1
|
Si X, Qian C, Qiu N, Wang Y, Yao M, Wang H, Zhang X, Xia J. Discovery of a novel DYRK1A inhibitor with neuroprotective activity by virtual screening and in vitro biological evaluation. Mol Divers 2025; 29:337-350. [PMID: 38833123 DOI: 10.1007/s11030-024-10856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 06/06/2024]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is implicated in accumulation of amyloid β-protein (Aβ) and phosphorylation of Tau proteins, and thus represents an important therapeutic target for neurodegenerative diseases. Though many DYRK1A inhibitors have been discovered, there is still no marketed drug targeting DYRK1A. This is partly due to the lack of effective and safe chemotypes. Therefore, it is still necessary to identify new classes of DYRK1A inhibitors. By performing virtual screening with the workflow mainly composed of pharmacophore modeling and molecular docking as well as the following DYRK1A inhibition assay, we identified compound L9, ((Z)-1-(((5-phenyl-1H-pyrazol-4-yl)methylene)-amino)-1H-tetrazol-5-amine), as a moderately active DYRK1A inhibitor (IC50: 1.67 μM). This compound was structurally different from the known DYRK1A inhibitors, showed a unique binding mode to DYRK1A. Furthermore, compound L9 showed neuroprotective activity against okadaic acid (OA)-induced injury in the human neuroblastoma cell line SH-SY5Y by regulating the expression of Aβ and phosphorylation of Tau protein. This compound was neither toxic to the SH-SY5Y cells nor to the human normal liver cell line HL-7702 (IC50: >100 μM). In conclusion, we have identified a novel DYRK1A inhibitor with neuroprotective activity through virtual screening and in vitro biological evaluation, which holds the promise for further study.
Collapse
Affiliation(s)
- Xinxin Si
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Chenliang Qian
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
| | - Nianzhuang Qiu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yaling Wang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
| | - Mingli Yao
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China
| | - Hao Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Xuehui Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 2 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
2
|
Gehlot P, Pathak R, Kumar S, Choudhary NK, Vyas VK. A review on synthetic inhibitors of dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A) for the treatment of Alzheimer's disease (AD). Bioorg Med Chem 2024; 113:117925. [PMID: 39357433 DOI: 10.1016/j.bmc.2024.117925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's disease (AD) is a complex disorder that is influenced by a number of variables, such as age, gender, environmental factors, disease, lifestyle, infections, and many more. The main characteristic of AD is the formation of amyloid plaque and neurofibrillary tangles (NFT), which are caused by various reasons such as inflammation, impairment of neurotransmitters, hyperphosphorylation of tau protein, generation of toxic amyloid beta (Aβ) 40/42, oxidative stress, etc. Protein kinases located in chromosome 21, namely dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A), play an essential role in the pathogenesis of AD. DYRK1A stimulates the Aβ peptide aggregation and phosphorylation of tau protein to generate the NFT formation that causes neurodegeneration. Thus, DYRK1A is associated with AD, and inhibition of DYRK1A has the potential to treat AD. In this review, we discussed the pathophysiology of AD, various factors responsible for AD, and the role of DYRK1A in AD. We have also discussed the latest therapeutic potential of DYRK1A inhibitors for neurogenerative disease, along with their structure-activity relationship (SAR) studies. This article provides valuable information for guiding the future discovery of novel and target-specific DYRK1A inhibitors over other kinases and their structural optimization to treat AD.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Rekha Pathak
- B R Nahata College of Pharmacy, Mandsaur University, Mandsaur 458001, Madhya Pradesh, India; Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Naveen Kumar Choudhary
- B R Nahata College of Pharmacy, Mandsaur University, Mandsaur 458001, Madhya Pradesh, India
| | - Vivek Kumar Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
3
|
Sant'Anna R, Robbs BK, de Freitas JA, Dos Santos PP, König A, Outeiro TF, Foguel D. The alpha-synuclein oligomers activate nuclear factor of activated T-cell (NFAT) modulating synaptic homeostasis and apoptosis. Mol Med 2023; 29:111. [PMID: 37596531 PMCID: PMC10439599 DOI: 10.1186/s10020-023-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Soluble oligomeric forms of alpha-synuclein (aSyn-O) are believed to be one of the main toxic species in Parkinson's disease (PD) leading to degeneration. aSyn-O can induce Ca2+ influx, over activating downstream pathways leading to PD phenotype. Calcineurin (CN), a phosphatase regulated by Ca2+ levels, activates NFAT transcription factors that are involved in the regulation of neuronal plasticity, growth, and survival. METHODS Here, using a combination of cell toxicity and gene regulation assays performed in the presence of classical inhibitors of the NFAT/CN pathway, we investigate NFAT's role in neuronal degeneration induced by aSyn-O. RESULTS aSyn-O are toxic to neurons leading to cell death, loss of neuron ramification and reduction of synaptic proteins which are reversed by CN inhibition with ciclosporin-A or VIVIT, a NFAT specific inhibitor. aSyn-O induce NFAT nuclear translocation and transactivation. We found that aSyn-O modulates the gene involved in the maintenance of synapses, synapsin 1 (Syn 1). Syn1 mRNA and protein and synaptic puncta are drastically reduced in cells treated with aSyn-O which are reversed by NFAT inhibition. CONCLUSIONS For the first time a direct role of NFAT in aSyn-O-induced toxicity and Syn1 gene regulation was demonstrated, enlarging our understanding of the pathways underpinnings synucleinopathies.
Collapse
Affiliation(s)
- Ricardo Sant'Anna
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil
| | - Bruno K Robbs
- Departamento de Ciência Básica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Nova Friburgo, RJ, 28625-650, Brazil
| | - Júlia Araújo de Freitas
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil
| | - Patrícia Pires Dos Santos
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany.
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| | - Debora Foguel
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil.
| |
Collapse
|
4
|
Armstrong NS, Frank CA. The calcineurin regulator Sarah enables distinct forms of homeostatic plasticity at the Drosophila neuromuscular junction. Front Synaptic Neurosci 2023; 14:1033743. [PMID: 36685082 PMCID: PMC9846150 DOI: 10.3389/fnsyn.2022.1033743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: The ability of synapses to maintain physiological levels of evoked neurotransmission is essential for neuronal stability. A variety of perturbations can disrupt neurotransmission, but synapses often compensate for disruptions and work to stabilize activity levels, using forms of homeostatic synaptic plasticity. Presynaptic homeostatic potentiation (PHP) is one such mechanism. PHP is expressed at the Drosophila melanogaster larval neuromuscular junction (NMJ) synapse, as well as other NMJs. In PHP, presynaptic neurotransmitter release increases to offset the effects of impairing muscle transmitter receptors. Prior Drosophila work has studied PHP using different ways to perturb muscle receptor function-either acutely (using pharmacology) or chronically (using genetics). Some of our prior data suggested that cytoplasmic calcium signaling was important for expression of PHP after genetic impairment of glutamate receptors. Here we followed up on that observation. Methods: We used a combination of transgenic Drosophila RNA interference and overexpression lines, along with NMJ electrophysiology, synapse imaging, and pharmacology to test if regulators of the calcium/calmodulin-dependent protein phosphatase calcineurin are necessary for the normal expression of PHP. Results: We found that either pre- or postsynaptic dysregulation of a Drosophila gene regulating calcineurin, sarah (sra), blocks PHP. Tissue-specific manipulations showed that either increases or decreases in sra expression are detrimental to PHP. Additionally, pharmacologically and genetically induced forms of expression of PHP are functionally separable depending entirely upon which sra genetic manipulation is used. Surprisingly, dual-tissue pre- and postsynaptic sra knockdown or overexpression can ameliorate PHP blocks revealed in single-tissue experiments. Pharmacological and genetic inhibition of calcineurin corroborated this latter finding. Discussion: Our results suggest tight calcineurin regulation is needed across multiple tissue types to stabilize peripheral synaptic outputs.
Collapse
Affiliation(s)
- Noah S. Armstrong
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
| | - C. Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, United States,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States,*Correspondence: C. Andrew Frank
| |
Collapse
|
5
|
Krivega M, Stiefel CM, Storchova Z. Consequences of chromosome gain: A new view on trisomy syndromes. Am J Hum Genet 2022; 109:2126-2140. [PMID: 36459979 PMCID: PMC9808507 DOI: 10.1016/j.ajhg.2022.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chromosome gains are detrimental for the development of the human embryo. As such, autosomal trisomies almost always result in spontaneous abortion, and the rare embryos surviving until live birth suffer from a plethora of pathological defects. There is no treatment currently available to ameliorate the consequences of trisomies, such as Down syndrome (trisomy of chromosome 21). Identifying the source of the phenotypes observed in cells with extra chromosomes is crucial for understanding the underlying molecular causes of trisomy syndromes. Although increased expression of the genes localized on the extra chromosome triggers several pathological phenotypes, an alternative model suggests that global, aneuploidy-associated changes in cellular physiology also contribute to the pathology. Here, we compare the molecular consequences of trisomy syndromes in vivo against engineered cell lines carrying various chromosome gains in vitro. We point out several phenotypes that are shared by variable trisomies and, therefore, might be caused by the presence of an extra chromosome per se, independent of its identity. This alternative view may provide useful insights for understanding Down syndrome pathology and open additional opportunities for diagnostics and treatments.
Collapse
Affiliation(s)
- Maria Krivega
- Reproduction Genetics, Department of Endocrinology and Infertility Disorders, Women Hospital, Heidelberg University, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany.
| | - Clara M Stiefel
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Zuzana Storchova
- Department of Molecular Genetics, Faculty of Biology, TU Kaiserslautern, Paul-Ehrlich-Str. 24, 67663 Kaiserslautern, Germany
| |
Collapse
|
6
|
Atas-Ozcan H, Brault V, Duchon A, Herault Y. Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Genes (Basel) 2021; 12:1833. [PMID: 34828439 PMCID: PMC8624927 DOI: 10.3390/genes12111833] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Down syndrome is the main cause of intellectual disabilities with a large set of comorbidities from developmental origins but also that appeared across life span. Investigation of the genetic overdosage found in Down syndrome, due to the trisomy of human chromosome 21, has pointed to one main driver gene, the Dual-specificity tyrosine-regulated kinase 1A (Dyrk1a). Dyrk1a is a murine homolog of the drosophila minibrain gene. It has been found to be involved in many biological processes during development and in adulthood. Further analysis showed its haploinsufficiency in mental retardation disease 7 and its involvement in Alzheimer's disease. DYRK1A plays a role in major developmental steps of brain development, controlling the proliferation of neural progenitors, the migration of neurons, their dendritogenesis and the function of the synapse. Several strategies targeting the overdosage of DYRK1A in DS with specific kinase inhibitors have showed promising evidence that DS cognitive conditions can be alleviated. Nevertheless, providing conditions for proper temporal treatment and to tackle the neurodevelopmental and the neurodegenerative aspects of DS across life span is still an open question.
Collapse
Affiliation(s)
- Helin Atas-Ozcan
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
- Université de Strasbourg, CNRS, INSERM, Celphedia, Phenomin-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
7
|
Côté V, Knoth IS, Agbogba K, Vannasing P, Côté L, Major P, Michaud JL, Barlaam F, Lippé S. Differential auditory brain response abnormalities in two intellectual disability conditions: SYNGAP1 mutations and Down syndrome. Clin Neurophysiol 2021; 132:1802-1812. [PMID: 34130248 DOI: 10.1016/j.clinph.2021.03.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/06/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Altered sensory processing is common in intellectual disability (ID). Here, we study electroencephalographic responses to auditory stimulation in human subjects presenting a rare condition (mutations in SYNGAP1) which causes ID, epilepsy and autism. METHODS Auditory evoked potentials, time-frequency and inter-trial coherence analyses were used to compare subjects with SYNGAP1 mutations with Down syndrome (DS) and neurotypical (NT) participants (N = 61 ranging from three to 19 years of age). RESULTS Altered synchronization in the brain responses to sound were found in both ID groups. The SYNGAP1 mutations group showed less phase-locking in early time windows and lower frequency bands compared to NT, and in later time windows compared to NT and DS. Time-frequency analysis showed more power in beta-gamma in the SYNGAP1 group compared to NT participants. CONCLUSIONS This study indicated reduced synchronization as well as more high frequencies power in SYNGAP1 mutations, while maintained synchronization was found in the DS group. These results might reflect dysfunctional sensory information processing caused by excitation/inhibition imbalance, or an imperfect compensatory mechanism in SYNGAP1 mutations individuals. SIGNIFICANCE Our study is the first to reveal brain response abnormalities in auditory sensory processing in SYNGAP1 mutations individuals, that are distinct from DS, another ID condition.
Collapse
Affiliation(s)
- Valérie Côté
- Department of Psychology, University of Montreal, Montreal, Québec, Canada; CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Inga S Knoth
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | | | | | - Lucie Côté
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Philippe Major
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Pediatrics and Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Jacques L Michaud
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Pediatrics and Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Fanny Barlaam
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Sarah Lippé
- Department of Psychology, University of Montreal, Montreal, Québec, Canada; CHU Sainte-Justine Research Center, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci 2021; 22:6047. [PMID: 34205123 PMCID: PMC8199962 DOI: 10.3390/ijms22116047] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.
Collapse
Affiliation(s)
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France;
| |
Collapse
|
9
|
Lee YH, Im E, Hyun M, Park J, Chung KC. Protein phosphatase PPM1B inhibits DYRK1A kinase through dephosphorylation of pS258 and reduces toxic tau aggregation. J Biol Chem 2021; 296:100245. [PMID: 33380426 PMCID: PMC7948726 DOI: 10.1074/jbc.ra120.015574] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 11/06/2022] Open
Abstract
Down syndrome (DS) is mainly caused by an extra copy of chromosome 21 (trisomy 21), and patients display a variety of developmental symptoms, including characteristic facial features, physical growth delay, intellectual disability, and neurodegeneration (i.e., Alzheimer's disease; AD). One of the pathological hallmarks of AD is insoluble deposits of neurofibrillary tangles (NFTs) that consist of hyperphosphorylated tau. The human DYRK1A gene is mapped to chromosome 21, and the protein is associated with the formation of inclusion bodies in AD. For example, DYRK1A directly phosphorylates multiple serine and threonine residues of tau, including Thr212. However, the mechanism underpinning DYRK1A involvement in Trisomy 21-related pathological tau aggregation remains unknown. Here, we explored a novel regulatory mechanism of DYRK1A and subsequent tau pathology through a phosphatase. Using LC-MS/MS technology, we analyzed multiple DYRK1A-binding proteins, including PPM1B, a member of the PP2C family of Ser/Thr protein phosphatases, in HEK293 cells. We found that PPM1B dephosphorylates DYRK1A at Ser258, contributing to the inhibition of DYRK1A activity. Moreover, PPM1B-mediated dephosphorylation of DYRK1A reduced tau phosphorylation at Thr212, leading to inhibition of toxic tau oligomerization and aggregation. In conclusion, our study demonstrates that DYRK1A autophosphorylates Ser258, the dephosphorylation target of PPM1B, and PPM1B negatively regulates DYRK1A activity. This finding also suggests that PPM1B reduces the toxic formation of phospho-tau protein via DYRK1A modulation, possibly providing a novel cellular protective mechanism to regulate toxic tau-mediated neuropathology in AD of DS.
Collapse
Affiliation(s)
- Ye Hyung Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Eunju Im
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Minju Hyun
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Joongkyu Park
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.
| |
Collapse
|
10
|
Rafii MS, Ances BM, Schupf N, Krinsky‐McHale SJ, Mapstone M, Silverman W, Lott I, Klunk W, Head E, Christian B, Lai F, Rosas HD, Zaman S, Petersen ME, Strydom A, Fortea J, Handen B, O'Bryant S. The AT(N) framework for Alzheimer's disease in adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12062. [PMID: 33134477 PMCID: PMC7588820 DOI: 10.1002/dad2.12062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
The National Institute on Aging in conjunction with the Alzheimer's Association (NIA-AA) recently proposed a biological framework for defining the Alzheimer's disease (AD) continuum. This new framework is based upon the key AD biomarkers (amyloid, tau, neurodegeneration, AT[N]) instead of clinical symptoms and represents the latest understanding that the pathological processes underlying AD begin decades before the manifestation of symptoms. By using these same biomarkers, individuals with Down syndrome (DS), who are genetically predisposed to developing AD, can also be placed more precisely along the AD continuum. The A/T(N) framework is therefore thought to provide an objective manner by which to select and enrich samples for clinical trials. This new framework is highly flexible and allows the addition of newly confirmed AD biomarkers into the existing AT(N) groups. As biomarkers for other pathological processes are validated, they can also be added to the AT(N) classification scheme, which will allow for better characterization and staging of AD in DS. These biological classifications can then be merged with clinical staging for an examination of factors that impact the biological and clinical progression of the disease. Here, we leverage previously published guidelines for the AT(N) framework to generate such a plan for AD among adults with DS.
Collapse
Affiliation(s)
- Michael S. Rafii
- Alzheimer's Therapeutic Research Institute (ATRI)Keck School of MedicineUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Beau M. Ances
- Center for Advanced Medicine NeuroscienceWashington University School of Medicine in St. LouisSt. LouisMissouriUSA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain/G.H. Sergievsky CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyNeurological Institute of New York, Columbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - Sharon J. Krinsky‐McHale
- Department of PsychologyNYS Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Mark Mapstone
- Department of NeurologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Wayne Silverman
- Department of PediatricsSchool of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Ira Lott
- Department of PediatricsSchool of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - William Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Elizabeth Head
- Department of PathologyGillespie Neuroscience Research Facility, University of CaliforniaIrvineCaliforniaUSA
| | - Brad Christian
- Department of Medical Physics and PsychiatryUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | - Florence Lai
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - H. Diana Rosas
- Departments of Neurology and RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Shahid Zaman
- Department of PsychiatrySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustFulbourn HospitalCambridgeUK
| | - Melissa E. Petersen
- Department of Family Medicine and Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Juan Fortea
- Sant Pau Memory UnitDepartment of NeurologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Benjamin Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sid O'Bryant
- Institute for Translational Research and Department of Pharmacology and NeuroscienceUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
11
|
Functional implications of miR-145/RCAN3 axis in the progression of cervical cancer. Reprod Biol 2020; 20:140-146. [PMID: 32345470 DOI: 10.1016/j.repbio.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
Cervical cancer, as the second leading cause of death in women malignant tumor, is not optimistic about survival rate and late recurrence rate. RCAN3 has been reported to function in a variety of diseases, but its relationship with cervical cancer has not been reported. This study aimed to investigate whether RCAN3 contributes to the development of cervical cancer and its mechanism. RCAN3 expression was analyzed in 306 cervical cancer tissues and 13 normal healthy tissues from TCGA and GTEX databases. Kaplan-Meier analysis and Cox regression analysis were carried out to assess the potential function of RCAN3. Subsequently, the upstream regulatory miRNA of RCAN3 was predicted by bioinformatics and confirmed using dual luciferase reporter assay. CCK-8, colony formation assay, transwell assay were used for functional analysis of miR-145/RCAN3 axis in vitro. The results showed that RCAN3 was highly expressed in cervical cancer tissues, leading to poor prognosis, and could be used as a prognostic factor for cervical cancer. MiR-145 directly targeted RCAN3, which was lowly expressed in cervical cancer tissues and cell lines, and the higher the miR-145 expression, the longer the survival time of patients. Finally, from the functional experiments results we can see that miR-145 can inhibit the proliferation, migration and invasion of cervical cancer cells, but overexpression of RCAN3 can reverse miR-145-mediated inhibition. To sum up, miR-145/RCAN3 axis may serve as a potential therapeutic target to regulate the progression of cervical cancer.
Collapse
|
12
|
Zhao C, Wang D, Gao Z, Kan H, Qiu F, Chen L, Li H. Licocoumarone induces BxPC-3 pancreatic adenocarcinoma cell death by inhibiting DYRK1A. Chem Biol Interact 2020; 316:108913. [PMID: 31838052 DOI: 10.1016/j.cbi.2019.108913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/23/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Protein kinases play an indispensable role in signaling pathways that regulate tumor cell functions, which represent potent therapeutic targets in cancers. Dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) as a serine/threonine kinase has recently been reported to be upregulated in pancreatic ductal adenocarcinoma (PDAC) and show protumorigenic effect. By activity-guided phytochemical investigation of the extracts from Glycyrrhiza uralensis Fisch, we expect to find the effective constituents that can suppress pancreatic cancer cell proliferation and/or induce cells apoptotic by inhibiting DYRK1A. Eight isopentenyl-substituted compounds (1-8), including four coumarins (1-4), one benzofuran (5), and three flavonoids (6-8), were isolated and identified from G. uralensis Fisch. Among them, licocoumarone (LC, 5) showed effective inhibitory activity against DYRK1A with an IC50 value of 12.56 μM. Molecular docking analysis suggested that LC completely occupied the whole pocket of DYRK1A and formed obvious hydrophobic interactions and hydrogen bonds with DYRK1A residues. Further in vitro validation, including Microscale Thermophoresis (MST) and drug affinity responsive target stability (DARTS) techniques, demonstrated the specific combining capacity of LC to DYRK1A. Meanwhile, LC induced significant cytotoxicity against DYRK1A-overexpressing BxPC-3 cells with an IC50 value of 50.77 μM. Mechanism studies revealed that LC reduced c-MET protein level by inhibiting DYRK1A. These findings provide preliminary evidences that LC as a natural DYRK1A inhibitor suppresses human pancreatic adenocarcinoma BxPC-3 cell proliferation and induces cell apoptotic, which might present new options and possibilities for targeted therapies in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Chao Zhao
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dun Wang
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zexuan Gao
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hongfeng Kan
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feng Qiu
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Lixia Chen
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Zhang H, Liu L, Tian J. Molecular mechanisms of congenital heart disease in down syndrome. Genes Dis 2019; 6:372-377. [PMID: 31832516 PMCID: PMC6889238 DOI: 10.1016/j.gendis.2019.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS), as a typical genomic aneuploidy, is a common cause of various birth defects, among which is congenital heart disease (CHD). 40-60% neonates with DS have some kinds of CHD. However, the molecular pathogenic mechanisms of DS associated CHD are still not fully understood. This review summarizes available studies on DS associated CHD from seven aspects so as to provide a crucial and updated overview of what we known so far in this domain.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Lingjuan Liu
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - Jie Tian
- Department of Cardiology, Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| |
Collapse
|
14
|
Latour A, Gu Y, Kassis N, Daubigney F, Colin C, Gausserès B, Middendorp S, Paul JL, Hindié V, Rain JC, Delabar JM, Yu E, Arbones M, Mallat M, Janel N. LPS-Induced Inflammation Abolishes the Effect of DYRK1A on IkB Stability in the Brain of Mice. Mol Neurobiol 2019; 56:963-975. [PMID: 29850989 DOI: 10.1007/s12035-018-1113-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/09/2018] [Indexed: 12/21/2022]
Abstract
Down syndrome is characterized by premature aging and dementia with neurological features that mimic those found in Alzheimer's disease. This pathology in Down syndrome could be related to inflammation, which plays a role in other neurodegenerative diseases. We previously found a link between the NFkB pathway, long considered a prototypical proinflammatory signaling pathway, and the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). DYRK1A is associated with early onset of Alzheimer's disease in Down syndrome patients. Here, we sought to determine the role of DYRK1A on regulation of the NFkB pathway in the mouse brain. We found that over-expression of Dyrk1A (on a C57BL/6J background) stabilizes IκBα protein levels by inhibition of calpain activity and increases cytoplasmic p65 sequestration in the mouse brain. In contrast, Dyrk1A-deficient mice (on a CD1 background) have decreased IκBα protein levels with an increased calpain activity and decreased cytoplasmic p65 sequestration in the brain. Taken together, our results demonstrate a role of DYRK1A in regulation of the NFkB pathway. However, decreased IκBα and DYRK1A protein levels associated with an increased calpain activity were found in the brains of mice over-expressing Dyrk1A after lipopolysaccharide treatment. Although inflammation induced by lipopolysaccharide treatment has a positive effect on calpastatin and a negative effect on DYRK1A protein level, a positive effect on microglial activation is maintained in the brains of mice over-expressing Dyrk1A.
Collapse
Affiliation(s)
- Alizée Latour
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Yuchen Gu
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Nadim Kassis
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Fabrice Daubigney
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Catherine Colin
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Blandine Gausserès
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Sandrine Middendorp
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, 75015, Paris, France
| | | | | | - Jean-Maurice Delabar
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France
| | - Eugene Yu
- Children's Guild Foundation Down Syndrome Research Program, Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Mariona Arbones
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
- Institut de Biologia Molecular de Barcelona (IBMB), 08028, Barcelona, Spain
| | - Michel Mallat
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Nathalie Janel
- Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), Université Paris Diderot, UMR 8251, 75205, Paris, France.
- Laboratoire BFA, Université Paris Diderot - Paris 7, Case 7104, 3 rue Marie-Andrée Lagroua Weill Hallé, 75205, Paris Cedex 13, France.
| |
Collapse
|
15
|
Rotter D, Peiris H, Grinsfelder DB, Martin AM, Burchfield J, Parra V, Hull C, Morales CR, Jessup CF, Matusica D, Parks BW, Lusis AJ, Nguyen NUN, Oh M, Iyoke I, Jakkampudi T, McMillan DR, Sadek HA, Watt MJ, Gupta RK, Pritchard MA, Keating DJ, Rothermel BA. Regulator of Calcineurin 1 helps coordinate whole-body metabolism and thermogenesis. EMBO Rep 2018; 19:embr.201744706. [PMID: 30389725 DOI: 10.15252/embr.201744706] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/12/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing non-shivering thermogenesis (NST), which expends calories as heat rather than storing them as fat, is championed as an effective way to combat obesity and metabolic disease. Innate mechanisms constraining the capacity for NST present a fundamental limitation to this approach, yet are not well understood. Here, we provide evidence that Regulator of Calcineurin 1 (RCAN1), a feedback inhibitor of the calcium-activated protein phosphatase calcineurin (CN), acts to suppress two distinctly different mechanisms of non-shivering thermogenesis (NST): one involving the activation of UCP1 expression in white adipose tissue, the other mediated by sarcolipin (SLN) in skeletal muscle. UCP1 generates heat at the expense of reducing ATP production, whereas SLN increases ATP consumption to generate heat. Gene expression profiles demonstrate a high correlation between Rcan1 expression and metabolic syndrome. On an evolutionary timescale, in the context of limited food resources, systemic suppression of prolonged NST by RCAN1 might have been beneficial; however, in the face of caloric abundance, RCAN1-mediated suppression of these adaptive avenues of energy expenditure may now contribute to the growing epidemic of obesity.
Collapse
Affiliation(s)
- David Rotter
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heshan Peiris
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - D Bennett Grinsfelder
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alyce M Martin
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Jana Burchfield
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Valentina Parra
- Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS) and Center for Exercise Metabolism and Cancer (CEMC), University of Chile, Santiago, Chile
| | - Christi Hull
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cyndi R Morales
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Claire F Jessup
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ngoc Uyen Nhi Nguyen
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Misook Oh
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Chemistry, Pohang University of Science and Technology, Pohang, South Korea
| | - Israel Iyoke
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tanvi Jakkampudi
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D Randy McMillan
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Children's Medical Centre, Dallas, TX, USA
| | - Hesham A Sadek
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew J Watt
- The Department of Physiology and Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, Monash University, Clayton, Vic., Australia
| | - Rana K Gupta
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melanie A Pritchard
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Vic., Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia .,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Beverly A Rothermel
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA .,Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| |
Collapse
|
16
|
Genotype-phenotype correlation for congenital heart disease in Down syndrome through analysis of partial trisomy 21 cases. Genomics 2017. [PMID: 28648597 DOI: 10.1016/j.ygeno.2017.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Among Down syndrome (DS) children, 40-50% have congenital heart disease (CHD). Although trisomy 21 is not sufficient to cause CHD, three copies of at least part of chromosome 21 (Hsa21) increases the risk for CHD. In order to establish a genotype-phenotype correlation for CHD in DS, we built an integrated Hsa21 map of all described partial trisomy 21 (PT21) cases with sufficient indications regarding presence or absence of CHD (n=107), focusing on DS PT21 cases. We suggest a DS CHD candidate region on 21q22.2 (0.96Mb), being shared by most PT21 cases with CHD and containing three known protein-coding genes (DSCAM, BACE2, PLAC4) and four known non-coding RNAs (DSCAM-AS1, DSCAM-IT1, LINC00323, MIR3197). The characterization of a DS CHD candidate region provides a useful approach to identify specific genes contributing to the pathology and to orient further investigations and possibly more effective therapy in relation to the multifactorial pathogenesis of CHD.
Collapse
|
17
|
Han KA, Yoo L, Sung JY, Chung SA, Um JW, Kim H, Seol W, Chung KC. Leucine-Rich Repeat Kinase 2 (LRRK2) Stimulates IL-1β-Mediated Inflammatory Signaling through Phosphorylation of RCAN1. Front Cell Neurosci 2017; 11:125. [PMID: 28553204 PMCID: PMC5425608 DOI: 10.3389/fncel.2017.00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a Ser/Thr kinase having mixed lineage kinase-like and GTPase domains, controlling neurite outgrowth and neuronal cell death. Evidence suggests that LRRK2 is involved in innate immune response signaling, but the underlying mechanism is yet unknown. A novel protein inhibitor of phosphatase 3B, RCAN1, is known to positively regulate inflammatory signaling through modulation of several intracellular targets of interleukins in immune cells. In the present study, we report that LRRK2 phosphorylates RCAN1 (RCAN1-1S) and is markedly up-regulated during interleukin-1β (IL-1β) treatment. During IL-1β treatment, LRRK2-mediated phosphorylation of RCAN1 promoted the formation of protein complexes, including that between Tollip and RCAN1. LRRK2 decreased binding between Tollip and IRAK1, which was accompanied by increased formation of the IRAK1-TRAF6 complex. TAK1 activity was significantly enhanced by LRRK2. Furthermore, LRRK2 enhanced transcriptional activity of NF-κB and cytokine IL-8 production. These findings suggest that LRRK2 might be important in positively modulating IL-1β-mediated signaling through selective phosphorylation of RCAN1.
Collapse
Affiliation(s)
- Kyung A Han
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| | - Lang Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| | - Jee Y Sung
- Center for Pediatric Oncology, National Cancer CenterGoyang-si, South Korea
| | - Sun A Chung
- Department of Food and Nutrition, College of Human Ecology, Yonsei UniversitySeoul, South Korea
| | - Ji W Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu, South Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei UniversitySeoul, South Korea
| | - Wongi Seol
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang UniversityGunpo-si, South Korea
| | - Kwang C Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| |
Collapse
|
18
|
Oi A, Katayama S, Hatano N, Sugiyama Y, Kameshita I, Sueyoshi N. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A). Biochem Biophys Res Commun 2017; 482:239-245. [PMID: 27840050 DOI: 10.1016/j.bbrc.2016.11.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/09/2016] [Indexed: 11/28/2022]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed a typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization.
Collapse
Affiliation(s)
- Ami Oi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Syouichi Katayama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan; Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Naoya Hatano
- The Integrated Center for Mass Spectrometry, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Yasunori Sugiyama
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan.
| |
Collapse
|
19
|
Cen L, Xiao Y, Wei L, Mo M, Chen X, Li S, Yang X, Huang Q, Qu S, Pei Z, Xu P. Association of DYRK1A polymorphisms with sporadic Parkinson's disease in Chinese Han population. Neurosci Lett 2016; 632:39-43. [PMID: 27546826 DOI: 10.1016/j.neulet.2016.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/06/2016] [Accepted: 08/13/2016] [Indexed: 11/25/2022]
Abstract
α-Synuclein plays important roles in the development of Parkinson's disease (PD) pathologies. The dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) has a wide range of phosphorylation targets including α-synuclein. Posphorylated α-synuclein is more neurotoxic to dopamine (DA) neurons, but little is known about the genetic variation of DYRK1A in patients with PD. The present investigation aimed to explore the possible association of DYRK1A gene with PD in Chinese Han population. A total of 268 PD patients and 268 healthy-matched individuals in Chinese Han population were enrolled. Genotyping of rs8126696, rs2835740, and rs1137600 single nucleotide polymorphisms (SNPs) were performed on the Sequenom MassARRAY platform. Results revealed TT genotype in SNP rs8126696 denoted a significant difference between PD patients and controls (OR=1.710, 95% CI=1.116-2.619, P=0.014), and the frequency of rs8126696 TT genotype was significantly higher in male PD patients than male controls (OR=2.012, 95%CI: 1.125-3.599, p=0.018). The genotypes in rs2835740 and rs1137600 showed no significant difference between PD patients and controls. These results suggest that TT genotype derived from SNP rs8126696 of DYRK1A gene is a possible risk factor for sporadic PD, especially for males in this Chinese Han population.
Collapse
Affiliation(s)
- Luan Cen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
| | - Lei Wei
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, 510080, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, 510120, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shaomin Li
- Ann Romney Center for Neurologic Disease, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xingling Yang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China.
| | - Qinghui Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, 510120, China
| | - Shaogang Qu
- Department of Blood Transfusion, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510900, China
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangdong, 510120, China.
| |
Collapse
|
20
|
Galambos C, Minic AD, Bush D, Nguyen D, Dodson B, Seedorf G, Abman SH. Increased Lung Expression of Anti-Angiogenic Factors in Down Syndrome: Potential Role in Abnormal Lung Vascular Growth and the Risk for Pulmonary Hypertension. PLoS One 2016; 11:e0159005. [PMID: 27487163 PMCID: PMC4972384 DOI: 10.1371/journal.pone.0159005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/24/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND AIMS Infants with Down syndrome (DS) or Trisomy 21, are at high risk for developing pulmonary arterial hypertension (PAH), but mechanisms that increase susceptibility are poorly understood. Laboratory studies have shown that early disruption of angiogenesis during development impairs vascular and alveolar growth and causes PAH. Human chromosome 21 encodes known anti-angiogenic factors, including collagen18a1 (endostatin, ES), ß-amyloid peptide (BAP) and Down Syndrome Critical Region 1 (DSCR-1). Therefore, we hypothesized that fetal lungs from subjects with DS are characterized by early over-expression of anti-angiogenic factors and have abnormal lung vascular growth in utero. METHODS Human fetal lung tissue from DS and non-DS subjects were obtained from a biorepository. Quantitative reverse transcriptase PCR (qRT-PCR) was performed to assay 84 angiogenesis-associated genes and individual qRT-PCR was performed for ES, amyloid protein precursor (APP) and DSCR1. Western blot analysis (WBA) was used to assay lung ES, APP and DSCR-1 protein contents. Lung vessel density and wall thickness were determined by morphometric analysis. RESULTS The angiogenesis array identified up-regulation of three anti-angiogenic genes: COL18A1 (ES), COL4A3 (tumstatin) and TIMP3 (tissue inhibitor of metallopeptidase 3) in DS lungs. Single qRT-PCR and WBA showed striking elevations of ES and APP mRNA (p = 0.022 and p = 0.001) and protein (p = 0.040 and p = 0.002; respectively). Vessel density was reduced (p = 0.041) and vessel wall thickness was increased in DS lung tissue (p = 0.033) when compared to non-DS subjects. CONCLUSIONS We conclude that lung anti-angiogenic factors, including COL18A1 (ES), COL4A3, TIMP3 and APP are over-expressed and fetal lung vessel growth is decreased in subjects with DS. We speculate that increased fetal lung anti-angiogenic factor expression due to trisomy 21 impairs lung vascular growth and signaling, which impairs alveolarization and contributes to high risk for PAH during infancy.
Collapse
Affiliation(s)
- Csaba Galambos
- Departments of Pathology and Laboratory Medicine, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, United States of America
- The Pediatric Heart Lung Center, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, United States of America
- * E-mail:
| | - Angela D. Minic
- Departments of Pathology and Laboratory Medicine, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, United States of America
- The Pediatric Heart Lung Center, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, United States of America
| | - Douglas Bush
- Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, United States of America
- The Pediatric Heart Lung Center, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, United States of America
| | - Dominique Nguyen
- University of Notre Dame, South Bend, Indiana, United States of America
| | - Blair Dodson
- Pediatric Surgery, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, United States of America
- The Pediatric Heart Lung Center, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, United States of America
| | - Gregory Seedorf
- The Pediatric Heart Lung Center, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, United States of America
| | - Steven H. Abman
- Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, United States of America
- The Pediatric Heart Lung Center, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, United States of America
| |
Collapse
|
21
|
Effects of sarah/nebula knockdown on Aβ42-induced phenotypes during Drosophila development. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0407-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Stotani S, Giordanetto F, Medda F. DYRK1A inhibition as potential treatment for Alzheimer's disease. Future Med Chem 2016; 8:681-96. [PMID: 27073990 DOI: 10.4155/fmc-2016-0013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
In total, 47,500,000 people worldwide are affected by dementia and this number is estimated to double by 2030 and triple within 2050 resulting in a huge burden on public health. Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia, accounting for 60-70% of all the cases. The cause of AD is still poorly understood but several brain abnormalities (e.g., loss of neuronal connections and neuronal death) have been identified in affected patients. In addition to the accumulation of β-amyloid plaques in the brain tissue, aberrant phosphorylation of tau proteins has proved to increase neuronal death. DYRK1A phosphorylates tau on 11 different Ser/Thr residues, resulting in the formation of aggregates called 'neurofibrillary tangles' which, together with amyloid plaques, could be responsible for dementia, neuronal degeneration and cell death. Small molecule inhibition of DYRK1A could thus represent an interesting approach toward the treatment of Alzheimer's and other neurodegenerative diseases. Herein we review the current progress in the identification and development of DYRK1A inhibitors.
Collapse
Affiliation(s)
- Silvia Stotani
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
| | - Fabrizio Giordanetto
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
- DE Shaw Research, 120W 45th Street, New York, NY 10036, USA
| | - Federico Medda
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
| |
Collapse
|
23
|
Zmijewski PA, Gao LY, Saxena AR, Chavannes NK, Hushmendy SF, Bhoiwala DL, Crawford DR. Fish oil improves gene targets of Down syndrome in C57BL and BALB/c mice. Nutr Res 2015; 35:440-8. [DOI: 10.1016/j.nutres.2015.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 01/26/2023]
|
24
|
Hong A, Lee JE, Chung KWANGCHUL. Ubiquitin-specific protease 22 (USP22) positively regulates RCAN1 protein levels through RCAN1 de-ubiquitination. J Cell Physiol 2015; 230:1651-60. [DOI: 10.1002/jcp.24917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/18/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Ahyoung Hong
- Department of Systems Biology; College of Life Science and Biotechnology; Yonsei University; Seoul Republic of Korea
| | - Ji Eun Lee
- Department of Systems Biology; College of Life Science and Biotechnology; Yonsei University; Seoul Republic of Korea
| | - KWANG CHUL Chung
- Department of Systems Biology; College of Life Science and Biotechnology; Yonsei University; Seoul Republic of Korea
| |
Collapse
|
25
|
Weitzdoerfer R, Toran N, Subramaniyan S, Pollak A, Dierssen M, Lubec G. A cluster of protein kinases and phosphatases modulated in fetal Down syndrome (trisomy 21) brain. Amino Acids 2015; 47:1127-34. [PMID: 25740605 DOI: 10.1007/s00726-015-1941-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/29/2023]
Abstract
Down syndrome (DS; trisomy 21) is the most frequent cause of mental retardation with major cognitive and behavioral deficits. Although a series of aberrant biochemical pathways has been reported, work on signaling proteins is limited. It was, therefore, the aim of the study to test a selection of protein kinases and phosphatases known to be essential for memory and learning mechanisms in fetal DS brain. 12 frontal cortices from DS brain were compared to 12 frontal cortices from controls obtained at legal abortions. Proteins were extracted from brains and western blotting with specific antibodies was carried out. Primary results were used for networking (IntAct Molecular Interaction Database) and individual predicted pathway components were subsequently quantified by western blotting. Levels of calcium-calmodulin kinase II alpha, transforming growth factor beta-activated kinase 1 as well as phosphatase and tensin homolog (PTEN) were reduced in cortex of DS subjects and network generation pointed to interaction between PTEN and the dendritic spine protein drebrin that was subsequently determined and reduced levels were observed. The findings of reduced levels of cognitive-function-related protein kinases and the phosphatase may be relevant for interpretation of previous work and may be useful for the design of future studies on signaling in DS brain. Moreover, decreased drebrin levels may point to dendritic spine abnormalities.
Collapse
Affiliation(s)
- Rachel Weitzdoerfer
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
26
|
Clift DE, Thorn RJ, Passarelli EA, Kapoor M, LoPiccolo MK, Richendrfer HA, Colwill RM, Creton R. Effects of embryonic cyclosporine exposures on brain development and behavior. Behav Brain Res 2015; 282:117-24. [PMID: 25591474 DOI: 10.1016/j.bbr.2015.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022]
Abstract
Cyclosporine, a calcineurin inhibitor, is successfully used as an immunosuppressant in transplant medicine. However, the use of this pharmaceutical during pregnancy is concerning since calcineurin is thought to play a role in neural development. The risk for human brain development is difficult to evaluate because of a lack of basic information on the sensitive developmental times and the potentially pleiotropic effects on brain development and behavior. In the present study, we use zebrafish as a model system to examine the effects of embryonic cyclosporine exposures. Early embryonic exposures reduced the size of the eyes and brain. Late embryonic exposures did not affect the size of the eyes or brain, but did lead to substantial behavioral defects at the larval stages. The cyclosporine-exposed larvae displayed a reduced avoidance response to visual stimuli, low swim speeds, increased resting, an increase in thigmotaxis, and changes in the average distance between larvae. Similar results were obtained with the calcineurin inhibitor FK506, suggesting that most, but not all, effects on brain development and behavior are mediated by calcineurin inhibition. Overall, the results show that cyclosporine can induce either structural or functional brain defects, depending on the exposure window. The observed functional brain defects highlight the importance of quantitative behavioral assays when evaluating the risk of developmental exposures.
Collapse
Affiliation(s)
- Danielle E Clift
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Robert J Thorn
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Emily A Passarelli
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Mrinal Kapoor
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Mary K LoPiccolo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Holly A Richendrfer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ruth M Colwill
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
27
|
Histone deacetylase 3 promotes RCAN1 stability and nuclear translocation. PLoS One 2014; 9:e105416. [PMID: 25144594 PMCID: PMC4140772 DOI: 10.1371/journal.pone.0105416] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022] Open
Abstract
Regulator of calcineurin 1 (RCAN1; also referred as DSCR1 or MCIP1) is located in close proximity to a Down syndrome critical region of human chromosome 21. Although RCAN1 is an endogenous inhibitor of calcineurin signaling that controls lymphocyte activation, apoptosis, heart development, skeletal muscle differentiation, and cardiac function, it is not yet clear whether RCAN1 might be involved in other cellular activities. In this study, we explored the extra-functional roles of RCAN1 by searching for novel RCAN1-binding partners. Using a yeast two-hybrid assay, we found that RCAN1 (RCAN1-1S) interacts with histone deacetylase 3 (HDAC3) in mammalian cells. We also demonstrate that HDAC3 deacetylates RCAN1. In addition, HDAC3 increases RCAN1 protein stability by inhibiting its poly-ubiquitination. Furthermore, HDAC3 promotes RCAN1 nuclear translocation. These data suggest that HDAC3, a new binding regulator of RCAN1, affects the protein stability and intracellular localization of RCAN1.
Collapse
|
28
|
Chen CK, Bregere C, Paluch J, Lu J, Dickman DK, Chang KT. Activity-dependent facilitation of Synaptojanin and synaptic vesicle recycling by the Minibrain kinase. Nat Commun 2014; 5:4246. [PMID: 24977345 PMCID: PMC4183159 DOI: 10.1038/ncomms5246] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/28/2014] [Indexed: 01/22/2023] Open
Abstract
Phosphorylation has emerged as a crucial regulatory mechanism in the nervous system to integrate the dynamic signalling required for proper synaptic development, function and plasticity, particularly during changes in neuronal activity. Here we present evidence that Minibrain (Mnb; also known as Dyrk1A), a serine/threonine kinase implicated in autism spectrum disorder and Down syndrome, is required presynaptically for normal synaptic growth and rapid synaptic vesicle endocytosis at the Drosophila neuromuscular junction (NMJ). We find that Mnb-dependent phosphorylation of Synaptojanin (Synj) is required, in vivo, for complex endocytic protein interactions and to enhance Synj activity. Neuronal stimulation drives Mnb mobilization to endocytic zones and triggers Mnb-dependent phosphorylation of Synj. Our data identify Mnb as a synaptic kinase that promotes efficient synaptic vesicle recycling by dynamically calibrating Synj function at the Drosophila NMJ, and in turn endocytic capacity, to adapt to conditions of high synaptic activity.
Collapse
Affiliation(s)
- Chun-Kan Chen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, CA 90089
- Dept. of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, CA 90089
| | - Catherine Bregere
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, CA 90089
| | - Jeremy Paluch
- Dept. of Neurobiology, University of Southern California, CA 90089
| | - Jason Lu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, CA 90089
| | - Dion K. Dickman
- Dept. of Neurobiology, University of Southern California, CA 90089
| | - Karen T. Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, CA 90089
- Dept. of Cell & Neurobiology, Keck School of Medicine, University of Southern California, CA 90089
| |
Collapse
|
29
|
Serrano-Candelas E, Farré D, Aranguren-Ibáñez Á, Martínez-Høyer S, Pérez-Riba M. The vertebrate RCAN gene family: novel insights into evolution, structure and regulation. PLoS One 2014; 9:e85539. [PMID: 24465593 PMCID: PMC3896409 DOI: 10.1371/journal.pone.0085539] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/04/2013] [Indexed: 12/30/2022] Open
Abstract
Recently there has been much interest in the Regulators of Calcineurin (RCAN) proteins which are important endogenous modulators of the calcineurin-NFATc signalling pathway. They have been shown to have a crucial role in cellular programmes such as the immune response, muscle fibre remodelling and memory, but also in pathological processes such as cardiac hypertrophy and neurodegenerative diseases. In vertebrates, the RCAN family form a functional subfamily of three members RCAN1, RCAN2 and RCAN3 whereas only one RCAN is present in the rest of Eukarya. In addition, RCAN genes have been shown to collocate with RUNX and CLIC genes in ACD clusters (ACD21, ACD6 and ACD1). How the RCAN genes and their clustering in ACDs evolved is still unknown. After analysing RCAN gene family evolution using bioinformatic tools, we propose that the three RCAN vertebrate genes within the ACD clusters, which evolved from single copy genes present in invertebrates and lower eukaryotes, are the result of two rounds of whole genome duplication, followed by a segmental duplication. This evolutionary scenario involves the loss or gain of some RCAN genes during evolution. In addition, we have analysed RCAN gene structure and identified the existence of several characteristic features that can be involved in RCAN evolution and gene expression regulation. These included: several transposable elements, CpG islands in the 5′ region of the genes, the existence of antisense transcripts (NAT) associated with the three human genes, and considerable evidence for bidirectional promoters that regulate RCAN gene expression. Furthermore, we show that the CpG island associated with the RCAN3 gene promoter is unmethylated and transcriptionally active. All these results provide timely new insights into the molecular mechanisms underlying RCAN function and a more in depth knowledge of this gene family whose members are obvious candidates for the development of future therapies.
Collapse
Affiliation(s)
- Eva Serrano-Candelas
- Cancer and Human Molecular Genetics Department, Bellvitge Biomedical Research Institute – IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Domènec Farré
- Biological Aggression and Response Mechanisms Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer – IDIBAPS, Barcelona, Spain
| | - Álvaro Aranguren-Ibáñez
- Cancer and Human Molecular Genetics Department, Bellvitge Biomedical Research Institute – IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Sergio Martínez-Høyer
- Cancer and Human Molecular Genetics Department, Bellvitge Biomedical Research Institute – IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Mercè Pérez-Riba
- Cancer and Human Molecular Genetics Department, Bellvitge Biomedical Research Institute – IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
- * E-mail:
| |
Collapse
|
30
|
Gimeno A, García-Giménez JL, Audí L, Toran N, Andaluz P, Dasí F, Viña J, Pallardó FV. Decreased cell proliferation and higher oxidative stress in fibroblasts from Down Syndrome fetuses. Preliminary study. Biochim Biophys Acta Mol Basis Dis 2014; 1842:116-25. [DOI: 10.1016/j.bbadis.2013.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 10/25/2013] [Accepted: 10/27/2013] [Indexed: 01/03/2023]
|
31
|
Park J, Chung KC. New Perspectives of Dyrk1A Role in Neurogenesis and Neuropathologic Features of Down Syndrome. Exp Neurobiol 2013; 22:244-8. [PMID: 24465139 PMCID: PMC3897685 DOI: 10.5607/en.2013.22.4.244] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 01/28/2023] Open
Abstract
Down syndrome (DS) is one of the most common genetic disorders accompanying with mental retardation, cognitive impairment, and deficits in learning and memory. The brains with DS also display many neuropathological features including alteration in neurogenesis and synaptogenesis and early onset of Alzheimer's disease (AD)-like symptoms. Triplication of all or a part of human chromosome 21, especially the 21q22.1~21q22.3 region called 'Down syndrome critical region (DSCR)', has been considered as the main cause of DS. One gene product of DSCR, dual-specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A), has been highlighted as a key contributor to the neural consequences of DS. This minireview summarizes accumulating recent reports about Dyrk1A involvement in the neuritogenesis, synaptogenesis, and AD-like neurofibrillary tangle formation, which is mainly focusing on Dyrk1A-mediated regulation of cytoskeletal proteins, such as tubulin, actin, and microtubule-associated protein tau. Understanding the molecular mechanisms of these phenomena may provide us a rational for new preventive and therapeutic treatment of DS.
Collapse
Affiliation(s)
- Joongkyu Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea. ; Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
32
|
Gourdain S, Dairou J, Denhez C, Bui LC, Rodrigues-Lima F, Janel N, Delabar JM, Cariou K, Dodd RH. Development of DANDYs, new 3,5-diaryl-7-azaindoles demonstrating potent DYRK1A kinase inhibitory activity. J Med Chem 2013; 56:9569-85. [PMID: 24188002 DOI: 10.1021/jm401049v] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series of 3,5-diaryl-1H-pyrrolo[2,3-b]pyridines were synthesized and evaluated for inhibition of DYRKIA kinase in vitro. Derivatives having hydroxy groups on the aryl moieties (2c, 2j-l) demonstrated high inhibitory potencies with Kis in the low nanomolar range. Their methoxy analogues were up to 100 times less active. Docking studies at the ATP binding site suggested that these compounds bind tightly to this site via a network of multiple H-bonds with the peptide backbone. None of the active compounds were cytotoxic to KB cells at 10(-6) M. Kinase profiling revealed that compound 2j showed 2-fold selectivity for DYRK1A with respect to DYRK2 and DYRK3.
Collapse
Affiliation(s)
- Stéphanie Gourdain
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, UPR 2301, CNRS , Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Stefos GC, Soppa U, Dierssen M, Becker W. NGF upregulates the plasminogen activation inhibitor-1 in neurons via the calcineurin/NFAT pathway and the Down syndrome-related proteins DYRK1A and RCAN1 attenuate this effect. PLoS One 2013; 8:e67470. [PMID: 23825664 PMCID: PMC3692457 DOI: 10.1371/journal.pone.0067470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/18/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Plasminogen activator inhibitor 1 (PAI-1) is a key regulator of the plasminogen activation system. Although several lines of evidence support a significant role of PAI-1 in the brain, the regulation of its expression in neurons is poorly understood. In the present study we tested the hypothesis that NGF induces the upregulation of PAI-1 via the calcineurin/nuclear factor of activated T cells (NFAT) pathway and analysed whether the overexpression of the Down syndrome-related proteins DYRK1A and RCAN1 modulated the effect of NGF on PAI-1 expression. RESULTS NGF upregulated PAI-1 mRNA levels in primary mouse hippocampal neurons cultured for 3 days in vitro and in the rat pheochromocytoma cell line PC12. Reporter gene assays revealed that NGF activated the calcineurin/NFAT pathway in PC12 cells. Induction of PAI-1 by NGF was sensitive to the calcineurin inhibitor FK506 and the specific inhibition of NFAT activation by the cell permeable VIVIT peptide. Activation of calcineurin/NFAT signalling through other stimuli resulted in a much weaker induction of PAI-1 expression, suggesting that other NGF-induced pathways are involved in PAI-1 upregulation. Overexpression of either DYRK1A or RCAN1 negatively regulated NFAT-dependent transcriptional activity and reduced the upregulation of PAI-1 levels by NGF. CONCLUSION The present results show that the calcineurin/NFAT pathway mediates the upregulation of PAI-1 by NGF. The negative effect of DYRK1A and RCAN1 overexpression on NGF signal transduction in neural cells may contribute to the altered neurodevelopment and brain function in Down syndrome.
Collapse
Affiliation(s)
- Georgios C Stefos
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.
| | | | | | | |
Collapse
|
34
|
Bushman DM, Chun J. The genomically mosaic brain: aneuploidy and more in neural diversity and disease. Semin Cell Dev Biol 2013; 24:357-369. [PMID: 23466288 PMCID: PMC3637860 DOI: 10.1016/j.semcdb.2013.02.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/25/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
Genomically identical cells have long been assumed to comprise the human brain, with post-genomic mechanisms giving rise to its enormous diversity, complexity, and disease susceptibility. However, the identification of neural cells containing somatically generated mosaic aneuploidy - loss and/or gain of chromosomes from a euploid complement - and other genomic variations including LINE1 retrotransposons and regional patterns of DNA content variation (DCV), demonstrate that the brain is genomically heterogeneous. The precise phenotypes and functions produced by genomic mosaicism are not well understood, although the effects of constitutive aberrations, as observed in Down syndrome, implicate roles for defined mosaic genomes relevant to cellular survival, differentiation potential, stem cell biology, and brain organization. Here we discuss genomic mosaicism as a feature of the normal brain as well as a possible factor in the weak or complex genetic linkages observed for many of the most common forms of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Diane M. Bushman
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
- Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
35
|
Solzak JP, Liang Y, Zhou FC, Roper RJ. Commonality in Down and fetal alcohol syndromes. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2013; 97:187-97. [PMID: 23554291 PMCID: PMC4096968 DOI: 10.1002/bdra.23129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND Down syndrome (DS) and Fetal Alcohol Syndrome (FAS) are two leading causes of birth defects with phenotypes ranging from craniofacial abnormalities to cognitive impairment. Despite different origins, we report that in addition to sharing many phenotypes, DS and FAS may have common underlying mechanisms of development. METHODS Literature was surveyed for DS and FAS as well as mouse models. Gene expression and apoptosis were compared in embryonic mouse models of DS and FAS by qPCR, immunohistochemical and immunoflurorescence analyses. The craniometry was examined using MicroCT at postnatal day 21. RESULTS A literature survey revealed over 20 comparable craniofacial and structural deficits in both humans with DS and FAS and corresponding mouse models. Similar phenotypes were experimentally found in pre- and postnatal craniofacial and neurological tissues of DS and FAS mice. Dysregulation of two genes, Dyrk1a and Rcan1, key to craniofacial and neurological precursors of DS, was shared in craniofacial precursors of DS and FAS embryos. Increased cleaved caspase 3 expression was also discovered in comparable regions of the craniofacial and brain precursors of DS and FAS embryos. Further mechanistic studies suggested overexpression of trisomic Ttc3 in DS embyros may influence nuclear pAkt localization and cell survival. CONCLUSIONS This first and initial study indicates that DS and FAS share common dysmorphologies in humans and animal models. This work also suggests common mechanisms at cellular and molecular levels that are disrupted by trisomy or alcohol consumption during pregnancy and lead to craniofacial and neurological phenotypes associated with DS or FAS.
Collapse
Affiliation(s)
- Jeffrey P. Solzak
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Yun Liang
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Feng C. Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
36
|
Smith B, Medda F, Gokhale V, Dunckley T, Hulme C. Recent advances in the design, synthesis, and biological evaluation of selective DYRK1A inhibitors: a new avenue for a disease modifying treatment of Alzheimer's? ACS Chem Neurosci 2012; 3:857-72. [PMID: 23173067 PMCID: PMC3503344 DOI: 10.1021/cn300094k] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022] Open
Abstract
With 24.3 million people affected in 2005 and an estimated rise to 42.3 million in 2020, dementia is currently a leading unmet medical need and costly burden on public health. Seventy percent of these cases have been attributed to Alzheimer's disease (AD), a neurodegenerative pathology whose most evident symptom is a progressive decline in cognitive functions. Dual specificity tyrosine phosphorylation regulated kinase-1A (DYRK1A) is important in neuronal development and plays a variety of functional roles within the adult central nervous system. The DYRK1A gene is located within the Down syndrome critical region (DSCR) on human chromosome 21 and current research suggests that overexpression of DYRK1A may be a significant factor leading to cognitive deficits in people with Alzheimer's disease (AD) and Down syndrome (DS). Currently, treatment options for cognitive deficiencies associated with Down syndrome, as well as Alzheimer's disease, are extremely limited and represent a major unmet therapeutic need. Small molecule inhibition of DYRK1A activity in the brain may provide an avenue for pharmaceutical intervention of mental impairment associated with AD and other neurodegenerative diseases. We herein review the current state of the art in the development of DYRK1A inhibitors.
Collapse
Affiliation(s)
- Breland Smith
- Department of Chemistry &
Biochemistry, the University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Oro Valley, the University of Arizona, 1580 East Hanley Boulevard,
Oro Valley, Arizona 85737, United States
| | - Federico Medda
- BIO5 Oro Valley, the University of Arizona, 1580 East Hanley Boulevard,
Oro Valley, Arizona 85737, United States
| | - Vijay Gokhale
- Department of Pharmacology &
Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Travis Dunckley
- Neurogenomics Division, Translational
Genomics Research Institute, Phoenix,
Arizona 85013, United States
| | - Christopher Hulme
- Department of Chemistry &
Biochemistry, the University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Oro Valley, the University of Arizona, 1580 East Hanley Boulevard,
Oro Valley, Arizona 85737, United States
- Department of Pharmacology &
Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
37
|
Repertoire of Protein Kinases Encoded in the Genome of Takifugu rubripes. Comp Funct Genomics 2012; 2012:258284. [PMID: 22666085 PMCID: PMC3359783 DOI: 10.1155/2012/258284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/14/2012] [Accepted: 02/28/2012] [Indexed: 12/02/2022] Open
Abstract
Takifugu rubripes is teleost fish widely used in comparative genomics to understand the human system better due to its similarities both in number of genes and structure of genes. In this work we survey the fugu genome, and, using sensitive computational approaches, we identify the repertoire of putative protein kinases and classify them into groups and subfamilies. The fugu genome encodes 519 protein kinase-like sequences and this number of putative protein kinases is comparable closely to that of human. However, in spite of its similarities to human kinases at the group level, there are differences at the subfamily level as noted in the case of KIS and DYRK subfamilies which contribute to differences which are specific to the adaptation of the organism. Also, certain unique domain combination of galectin domain and YkA domain suggests alternate mechanisms for immune response and binding to lipoproteins. Lastly, an overall similarity with the MAPK pathway of humans suggests its importance to understand signaling mechanisms in humans. Overall the fugu serves as a good model organism to understand roles of human kinases as far as kinases such as LRRK and IRAK and their associated pathways are concerned.
Collapse
|
38
|
Meng X, Tian X, Wang X, Gao P, Zhang C. A novel binding protein of single-minded 2: the mitotic arrest-deficient protein MAD2B. Neurogenetics 2012; 13:251-60. [DOI: 10.1007/s10048-012-0333-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/22/2012] [Indexed: 11/30/2022]
|
39
|
Lee JW, Kang HS, Lee JY, Lee EJ, Rhim H, Yoon JH, Seo SR, Chung KC. The transcription factor STAT2 enhances proteasomal degradation of RCAN1 through the ubiquitin E3 ligase FBW7. Biochem Biophys Res Commun 2012; 420:404-10. [DOI: 10.1016/j.bbrc.2012.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
|
40
|
Abstract
Abstract
BACKGROUND
The Ca2+-dependent protein phosphatase enzyme calcineurin (Cn) (protein phosphatase 3) is best known for its role as director of the adaptive immune response. One of its principal substrates is the nuclear factor of activated T cells (NFAT), which translocates to the nucleus after dephosphorylation to mediate gene transcription. Drugs targeting Cn (the Cn inhibitors tacrolimus and cyclosporin A) have revolutionized posttransplantation therapy in allograft recipients by considerably reducing rejection rates.
CONTENT
Owing primarily to intensive study of the side effects of the Cn inhibitors, the unique importance of Cn and Cn/NFAT signaling in the normal physiological processes of many other cell and tissue types is becoming more evident. During the last decade, it has become clear that an extensive and diverse array of clinical conditions can be traced back, at least in part, to a disturbed Cn-signaling axis. Hence, both diagnostics and therapeutic monitoring could benefit from a technique that conveniently reads out Cn/NFAT operative status.
SUMMARY
This review outlines the current knowledge on the pathologic conditions that have calcineurin as a common denominator and reports on the progress that has been made toward successfully applying Cn and Cn/NFAT activity markers in molecular diagnostics.
Collapse
Affiliation(s)
- Ruben E A Musson
- Departments of Clinical Chemistry and
- Toxicogenetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | | |
Collapse
|
41
|
Sanchez-Mut J, Huertas D, Esteller M. Aberrant epigenetic landscape in intellectual disability. PROGRESS IN BRAIN RESEARCH 2012; 197:53-71. [DOI: 10.1016/b978-0-444-54299-1.00004-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Park J, Sung JY, Park J, Song WJ, Chang S, Chung KC. Dyrk1A negatively regulates the actin cytoskeleton through threonine phosphorylation of N-WASP. J Cell Sci 2012; 125:67-80. [PMID: 22250195 DOI: 10.1242/jcs.086124] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neural Wiskott-Aldrich syndrome protein (N-WASP) is involved in tight regulation of actin polymerization and dynamics. N-WASP activity is regulated by intramolecular interaction, binding to small GTPases and tyrosine phosphorylation. Here, we report on a novel regulatory mechanism; we demonstrate that N-WASP interacts with dual-specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A). In vitro kinase assays indicate that Dyrk1A directly phosphorylates the GTPase-binding domain (GBD) of N-WASP at three sites (Thr196, Thr202 and Thr259). Phosphorylation of the GBD by Dyrk1A promotes the intramolecular interaction of the GBD and verprolin, cofilin and acidic (VCA) domains of N-WASP, and subsequently inhibits Arp2/3-complex-mediated actin polymerization. Overexpression of either Dyrk1A or a phospho-mimetic N-WASP mutant inhibits filopodia formation in COS-7 cells. By contrast, the knockdown of Dyrk1A expression or overexpression of a phospho-deficient N-WASP mutant promotes filopodia formation. Furthermore, the overexpression of a phospho-mimetic N-WASP mutant significantly inhibits dendritic spine formation in primary hippocampal neurons. These findings suggest that Dyrk1A negatively regulates actin filament assembly by phosphorylating N-WASP, which ultimately promotes the intramolecular interaction of its GBD and VCA domains. These results provide insight on the mechanisms contributing to diverse actin-based cellular processes such as cell migration, endocytosis and neuronal differentiation.
Collapse
Affiliation(s)
- Joongkyu Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
Jung MS, Park JH, Ryu YS, Choi SH, Yoon SH, Kwen MY, Oh JY, Song WJ, Chung SH. Regulation of RCAN1 protein activity by Dyrk1A protein-mediated phosphorylation. J Biol Chem 2011; 286:40401-12. [PMID: 21965663 PMCID: PMC3220559 DOI: 10.1074/jbc.m111.253971] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 09/21/2011] [Indexed: 01/22/2023] Open
Abstract
Two genes on chromosome 21, namely dual specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) and regulator of calcineurin 1 (RCAN1), have been implicated in some of the phenotypic characteristics of Down syndrome, including the early onset of Alzheimer disease. Although a link between Dyrk1A and RCAN1 and the nuclear factor of activated T cells (NFAT) pathway has been reported, it remains unclear whether Dyrk1A directly interacts with RCAN1. In the present study, Dyrk1A is shown to directly interact with and phosphorylate RCAN1 at Ser(112) and Thr(192) residues. Dyrk1A-mediated phosphorylation of RCAN1 at Ser(112) primes the protein for the GSK3β-mediated phosphorylation of Ser(108). Phosphorylation of RCAN1 at Thr(192) by Dyrk1A enhances the ability of RCAN1 to inhibit the phosphatase activity of calcineurin (Caln), leading to reduced NFAT transcriptional activity and enhanced Tau phosphorylation. These effects are mediated by the enhanced binding of RCAN1 to Caln and its extended half-life caused by Dyrk1A-mediated phosphorylation. Furthermore, an increased expression of phospho-Thr(192)-RCAN1 was observed in the brains of transgenic mice overexpressing the Dyrk1A protein. These results suggest a direct link between Dyrk1A and RCAN1 in the Caln-NFAT signaling and Tau hyperphosphorylation pathways, supporting the notion that the synergistic interaction between the chromosome 21 genes RCAN1 and Dyrk1A is associated with a variety of pathological features associated with DS.
Collapse
Affiliation(s)
- Min-Su Jung
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Jung-Hwa Park
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Young Shin Ryu
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Sun-Hee Choi
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Song-Hee Yoon
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Mi-Yang Kwen
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Ji Youn Oh
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Woo-Joo Song
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| | - Sul-Hee Chung
- From the Graduate Program in Neuroscience, Institute for Brain Science and Technology, FIRST Research Group, Inje University, 633-146 Gaegeum-2-Dong, Busanjin-Gu, Busan 614-735, South Korea
| |
Collapse
|
44
|
Abstract
Structural changes and abnormal function of mitochondria have been documented in Down's syndrome (DS) cells, patients, and animal models. DS cells in culture exhibit a wide array of functional mitochondrial abnormalities including reduced mitochondrial membrane potential, reduced ATP production, and decreased oxido-reductase activity. New research has also brought to central stage the prominent role of oxidative stress in this condition. This review focuses on recent advances in the field with a particular emphasis on novel translational approaches involving the utilization of coenzyme Q(10) (CoQ(10) ) to treat a variety of clinical phenotypes associated with DS that are linked to increased oxidative stress and energy deficits. CoQ(10) has already provided promising results in several different conditions associated with altered energy metabolism and oxidative stress in the CNS. Two studies conducted in Ancona investigated the effect of CoQ(10) treatment on DNA damage in DS patients. Although the effect of CoQ(10) was evidenced only at single cell level, the treatment affected the distribution of cells according to their content in oxidized bases. In fact, it produced a strong negative correlation linking cellular CoQ(10) content and the amount of oxidized purines. Results suggest that the effect of CoQ(10) treatment in DS not only reflects antioxidant efficacy, but likely modulates DNA repair mechanisms.
Collapse
Affiliation(s)
- Luca Tiano
- Department of Biochemistry, Biology and Genetics, Polytechnic University of the Marche, Ancona, Italy.
| | | |
Collapse
|
45
|
Debdab M, Carreaux F, Renault S, Soundararajan M, Fedorov O, Filippakopoulos P, Lozach O, Babault L, Tahtouh T, Baratte B, Ogawa Y, Hagiwara M, Eisenreich A, Rauch U, Knapp S, Meijer L, Bazureau JP. Leucettines, a class of potent inhibitors of cdc2-like kinases and dual specificity, tyrosine phosphorylation regulated kinases derived from the marine sponge leucettamine B: modulation of alternative pre-RNA splicing. J Med Chem 2011; 54:4172-86. [PMID: 21615147 DOI: 10.1021/jm200274d] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We here report on the synthesis, optimization, and biological characterization of leucettines, a family of kinase inhibitors derived from the marine sponge leucettamine B. Stepwise synthesis of analogues starting from the natural structure, guided by activity testing on eight purified kinases, led to highly potent inhibitors of CLKs and DYRKs, two families of kinases involved in alternative pre-mRNA splicing and Alzheimer's disease/Down syndrome. Leucettine L41 was cocrystallized with CLK3. It interacts with key residues located within the ATP-binding pocket of the kinase. Leucettine L41 inhibits the phosphorylation of serine/arginine-rich proteins (SRp), a family of proteins regulating pre-RNA splicing. Indeed leucettine L41 was demonstrated to modulate alternative pre-mRNA splicing, in a cell-based reporting system. Leucettines should be further explored as pharmacological tools to study and modulate pre-RNA splicing. Leucettines may also be investigated as potential therapeutic drugs in Alzheimer's disease (AD) and in diseases involving abnormal pre-mRNA splicing.
Collapse
Affiliation(s)
- Mansour Debdab
- Université de Rennes 1, Sciences Chimiques de Rennes, UMR CNRS 6226, Groupe Ingénierie Chimique & Molécules pour le Vivant (ICMV), Bât. 10A, Campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 Rennes cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shichiri M, Yoshida Y, Ishida N, Hagihara Y, Iwahashi H, Tamai H, Niki E. α-Tocopherol suppresses lipid peroxidation and behavioral and cognitive impairments in the Ts65Dn mouse model of Down syndrome. Free Radic Biol Med 2011; 50:1801-11. [PMID: 21447382 DOI: 10.1016/j.freeradbiomed.2011.03.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/11/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
It is widely accepted that oxidative stress is involved in the pathogenesis of Down syndrome, but the effectiveness of antioxidant treatment remains inconclusive. We tested whether chronic administration of α-tocopherol ameliorates the cognitive deficits exhibited by Ts65Dn mice, a mouse model of Down syndrome. α-Tocopherol was administered to pregnant Ts65Dn females, from the day of conception throughout the pregnancy, and to pups over their entire lifetime, from birth to the end of the behavioral testing period. Cognitive deficits were confirmed for Ts65Dn mice fed a control diet, revealing reduced anxiety or regardlessness in the elevated-plus maze task test and spatial learning deficits in the Morris water maze test. However, supplementation with α-tocopherol attenuated both cognitive impairments. In addition, we found that levels of 8-iso-prostaglandin F(2α) in brain tissue and hydroxyoctadecadienoic acid and 7-hydroxycholesterol in the plasma of Ts65Dn mice were higher than those of control mice. Supplementation with α-tocopherol decreased levels of lipid peroxidation products in Ts65Dn mice. Furthermore, we found out that α-tocopherol improved hypocellularity in the hippocampal dentate gyrus of Ts65Dn mice. These results imply that α-tocopherol supplementation from an early stage may be an effective treatment for the cognitive deficits associated with Down syndrome.
Collapse
Affiliation(s)
- Mototada Shichiri
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan.
| | | | | | | | | | | | | |
Collapse
|
47
|
Grebe C, Klingebiel TM, Grau SP, Toischer K, Didié M, Jacobshagen C, Dullin C, Hasenfuss G, Seidler T. Enhanced expression of DYRK1A in cardiomyocytes inhibits acute NFAT activation but does not prevent hypertrophy in vivo. Cardiovasc Res 2011; 90:521-8. [PMID: 21273244 DOI: 10.1093/cvr/cvr023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
AIMS The calcineurin and nuclear factor of activated T cells (NFAT) pathway can mediate pro-hypertrophic signalling in the heart. Recently, it has been shown that dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) phosphorylates NFAT, which limits calcineurin/NFAT signal transduction in T cells and hypertrophy in cultured cardiomyocytes. The hypothesis tested in this study was that DYRK1A prevents calcineurin/NFAT-mediated cardiac hypertrophy in vivo. METHODS AND RESULTS In cultured rat cardiomyocytes, adenovirus-mediated overexpression of DYRK1A antagonized calcineurin-mediated nuclear NFAT translocation and the phenylephrine-induced hypertrophic growth response. To test the ability of DYRK1A to reduce hypertrophic cardiac growth in vivo, we created tetracycline-repressible Dyrk1a transgenic mice to avoid the cardiac developmental defects associated with embryonic DYRK1A expression. However, in the mouse model, histological determination of myocyte diameter, heart weight/body weight ratio, and echocardiographic measurements revealed that myocardial expression of DYRK1A failed to reduce hypertrophy induced via aortic banding or co-expression of calcineurin. This discrepancy is explained, at least in part, by insufficient long-term inhibition of NFAT and the activation of DYRK1A-resistant maladaptive genes in vivo. CONCLUSION Isolated augmentation of DYRK1A can be compensated for in vivo, and this may significantly limit anti-hypertrophic interventions aimed at enhancing DYRK1A activity.
Collapse
Affiliation(s)
- Cornelia Grebe
- Department of Cardiology and Pulmonology, Georg-August-University, Robert-Koch Str. 40, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Smillie KJ, Cousin MA. The Role of GSK3 in Presynaptic Function. Int J Alzheimers Dis 2011; 2011:263673. [PMID: 21547219 PMCID: PMC3087464 DOI: 10.4061/2011/263673] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/20/2011] [Indexed: 11/20/2022] Open
Abstract
The past ten years of research have identified a number of key roles for glycogen synthase kinase 3 (GSK3) at the synapse. In terms of presynaptic physiology, critical roles for GSK3 have been revealed in the growth and maturation of the nerve terminal and more recently a key role in the control of activity-dependent bulk endocytosis of synaptic vesicles. This paper will summarise the major roles assigned to GSK3 in both immature and mature nerve terminals, the substrates GSK3 phosphorylates to exert its action, and how GSK3 activity is regulated by different presynaptic signalling cascades. The number of essential roles for GSK3, coupled with the numerous signalling cascades all converging to regulate its activity, suggests that GSK3 is a key integrator of multiple inputs to modulate the strength of neurotransmission. Modulation of these pathways may point to potential mechanisms to overcome synaptic failure in neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Karen Janet Smillie
- Membrane Biology Group, Centre for Integrative Physiology, University of Edinburgh, George Square, EH8 9XD, Edinburgh, UK
| | | |
Collapse
|
49
|
Dierssen M, Arqué G, McDonald J, Andreu N, Martínez-Cué C, Flórez J, Fillat C. Behavioral characterization of a mouse model overexpressing DSCR1/ RCAN1. PLoS One 2011; 6:e17010. [PMID: 21364922 PMCID: PMC3045383 DOI: 10.1371/journal.pone.0017010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 01/17/2011] [Indexed: 11/19/2022] Open
Abstract
DSCR1/ RCAN1 is a chromosome 21 gene found to be overexpressed in the brains of Down syndrome (DS) and postulated as a good candidate to contribute to mental disability. However, even though Rcan1 knockout mice have pronounced spatial learning and memory deficits, the possible deleterious effects of its overexpression in DS are not well understood. We have generated a transgenic mouse model overexpressing DSCR1/RCAN1 in the brain and analyzed the effect of RCAN1 overexpression on cognitive function. TgRCAN1 mice present a marked disruption of the learning process in a visuo-spatial learning task. However, no significant differences were observed in the performance of the memory phase of the test (removal session) nor in a step-down passive avoidance task, thus suggesting that once learning has been established, the animals are able to consolidate the information in the longer term.
Collapse
Affiliation(s)
- Mara Dierssen
- Centre for Genomic Regulation, Barcelona Biomedical Research Park, and CIBER de Enfermedades Raras, Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | |
Collapse
|
50
|
Park J, Oh Y, Yoo L, Jung MS, Song WJ, Lee SH, Seo H, Chung KC. Dyrk1A phosphorylates p53 and inhibits proliferation of embryonic neuronal cells. J Biol Chem 2010; 285:31895-906. [PMID: 20696760 PMCID: PMC2951261 DOI: 10.1074/jbc.m110.147520] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/14/2010] [Indexed: 02/03/2023] Open
Abstract
Down syndrome (DS) is associated with many neural defects, including reduced brain size and impaired neuronal proliferation, highly contributing to the mental retardation. Those typical characteristics of DS are closely associated with a specific gene group "Down syndrome critical region" (DSCR) on human chromosome 21. Here we investigated the molecular mechanisms underlying impaired neuronal proliferation in DS and, more specifically, a regulatory role for dual-specificity tyrosine-(Y) phosphorylation-regulated kinase 1A (Dyrk1A), a DSCR gene product, in embryonic neuronal cell proliferation. We found that Dyrk1A phosphorylates p53 at Ser-15 in vitro and in immortalized rat embryonic hippocampal progenitor H19-7 cells. In addition, Dyrk1A-induced p53 phosphorylation at Ser-15 led to a robust induction of p53 target genes (e.g. p21(CIP1)) and impaired G(1)/G(0)-S phase transition, resulting in attenuated proliferation of H19-7 cells and human embryonic stem cell-derived neural precursor cells. Moreover, the point mutation of p53-Ser-15 to alanine rescued the inhibitory effect of Dyrk1A on neuronal proliferation. Accordingly, brains from embryonic DYRK1A transgenic mice exhibited elevated levels of Dyrk1A, Ser-15 (mouse Ser-18)-phosphorylated p53, and p21(CIP1) as well as impaired neuronal proliferation. These findings suggest that up-regulation of Dyrk1A contributes to altered neuronal proliferation in DS through specific phosphorylation of p53 at Ser-15 and subsequent p21(CIP1) induction.
Collapse
Affiliation(s)
- Joongkyu Park
- From the Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749
| | - Yohan Oh
- From the Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749
| | - Lang Yoo
- From the Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749
| | - Min-Su Jung
- the Graduate Program in Neuroscience, Institute for Brain Science and Technology, Inje University, Busan 633-146
| | - Woo-Joo Song
- the Graduate Program in Neuroscience, Institute for Brain Science and Technology, Inje University, Busan 633-146
| | - Sang-Hun Lee
- the Department of Biochemistry, College of Medicine, Hanyang University, Seoul 133-791, and
| | - Hyemyung Seo
- the Division of Molecular and Life Sciences, College of Sciences and Technology, Hanyang University, Ansan-si, Gyeonggi-do 426-791, Republic of Korea
| | - Kwang Chul Chung
- From the Department of Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749
| |
Collapse
|