1
|
Gul R, Benabdelkamel H, Dar MA, Masood A, Okla M, Alanazi IO, Alfadda AA. Assessing the protective effects of nanoceria on angiotensin II-induced cardiac injury in H9c2 cardiomyoblasts using proteomic analysis. J Pharm Biomed Anal 2025; 263:116835. [PMID: 40267575 DOI: 10.1016/j.jpba.2025.116835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Oxidative stress and inflammation induced by angiotensin II (Ang II) stimulation have been identified to be major contributing factors in cardiovascular diseases. To mitigate these deleterious effects of Ang II, nanoceria have emerged as promising nanoparticles that can mimic natural antioxidants. Here, we aimed to demonstrate the protective effects of cerium oxide nanoparticles (CeO₂ or nanoceria) against Ang II stimulation and compared them to Ang II treatment alone using proteomic approach in H9c2 cardiomyoblasts. The differentially expressed protein profiles between different groups were visualized by 2D-DIGE analysis, and protein identitied were verified by MALDI-TOF mass spectrometry. PCA, hierarchical clustering and protein function analysis were conducted. Our findings indicated that 118 differentially expressed protein spots between the untreated control, Ang II treated, and nanoceria pretreated Ang II groups. Of these 76 protein sequences were identified by MALDI-TOF mass spectrometry. On comparing the untreated control samples to the Ang II-treated samples, 12 proteins were downregulated and 39 proteins were upregulated. In contrast, 18 proteins were downregulated and 35 proteins were upregulated in the nanoceria pretreated Ang II group compared to Ang II treatment alone. The proteins that were upregulated by Ang II treatment are associated with oxidative stress. In contrast, nanoceria pretreatment downregulated these proteins and also significantly upregulated the proteins linked to defense against oxidative damage. The biochemical pathways were identified by canonical pathway analysis. In conclusion, this work uncovers the complex proteomic changes in H9c2 cardiomyoblasts in response to Ang II and emphasizes the possible protective effects of nanoceria against Ang II-induced pathology.
Collapse
Affiliation(s)
- Rukhsana Gul
- Proteomics unit, Obesity Research Center, College of Medicine, King Saud University, PO Box 2925, Riyadh 11461, Saudi Arabia.
| | - Hicham Benabdelkamel
- Proteomics unit, Obesity Research Center, College of Medicine, King Saud University, PO Box 2925, Riyadh 11461, Saudi Arabia
| | - Mushtaq A Dar
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saudi University, Riyadh 11421, Saudi Arabia
| | - Afshan Masood
- Proteomics unit, Obesity Research Center, College of Medicine, King Saud University, PO Box 2925, Riyadh 11461, Saudi Arabia
| | - Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Ibrahim O Alanazi
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Assim A Alfadda
- Proteomics unit, Obesity Research Center, College of Medicine, King Saud University, PO Box 2925, Riyadh 11461, Saudi Arabia; Department of Medicine, College of Medicine, King Saud University, PO Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
2
|
Paulik KA, Ivanics T, Dunay GA, Fülöp Á, Kerék M, Takács K, Benyó Z, Miklós Z. Inhibition of the Renin-Angiotensin System Improves Hemodynamic Function of the Diabetic Rat Heart by Restoring Intracellular Calcium Regulation. Biomedicines 2025; 13:757. [PMID: 40149735 PMCID: PMC11940043 DOI: 10.3390/biomedicines13030757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Disrupted intracellular calcium (Ca2+i) regulation and renin-angiotensin system (RAS) activation are pathogenetic factors in diabetic cardiomyopathy, a major complication of type 1 (T1D) and type 2 (T2D) diabetes. This study explored their potential link in diabetic rat hearts. Methods: Experiments were conducted on T1D and T2D Sprague-Dawley rats induced by streptozotocin and fructose-rich diet, respectively. In T1D, rats were treated with Enalapril (Ena) or Losartan (Los) for six weeks, whereas T2D animals received high-dose (HD) or low-dose (LD) Ena for 8 weeks. Heart function was assessed via echocardiography, Ca2+i transients by Indo-1 fluorometry in Langendorff-perfused hearts, and key Ca2+i cycling proteins by Western blot. Data: mean ± SD. Results: Diabetic hearts exhibited reduced contractile performance that was improved by RAS inhibition both in vivo (ejection fraction (%): T1D model: Control: 79 ± 7, T1D: 54 ± 11, T1D + Ena: 65 ± 10, T1D + Los: 69 ± 10, n = 18, 18, 15, 10; T2D model: Control: 73 ± 8, T2D: 52 ± 6, T2D + LDEna: 62 ± 8, T2D + HDEna: 76 ± 8, n = 9, 8, 6, 7) and ex vivo (+dPressure/dtmax (mmHg/s): T1D model: Control: 2532 ± 341, T1D: 2192 ± 208, T1D + Ena: 2523 ± 485, T1D + Los: 2643 ± 455; T2D model: Control: 2514 ± 197, T2D: 1930 ± 291, T2D + LDEna: 2311 ± 289, T2D + HDEna: 2614 ± 268). Analysis of Ca2+i transients showed impaired Ca2+i release and removal dynamics and increased diastolic Ca2+i levels in both models that were restored by Ena and Los treatments. We observed a decrease in sarcoendoplasmic reticulum Ca2+-ATPase2a (SERCA2a) expression, accompanied by a compensatory increase in 16Ser-phosphorylated phospholamban (P-PLB) in T2D that was prevented by both LD and HD Ena (expression level (% of Control): SERCA2a: T2D: 36 ± 32, T2D + LDEna: 112 ± 32, T2D + HDEna: 106 ± 30; P-PLB: T2D: 557 ± 156, T2D + LDEna: 129 ± 38, T2D + HDEna: 108 ± 42; n = 4, 4, 4). Conclusions: The study highlights the critical role of RAS activation, most likely occurring at the tissue level, in disrupting Ca2+i homeostasis in diabetic cardiomyopathy. RAS inhibition with Ena or Los mitigates these disturbances independent of blood pressure effects, underlining their importance in managing diabetic heart failure.
Collapse
Affiliation(s)
- Krisztina Anna Paulik
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
| | - Tamás Ivanics
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
| | - Gábor A. Dunay
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
- Klinikum Westbrandenburg, Brandenburg Medical School (MHB), 14770 Brandenburg an der Havel, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senfteberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
| | - Ágnes Fülöp
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Margit Kerék
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
| | - Klára Takács
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, 1094 Budapest, Hungary
| | - Zsuzsanna Miklós
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (K.A.P.); (T.I.); (G.A.D.); (Á.F.); (K.T.); (Z.B.)
- National Korányi Institute for Pulmonology, 1122 Budapest, Hungary
| |
Collapse
|
3
|
Jalali A, Kabiri M, Hashemi S, Abdi Ardekani A, Zarshenas MM. Medicinal plants or bioactive components with antioxidant/anti-apoptotic effects as a potential therapeutic approach in heart failure prevention and management: a literature review. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:275-291. [PMID: 39576713 DOI: 10.1080/10286020.2024.2414196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/24/2024]
Abstract
Heart failure is described as a complicated syndrome, which is estimated that 56.2 million people were living with HF globally in 2019. Oxidative stress and apoptosis play a major role on HF development via targeting several signaling pathways in cardiac cells. This study investigated medicinal plants or their bioactive components with positive effects on HF management. In this research, keywords "heart failure," "plant," "antioxidant" or "radical scavenging," "herbal" and "apoptosis" were synchronously searched through popular databases from 1990 up to 2023. Finally, the role of oxidative stress and apoptosis in HF development was searched and related signaling pathways were investigated.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil 56189-85991, Iran
| | - Maryam Kabiri
- Arnold and Marie Schwarts College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Shima Hashemi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Ramsar Campus, Ramsar 4847193698, Iran
| | - Alireza Abdi Ardekani
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil 56189-85991, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| |
Collapse
|
4
|
Sim HH, Shiwakoti S, Lee JH, Lee IY, Ok Y, Lim HK, Ko JY, Oak MH. 2,7-Phloroglucinol-6,6'-bieckol from Ecklonia cava ameliorates nanoplastics-induced premature endothelial senescence and dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175007. [PMID: 39053557 DOI: 10.1016/j.scitotenv.2024.175007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Nanoplastics (NPs), plastic particles ranging from 1 to 100 nm are ubiquitous environmental pollutants infiltrating ecosystems. Their small size and widespread use in various products raise concerns for human health, particularly their association with cardiovascular diseases (CVD). NPs can enter the human body through multiple routes, causing oxidative stress, and leading to the senescence and dysfunction of endothelial cells (ECs). Although there are potential natural compounds for treating CVD, there is limited research on preventing CVD induced by NPs. This study investigates the efficacy of Ecklonia cava extract (ECE) in preventing NPs-induced premature vascular senescence and dysfunction. Exposure of porcine coronary arteries (PCAs) and porcine coronary ECs to NPs, either alone or in combination with ECE, demonstrated that ECE mitigates senescence-associated β-galactosidase (SA-β-gal) activity induced by NPs, thus preventing premature endothelial senescence. ECE also improved NPs-induced vascular dysfunction. The identified active ingredient in Ecklonia cava, 2,7'-Phloroglucinol-6,6'-bieckol (PHB), a phlorotannin, proved to be pivotal in these protective effects. PHB treatment ameliorated SA-β-gal activity, reduced oxidative stress, restored cell proliferation, and decreased the expression of cell cycle regulatory proteins such as p53, p21, p16, and angiotensin type 1 receptor (AT1), well known triggers for EC senescence. Moreover, PHB also improved NPs-induced vascular dysfunction by upregulating endothelial nitric oxide synthase (eNOS) expression and restoring endothelium-dependent vasorelaxation. In conclusion, Ecklonia cava and its active ingredient, PHB, exhibit potential as therapeutic agents against NPs-induced premature EC senescence and dysfunction, indicating a protective effect against environmental pollutants-induced CVDs associated with vascular dysfunction.
Collapse
Affiliation(s)
- Hwan-Hee Sim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Ji-Hyeok Lee
- Division of Commercialization Support, Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - In-Young Lee
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Yejoo Ok
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Han-Kyu Lim
- Department of Marine and Fisheries Resources, Mokpo National University, Muan 58554, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| | - Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| |
Collapse
|
5
|
Carlström M, Weitzberg E, Lundberg JO. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol Rev 2024; 76:1038-1062. [PMID: 38866562 DOI: 10.1124/pharmrev.124.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. SIGNIFICANCE STATEMENT: After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| |
Collapse
|
6
|
Forouzanmehr B, Hedayati AH, Gholami E, Hemmati MA, Maleki M, Butler AE, Jamialahmadi T, Kesharwani P, Yaribeygi H, Sahebkar A. Sodium-glucose cotransporter 2 inhibitors and renin-angiotensin-aldosterone system, possible cellular interactions and benefits. Cell Signal 2024; 122:111335. [PMID: 39117253 DOI: 10.1016/j.cellsig.2024.111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Sodium glucose cotransporter 2 inhibitors (SGLT2is) are a newly developed class of anti-diabetics which exert potent hypoglycemic effects in the diabetic milieu. However, the evidence suggests that they also have extra-glycemic effects. The renin-angiotensin-aldosterone system (RAAS) is a hormonal system widely distributed in the body that is important for water and electrolyte homeostasis as well as renal and cardiovascular function. Therefore, modulating RAAS activity is a main goal in patients, notably diabetic patients, which are at higher risk of complications involving these organ systems. Some studies have suggested that SGLT2is have modulatory effects on RAAS activity in addition to their hypoglycemic effects and, thus, these drugs can be considered as promising therapeutic agents for renal and cardiovascular disorders. However, the exact molecular interactions between SGLT2 inhibition and RAAS activity are not clearly understood. Therefore, in the current study we surveyed the literature for possible molecular mechanisms by which SGLT2is modulate RAAS activity.
Collapse
Affiliation(s)
- Behina Forouzanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Emad Gholami
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Saha P, Talwar P. Idiopathic pulmonary fibrosis (IPF): disease pathophysiology, targets, and potential therapeutic interventions. Mol Cell Biochem 2024; 479:2181-2194. [PMID: 37707699 DOI: 10.1007/s11010-023-04845-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, degenerative pulmonary condition. Transforming growth factor (TGF)-β, platelet-derived growth factor (PDGF), and tumor necrosis factor-α (TNF-α) are the major modulators of IPF that mediate myofibroblast differentiation and promote fibrotic remodeling of the lung. Cigarette smoke, asbestos fiber, drugs, and radiation are known to favor fibrotic remodeling of the lungs. Oxidative stress in the endoplasmic reticulum (ER) also leads to protein misfolding and promotes ER stress, which is predominant in IPF. This phenomenon further results in excess reactive oxygen species (ROS) aggregation, increasing oxidative stress. During protein folding in the ER, thiol groups on the cysteine residue are oxidized and disulfide bonds are formed, which leads to the production of hydrogen peroxide (H2O2) as a by-product. With the accumulation of misfolded proteins in the ER, multiple signaling cascades are initiated by the cell, collectively termed as the unfolded protein response (UPR). UPR also induces ROS production within the ER and mitochondria and promotes both pro-apoptotic and pro-survival pathways. The prevalence of post-COVID-19 pulmonary fibrosis (PCPF) is 44.9%, along with an alarming increase in "Coronavirus Disease 2019" (COVID-19) comorbidities. Fibrotic airway remodeling and declined lung function are the common endpoints of SARS-CoV-2 infection and IPF. Flavonoids are available in our dietary supplements and exhibit medicinal properties. Apigenin is a flavonoid found in plants, including chamomile, thyme, parsley, garlic, guava, and broccoli, and regulates several cellular functions, such as oxidative stress, ER stress, and fibrotic responses. In this study, we focus on the IPF and COVID-19 pathogenesis and the potential role of Apigenin in addressing disease progression.
Collapse
Affiliation(s)
- Pritha Saha
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
- Apoptosis and Cell Survival Research Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Kij A, Bar A, Czyzynska-Cichon I, Przyborowski K, Proniewski B, Mateuszuk L, Kurylowicz Z, Jasztal A, Buczek E, Kurpinska A, Suraj-Prazmowska J, Marczyk B, Matyjaszczyk-Gwarda K, Daiber A, Oelze M, Walczak M, Chlopicki S. Vascular protein disulfide isomerase A1 mediates endothelial dysfunction induced by angiotensin II in mice. Acta Physiol (Oxf) 2024; 240:e14116. [PMID: 38400621 DOI: 10.1111/apha.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
AIM Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice. METHODS Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat. Endothelial function was assessed in vivo with magnetic resonance imaging and ex vivo with a myography, while arterial stiffness was measured as pulse wave velocity. Nitric oxide (NO) bioavailability was measured in the aorta (spin-trapping electron paramagnetic resonance) and plasma (NO2 - and NO3 - levels). Oxidative stress, eNOS uncoupling (DHE-based aorta staining), and thrombin activity (thrombin-antithrombin complex; calibrated automated thrombography) were evaluated. RESULTS The inhibition of PDIA1 by bepristat in Ang II-treated mice prevented the impairment of NO-dependent vasodilation in the aorta as evidenced by the response to acetylcholine in vivo, increased systemic NO bioavailability and the aortic NO production, and decreased vascular stiffness. Bepristat's effect on NO-dependent function was recapitulated ex vivo in Ang II-induced endothelial dysfunction in isolated aorta. Furthermore, bepristat diminished the Ang II-induced eNOS uncoupling and overproduction of ROS without affecting thrombin activity. CONCLUSION In Ang II-treated mice, the inhibition of PDIA1 normalized the NO-ROS balance, prevented endothelial eNOS uncoupling, and, thereby, improved vascular function. These results indicate the importance of vascular PDIA1 in regulating endothelial function, but further studies are needed to elucidate the details of the mechanisms involved.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | | | - Andreas Daiber
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
9
|
Jacques D, Bkaily G. Taurine Prevents Angiotensin II-Induced Human Endocardial Endothelium Morphological Remodeling and the Increase in Cytosolic and Nuclear Calcium and ROS. Nutrients 2024; 16:745. [PMID: 38474873 DOI: 10.3390/nu16050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Endocardial endothelium (EE) is a layer of cells covering the cardiac cavities and modulates cardiomyocyte function. This cell type releases several cardioactive factors, including Angiotensin II (Ang II). This octopeptide is known to induce cardiac hypertrophy. However, whether this circulating factor also induces EE hypertrophy is not known. Taurine is known to prevent cardiac hypertrophy. Whether this endogenous antioxidant prevents the effect of Ang II on human EE (hEE) will be verified. Using quantitative fluorescent probe imaging for calcium and reactive oxygen species (ROS), our results show that Ang II induces (10-7 M, 48 h treatment) an increase in hEE cell (hEEC) volume and its nucleus. Pretreatment with 20 mM of taurine prevents morphological remodeling and increases intracellular calcium and ROS. These results suggest that the reported Ang II induces cardiac hypertrophy is associated with hEEC hypertrophy. This later effect is prevented by taurine by reducing intracellular calcium and ROS overloads. Thus, taurine could be an excellent tool for preventing Ang II-induced remodeling of hEECs.
Collapse
Affiliation(s)
- Danielle Jacques
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Ghassan Bkaily
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
10
|
Gurtoo S, Karthikkeyan G, Behera SK, Kotimoole CN, Najar MA, Modi PK, Ks S, Pinto SM, Ab A. A comparative proteomic analysis for non-invasive early prediction of hypoxic-ischemic injury in asphyxiated neonates. Proteomics Clin Appl 2024; 18:e2200054. [PMID: 37787895 DOI: 10.1002/prca.202200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/14/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
AIM Hypoxic Ischemic Encephalopathy (HIE) is one of the principal causes of neonatal mortality and long-term morbidity worldwide. The neonatal signs of mild cerebral injury are subtle, making an early precise diagnosis difficult. Delayed detection, poor prognosis, and lack of specific biomarkers for the disease are increasing mortality rates. In this study, we intended to identify specific biomarkers using comparative proteomic analysis to predict the severity of perinatal asphyxia so that its outcome can also be prevented. EXPERIMENTAL DESIGN A case-control study was conducted on 38 neonates, and urine samples were collected within 24 and 72 h of life. A tandem mass spectrometry-based quantitative proteomics approach, followed by validation via sandwich ELISA, was performed. RESULTS The LC-MS/MS-based proteomics analysis resulted in the identification of 1201 proteins in urine, with 229, 244, and 426 being differentially expressed in HIE-1, HIE-2, and HIE-3, respectively. Axon guidance, Diseases of programmed cell death, and Detoxification of reactive oxygen species pathways were significantly enriched in mild HIE versus severe HIE. Among the differentially expressed proteins in various stages of HIE, we chose to validate four proteins - APP, AGT, FABP1, and FN1 - via sandwich ELISA. Individual and cumulative ROC curves were plotted. AGT and FABP1 together showed high sensitivity, specificity, and accuracy as potential biomarkers for early diagnosis of HIE. CONCLUSION Establishing putative urinary biomarkers will facilitate clinicians to more accurately screen neonates for brain injury and monitor the disease progression. Prompt treatment of neonates may reduce mortality and neurodevelopmental impairment.
Collapse
Affiliation(s)
- Sumrati Gurtoo
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Gayathree Karthikkeyan
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Santosh Kumar Behera
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Mohd Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sahana Ks
- Yenepoya Medical College and Hospital, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Arun Ab
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
- Yenepoya Institute of Arts Science Commerce and Management, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
11
|
Scarian E, Viola C, Dragoni F, Di Gerlando R, Rizzo B, Diamanti L, Gagliardi S, Bordoni M, Pansarasa O. New Insights into Oxidative Stress and Inflammatory Response in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2698. [PMID: 38473944 DOI: 10.3390/ijms25052698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress (OS) and inflammation are two important and well-studied pathological hallmarks of neurodegenerative diseases (NDDs). Due to elevated oxygen consumption, the high presence of easily oxidizable polyunsaturated fatty acids and the weak antioxidant defenses, the brain is particularly vulnerable to oxidative injury. Uncertainty exists over whether these deficits contribute to the development of NDDs or are solely a consequence of neuronal degeneration. Furthermore, these two pathological hallmarks are linked, and it is known that OS can affect the inflammatory response. In this review, we will overview the last findings about these two pathways in the principal NDDs. Moreover, we will focus more in depth on amyotrophic lateral sclerosis (ALS) to understand how anti-inflammatory and antioxidants drugs have been used for the treatment of this still incurable motor neuron (MN) disease. Finally, we will analyze the principal past and actual clinical trials and the future perspectives in the study of these two pathological mechanisms.
Collapse
Affiliation(s)
- Eveljn Scarian
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Camilla Viola
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy
| | - Francesca Dragoni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Bartolo Rizzo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
12
|
Medici A, Lavorgna M, Isidori M, Russo C, Orlo E, Luongo G, Di Fabio G, Zarrelli A. Advanced oxidation process of valsartan by activated peroxymonosulfate: Chemical characterization and ecotoxicological effects of its byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168337. [PMID: 37931818 DOI: 10.1016/j.scitotenv.2023.168337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
In recent years, the antihypertensive drug Valsartan (VAL) has been detected in surface waters up to concentrations of 6300 ng/L, due to its high consumption and its mostly unchanged excretion. Moreover, wastewater treatment plants fail to completely mineralize/transform it, as evidenced by findings of up to 3800 ng/L in some effluents. In this paper, the possible degradation of VAL was evaluated through Fenton-like reaction with activation of peroxymonosulfate in the presence of Fe(II) under neutral conditions. Fourteen degradation byproducts were isolated and completely identified by both nuclear magnetic resonance and mass spectrometry, five of which were discovered for the first time, and a mechanism of their formation was proposed. Furthermore, the potential acute and chronic toxicity of valsartan and its byproducts in the aquatic environment were evaluated in key organisms of the freshwater trophic chain belonging to producers and consumers, the alga Raphidocelis subcapitata and the rotifer Brachionus calyciflorus, respectively. Acute effects occurred at concentrations in the order of tens/hundreds of mg/L, far from those of environmental concern. As regards chronic effects, algae were not particularly affected by the parent compound and its derivatives, while rotifers were less affected by derivatives (effective concentrations at units/tens of μg/L) compared to valsartan (effective concentrations at hundreds of ng/L).
Collapse
Affiliation(s)
- Antonio Medici
- Department of Chemical Sciences, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy
| | - Margherita Lavorgna
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Marina Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| | - Chiara Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Elena Orlo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Giovanni Luongo
- Associazione Italiana per la Promozione delle Ricerche su Ambiente e Salute umana, 82030 Dugenta, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy.
| |
Collapse
|
13
|
Aslan M, Basralı F, Ülker P, Barut Z, Yılmaz Ç, Çeker T, Özen N, Öztüzün A, Elpek Ö. Effects of aurantiamide on a rat model of renovascular arterial hypertension. Pflugers Arch 2023; 475:1177-1192. [PMID: 37582694 PMCID: PMC10499692 DOI: 10.1007/s00424-023-02850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Asperglaucide (ASP) is an aurantiamide, an effective constituent of purslane (Portulaca oleracea L.), a safe to eat greenery. Effects of ASP on endothelial function, endothelial nitric oxide synthase (eNOS) expression, vascular fluidity, renal and vascular reactive oxygen, and nitrogen species (ROS/RNS) production was examined in the two-kidney one-clip (2 K-1C) rat model of renovascular arterial hypertension. ASP toxicity, dose dependent eNOS gene expression and protein levels were also analyzed in human umbilical vein endothelial cells (HUVEC). The 2 K-1C model of hypertension was created via surgery and mean blood pressure (MBP) was measured by tail-cuff method during four weeks of ASP treatment. Erythrocyte deformability was monitored by rotational ektacytometry, while vascular constrictor and dilator responses were determined in organ baths. eNOS gene expression and protein levels were assessed in thoracic aorta and HUVEC. MBP was significantly decreased in hypertensive rats treated with ASP. Endothelium dependent vascular dilator and constrictor responses were also considerably improved following ASP treatment. There was a notable increase in red blood cell deformability in hypertensive rats treated with ASP as compared to hypertensive rats alone. A significant increase was observed in eNOS gene expression and protein levels in both normotensive and hypertensive rats treated with ASP. Treatment of HUVEC with 3 µM ASP notably increased eNOS mRNA and protein levels. In conclusion, ASP lowered blood pressure, improved endothelium-mediated relaxation, decreased renovascular ROS/RNS production in hypertensive rats. ASP also increased eNOS protein expression in aorta and HUVEC at nontoxic doses. ASP may have future potential as an anti-hypertensive agent.
Collapse
Affiliation(s)
- Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Filiz Basralı
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Pınar Ülker
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Zerrin Barut
- Faculty of Dentistry, Antalya Bilim University, Antalya, Turkey
| | - Çağatay Yılmaz
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Tuğçe Çeker
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Nur Özen
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Aleyna Öztüzün
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Özlem Elpek
- Department of Pathology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
14
|
Thakur A, Sharma V, Averbek S, Liang L, Pandya N, Kumar G, Cili A, Zhang K. Immune landscape and redox imbalance during neurological disorders in COVID-19. Cell Death Dis 2023; 14:593. [PMID: 37673862 PMCID: PMC10482955 DOI: 10.1038/s41419-023-06102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19) has prompted the scientific community to explore potential treatments or vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the illness. While SARS-CoV-2 is mostly considered a respiratory pathogen, several neurological complications have been reported, raising questions about how it may enter the Central Nervous System (CNS). Receptors such as ACE2, CD147, TMPRSS2, and NRP1 have been identified in brain cells and may be involved in facilitating SARS-CoV-2 entry into the CNS. Moreover, proteins like P2X7 and Panx-1 may contribute to the pathogenesis of COVID-19. Additionally, the role of the immune system in the gravity of COVID-19 has been investigated with respect to both innate and adaptive immune responses caused by SARS-CoV-2 infection, which can lead to a cytokine storm, tissue damage, and neurological manifestations. A redox imbalance has also been linked to the pathogenesis of COVID-19, potentially causing mitochondrial dysfunction, and generating proinflammatory cytokines. This review summarizes different mechanisms of reactive oxygen species and neuro-inflammation that may contribute to the development of severe COVID-19, and recent progress in the study of immunological events and redox imbalance in neurological complications of COVID-19, and the role of bioinformatics in the study of neurological implications of COVID-19.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong SAR, Hong Kong.
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sera Averbek
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Lifan Liang
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Nirali Pandya
- Department of Chemistry, Faculty of Sciences, National University of Singapore, Singapore, Singapore
| | - Gaurav Kumar
- School of Biosciences and Biomedical Engineering, Department of Clinical Research, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Alma Cili
- Clinic of Hematology, University of Medicine, University Hospital center "Mother Teresa", Tirane, Albania
| | - Kui Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass sciences, Southwest University, Chongqing, China.
- Cancer Centre, Medical Research Institute, Southwest University, Chongqing, China.
| |
Collapse
|
15
|
Sekulovski M, Mileva N, Chervenkov L, Peshevska-Sekulovska M, Vasilev GV, Vasilev GH, Miteva D, Tomov L, Lazova S, Gulinac M, Velikova T. Endothelial Dysfunction and Pregnant COVID-19 Patients with Thrombophilia: A Narrative Review. Biomedicines 2023; 11:2458. [PMID: 37760899 PMCID: PMC10525846 DOI: 10.3390/biomedicines11092458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Pregnancy with SARS-CoV-2 infection can raise the risk of many complications, including severe COVID-19 and maternal-fetal adverse outcomes. Additionally, endothelial damage occurs as a result of direct SARS-CoV-2 infection, as well as immune system, cardiovascular, and thrombo-inflammatory reactions. In this narrative review, we focus on endothelial dysfunction (ED) in pregnancy, associated with obstetric complications, such as preeclampsia, fetal growth retardation, gestational diabetes, etc., and SARS-CoV-2 infection in pregnant women that can cause ED itself and overlap with other pregnancy complications. We also discuss some shared mechanisms of SARS-CoV-2 pathophysiology and ED.
Collapse
Affiliation(s)
- Metodija Sekulovski
- Department of Anesthesiology and Intensive Care, University Hospital Lozenetz, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Medical Faculty, Sofia University, St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria; (M.P.-S.); (G.V.V.); (G.H.V.); (D.M.); (L.T.); (S.L.); (M.G.); (T.V.)
| | - Niya Mileva
- Medical Faculty, Medical University of Sofia, 1 Georgi Sofiiski Str., 1431 Sofia, Bulgaria;
| | - Lyubomir Chervenkov
- Department of Diagnostic Imaging, Medical University Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria;
| | - Monika Peshevska-Sekulovska
- Medical Faculty, Sofia University, St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria; (M.P.-S.); (G.V.V.); (G.H.V.); (D.M.); (L.T.); (S.L.); (M.G.); (T.V.)
- Department of Gastroenterology, University Hospital Lozenetz, 1407 Sofia, Bulgaria
| | - Georgi Vasilev Vasilev
- Medical Faculty, Sofia University, St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria; (M.P.-S.); (G.V.V.); (G.H.V.); (D.M.); (L.T.); (S.L.); (M.G.); (T.V.)
- Clinic of Endocrinology and Metabolic Disorders, UMHAT “Sv. Georgi”, 4000 Plovdiv, Bulgaria
| | - Georgi Hristov Vasilev
- Medical Faculty, Sofia University, St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria; (M.P.-S.); (G.V.V.); (G.H.V.); (D.M.); (L.T.); (S.L.); (M.G.); (T.V.)
- Laboratory of Hematopathology and Immunology, National Specialized Hospital for Active Treatment of Hematological Diseases, “Plovdivsko Pole“ Str., 6, 1756 Sofia, Bulgaria
| | - Dimitrina Miteva
- Medical Faculty, Sofia University, St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria; (M.P.-S.); (G.V.V.); (G.H.V.); (D.M.); (L.T.); (S.L.); (M.G.); (T.V.)
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
| | - Latchezar Tomov
- Medical Faculty, Sofia University, St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria; (M.P.-S.); (G.V.V.); (G.H.V.); (D.M.); (L.T.); (S.L.); (M.G.); (T.V.)
- Department of Informatics, New Bulgarian University, Montevideo 21 Str., 1618 Sofia, Bulgaria
| | - Snezhina Lazova
- Medical Faculty, Sofia University, St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria; (M.P.-S.); (G.V.V.); (G.H.V.); (D.M.); (L.T.); (S.L.); (M.G.); (T.V.)
- Pediatric Clinic, University Hospital “N. I. Pirogov,” 21 “General Eduard I. Totleben” Blvd; 1606 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health “Prof. Tsekomir Vodenicharov, MD, DSc”, Medical University of Sofia, Bialo More 8 Str., 1527 Sofia, Bulgaria
| | - Milena Gulinac
- Medical Faculty, Sofia University, St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria; (M.P.-S.); (G.V.V.); (G.H.V.); (D.M.); (L.T.); (S.L.); (M.G.); (T.V.)
- Department of General and Clinical Pathology, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University, St. Kliment Ohridski, Kozyak 1 Str., 1407 Sofia, Bulgaria; (M.P.-S.); (G.V.V.); (G.H.V.); (D.M.); (L.T.); (S.L.); (M.G.); (T.V.)
| |
Collapse
|
16
|
Shiwakoti S, Gong D, Sharma K, Kang KW, Schini-Kerth VB, Kim HJ, Ko JY, Oak MH. γ-Oryzanol ameliorates fine dust-induced premature endothelial senescence and dysfunction via attenuating oxidative stress. Food Chem Toxicol 2023; 179:113981. [PMID: 37549806 DOI: 10.1016/j.fct.2023.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Various cardiovascular diseases are associated with endothelial senescence, and a recent study showed that fine dust (FD)-induced premature endothelial senescence and dysfunction is associated with increased oxidative stress. The aim of the present study was to investigate protective effect of rice bran extract (RBE) and its major component of γ-Oryzanol (γ-Ory) against FD-induced premature endothelial senescence. Porcine coronary artery endothelial cells (PCAECs) were treated with FD alone or with RBE or γ-Ory. Senescence-associated β-galactosidase (SA-β-gal) activity, expression of cell cycle regulatory proteins, and oxidative stress levels were evaluated. The results indicated that SA-β-gal activity in the FD-treated PCAECs was attenuated by RBE and γ-Ory. Additionally, γ-Ory inhibited FD-induced cell cycle arrest, restored cell proliferation, and reduced the expression of cell cycle regulatory proteins. γ-Ory also inhibited oxidative stress and prevented senescence-associated NADPH oxidase and LAS activity in FD-exposed ECs suggesting that γ-Ory could protect against FD-induced ECs senescence and dysfunction.
Collapse
Affiliation(s)
- Saugat Shiwakoti
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Dalseong Gong
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea; Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260, INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Kushal Sharma
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Ki-Woon Kang
- Division of Cardiology, College of Medicine, Heart Reasearch Institute and Biomedical Research Institute, Chung-Ang University Hospital, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Valérie B Schini-Kerth
- Regenerative Nanomedicine, Faculty of Pharmacy, UMR 1260, INSERM (French National Institute of Health and Medical Research), University of Strasbourg, 67000, Strasbourg, France
| | - Hyun Jung Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea.
| | - Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 58554, Republic of Korea.
| |
Collapse
|
17
|
Swiderski J, Gadanec LK, Apostolopoulos V, Moore GJ, Kelaidonis K, Matsoukas JM, Zulli A. Role of Angiotensin II in Cardiovascular Diseases: Introducing Bisartans as a Novel Therapy for Coronavirus 2019. Biomolecules 2023; 13:787. [PMID: 37238657 PMCID: PMC10216788 DOI: 10.3390/biom13050787] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the main contributors to global morbidity and mortality. Major pathogenic phenotypes of CVDs include the development of endothelial dysfunction, oxidative stress, and hyper-inflammatory responses. These phenotypes have been found to overlap with the pathophysiological complications of coronavirus disease 2019 (COVID-19). CVDs have been identified as major risk factors for severe and fatal COVID-19 states. The renin-angiotensin system (RAS) is an important regulatory system in cardiovascular homeostasis. However, its dysregulation is observed in CVDs, where upregulation of angiotensin type 1 receptor (AT1R) signaling via angiotensin II (AngII) leads to the AngII-dependent pathogenic development of CVDs. Additionally, the interaction between the spike protein of severe acute respiratory syndrome coronavirus 2 with angiotensin-converting enzyme 2 leads to the downregulation of the latter, resulting in the dysregulation of the RAS. This dysregulation favors AngII/AT1R toxic signaling pathways, providing a mechanical link between cardiovascular pathology and COVID-19. Therefore, inhibiting AngII/AT1R signaling through angiotensin receptor blockers (ARBs) has been indicated as a promising therapeutic approach to the treatment of COVID-19. Herein, we review the role of AngII in CVDs and its upregulation in COVID-19. We also provide a future direction for the potential implication of a novel class of ARBs called bisartans, which are speculated to contain multifunctional targeting towards COVID-19.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Graham J. Moore
- Pepmetics Incorporated, 772 Murphy Place, Victoria, BC V8Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - John M. Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- NewDrug PC, Patras Science Park, 26500 Patras, Greece;
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (J.S.); (L.K.G.); (V.A.)
| |
Collapse
|
18
|
Philip B, Mukherjee P, Khare Y, Ramesh P, Zaidi S, Sabry H, Harky A. COVID-19 and its long-term impact on the cardiovascular system. Expert Rev Cardiovasc Ther 2023; 21:211-218. [PMID: 36856339 DOI: 10.1080/14779072.2023.2184800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
INTRODUCTION TheSARS-CoV-2 virus caused a pandemic affecting healthcare deliveryglobally. Despite the presentation of COVID-19 infection beingfrequently dominated by respiratory symptoms; it is now notorious tohave potentially serious cardiovascular sequelae. This articleexplores current data to provide a comprehensive overview of thepathophysiology, cardiovascular risk factors, and implications ofCOVID-19. AREAS COVERED Inherentstructure of SARS-CoV-2, and its interaction with both ACE-2 andnon-ACE-2 mediated pathways have been implicated in the developmentof cardiovascular manifestations, progressively resulting in acuterespiratory distress syndrome, multiorgan failure, cytokine releasesyndrome, and subsequent myocardial damage. The interplay betweenexisting and de novo cardiac complications must be noted. Forindividuals taking cardiovascular medications, pharmacologicinteractions are a crucial component. Short-term cardiovascularimpacts include arrhythmia, myocarditis, pericarditis, heart failure,and thromboembolism, whereas long-term impacts include diabetes andhypertension. To identify suitable studies, a PubMed literaturesearch was performed including key words such as 'Covid 19,''Cardiovascular disease,' 'Long covid,' etc. EXPERT OPINION Moresophisticated planning and effective management for cardiologyhealthcare provision is crucial, especially for accommodatingchallenges associated with Long-COVID. With the potential applicationof AI and automated data, there are many avenues and sequelae thatcan be approached for investigation.
Collapse
Affiliation(s)
- Bejoy Philip
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK
| | | | - Yuti Khare
- School of Medicine, St George's University London, London, UK
| | - Pranav Ramesh
- School of Medicine, University of Leicester, Leicester, UK
| | - Sara Zaidi
- School of Medicine, King's College London, London, UK
| | - Haytham Sabry
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Amer Harky
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
19
|
dos Santos AAC, Rodrigues LE, Alecrim-Zeza AL, de Araújo Ferreira L, Trettel CDS, Gimenes GM, da Silva AF, Sousa-Filho CPB, Serdan TDA, Levada-Pires AC, Hatanaka E, Borges FT, de Barros MP, Cury-Boaventura MF, Bertolini GL, Cassolla P, Marzuca-Nassr GN, Vitzel KF, Pithon-Curi TC, Masi LN, Curi R, Gorjao R, Hirabara SM. Molecular and cellular mechanisms involved in tissue-specific metabolic modulation by SARS-CoV-2. Front Microbiol 2022; 13:1037467. [PMID: 36439786 PMCID: PMC9684198 DOI: 10.3389/fmicb.2022.1037467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 09/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is triggered by the SARS-CoV-2, which is able to infect and cause dysfunction not only in lungs, but also in multiple organs, including central nervous system, skeletal muscle, kidneys, heart, liver, and intestine. Several metabolic disturbances are associated with cell damage or tissue injury, but the mechanisms involved are not yet fully elucidated. Some potential mechanisms involved in the COVID-19-induced tissue dysfunction are proposed, such as: (a) High expression and levels of proinflammatory cytokines, including TNF-α IL-6, IL-1β, INF-α and INF-β, increasing the systemic and tissue inflammatory state; (b) Induction of oxidative stress due to redox imbalance, resulting in cell injury or death induced by elevated production of reactive oxygen species; and (c) Deregulation of the renin-angiotensin-aldosterone system, exacerbating the inflammatory and oxidative stress responses. In this review, we discuss the main metabolic disturbances observed in different target tissues of SARS-CoV-2 and the potential mechanisms involved in these changes associated with the tissue dysfunction.
Collapse
Affiliation(s)
| | - Luiz Eduardo Rodrigues
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Amanda Lins Alecrim-Zeza
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Liliane de Araújo Ferreira
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Caio dos Santos Trettel
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Gabriela Mandú Gimenes
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Adelson Fernandes da Silva
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | | | - Tamires Duarte Afonso Serdan
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Department of Molecular Pathobiology, University of New York, New York, NY, United States
| | - Adriana Cristina Levada-Pires
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Elaine Hatanaka
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Fernanda Teixeira Borges
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Divisão de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Paes de Barros
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Maria Fernanda Cury-Boaventura
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Gisele Lopes Bertolini
- Department of Physiological Sciences, Biological Science Center, State University of Londrina, Londrina, PR, Brazil
| | - Priscila Cassolla
- Department of Physiological Sciences, Biological Science Center, State University of Londrina, Londrina, PR, Brazil
| | | | - Kaio Fernando Vitzel
- School of Health Sciences, College of Health, Massey University, Auckland, New Zealand
| | - Tania Cristina Pithon-Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Laureane Nunes Masi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Rui Curi
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, Brazil
| | - Renata Gorjao
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Programa de Pós-graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Gu YH, Ren KW, Wang Y, Wang SH, Yu XH, Xu LW, Li HH, Bi HL. Administration of USP7 inhibitor P22077 inhibited cardiac hypertrophy and remodeling in Ang II-induced hypertensive mice. Front Pharmacol 2022; 13:1021361. [PMID: 36386139 PMCID: PMC9640964 DOI: 10.3389/fphar.2022.1021361] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 09/12/2023] Open
Abstract
Hypertension is one of the common causes of pathological cardiac hypertrophy and a major risk for morbidity and mortality of cardiovascular diseases worldwide. Ubiquitin-Specific Protease 7 (USP7), the first identified deubiquitinating enzymes, participated in a variety of biological processes, such as cell proliferation, DNA damage response, tumourigenesis, and apoptosis. However, its role and mechanism in cardiac remodeling remain unclear. Here, our data indicated that USP7 expression was increased during Ang II-induced cardiac hypertrophy and remodeling in mice and humans with heart failure, while the administration of its inhibitor p22077 attenuated cardiac hypertrophy, cardiac fibrosis, inflammation, and oxidase stress. Mechanistically, the administration of p22077 inhibited the multiple signaling pathways, including AKT/ERK, TGF-β/SMAD2/Collagen I/Collagen III, NF-κB/NLRP3, and NAPDH oxidases (NOX2 and NOX4). Taken together, these findings demonstrate that USP7 may be a new therapeutic target for hypertrophic remodeling and HF.
Collapse
Affiliation(s)
- Yu-Hui Gu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kai-Wen Ren
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yu Wang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shi-Hao Wang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiao-Hong Yu
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Li-Wen Xu
- Department of Obstetrics, Dalian Maternal and Child Health Institute, Dalian, China
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hai-Lian Bi
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
21
|
Pisoschi AM, Iordache F, Stanca L, Gajaila I, Ghimpeteanu OM, Geicu OI, Bilteanu L, Serban AI. Antioxidant, Anti-inflammatory, and Immunomodulatory Roles of Nonvitamin Antioxidants in Anti-SARS-CoV-2 Therapy. J Med Chem 2022; 65:12562-12593. [PMID: 36136726 PMCID: PMC9514372 DOI: 10.1021/acs.jmedchem.2c01134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Viral pathologies encompass activation of pro-oxidative pathways and inflammatory burst. Alleviating overproduction of reactive oxygen species and cytokine storm in COVID-19 is essential to counteract the immunogenic damage in endothelium and alveolar membranes. Antioxidants alleviate oxidative stress, cytokine storm, hyperinflammation, and diminish the risk of organ failure. Direct antiviral roles imply: impact on viral spike protein, interference with the ACE2 receptor, inhibition of dipeptidyl peptidase 4, transmembrane protease serine 2 or furin, and impact on of helicase, papain-like protease, 3-chyomotrypsin like protease, and RNA-dependent RNA polymerase. Prooxidative environment favors conformational changes in the receptor binding domain, promoting the affinity of the spike protein for the host receptor. Viral pathologies imply a vicious cycle, oxidative stress promoting inflammatory responses, and vice versa. The same was noticed with respect to the relationship antioxidant impairment-viral replication. Timing, dosage, pro-oxidative activities, mutual influences, and interference with other antioxidants should be carefully regarded. Deficiency is linked to illness severity.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Florin Iordache
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Loredana Stanca
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Iuliana Gajaila
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Oana Margarita Ghimpeteanu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Ovidiu Ionut Geicu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Faculty of Biology, Department Biochemistry and
Molecular Biology, University of Bucharest, 91-95 Splaiul
Independentei, 050095Bucharest, Romania
| | - Liviu Bilteanu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Molecular Nanotechnology Laboratory,
National Institute for Research and Development in
Microtechnologies, 126A Erou Iancu Nicolae Street, 077190Bucharest,
Romania
| | - Andreea Iren Serban
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Faculty of Biology, Department Biochemistry and
Molecular Biology, University of Bucharest, 91-95 Splaiul
Independentei, 050095Bucharest, Romania
| |
Collapse
|
22
|
Angiotensin II Blood Serum Levels in Piglets, after Intra-Dermal or Intra-Muscular Vaccination against PRRSV. Vet Sci 2022; 9:vetsci9090496. [PMID: 36136712 PMCID: PMC9503611 DOI: 10.3390/vetsci9090496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes massive financial losses in pig production worldwide. Vaccination is still the most cost-effective tool to handle PRRSV infection. PRRSV induces apoptosis in different organs. Angiotensin II (Ang II) participates in the inflammatory response, cell proliferation, migration, and apoptosis. The objective of the current study was to assess the concentration of Ang II in the serum of piglets following immunization against PRRSV through intradermal (ID) or intramuscular (IM) vaccination with a commercial PRRS modified live virus (MLV) vaccine. The results indicated differences in viremia of tested piglets at 7 weeks of age, while piglets at 10 weeks of age were all found qRT-PCR positive for PRRSV. Moreover, significant differences were noticed in Ang II in 7-week-old piglets. In conclusion, our study provides evidence that ID vaccination induces less tissue damage, based on the lower measurements of Ang II in the serum of ID vaccinated piglets. Abstract The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) induces apoptosis in different organs. Angiotensin II (Ang II) is the main effector of the renin-angiotensin system and participates in apoptosis. Thus, this study aimed to investigate changes in piglet serum Ang II levels following intradermal (ID) and intramuscular (IM) vaccination with a commercial PRRS modified live virus (MLV) vaccine. The trial was conducted in a commercial pig farm, including 104 piglets which were randomly allocated to four groups: Group A—Porcilis PRRS ID, Group B—Porcilis PRRS IM, Group C—Diluvac ID and Group D—Diluvac IM. The study piglets were either vaccinated or injected at 2 weeks of age and they were tested by qRT-PCR for PRRSV and by ELISA for Ang II. The results indicated differences in viremia of tested piglets at 7 weeks of age, while piglets at 10 weeks of age were all found qRT-PCR positive for PRRSV. In addition, significant differences were noticed in Ang II in 7-week-old piglets. In conclusion, the present study provides evidence that ID vaccination induces less tissue damage, based on the lower measurements of Ang II in the serum of ID vaccinated piglets.
Collapse
|
23
|
Increased Risk of COVID-19 in Patients with Diabetes Mellitus-Current Challenges in Pathophysiology, Treatment and Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116555. [PMID: 35682137 PMCID: PMC9180541 DOI: 10.3390/ijerph19116555] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus disease-COVID-19 (coronavirus disease 2019) has become the cause of the global pandemic in the last three years. Its etiological factor is SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus type 2). Patients with diabetes (DM-diabetes mellitus), in contrast to healthy people not suffering from chronic diseases, are characterised by higher morbidity and mortality due to COVID-19. Patients who test positive for SARCoV-2 are at higher risk of developing hyperglycaemia. In this paper, we present, analyse and summarize the data on possible mechanisms underlying the increased susceptibility and mortality of patients with diabetes mellitus in the case of SARS-CoV-2 infection. However, further research is required to determine the optimal therapeutic management of patients with diabetes and COVID-19.
Collapse
|
24
|
Hernández-Ochoa B, Ortega-Cuellar D, González-Valdez A, Cárdenas-Rodríguez N, Mendoza-Torreblanca JG, Contreras-García IJ, Pichardo-Macías LA, Bandala C, Gómez-Manzo S. COVID-19 in G6PD-deficient patients, oxidative stress, and neuropathology. Curr Top Med Chem 2022; 22:1307-1325. [PMID: 35578850 DOI: 10.2174/1568026622666220516111122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme that regulates energy metabolism mainly through the pentose phosphate pathway (PPP). It is well known that this enzyme participates in the antioxidant/oxidant balance via the synthesis of energy-rich molecules: nicotinamide adenine dinucleotide phosphate reduced (NADPH), the reduced form of flavin adenine dinucleotide (FADH) and glutathione (GSH), controlling reactive oxygen species generation. Coronavirus disease 19 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is considered a public health problem which has caused approximately 4.5 million deaths since December 2019. In relation to the role of G6PD in COVID-19 development, it is known from the existing literature that G6PD-deficient patients infected with SARS-CoV-2 are more susceptible to thrombosis and hemolysis, suggesting that G6PD deficiency facilitates infection by SARS-CoV-2. In relation to G6PD and neuropathology, it has been observed that deficiency of this enzyme is also present with an increase in oxidative markers. In relation to the role of G6PD and the neurological manifestations of COVID-19, it has been reported that the enzymatic deficiency in patients infected with SARS-CoV-2 exacerbates the disease, and, in some clinical reports, an increase in hemolysis and thrombosis was observed when patients were treated with hydroxychloroquine (OH-CQ), a drug with oxidative properties. In the present work, we summarize the evidence of the role of G6PD in COVID-19 and its possible role in the generation of oxidative stress and glucose metabolism deficits and inflammation present in this respiratory disease and its progression including neurological manifestations.
Collapse
Affiliation(s)
- Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, 06720, Mexico
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| | | | | | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, 07738, Mexico
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| |
Collapse
|
25
|
Nakano T, Onoue K, Terada C, Terasaki S, Ishihara S, Hashimoto Y, Nakada Y, Nakagawa H, Ueda T, Seno A, Nishida T, Watanabe M, Hoshii Y, Hatakeyama K, Sakaguchi Y, Ohbayashi C, Saito Y. Transthyretin Amyloid Cardiomyopathy: Impact of Transthyretin Amyloid Deposition in Myocardium on Cardiac Morphology and Function. J Pers Med 2022; 12:jpm12050792. [PMID: 35629214 PMCID: PMC9147607 DOI: 10.3390/jpm12050792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Transthyretin (TTR) amyloid cardiomyopathy (ATTR-CM) is increasingly being recognized as a cause of left ventricular (LV) hypertrophy (LVH) and progressive heart failure in elderly patients. However, little is known about the cardiac morphology of ATTR-CM and the association between the degree of TTR amyloid deposition and cardiac dysfunction in these patients. Methods: We studied 28 consecutive patients with ATTR-CM and analyzed the relationship between echocardiographic parameters and pathological features using endomyocardial biopsy samples. Results: The cardiac geometries of patients with ATTR-CM were mainly classified as concentric LVH (96.4%). The relative wall thickness, a marker of LVH, tended to be positively correlated with the degree of non-cardiomyocyte area. The extent of TTR deposition was positively correlated with enlargement of the non-cardiomyocyte area, and these were positively correlated with LV diastolic dysfunction. Additionally, the extent of the area containing TTR was positively correlated with the percentage of cardiomyocyte nuclei stained for 8-hydroxy-2′deoxyguanosine, a marker of reactive oxygen species (ROS). ROS accumulation in cardiomyocytes was positively correlated with LV systolic dysfunction. Conclusion: Patients with ATTR-CM mainly displayed concentric LVH geometry. TTR amyloid deposition was associated with cardiac dysfunction via increased non-cardiomyocyte area and ROS accumulation in cardiomyocytes.
Collapse
Affiliation(s)
- Tomoya Nakano
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
- Department of Cardiovascular Medicine, Yamato Takada Municipal Hospital, Yamato-Takada 635-8501, Nara, Japan
| | - Kenji Onoue
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
- Correspondence: ; Tel.: +81-744-22-3051
| | - Chiyoko Terada
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8521, Nara, Japan; (C.T.); (C.O.)
| | - Satoshi Terasaki
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Satomi Ishihara
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Yukihiro Hashimoto
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Yasuki Nakada
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Hitoshi Nakagawa
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Tomoya Ueda
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Ayako Seno
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Taku Nishida
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Makoto Watanabe
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Yoshinobu Hoshii
- Department of Diagnostic Pathology, Yamaguchi University Hospital, Ube 755-0046, Yamaguchi, Japan;
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita 564-8565, Osaka, Japan;
| | - Yasuhiro Sakaguchi
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8521, Nara, Japan; (C.T.); (C.O.)
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.N.); (S.T.); (S.I.); (Y.H.); (Y.N.); (H.N.); (T.U.); (A.S.); (T.N.); (M.W.); (Y.S.); (Y.S.)
| |
Collapse
|
26
|
Kamynina A, Guttzeit S, Eaton P, Cuello F. Nitroxyl Donor CXL-1020 Lowers Blood Pressure by Targeting C195 in Cyclic Guanosine-3',5'-Monophosphate-Dependent Protein Kinase I. Hypertension 2022; 79:946-956. [PMID: 35168371 DOI: 10.1161/hypertensionaha.122.18756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously demonstrated that nitroxyl causes vasodilation, at least in part, by inducing the formation of an intradisulfide bond between C117 and C195 in the high affinity cyclic guanosine monophosphate-binding site of PKGI (cyclic guanosine monophosphate-dependent protein kinase I). The aim of this study was to determine whether nitroxyl donors lower blood pressure via this novel PKGI activation mechanism in vivo. METHODS To determine this, a C195S PKGI knock-in mouse model was generated that ubiquitously and constitutively expresses a mutant kinase resistant to nitroxyl-induced intradisulfide activation. RESULTS Knock-in and wild-type littermates did not differ in appearance, body weight, in PKGI protein expression or blood gas content. Organ weight was similar between genotypes apart from the cecum that was significantly enlarged in knock-in animals. Mean arterial pressure and heart rate monitored in vivo over 24 hours by radio-telemetry revealed neither a significant difference between genotypes at baseline nor during angiotensin II-induced hypertension or sepsis. CXL-1020, a clinically relevant nitroxyl donor, did not lower blood pressure in normotensive animals. In contrast, administering CXL-1020 to hypertensive wild-type mice reduced their blood pressure by 10±4 mm Hg (P=0.0184), whereas the knock-in littermates were unaffected. CONCLUSIONS Oxidation of C195 in PKGI contributes to the antihypertensive effects observed in response to nitroxyl donors, emphasising the potential importance of nitroxyl donors in pathological scenarios when cyclic guanosine monophosphate levels are reduced and insufficient to activate PKGI.
Collapse
Affiliation(s)
- Alisa Kamynina
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (A.K., S.G., P.E.)
| | - Sebastian Guttzeit
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (A.K., S.G., P.E.)
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, United Kingdom (A.K., S.G., P.E.)
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (F.C.)
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Germany (F.C.)
| |
Collapse
|
27
|
Wang R, Guo Y, Li L, Luo M, Peng L, Lv D, Cheng Z, Xue Q, Wang L, Huang J. Role of thioredoxin-interacting protein in mediating endothelial dysfunction in hypertension. Genes Dis 2022; 9:753-765. [PMID: 35782967 PMCID: PMC9243351 DOI: 10.1016/j.gendis.2020.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/23/2020] [Accepted: 08/23/2020] [Indexed: 11/17/2022] Open
Abstract
Excessive oxidative stress is a major causative factor of endothelial dysfunction in hypertension. As an endogenous pro-oxidant, thioredoxin-interacting protein (TXNIP) contributes to oxidative damage in various tissues. The present study aimed to investigate the role of TXNIP in mediating endothelial dysfunction in hypertension. In vivo, an experimental model of acquired hypertension was established with two-kidney, one-clip (2K1C) surgery. The expression of TXNIP in the vascular endothelial cells of multiple vessels was significantly increased in hypertensive rats compared with sham-operated rats. Resveratrol, a TXNIP inhibitor, suppressed vascular oxidative damage and increased the expression and activity of eNOS in the aorta of hypertensive rats. Notably, impaired endothelium-dependent vasodilation was effectively improved by TXNIP inhibition in hypertensive rats. In vitro, we observed that Ang II increased the expression of TXNIP in primary human aortic endothelial cells (HAECs) and that TXNIP knockdown by RNA interference alleviated cellular oxidative stress damage and mitigated the impaired eNOS activation and intracellular nitric oxide (NO) production observed in Ang II-treated HAECs. However, inhibiting thioredoxin (TRX) with PX-12 completely blunted the protective effect of silencing TXNIP. In addition, TXNIP knockdown facilitated TRX expression and promoted TRX nuclear translocation to further activate AP1 and REF1. TRX overexpression exhibited favorable effects on eNOS/NO homeostasis in Ang II-treated HAECs. Thus, TXNIP contributes to oxidative stress and endothelial dysfunction in hypertension, and these effects are dependent on the antioxidant capacity of TRX, suggesting that targeting TXNIP may be a novel strategy for antihypertensive therapy.
Collapse
Affiliation(s)
- Ruiyu Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Yongzheng Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Lingjiao Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Linqian Peng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhe Cheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China
| | - Qian Xue
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Liang Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| |
Collapse
|
28
|
Restini CBA, Garcia AFE, Natalin HM, Carmo MFA, Nowicki VF, Rizzi E, Ramalho LNZ. Resveratrol Supplants Captopril's Protective Effect on Cardiac Remodeling in a Hypertension Model Elicited by Renal Artery Stenosis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2022; 95:57-69. [PMID: 35370490 PMCID: PMC8961705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Renovascular hypertension elicits cardiac damage and remodeling. Two-kidney, one-clip (2K1C) is an experimental model used to study hypertension pathophysiology. In this model, the renin-angiotensin-system (RAS) is overactive due to renal artery stenosis, leading to cardiac remodeling. Redox mechanisms underlying RAS activation mediate hypertension-induced cardiovascular damage. Preclinical studies and clinical trials demonstrated resveratrol's protective effects in cardiovascular diseases, mainly attributed to its antioxidant properties. We hypothesized resveratrol alone or in combination with an angiotensin-converting enzyme (ACE) inhibitor would be beneficial against cardiac damage caused by renovascular hypertension. Objective: We investigated the benefits of resveratrol against cardiac remodeling in 2K1C rats compared with captopril. Methods: Male Wistar rats underwent unilateral renal stenosis - 2K1C Goldblatt model of hypertension. Systolic Blood Pressure (SBP) was measured before and 6 weeks after surgery. Hypertensive 2K1C rats presented SBP≥160 mmHg. From the 6th week after the surgery, the animals received oral resveratrol (20 mg/kg), captopril (12 mg/kg), or their combination for 3 times per week for 3 weeks. Whole heart hypertrophy was evaluated. Histological assays assessed left ventricle hypertrophy and fibrosis. Results: Renovascular hypertension caused cardiac hypertrophy, accompanied by increased myocyte diameter and collagen deposition. Resveratrol reduced 2K1C rats' SBP and whole heart hypertrophy, independently of captopril. Resveratrol caused a higher reduction in ventricular hypertrophy than captopril. Collagen deposition was greater reduced by 2K1C treated only with resveratrol than with captopril alone or combined with resveratrol. Conclusion: Independent of captopril, resveratrol prompts cardioprotective effects on cardiomyocyte remodeling and fibrosis resulting from renovascular hypertension in 2K1C rats.
Collapse
Affiliation(s)
- Carolina B. A. Restini
- Department of Pharmacology & Toxicology, College of
Osteopathic Medicine, Michigan State University, Clinton Township, MI, USA,To whom all correspondence should be addressed:
Carolina B. A. Restini, Department of Pharmacology & Toxicology, College of
Osteopathic Medicine, Michigan State University, Clinton Township, MI;
| | - Arthur F. E. Garcia
- Department of Biotechnology, University of Ribeirao
Preto, Ribeirão Preto-SP, Brazil
| | - Henrique M. Natalin
- Department of Biotechnology, University of Ribeirao
Preto, Ribeirão Preto-SP, Brazil
| | - Mariane F. A. Carmo
- Department of Biotechnology, University of Ribeirao
Preto, Ribeirão Preto-SP, Brazil
| | - Vinicius F. Nowicki
- Department of Biotechnology, University of Ribeirao
Preto, Ribeirão Preto-SP, Brazil
| | - Elen Rizzi
- Department of Biotechnology, University of Ribeirao
Preto, Ribeirão Preto-SP, Brazil
| | - Leandra N. Z. Ramalho
- Department of Pathology and Legal Medicine, Faculty of
Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP,
Brazil
| |
Collapse
|
29
|
Antar SA, Abdo W, Taha RS, Farage AE, El-Moselhy LE, Amer ME, Abdel Monsef AS, Abdel Hamid AM, Kamel EM, Ahmeda AF, Mahmoud AM. Telmisartan attenuates diabetic nephropathy by mitigating oxidative stress and inflammation, and upregulating Nrf2/HO-1 signaling in diabetic rats. Life Sci 2022; 291:120260. [DOI: 10.1016/j.lfs.2021.120260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
|
30
|
Kumar S, Verma R, Tyagi N, Gangenahalli G, Verma YK. Therapeutics effect of mesenchymal stromal cells in reactive oxygen species-induced damages. Hum Cell 2022; 35:37-50. [PMID: 34800267 PMCID: PMC8605474 DOI: 10.1007/s13577-021-00646-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Reactive Oxygen Species are chemically unstable molecules generated during aerobic respiration, especially in the electron transport chain. ROS are involved in various biological functions; any imbalance in their standard level results in severe damage, for instance, oxidative damage, inflammation in a cellular system, and cancer. Oxidative damage activates signaling pathways, which result in cell proliferation, oncogenesis, and metastasis. Since the last few decades, mesenchymal stromal cells have been explored as therapeutic agents against various pathologies, such as cardiovascular diseases, acute and chronic kidney disease, neurodegenerative diseases, macular degeneration, and biliary diseases. Recently, the research community has begun developing several anti-tumor drugs, but these therapeutic drugs are ineffective. In this present review, we would like to emphasize MSCs-based targeted therapy against pathologies induced by ROS as cells possess regenerative potential, immunomodulation, and migratory capacity. We have also focused on how MSCs can be used as next-generation drugs with no side effects.
Collapse
Affiliation(s)
- Subodh Kumar
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ranjan Verma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nishant Tyagi
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Gurudutta Gangenahalli
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Yogesh Kumar Verma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
31
|
Angiotensin System Modulations in Spontaneously Hypertensive Rats and Consequences on Erythrocyte Properties; Action of MLN-4760 and Zofenopril. Biomedicines 2021; 9:biomedicines9121902. [PMID: 34944718 PMCID: PMC8698991 DOI: 10.3390/biomedicines9121902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Various pathologies (COVID-19 including) are associated with abnormalities in erythrocyte properties. Hypertension represents an unfavorable condition for erythrocyte quality and is the most prevalent risk factor in COVID-19 patients. ACE2 downregulation that is typical of these patients can further deteriorate cardiovascular health; however, its consequences on erythrocyte properties are not known yet. The aim was to investigate the effect of ACE2 inhibition and the potential beneficial effect of zofenopril on erythrocytes in spontaneously hypertensive rats. ACE2 inhibition induced by MLN-4760 (1 mg/kg/day for 2 weeks) led to deterioration of erythrocyte morphology and osmotic resistance, but plasma markers of oxidative stress, erythrocyte deformability, nitric oxide production and Na,K-ATPase activity were not significantly affected. Zofenopril administration (10 mg/kg/day, initiated after 4-day-lasting ACE2 inhibition) resulted in unexpected increase in angiotensin II plasma levels in both control and ACE-inhibited spontaneously hypertensive rats, but in normalization of osmotic resistance in ACE2-inhibited rats. The overall effect of zofenopril on erythrocyte qualities could be evaluated as beneficial.
Collapse
|
32
|
Cai S, Pan N, Xu M, Su Y, Qiao K, Chen B, Zheng B, Xiao M, Liu Z. ACE Inhibitory Peptide from Skin Collagen Hydrolysate of Takifugu bimaculatus as Potential for Protecting HUVECs Injury. Mar Drugs 2021; 19:md19120655. [PMID: 34940654 PMCID: PMC8703921 DOI: 10.3390/md19120655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Angiotensin-I-converting enzyme (ACE) is a crucial enzyme or receptor that catalyzes the generation of potent vasopressor angiotensin II (Ang II). ACE inhibitory peptides from fish showed effective ACE inhibitory activity. In this study, we reported an ACE inhibitory peptide from Takifugu bimaculatus (T. bimaculatus), which was obtained by molecular docking with acid-soluble collagen (ASC) hydrolysate of T. bimaculatus. The antihypertensive effects and potential mechanism were conducted using Ang-II-induced human umbilical vein endothelial cells (HUVECs) as a model. The results showed that FNLRMQ alleviated the viability and facilitated apoptosis of Ang-II-induced HUVECs. Further research suggested that FNLRMQ may protect Ang-II-induced endothelial injury by regulating Nrf2/HO-1 and PI3K/Akt/eNOS signaling pathways. This study, herein, reveals that collagen peptide FNLRMQ could be used as a potential candidate compound for antihypertensive treatment, and could provide scientific evidence for the high-value utilization of marine resources including T. bimaculatus.
Collapse
Affiliation(s)
- Shuilin Cai
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (S.C.); (Y.S.)
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (N.P.); (M.X.); (K.Q.); (B.C.)
| | - Nan Pan
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (N.P.); (M.X.); (K.Q.); (B.C.)
| | - Min Xu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (N.P.); (M.X.); (K.Q.); (B.C.)
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yongchang Su
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (S.C.); (Y.S.)
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (N.P.); (M.X.); (K.Q.); (B.C.)
| | - Kun Qiao
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (N.P.); (M.X.); (K.Q.); (B.C.)
| | - Bei Chen
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (N.P.); (M.X.); (K.Q.); (B.C.)
| | - Bingde Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (S.C.); (Y.S.)
- Correspondence: (B.Z.); (M.X.); (Z.L.)
| | - Meitian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (S.C.); (Y.S.)
- Correspondence: (B.Z.); (M.X.); (Z.L.)
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (N.P.); (M.X.); (K.Q.); (B.C.)
- Correspondence: (B.Z.); (M.X.); (Z.L.)
| |
Collapse
|
33
|
Alam MS, Czajkowsky DM. SARS-CoV-2 infection and oxidative stress: Pathophysiological insight into thrombosis and therapeutic opportunities. Cytokine Growth Factor Rev 2021; 63:44-57. [PMID: 34836751 PMCID: PMC8591899 DOI: 10.1016/j.cytogfr.2021.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023]
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic has presented unprecedented challenges to global health. Although the majority of COVID-19 patients exhibit mild-to-no symptoms, many patients develop severe disease and need immediate hospitalization, with most severe infections associated with a dysregulated immune response attributed to a cytokine storm. Epidemiological studies suggest that overall COVID-19 severity and morbidity correlate with underlying comorbidities, including diabetes, obesity, cardiovascular diseases, and immunosuppressive conditions. Patients with such comorbidities exhibit elevated levels of reactive oxygen species (ROS) and oxidative stress caused by an increased accumulation of angiotensin II and by activation of the NADPH oxidase pathway. Moreover, accumulating evidence suggests that oxidative stress coupled with the cytokine storm contribute to COVID-19 pathogenesis and immunopathogenesis by causing endotheliitis and endothelial cell dysfunction and by activating the blood clotting cascade that results in blood coagulation and microvascular thrombosis. In this review, we survey the mechanisms of how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces oxidative stress and the consequences of this stress on patient health. We further shed light on aspects of the host immunity that are crucial to prevent the disease during the early phase of infection. A better understanding of the disease pathophysiology as well as preventive measures aimed at lowering ROS levels may pave the way to mitigate SARS-CoV-2-induced complications and decrease mortality.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Daniel M Czajkowsky
- Bio-ID Centre, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
34
|
Lifestyle-Induced Redox-Sensitive Alterations: Cross-Talk among the RAAS, Antioxidant/Inflammatory Status, and Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3080863. [PMID: 34733402 PMCID: PMC8560269 DOI: 10.1155/2021/3080863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022]
Abstract
The development and progression of hypertension are closely linked to an unhealthy lifestyle; however, its underlying mechanisms are not fully elucidated. Our aim was to assess the effects of diet and exercise on the elements of the renin-angiotensin-aldosterone system (RAAS), redox-sensitive parameters, and the expression of the vascular tone regulator endothelial nitric oxide synthase (eNOS). Male control Wistar-Kyoto (WKY) and stroke-prone spontaneously hypertensive (SHRSP) rats were randomized based on the type of diet (standard chow, high-fat diet: HT, and fructose-enriched diet: HF) and exercise (voluntary wheel-running exercise or lack of exercise). After 12 weeks of experimental period, the concentrations of the RAAS elements, myeloperoxidase (MPO) activity, tumor necrosis factor alpha (TNF-α) concentrations, levels of superoxide dismutase (SOD) and glutathione (GSH), and expressions of extracellular signal-regulated kinase1/2 (ERK1/2) and phosphorylated ERK1/2 as well as eNOS were measured in the cardiac tissue of WKY and SHRSP rats. We found that the RAAS elements were overactivated under hypertension and were further elevated by HT or HF diet, while HT and HF diet enhanced MPO and TNF-α parameters as well as the expression of pERK1/2; SOD, GSH, and eNOS levels were decreased. These changes occurred in WKKY rats and reached the statistically significant level in SHRSP animals. 12 weeks of exercise compensated the adverse effects of HT and HF via alleviating the concentrations of the RAAS elements and inflammatory markers as well as increasing of antioxidants. Our findings prove that SHRSP rats are more vulnerable to lifestyle changes. Both the type of diet and exercise, as a nonpharmacological therapeutic tool, can have a significant impact on the progression of hypertension.
Collapse
|
35
|
Nagarajan M, Maadurshni GB, Tharani GK, Udhayakumar I, Kumar G, Mani KP, Sivasubramanian J, Manivannan J. Exposure to zinc oxide nanoparticles (ZnO-NPs) induces cardiovascular toxicity and exacerbates pathogenesis - Role of oxidative stress and MAPK signaling. Chem Biol Interact 2021; 351:109719. [PMID: 34699767 DOI: 10.1016/j.cbi.2021.109719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/01/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022]
Abstract
The precise toxico-pathogenic effects of zinc oxide nanoparticles (ZnO-NPs) on the cardiovascular system under normal and cardiovascular disease (CVD) risk factor milieu are unclear. In this study, we have investigated the dose-dependent effects of ZnO-NPs on developing chicken embryo and cell culture (H9c2 cardiomyoblast, HUVEC and aortic VSMC) models. In addition, the potentiation effect of ZnO-NPs on simulated risk factor conditions was evaluated using; 1. Reactive oxygen species (ROS) induced cardiac remodeling, 2. Angiotensin-II induced cardiac hypertrophy, 3. TNF-α induced HUVEC cell death and 4. Inorganic phosphate (Pi) induced aortic VSMC calcification models. The observed results illustrates that ZnO-NPs exposure down regulates vascular development and elevates oxidative stress in heart tissue. At the cellular level, ZnO-NPs exposure reduced the cell viability and increased the intracellular ROS generation, lipid peroxidation and caspase-3 activity in a dose-dependent manner in all three cell types. In addition, ZnO-NPs exposure significantly suppressed the endothelial nitric oxide (NO) generation, cardiac Ca2+ - ATPase activity and enhanced the cardiac mitochondrial swelling. Moreover, inhibition of p38 MAPK and JNK signaling pathways influence the cytotoxicity. Overall, ZnO-NPs exposure affects the cardiovascular system under normal conditions and it exacerbates the cardiovascular pathogenesis under selected risk factor milieu.
Collapse
Affiliation(s)
- Manigandan Nagarajan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Ganeshmurthy Kanniamal Tharani
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Inbamani Udhayakumar
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Gayathri Kumar
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Krishna Priya Mani
- Vascular Research Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
36
|
Abdrabbo M, Birch CM, Brandt M, Cicigoi KA, Coffey SJ, Dolan CC, Dvorak H, Gehrke AC, Gerzema AEL, Hansen A, Henseler EJ, Huelsbeck AC, LaBerge B, Leavens CM, Le CN, Lindquist AC, Ludwig RK, Reynolds JH, Severson NJ, Sherman BA, Sillman HW, Smith MA, Smith MA, Snortheim MJ, Svaren LM, Vanderpas EC, Wackett MJ, Wozney AJ, Bhattacharyya S, Hati S. Vitamin D and COVID-19: A review on the role of vitamin D in preventing and reducing the severity of COVID-19 infection. Protein Sci 2021; 30:2206-2220. [PMID: 34558135 PMCID: PMC8521296 DOI: 10.1002/pro.4190] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) is a pathogenic coronavirus causing COVID‐19 infection. The interaction between the SARS‐CoV‐2 spike protein and the human receptor angiotensin‐converting enzyme 2, both of which contain several cysteine residues, is impacted by the disulfide‐thiol balance in the host cell. The host cell redox status is affected by oxidative stress due to the imbalance between the reactive oxygen/nitrogen species and antioxidants. Recent studies have shown that Vitamin D supplementation could reduce oxidative stress. It has also been proposed that vitamin D at physiological concentration has preventive effects on many viral infections, including COVID‐19. However, the molecular‐level picture of the interplay of vitamin D deficiency, oxidative stress, and the severity of COVID‐19 has remained unclear. Herein, we present a thorough review focusing on the possible molecular mechanism by which vitamin D could alter host cell redox status and block viral entry, thereby preventing COVID‐19 infection or reducing the severity of the disease.
Collapse
Affiliation(s)
- Mobeen Abdrabbo
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Cole M Birch
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Michael Brandt
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Kelsey A Cicigoi
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Stephen J Coffey
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Connor C Dolan
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Hannah Dvorak
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Ava C Gehrke
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Audrey E L Gerzema
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Abby Hansen
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Ethan J Henseler
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Alyssa C Huelsbeck
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Ben LaBerge
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Caterra M Leavens
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Christine N Le
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Allison C Lindquist
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Rickaela K Ludwig
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Jacob H Reynolds
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Nathaniel J Severson
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Brandon A Sherman
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Hunter W Sillman
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Michael A Smith
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Macey A Smith
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Marissa J Snortheim
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Levi M Svaren
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Emily C Vanderpas
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Miles J Wackett
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Alec J Wozney
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Sudeep Bhattacharyya
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Sanchita Hati
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| |
Collapse
|
37
|
Güler G, Özdemir H, Omar D, Akdoğan G. Coronavirus disease 2019 (COVID-19): Biophysical and biochemical aspects of SARS-CoV-2 and general characteristics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:3-18. [PMID: 34033836 PMCID: PMC8142027 DOI: 10.1016/j.pbiomolbio.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023]
Abstract
The coronavirus disease (COVID-19) arises from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) which is an enveloped RNA virus. COVID-19 has rapidly spread throughout the world by infecting more than 143 million people and causing 3.04 million deaths worldwide by 22 April 2021, confirmed by the World Health Organization. It caused great concern and pandemic all over the world, therewithal there has not been found any specific and efficient treatment yet. In the current review, we aimed to define the biophysical and biochemical aspects of SARS-CoV-2, including renin-angiotensin-system, cytokine storms, receptor binding, protein structural and functional features, molecular interactions, and conformational changes that take place during viral attachment and entering into human cells. It was also aimed to highlight the general hallmarks of COVID-19, including treatment strategies, diagnosis and even prevention. Thus, this review will serve as an updated comprehensive body of information and discussion on COVID-19 and will help the molecular scientists, biophysicists, clinicians, as well as medical engineers. Thereby, further understanding of COVID-19 will provide novel insights and advances in development of therapeutic potentials and vaccine alternatives as well as in detection of specific targets for diagnosis.
Collapse
Affiliation(s)
- Günnur Güler
- Department of Biomedical Engineering, Izmir University of Economics, 35330 Izmir, Turkey.
| | - Helin Özdemir
- Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
| | - Dilara Omar
- Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
| | - Gül Akdoğan
- Faculty of Medicine, Izmir University of Economics, 35330 Izmir, Turkey
| |
Collapse
|
38
|
Wogonin Inhibits Cardiac Hypertrophy by Activating Nrf-2-Mediated Antioxidant Responses. Cardiovasc Ther 2021; 2021:9995342. [PMID: 34290825 PMCID: PMC8266446 DOI: 10.1155/2021/9995342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/01/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Background Cardiac hypertrophy is one of the initial disorders of the cardiovascular system and can induce heart failure. Oxidative stress is an important pathophysiological mechanism of cardiac hypertrophy. Wogonin (Wog), an important flavonoid derived from the root of Scutellaria baicalensis Georgi, is known to possess antioxidant properties. Methods An in vitro model of cardiac hypertrophy was established by stimulating H9C2 cells and neonatal rat cardiomyocytes (NRCMs) with angiotensin II (AngII). The indices related to myocardial hypertrophy and oxidative stress were detected. An in vivo model of cardiac hypertrophy was induced by transverse aortic constriction (TAC) in C57BL/6 mice. Cardiac function was monitored by chest echocardiography, and the hypertrophy index was measured. The mice were then sacrificed for histological assays, with mRNA and protein detection. To further explore the role of nuclear factor- (erythroid-derived 2-) like 2 (Nrf-2) in regulating the antioxidant effects of Wog in cardiac hypertrophy, siRNA analysis was conducted. Results Our results showed that Wog significantly ameliorated AngII-induced cardiomyocyte hypertrophy by inhibiting oxidative stress in H9C2 cells and NRCMs. In addition, Wog treatment prevented oxidative stress and improved cardiac hypertrophy in mice that underwent TAC. Using gene-specific siRNA for Nrf-2, we discovered that these antioxidative effects of Wog are mediated through Nrf-2 induction. Conclusions Our results provide further evidence for the potential use of Wog as an antioxidative agent for treatment of cardiac hypertrophy, and Nrf-2 might serve as a therapeutic target in the treatment of cardiac hypertrophy.
Collapse
|
39
|
Cárdenas-Rodríguez N, Bandala C, Vanoye-Carlo A, Ignacio-Mejía I, Gómez-Manzo S, Hernández-Cruz EY, Pedraza-Chaverri J, Carmona-Aparicio L, Hernández-Ochoa B. Use of Antioxidants for the Neuro-Therapeutic Management of COVID-19. Antioxidants (Basel) 2021; 10:971. [PMID: 34204362 PMCID: PMC8235474 DOI: 10.3390/antiox10060971] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is an emergent infectious disease that has caused millions of deaths throughout the world. COVID-19 infection's main symptoms are fever, cough, fatigue, and neurological manifestations such as headache, myalgias, anosmia, ageusia, impaired consciousness, seizures, and even neuromuscular junctions' disorders. In addition, it is known that this disease causes a series of systemic complications such as adverse respiratory distress syndrome, cardiac injury, acute kidney injury, and liver dysfunction. Due to the neurological symptoms associated with COVID-19, damage in the central nervous system has been suggested as well as the neuroinvasive potential of SARS-CoV-2. It is known that CoV infections are associated with an inflammation process related to the imbalance of the antioxidant system; cellular changes caused by oxidative stress contribute to brain tissue damage. Although anti-COVID-19 vaccines are under development, there is no specific treatment for COVID-19 and its clinical manifestations and complications; only supportive treatments with immunomodulators, anti-vascular endothelial growth factors, modulating drugs, statins, or nutritional supplements have been used. In the present work, we analyzed the potential of antioxidants as adjuvants for the treatment of COVID-19 and specifically their possible role in preventing or decreasing the neurological manifestations and neurological complications present in the disease.
Collapse
Affiliation(s)
- Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Ciudad de México 14389, Mexico;
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - América Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, SEDENA, Ciudad de México 11200, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | | | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, UNAM, Ciudad de México 04150, Mexico; (E.Y.H.-C.); (J.P.-C.)
| | - Liliana Carmona-Aparicio
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secreatría de Salud, Ciudad de México 04530, Mexico; (A.V.-C.); (L.C.-A.)
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| |
Collapse
|
40
|
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021; 22:ijms22094762. [PMID: 33946230 PMCID: PMC8124994 DOI: 10.3390/ijms22094762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Current knowledge on the renin-angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets.
Collapse
|
41
|
Lins BB, Casare FAM, Fontenele FF, Gonçalves GL, Oliveira-Souza M. Long-Term Angiotensin II Infusion Induces Oxidative and Endoplasmic Reticulum Stress and Modulates Na + Transporters Through the Nephron. Front Physiol 2021; 12:642752. [PMID: 33868007 PMCID: PMC8046928 DOI: 10.3389/fphys.2021.642752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/05/2021] [Indexed: 01/10/2023] Open
Abstract
High plasma angiotensin II (Ang II) levels are related to many diseases, including hypertension, and chronic kidney diseases (CKDs). Here, we investigated the relationship among prolonged Ang II infusion/AT1 receptor (AT1R) activation, oxidative stress, and endoplasmic reticulum (ER) stress in kidney tissue. In addition, we explored the chronic effects of Ang II on tubular Na+ transport mechanisms. Male Wistar rats were subjected to sham surgery as a control or prolonged Ang II treatment (200 ng⋅kg–1⋅min–1, 42 days) with or without losartan (10 mg⋅kg–1⋅day–1) for 14 days. Ang II/AT1R induced hypertension with a systolic blood pressure of 173.0 ± 20 mmHg (mmHg, n = 9) compared with 108.0 ± 7 mmHg (mmHg, n = 7) in sham animals. Under these conditions, gene and protein expression levels were evaluated. Prolonged Ang II administration/AT1R activation induced oxidative stress and ER stress with increased Nox2, Nox4, Cyba and Ncf1 mRNA expression, phosphorylated PERK and eIF2α protein expression as well as Atf4 mRNA expression. Ang II/AT1R also raised Il1b, Nfkb1 and Acta2 mRNA expression, suggesting proinflammatory, and profibrotic effects. Regarding Na+ tubular handling, Ang II/AT1R enhanced cortical non-phosphorylated and phospho/S552/NHE3, NHE1, ENaC β, NKCC2, and NCC protein expression. Our results also highlight the therapeutic potential of losartan, which goes beyond the antihypertensive effect, playing an important role in kidney tissue. This treatment reduced oxidative stress and ER stress signals and recovered relevant parameters of the maintenance of renal function, preventing the progression of Ang II-induced CKD.
Collapse
Affiliation(s)
- Bruna Bezerra Lins
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando Augusto Malavazzi Casare
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávia Ferreira Fontenele
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guilherme Lopes Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Oliveira-Souza
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Bousquet J, Anto JM, Czarlewski W, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Vidal A, Sheikh A, Akdis CA, Zuberbier T, Hamzah Abdul Latiff A, Abdullah B, Aberer W, Abusada N, Adcock I, Afani A, Agache I, Aggelidis X, Agustin J, Akdis M, Al‐Ahmad M, Al‐Zahab Bassam A, Alburdan H, Aldrey‐Palacios O, Alvarez Cuesta E, Alwan Salman H, Alzaabi A, Amade S, Ambrocio G, Angles R, Annesi‐Maesano I, Ansotegui IJ, Anto J, Ara Bardajo P, Arasi S, Arshad H, Cristina Artesani M, Asayag E, Avolio F, Azhari K, Bachert C, Bagnasco D, Baiardini I, Bajrović N, Bakakos P, Bakeyala Mongono S, Balotro‐Torres C, Barba S, Barbara C, Barbosa E, Barreto B, Bartra J, Bateman ED, Battur L, Bedbrook A, Bedolla Barajas M, Beghé B, Bekere A, Bel E, Ben Kheder A, Benson M, Berghea EC, Bergmann K, Bernardini R, Bernstein D, Bewick M, Bialek S, Białoszewski A, Bieber T, Billo NE, Bilo MB, Bindslev‐Jensen C, Bjermer L, Bobolea I, Bochenska Marciniak M, Bond C, Boner A, Bonini M, Bonini S, Bosnic‐Anticevich S, Bosse I, Botskariova S, Bouchard J, Boulet L, Bourret R, Bousquet P, Braido F, Briggs A, Brightling CE, Brozek J, Brussino L, Buhl R, Bumbacea R, Buquicchio R, Burguete Cabañas M, Bush A, Busse WW, Buters J, Caballero‐Fonseca F, et alBousquet J, Anto JM, Czarlewski W, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Vidal A, Sheikh A, Akdis CA, Zuberbier T, Hamzah Abdul Latiff A, Abdullah B, Aberer W, Abusada N, Adcock I, Afani A, Agache I, Aggelidis X, Agustin J, Akdis M, Al‐Ahmad M, Al‐Zahab Bassam A, Alburdan H, Aldrey‐Palacios O, Alvarez Cuesta E, Alwan Salman H, Alzaabi A, Amade S, Ambrocio G, Angles R, Annesi‐Maesano I, Ansotegui IJ, Anto J, Ara Bardajo P, Arasi S, Arshad H, Cristina Artesani M, Asayag E, Avolio F, Azhari K, Bachert C, Bagnasco D, Baiardini I, Bajrović N, Bakakos P, Bakeyala Mongono S, Balotro‐Torres C, Barba S, Barbara C, Barbosa E, Barreto B, Bartra J, Bateman ED, Battur L, Bedbrook A, Bedolla Barajas M, Beghé B, Bekere A, Bel E, Ben Kheder A, Benson M, Berghea EC, Bergmann K, Bernardini R, Bernstein D, Bewick M, Bialek S, Białoszewski A, Bieber T, Billo NE, Bilo MB, Bindslev‐Jensen C, Bjermer L, Bobolea I, Bochenska Marciniak M, Bond C, Boner A, Bonini M, Bonini S, Bosnic‐Anticevich S, Bosse I, Botskariova S, Bouchard J, Boulet L, Bourret R, Bousquet P, Braido F, Briggs A, Brightling CE, Brozek J, Brussino L, Buhl R, Bumbacea R, Buquicchio R, Burguete Cabañas M, Bush A, Busse WW, Buters J, Caballero‐Fonseca F, Calderon MA, Calvo M, Camargos P, Camuzat T, Canevari F, Cano A, Canonica GW, Capriles‐Hulett A, Caraballo L, Cardona V, Carlsen K, Carmon Pirez J, Caro J, Carr W, Carreiro‐Martins P, Carreon‐Asuncion F, Carriazo A, Casale T, Castor M, Castro E, Caviglia A, Cecchi L, Cepeda Sarabia A, Chandrasekharan R, Chang Y, Chato‐Andeza V, Chatzi L, Chatzidaki C, Chavannes NH, Chaves Loureiro C, Chelninska M, Chen Y, Cheng L, Chinthrajah S, Chivato T, Chkhartishvili E, Christoff G, Chrystyn H, Chu DK, Chua A, Chuchalin A, Chung KF, Cicerán A, Cingi C, Ciprandi G, Cirule I, Coelho AC, Compalati E, Constantinidis J, Correia de Sousa J, Costa EM, Costa D, Costa Domínguez MDC, Coste A, Cottini M, Cox L, Crisci C, Crivellaro MA, Cruz AA, Cullen J, Custovic A, Cvetkovski B, Czarlewski W, D'Amato G, Silva J, Dahl R, Dahlen S, Daniilidis V, DarjaziniNahhas L, Darsow U, Davies J, Blay F, De Feo G, De Guia E, los Santos C, De Manuel Keenoy E, De Vries G, Deleanu D, Demoly P, Denburg J, Devillier P, Didier A, Dimic Janjic S, Dimou M, Dinh‐Xuan AT, Djukanovic R, Do Ceu Texeira M, Dokic D, Dominguez Silva MG, Douagui H, Douladiris N, Doulaptsi M, Dray G, Dubakiene R, Dupas E, Durham S, Duse M, Dykewicz M, Ebo D, Edelbaher N, Eiwegger T, Eklund P, El‐Gamal Y, El‐Sayed ZA, El‐Sayed SS, El‐Seify M, Emuzyte R, Enecilla L, Erhola M, Espinoza H, Espinoza Contreras JG, Farrell J, Fernandez L, Fink Wagner A, Fiocchi A, Fokkens WJ, Lenia F, Fonseca JA, Fontaine J, Forastiere F, Fuentes Pèrez JM, Gaerlan–Resureccion E, Gaga M, Gálvez Romero JL, Gamkrelidze A, Garcia A, García Cobas CY, García Cruz MDLLH, Gayraud J, Gelardi M, Gemicioglu B, Gennimata D, Genova S, Gereda J, Gerth van Wijk R, Giuliano A, Gomez M, González Diaz S, Gotua M, Grigoreas C, Grisle I, Gualteiro L, Guidacci M, Guldemond N, Gutter Z, Guzmán A, Halloum R, Halpin D, Hamelmann E, Hammadi S, Harvey R, Heffler E, Heinrich J, Hejjaoui A, Hellquist‐Dahl B, Hernández Velázquez L, Hew M, Hossny E, Howarth P, Hrubiško M, Huerta Villalobos YR, Humbert M, Salina H, Hyland M, Ibrahim M, Ilina N, Illario M, Incorvaia C, Infantino A, Irani C, Ispayeva Z, Ivancevich J, E.J. Jares E, Jarvis D, Jassem E, Jenko K, Jiméneracruz Uscanga RD, Johnston SL, Joos G, Jošt M, Julge K, Jung K, Just J, Jutel M, Kaidashev I, Kalayci O, Kalyoncu F, Kapsali J, Kardas P, Karjalainen J, Kasala CA, Katotomichelakis M, Kavaliukaite L, Kazi BS, Keil T, Keith P, Khaitov M, Khaltaev N, Kim Y, Kirenga B, Kleine‐Tebbe J, Klimek L, Koffi N’Goran B, Kompoti E, Kopač P, Koppelman G, KorenJeverica A, Koskinen S, Košnik M, Kostov KV, Kowalski ML, Kralimarkova T, Kramer Vrščaj K, Kraxner H, Kreft S, Kritikos V, Kudlay D, Kuitunen M, Kull I, Kuna P, Kupczyk M, Kvedariene V, Kyriakakou M, Lalek N, Landi M, Lane S, Larenas‐Linnemann D, Lau S, Laune D, Lavrut J, Le L, Lenzenhuber M, Lessa M, Levin M, Li J, Lieberman P, Liotta G, Lipworth B, Liu X, Lobo R, Lodrup Carlsen KC, Lombardi C, Louis R, Loukidis S, Lourenço O, Luna Pech JA, Madjar B, Maggi E, Magnan A, Mahboub B, Mair A, Mais Y, Maitland van der Zee A, Makela M, Makris M, Malling H, Mandajieva M, Manning P, Manousakis M, Maragoudakis P, Marseglia G, Marshall G, Reza Masjedi M, Máspero JF, Matta Campos JJ, Maurer M, Mavale‐Manuel S, Meço C, Melén E, Melioli G, Melo‐Gomes E, Meltzer EO, Menditto E, Menzies‐Gow A, Merk H, Michel J, Micheli Y, Miculinic N, Midão L, Mihaltan F, Mikos N, Milanese M, Milenkovic B, Mitsias D, Moalla B, Moda G, Mogica Martínez MD, Mohammad Y, Moin M, Molimard M, Momas I, Mommers M, Monaco A, Montefort S, Mora D, Morais‐Almeida M, Mösges R, Mostafa B, Mullol J, Münter L, Muraro A, Murray R, Musarra A, Mustakov T, Naclerio R, Nadeau KC, Nadif R, Nakonechna A, Namazova‐Baranova L, Navarro‐Locsin G, Neffen H, Nekam K, Neou A, Nettis E, Neuberger D, Nicod L, Nicola S, Niederberger‐Leppin V, Niedoszytko M, Nieto A, Novellino E, Nunes E, Nyembue D, O’Hehir R, Odjakova C, Ohta K, Okamoto Y, Okubo K, Oliver B, Onorato GL, Pia Orru M, Ouédraogo S, Ouoba K, Paggiaro PL, Pagkalos A, Pajno G, Pala G, Palaniappan S, Pali‐Schöll I, Palkonen S, Palmer S, Panaitescu Bunu C, Panzner P, Papadopoulos NG, Papanikolaou V, Papi A, Paralchev B, Paraskevopoulos G, Park H, Passalacqua G, Patella V, Pavord I, Pawankar R, Pedersen S, Peleve S, Pellegino S, Pereira A, Pérez T, Perna A, Peroni D, Pfaar O, Pham‐Thi N, Pigearias B, Pin I, Piskou K, Pitsios C, Plavec D, Poethig D, Pohl W, Poplas Susic A, Popov TA, Portejoie F, Potter P, Poulsen L, Prados‐Torres A, Prarros F, Price D, Prokopakis E, Puggioni F, Puig‐Domenech E, Puy R, Rabe K, Raciborski F, Ramos J, Recto MT, Reda SM, Regateiro FS, Reider N, Reitsma S, Repka‐Ramirez S, Ridolo E, Rimmer J, Rivero Yeverino D, Angelo Rizzo J, Robalo‐Cordeiro C, Roberts G, Roche N, Rodríguez González M, Rodríguez Zagal E, Rolla G, Rolland C, Roller‐Wirnsberger R, Roman Rodriguez M, Romano A, Romantowski J, Rombaux P, Romualdez J, Rosado‐Pinto J, Rosario N, Rosenwasser L, Rossi O, Rottem M, Rouadi P, Rovina N, Rozman Sinur I, Ruiz M, Ruiz Segura LT, Ryan D, Sagara H, Sakai D, Sakurai D, Saleh W, Salimaki J, Samitas K, Samolinski B, Sánchez Coronel MG, Sanchez‐Borges M, Sanchez‐Lopez J, Sarafoleanu C, Sarquis Serpa F, Sastre‐Dominguez J, Savi E, Sawaf B, Scadding GK, Scheire S, Schmid‐Grendelmeier P, Schuhl JF, Schunemann H, Schvalbová M, Schwarze J, Scichilone N, Senna G, Sepúlveda C, Serrano E, Shields M, Shishkov V, Siafakas N, Simeonov A, FER Simons E, Carlos Sisul J, Sitkauskiene B, Skrindo I, SokličKošak T, Solé D, Sooronbaev T, Soto‐Martinez M, Soto‐Quiros M, Sousa Pinto B, Sova M, Soyka M, Specjalski K, Spranger O, Stamataki S, Stefanaki L, Stellato C, Stelmach R, Strandberg T, Stute P, Subramaniam A, Suppli Ulrik C, Sutherland M, Sylvestre S, Syrigou A, Taborda Barata L, Takovska N, Tan R, Tan F, Tan V, Ping Tang I, Taniguchi M, Tannert L, Tantilipikorn P, Tattersall J, Tesi F, Thijs C, Thomas M, To T, Todo‐Bom A, Togias A, Tomazic P, Tomic‐Spiric V, Toppila‐Salmi S, Toskala E, Triggiani M, Triller N, Triller K, Tsiligianni I, Uberti M, Ulmeanu R, Urbancic J, Urrutia Pereira M, Vachova M, Valdés F, Valenta R, Valentin Rostan M, Valero A, Valiulis A, Vallianatou M, Valovirta E, Van Eerd M, Van Ganse E, Hage M, Vandenplas O, Vasankari T, Vassileva D, Velasco Munoz C, Ventura MT, Vera‐Munoz C, Vicheva D, Vichyanond P, Vidgren P, Viegi G, Vogelmeier C, Von Hertzen L, Vontetsianos T, Vourdas D, Tran Thien Quan V, Wagenmann M, Walker S, Wallace D, Wang DY, Waserman S, Wickman M, Williams S, Williams D, Wilson N, Wong G, Woo K, Wright J, Wroczynski P, Xepapadaki P, Yakovliev P, Yamaguchi M, Yan K, Yeow Yap Y, Yawn B, Yiallouros P, Yorgancioglu A, Yoshihara S, Young I, Yusuf OB, Zaidi A, Zaitoun F, Zar H, Zedda M, Zernotti ME, Zhang L, Zhong N, Zidarn M, Zubrinich C. Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy 2021; 76:735-750. [PMID: 32762135 PMCID: PMC7436771 DOI: 10.1111/all.14549] [Show More Authors] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT1 R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT1 R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.
Collapse
Affiliation(s)
- Jean Bousquet
- Charité Universitätsmedizin BerlinHumboldt‐Universität zu Berlin Berlin Germany
- Department of Dermatology and Allergy Berlin Institute of HealthComprehensive Allergy Center Berlin Germany
- MACVIA‐France and CHU Montpellier France
| | - Josep M. Anto
- Centre for Research in Environmental Epidemiology (CREAL) ISGlobAL Barcelona Spain
- IMIM (Hospital del Mar Research Institute) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) Barcelona Spain
| | | | - Tari Haahtela
- Skin and Allergy Hospital Helsinki University Hospital University of Helsinki Finland
| | - Susana C. Fonseca
- Faculty of Sciences GreenUPorto ‐ Sustainable Agrifood Production Research Centre DGAOTUniversity of Porto Porto Portugal
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences Federico II University Napoli Italy
| | - Hubert Blain
- Department of Geriatrics Montpellier University hospital and MUSE Montpellier France
| | - Alain Vidal
- World Business Council for Sustainable Development (WBCSD) Geneva Switzerland
- AgroParisTech ‐ Paris Institute of Technology for Life, Food and Environmental Sciences Paris France
| | - Aziz Sheikh
- Usher Institute University of Edinburgh Scotland, UK
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Torsten Zuberbier
- Charité Universitätsmedizin BerlinHumboldt‐Universität zu Berlin Berlin Germany
- Department of Dermatology and Allergy Berlin Institute of HealthComprehensive Allergy Center Berlin Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhong P, Zeng G, Lei C, Tian G, Ouyang S, Liu F, Peng J. Ciliary neurotrophic factor overexpression protects the heart against pathological remodelling in angiotensin II-infused mice. Biochem Biophys Res Commun 2021; 547:15-22. [PMID: 33588234 DOI: 10.1016/j.bbrc.2021.01.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ciliary neurotrophic factor (CNTF), which is a neural peptide, has been reported to confer cardioprotective effects. However, whether CNTF-based gene therapy could prevent cardiac remodelling remains incompletely clear. In this study, we used adeno-associated viral vector serotype 9 (AAV9)-based cardiac gene therapy to test the effects of CNTF overexpression on adverse ventricular remodelling in angiotensin II (Ang II)-infused mice. METHODS First, AAV9-EGFP and AAV9-CNTF constructs were generated with virus concentration at 5 × 1012 vg/ml. Next, postnatal (P3-P10) mice with C57BL/6J background were administered with 5 × 1011 vg of AAV9 recombinant genome diluted in 50 μl of saline, and delivered through intraperitoneal injection. Implantation of osmotic minipumps was performed in 8-week-old male mice and human Ang II solution was administrated in the mice subcutaneously for 14 days through the pumps. Finally, we evaluated the effects of CNTF overexpression on mouse cardiac function, hypertrophy and fibrosis, as well as investigated the possible mechanisms. RESULTS Our data showed that CNTF overexpression in mouse cardiomyocytes prevents cardiac hypertrophy and fibrosis induced by chronic Ang II stimulation. Mechanistic study found that CNTF overexpression upregulated NFE2-related factor 2 (Nrf2) antioxidant pathway, coupled with decreased ROS level in the cardiac tissues. Additionally, inflammatory cytokines were found to be reduced upon cardiac CNTF overexpression in response to chronic Ang II stimulation. CONCLUSIONS Altogether, these results provide further evidence that CNTF can alleviate the condition of cardiac remodelling induced by chronic Ang II stimulation. Therefore, our results suggest a potential therapeutic role of CNTF in cardiac pathological remodelling.
Collapse
Affiliation(s)
- Peng Zhong
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, Hubei, PR China
| | - Gaofeng Zeng
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - ChangCheng Lei
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - Guoping Tian
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - Shao Ouyang
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - Fangyao Liu
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China
| | - Jianye Peng
- Department of Cardiovascular Medicine, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, The Second Affiliated Hospital of the University of South China, Jiefang Road 30, Hengyang, 421000, Hunan, PR China.
| |
Collapse
|
44
|
Pincemail J, Cavalier E, Charlier C, Cheramy–Bien JP, Brevers E, Courtois A, Fadeur M, Meziane S, Goff CL, Misset B, Albert A, Defraigne JO, Rousseau AF. Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants (Basel) 2021; 10:257. [PMID: 33562403 PMCID: PMC7914603 DOI: 10.3390/antiox10020257] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A key role of oxidative stress has been highlighted in the pathogenesis of COVID-19. However, little has been said about oxidative stress status (OSS) of COVID-19 patients hospitalized in intensive care unit (ICU). MATERIAL AND METHODS Biomarkers of the systemic OSS included antioxidants (9 assays), trace elements (3 assays), inflammation markers (4 assays) and oxidative damage to lipids (3 assays). RESULTS Blood samples were drawn after 9 (7-11) and 41 (39-43) days of ICU stay, respectively in 3 and 6 patients. Vitamin C, thiol proteins, reduced glutathione, γ-tocopherol, β-carotene and PAOT® score were significantly decreased compared to laboratory reference values. Selenium concentration was at the limit of the lower reference value. By contrast, the copper/zinc ratio (as a source of oxidative stress) was higher than reference values in 55% of patients while copper was significantly correlated with lipid peroxides (r = 0.95, p < 0.001). Inflammatory biomarkers (C-reactive protein and myeloperoxidase) were significantly increased when compared to normals. CONCLUSIONS The systemic OSS was strongly altered in critically ill COVID-19 patients as evidenced by increased lipid peroxidation but also by deficits in some antioxidants (vitamin C, glutathione, thiol proteins) and trace elements (selenium).
Collapse
Affiliation(s)
- Joël Pincemail
- Clinical Chemistry, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (E.C.); (E.B.); (C.L.G.)
| | - Etienne Cavalier
- Clinical Chemistry, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (E.C.); (E.B.); (C.L.G.)
| | - Corinne Charlier
- Toxicology Department, CHU of Liège, Sart Tilman, 4000 Liège, Belgium;
| | - Jean-Paul Cheramy–Bien
- Department of Cardiovascular Surgery, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (A.C.); (J.-O.D.)
| | - Eric Brevers
- Clinical Chemistry, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (E.C.); (E.B.); (C.L.G.)
| | - Audrey Courtois
- Department of Cardiovascular Surgery, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (A.C.); (J.-O.D.)
| | - Marjorie Fadeur
- Service of Diabetology, Nutrition and Metabolic Diseases, CHU of Liège, Sart Tilman, 4000 Liège, Belgium;
| | - Smail Meziane
- Institut Européen des Antioxydants, 54000 Nancy, France;
| | - Caroline Le Goff
- Clinical Chemistry, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (E.C.); (E.B.); (C.L.G.)
| | - Benoît Misset
- Intensive Care Department, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (B.M.); (A.-F.R.)
| | - Adelin Albert
- Biostatistics and Medico-economic Information Department, CHU of Liège, Sart Tilman, 4000 Liège, Belgium;
| | - Jean-Olivier Defraigne
- Department of Cardiovascular Surgery, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (J.-P.C.-B.); (A.C.); (J.-O.D.)
| | - Anne-Françoise Rousseau
- Intensive Care Department, CHU of Liège, Sart Tilman, 4000 Liège, Belgium; (B.M.); (A.-F.R.)
| |
Collapse
|
45
|
Collazo BJ, Morales-Vázquez D, Álvarez-Del Valle J, Sierra-Pagan JE, Medina JC, Méndez-Álvarez J, Gerena Y. Angiotensin II Induces Differentiation of Human Neuroblastoma Cells by Increasing MAP2 and ROS Levels. J Renin Angiotensin Aldosterone Syst 2021; 2021:6191417. [PMID: 34285710 PMCID: PMC8265025 DOI: 10.1155/2021/6191417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The roles of angiotensin II (Ang II) in the brain are still under investigation. In this study, we investigated if Ang II influences differentiation of human neuroblastoma cells with simultaneous activation of NADPH oxidase and reactive oxygen species (ROS). Moreover, we investigated the Ang II receptor type involved during differentiation. METHODS Human neuroblastoma cells (SH-SY5Y; 5 × 105 cells) were exposed to Ang II (600 nM) for 24 h. Differentiation was monitored by measuring MAP2 and NF-H levels. Cell size and ROS were analyzed by flow cytometry, and NADPH oxidase activation was assayed using apocynin (500 μM). Ang II receptors (ATR) activation was assayed using ATR blockers or Ang II metabolism inhibitors (10-7 M). RESULTS (1) Cell size decreased significantly in Ang II-treated cells; (2) MAP2 and ROS increased significantly in Ang II-treated cells with no changes in viability; (3) MAP2 and ROS decreased significantly in cells incubated with Ang II plus apocynin. (4) A significant decrease in MAP2 was observed in cells exposed to Ang II plus PD123.319 (AT2R blocker). CONCLUSION Our findings suggest that Ang II influences differentiation of SH-SY5Y by increasing MAP2 through the AT2R. The increase in MAP2 and ROS were also mediated through NADPH oxidase with no cell death.
Collapse
Affiliation(s)
- Bryan Jael Collazo
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| | - Dariana Morales-Vázquez
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| | - Jaylene Álvarez-Del Valle
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| | - Javier E. Sierra-Pagan
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| | - Juan Carlos Medina
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| | - Jarold Méndez-Álvarez
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| | - Yamil Gerena
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| |
Collapse
|
46
|
Bousquet J, Czarlewski W, Zuberbier T, Mullol J, Blain H, Cristol JP, De La Torre R, Le Moing V, Pizarro Lozano N, Bedbrook A, Agache I, Akdis CA, Canonica GW, Cruz AA, Fiocchi A, Fonseca JA, Fonseca S, Gemicioğlu B, Haahtela T, Iaccarino G, Ivancevich JC, Jutel M, Klimek L, Kuna P, Larenas-Linnemann DE, Melén E, Okamoto Y, Papadopoulos NG, Pfaar O, Reynes J, Rolland Y, Rouadi PW, Samolinski B, Sheikh A, Toppila-Salmi S, Valiulis A, Choi HJ, Kim HJ, Anto JM. Spices to Control COVID-19 Symptoms: Yes, but Not Only…. Int Arch Allergy Immunol 2020; 182:489-495. [PMID: 33352565 PMCID: PMC7900475 DOI: 10.1159/000513538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/02/2022] Open
Abstract
There are large country variations in COVID-19 death rates that may be partly explained by diet. Many countries with low COVID-19 death rates have a common feature of eating large quantities of fermented vegetables such as cabbage and, in some continents, various spices. Fermented vegetables and spices are agonists of the antioxidant transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and spices are transient receptor potential ankyrin 1 and vanillin 1 (TRPA1/V1) agonists. These mechanisms may explain many COVID-19 symptoms and severity. It appears that there is a synergy between Nrf2 and TRPA1/V1 foods that may explain the role of diet in COVID-19. One of the mechanisms of COVID-19 appears to be an oxygen species (ROS)-mediated process in synergy with TRP channels, modulated by Nrf2 pathways. Spicy foods are likely to desensitize TRP channels and act in synergy with exogenous antioxidants that activate the Nrf2 pathway.
Collapse
Affiliation(s)
- Jean Bousquet
- Department of Dermatology and Allergy, Charité Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany, .,University hospital and MACVIA France, Montpellier, France,
| | | | - Torsten Zuberbier
- Department of Dermatology and Allergy, Charité Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany
| | - Joaquim Mullol
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic-Clinical & Experimental Respiratory Immunoallergy, IDIBAPS, CIBERES, Universitat de Barcelona, Barcelona, Spain
| | - Hubert Blain
- Department of Geriatrics, Montpellier University Hospital, Montpellier, France
| | - Jean-Paul Cristol
- Laboratoire de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de Montpellier, Montpellier, France
| | - Rafael De La Torre
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | | | - Nieves Pizarro Lozano
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | - Anna Bedbrook
- University hospital and MACVIA France, Montpellier, France.,MASK-air, Montpellier, France
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich-Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - G Walter Canonica
- Department of Biomedical Sciences, Personalized Medicine, Asthma and Allergy, Humanitas Clinical and Research Center IRCCS, Humanitas University, Pieve Emanuele, Italy
| | - Alvaro A Cruz
- Fundação ProAR, Federal University of Bahia and GARD/WHO Planning Group, Salvador, Brazil
| | - Alessandro Fiocchi
- Division of Allergy, Department of Pediatric Medicine-The Bambino Gesù Children's Research Hospital Holy see, Rome, Italy
| | - Joao A Fonseca
- CINTESIS, Center for Research in Health Technologies and Information Systems, Faculdade de Medicina da Universidade do Porto, Porto, Portugal and MEDIDA, Lda, Porto, Portugal
| | - Susana Fonseca
- GreenUPorto-Sustainable Agrifood Production Research Centre, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Vila do Conde, Portugal
| | - Bilun Gemicioğlu
- Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University, Napoli, Italy.,Interdepartmental Center of Research on Hypertension and Related Conditions CIRIAPA, Federico II University, Napoli, Italy
| | | | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University and ALL-MED Medical Research Institute, Wrocław, Poland
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Piotr Kuna
- Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| | - Désirée E Larenas-Linnemann
- Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, Mexico City, Mexico
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet and Sachs' Children's Hospital, Stockholm, Sweden
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology, Chiba University Hospital, Chiba, Japan
| | - Nikolaos G Papadopoulos
- Division of Infection, Allergy Department, Immunity & Respiratory Medicine, Royal Manchester Children's Hospital, University of Manchester, Manchester, United Kingdom.,2nd Pediatric Clinic, Athens General Children's Hospital "P&A Kyriakou," University of Athens, Athens, Greece
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Jacques Reynes
- Maladies Infectieuses et Tropicales, CHU, Montpellier, France
| | | | - Philip W Rouadi
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Boleslaw Samolinski
- Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - Aziz Sheikh
- The Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sanna Toppila-Salmi
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Arunas Valiulis
- Vilnius University Faculty of Medicine, Institute of Clinical Medicine & Institute of Health Sciences, Vilnius, Lithuania
| | - Hak-Jong Choi
- Microbiology and Functionality Research Group, Research and Development Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Hyun Ju Kim
- SME Service Department, Strategy and Planning Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Josep M Anto
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,ISGlobAL, Barcelona, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| |
Collapse
|
47
|
Keihanian F, Moohebati M, Saeidinia A, Mohajeri SA, Madaeni S. Therapeutic effects of medicinal plants on isoproterenol-induced heart failure in rats. Biomed Pharmacother 2020; 134:111101. [PMID: 33338752 DOI: 10.1016/j.biopha.2020.111101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/16/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
AIMS Natural products still serves as a hope for some illnesses which modern medicine fails to cure. Many people, either knowing their effects or not, are using these herbal products. Treatment of chronic heart failure (CHF) is yet a complicated clinical challenge and there is need to improve or make new therapeutic targets. Finding new agents for CHF is an important subject in cardiovascular drug research. In this study, we evaluated the effects of ten herbals on treatment of CHF on isoproterenol-induced model. METHODS AND RESULTS Ninety-six male Wistar rats (16 weeks old) were used in 12 groups. Transthoracic echocardiography was performed on the rats for confirmation of CHF model by decreasing ejection fraction. After 4 weeks' treatment, hearts were removed and blood samples were collected in tubes to measure plasma levels of laboratory findings. Our results showed that the mean of ejection fraction in model rats was 51.82 ± 3.49 percent and all of our used natural products could significantly increase the ejection fraction (P < 0.01). The most effective herbals in improving the ejection fraction were Allium sativum (30.69 %), Peganum harmala (26.08 %) and Apium graveolens (24.09 %). The best results in decreasing NT-ProBNP, was obtained from Allium sativum, Peganum harmala and Berberis vulgaris respectively. Our results showed that none of natural products had toxic effect on renal and liver tissues. CONCLUSION Our results showed that Allium sativum, Peganum harmala and Berberis vulgaris could significantly improve cardiac function by improvement of left ventricular remodeling, lowering hs-CRP and NT-ProBNP and echocardiographic indexes without liver or renal side effects.
Collapse
Affiliation(s)
- Faeze Keihanian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Cardiovascular Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moohebati
- Cardiovascular Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Saeidinia
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Pediatric Department, Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Saeid Madaeni
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Bousquet J, Cristol JP, Czarlewski W, Anto JM, Martineau A, Haahtela T, Fonseca SC, Iaccarino G, Blain H, Fiocchi A, Canonica GW, Fonseca JA, Vidal A, Choi HJ, Kim HJ, Le Moing V, Reynes J, Sheikh A, Akdis CA, Zuberbier T. Nrf2-interacting nutrients and COVID-19: time for research to develop adaptation strategies. Clin Transl Allergy 2020; 10:58. [PMID: 33292691 PMCID: PMC7711617 DOI: 10.1186/s13601-020-00362-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPARγ:Peroxisome proliferator-activated receptor, NFκB: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2α:Elongation initiation factor 2α). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT1R axis (AT1R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.
Collapse
Affiliation(s)
- Jean Bousquet
- Department of Dermatology and Allergy, Charité, Universitätsmedizin Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany.
- University Hospital Montpellier, 273 avenue d'Occitanie, 34090, Montpellier, France.
- MACVIA-France, Montpellier, France.
| | - Jean-Paul Cristol
- Laboratoire de Biochimie et Hormonologie, PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU, Montpellier, France
| | | | - Josep M Anto
- IMIM (Hospital del Mar Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
- ISGlobAL, Barcelona, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Adrian Martineau
- Institute for Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - Susana C Fonseca
- GreenUPorto - Sustainable Agrifood Production Research Centre, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Vila do Conde, Portugal
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University, Napoli, Italy
| | - Hubert Blain
- Department of Geriatrics, Montpellier University Hospital, Montpellier, France
| | - Alessandro Fiocchi
- Division of Allergy, Department of Pediatric Medicine, The Bambino Gesu Children's Research Hospital Holy See, Rome, Italy
| | - G Walter Canonica
- Personalized Medicine Asthma and Allergy Clinic-Humanitas University & Research Hospital, IRCCS, Milano, Italy
| | - Joao A Fonseca
- CINTESIS, Center for Research in Health Technology and Information Systems, Faculdade de Medicina da Universidade do Porto; and Medida,, Lda Porto, Porto, Portugal
| | - Alain Vidal
- World Business Council for Sustainable Development (WBCSD) Maison de la Paix, Geneva, Switzerland
- AgroParisTech-Paris Institute of Technology for Life, Food and Environmental Sciences, Paris, France
| | - Hak-Jong Choi
- Microbiology and Functionality Research Group, Research and Development Division, World Institute of Kimchi, Gwangju, Korea
| | - Hyun Ju Kim
- SME Service Department, Strategy and Planning Division, World Institute of Kimchi, Gwangju, Korea
| | | | - Jacques Reynes
- Maladies Infectieuses et Tropicales, CHU, Montpellier, France
| | - Aziz Sheikh
- The Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Torsten Zuberbier
- Department of Dermatology and Allergy, Charité, Universitätsmedizin Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Comprehensive Allergy Center, Berlin, Germany
| |
Collapse
|
49
|
Zitouni K, Steyn MRCP, Lyka E, Kelly FJ, Cook P, Ster IC, Earle KA. Derepression of glomerular filtration, renal blood flow and antioxidant defence in patients with type 2 diabetes at high-risk of cardiorenal disease. Free Radic Biol Med 2020; 161:283-289. [PMID: 33039650 DOI: 10.1016/j.freeradbiomed.2020.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The role of antioxidant status on microvascular blood flow and glomerular filtration (eGFR) in patients with type 2 diabetes and hypertension whose risk of progressive renal disease varies by ethnicity is unknown. METHODS Adult, non-Caucasian (n = 101) and Caucasian (n = 69) patients with type 2 diabetes, hypertension and/or microalbuminuria and an eGFR > 45 mL/min/1.73 m2 were randomised to receive 400 IU vitamin E and/or 20 μg selenium daily or matching placebo. eGFR (CKD-EPI) was measured at baseline, 3,6 and 12 months and renal blood flow by contrast-enhanced ultrasonography in a sub-group (n = 9) at baseline and 3 months by assessing the area under the time intensity curve (TIC). Circulating glutathione peroxidase 3 (GPx-3) activity was measured as a biomarker of oxidative defence status. RESULTS The time to change in eGFR was shortest with combined vitamin E and selenium than usual care (5.6 [4.0-7.0] vs 8.9 [6.8-10.9 months]; p = 0.006). Area under the TIC was reduced compared to baseline (38.52 [22.41-90.49] vs 123 [86.98-367.03]dB.s; P ≤ 0.05 and 347 [175.88-654.92] vs 928.03 [448.45-1683]dB.s; P ≤ 0.05, respectively] at 3 months suggesting an increase in rate of perfusion. The proportional change in eGFR at 12 months was greater in the group whose GPx-3 activity was above, compared with those below the cohort median (360 U/L) in the non-Caucasian and the Caucasian groups (19.1(12.5-25.7] % vs 6.5[-3.5 to 16.5] % and 12.8 [0.7 to 24] % vs 0.2 [-6.1 to 6.5] %). CONCLUSION In these patients with type 2 diabetes and early CKD, antioxidant treatment derepresses renal blood flow and a rise in eGFR correlated directly with GPx-3 activity. SIGNIFICANCE Diabetes mellitus is the world's leading cause of end-stage renal disease which has a predilection for black and minor ethnic groups compared with Caucasians. The differences in risk despite the benefits of conventional care may be related to oxidative stress. We found that glomerular filtration and renal blood flow is suppressed when renal function is preserved in high-risk patients with type 2 diabetes. Conventional care supplemented with selenium - the co-factor for glutathione peroxidase-3 (GPx-3) - improves renal perfusion and increase glomerular filtration according to host antioxidant defence determined by GPx-3 activity. Circulating GPx-3 activity warrants further investigation as a novel biomarker of reversible haemodynamic changes in early diabetic kidney disease to better enable targeting of renoprotective strategies.
Collapse
Affiliation(s)
- Karima Zitouni
- St Georges University of London, Institute of Infection and Immunity, London, UK
| | - M R C P Steyn
- St Georges University Hospitals NHS Foundation Trust, Thomas Addison Unit, London, UK
| | - Eliza Lyka
- St Georges University of London, Institute of Biomedical & Medical Education, London, UK
| | - Frank J Kelly
- Kings College London, Analytical, Environmental and Forensic Sciences Department, London, UK
| | - Paul Cook
- University Hospital Southampton NHS Foundation Trust, Trace Element Unit, Southampton, UK
| | - Irina Chis Ster
- St Georges University of London, Institute of Infection and Immunity, London, UK
| | - Kenneth Anthony Earle
- St Georges University Hospitals NHS Foundation Trust, Thomas Addison Unit, London, UK; St Georges University of London, Institute of Biomedical & Medical Education, London, UK.
| |
Collapse
|
50
|
Suhail S, Zajac J, Fossum C, Lowater H, McCracken C, Severson N, Laatsch B, Narkiewicz-Jodko A, Johnson B, Liebau J, Bhattacharyya S, Hati S. Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: A Review. Protein J 2020; 39:644-656. [PMID: 33106987 PMCID: PMC7587547 DOI: 10.1007/s10930-020-09935-8] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Novel coronavirus disease 2019 (COVID-19) has resulted in a global pandemic and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several studies have suggested that a precise disulfide-thiol balance is crucial for viral entry and fusion into the host cell and that oxidative stress generated from free radicals can affect this balance. Here, we reviewed the current knowledge about the role of oxidative stress on SARS-CoV and SARS-CoV-2 infections. We focused on the impact of antioxidants, like NADPH and glutathione, and redox proteins, such as thioredoxin and protein disulfide isomerase, that maintain the disulfide-thiol balance in the cell. The possible influence of these biomolecules on the binding of viral protein with the host cell angiotensin-converting enzyme II receptor protein as well as on the severity of COVID-19 infection was discussed.
Collapse
Affiliation(s)
- Shanzay Suhail
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Jonathan Zajac
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Carl Fossum
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Harrison Lowater
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Cailin McCracken
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Nathaniel Severson
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Bethany Laatsch
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Alex Narkiewicz-Jodko
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Benjamin Johnson
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Jessica Liebau
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Sudeep Bhattacharyya
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Sanchita Hati
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA.
| |
Collapse
|