and diabetes-related research, and includes manuscripts that use both clinical and biomedical approaches. We scored papers published across 3 years within a 20-year period (1999, 2009, 2019), a timeframe that spans the introduction of funding agency and journal policies designed to improve the consideration of biological sex as a variable. RESULTS Our analysis showed fewer than 15% of papers used sex-based analysis in even one figure across all study years, a trend that was reproduced across journal-defined categories of diabetes research (e.g., islet studies, signal transduction). Single-sex studies accounted for approximately 40% of all manuscripts, of which > 87% used male subjects only. While we observed a modest increase in the overall inclusion of sex as a biological variable during our study period, our data highlight significant opportunities for improvement in diabetes research practices. We also present data supporting a positive role for journal policies in promoting better consideration of biological sex in diabetes research. CONCLUSIONS Our analysis provides significant insight into common practices in diabetes research related to the consideration of biological sex as a variable. Based on our analysis we recommend ways that diabetes researchers can improve inclusion of biological sex as a variable. In the long term, improved practices will reveal sex-specific mechanisms underlying diabetes risk and complications, generating knowledge to enable the development of sex-informed prevention and treatment strategies.
Collapse
Affiliation(s)
- Celena M Cherian
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Hayley R Reeves
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Duneesha De Silva
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
- Department of Orthopaedics, The University of British Columbia, Vancouver, Canada
| | - Serena Tsao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Katie E Marshall
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada.
- Life Sciences Center, 2350 Health Sciences Mall (RM3308), Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
25
|
Lee D, Baek JY, Choi YJ, Han MJ, Kim SH, Kim TH, Lee S, Kang KS. Glucose-lowering effect of Reducose® enriched with 1-deoxynojirimycin and l-leucine: Studies on insulin secretion in INS-1 cells and reduction of blood glucose in diabetic rats. Heliyon 2024; 10:e25499. [PMID: 38333854 PMCID: PMC10850582 DOI: 10.1016/j.heliyon.2024.e25499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
The extract of mulberry leaf and its active ingredients have already been reported to have anti-diabetic effects; however, further studies are required to obtain better quality extracts and higher yields of active ingredients. Reducose® is a commercially available aqueous extract of mulberry leaves with a high content of active ingredients. In this study, the biological activities of Reducose®, 1-deoxynojirimycin, and l-leucine were evaluated using a glucose-stimulated insulin secretion (GSIS) assay. The GSIS assay results were expressed as the glucose-stimulated index (GSI). Considering the pharmacological safety in pancreatic β-cells, the appropriate non-toxic concentrations were selected by screening for cytotoxicity of Reducose®, 1-deoxynojirimycin, and l-leucine before the GSIS assay. The effect of Reducose®, 1-deoxynojirimycin, and l-leucine on glucose-stimulated insulin secretion in INS-1 cells was compared. Reducose®, 1-deoxynojirimycin, and l-leucine increased the GSI values more effectively than gliclazide (positive control). This was associated with an increase in protein expression, such as peroxisome proliferator-activated receptor-γ, insulin receptor substrate-2, activated pancreatic and duodenal homeobox-1, which are related to the regulation of pancreatic β-cell function and survival. In order to elucidate the effect of Reducose® in anti-diabetic effects, blood glucose levels, insulin levels, and liver and lipid concentrations were investigated in a Sprague-Dawley rat model of high-fat diet/streptozotocin-induced diabetes. We observed that administration of Reducose® can decrease fasting blood glucose levels and reduce the production of AST, ALT, TG, and TC to a similar extent as metformin (positive control). These results suggested that Reducose® play a role in promoting GSIS but not enough to show that the content and proportion of 1-deoxynojirimycin and l-leucine play an important role in the GSIS activity of Reducose®.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - Ji Yun Baek
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - Ye Jung Choi
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| | - Min Ji Han
- Vixxol Corporation, Gunpo, 15807, Republic of Korea
| | - Seon Hwa Kim
- Vixxol Corporation, Gunpo, 15807, Republic of Korea
| | - Tae Hoon Kim
- Vixxol Corporation, Gunpo, 15807, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, 13120, Republic of Korea
| |
Collapse
|
26
|
Singh M, Guru A, Pachaiappan R, Almutairi BO, Arokiyaraj S, Gopi M, Arockiaraj J. Impact of butylparaben on β-cell damage and insulin/PEPCK expression in zebrafish larvae: Protective effects of morin. J Biochem Mol Toxicol 2024; 38:e23520. [PMID: 37632306 DOI: 10.1002/jbt.23520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Butylparaben (BP), a common chemical preservative in cosmetic and pharmaceutical products, has been known to induce oxidative stress and disrupt endocrine function in humans. In contrast, morin, a flavonoid derived from the Moraceae family, exhibits diverse pharmacological properties, including anti-inflammatory and antioxidant. Despite this, the protective role of morin against oxidative stress-induced damage in pancreatic islets remains unclear. Therefore, in this study, we aimed to investigate the potential protective mechanism of morin against oxidative stress-induced damage caused by BP in zebrafish larvae. To achieve this, we exposed the zebrafish larvae to butylparaben (2.5 mg/L) for 5 days, leading to increased oxidative stress and apoptosis in β-cells. However, our compelling findings revealed that pretreatment with various concentrations of morin effectively reduced mortality and mitigated apoptosis and lipid peroxidation in β-cells induced by BP exposure. In addition, zebrafish larvae exposed to BP for 5 days exhibited evident β-cell damage. However, the pretreatment with morin showed promising effects by promoting β-cell proliferation and lowering glucose levels. Furthermore, gene expression studies indicated that morin pretreatment normalized PEPCK expression while increasing insulin expression in BP-exposed larvae. In conclusion, our findings highlight the potential of morin as a protective agent against BP-induced β-cell damage in zebrafish larvae. The observed improvements in oxidative stress, apoptosis, and gene expression patterns support the notion that morin could be further explored as a therapeutic candidate to counteract the detrimental effects of BP exposure on pancreatic β-cells.
Collapse
Affiliation(s)
- Mahima Singh
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, Tamil Nadu, India
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, South Korea
| | - Muthukaruppan Gopi
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, Tamil Nadu, India
| |
Collapse
|
27
|
Ouassou H, Elhouda Daoudi N, Bouknana S, Abdnim R, Bnouham M. A Review of Antidiabetic Medicinal Plants as a Novel Source of Phosphodiesterase Inhibitors: Future Perspective of New Challenges Against Diabetes Mellitus. Med Chem 2024; 20:467-486. [PMID: 38265379 DOI: 10.2174/0115734064255060231116192839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 01/25/2024]
Abstract
Intracellular glucose concentration plays a crucial role in initiating the molecular secretory process of pancreatic β-cells through multiple messengers and signaling pathways. Cyclic nucleotides are key physiological regulators that modulate pathway interactions in β -cells. An increase of cyclic nucleotides is controled by hydrolysed phosphodiesterases (PDEs), which degrades cyclic nucleotides into inactive metabolites. Despite the undeniable therapeutic potential of PDE inhibitors, they are associated with several side effects. The treatment strategy for diabetes based on PDE inhibitors has been proposed for a long time. Hence, the world of natural antidiabetic medicinal plants represents an ideal source of phosphodiesterase inhibitors as a new strategy for developing novel agents to treat diabetes mellitus. This review highlights medicinal plants traditionally used in the treatment of diabetes mellitus that have been proven to have inhibitory effects on PDE activity. The contents of this review were sourced from electronic databases, including Science Direct, PubMed, Springer Link, Web of Science, Scopus, Wiley Online, Scifinder and Google Scholar. These databases were consulted to collect information without any limitation date. After comprehensive literature screening, this paper identified 27 medicinal plants that have been reported to exhibit anti-phosphodiesterase activities. The selection of these plants was based on their traditional uses in the treatment of diabetes mellitus. The review emphasizes the antiphosphodiesterase properties of 31 bioactive components derived from these plant extracts. Many phenolic compounds have been identified as PDE inhibitors: Brazilin, mesozygin, artonin I, chalcomaracin, norartocarpetin, moracin L, moracin M, moracin C, curcumin, gallic acid, caffeic acid, rutin, quercitrin, quercetin, catechin, kaempferol, chlorogenic acid, and ellagic acid. Moreover, smome lignans have reported as PDE inhibitors: (+)-Medioresinol di-O-β-d-glucopyranoside, (+)- Pinoresinol di-O-β-d-glucopyranoside, (+)-Pinoresinol-4-O-β-d-glucopyranosyl (1→6)-β-dglucopyranoside, Liriodendrin, (+)-Pinoresinol 4'-O-β-d-glucopyranoside, and forsythin. This review provides a promising starting point of medicinal plants, which could be further studied for the development of natural phosphodiesterase inhibitors to treat diabetes mellitus. Therefore, it is important to consider clinical studies for the identification of new targets for the treatment of diabetes.
Collapse
Affiliation(s)
- Hayat Ouassou
- Higher Institute of Nurses Professions and Health Techniques, Oujda 60000, Morocco
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| | - Saliha Bouknana
- Department of Biology, Faculty of Sciences, University Mohammed First, Boulevard Mohamed VI BP 717, Oujda 60040, Morocco
| | - Rhizlan Abdnim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| |
Collapse
|
28
|
Hong KF, Liu PY, Zhang W, Gui DK, Xu YH. The Efficacy and Safety of Astragalus as an Adjuvant Treatment for Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2024; 30:11-24. [PMID: 37433206 DOI: 10.1089/jicm.2022.0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Objective: This meta-analysis evaluated the beneficial and potential adverse effects of Astragalus in the treatment of patients with type 2 diabetes mellitus (T2DM). Methods: The authors searched for randomized controlled trials of Astragalus treatment for patients with T2DM in the following databases: PubMed, Embase, Cochrane Library, China Knowledge Resource Integrated Database (CNKI), Wanfang Data, China Science and Technology Journal Database (CQVIP), and SinoMed. Two reviewers conducted independent selection of studies, data extraction, and coding, as well as the assessment of risk of bias in the studies included. Standard meta-analysis and, if appropriate, meta-regression were performed using the STATA, v.15.1, software. Results: This meta-analysis encompasses 20 studies and a total of 953 participants. Compared to the control group (CG), the observation group (OG) decreased fasting plasma glucose (FPG) (WMD = -0.67, 95% CI: -1.13∼-0.20, P = 0.005), 2 hours postprandial plasma glucose (2hPG) (WMD = -0.67 (95% CI: -1.13∼-0.20, P=0.005), glycated hemoglobin A1C (HbA1c) (WMD = -0.93, 95% CI: -1.22∼-0.64, P = 0.000), homeostatic model assessment for insulin resistance (HOMA-IR) (WMD = -0.45, 95% CI: -0.99∼0.99, P = 0.104), insulin sensitive index (WMD = 0.42, 95% CI: 0.13-0.72, P = 0.004). The total effective ratio of the OG is more effective than CG (RR = 1.33, 95% CI: 1.26-1.40, P = 0.000), the significant effective ratio (RR = 1.69, 95% CI: 1.48-1.93, P = 0.000). Conclusions: Astragalus may provide specific benefits for T2DM patients as an adjuvant treatment. Nonetheless, the certainty of the evidence and risk of bias fell short of optimal performance, indicating the need for additional clinical research to ascertain potential effects. PROSPERO REGISTRATION NUMBER CRD42022338491.
Collapse
Affiliation(s)
- Kin-Fong Hong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Pei-Yu Liu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| | - Wei Zhang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ding-Kun Gui
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - You-Hua Xu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
29
|
Naidoo K, Khathi A. The Potential Role of Gossypetin in the Treatment of Diabetes Mellitus and Its Associated Complications: A Review. Int J Mol Sci 2023; 24:17609. [PMID: 38139436 PMCID: PMC10743819 DOI: 10.3390/ijms242417609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder caused by insulin resistance and dysfunctional beta (β)-cells in the pancreas. Hyperglycaemia is a characteristic of uncontrolled diabetes which eventually leads to fatal organ system damage. In T2DM, free radicals are continuously produced, causing extensive tissue damage and subsequent macro-and microvascular complications. The standard approach to managing T2DM is pharmacological treatment with anti-diabetic medications. However, patients' adherence to treatment is frequently decreased by the side effects and expense of medications, which has a detrimental impact on their health outcomes. Quercetin, a flavonoid, is a one of the most potent anti-oxidants which ameliorates T2DM. Thus, there is an increased demand to investigate quercetin and its derivatives, as it is hypothesised that similar structured compounds may exhibit similar biological activity. Gossypetin is a hexahydroxylated flavonoid found in the calyx of Hibiscus sabdariffa. Gossypetin has a similar chemical structure to quercetin with an extra hydroxyl group. Furthermore, previous literature has elucidated that gossypetin exhibits neuroprotective, hepatoprotective, reproprotective and nephroprotective properties. The mechanisms underlying gossypetin's therapeutic potential have been linked to its anti-oxidant, anti-inflammatory and immunomodulatory properties. Hence, this review highlights the potential role of gossypetin in the treatment of diabetes and its associated complications.
Collapse
Affiliation(s)
| | - Andile Khathi
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
30
|
Chen X, Zhang Y, Chen H, Dou Y, Wang Y, He W, Ma X, Sheng W, Yan W, Huang G. Association Between Serum Glycated Hemoglobin Levels at Early Gestation and the Risk of Subsequent Pregnancy Loss in Pregnant Women Without Diabetes Mellitus: Prospective Cohort Study. JMIR Public Health Surveill 2023; 9:e46986. [PMID: 38085559 PMCID: PMC10751628 DOI: 10.2196/46986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 09/27/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND As a severe morbidity during pregnancy, the etiology of spontaneous pregnancy loss (SPL) remains largely unknown. Serum glycated hemoglobin (HbA1c) level is an established predictor of SPL risk among women with diabetes, but little is known about whether such an association exists among pregnant women without diabetes when glycemic levels are within the normal range. OBJECTIVE This study aimed to quantify the association between maternal HbA1c levels in early pregnancy and subsequent SPL risk in a cohort of pregnant women without diabetes. METHODS This prospective cohort study involved 10,773 pregnant women without diabetes enrolled at their first antenatal care visit at a hospital's early pregnancy clinic from March 2016 to December 2018 in Shanghai, China. HbA1c and fasting blood glucose (FBG) levels were examined at enrollment. Participants with diabetes before or pregnancy or those diagnosed with gestational diabetes were excluded. Diagnosis of SPL, defined as fetal death occurring before 28 gestational weeks, was derived from medical records and confirmed via telephone interviews. We used generalized linear models to quantify the associations of continuous and dichotomized maternal HbA1c levels with SPL risk and reported crude and adjusted risk ratios (RRs) and 95% CIs. A restricted cubic spline (RCS) regression model was used to assess the potential nonlinear dose-response relationship. Adjusted covariates included maternal age, education level, preconception BMI, gestational weeks, gravidity, history of adverse pregnancy outcomes, family history of diabetes, folic acid supplementation, and smoking and drinking during the periconception period. RESULTS In total, 273 (2.5%) SPL cases occurred. Every 0.5% increase in HbA1c levels was linearly associated with a 23% increase in SPL risk (adjusted RR [aRR] 1.23; 95% CI 1.01-1.50). The RCS model revealed that this association was linear (P=.77 for the nonlinearity test). Analyses based on dichotomized HbA1c levels showed a significantly increased risk of SPL when HbA1c levels were ≥5.9% (aRR 1.67; 95% CI 0.67-3.67), and the significance threshold was ≥5.6% (aRR 1.60; 95% CI 1.01-2.54). Sensitivity analyses showed similar results when including the participants with missing SPL records or HbA1c data. Linear associations of HbA1c levels remained significant even in the subgroups without overweight, alcohol consumption, and a family history of diabetes and adverse pregnancy outcomes. Every 1 mmol/L increment in maternal FBG levels was associated with a >2-fold higher risk of SPL (aRR 2.12; 95% CI 1.61-2.80; P<.001). CONCLUSIONS Higher HbA1c levels in early pregnant women without diabetes are associated with an increased SPL risk in a dose-response manner. Pregnant women with an HbA1c level above 5.6% at early gestation need attention for its potentially increased risk for SPL. Our findings support the need to monitor HbA1c levels to identify individuals at high risk of subsequent SPL in the general population of pregnant women. TRIAL REGISTRATION ClinicalTrials.gov NCT02737644; https://clinicaltrials.gov/study/NCT02737644.
Collapse
Affiliation(s)
- Xiaotian Chen
- Department of Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yi Zhang
- Department of Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hongyan Chen
- Department of Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yalan Dou
- Department of Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yin Wang
- Department of Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wennan He
- Department of Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaojing Ma
- Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Sheng
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Weili Yan
- Department of Clinical Epidemiology & Clinical Trial Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Shanghai, China
| | - Guoying Huang
- Pediatric Heart Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases (2018RU002), Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
31
|
Tajali R, Eidi A, Tafti HA, Pazouki A, Kamarul T, Sharifi AM. Transplantation of adipose derived stem cells in diabetes mellitus; limitations and achievements. J Diabetes Metab Disord 2023; 22:1039-1052. [PMID: 37975135 PMCID: PMC10638327 DOI: 10.1007/s40200-023-01280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/10/2023] [Indexed: 11/19/2023]
Abstract
Objectives Diabetes mellitus (DM) is a complex metabolic disease that results from impaired insulin secreting pancreatic β-cells or insulin resistance. Although available medications help control the disease, patients suffer from its complications. Therefore, finding effective therapeutic approaches to treat DM is a priority. Adipose Derived Stem Cells (ADSCs) based therapy is a promising strategy in various regenerative medicine applications, but its systematic translational use is still somewhat out of reach. This review is aimed at clarifying achievements as well as challenges facing the application of ADSCs for the treatment of DM, with a special focus on the mechanisms involved. Methods Literature searches were carried out on "Scopus", "PubMed" and "Google Scholar" up to September 2022 to find relevant articles in the English language for the scope of this review. Results Recent evidence showed a significant role of ADSC therapies in DM by ameliorating insulin resistance and hyperglycemia, regulating hepatic glucose metabolism, promoting β cell function and regeneration, and functioning as a gene delivery tool. In addition, ADSCs could improve diabetic wound healing by promoting collagen deposition, inhibiting inflammation, and enhancing angiogenesis. Conclusion Overall, this literature review revealed the great clinical implications of ADSCs for translating into the clinical setting for the treatment of diabetes. However, further large-scale and controlled studies are needed to overcome challenges and confirm the safety and optimal therapeutic scheme before daily clinical application. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01280-8.
Collapse
Affiliation(s)
- Raziye Tajali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hosein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Pazouki
- Minimally Invasive Surgery research center, IRAN University of Medical Sciences Tehran, Tehran, Iran
| | - Tunku Kamarul
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ali Mohammad Sharifi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem cell and regenerative Medicine research center, Iran University of medical Sciences, Tehran, Iran
- Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
32
|
Cao S, Wang L, Feng Y, Peng XD, Li LM. A data integration approach unveils a transcriptional signature of type 2 diabetes progression in rat and human islets. PLoS One 2023; 18:e0292579. [PMID: 37816033 PMCID: PMC10564241 DOI: 10.1371/journal.pone.0292579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Pancreatic islet failure is a key characteristic of type 2 diabetes besides insulin resistance. To get molecular insights into the pathology of islets in type 2 diabetes, we developed a computational approach to integrating expression profiles of Goto-Kakizaki and Wistar rat islets from a designed experiment with those of the human islets from an observational study. A principal gene-eigenvector in the expression profiles characterized by up-regulated angiogenesis and down-regulated oxidative phosphorylation was identified conserved across the two species. In the case of Goto-Kakizaki versus Wistar islets, such alteration in gene expression can be verified directly by the treatment-control tests over time, and corresponds to the alteration of α/β-cell distribution obtained by quantifying the islet micrographs. Furthermore, the correspondence between the dual sample- and gene-eigenvectors unveils more delicate structures. In the case of rats, the up- and down-trend of insulin mRNA levels before and after week 8 correspond respectively to the top two principal eigenvectors. In the case of human, the top two principal eigenvectors correspond respectively to the late and early stages of diabetes. According to the aggregated expression signature, a large portion of genes involved in the hypoxia-inducible factor signaling pathway, which activates transcription of angiogenesis, were significantly up-regulated. Furthermore, top-ranked anti-angiogenic genes THBS1 and PEDF indicate the existence of a counteractive mechanism that is in line with thickened and fragmented capillaries found in the deteriorated islets. Overall, the integrative analysis unravels the principal transcriptional alterations underlying the islet deterioration of morphology and insulin secretion along type 2 diabetes progression.
Collapse
Affiliation(s)
- Shenghao Cao
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Linting Wang
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yance Feng
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-ding Peng
- Department of Biochemistry and Molecular Genetics, The University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lei M. Li
- National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
McCarty SM, Clasby MC, Sexton JZ. Automated high-throughput, high-content 3D imaging of intact pancreatic islets. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:316-324. [PMID: 37527729 DOI: 10.1016/j.slasd.2023.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Diabetes poses a global health crisis affecting individuals across age groups and backgrounds, with a prevalence estimate of 700 million people worldwide by 2045. Current therapeutic strategies primarily rely on insulin therapy or hypoglycemic agents, which fail to address the root cause of the disease - the loss of pancreatic insulin-producing beta-cells. Therefore, bioassays that recapitulate intact islets are needed to enable drug discovery for beta-cell replenishment, protection from beta-cell loss, and islet-cell interactions. Standard cancer insulinoma beta-cell lines MIN6 and INS-1 have been used to interrogate beta-cell metabolic pathways and function but are not suitable for studying proliferative effects. Screening using primary human/rodent intact islets offers a higher level of physiological relevance to enhance diabetes drug discovery and development. However, the 3-dimensionality of intact islets have presented challenges in developing robust, high-throughput assays to detect beta-cell proliferative effects. Established methods rely on either dissociated islet cells plated in 2D monolayer cultures for imaging or reconstituted pseudo-islets formed in round bottom plates to achieve homogeneity. These approaches have significant limitations due to the islet cell dispersion process. To address these limitations, we have developed a robust, intact ex vivo pancreatic islet bioassay in 384-well format that is capable of detecting diabetes-relevant endpoints including beta-cell proliferation, chemoprotection, and islet spatial morphometrics.
Collapse
Affiliation(s)
- Sean M McCarty
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, MI, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin C Clasby
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, MI, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA; University of Michigan Center for Drug Repurposing, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Kurian J, Mavathur Nanjundaiah R. Reinstating acute-phase insulin release among sedentary adults at high risk for type 2 diabetes with Yoga and Walking based lifestyle modification. J Bodyw Mov Ther 2023; 36:300-306. [PMID: 37949576 DOI: 10.1016/j.jbmt.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/19/2023] [Accepted: 08/15/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND We compared the impact of 2 lifestyle modifying physical activities, yoga (YBLM) or walking (WBLM) on impaired beta cell function (IBF) or insulin resistance (IR) in restoring acute phase insulin release (APIR) among prediabetes at high risk for type 2 diabetes (HRDM). METHOD Male and female adults (N = 42, 38.1 ± 4.8 years) with abdominal obesity (Male:103 ± 8.1 cm) Female: 92 ± 11.1 cm), randomized into YBLM (n = 20) and WBLM (n = 22), were monitored for the practice of the intervention, 45 min a day/5 days a week for 12 weeks. Blood sample was collected at 0th minute to estimate the level of Fasting Blood Glucose (FBG), Sr. Insulin and lipid profile and at 10th minute (APIR). IBF, IR and sensitivity (IS) reading were checked in HOMA-2 calculator. RESULT Wilcoxon sign rank t-test denoted an improved APIR among the subjects with IBF (p = 0.008) and not among the subjects with IR (p = 0.332). However, regression analysis yielded an improved APIR among subjects with IBF (F(1,10) = 7.816, p = 0.002) with the management of body weight and lipid profile and IR (F(1,13) = 17.003, p = 0.001) being found influenced with selected lipid components. In all, during the post assessment period, an impressive boost in APIR was manifested among people shifted to Normoglycemia (n = 14, 35.9%). CONCLUSION Intriguingly, we postulate the potential role of YBLM over WBLM in the management of lipid profile and body weight on accelerating APIR either through improved Beta cell compensation or by sensitizing skeletal muscles regulating IR, helping improve glucose tolerance resulting in either remission or management of prediabetes.
Collapse
Affiliation(s)
- Jintu Kurian
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Jigani, Bangalore, 560105, India.
| | - Ramesh Mavathur Nanjundaiah
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Jigani, Bangalore, 560105, India.
| |
Collapse
|
35
|
Yang Z, Wu Y, Xu L, Zhu Z, Li T, Yu L, Gao K, Zhang X, Shen P, Lin H, Shui L, Tang M, Jin M, Sun Y, Wang J, Chen K. Age at diagnosis modifies associations of type 2 diabetes with cancer incidence and mortality: a retrospective matched-cohort study. Diabetologia 2023; 66:1450-1459. [PMID: 37178138 DOI: 10.1007/s00125-023-05920-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/13/2023] [Indexed: 05/15/2023]
Abstract
AIMS/HYPOTHESIS The age-specific associations between type 2 diabetes and cancer risk are not fully understood. The aim of this study was to assess how age at diagnosis modifies the associations between type 2 diabetes and cancer risk. METHODS We used data from the Yinzhou Health Information System, and included 42,279 individuals who were newly diagnosed with type 2 diabetes between 2010 and 2014, as well as 166,010 age- and sex-matched control individuals without diabetes who were selected randomly from the electronic health records of the entire population. Patients were divided into four age groups according to age at diagnosis: <50, 50-59, 60-69 and ≥70 years. Stratified Cox proportional hazards regression models, with age as the time scale, were used to estimate the HRs and 95% CIs for the associations of type 2 diabetes with the risks of overall and site-specific cancers. Population-attributable fractions were also calculated for outcomes associated with type 2 diabetes. RESULTS During median follow-up periods of 9.20 and 9.32 years, we identified 15,729 incident cancer cases and 5383 cancer deaths, respectively. Patients diagnosed with type 2 diabetes before 50 years of age had the highest relative risks of cancer incidence and mortality, with HRs (95% CI) of 1.35 (1.20, 1.52) for overall cancer incidence, 1.39 (1.11, 1.73) for gastrointestinal cancer incidence, 2.02 (1.50, 2.71) for overall cancer mortality, and 2.82 (1.91, 4.18) for gastrointestinal cancer mortality. Risk estimates decreased gradually with each decade increase in diagnostic age. The population-attributable fractions for overall cancer and gastrointestinal cancer mortality also decreased with increasing age. CONCLUSIONS/INTERPRETATION The associations of type 2 diabetes with cancer incidence and mortality varied by age at diagnosis, with a higher relative risk among patients who were diagnosed at a younger age.
Collapse
Affiliation(s)
- Zongming Yang
- Department of Public Health, and Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghao Wu
- Department of Public Health, and Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lisha Xu
- Department of Public Health, and Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhanghang Zhu
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tiezheng Li
- Department of Public Health, and Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Luhua Yu
- Department of Public Health, and Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Gao
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhan Zhang
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shen
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Hongbo Lin
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Liming Shui
- Yinzhou District Health Bureau of Ningbo, Ningbo, China
| | - Mengling Tang
- Department of Public Health, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingjuan Jin
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yexiang Sun
- Data Center, Yinzhou District Center for Disease Control and Prevention, Ningbo, China.
| | - Jianbing Wang
- Department of Public Health, and Department of National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
36
|
Giha HA. Hidden chronic metabolic acidosis of diabetes type 2 (CMAD): Clues, causes and consequences. Rev Endocr Metab Disord 2023; 24:735-750. [PMID: 37380824 DOI: 10.1007/s11154-023-09816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
Interpretation of existing data revealed that chronic metabolic acidosis is a pathognomic feature for type 2 diabetes (T2D), which is described here as "chronic metabolic acidosis of T2D (CMAD)" for the first time. The biochemical clues for the CMAD are summarised in the following; low blood bicarbonate (high anionic gap), low pH of interstitial fluid and urine, and response to acid neutralization, while the causes of extra protons are worked out to be; mitochondrial dysfunction, systemic inflammation, gut microbiota (GM), and diabetic lung. Although, the intracellular pH is largely preserved by the buffer system and ion transporters, a persistent systemic mild acidosis leaves molecular signature in cellular metabolism in diabetics. Reciprocally, there are evidences that CMAD contributes to the initiation and progression of T2D by; reducing insulin production, triggering insulin resistance directly or via altered GM, and inclined oxidative stress. The details about the above clues, causes and consequences of CMAD are obtained by searching literature spanning between 1955 and 2022. Finally, the molecular bases of CMAD are discussed in details by interpretation of an up-to-date data and aid of well constructed diagrams, with a conclusion unravelling that CMAD is a major player in T2D pathophysiology. To this end, the CMAD disclosure offers several therapeutic potentials for prevention, delay or attenuation of T2D and its complications.
Collapse
Affiliation(s)
- Hayder A Giha
- Medical Biochemistry and Molecular Biology, Khartoum, Sudan.
| |
Collapse
|
37
|
Mathrani A, Yip W, Sequeira-Bisson IR, Barnett D, Stevenson O, Taylor MW, Poppitt SD. Effect of a 12-Week Polyphenol Rutin Intervention on Markers of Pancreatic β-Cell Function and Gut Microbiota in Adults with Overweight without Diabetes. Nutrients 2023; 15:3360. [PMID: 37571297 PMCID: PMC10420824 DOI: 10.3390/nu15153360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Supplementation with prebiotic polyphenol rutin is a potential dietary therapy for type 2 diabetes prevention in adults with obesity, based on previous glycaemic improvement in transgenic mouse models. Gut microbiota are hypothesised to underpin these effects. We investigated the effect of rutin supplementation on pancreatic β-cell function measured as C-peptide/glucose ratio, and 16S rRNA gene-based gut microbiota profiles, in a cohort of individuals with overweight plus normoglycaemia or prediabetes. Eighty-seven participants were enrolled, aged 18-65 years with BMI of 23-35 kg/m2. This was a 12-week double-blind randomised controlled trial (RCT), with 3 treatments comprising (i) placebo control, (ii) 500 mg/day encapsulated rutin, and (iii) 500 mg/day rutin-supplemented yoghurt. A 2-h oral glucose tolerance test (OGTT) was performed at baseline and at the end of the trial, with faecal samples also collected. Compliance with treatment was high (~90%), but rutin in both capsule and dietary format did not alter pancreatic β-cell response to OGTT over 12 weeks. Gut bacterial community composition also did not significantly change, with Firmicutes dominating irrespective of treatment. Fasting plasma glucose negatively correlated with the abundance of the butyrate producer Roseburia inulinivorans, known for its anti-inflammatory capacity. This is the first RCT to investigate postprandial pancreatic β-cell function in response to rutin supplementation.
Collapse
Affiliation(s)
- Akarsh Mathrani
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Wilson Yip
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
| | - Ivana R. Sequeira-Bisson
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
| | - Daniel Barnett
- Department of Statistics, University of Auckland, Auckland 1010, New Zealand; (D.B.); (O.S.)
| | - Oliver Stevenson
- Department of Statistics, University of Auckland, Auckland 1010, New Zealand; (D.B.); (O.S.)
| | - Michael W. Taylor
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Sally D. Poppitt
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
38
|
Harithpriya K, Jayasuriya R, Adhikari T, Rai A, Ramkumar KM. Modulation of transcription factors by small molecules in β-cell development and differentiation. Eur J Pharmacol 2023; 946:175606. [PMID: 36809813 DOI: 10.1016/j.ejphar.2023.175606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Transcription factors regulate gene expression and play crucial roles in development and differentiation of pancreatic β-cell. The expression and/or activities of these transcription factors are reduced when β-cells are chronically exposed to hyperglycemia, which results in loss of β-cell function. Optimal expression of such transcription factors is required to maintain normal pancreatic development and β-cell function. Over many other methods of regenerating β-cells, using small molecules to activate transcription factors has gained insights, resulting in β-cells regeneration and survival. In this review, we discuss the broad spectrum of transcription factors regulating pancreatic β-cell development, differentiation and regulation of these factors in normal and pathological states. Also, we have presented set of potential pharmacological effects of natural and synthetic compounds on activities of transcription factor involved in pancreatic β-cell regeneration and survival. Exploring these compounds and their action on transcription factors responsible for pancreatic β-cell function and survival could be useful in providing new insights for development of small molecule modulators.
Collapse
Affiliation(s)
- Kannan Harithpriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ravichandran Jayasuriya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Trishla Adhikari
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Awantika Rai
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
39
|
Kim HS, Lee D, Seo YH, Ryu SM, Lee AY, Moon BC, Kim WJ, Kang KS, Lee J. Chemical Constituents from the Roots of Angelica reflexa That Improve Glucose-Stimulated Insulin Secretion by Regulating Pancreatic β-Cell Metabolism. Pharmaceutics 2023; 15:pharmaceutics15041239. [PMID: 37111724 PMCID: PMC10146581 DOI: 10.3390/pharmaceutics15041239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this study was to discover bioactive constituents of Angelica reflexa that improve glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells. Herein, three new compounds, namely, koseonolin A (1), koseonolin B (2), and isohydroxylomatin (3), along with 28 compounds (4-31) were isolated from the roots of A. reflexa by chromatographic methods. The chemical structures of new compounds (1-3) were elucidated through spectroscopic/spectrometric methods such as NMR and HRESIMS. In particular, the absolute configuration of the new compounds (1 and 3) was performed by electronic circular dichroism (ECD) studies. The effects of the root extract of A. reflexa (KH2E) and isolated compounds (1-31) on GSIS were detected by GSIS assay, ADP/ATP ratio assay, and Western blot assay. We observed that KH2E enhanced GSIS. Among the compounds 1-31, isohydroxylomatin (3), (-)-marmesin (17), and marmesinin (19) increased GSIS. In particular, marmesinin (19) was the most effective; this effect was superior to treatment with gliclazide. GSI values were: 13.21 ± 0.12 and 7.02 ± 0.32 for marmesinin (19) and gliclazide at a same concentration of 10 μM, respectively. Gliclazide is often performed in patients with type 2 diabetes (T2D). KH2E and marmesinin (19) enhanced the protein expressions associated with pancreatic β-cell metabolism such as peroxisome proliferator-activated receptor γ, pancreatic and duodenal homeobox 1, and insulin receptor substrate-2. The effect of marmesinin (19) on GSIS was improved by an L-type Ca2+ channel agonist and K+ channel blocker and was inhibited by an L-type Ca2+ channel blocker and K+ channel activator. Marmesinin (19) may improve hyperglycemia by enhancing GSIS in pancreatic β-cells. Thus, marmesinin (19) may have potential use in developing novel anti-T2D therapy. These findings promote the potential application of marmesinin (19) toward the management of hyperglycemia in T2D.
Collapse
Affiliation(s)
- Hyo-Seon Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Dahae Lee
- Cooperative-Center of Natural Product Central Bank for Biological Evaluation, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Hye Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Seung-Mok Ryu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - A-Yeong Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Byeong-Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Wook-Jin Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Ki-Sung Kang
- Cooperative-Center of Natural Product Central Bank for Biological Evaluation, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Jun Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| |
Collapse
|
40
|
Rasalam R, Abdo S, Deed G, O'Brien R, Overland J. Early type 2 diabetes treatment intensification with glucagon-like peptide-1 receptor agonists in primary care: An Australian perspective on guidelines and the global evidence. Diabetes Obes Metab 2023; 25:901-915. [PMID: 36541153 DOI: 10.1111/dom.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 12/03/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Early and intensive management of type 2 diabetes has been shown to delay disease progression, reduce the risk of cardiorenal complications and prolong time to treatment failure. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are being increasingly recognized for their potential in early disease management, with recent guideline updates recommending second-line use of this injectable drug class alongside oral glucose-lowering drugs. GLP-1RAs target at least six of the eight core defects implicated in the pathogenesis of type 2 diabetes and offer significant glycaemic and weight-related improvements over other second-line agents in head-to-head trials. In addition, placebo-controlled clinical trials have shown cardiovascular protection with GLP-1RA use. Even so, this therapeutic class is underused in primary care, largely owing to clinical inertia and patient-related barriers to early intensification with GLP-1RAs. Fortunately, clinicians can overcome barriers to treatment acceptance through patient education and training, and management of treatment expectations. In this review we comment on global and Australian guideline updates and evidence in support of early intensification with this therapeutic class, and provide clinicians with practical advice for GLP-1RA use in primary care.
Collapse
Affiliation(s)
- Roy Rasalam
- College of Medicine, James Cook University, Townsville, Queensland, Australia
| | - Sarah Abdo
- Department of Diabetes and Endocrinology, Bankstown-Lidcombe Hospital, Sydney, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Gary Deed
- Monash University, Melbourne, Victoria, Australia
- HealthcarePlus Medical, Carindale, Queensland, Australia
| | - Richard O'Brien
- Austin Clinical School, University of Melbourne, Heidelberg, Victoria, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Jane Overland
- Total Diabetes Care, Sydney, New South Wales, Australia
| |
Collapse
|
41
|
Dludla PV, Mabhida SE, Ziqubu K, Nkambule BB, Mazibuko-Mbeje SE, Hanser S, Basson AK, Pheiffer C, Kengne AP. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World J Diabetes 2023; 14:130-146. [PMID: 37035220 PMCID: PMC10075035 DOI: 10.4239/wjd.v14.i3.130] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 02/28/2023] [Indexed: 03/15/2023] Open
Abstract
Insulin resistance and pancreatic β-cell dysfunction are major pathological mechanisms implicated in the development and progression of type 2 diabetes (T2D). Beyond the detrimental effects of insulin resistance, inflammation and oxidative stress have emerged as critical features of T2D that define β-cell dysfunction. Predominant markers of inflammation such as C-reactive protein, tumor necrosis factor alpha, and interleukin-1β are consistently associated with β-cell failure in preclinical models and in people with T2D. Similarly, important markers of oxidative stress, such as increased reactive oxygen species and depleted intracellular antioxidants, are consistent with pancreatic β-cell damage in conditions of T2D. Such effects illustrate a pathological relationship between an abnormal inflammatory response and generation of oxidative stress during the progression of T2D. The current review explores preclinical and clinical research on the patho-logical implications of inflammation and oxidative stress during the development of β-cell dysfunction in T2D. Moreover, important molecular mechanisms and relevant biomarkers involved in this process are discussed to divulge a pathological link between inflammation and oxidative stress during β-cell failure in T2D. Underpinning the clinical relevance of the review, a systematic analysis of evidence from randomized controlled trials is covered, on the potential therapeutic effects of some commonly used antidiabetic agents in modulating inflammatory makers to improve β-cell function.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Sihle E Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | | | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga 0727, South Africa
| | - Albert Kotze Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7505, South Africa
| | - Andre Pascal Kengne
- Department of Medicine, University of Cape Town, Cape Town 7500, South Africa
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| |
Collapse
|
42
|
Xia J, Gao G, Zhang C, Ying J, Li J. Albumin-binding DARPins as scaffold improve the hypoglycemic and anti-obesity effects of exendin-4 in vivo. Eur J Pharm Sci 2023; 185:106422. [PMID: 36906110 DOI: 10.1016/j.ejps.2023.106422] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and obesity have been considered epidemics and threats to public health worldwide. Exendin-4 (Ex), a GLP-1R agonist, has potential for treating T2DM and obesity. However, Ex has a half-life of only 2.4 h in humans and needs to be administered twice daily, which hampers its clinical application. In this study, we synthesized four new GLP-1R agonists by genetically fusing Ex to the N-terminus of HSA-binding ankyrin repeat proteins (DARPins) via linkers of different lengths, denoted as Ex-DARPin-GSx fusion proteins (x = 0, 1, 2, and 3). The Ex-DARPin fusion proteins were substantially stable, resulting in incomplete denaturation even at 80 °C. The in vitro bioactivity results demonstrated that Ex-DARPin fusion proteins could bind to HSA and activate GLP-1R. The Ex-DARPin fusion proteins had a comparable half-life (29-32 h), which is much longer than that of native Ex (0.5 h in rats). Subcutaneous injection of 25 nmol/kg Ex-DARPin fusion protein normalized blood glucose (BG) levels for at least 72 h in mice. The Ex-DARPin fusion proteins, injected at 25 nmol/kg every three days, significantly lowered BG, inhibited food consumption, and reduced body weight (BW) for 30 days in STZ-induced diabetic mice. Histological analysis of pancreatic tissues using H&E staining revealed that Ex-DARPin fusion proteins significantly improved the survival of pancreatic islets in diabetic mice. The differences in in vivo bioactivity of fusion proteins with different linker lengths were not significant. According to the findings in this study, long-acting Ex-DARPin fusion proteins designed by us hold promise for further development as antidiabetic and antiobesity therapeutic agents. Our findings also indicate that DARPins are a universal platform for generating long-acting therapeutic proteins via genetic fusion, thus broadening the application scope of DARPins.
Collapse
Affiliation(s)
- Jinying Xia
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Guosheng Gao
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China; Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, China
| | - Changzhen Zhang
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| | - Jingjing Ying
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| | - Jianhui Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
43
|
Karol AB, Viera N, Ogyaadu SJ, Brooks D, Shah NA, Linker AS, Lam DW, Levy CJ, O’Malley G. A Novel Algorithm for the Management of Inpatient COVID-19 Glucocorticoid-Induced Hyperglycemia. Clin Diabetes 2023; 41:378-385. [PMID: 37456090 PMCID: PMC10338271 DOI: 10.2337/cd22-0083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Hyperglycemia in hospitalized patients with coronavirus disease 2019 (COVID-19) is linked to increased morbidity and mortality. This article reports on a novel insulin titration protocol for the management of glucocorticoid-induced hyperglycemia in hospitalized patients with COVID-19. Sixty-five patients with COVID-19 and glucocorticoid-induced hyperglycemia admitted after the protocol implementation were matched 1:1 to patients admitted before the treatment protocol rollout for analysis. In a large, diverse health system, the protocol achieved reductions in hypoglycemic events without increasing hyperglycemia or insulin use.
Collapse
Affiliation(s)
| | - Natalia Viera
- Division of Endocrinology, Diabetes, and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Selassie J. Ogyaadu
- Division of Endocrinology, Diabetes, and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Danielle Brooks
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Nirali A. Shah
- Division of Endocrinology, Diabetes, and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anne S. Linker
- Division of Hospital Medicine, Mount Sinai Hospital, New York, NY
| | - David W. Lam
- Division of Endocrinology, Diabetes, and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carol J. Levy
- Division of Endocrinology, Diabetes, and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Grenye O’Malley
- Division of Endocrinology, Diabetes, and Bone Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
44
|
Abstract
Diabetes mellitus is the ninth leading cause of mortality worldwide. It is a complex disease that manifests as chronic hyperglycemia. Glucose exposure causes biochemical changes at the proteome level as reflected in accumulation of glycated proteins. A prominent example is hemoglobin A1c (HbA1c), a glycated protein widely accepted as a diabetic indicator. Another emerging biomarker is glycated albumin which has demonstrated utility in situations where HbA1c cannot be used. Other proteins undergo glycation as well thus impacting cellular function, transport and immune response. Accordingly, these glycated counterparts may serve as predictors for diabetic complications and thus warrant further inquiry. Fortunately, modern proteomics has provided unique analytic capability to enable improved and more comprehensive exploration of glycating agents and glycated proteins. This review broadly covers topics from epidemiology of diabetes to modern analytical tools such as mass spectrometry to facilitate a better understanding of diabetes pathophysiology. This serves as an attempt to connect clinically relevant questions with findings of recent proteomic studies to suggest future avenues of diabetes research.
Collapse
Affiliation(s)
- Aleks Shin
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shawn Connolly
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kuanysh Kabytaev
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
45
|
Brownrigg GP, Xia YH, Chu CMJ, Wang S, Chao C, Zhang JA, Skovsø S, Panzhinskiy E, Hu X, Johnson JD, Rideout EJ. Sex differences in islet stress responses support female β cell resilience. Mol Metab 2023; 69:101678. [PMID: 36690328 PMCID: PMC9971554 DOI: 10.1016/j.molmet.2023.101678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Pancreatic β cells play a key role in maintaining glucose homeostasis; dysfunction of this critical cell type causes type 2 diabetes (T2D). Emerging evidence points to sex differences in β cells, but few studies have examined male-female differences in β cell stress responses and resilience across multiple contexts, including diabetes. Here, we address the need for high-quality information on sex differences in β cell and islet gene expression and function using both human and rodent samples. METHODS In humans, we compared β cell gene expression and insulin secretion in donors with T2D to non-diabetic donors in both males and females. In mice, we generated a well-powered islet RNAseq dataset from 20-week-old male and female siblings with similar insulin sensitivity. Our unbiased gene expression analysis pointed to a sex difference in the endoplasmic reticulum (ER) stress response. Based on this analysis, we hypothesized female islets would be more resilient to ER stress than male islets. To test this, we subjected islets isolated from age-matched male and female mice to thapsigargin treatment and monitored protein synthesis, cell death, and β cell insulin production and secretion. Transcriptomic and proteomic analyses were used to characterize sex differences in islet responses to ER stress. RESULTS Our single-cell analysis of human β cells revealed sex-specific changes to gene expression and function in T2D, correlating with more robust insulin secretion in human islets isolated from female donors with T2D compared to male donors with T2D. In mice, RNA sequencing revealed differential enrichment of unfolded protein response pathway-associated genes, where female islets showed higher expression of genes linked with protein synthesis, folding, and processing. This differential expression was physiologically significant, as islets isolated from female mice were more resilient to ER stress induction with thapsigargin. Specifically, female islets showed a greater ability to maintain glucose-stimulated insulin production and secretion during ER stress compared with males. CONCLUSIONS Our data demonstrate sex differences in β cell gene expression in both humans and mice, and that female β cells show a greater ability to maintain glucose-stimulated insulin secretion across multiple physiological and pathological contexts.
Collapse
Affiliation(s)
- George P Brownrigg
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Chieh Min Jamie Chu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Su Wang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Charlotte Chao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Jiashuo Aaron Zhang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Søs Skovsø
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Evgeniy Panzhinskiy
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
46
|
Lin PH, Tsai CS, Hsu CC, Lee IR, Shen YX, Fan HF, Chen YW, Tu LH, Liu WM. An environmentally sensitive molecular rotor as a NIR fluorescent probe for the detection of islet amyloid polypeptide. Talanta 2023; 254:124130. [PMID: 36462286 DOI: 10.1016/j.talanta.2022.124130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
The deposits of human islet amyloid polypeptide (IAPP), also called amylin, in the pancreas have been postulated to be a factor of pancreatic β-cell dysfunction and is one of the common pathological hallmarks of type II diabetes mellitus (T2DM). Therefore, it is imperative to gain an in-depth understanding of the formation of these aggregates. In this study, we demonstrate a rationally-designed strategy of an environmentally sensitive near-infrared (NIR) molecular rotor utilizing thioflavin T (ThT) as a scaffold for IAPP deposits. We extended the π delocalized system not only to improve the viscosity sensitivity but also to prolong the emission wavelength to the NIR region. A naphthalene moiety was also introduced to adjust the sensitivity of our designed probes to differentiate the binding microenvironment polarity of different targeted proteins. As a result, a novel NIR fluorogenic probe toward IAPP aggregates, namely AmySP-4-Nap-Ene, was first developed. When attached to different protein aggregates, this probe exhibited distinct fluorescence emission profiles. In a comparison with ThT, the fluorescence emission of non-ionic AmySP-4-Nap-Ene exhibits a significant difference between the presence of non-fibrillar and fibrillar IAPP and displays a higher binding affinity toward IAPP fibrils. Further, the AmySP-4-Nap-Ene can be utilized to monitor IAPP accumulating process and image fibrils both in vitro and in living cells.
Collapse
Affiliation(s)
- Pin-Han Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, ROC
| | - Chang-Shun Tsai
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan, ROC
| | - Chia-Chien Hsu
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan, ROC
| | - I-Ren Lee
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan, ROC; Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | - Yu-Xin Shen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan, ROC
| | - Hsiu-Fang Fan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 804201, Taiwan, ROC
| | - Yun-Wen Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan, ROC.
| | - Wei-Min Liu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, ROC.
| |
Collapse
|
47
|
Correa-Burrows P, Matamoros M, de Toro V, Zepeda D, Arriaza M, Burrows R. A Single-Point Insulin Sensitivity Estimator (SPISE) of 5.4 is a good predictor of both metabolic syndrome and insulin resistance in adolescents with obesity. Front Endocrinol (Lausanne) 2023; 14:1078949. [PMID: 36843603 PMCID: PMC9945119 DOI: 10.3389/fendo.2023.1078949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Background The Single-Point Insulin Sensitivity Estimator (SPISE) is a biomarker of insulin sensitivity estimated using BMI and triglycerides and high-density lipoprotein cholesterol. We assessed the accuracy of SPISE to screen obesity-related cardiometabolic risk in children and adolescents. Method Cross-sectional validation study for a screening test in a sample of n=725 children and adolescents from an obesity clinic. Weight, height, waist circumference, blood arterial pressure, lipid profile, glucose, insulin and Tanner stage were measured. BMI, BMI for-age-and sex (BAZ), and HOMA-IR were estimated. HOMA-IR values ≥2.1 and ≥3.3 were considered IR in Tanner I-II, ≥3.3 for Tanner III-IV and ≥2.6 for Tanner V, respectively. Metabolic Syndrome (MetS) was diagnosed with the Cook phenotype. SPISE was estimated according to the following algorithm: [600* HDL^0.185/(TG^0.2* BMI^1.338)]. The optimal SPISE cut points for IR and MetS prediction were determined by ROC curve analysis. Results In prepubertal obese patients (9.2 ± 2.1y; 18.4% males), the prevalence of IR and MetS was 28.2% y 46.9%, respectively; 58% had severe obesity (BAZ ≥4 SD). In pubertal obese patients (12.6 ± 1.8y; 57% males), the prevalence of IR and MetS was 34.1% and 55.3%, respectively; 34% had severe obesity. In prepubertal children, a SPISE of 6.3 showed the highest sensitivity (73.2%) and specificity (80%) to screen individuals with IR (AUC: 0.80; LR +: 3.3). Likewise, a SPISE of 5.7 got the highest sensitivity (82.6%) and specificity (86.1%) to screen patients with MetS (AUC: 0.87; LR +: 5.4). In pubertal patients, a SPISE of 5.4 showed the highest sensitivity and specificity to screen children and adolescents with both IR (Sn: 76.1%; Sp: 77.5%; AUC: 0.8; LR +: 3.1) and MetS (Sn: 90.4%; Sp: 76.1%; AUC: 0.90; LR +: 3.5). Conclusion In children and adolescents with obesity, SPISE has good or very good performance in predicting IR and MetS. SPISE may be considered a relatively simple and low-cost diagnosis tool that can be helpful to identify patients with greater biological risk. In adolescents with obesity, the same cut point allows identification of those at higher risk of both IR and MetS.
Collapse
Affiliation(s)
- Paulina Correa-Burrows
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Mariela Matamoros
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Valeria de Toro
- Departamento de Gastroenterología y Nutrición Pediátrica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diego Zepeda
- Instituto de Investigación Materno Infantil, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marta Arriaza
- Servicio de Pediatría, Hospital Gustavo Fricke, Viña del Mar, Chile
| | - Raquel Burrows
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
- Programa Clínico de Obesidad Infantil (POI), Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| |
Collapse
|
48
|
Zakaria H, Abusanana S, Mussa BM, Al Dhaheri AS, Stojanovska L, Mohamad MN, Saleh ST, Ali HI, Cheikh Ismail L. The Role of Lifestyle Interventions in the Prevention and Treatment of Gestational Diabetes Mellitus. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020287. [PMID: 36837488 PMCID: PMC9966224 DOI: 10.3390/medicina59020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Gestational diabetes mellitus (GDM) is one of the most common pregnancy-related endocrinopathies, affecting up to 25% of pregnancies globally. GDM increases the risk of perinatal and delivery complications, and the chance of developing type 2 diabetes mellitus and its complications, including cardiovascular diseases. This elevated risk is then passed on to the next generation, creating a cycle of metabolic dysfunction across generations. For many years, GDM preventive measures have had inconsistent results, but recent systematic reviews and meta-analyses have identified promising new preventative routes. This review aims to summarize the evidence investigating the efficacy of lifestyle treatments for the prevention of GDM and to summarize the effects of two lifestyle interventions, including physical activity and dietary interventions. Based on the present research, future studies should be conducted to investigate whether initiating lifestyle interventions during the preconception period is more beneficial in preventing GDM. In addition, research targeting pregnancy should be designed with a personalized approach. Therefore, studies should customize intervention approaches depending on the presence of modifiable and non-modifiable risk factors at the individual level.
Collapse
Affiliation(s)
- Hala Zakaria
- Clinical Science Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Salah Abusanana
- Clinical Science Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Diabetes and Endocrinology Department, University Hospital Sharjah, Sharjah 27272, United Arab Emirates
| | - Bashair M. Mussa
- Clinical Science Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ayesha S. Al Dhaheri
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Lily Stojanovska
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
| | - Maysm N. Mohamad
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Sheima T. Saleh
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Habiba I. Ali
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford OX1 2JD, UK
- Correspondence:
| |
Collapse
|
49
|
Blüher M, Malhotra A, Bader G. Beta-cell function in treatment-naïve patients with type 2 diabetes mellitus: Analyses of baseline data from 15 clinical trials. Diabetes Obes Metab 2023; 25:1403-1407. [PMID: 36594703 DOI: 10.1111/dom.14969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Affiliation(s)
- Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
50
|
Tsuchiya T, Saisho Y, Inaishi J, Sasaki H, Sato M, Nishikawa M, Masugi Y, Yamada T, Itoh H. Increased alpha cell to beta cell ratio in patients with pancreatic cancer. Endocr J 2022; 69:1407-1414. [PMID: 35934795 DOI: 10.1507/endocrj.ej22-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The development of pancreatic cancer (PC) is associated with worsening of glucose tolerance. However, there is limited information about the effects of PC on islet morphology. The aim of this study was to elucidate changes in alpha and beta cell mass in patients with PC. We enrolled 30 autopsy cases with death due to PC (9 with diabetes; DM) and 31 age- and BMI-matched autopsy cases without PC (controls, 12 with DM). Tumor-free pancreatic sections were stained for insulin and glucagon, and fractional beta cell (BCA) and alpha cell area (ACA) were quantified. In addition, expression of de-differentiation markers, i.e., ALDH1A3 and UCN3, was qualitatively evaluated. The pancreas of subjects with PC showed atrophic and fibrotic changes. There was no significant difference in BCA in subjects with PC compared to controls (1.53 ± 1.26% vs. 0.95 ± 0.42%, p = 0.07). However, ACA and ACA to BCA ratio were significantly higher in subjects with PC compared to controls (2.48 ± 2.39% vs. 0.53 ± 0.26% and 1.94 ± 1.93 vs. 0.59 ± 0.26, respectively, both p < 0.001). Increased ACA to BCA ratio was observed in subjects with PC irrespective of the presence of DM. Qualitative evaluation of ALDH1A3 and UCN3 expression showed no significant difference between the groups. In conclusion, in subjects with PC, alpha to beta cell mass ratio is increased, which may contribute to the increased risk of worsening glucose metabolism. Further studies are warranted to elucidate the mechanisms of increased alpha to beta cell mass in patients with PC.
Collapse
Affiliation(s)
- Tami Tsuchiya
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshifumi Saisho
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Saisho Diabetes Clinic, Tokyo 164-0001, Japan
| | - Jun Inaishi
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Center for Preventive Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hironobu Sasaki
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Center for Preventive Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Midori Sato
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masaru Nishikawa
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Taketo Yamada
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Pathology, Saitama Medical University, Saitama 350-0495, Japan
| | - Hiroshi Itoh
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|