1
|
Ban G, Chen Y, Liang Y, Wang X, Ding D, Liu R, Jia J, Zhao R, Wang C, Li N. Exploring the efficacy and constraints of platinum nanoparticles as adjuvant therapy in silicosis management. Drug Deliv 2025; 32:2445257. [PMID: 39803920 PMCID: PMC11730774 DOI: 10.1080/10717544.2024.2445257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/19/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment. Contemporary scholarly examinations have underscored the substantial antioxidative efficacy of platinum nanoparticles (PtNPs), postulating their utility as an adjunct therapeutic modality in silicosis management. The physicochemical interaction between PtNPs and silica demonstrates a propensity for adsorption, thereby facilitating the amelioration and subsequent pulmonary clearance of silica aggregates. In addition to their detoxifying attributes, PtNPs exhibit pronounced anti-inflammatory and antioxidative activities, which can neutralize ROS and inhibit macrophage-mediated inflammatory processes. Such attributes are instrumental in attenuating inflammatory responses and forestalling subsequent lung tissue damage. This discourse delineates the interplay between ROS and PtNPs, the pathogenesis of silicosis and its progression to pulmonary fibrosis, and critically evaluates the potential adjunct role of PtNPs in the therapeutic landscape of silicosis, alongside a contemplation of the inherent limitations associated with PtNPs application in this context.
Collapse
Affiliation(s)
- Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yuanjie Chen
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
- Clinical School, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yingbing Liang
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University, Tottori, Japan
| | - Xiaona Wang
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Dan Ding
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Rui Liu
- School of Life Sciences and Biotechnology, Sanquan College of Xinxiang Medical University, China
| | - Jingjing Jia
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Ran Zhao
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Chenxia Wang
- Department of Respiratory Medicine, People’s Hospital of Huojia County, Xinxiang, China
| | - Na Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Collet Q, Velard F, Laurent F, Josse J. Intracellular Staphylococcus aureus in osteoblasts and osteocytes and its impact on bone homeostasis during osteomyelitis. Bone 2025; 198:117536. [PMID: 40393553 DOI: 10.1016/j.bone.2025.117536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
Osteomyelitis is a severe infection of bone tissue that can lead to bone loss and even osteonecrosis. This condition is mostly caused by Gram-positive bacteria, with Staphylococcus aureus being the most common etiological agent. Among the pathophysiological mechanisms involved in osteomyelitis, the ability of S. aureus to be internalized by osteoblasts or osteocytes and to survive within these cells, is particularly noteworthy. Infected osteoblasts and osteocytes not only serve as reservoirs in chronic cases of osteomyelitis but also play an active role in the osteoimmunology process, notably by producing mediators that promote the bone resorption activity of osteoclasts, thereby disrupting bone homeostasis. The present review explores both historical and recent literature on the internalization of S. aureus by osteoblasts and osteocytes, its intracellular behavior following internalization, and its mechanisms for inducing cell death. Additionally, it examines how S. aureus affects bone formation activity and promotes the production of inflammatory and pro-osteoclastic mediators. This review aims to highlight the limitations of current findings and outline key questions for future investigations.
Collapse
Affiliation(s)
- Quentin Collet
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France; Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France.
| | | | - Frédéric Laurent
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France; Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| |
Collapse
|
3
|
Uusi-Mäkelä M, Harjula SKE, Junno M, Sillanpää A, Nätkin R, Niskanen MT, Saralahti AK, Nykter M, Rämet M. The inflammasome adaptor pycard is essential for immunity against Mycobacterium marinum infection in adult zebrafish. Dis Model Mech 2025; 18:dmm052061. [PMID: 39916610 PMCID: PMC11972081 DOI: 10.1242/dmm.052061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/03/2025] [Indexed: 03/25/2025] Open
Abstract
Inflammasomes regulate the host response to intracellular pathogens including mycobacteria. We have previously shown that the course of Mycobacterium marinum infection in adult zebrafish (Danio rerio) mimics the course of tuberculosis in human. To investigate the role of the inflammasome adaptor pycard in zebrafish M. marinum infection, we produced two zebrafish knockout mutant lines for the pycard gene with CRISPR/Cas9 mutagenesis. Although the zebrafish larvae lacking pycard developed normally and had unaltered resistance against M. marinum, the loss of pycard led to impaired survival and increased bacterial burden in the adult zebrafish. Based on histology, immune cell aggregates, granulomas, were larger in pycard-deficient fish than in wild-type controls. Transcriptome analysis with RNA sequencing of a zebrafish haematopoietic tissue, kidney, suggested a role for pycard in neutrophil-mediated defence, haematopoiesis and myelopoiesis during infection. Transcriptome analysis of fluorescently labelled, pycard-deficient kidney neutrophils identified genes that are associated with compromised resistance, supporting the importance of pycard for neutrophil-mediated immunity against M. marinum. Our results indicate that pycard is essential for resistance against mycobacteria in adult zebrafish.
Collapse
Affiliation(s)
- Meri Uusi-Mäkelä
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | | | - Maiju Junno
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Alina Sillanpää
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| | - Reetta Nätkin
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, FI-33521 Tampere, Finland
| | | | | | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, FI-33521 Tampere, Finland
| | - Mika Rämet
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland
| |
Collapse
|
4
|
Kim DH, Lee H, Kim MY, Hwangbo H, Ji SY, Bang E, Hong SH, Kim GY, Leem SH, Ryu D, Cheong J, Choi YH. Particulate matter 2.5 stimulates pyroptosis and necroptosis via the p38 MAPK/Akt/NF-κB signaling pathway in human corneal epithelial cells. Toxicology 2025; 515:154138. [PMID: 40199452 DOI: 10.1016/j.tox.2025.154138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Particulate matter 2.5 (PM2.5) exposure poses significant health risks, particularly to the eyes. This study aimed to investigate the cytotoxic effects of PM2.5 on human corneal epithelial cells (HCECs) and to elucidate the mechanisms involved in pyroptosis and necroptosis. HCECs were exposed to PM2.5, and cytotoxicity, reactive oxygen species (ROS) levels, and the expression of pyroptosis- and necroptosis-related proteins were assessed. The roles of nuclear factor-kappa B (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signaling pathways were also investigated. Exposure to PM2.5 caused a dose-dependent decrease in cell viability, accompanied by significant NLRP3 inflammasome activation, leading to pyroptosis and the release of pro-inflammatory cytokines. Enhanced ROS generation and mitochondrial dysfunction have also been observed, along with indicators of necroptosis, such as increased levels of mixed-lineage kinase domain-like proteins. Importantly, activation of the NF-κB signaling pathway was crucial for these responses. The suppression of p38 mitogen-activated protein kinase (MAPK) and activation of protein kinase B (Akt) using pharmacological modulators SB203580 and SC79, respectively, significantly reduced PM2.5-mediated cellular damage. These findings indicate that p38 MAPK inhibition and Akt activation are key regulatory mechanisms that help attenuate the deleterious effects of PM2.5 on HCECs. In conclusion, our findings offer new insights into the mechanisms by which PM2.5 induces pyroptosis and necroptosis in HCECs, especially by activating the NLRP3 inflammasome and NF-κB signaling pathways. The critical regulatory roles of p38 MAPK and Akt underscore their potential as therapeutic targets to alleviate PM-induced ocular damage.
Collapse
Affiliation(s)
- Da Hye Kim
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Integrated Biological Science, The Graduate School of Pusan National University, Busan 46241, Republic of Korea.
| | - Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.
| | - Min Yeong Kim
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - Hyun Hwangbo
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - Seon Yeong Ji
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - EunJin Bang
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - Su Hyun Hong
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| | - Gi Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea.
| | - Sun-Hee Leem
- Department of Biomedical Sciences, College of Natural Sciences, Dong-A University, Busan 49315, Republic of Korea; Department of Health Sciences, Dong-A University, Busan 49315, Republic of Korea.
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - JaeHun Cheong
- Department of Integrated Biological Science, The Graduate School of Pusan National University, Busan 46241, Republic of Korea; Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.
| | - Yung Hyun Choi
- Basic Research Laboratory for the Regulation of Microplastic-Mediated Diseases and Anti‑Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| |
Collapse
|
5
|
Zhao Y, Sun X, Shao F, Li L, Xiao W, Gu C, Zhang Y, Jia Y, Dai L, Li H, Bao H. Evodiamine inhibits NLRP3 inflammasome-mediated microglial pyroptosis and promotes remyelination via SLC2A4-regulated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156866. [PMID: 40393245 DOI: 10.1016/j.phymed.2025.156866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/06/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Activation of the NLRP3 inflammasome triggers pyroptosis, a pro-inflammatory type of cell death, in multiple sclerosis (MS). Evodiamine (EVO) possesses anti-inflammatory and neuroprotective properties; however, its potential molecular and signaling pathways in MS remain to be elucidated. This study aimed to explore the therapeutic potential of EVO for remyelination in MS and elucidated its underlying mechanisms. METHODS We utilized cuprizon (CPZ)/experimental autoimmune encephalomyelitis (EAE)-induced demyelinated mice and lipopolysaccharide+adenosine triphosphate (LPS+ATP)-induced pyroptosis of BV2 cells to investigate the potential of EVO in MS treatment. Various analyses were conducted, including rotarod fatigue test, RNA sequence, luxol fast blue, molecular docking, SPR, immunoblotting, qRT-PCR, immunofluorescence, and transmission electron microscopy, to analysis the targets and signaling pathways involved in EVO treatment. RESULTS EVO emerged as a promising remyelination agent in the CPZ/EAE demyelination models, acting through SLC2A4. Regarding its mechanism, EVO inhibited NLRP3 inflammasome-mediated microglial pyroptosis through SLC2A4 regulation of autophagy during demyelinating disease, but this change was reversed by SLC2A4 inhibitor PGF2α in vivo. Additionally, EVO inhibited LPS+ATP-induced pyroptosis of BV2 cells by preventing NLRP3 inflammasome activity and cleavage of the pyroptosis executive protein gasdermin D. It also promoted autophagy and inhibited NLRP3 inflammasome-mediated pyroptosis in BV2 cells via SLC2A4. Furthermore, an autophagy inhibitor 3-methyladenine reversed the inhibitory effect of EVO on NLRP3 inflammasome-mediated pyroptosis in BV2 cells. CONCLUSION The present study demonstrated that EVO inhibits NLRP3 inflammasome-mediated microglial pyroptosis and promotes remyelination via SLC2A4-regulated autophagy during demyelinating disease, which suggests EVO as a promising drug candidate for the treatment of MS.
Collapse
Affiliation(s)
- Yunjie Zhao
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China
| | - Xingzong Sun
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China
| | - Faling Shao
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China
| | - Lin Li
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China
| | - Weilie Xiao
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China
| | - Chengyang Gu
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China
| | - Yunqian Zhang
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China
| | - Yue Jia
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming 650118, China
| | - Lili Dai
- School of Agronomy and Life Sciences, Kunming University, Kunming 650214, China.
| | - Hongliang Li
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China.
| | - Hongkun Bao
- School of Medicine, School of Pharmacy, Yunnan University, 2 Cuihu North Road, Kunming, Yunnan 650091, China.
| |
Collapse
|
6
|
Lin S, Yan J, He S, Luo L. Identification of pyroptosis-related gene S100A12 as a potential diagnostic biomarker for sepsis through bioinformatics analysis and machine learning. Mol Immunol 2025; 183:44-55. [PMID: 40318597 DOI: 10.1016/j.molimm.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Sepsis is a non-discriminatory inflammatory reaction that can result in a diverse array of organ dysfunctions, which can be fatal. Pyroptosis is a programmed mechanism of cell death that is distinguishable from apoptosis and other forms of cellular demise. However, the role of pyroptosis in sepsis remains to be further explored. In this study, by employing a combination of the difference analysis, WGCNA, Friends' analysis, and machine learning, the central gene S100A12 was successfully identified. S100A12 demonstrated superb diagnostic capabilities in both the integrated and external validation datasets. Furthermore, significant disparities were observed in the levels of monocytes, eosinophils, and neutrophils between sepsis patients and the control group, as per the findings of immune infiltration analysis. The aforementioned immune infiltrating cells exhibited an increase in expression levels among patients diagnosed with sepsis and were found to be significantly and positively associated with S100A12 expression. The results of the single-cell analysis indicated a significant expression of S100A12 in both neutrophils and monocytes, which was in complete alignment with the outcomes of immune infiltration. In summary, the pyroptosis-related gene S100A12 represents a potential biomarker for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Shanshan Lin
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jiayu Yan
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing 100000, China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
7
|
Fang Y, Meng H, Wang J. Mechanisms of LPS-induced toxicity in endothelial cells and the protective role of geniposidic acid. Food Chem Toxicol 2025; 201:115488. [PMID: 40288513 DOI: 10.1016/j.fct.2025.115488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/19/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Vascular inflammation and oxidative stress are critical pathogenic factors in cardiovascular diseases. Lipopolysaccharide (LPS)-induced endothelial cytotoxicity, driven by oxidative stress and inflammation, remains incompletely understood. This study highlights the molecular mechanisms underlying LPS toxicity, focusing on the ROS/JNK/NLRP3 signaling axis. LPS disrupts mitochondrial function, increases ROS accumulation, activates JNK phosphorylation, and induces NLRP3 inflammasome activation, culminating in pyroptosis through caspase-1-mediated GSDMD cleavage. Mechanistic studies with the JNK inhibitor SP600125 confirmed the critical role of the ROS/JNK/NLRP3 pathway in LPS-induced endothelial damage. Additionally, PGC-1α, a key regulator of mitochondrial homeostasis, was identified as a protective factor suppressed by LPS, exacerbating ROS overproduction and inflammasome activation. To validate these findings, geniposidic acid (GPA), a natural antioxidant and anti-inflammatory compound, was employed. GPA effectively reduced ROS levels, inhibited JNK activation, and suppressed pyroptosis, supporting its utility as a chemical tool to confirm the pivotal role of ROS/JNK/NLRP3 signaling. This study elucidates the intricate interplay between oxidative stress, mitochondrial dysfunction, and pyroptosis, providing a comprehensive framework for addressing inflammation-driven vascular damage.
Collapse
Affiliation(s)
- Yan Fang
- University of Science and Technology of China, Hefei, 230026, China; Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - He Meng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Jun Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
8
|
Sia CM, Ambrose RL, Valcanis M, Andersson P, Ballard SA, Howden BP, Williamson DA, Pearson JS, Ingle DJ. Distinct adaptation and epidemiological success of different genotypes within Salmonella enterica serovar Dublin. eLife 2025; 13:RP102253. [PMID: 40560760 DOI: 10.7554/elife.102253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2025] Open
Abstract
Salmonella Dublin is a host-adapted, invasive nontyphoidal Salmonella (iNTS) serovar that causes bloodstream infections in humans and demonstrates increasing prevalence of antimicrobial resistance (AMR). Using a global dataset of 1303 genomes, coupled with in vitro assays, we examined the evolutionary, resistance, and virulence characteristics of S. Dublin. Our analysis revealed strong geographical associations between AMR profiles and plasmid types, with highly resistant isolates confined predominantly to North America, linked to IncC plasmids co-encoding AMR and heavy metal resistance. By contrast, Australian isolates were largely antimicrobial-susceptible, reflecting differing AMR pressures. We identified two phylogenetically distinct Australian lineages, ST10 and ST74, with a small number of ST10 isolates harbouring a novel hybrid plasmid encoding both AMR and mercuric resistance. Whereas the ST10 lineage remains globally dominant, the ST74 lineage was less prevalent. ST74 exhibited unique genomic features including a larger pan genome compared to ST10 and the absence of key virulence loci, including Salmonella pathogenicity island (SPI)-19 which encodes a type VI secretion system (T6SS). Despite these genomic differences, the ST74 lineage displayed enhanced intracellular replication in human macrophages and induced less pro-inflammatory responses compared with ST10, suggesting alternative virulence strategies that may support systemic dissemination of ST74. The Vi antigen was absent in all ST10 and ST74 genomes, highlighting challenges for serotyping and vaccine development, and has implications for current diagnostic and control strategies for S. Dublin infections. Collectively, this study represents the most comprehensive investigation of S. Dublin to date and, importantly, has revealed distinct adaptations of two genotypes within the same serovar, leading to different epidemiological success. The regional emergence and evolution of distinct S. Dublin lineages highlight the need to understand the divergence of intra-serovar virulence mechanisms which may impact the development of effective control measures against this important global pathogen.
Collapse
Affiliation(s)
- Cheryll M Sia
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Rebecca L Ambrose
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Patiyan Andersson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Susan A Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
- Department of Microbiology, Monash University, Clayton, Australia
| | - Danielle J Ingle
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
9
|
Li H, Liu T, Shi X, Du H, Cai C, Yang D, Qu L, Dou H, Jiao B, Jiao B. Mechanisms and therapeutic potential of pharmacological agents targeting inflammasomes. Biomed Pharmacother 2025; 189:118164. [PMID: 40540882 DOI: 10.1016/j.biopha.2025.118164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/26/2025] [Accepted: 05/09/2025] [Indexed: 06/22/2025] Open
Abstract
Recent high-impact research has significantly advanced our understanding of inflammasomes as therapeutic targets for inflammatory diseases. Breakthrough studies have revealed new mechanisms of inflammasome regulation and innovative inhibition approaches. A key discovery identified NEK7 as an essential component for NLRP3 inflammasome activation, providing a new target for therapeutic intervention. Additionally, researchers developed CY-09, a small molecule inhibitor that directly binds to the ATP-binding site of NLRP3, offering a highly specific method for inflammasome inhibition. Further progress includes elucidating the role of metabolic reprogramming in inflammasome activation, with studies finding that itaconate can directly inhibit NLRP3 activation. This discovery bridges cellular metabolism and inflammasome regulation, suggesting new metabolic approaches to modulate inflammatory responses. Research has also highlighted the importance of the non-canonical inflammasome pathway in atherosclerosis progression, expanding therapeutic possibilities for cardiovascular diseases. In the field of targeted therapies, a nanoparticle-based delivery system for inhibiting AIM2 inflammasome in psoriasis demonstrated significant efficacy in preclinical models. This approach showcases the potential of nanotechnology in enhancing the specificity and effectiveness of inflammasome-targeted therapies. These latest advancements collectively underscore the rapid progress in understanding inflammasome biology and developing innovative therapeutic strategies, paving the way for more effective and precise treatments for a wide range of inflammatory diseases.
Collapse
Affiliation(s)
- Haitao Li
- Department of Gastroenterology, 900th Hospital of PLA Joint Logistic Support Force, No. 156, West Second Ring Road, Fuzhou City 350025, China
| | - Tiantian Liu
- School Health Department, Jining Center for Disease Control and Prevention, Jining 272000, China
| | - Xuezhen Shi
- Gynecology Department, Baoding First Central Hospital, Baoding, 443 Wusi East Road, Lianchi District, 071000, China
| | - Hao Du
- Department of Internal Medicine, Yale school of Medicine, New Haven, CT, United States
| | - Chengzhi Cai
- Computer Science Department, Central Connecticut State University, New Britain, CT, United States
| | - Duomeng Yang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Lili Qu
- Department of surgery, Yale school of Medicine, New Haven, CT, United States
| | - Huixin Dou
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining 272000, China; Jining Key Laboratory of Infectious Disease Control and Prevention, Jining 272000, China
| | - Boyan Jiao
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining 272000, China; Jining Key Laboratory of Infectious Disease Control and Prevention, Jining 272000, China.
| | - Baihai Jiao
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, United States.
| |
Collapse
|
10
|
Hushmandi K, Klionsky DJ, Farahani N, Reiter RJ, Imani Fooladi AAI, Alimohammadi M, Aref AR. Regulation of pyroptosis in diabetic nephropathy by long non-coding and circular RNAs. Clin Exp Med 2025; 25:208. [PMID: 40531430 PMCID: PMC12176935 DOI: 10.1007/s10238-025-01740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 05/19/2025] [Indexed: 06/22/2025]
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes mellitus, predominantly affecting the kidneys of diabetic patients and resulting in increased morbidity and mortality. Current standard treatments for diabetes have proven insufficient in halting the progression of DN, highlighting the urgent need for innovative and more effective therapeutic strategies. Pyroptosis, a pro-inflammatory regulated cell death process, has been previously associated with DN development. Recent evidence indicates that the NLRP3 inflammasome, a key inflammatory pathway complex, promotes DN through pyroptosis. Consequently, inhibiting inflammasome activity has emerged as a promising therapeutic target against DN, in conjunction with pyroptosis. This review introduces non-coding RNAs (ncRNAs), particularly circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), as potential regulators of pyroptosis in DN, as recent studies have documented their dysregulation in DN pathogenesis. In this study, we aim to discuss the characteristics of lncRNAs, circRNAs, and pyroptosis and explore their potential interconnection in DN development. By elucidating the link between these RNA molecules and pyroptosis, our goal is to deepen our understanding of the underlying mechanisms of the disease. This knowledge could lead to the identification of new therapeutic targets and the development of innovative treatments for DN by modulating pyroptosis.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence sciences Research Center , Farhikhtegan Hospital ,TMs.C., Islamic Azad University, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Abbas Ali Imani Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| |
Collapse
|
11
|
Gao H, Wong SQR, Subel E, Huang YH, Lee YC, Hayashi K, Alonzo ME, Karabicici M, Hoi XP, Kasabyan A, Mo Q, Melchiode Z, El-Zaatari Z, Shen S, Satkunasivam R, Nikolos F, Chan KS. Caspase-1-dependent pyroptosis converts αSMA + CAFs into collagen-III high iCAFs to fuel chemoresistant cancer stem cells. SCIENCE ADVANCES 2025; 11:eadt8697. [PMID: 40498841 PMCID: PMC12154229 DOI: 10.1126/sciadv.adt8697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/07/2025] [Indexed: 06/18/2025]
Abstract
The impact of chemotherapy-induced tumor cell pyroptosis on fibroblasts, a key stromal cell type within the tumor microenvironment (TME), remains unexplored. Here, we report morphologically and molecularly distinct subtypes of cancer-associated fibroblasts (CAFs) in bladder cancer, including αSMA+IL-6- myofibroblastic CAFs (myCAFs), αSMA-IL-6+ inflammatory CAFs (iCAFs), and hybrid i/myCAFs. Caspase-1-dependent tumor pyroptosis releases several inflammatory chemokines, converting αSMA+ CAF into iCAFs in a CCR6-dependent manner. This is clinically relevant, as a fibroblast gene signature driven by iCAF markers and collagen type III is enriched in patients with chemoresistant bladder cancer after neoadjuvant chemotherapy. Contrary to the current notion, iCAFs, rather than myCAFs, produce collagen III in response to chemotherapy, supporting the expansion of cancer stem cells (CSCs). Thus, tumor cell pyroptosis initiates an iCAF-CSC feedforward loop that drives chemoresistance, indicating that inflammatory cell death is not universally beneficial to anticancer therapy, depending on the target cell type.
Collapse
Affiliation(s)
- Hongbo Gao
- Department of Urology, Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Stephen Q. R. Wong
- Department of Urology, Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ethan Subel
- Department of Urology, Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yung Hsing Huang
- Department of Urology, Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yu-Cheng Lee
- Graduate Institute of Medical SciencesGraduate Institute of Medical Sciences, Taipei Medical University, Taipei City, Taiwan
| | - Kazukuni Hayashi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Mark Ellie Alonzo
- Department of Urology, Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
- Graduate Program in Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mustafa Karabicici
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xen Ping Hoi
- Department of Urology, Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
- Graduate Program in Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Armine Kasabyan
- Department of Urology, Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Qianxing Mo
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Zachary Melchiode
- Department of Urology, Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Ziad El-Zaatari
- Department of Urology, Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Steven Shen
- Department of Urology, Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Raj Satkunasivam
- Department of Urology, Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Fotis Nikolos
- Department of Urology, Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Keith Syson Chan
- Department of Urology, Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
12
|
Zengeler KE, Hollis A, Deutsch TCJ, Samuels JD, Ennerfelt H, Moore KA, Steacy EJ, Sabapathy V, Sharma R, Patel MK, Lukens JR. Inflammasome signaling in astrocytes modulates hippocampal plasticity. Immunity 2025; 58:1519-1535.e11. [PMID: 40318630 PMCID: PMC12158643 DOI: 10.1016/j.immuni.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/13/2024] [Accepted: 04/08/2025] [Indexed: 05/07/2025]
Abstract
Emerging evidence indicates that a baseline level of controlled innate immune signaling is required to support proper brain function. However, little is known about the function of most innate immune pathways in homeostatic neurobiology. Here, we report a role for astrocyte-dependent inflammasome signaling in regulating hippocampal plasticity. Inflammasomes are multiprotein complexes that promote caspase-1-mediated interleukin (IL)-1 and IL-18 production in response to pathogens and tissue damage. We observed that inflammasome complex formation was regularly detected under homeostasis in hippocampal astrocytes and that its assembly is dynamically regulated in response to learning and regional activity. Conditional ablation of caspase-1 in astrocytes limited hyperexcitability in an acute seizure model and impacted hippocampal plasticity via modulation of synaptic protein density, neuronal activity, and perineuronal net coverage. Caspase-1 and IL-18 regulated hippocampal IL-33 production and related plasticity. These findings reveal a homeostatic function for astrocyte inflammasome activity in regulating hippocampal physiology in health and disease.
Collapse
Affiliation(s)
- Kristine E Zengeler
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ava Hollis
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Tyler C J Deutsch
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Joshua D Samuels
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Hannah Ennerfelt
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 24304, USA
| | - Katelyn A Moore
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Eric J Steacy
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Vikram Sabapathy
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA 22908, USA
| | - Rahul Sharma
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA 22908, USA
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - John R Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
13
|
Tan Y, Hu G, Li M, An Y, Wang Z, Liu R, Xu D, Tan X, Zeng Y, He Y, Lu Z, Liu G. Two-photon photosensitizer for specific targeting and induction of tumor pyroptosis to elicit systemic immunity-boosting anti-tumor therapy. Biomaterials 2025; 317:123108. [PMID: 39824002 DOI: 10.1016/j.biomaterials.2025.123108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Photodynamic therapy (PDT) has garnered increasing attention in cancer treatment due to its precise spatiotemporal selectivity and non-invasive nature. However, several challenges, including the inability of photosensitizers to discriminate between tumor and healthy tissues, as well as the limited tissue penetration depth of light sources, impede its broader application. To surmount these impediments, our research introduces a two-photon photosensitizer (TPSS) that specifically targets tumor overexpressing carbonic anhydrase IX (CA IX), thereby exhibiting exceptional specificity for tumor cells. Under two-photon laser stimulation, TPSS generates a large amount of reactive oxygen species (ROS), inducing cell pyroptosis and subsequently triggering a strong anti-tumor immune response. Additionally, proteomics analysis provides compelling evidence to elucidate the anti-tumor mechanism of TPSS in vivo. Through comprehensive immune assessments, TPSS under two-photon laser irradiation effectively activates both the innate and adaptive immune systems, efficiently suppressing the proliferation of distant metastatic tumors, underscoring its considerable therapeutic potential. Collectively, this study provides a viable strategy to overcome the limitations of PDT, highlighting the prospects of two-photon excitation photosensitizers.
Collapse
Affiliation(s)
- Yubo Tan
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China; Sichuan Research Institute of Xiamen University, Chengdu, 610000, China
| | - Guosheng Hu
- College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Man Li
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yibo An
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Ziying Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Renyuan Liu
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinyu Tan
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Yaohui He
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Zhixiang Lu
- State Key Laboratory of Cellular Stress Biology & Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China; Sichuan Research Institute of Xiamen University, Chengdu, 610000, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
14
|
Huang JC, Tong XL, Xiang MSW, Boumelhem BB, Foulis DP, Zhang M, McKenzie CA, McCaughan GW, Reinheckel T, Zhang HE, Gorrell MD. Dipeptidyl peptidase 9 (DPP9) depletion from hepatocytes in experimental primary liver cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167819. [PMID: 40187163 DOI: 10.1016/j.bbadis.2025.167819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Dipeptidyl peptidase 9 (DPP9) is an indispensable intracellular protease. Among its many molecular functions is suppression of the NLRP1 inflammasome. Inhibitors targeting all four proteases of the DPP4 family, including DPP9, can reduce tumour burden, including in mouse liver. To explore hepatocyte DPP9 in experimental hepatocellular carcinoma (HCC), we generated hepatocyte-specific DPP9-KO mice by crossing albumin-Cre mice with DPP9 floxed mice and treated sequentially with diethylnitrosamine, then with thioacetamide combined with an atherogenic high-fat diet until 28 weeks of age. DPP9-KO mice had less body, liver and subcutaneous adipose tissue mass, lower fasting plasma glucose and fewer small macroscopic liver nodules compared to DPP9-WT control mice. However, there were no differences in the total number of macroscopic liver nodules, or of microscopic tumour burden, inflammation, fibrosis or steatosis. Consistent with the known function of DPP9 to suppress NLRP1 activation, activated caspase-1 protein and inflammation markers Nfkbib, Cxcl10 and Ccl5 were elevated in DPP9-KO liver. The tumour suppressor protein p53 was increased and the autophagy proteins beclin1, LC3B and p62 were altered. In conclusion, hepatocyte-specific DPP9 gene deletion in experimental primary liver cancer improved energy metabolism and may reduce liver cancer initiation, via mechanisms that may include increased autophagy and tumour suppression.
Collapse
MESH Headings
- Animals
- Hepatocytes/pathology
- Hepatocytes/metabolism
- Hepatocytes/enzymology
- Mice
- Mice, Knockout
- Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics
- Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism
- Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/deficiency
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/chemically induced
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Male
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Diet, High-Fat/adverse effects
- Mice, Inbred C57BL
- Inflammasomes/metabolism
- Liver/pathology
- Liver/metabolism
Collapse
Affiliation(s)
- JiaLi Carrie Huang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Xinlin Linda Tong
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michelle Sui Wen Xiang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Badwi B Boumelhem
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Diarmid P Foulis
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - MingChang Zhang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Catriona A McKenzie
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Geoffrey W McCaughan
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), partner site Freiburg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Hui E Zhang
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Mark D Gorrell
- Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
15
|
Chen S, Goncin U, Zhu J, Su SP, Czyzyk TA, Miller CO, Sadabad RK, Bogyo M. A caspase-1-cathepsin AND-gate probe for selective imaging of inflammasome activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.27.656501. [PMID: 40501809 PMCID: PMC12154666 DOI: 10.1101/2025.05.27.656501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/22/2025]
Abstract
Caspase-1 is a key mediator of the inflammasome pathway, which is associated with several inflammatory disorders including obesity, diabetes mellitus (DM), cardiovascular diseases (CVDs), cancers and chronic respiratory diseases. Although substrate-based probes can be used to visualize the activity of caspase-1, none are selective enough for use as imaging agents. Here, we report the design and synthesis of a AND-gate substrate probe ( Cas1-Cat-Cy7 ) that requires processing by both caspase-1 and cathepsins to produce a signal. Because both enzymes are only found together and active at the site of inflammasome activation, the resulting probe can be used to image caspase-1 mediated inflammation. We demonstrate that the probe produces selective signals in ex vivo biochemical and cellular assays and in a mouse model of acute inflammation.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States:
| | - Una Goncin
- Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Jiyun Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States:
| | - Shih-Po Su
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States:
| | | | | | | | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States:
| |
Collapse
|
16
|
Bae H, Moon S, Chang M, Zhang F, Jang Y, Kim W, Kim S, Fu M, Lim J, Park S, Patel CN, Mall R, Zheng M, Man SM, Karki R. Ferroptosis-activating metabolite acrolein antagonizes necroptosis and anti-cancer therapeutics. Nat Commun 2025; 16:4919. [PMID: 40425585 PMCID: PMC12116918 DOI: 10.1038/s41467-025-60226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Dysregulated cell death leading to uncontrolled cell proliferation is a hallmark of cancer. Chemotherapy-induced cell death is critical for the success of cancer treatment but this process is impaired by metabolic byproducts. How these byproducts interfere with anti-cancer therapy is unclear. Here, we show that the metabolic byproduct acrolein derived from polyamines, tobacco smoke or fuel combustion, induces ferroptosis independently of ZBP1, while suppressing necroptosis in cancer cells by inhibiting the oligomerization of the necroptosis effector MLKL. Loss of the enzyme SAT1, which contributes to intracellular acrolein production, sensitizes cells to necroptosis. In mice, administration of an acrolein-trapping agent relieves necroptosis blockade and enhances the anti-tumor efficacy of the chemotherapeutic drug cyclophosphamide. Human patients with cancer coupled with a higher cell death activity but a lower expression of genes controlling polyamine metabolism exhibit improved survival. These findings highlight that the removal of metabolic byproducts improves the success of certain chemotherapies.
Collapse
Affiliation(s)
- Hyun Bae
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seonghyun Moon
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Biology Education, College of Education, Seoul National University, Seoul, Republic of Korea
| | - Mengmeng Chang
- Institute of infectious diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Fenfen Zhang
- Institute of infectious diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yeonseo Jang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wonyoung Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soyeon Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minjie Fu
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jaemin Lim
- Bertis Inc., Gyeonggi-do, Republic of Korea
| | | | - Chirag N Patel
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, UAE
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Raghvendra Mall
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, UAE
| | - Min Zheng
- Institute of infectious diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Si Ming Man
- Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Li X, Zou C, Xiang X, Zhao L, Chen M, Yang C, Wu Y. Myelodysplastic Neoplasms (MDS): Pathogenesis and Therapeutic Prospects. Biomolecules 2025; 15:761. [PMID: 40563403 DOI: 10.3390/biom15060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 06/28/2025] Open
Abstract
Myelodysplastic neoplasms (MDS) are a group of hematological malignancies originating from hematopoietic stem cells (HSCs), characterized by distinct clinical and/or molecular heterogeneity across different MDS subtypes. This review elucidates the pathogenesis of MDS from two main perspectives: the bone marrow microenvironment and recurrent genetic abnormalities. Abnormal bone marrow microenvironment initiates aberrant innate immune response in HSCs, with quantitative and/or functional alterations of immune cells that collectively establish an immunosuppressive microenvironment, and abnormal bone marrow mesenchymal stromal cells that support and promote the progression of MDS. In addition, this review synthesizes current evidence on the biological functions and pathogenic mechanisms of frequently mutated genes in MDS. Furthermore, emerging therapies based on the pathogenesis of MDS are evaluated and summarized. In summary, aberrant innate immune responses promote pyroptosis of HSCs and acquisition of recurrent genetic abnormalities, resulting in the transformation of HSCs into MDS blasts; the immunosuppressive milieu (especially in higher-risk MDS) facilitates immune evasion of MDS blasts, ultimately leading to disease progression. Future research should focus on the interplay between different genetic abnormalities and immune dysregulation, coupled with the development of novel therapies targeting multiple nodes of the pathogenic network, to overcome current challenges in the treatment of MDS.
Collapse
Affiliation(s)
- Xuefeng Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaoyu Zou
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinrong Xiang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengran Chen
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenlu Yang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Xu Z, Tang C, Song X, Liu Z, Zhou J, Shi Q, Yu C, Xu C. High uric acid exacerbates nonalcoholic steatohepatitis through NLRP3 inflammasome and Gasdermin D-mediated pyroptosis. J Biol Chem 2025:110249. [PMID: 40398602 DOI: 10.1016/j.jbc.2025.110249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025] Open
Abstract
Hyperuricemia is independently associated with an increased risk of nonalcoholic steatohepatitis (NASH), but the underlying mechanisms responsible for this association remain unclear. We first analyzed the association between intrahepatic UA levels and gasdermin D (GSDMD)-mediated pyroptosis in vivo and in vitro. We subsequently generated hepatic-specific glucose transporter 9 (GLUT9)-knockout mice and GSDMD knockout (GSDMD-/-) mice to explore the role of intrahepatic UA in GSDMD-induced pyroptosis in NASH. We found that high intrahepatic UA levels were positively related to GSDMD-mediated pyroptosis in NASH mice. The inhibition of hepatic UA production by allopurinol alleviated hepatic inflammation and GSDMD-mediated pyroptosis in NASH mice. Hepatic-specific knockout of Glut9 significantly decreased intrahepatic UA levels, attenuated NOD-like receptor family pyrin domain containing 3 (NLRP3)-Caspase-1-GSDMD-mediated pyroptosis in hepatocytes, and ameliorated hepatic inflammation and fibrosis in different mouse models of NASH. Further experiments revealed that inhibiting the NLRP3/Caspase-1/GSDMD pathway obviously blocked UA-induced pyroptosis and inflammation in hepatocytes. Additionally, GSDMD deficiency markedly reversed hepatic inflammation and fibrosis in NASH mice. In conclusion, our results showed that high UA could induce NLRP3-Caspase1-GSDMD-mediated pyroptosis, thereby aggravating NASH in mice.
Collapse
Affiliation(s)
- Zixin Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chenxi Tang
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Song
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhening Liu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiaming Zhou
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiaojuan Shi
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, 310063, China.
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
19
|
Argano C, Torres A, Orlando V, Cangialosi V, Maggio D, Pollicino C, Corrao S. Molecular Insight into the Role of Vitamin D in Immune-Mediated Inflammatory Diseases. Int J Mol Sci 2025; 26:4798. [PMID: 40429939 PMCID: PMC12112522 DOI: 10.3390/ijms26104798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
In the last decades, it has become increasingly evident that the role of vitamin D extends beyond the regulation of calcium homeostasis and the maintenance of bone health. A significant extraskeletal function of vitamin D is its role in modulating the immune system, particularly highlighted in the context of immune-mediated inflammatory diseases, where correlations between vitamin D status and genetic variations in the vitamin D receptor have been observed about the incidence and severity of these conditions. Additionally, different studies have reported the existence of immunomodulatory effects of vitamin D, particularly the effects of vitamin D on dendritic cell function, maturation, cytokine production, and antigen presentation, and that its deficiency may be associated with a sub-inflammatory state. In this sense, different clinical trials have been conducted to assess the therapeutic efficacy of vitamin D in different immune-mediated inflammatory disorders, including asthma, atopic dermatitis (AD), rheumatoid arthritis (RA), psoriasis, thyroid diseases, infectious diseases, and systemic lupus erythematosus (SLE). This review will provide a comprehensive overview of the current understanding of the molecular mechanisms underlying vitamin D's immunomodulatory properties, its role, and innovative therapeutic applications in patients with immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Christiano Argano
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy;
| | - Alessandra Torres
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy; (A.T.); (V.O.); (V.C.); (D.M.); (C.P.)
| | - Valentina Orlando
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy; (A.T.); (V.O.); (V.C.); (D.M.); (C.P.)
| | - Virginia Cangialosi
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy; (A.T.); (V.O.); (V.C.); (D.M.); (C.P.)
| | - Dalila Maggio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy; (A.T.); (V.O.); (V.C.); (D.M.); (C.P.)
| | - Chiara Pollicino
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy; (A.T.); (V.O.); (V.C.); (D.M.); (C.P.)
| | - Salvatore Corrao
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy;
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90133 Palermo, Italy; (A.T.); (V.O.); (V.C.); (D.M.); (C.P.)
| |
Collapse
|
20
|
Li Z, Wang Y, Mo F, Wolter T, Hong R, Barrett A, Richmond N, Liu F, Chen Y, Yang X, Dempsey L, Hu Q. Engineering pyroptotic vesicles as personalized cancer vaccines. NATURE NANOTECHNOLOGY 2025:10.1038/s41565-025-01931-2. [PMID: 40379868 DOI: 10.1038/s41565-025-01931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/31/2025] [Indexed: 05/19/2025]
Abstract
Tumour vaccines are designed to stimulate the host's immune system against existing tumours or tumour recurrence. However, individual differences, tumour heterogeneity and side effects hinder the applications of current tumour vaccines and require the development of personalized cancer vaccines. To overcome these challenges, we engineered pyroptotic vesicles-extracellular vesicles formed during tumour cell pyroptosis-as a tumour vaccine platform. The extracted pyroptotic vesicles possess abundant tumour antigens and potent immune-stimulating ability and, loaded into a biocompatible hydrogel, they can be implanted into post-surgical tumour cavities to prevent tumour recurrence. The pyroptotic-vesicle-based vaccine outperforms both exosome- and apoptotic-body-based vaccines in inhibiting tumour recurrence and metastasis in different post-surgical mouse models. Mechanistic studies reveal that the pyroptotic-vesicle-based vaccine could stimulate robust antigen-specific dendritic cell and T cell immune responses against both artificial OVA antigens and cancer neoantigens. In sum, our vaccine platform can be tailored to stimulate robust antitumour immune responses for treating individual cancer patients.
Collapse
Affiliation(s)
- Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyler Wolter
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Rachel Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Allie Barrett
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathaniel Richmond
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Xicheng Yang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Lauren Dempsey
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
21
|
Ma Y, Cao L, Li P, Jiao Z, Liu X, Lu X, Liu T, Wang H. Effects of Adipose-Derived Mesenchymal Stem Cell-Secretome on Pyroptosis of Laparoscopic Hepatic Ischemia Reperfusion Injury in a Porcine Model. Cells 2025; 14:722. [PMID: 40422225 DOI: 10.3390/cells14100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
Extensive research has been conducted on mesenchymal stem cells (MSCs) regarding their ability to modify the immune response and reduce tissue damage. Many researchers have found that the regulatory capacity of MSCs primarily comes from their secretome. As a result, there has been much interest in utilizing "cell-free" therapies as alternatives to stem cell treatments. In this study, the secretome from adipose mesenchymal stem cells (ADSC-secretome) was extracted and injected into minipigs with established liver injury models. Blood and liver tissue samples were obtained prior to the procedure, as well as on days 1, 3, and 7 after surgery. It was found that ADSC-secretome effectively suppressed the synthesis of the NOD-like receptor protein 3 (NLRP3) inflammasome, leading to a downregulation of gasdermin-D (GSDMD) expression, and demonstrated a more prominent anti-pyroptosis effect compared to ADSCs. Furthermore, ADSC-secretome inhibited the high mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) inflammatory pathway. In summary, both ADSC-secretome and ADSCs inhibited pyroptosis in right hemihepatic ischemia-reperfusion combined with left hemihepatectomy injury, and ADSC-secretome exhibited a stronger therapeutic effect. ADSC-secretome exerted these therapeutic effects through the inhibition of the HMGB1/TLR4/NF-κB inflammatory pathway. In the future, "cell-free" therapy is expected to replace cell-based methods.
Collapse
Affiliation(s)
- Yajun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lei Cao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Pujun Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhihui Jiao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150030, China
| | - Xiaoning Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyu Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
22
|
Tang Y, Tong W, Peng Y, Sun S. Targeting cholesterol-driven pyroptosis: a promising strategy for the prevention and treatment of atherosclerosis. Mol Biol Rep 2025; 52:459. [PMID: 40372511 DOI: 10.1007/s11033-025-10554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
Funding Pyroptosis is a type of programmed cell death (PCD) pathway distinguished by inflammation. It is activated by specific inflammasomes. Once activated, it causes the physical breakdown of the cell, along with the discharge of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Abundant evidence has demonstrated the existence of pyroptotic cell death within atherosclerotic plaques, which has significance for the development of atherosclerosis (AS). As a result, pyroptosis has become a new and important topic in cardiovascular disease (CVD) research. Cholesterol, it is recognized to have a connection with inflammation, exerts a crucial function in the development process of AS, and has been linked to the initiation of pyroptosis. This review aims to briefly summarize the fundamental aspects of pyroptosis and the influence of cholesterol-related inflammation in AS. Additionally, this review will explore potential therapeutic approaches based on pyroptosis that could be utilized for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Yuehong Tang
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenjuan Tong
- Department of Gynecology and Obstetrics, First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Yujiao Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shaowei Sun
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
23
|
Bahmani F, Shayanmanesh M, Safari M, Alaei A, Yasaman Pouriafar, Rasti Z, Zaker F, Rostami S, Damerchiloo F, Safa M. Bone marrow microenvironment in myelodysplastic neoplasms: insights into pathogenesis, biomarkers, and therapeutic targets. Cancer Cell Int 2025; 25:175. [PMID: 40349084 PMCID: PMC12065391 DOI: 10.1186/s12935-025-03793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
Myelodysplastic neoplasms (MDS) represent a heterogeneous group of malignant hematopoietic stem and progenitor cell (HSPC) disorders characterized by cytopenia, ineffective hematopoiesis, as well as the potential to progress to acute myeloid leukemia (AML). The pathogenesis of MDS is influenced by intrinsic factors, such as genetic insults, and extrinsic factors, including altered bone marrow microenvironment (BMM) composition and architecture. BMM is reprogrammed in MDS, initially to prevent the development of the disease but eventually to provide a survival advantage to dysplastic cells. Recently, inflammation or age-related inflammation in the bone marrow has been identified as a key pathogenic mechanism for MDS. Inflammatory signals trigger stress hematopoiesis, causing HSPCs to emerge from quiescence and resulting in MDS development. A better understanding of the role of the BMM in the pathogenesis of MDS has opened up new avenues for improving diagnosis, prognosis, and treatment of the disease. This article provides a comprehensive review of the current knowledge regarding the significance of the BMM to MDS pathophysiology and highlights recent advances in developing innovative therapies.
Collapse
Affiliation(s)
- Forouzan Bahmani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayanmanesh
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Safari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirarsalan Alaei
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Yasaman Pouriafar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Rasti
- Department of Hematology, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrbano Rostami
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Damerchiloo
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Li Y, Chen C, Zhu X, Zhao G. MiR-214-3p targets RIPK1 to regulate pyroptosis and vascular endothelial function in diabetic ketoacidosis: mechanistic insights. Gene 2025; 962:149555. [PMID: 40339772 DOI: 10.1016/j.gene.2025.149555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUNDS MicroRNAs (miRNAs) exhibit essential effects on the occurrence and progress of diabetes mellitus (DM) and DM complications. However, the detailed role of miRNAs in diabetic ketoacidosis (DKA) is rarely reported. OBJECTIVE The present work focused on the role of miR-214-3p on DKA and the detailed mechanisms. METHODS First, macrophages were isolated from the venous blood of DKA patients, and ELISA was employed to determine the serum levels of inflammatory factors, serum macrophage numbers by flow cytometry, and macrophage miR-214-3p expression levels determined through PCR.. Subsequently, miR-214-3p was overexpressed in macrophages to detect macrophage proliferation, apoptosis, pyroptosis and inflammatory factor secretion. A dual luciferase reporter was used to analyze the downstream targets of miR-214-3p. Finally, macrophages overexpressing miR-214-3p were co-cultured with Human Umbilical Vein Endothelial Cells (HUVECs) to detect the effects of HUVECs proliferation, apoptosis, and angiogenesis and barrier function. RESULTS First, there is an elevation in serum inflammatory factors and a reduction in miR-214-3p levels in serum macrophages among DKA patients, and overexpression of miR-214-3p by macrophages promotes their proliferation, inhibits their pyroptosis, and reduces the secretion of inflammatory factors. In addition, Receptor-interacting protein kinase 1 (RIPK1) was predicted to be a target of miR-214-3p. Finally, co-culture of macrophages overexpressing miR-214-3p with HUVECs promoted HUVECs proliferation, inhibited apoptosis, and facilitated the tube-forming ability and repaired the barrier function of HUVECs. CONCLUSION MiR-214-3p targets RIPK1 and regulates vascular endothelial function in diabetic ketoacidosis, suggesting that miR-214-3p has the potential to be a novel marker for the treatment of DKA.
Collapse
Affiliation(s)
- Ying Li
- Heilongjiang University of Chinese Medicine, Harbin City, Heilongjiang Province 150040, China
| | - Chunguang Chen
- Department of Endocrinology, The Suqian Clinical College of Xuzhou Medical University, Suqian City, Jiangsu Province 223800, China
| | - Xiaochao Zhu
- Department of Thyroid and Breast Surgery, The Suqian Clinical College of Xuzhou Medical University, Suqian City, Jiangsu Province 223800, China
| | - Gang Zhao
- Department of Peripheral Vascular Diseases, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin City, Heilongjiang Province 150040, China.
| |
Collapse
|
25
|
Yin G, Yu T, Lian C, Li Y, Liu D, Li H, Zhou H, Yin P, Yao S. Multifunctional Fluorescent Probes for Profiling Cys, Hcy, GSH, and SO₂: Illuminating Their Dynamics in Apoptosis and Ferroptosis. Adv Healthc Mater 2025:e2404993. [PMID: 40317670 DOI: 10.1002/adhm.202404993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/16/2025] [Indexed: 05/07/2025]
Abstract
The ability to perform simultaneous fluorescence imaging of multiple targets is essential, providing crucial multi-parametric information necessary for understanding complex biological interactions and processes. In this study, TBC, a novel multi-signal fluorescent probe is presented, crafted for simultaneous differentiation and in situ real-time monitoring of homocysteine (Hcy), cysteine (Cys), sulfur dioxide (SO2), and glutathione (GSH), illuminating the dynamic metabolic status of endogenous reactive sulfur species. TBC achieves an ultrahigh signal-to-background ratio, enabling wash-free direct fluorescence imaging of the dynamics and distribution of these entities in living cells and zebrafish. Notably, TBC has revealed distinctive dynamic metabolic features of Hcy/Cys/SO2/GSH during apoptosis and ferroptosis. This innovative probe acts as a key tool for unraveling the conversion networks of multiple reactive sulfur species and assessing the impact of metabolic oscillations during programmed cell death and the progression of diverse diseases, effectively uncovering concurrent biochemical dynamics in various biological settings and cell death events.
Collapse
Affiliation(s)
- Guoxing Yin
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Ting Yu
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Chunhua Lian
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yang Li
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Dian Liu
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
| | - Haitao Li
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Huijun Zhou
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
| | - Peng Yin
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Shouzhuo Yao
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
26
|
Huang J, Yuan Z, Wu M, Chen Y, Xu H, Sun L. Abalone Haliotis discus caspase 8 is an apoptosis effector and a pyroptosis activator. Int J Biol Macromol 2025; 307:142229. [PMID: 40107547 DOI: 10.1016/j.ijbiomac.2025.142229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/16/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
In mammals, caspase 8 (CASP8) is a well-known initiator caspase of apoptosis. In invertebrates, the function of CASP8 is poorly understood. Herein, we examined the function of abalone Haliotis discus CASP8 (HdCASP8). Compared to mammalian CASP8, HdCASP8 possesses the conserved DED and CASc domains but also has an extra death domain (DD). HdCASP8 induced marked apoptosis of HEK293T cells without activating CASP3/6/7. Consistently, HdCASP8 did not cleave H. discus CASP3 (HdCASP3). HdCASP8 exhibited CASP3/6-like cleavage specificity and cleaved the apoptotic substrate DFF45. HdCASP3 is known to activate abalone pyroptosis by cleaving H. discus gasdermin E (HdGSDME) at two sites, DQVD and DEID. In the present work, HdCASP8 was found to interact with HdGSDME at its C-terminal region and induce pyroptosis by cleaving HdGSDME at DQVD but not at DEID. During bacterial infection, the expressions of HdCASP8 and HdGSDME were significantly upregulated in multiple tissues of abalone in a time-dependent manner. Together these results indicate that, most likely owing to its unique structural feature, HdCASP8 differs from the classical CASP8 by acting as an apoptosis/pyroptosis-regulating CASP3 and from the classical CASP3 in certain aspects of substrate specificity. These findings provide new insights into CASP8-mediated programmed cell death in invertebrates.
Collapse
Affiliation(s)
- Jinliang Huang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Zihao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Meng Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Yuan Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China
| | - Hang Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
27
|
Tang X, Huang L, Ma W, Huang M, Zeng Z, Yu Y, Qin N, Zhou F, Li F, Gong S, Yang H. Intestinal 8 gingerol attenuates TBI-induced neuroinflammation by inhibiting microglia NLRP3 inflammasome activation in a PINK1/Parkin-dependent manner. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156580. [PMID: 40058316 DOI: 10.1016/j.phymed.2025.156580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND traumatic brain injury (TBI) is irreversible brain damage, leading to inflammation and cognitive dysfunction. Microglia involved in the inflammatory response after TBI. The gut microbiota, known as the body's "second brain," regulates neurogenesis and immune responses, but its precise role in regulating TBI remains unclear. PURPOSE to investigate the effect of gut microbiota and metabolites disorder on TBI injury. STUDY DESIGN 16SrRNA and metabolomics compared gut microbiota and metabolites in sham group and TBI group, then proved that the differential metabolite 8-gingerol (8G) alleviated the microglia neuroinflammatory response after TBI. METHODS fecal microbiota transplantation explored the role of dysbiosis in TBI. LC/MS detected the content of 8-gingerol in cecum, blood, and brain. HE, Nissl, Tunel staining and mNSS score evaluated brain injury. Western blot and immunofluorescence detected the expression of inflammasome-related proteins and mitophagy-related proteins in brain tissue and BV2 cells. RNA sequencing analyzed the molecular mechanism of 8-gingerol. RESULT rats transplanted with TBI feces had worse brain injury and neurological deficits than those with normal feces. 16SrRNA and metabolomics found that TBI caused dysbiosis and decreased 8-gingerol level, leading to severe neuroinflammation. Mechanistically, 8-gingerol inhibited NLRP3 inflammasome by promoting PINK1-Parkin mediated mitophagy in microglia. Inhibition of Parkin, through either small interfering RNA or the inhibitor 3MA reversed the inhibitory effect of 8-gingerol on NLRP3 by blocking mitophagy. BV2 cells transcriptome showed that 8-gingerol significantly increased the expression of autophagy factor Wipi1, and small interfering RNA of Wipi1 abolished the effect of 8-gingerol on promoting mitophagy and the inhibitory effect on NLRP3. CONCLUSION our findings shed light on the pivotal role of gut microbes in TBI, and identify 8 gingerol as an important anti-inflammatory compound during TBI.
Collapse
Affiliation(s)
- Xuheng Tang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China
| | - Lin Huang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China
| | - Weiquan Ma
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China
| | - Mingxin Huang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yiqin Yu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China
| | - Na Qin
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China
| | - Fei Zhou
- Central Hospital of Guangdong Prison, Guangzhou 510430, China
| | - Fen Li
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China.
| | - Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, 510515, China.
| | - Hong Yang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, 510665, China; The Third Clinical College of Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou 510515, China.
| |
Collapse
|
28
|
Yang JY, Luo CH, Wang KB, Tu XY, Xiao YY, Ou YT, Xie YX, Guan CX, Zhong WJ. Unraveling the mechanisms of NINJ1-mediated plasma membrane rupture in lytic cell death and related diseases. Int J Biol Macromol 2025; 309:143165. [PMID: 40239793 DOI: 10.1016/j.ijbiomac.2025.143165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Plasma membrane rupture (PMR), the ultimate event during lytic cell death, releases damage-associated molecular patterns (DAMPs) that trigger inflammation and immune responses in the development of various diseases. Recent years have witnessed significant advances in understanding the PMR mediated by ninjurin1 (NINJ1) in different lytic cell death processes. NINJ1 oligomerizes and ruptures the membrane in pyroptosis and other lytic cell death, participating in the pathogenesis of multiple diseases. Although the membrane-permeabilizing function of NINJ1 is well recognized, the role of NINJ1 in different types of lytic cell death and its impact on multiple disease processes have yet to be fully elucidated. This review summarizes the latest advances in the mechanisms of NINJ1-mediated PMR, discusses the membrane-inducing activity of NINJ1 in different lytic cell death, explains the implications of NINJ1 in lytic cell death-related diseases, and lists the inhibitory strategies for NINJ1. We expect to provide new insights into targeting NINJ1 to suppress lytic cell death for therapeutic benefit, which may become a new strategy to control inflammatory cell lysis-related diseases.
Collapse
Affiliation(s)
- Ji-Yan Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Chen-Hua Luo
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Kun-Bo Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xin-Yu Tu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yun-Ying Xiao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Ye-Tong Ou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yan-Xin Xie
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China.
| |
Collapse
|
29
|
Zhang Y, Long T, Wei B, Zhou H, Yin X, Chen Z, Di Fazio P, Li W, Zhou H. A bibliometric analysis of the literature published on autophagy, ferroptosis, necroptosis, and pyroptosis in cardiovascular disease from 2009 to 2023. J Thorac Dis 2025; 17:2537-2562. [PMID: 40400924 PMCID: PMC12090173 DOI: 10.21037/jtd-2025-682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/24/2025] [Indexed: 05/23/2025]
Abstract
Background Programmed cell death (PCD) plays a pivotal role in the development and progression of cardiovascular disease (CVD), which remains the leading cause of mortality worldwide. Among the various types of PCD, autophagy, ferroptosis, necroptosis, and pyroptosis have garnered increasing attention due to their involvement in inflammation, oxidative stress, and cardiomyocyte survival. Although numerous studies have explored the underlying mechanisms of these pathways, their therapeutic potential in clinical practice remains limited. With the rapid growth of publications in this field, a comprehensive understanding of research trends and influential studies is essential to guide future investigations. This study aimed to characterize the progress and research hotspots of autophagy in CVD, ferroptosis in CVD, necroptosis in CVD, and pyroptosis in CVD through a bibliometric analysis to provide a comprehensive overview of PCD in CVD. Methods Publications from January 1, 2009, to December 31, 2023, were analyzed using the "bibliometrix" R package to assess research output, key contributors, and influential journals in each field. Results For the topic of autophagy in CVD, 6,426 articles published by 4,891 institutions from 90 countries/regions were retrieved. For the topic of necroptosis in CVD, 393 articles from 616 organizations in 53 countries/regions were retrieved. For the topic of pyroptosis in CVD, 640 publications from 754 institutions in 48 countries/regions were retrieved. Finally, for the topic of ferroptosis in CVD, 687 articles from 827 institutions in 49 countries/regions were retrieved. Key contributors included Adriana A (22 publications on necroptosis), Ge J, and Ye B (8 publications each on pyroptosis), and Ren J (lead contributor in autophagy and ferroptosis, with 120 and 10 publications, respectively). The most frequently co-cited journals were Cell, Nature, Free Radical Biology and Medicine, and the Journal of Biological Chemistry. Conclusions This bibliometric analysis highlights the growing interest in PCD in CVD research, with autophagy and pyroptosis being the central themes. Future studies should examine therapeutic strategies targeting ferroptosis and necroptosis to improve CVD treatment. The findings provide a roadmap for researchers to navigate emerging research hotspots and foster interdisciplinary collaboration.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Tianyi Long
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bo Wei
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Huan Zhou
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xinhai Yin
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhangrong Chen
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Pietro Di Fazio
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
| | - Wei Li
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| | - Haiyan Zhou
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Clinical Medical College, Guizhou Medical University, Guiyang, China
| |
Collapse
|
30
|
Hassan ZM, Akram HM. Salivary Biomarkers of Inflammasome Activation in Unstable Periodontitis: A Case-Control Study. Eur J Dent 2025. [PMID: 40267956 DOI: 10.1055/s-0045-1806931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
The objective of this study was to investigate the complex network of inflammasome-related biomarkers (NOD-like receptor thermal protein domain associated protein 3 [NLRP3], caspase-1, interleukin [IL]-1β, IL-18, and IL-37) in unstable periodontitis by examining the salivary concentrations of these specific biomarkers and correlating them with periodontal parameters.The design of this study was an observational case-control study. A salivary sample was collected from periodontally healthy patients (n = 40) and unstable periodontitis patients (n = 40). Full-mouth clinical periodontal parameters were recorded (plaque index, bleeding on probing, periodontal pocket depth, and clinical attachment loss). Enzyme-linked immunosorbent assay analyzed NLRP3, caspase-1, IL-1β, IL-18, and IL-37 salivary levels.The normality of the data was tested using the Shapiro-Wilk test. Mean, standard deviation, and percentages were used for data description. An independent sample t-test, Mann-Whitney U test, and chi-square test were used to compare the two groups with a p-value of < 0.05. Spearman's correlation analysis was conducted to examine the relationships between variables.In saliva samples, NLRP3, caspase-1, IL-1β, and IL-18 were the highest in the periodontitis group (p < 0.005), while IL-37 was highest in the healthy group (p < 0.005). There was significant (p < 0.012) negative weak correlation (-0.395) between IL-37 and IL-1β, and significant (p < 0.003) negative moderate correlation (-0.455) between IL-37 and IL-18 in the healthy group. A significant (0.031) positive weak correlation (0.342) was found between the salivary IL-37 and NLRP3, and a significant (p < 0.001) negative moderate correlation (-0.508) was found between salivary IL-37 and IL-1β, in the periodontitis group.The NLRP3 inflammasomes and their cytokines (caspase-1, IL-1β, and IL-18) significantly promote periodontal inflammation and tissue destruction. In contrast, IL-37 acts as an anti-inflammatory cytokine, inhibiting the activity of the NLRP3 inflammasome and reducing excessive inflammation. This interplay highlights the potential of targeting NLRP3 and enhancing IL-37 as a therapeutic approach for the treatment of periodontal disease.
Collapse
Affiliation(s)
- Zainab Mosa Hassan
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Hadeel Mazin Akram
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
31
|
Wu W, Lan W, Jiao X, Wang K, Deng Y, Chen R, Zeng R, Li J. Pyroptosis in sepsis-associated acute kidney injury: mechanisms and therapeutic perspectives. Crit Care 2025; 29:168. [PMID: 40270016 PMCID: PMC12020238 DOI: 10.1186/s13054-025-05329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 04/25/2025] Open
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a severe complication characterized by high morbidity and mortality, driven by multi-organ dysfunction. Recent evidence suggests that pyroptosis, a form of programmed cell death distinct from apoptosis and necrosis, plays a critical role in the pathophysiology of S-AKI. This review examines the mechanisms of pyroptosis, focusing on inflammasome activation (e.g., NLRP3), caspase-mediated processes, and the role of Gasdermin D in renal tubular damage. We also discuss the contributions of inflammatory mediators, oxidative stress, and potential therapeutic strategies targeting pyroptosis, including inflammasome inhibitors, caspase inhibitors, and anti-inflammatory therapies. Lastly, we highlight the clinical implications and challenges in translating these findings into effective treatments, underscoring the need for personalized medicine approaches in managing S-AKI.
Collapse
Affiliation(s)
- Wenyu Wu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, 510405, China
| | - Wanning Lan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin Jiao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Kai Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yawen Deng
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Rui Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Research On Emergency in TCM, Guangzhou, Guangdong, China.
| | - Ruifeng Zeng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Research On Emergency in TCM, Guangzhou, Guangdong, China.
| | - Jun Li
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
32
|
Liu PW, Liu ZY, Deng SJ, Zhang X, Wang ZB, Wu NY, Liu CS, Hu MH, Wang J, Li H. A Pyroptosis-Related LncRNA Signature for Predicting Prognosis, Immune Features and Drug Sensitivity in Ovarian Cancer. Onco Targets Ther 2025; 18:585-601. [PMID: 40291608 PMCID: PMC12034292 DOI: 10.2147/ott.s491130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Background Multiple studies have suggested that lncRNAs and pyroptosis play important roles in ovarian cancer (OC). However, the function of pyroptosis-related lncRNAs (PRLs) in OC is not fully understood. Methods Clinical information and RNA-seq data of OC patients (n = 379) were collected from TCGA database. Pearson correlation analysis and univariate Cox analysis were performed to identify prognostic PRLs, respectively. LASSO-COX regression was utilized to construct a prognostic PRLs signature. Kaplan-Meier (K-M) curve analyses and receiver operating characteristics (ROC) were used to evaluate the prognostic prediction of the signature. The association between risk score and tumor microenvironment infiltration, immunotherapy response and chemotherapy sensitivity were also analyzed. In addition, the function of TYMSOS on OC and pyroptosis was experimentally confirmed in cell lines. Results Firstly, 32 prognostic PRLs were identified, and a novel prognostic PRLs signature was constructed and validated. Surprisingly, the prognostic PRLs signature could solidly predict the clinical outcome of patients with OC and patients with high-risk score shown a short overall survival. GSEA results suggested that the RPLs were mainly enriched in the inflammatory response pathway, p53 pathway, TGF-β signaling and TNFα signaling. Besides, our results demonstrated that the risk score was significantly associated with patients with immune infiltration, immunotherapy response and the sensitivity of veliparib and metformin. Furthermore, the oncogene effect of TYMSOS on OC by inhibiting pyroptosis was verified by experiments. Conclusion This study found that the prognostic PRLs signature may serve as an efficient biomarker in predicting the prognosis, tumor microenvironment infiltration, and sensitivity of chemotherapeutic agents. TYMSOS is a potential biomarker in OC, and it might promote tumor progression by inhibiting pyroptosis.
Collapse
Affiliation(s)
- Po-Wu Liu
- University of South China, Hengyang Medical School, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang, Hunan, 421001, People’s Republic of China
- Hunan Clinical Research Center in Gynecologic Cancer, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, People’s Republic of China
| | - Zhao-Yi Liu
- Hunan Clinical Research Center in Gynecologic Cancer, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, People’s Republic of China
| | - Shi-Jia Deng
- Hunan Clinical Research Center in Gynecologic Cancer, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, People’s Republic of China
| | - Xiu Zhang
- Hunan Clinical Research Center in Gynecologic Cancer, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, People’s Republic of China
| | - Zhi-Bin Wang
- Hunan Clinical Research Center in Gynecologic Cancer, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, People’s Republic of China
| | - Na-Yiyuan Wu
- Hunan Clinical Research Center in Gynecologic Cancer, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, People’s Republic of China
| | - Chao-Shui Liu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan, 410219, People’s Republic of China
| | - Ming-Hua Hu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan, 410219, People’s Republic of China
| | - Jing Wang
- Hunan Clinical Research Center in Gynecologic Cancer, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, People’s Republic of China
| | - He Li
- Hunan Clinical Research Center in Gynecologic Cancer, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, 410013, People’s Republic of China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan, 410219, People’s Republic of China
| |
Collapse
|
33
|
Zhang Y, Zhang G, Dong B, Pandeya A, Cui J, Valenca SDS, Yang L, Qi J, Chai Z, Wu C, Kirchhofer D, Shiroishi T, Khasawneh F, Tao M, Shao F, Waters CM, Wei Y, Li Z. Pyroptosis of pulmonary fibroblasts and macrophages through NLRC4 inflammasome leads to acute respiratory failure. Cell Rep 2025; 44:115479. [PMID: 40158217 PMCID: PMC12087274 DOI: 10.1016/j.celrep.2025.115479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/16/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
The NAIP/NLRC4 inflammasome plays a pivotal role in the defense against bacterial infections, with its in vivo physiological function primarily recognized as driving inflammation in immune cells. Acute lung injury (ALI) is a leading cause of mortality in sepsis. In this study, we identify that the NAIP/NLRC4 inflammasome is highly expressed in both macrophages and pulmonary fibroblasts and that pyroptosis of these cells plays a critical role in lung injury. Mice challenged with gram-negative bacteria or flagellin developed lethal lung injury, characterized by reduced blood oxygen saturation, disrupted lung barrier function, and escalated inflammation. Flagellin-induced lung injury was protected in caspase-1 or GSDMD-deficient mice. These findings enhance our understanding of the NAIP/NLRC4 inflammasome's (patho)physiological function and highlight the significant role of inflammasome activation and pyroptosis in ALI during sepsis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Guoying Zhang
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Brittany Dong
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA
| | - Ankit Pandeya
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jian Cui
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40506, USA
| | | | - Ling Yang
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Jiaqian Qi
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Zhuodong Chai
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Congqing Wu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40506, USA; Department of Surgery, University of Kentucky, Lexington, KY 40506, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
| | | | - Fadi Khasawneh
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Min Tao
- Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206 China
| | - Christopher M Waters
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - Yinan Wei
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Zhenyu Li
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
34
|
Direksunthorn T, T Ahmed A, Pluetrattanabha N, Uthirapathy S, Ballal S, Singh A, Al-Hetty HRAK, Devi A, Sharma GC, Yumashev A. Ferroptosis in immune chaos: Unraveling its impact on disease and therapeutic potential. J Physiol Biochem 2025:10.1007/s13105-025-01078-7. [PMID: 40237936 DOI: 10.1007/s13105-025-01078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
Since its introduction in 2012, ferroptosis has garnered significant attention from researchers over the past decade. Unlike autophagy and apoptosis, ferroptosis is an atypical iron-dependent programmed cell death that falls under necrosis. It is regulated by various cellular metabolic and signaling processes, which encompass amino acid, lipid, iron, and mitochondrial metabolism. The initiation of ferroptosis occurs through iron-dependent phospholipid peroxidation. Notably, ferroptosis exhibits a dual effect and is associated with various diseases. A significant challenge lies in managing autoimmune disorders with unknown origins that stem from the reactivation of the immune system. Two contributing factors to autoimmunity are the aberrant stimulation of cell death and the inadequate clearance of dead cells, which can expose or release intracellular components that activate the immune response. Ferroptosis is distinct from other forms of cell death, such as apoptosis, necroptosis, autophagy, and pyroptosis, due to its unique morphological, biochemical, and genetic characteristics and specific relationship with cellular iron levels. Recent studies indicate that immune cells can both induce and undergo ferroptosis. To better understand how ferroptosis influences immune responses and its imbalance in disease, a molecular understanding of the relationship between ferroptosis and immunity is essential. Consequently, further research is needed to develop immunotherapeutics that target ferroptosis. This review primarily focuses on the role of ferroptosis in immune-related disorders.
Collapse
Affiliation(s)
| | | | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | | | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
35
|
Nie X, Miao S, Hou Y, Ma Y, Li M, Liu Y, Yang Y, Xu J, Wang Y. TLR4-mediated endoplasmic reticulum stress regulates pyroptosis in macrophages infected with the Bacillus Calmette-Guérin mycobacterial. Int Immunopharmacol 2025; 152:114346. [PMID: 40064059 DOI: 10.1016/j.intimp.2025.114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/24/2025]
Abstract
Tuberculosis results from Mycobacterium tuberculosis (Mtb) infection. Immune responses controlled by Toll-like receptor 4 (TLR4) are closely associated with the host response to pathogens, including Mtb. NLRP3 inflammasome-mediated pyroptosis forms a significant part of the inflammatory response during Mtb infection, and endoplasmic reticulum stress (ERS) is implicated in the activation of the NLRP3 inflammasome. Here, the function of TLR4 in macrophage pyroptosis induced by infection with the Bacillus Calmette-Guérin (BCG) mycobacterial strain was investigated. It was found that infection with BCG activated TLR4 signaling, induced ERS and subsequent NLRP3 inflammasome activation, leading to pyroptosis in mouse lung tissues. The TLR4 inhibitor TAK 242 inhibited the ERS onset, NLRP3 inflammasome stimulation, and pyroptosis, while the ERS inhibitor TUDCA blocked both inflammasome activation and pyroptosis, and the NLRP3 inhibitor MCC950 specifically inhibited pyroptosis. Furthermore, TAK 242, TUDCA, and MCC950 all exacerbated lung injury caused by BCG infection and promoted BCG survival. Similarly, after in BCG-infected THP-1 macrophages, TLR4 signaling was found to mediate NLRP3 inflammasome activation through ERS, thereby inducing pyroptosis. In summary, BCG infection leads to macrophage pyroptosis via the TLR4/ERS/NLRP3 inflammasome signaling axis, providing new insights for further research into the pathogenesis and treatment of tuberculosis.
Collapse
Affiliation(s)
- Xueyi Nie
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Shen'ao Miao
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Yuxin Hou
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Yabo Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Mengyuan Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Yueyang Liu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Yi Yang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China
| | - Jinrui Xu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China.
| | - Yujiong Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
36
|
Maurya R, Sharma A, Naqvi S. Decoding NLRP3 Inflammasome Activation in Alzheimer's Disease: A Focus on Receptor Dynamics. Mol Neurobiol 2025:10.1007/s12035-025-04918-1. [PMID: 40232645 DOI: 10.1007/s12035-025-04918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disorder marked by progressive cognitive decline and significant neuropsychiatric disturbances. Neuroinflammation, mediated by the NLRP3 inflammasome, is increasingly recognized as a critical factor in AD pathogenesis. The NLRP3 inflammasome, a crucial component of the innate immune system, is activated in response to both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In AD, amyloid-beta (Aβ) plaques and tau aggregates act as DAMPs, triggering NLRP3 inflammasome activation in microglia and astrocytes. This activation leads to the production of pro-inflammatory cytokines IL-1β and IL-18, contributing to chronic neuroinflammation and neuronal death. This review explores the intricate mechanisms involved in NLRP3 activation, with a particular focus on TREM-2, Msn Kinase MINK, NF-κB, Toll-like receptors, and P2X7 receptors. Understanding these mechanisms offers insight into the multifaceted regulation of the NLRP3 inflammasome and its impact on AD pathology. By elucidating the roles of TREM-2, MINK1, NF-κB, TLRs, and P2X7 receptors, this review highlights potential therapeutic targets for modulating NLRP3 activity. Targeting these pathways could offer novel strategies for mitigating neuroinflammation and slowing the progression of AD. The interplay between these receptors and signaling pathways underscores the complexity of NLRP3 inflammasome regulation and its significance in AD, providing a foundation for future research aimed at developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Ranika Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Saba Naqvi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
| |
Collapse
|
37
|
Carnazzo V, Rigante D, Restante G, Basile V, Pocino K, Basile U. The entrenchment of NLRP3 inflammasomes in autoimmune disease-related inflammation. Autoimmun Rev 2025; 24:103815. [PMID: 40233890 DOI: 10.1016/j.autrev.2025.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Autoinflammation and autoimmunity are almost "opposite" phenomena characterized by chronic activation of the immune system, 'innate' in the first and 'adaptive' in the second, leading to inflammation of several tissues with specific protean effectors of tissue damage. The mechanism of involvement of multiprotein complexes called 'inflammasomes' within autoimmune pictures, differently from autoinflammatory conditions, is yet undeciphered. In this review we provide a comprehensive overview on NLRP3 inflammasome contribution into the pathogenesis of some autoimmune diseases. In response to autoantibodies against nucleic acids or tissue-specific antigens the NLRP3 inflammasome is activated within dendritic cells and macrophages of patients with systemic lupus erythematosus. Crucial is NLRP3 inflammasome to amplify tissue inflammation with interleukin-1 overexpression and matrix metalloproteinase production at the joint level in rheumatoid arthritis. A deregulated NLRP3 inflammasome activation occurs in the serous acini of salivary and lacrimal glands prone to Sjogren's syndrome, but also in the inflammatory process involving endothelial cells, leucocyte recruitment, and platelet plugging of vasculitides. Furthermore, organ-specific autoimmune diseases such as thyroiditis and hepatitis may display hyperactive NLRP3 inflammasomes at the level of resident immune cells within thyroid or liver, respectively. Therefore, it is not unexpected that preclinical studies have shown how specific inflammasome inhibitors may significantly overthrow the severity of different autoimmune diseases and slow down their trend towards an ominous progression. Specific markers of inflammasome activation could also reveal subclinical inflammatory components escaping conventional diagnostic approaches or improve monitoring of autoimmune diseases and personalizing their treatment.
Collapse
Affiliation(s)
- Valeria Carnazzo
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| | - Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy.
| | - Giuliana Restante
- Department of Experimental Medicine, University "La Sapienza", Rome, Italy
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Krizia Pocino
- Unit of Clinical Pathology, Ospedale San Pietro Fatebenefratelli, Rome, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| |
Collapse
|
38
|
Elbaz EM, Sayed RH, Abdelkader AA, Fahim AT. Neuroprotective role of morin hydrate on 3-nitropropionic acid-elicited huntington's disease: in vivo investigation of RIPK1/RIPK3/MLKL necroptosis signaling pathway. Mol Med 2025; 31:135. [PMID: 40217493 PMCID: PMC11987198 DOI: 10.1186/s10020-025-01172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/17/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Huntington's disease (HD) is a rare dominantly inheritable autosomal neurodegenerative disease with unclear pathophysiological pathways. In neurodegenerative disorders, including HD, necroptosis plays a significant role in neuronal death. Morin hydrate (MH), a natural bioactive flavonoid, has various pharmacological properties via orchestrating neuroinflammation, apoptosis, and necroptosis. Up to now, there is no extant data on the impact of MH on the necroptotic pathway in HD. AIM This research aimed to scrutinize the effect of MH on neurodegeneration initiated by 3-nitropropionic acid (3-NP) administration in rats via modulating necroptosis and apoptosis signaling pathways and compare it with necrosulfonamide (NSA) as a necroptosis inhibitor. METHODS HD was triggered in male wistar rats by intraperitoneal injection of 3-NP (10 mg/kg/day) for 14 days. Intraperitoneal injection of MH (20 mg/kg/day, i.p.) or NSA (1.65 mg/kg/day, i.p.) an hour prior to 3-NP administration for 14 days. At the end of study, rats were weighed, and their locomotor activity was assessed via grip strength and open field tests. Striata of rats were investigated histologically and immunohistochemically by evaluation the expression levels of glial fibrillary acidic protein (GFAP). Striatal tumor necrosis factor-alpha (TNF-α), caspase 3, and 8 levels were quantified through the ELISA technique, while striatal expression of necroptosis-associated proteins; phosphorylated form of receptor interacting protein kinase 1/3(p-RIPK1, p-RIPK3) and phosphorylated form of mixed lineage kinase domain-like protein (p-MLKL) were assessed by the Western blot technique. Striatal succinate dehydrogenase (SDH) activity was assayed colorimetrically. Finally, gene enrichment analysis using ShinyGO was employed. RESULTS MH and NSA significantly mitigated body weight loss and ameliorated locomotor deterioration, besides reversing histological abnormalities in the striatum of rats. Intriguingly, MH exerted similar effects on specific biomarkers and molecular signals as NSA. MH and NSA inhibited neuroinflammation, apoptosis, and necroptosis by significantly decreasing the striatal (TNF-α), caspase 3, and necroptosis-associated proteins (P-RIPK1, P-RIPK3, and P-MLKL) levels. Besides, MH and NSA also decreased striatal GFAP and increased SDH activity. Gene enrichment analysis revealed a significant interaction between genes. Together, MH exerts a neuroprotective action on 3-NP-elicited HD rats via reducing neuroinflammation, apoptosis, and necroptosis. This study highlights MH as a potential protection against HD, calling for further research to confirm its neuroprotective effects.
Collapse
Affiliation(s)
- Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- School of Pharmacy, Newgiza University, Giza, Egypt
| | - Amany A Abdelkader
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| | - Atef Tadros Fahim
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt
| |
Collapse
|
39
|
Miao R, Wang X, Zhang J, Kang Q, Liu Q, Luo X, Hou J, Gao B. Manipulation of cancer cell pyroptosis for therapeutic approaches: challenges and opportunities. Biomark Res 2025; 13:58. [PMID: 40200299 PMCID: PMC11980353 DOI: 10.1186/s40364-025-00771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
Remarkable advances have been achieved following discoveries that gasdermins are the executioners of pyroptosis. The pyroptotic process consists a subcellular permeabilization phase and a cell lysis phase, the latter of which is irreversible. Besides immune cells, pyroptosis has also been observed in cancer cells, which exhibit distinct mechanisms compared to canonical immune cell pyroptosis. Although chronic cancer cell pyroptosis fuels tumor growth, intense pyroptotic cell death in tumor cells enhances anticancer immunity by promoting killer lymphocytes infiltration. Triggering pyroptosis in cancer cells is emerging as a promising strategy for cancer treatment. In this review, we introduce the process of cancer cell pyroptosis and its role in antitumor immunity, discuss the translation of these insights into therapies, and highlight current challenges and opportunities in the investigation of cancer cell pyroptosis.
Collapse
Affiliation(s)
- Rui Miao
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Jingyv Zhang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Qinyv Kang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Qing Liu
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Xianglin Luo
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Junwei Hou
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China.
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China.
| | - Baorong Gao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Nan Lu, Chengdu, 610041, China.
- Department of Obstetrics and Gynaecology, West China Second University Hospital, No. 20, Section 3, Renmin Nan Lu, Chengdu, 610041, China.
| |
Collapse
|
40
|
Zhou J, Zhou H, Zhu J, Fang S. Kaempferol inhibits cardiomyocyte pyroptosis via promoting O-GlcNAcylation of GSDME and improved acute myocardial infarction. BMC Pharmacol Toxicol 2025; 26:76. [PMID: 40200275 PMCID: PMC11980313 DOI: 10.1186/s40360-025-00908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
Acute myocardial infarction (AMI) is a leading fatal cardiovascular disease and poses a major threat to human health. Pyroptosis, an inflammation-related programmed cell death, plays a critical role in the progression of AMI. Kaempferol is a natural flavonoid compound with a variety of pharmacological effects, which exerts a significant cardioprotective function. The role of O-GlcNAcylation, a post-translation modification, has received attention in diseases including AMI. In this research, we explored the therapeutic potential of Kaempferol to AMI due to its well-known cardioprotective effect, including its antioxidant and anti-inflammatory properties. Hypoxia/reoxygenation (H/R) model was adopted to provoke myocardial injury and AMI mice model was established. Our findings indicated that H/R lessened cell viability and contributed to the release of LDH, IL-1β and IL-18, cell pyroptosis rate, and the expression of NLRP3, active caspase 1 and GSDMD-N-terminal domain (GSDMD-N). Kaempferol mitigated myocardial damage caused by H/R through repressing cell pyroptosis. Besides, we discovered that Kaempferol restored the levels of O-GlcNAcylation by regulating the activity of OGT (O-GlcNAc transferase) and OGA (O-GlcNAcase) in H/R-treated H9c2 cells. Notably, molecular docking revealed the binding relationship between Kaempferol and OGT. Further, we proved that knockdown of OGT abrogated the function of Kaempferol in H/R-induced pyroptosis. In AMI mice, Kaempferol relieved the myocardial tissue injury and decreased the NLRP3 and GSDME-N protein levels. More importantly, our results illustrated that OGT was responsible for the O-GlcNAcylation of GSDME at T94 site and acted as an inducing factor for GSDME phosphorylation. Namely, this study validated that Kaempferol facilitated GSDME O-GlcNAcylation to inhibit H/R-induced pyroptosis in an OGT-dependent manner.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Critical Care Medicine, Huzhou Third Municipal Hospital, Huzhou, Zhejiang, 313000, China
| | - Huifei Zhou
- Department of Critical Care Medicine, Huzhou Third Municipal Hospital, Huzhou, Zhejiang, 313000, China
| | - Jianfeng Zhu
- Department of Critical Care Medicine, Huzhou Third Municipal Hospital, Huzhou, Zhejiang, 313000, China
| | - Shunjin Fang
- Department of Critical Care Medicine, Huzhou Third Municipal Hospital, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|
41
|
Srirangan P, Shyam M, Radhakrishnan V, Prince SE. NLRP3 as a therapeutic target in cyclophosphamide-associated toxicities. Mol Biol Rep 2025; 52:364. [PMID: 40192868 DOI: 10.1007/s11033-025-10479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/27/2025] [Indexed: 04/20/2025]
Abstract
Cyclophosphamide (CPM), a potent chemotherapeutic agent, while effective against various cancers, can cause significant organ damage. The NLRP3 inflammasome, a key player in the innate immune response, is implicated in this toxicity. This review delves into the intricate relationship between CPM and NLRP3 inflammasome activation, focusing on oxidative stress-mediated organ damage. We explore the mechanisms by which CPM induces NLRP3 activation in the kidneys, heart, liver, and gastrointestinal tract. Additionally, we examine the signaling pathways involved in this process. The review also discusses potential therapeutic interventions, including phytotherapeutic agents, that target NLRP3 inflammasome activation to mitigate CPM-induced organ injury. By highlighting the crucial role of NLRP3 in CPM-related toxicity, this review provides a foundation for future research aimed at developing novel therapeutic strategies to minimize adverse effects and improve patient outcomes.
Collapse
Affiliation(s)
- Prathap Srirangan
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Mukul Shyam
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Vidya Radhakrishnan
- VIT School of Agricultural Innovations and Advanced Learning, VIT University, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India.
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
42
|
Hushmandi K, Reiter RJ, Farahani N, Cho WC, Alimohammadi M, Khoshnazar SM. Pyroptosis; igniting neuropsychiatric disorders from mild depression to aging-related neurodegeneration. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111325. [PMID: 40081561 DOI: 10.1016/j.pnpbp.2025.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Neuropsychiatric disorders significantly impact global health and socioeconomic well-being, highlighting the urgent need for effective treatments. Chronic inflammation, often driven by the innate immune system, is a key feature of many neuropsychiatric conditions. NOD-like receptors (NLRs), which are intracellular sensors, detect danger signals and trigger inflammation. Among these, NLR protein (NLRP) inflammasomes play a crucial role by releasing pro-inflammatory cytokines and inducing a particular cell death process known as pyroptosis. Pyroptosis is defined as a proinflammatory form of programmed cell death executed by cysteine-aspartic proteases, also known as caspases. Currently, the role of pyroptotic flux has emerged as a critical factor in innate immunity and the pathogenesis of multiple diseases. Emerging evidence suggests that the induction of pyroptosis, primarily due to NLRP inflammasome activation, is involved in the pathophysiology of various neuropsychiatric disorders, including depression, stress-related issues, schizophrenia, autism spectrum disorders, and neurodegenerative diseases. Within this framework, the current review explores the complex relationship between pyroptosis and neuropsychiatric diseases, aiming to identify potential therapeutic targets for these challenging conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
43
|
Miao Z, Zhang X, Xu Y, Liu Y, Yang Q. Unveiling the nexus: pyroptosis and its crucial implications in liver diseases. Mol Cell Biochem 2025; 480:2159-2176. [PMID: 39477911 DOI: 10.1007/s11010-024-05147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/22/2024] [Indexed: 04/02/2025]
Abstract
Pyroptosis, a distinctive form of programmed cell death orchestrated by gasdermin proteins, manifests as cellular rupture, accompanied by the release of inflammatory factors. While pyroptosis is integral to anti-infection immunity, its aberrant activation has been implicated in tumorigenesis. The liver, as the body's largest metabolic organ, is rich in various enzymes and governs metabolism. It is also the primary site for protein synthesis. Recent years have witnessed the emergence of pyroptosis as a significant player in the pathogenesis of specific liver diseases, exerting a pivotal role in both physiological and pathological processes. A comprehensive exploration of pyroptosis can unveil its contributions to the development and regression of conditions such as hepatitis, cirrhosis, and hepatocellular carcinoma, offering innovative perspectives for clinical prevention and treatment. This review consolidates current knowledge on key molecules involved in cellular pyroptosis and delineates their roles in liver diseases. Furthermore, we discuss the potential of leveraging pyroptosis as a novel or existing anti-cancer strategy.
Collapse
Affiliation(s)
- Zeyu Miao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xiaorong Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yang Xu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yan Liu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
44
|
Zhang W, Shan G, Bi G, Hu Z, Yi Y, Zeng D, Lin Z, Zhan C. Lactylation and regulated cell death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119927. [PMID: 40023198 DOI: 10.1016/j.bbamcr.2025.119927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Lactylation, a newly identified post-translational modification, entails the attachment of lactate to lysine residues within proteins, profoundly modulating diverse cellular mechanisms underlying regulated cell death (RCD). This modification encompasses two primary categories: histone lactylation and non-histone lactylation. Histone lactylation assumes a pivotal regulatory function in the RCD process, primarily by modulating the transcriptional landscape of genes implicated in cell death. In contrast, non-histone lactylation exerts its influence by targeting transferases, transcription, cell cycle progression, death pathways, and metabolic processes that are intricately involved in RCD. This review provides a comprehensive overview of recent breakthroughs in understanding how lactylation regulates RCD, while also offering insights into potential avenues for future research, thereby deepening our comprehension of cellular fate determination.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yanjun Yi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Dejun Zeng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China.
| |
Collapse
|
45
|
Jones LP, Martin DE, Murray J, Sancilio F, Tripp RA. Probenecid Inhibits NLRP3 Inflammasome Activity and Mitogen-Activated Protein Kinases (MAPKs). Biomolecules 2025; 15:511. [PMID: 40305196 PMCID: PMC12024562 DOI: 10.3390/biom15040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/05/2025] [Accepted: 03/29/2025] [Indexed: 05/02/2025] Open
Abstract
Probenecid has long been a versatile drug in pharmacological therapies, primarily known for blocking active tubular secretion in the kidney, affecting both endogenous substances like uric acid and exogenous ones like penicillin. Beyond its renal applications, probenecid has shown capabilities in crossing the blood-brain barrier and modulating the activity of various membrane channels and transporters. This compound has emerged as a potent antiviral agent, demonstrating efficacy against multiple viruses, including influenza, COVID-19, and RSV. Clinical trials with COVID-19 patients have confirmed its antiviral potential, sparking further investigation into its mechanisms of action. This study explores probenecid's significant anti-inflammatory properties, focusing on its ability to inhibit inflammasome activation. Our study aims to unravel the anti-inflammatory effects of probenecid on the NLRP3 inflammasome and MAPK signaling pathways using murine macrophages as a relevant inflammation model. We reveal that probenecid treatment blocks JNK and ERK signaling without affecting p38 MAPK, suppressing NLRP3 inflammasome activation. Additionally, probenecid does not affect NFκB-directed protein expression, although it efficiently inhibits NLRP3 inflammasome outputs, e.g., IL-1β and pyroptosis. These results indicate probenecid's potential therapeutic applications.
Collapse
Affiliation(s)
- Les P. Jones
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (L.P.J.); (J.M.)
| | | | - Jackelyn Murray
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (L.P.J.); (J.M.)
| | - Fred Sancilio
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL 33431, USA;
| | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA; (L.P.J.); (J.M.)
| |
Collapse
|
46
|
Zhu S, Zhang L, Tong P, Chen J, Wang C, Wang Z, Liu J, Duan P, Jiang Q, Zhou Y, Tan G, Zhang X, Jiang B. Nicotinamide Riboside Mitigates Retinal Degeneration by Suppressing Damaged DNA-Stimulated Microglial Activation and STING-Mediated Pyroptosis. Invest Ophthalmol Vis Sci 2025; 66:14. [PMID: 40192637 PMCID: PMC11980955 DOI: 10.1167/iovs.66.4.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Purpose Microglial activation plays a pivotal role in the pathogenesis of retinal degeneration, contributing to neuroinflammation within the retina. Previous studies identified that nicotinamide riboside (NR) mitigated light-induced retinal degeneration (LIRD) and inhibited microglial activation. The cGAS-STING signaling pathway has been recognized as a key mediator of inflammation in response to cellular stress and tissue damage. This study further explores the regulatory impact of NR on microglial activation and STING-mediated pyroptosis in retinal degeneration. Methods Balb/c mice were subjected to bright light exposure to induce retinal degeneration. Bioinformatics analysis was used to identify the upregulated key genes and signaling pathways involved in the progression of retinal degeneration, based on mouse transcriptomes from the LIRD model. Molecular biology techniques and immunofluorescence staining were used to assess cGAS-STING activation and expression of pyroptosis-associated molecules. Retinal function, photoreceptor apoptosis and inflammatory response were evaluated in the presence and absence of NR supplementation. Results Exposure to bright light resulted in mitochondrial dysfunction and the release of dsDNA, significantly triggering the activation of cGAS-STING pathway and microglial pyroptosis. In contrast, NR treatment preserved mitochondrial biosynthesis, inhibited STING expression in reactive microglia, and dampened the pro-inflammatory response. Additionally, intraperitoneal administration of the STING inhibitor H151 reduced light-induced microglial activation and pyroptosis, while improving retinal function and promoting photoreceptor survival. Conclusions These findings suggest that NR confers neuroprotection by attenuating damaged DNA-triggered STING-mediated microglial activation and pyroptosis. Targeting the cGAS-STING pathway presents a promising therapeutic avenue for retinal degeneration.
Collapse
Affiliation(s)
- Shanshan Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Lusi Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Ping Tong
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jiawei Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Cong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zewei Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingyuan Liu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Peiyun Duan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Qian Jiang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yubing Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Guangshuang Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| |
Collapse
|
47
|
Sakai K, Nakazato Y, Shiimura Y, Zhang W, Nakazato M. Ghrelin-LEAP2 interactions along the stomach-liver axis. Endocr J 2025; 72:341-353. [PMID: 39756956 PMCID: PMC11997273 DOI: 10.1507/endocrj.ej24-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/16/2024] [Indexed: 01/07/2025] Open
Abstract
Ghrelin produced in the stomach promotes food intake and GH secretion, and acts as an anabolic peptide during starvation. Ghrelin binds to the growth hormone secretagogue receptor, a G protein-coupled receptor (GPCR), whose high-resolution complex structures have been determined in the apo state and when bound to an antagonist. Anamorelin, a low-molecular-weight ghrelin agonist, has been launched in Japan for the treatment of cancer cachexia, and its therapeutic potential has attracted attention due to the various biological activities of ghrelin. In 2019, liver-expressed antimicrobial peptide (LEAP2), initially discovered as an antimicrobial peptide produced in the liver, was identified to be upregulated in the stomach of diet-induced obese mice after vertical sleeve gastrectomy. LEAP2 binds to the GHSR and antagonizes ghrelin's activities. The serum concentrations of human LEAP2 are positively correlated with body mass index, body fat accumulation, and fasting serum concentrations of glucose and triglyceride. Serum LEAP2 elevated and ghrelin reduced in obesity. Ghrelin and LEAP2 regulate body weight, food intake, and GH and blood glucose concentrations, and other physiological phenomena through their interactions with the same receptor, GHSR.
Collapse
Affiliation(s)
- Katsuya Sakai
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yuki Nakazato
- Division of Respirology, Rheumatology, Infectious Diseases, and Neurology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yuki Shiimura
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka 830-0011, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Weidong Zhang
- Laboratory of Veterinary Physiology, Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
- Laboratory of Biomolecular Analysis, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Masamitsu Nakazato
- Forefront Research Center, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| |
Collapse
|
48
|
Jarabicová I, Horváth C, Hrdlička J, Boroš A, Olejníčková V, Zábrodská E, Hubáčková SŠ, Šutovská HM, Molčan Ľ, Kopkan L, Chudý M, Kura B, Kaločayová B, Goncalvesová E, Neckář J, Zeman M, Kolář F, Adameová A. Necrosis-like cell death modes in heart failure: the influence of aetiology and the effects of RIP3 inhibition. Basic Res Cardiol 2025; 120:373-392. [PMID: 40088261 PMCID: PMC11976840 DOI: 10.1007/s00395-025-01101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/17/2025]
Abstract
Since cell dying in heart failure (HF) may vary based on the aetiology, we examined the main forms of regulated necrosis, such as necroptosis and pyroptosis, in the hearts damaged due to myocardial infarction (MI) or pressure overload. We also investigated the effects of a drug inhibiting RIP3, a proposed convergent point for both these necrosis-like cell death modes. In rat hearts, left ventricular function, remodelling, pro-cell death, and pro-inflammatory events were investigated, and the pharmacodynamic action of RIP3 inhibitor (GSK'872) was assessed. Regardless of the HF aetiology, the heart cells were dying due to necroptosis, albeit the upstream signals may be different. Pyroptosis was observed only in post-MI HF. The dysregulated miRNAs in post-MI hearts were accompanied by higher levels of a predicted target, HMGB1, its receptors (TLRs), as well as the exacerbation of inflammation likely originating from macrophages. The RIP3 inhibitor suppressed necroptosis, unlike pyroptosis, normalised the dysregulated miRNAs and tended to decrease collagen content and affect macrophage infiltration without affecting cardiac function or structure. The drug also mitigated the local heart inflammation and normalised the higher circulating HMGB1 in rats with post-MI HF. Elevated serum levels of HMGB1 were also detected in HF patients and positively correlated with C-reactive protein, highlighting pro-inflammatory axis. In conclusion, in MI-, but not pressure overload-induced HF, both necroptosis and pyroptosis operate and might underlie HF pathogenesis. The RIP3-targeting pharmacological intervention might protect the heart by preventing pro-death and pro-inflammatory mechanisms, however, additional strategies targeting multiple pro-death pathways may exhibit greater cardioprotection.
Collapse
Affiliation(s)
- Izabela Jarabicová
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University, Odbojárov 10, 832 32, Bratislava, Slovak Republic
| | - Csaba Horváth
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University, Odbojárov 10, 832 32, Bratislava, Slovak Republic
| | - Jaroslav Hrdlička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Almos Boroš
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Olejníčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic
| | - Eva Zábrodská
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic
| | - Soňa Štemberková Hubáčková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Mauer Šutovská
- Faculty of Natural Sciences, Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak Republic
| | - Ľuboš Molčan
- Faculty of Natural Sciences, Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak Republic
| | - Libor Kopkan
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Chudý
- Faculty of Medicine, Department of Cardiology, Comenius University and National Cardiovascular Institute, Bratislava, Slovak Republic
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Barbora Kaločayová
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Eva Goncalvesová
- Faculty of Medicine, Department of Cardiology, Comenius University and National Cardiovascular Institute, Bratislava, Slovak Republic
| | - Jan Neckář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Zeman
- Faculty of Natural Sciences, Department of Animal Physiology and Ethology, Comenius University, Bratislava, Slovak Republic
| | - František Kolář
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Adriana Adameová
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University, Odbojárov 10, 832 32, Bratislava, Slovak Republic.
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
49
|
Hou Y, Feng Q, Wei C, Cao F, Liu D, Pan S, Shi Y, Liu Z, Liu F. Emerging role of PANoptosis in kidney diseases: molecular mechanisms and therapeutic opportunities. Apoptosis 2025; 30:579-596. [PMID: 39833634 DOI: 10.1007/s10495-024-02072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Kidney diseases represent a significant global public health challenge, characterized by complex pathogenesis, high incidence, low awareness, insufficient early screening, and substantial treatment disparities. Effective therapeutic options remain lacking. Programmed cell death (PCD), including apoptosis, pyroptosis, and necroptosis, play pivotal roles in the pathogenesis of various kidney diseases. In 2019, PANoptosis, a novel form of inflammatory cell death, was introduced, providing new insights into innate immunity and PCD research. Although research on PANoptosis in kidney diseases is still limited, identifying key molecules within PANoptosomes and understanding their regulatory roles is critical for disease prevention and management. This review summarizes the various forms of PCD implicated in kidney diseases, along with PANoptosomes activated by Z-DNA binding protein 1 (ZBP1), absent in melanoma 2 (AIM2), receptor-interacting protein kinase 1 (RIPK1), NOD-like receptor family CARD domain containing 12 (NLRP12), and NOD-like receptor family member C5 (NLRC5). It also reviews the advancements in PANoptosis research in the field of kidney diseases, particularly in renal tumors and acute kidney injuries (AKI). The goal is to establish a foundation for future research into the role of PANoptosis in kidney diseases.
Collapse
Affiliation(s)
- Yi Hou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Qi Feng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Cien Wei
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Fengyu Cao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Yan Shi
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Fengxun Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
50
|
Ulloa BS, Barber-Axthelm I, Berube B, Duthie M, Reed S, Savan R, Gale M. Synthetic RIG-I-Agonist RNA Induces Death of Hepatocellular Carcinoma Cells. J Interferon Cytokine Res 2025; 45:119-132. [PMID: 39945619 PMCID: PMC12021766 DOI: 10.1089/jir.2024.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/20/2024] [Indexed: 04/02/2025] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is a critical sensor of viral RNA and is activated in response to binding to RNA containing exposed 5'-triphosphate (5'ppp) and poly-uridine to trigger innate immune activation and response including induction of type I and III interferons (IFNs). RIG-I signaling plays a key role in not only restricting RNA virus infection but also suppressing tumor progression via oncolytic signaling. We evaluated the actions of a specific RIG-I agonist RNA (RAR) as a potential therapeutic against model tumor cell lines representing hepatocellular carcinoma (HCC). RAR constitutes a synthetic-modified RNA motif derived from the hepatitis C virus genome that is specifically recognized by RIG-I and induces innate immune activation when delivered to cells. We found that RAR directs RIG-I-dependent signaling to drive HCC cell death. Analysis of knockout cell lines lacking RIG-I, mitochondrial activator of virus signaling, or IRF3 confirmed that RAR-induced cell death signaling propagates through the RIG-I-like receptor (RLR) pathway to mediate caspase activation and HCC cell death. RAR-induced cell death is potentiated by type I IFN. Thus, RAR actions trigger HCC cell death through RIG-I linkage of RLR, caspase, and IFN signaling programs. RAR offers a potent application in antitumor therapeutic strategies leveraging innate immunity against liver cancer.
Collapse
Affiliation(s)
- Brittany S. Ulloa
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Isaac Barber-Axthelm
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, Washington, USA
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | - Ram Savan
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, Washington, USA
- Department of Microbiology and Immunology, and Institute on Infectious Diseases, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|