1
|
Hao W, Jialong Z, Jiuzhi Y, Yang Y, Chongning L, Jincai L. ADP-ribosylation, a multifaceted modification: Functions and mechanisms in aging and aging-related diseases. Ageing Res Rev 2024; 98:102347. [PMID: 38815933 DOI: 10.1016/j.arr.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Aging, a complex biological process, plays key roles the development of multiple disorders referred as aging-related diseases involving cardiovascular diseases, stroke, neurodegenerative diseases, cancers, lipid metabolism-related diseases. ADP-ribosylation is a reversible modification onto proteins and nucleic acids to alter their structures and/or functions. Growing evidence support the importance of ADP-ribosylation and ADP-ribosylation-associated enzymes in aging and age-related diseases. In this review, we summarized ADP-ribosylation-associated proteins including ADP-ribosyl transferases, the ADP-ribosyl hydrolyses and ADP-ribose binding domains. Furthermore, we outlined the latest knowledge about regulation of ADP-ribosylation in the pathogenesis and progression of main aging-related diseases, organism aging and cellular senescence, and we also speculated the underlying mechanisms to better disclose this novel molecular network. Moreover, we discussed current issues and provided an outlook for future research, aiming to revealing the unknown bio-properties of ADP-ribosylation, and establishing a novel therapeutic perspective in aging-related diseases and health aging via targeting ADP-ribosylation.
Collapse
Affiliation(s)
- Wu Hao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhao Jialong
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Jiuzhi
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Yang
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Lv Chongning
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China
| | - Lu Jincai
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China; Liaoning Provincial Key Laboratory of TCM Resources Conservation and Development, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
2
|
Jeon J, Lee K, Jang HR, Yang KE, Lee CJ, Ahn H, Park WY, Lee JE, Kwon GY, Kim YG, Huh W. Effects of poly (ADP-ribose) polymerase inhibitor treatment on the repair process of ischemic acute kidney injury. Sci Rep 2024; 14:159. [PMID: 38167603 PMCID: PMC10761972 DOI: 10.1038/s41598-023-50630-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Excessive activation of poly (ADP-ribose) polymerase (PARP) contributes to ischemic acute kidney injury (AKI). PARP inhibition has been shown to be beneficial in renal ischemia-reperfusion injury (IRI) in the early phase, but its role in the repair process remains unclear. The effects of JPI-289, a novel PARP inhibitor, during the healing phase after renal IRI were investigated. IRI was performed on 9-week-old male C57BL/6 mice. Saline or JPI-289 100 mg/kg was intraperitoneally administered once at 24 h or additionally at 48 h after IRI. Hypoxic HK-2 cells were treated with JPI-289. Renal function and fibrosis extent were comparable between groups. JPI-289 treatment caused more prominent tubular atrophy and proinflammatory intrarenal leukocyte phenotypes and cytokines/chemokines changes at 12 weeks after unilateral IRI. JPI-289 treatment enhanced gene expressions associated with collagen formation, toll-like receptors, and the immune system in proximal tubules and endothelial cells after IRI. JPI-289 treatment at 3 or 6 h after hypoxia facilitated proliferation of hypoxic HK-2 cells, whereas further treatment after 24 h suppressed proliferation. Delayed inhibition of PARP after renal IRI did not facilitate the repair process during the early healing phase but rather may aggravate renal tubular atrophy during the late healing phase in ischemic AKI.
Collapse
Affiliation(s)
- Junseok Jeon
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyungho Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hye Ryoun Jang
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeong Eun Yang
- Division of Scientific Instrumentation and Management, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Cheol-Jung Lee
- Division of Scientific Instrumentation and Management, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hyeonju Ahn
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- Innovative Institute for Precision Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Jung Eun Lee
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoon-Goo Kim
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Wooseong Huh
- Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Avoid the trap: Targeting PARP1 beyond human malignancy. Cell Chem Biol 2021; 28:456-462. [PMID: 33657415 DOI: 10.1016/j.chembiol.2021.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/22/2020] [Accepted: 02/03/2021] [Indexed: 01/24/2023]
Abstract
PARP1 is a poly(ADP-ribose) polymerase (PARP) enzyme that plays a critical role in regulating DNA damage response. The main enzymatic function of PARP1 is to catalyze a protein post-translational modification known as poly(ADP-ribosyl)ation (PARylation). Human cancers with homologous recombination deficiency are highly sensitive to PARP1 inhibitors. PARP1 is aberrantly activated in many non-oncological diseases, leading to the excessive NAD+ depletion and PAR formation, thus causing cell death and tissue damage. PARP1 deletion offers a profound protective effect in the relevant animal models. However, many of the current PARP1 inhibitors also induce PARP1 trapping, which drives subsequent DNA damage, innate immune response and cytotoxicity. This minireview provides an overview of the basic biology of PARP1 trapping, and its implications in disease. Furthermore, we also discuss the recent development of PARP1 PROTAC compounds, and their utility as "non-trapping" PARP1 degraders for the potential amelioration of non-oncological diseases driven by aberrant PARP1 activation.
Collapse
|
4
|
Pazzaglia S, Pioli C. Multifaceted Role of PARP-1 in DNA Repair and Inflammation: Pathological and Therapeutic Implications in Cancer and Non-Cancer Diseases. Cells 2019; 9:cells9010041. [PMID: 31877876 PMCID: PMC7017201 DOI: 10.3390/cells9010041] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
PARP-1 (poly(ADP-ribose)-polymerase 1), mainly known for its protective role in DNA repair, also regulates inflammatory processes. Notably, defects in DNA repair and chronic inflammation may both predispose to cancer development. On the other hand, inhibition of DNA repair and inflammatory responses can be beneficial in cancer therapy and PARP inhibitors are currently used for their lethal effects on tumor cells. Furthermore, excess of PARP-1 activity has been associated with many tumors and inflammation-related clinical conditions, including asthma, sepsis, arthritis, atherosclerosis, and neurodegenerative diseases, to name a few. Activation and inhibition of PARP represent, therefore, a double-edged sword that can be exploited for therapeutic purposes. In our review, we will discuss recent findings highlighting the composite multifaceted role of PARP-1 in cancer and inflammation-related diseases.
Collapse
Affiliation(s)
- Simonetta Pazzaglia
- Correspondence: (S.P.); (C.P.); Tel.: +39-06-3048-6535 (S.P.); +39-06-3048-3398 (C.P.)
| | - Claudio Pioli
- Correspondence: (S.P.); (C.P.); Tel.: +39-06-3048-6535 (S.P.); +39-06-3048-3398 (C.P.)
| |
Collapse
|
5
|
Palazzo L, Mikolčević P, Mikoč A, Ahel I. ADP-ribosylation signalling and human disease. Open Biol 2019; 9:190041. [PMID: 30991935 PMCID: PMC6501648 DOI: 10.1098/rsob.190041] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
ADP-ribosylation (ADPr) is a reversible post-translational modification of proteins, which controls major cellular and biological processes, including DNA damage repair, cell proliferation and differentiation, metabolism, stress and immune responses. In order to maintain the cellular homeostasis, diverse ADP-ribosyl transferases and hydrolases are involved in the fine-tuning of ADPr systems. The control of ADPr network is vital, and dysregulation of enzymes involved in the regulation of ADPr signalling has been linked to a number of inherited and acquired human diseases, such as several neurological disorders and in cancer. Conversely, the therapeutic manipulation of ADPr has been shown to ameliorate several disorders in both human and animal models. These include cardiovascular, inflammatory, autoimmune and neurological disorders. Herein, we summarize the recent findings in the field of ADPr, which support the impact of this modification in human pathophysiology and highlight the curative potential of targeting ADPr for translational and molecular medicine.
Collapse
Affiliation(s)
- Luca Palazzo
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| |
Collapse
|
6
|
Ruan Q, Ruan J, Zhang W, Qian F, Yu Z. Targeting NAD + degradation: The therapeutic potential of flavonoids for Alzheimer's disease and cognitive frailty. Pharmacol Res 2017; 128:345-358. [PMID: 28847709 DOI: 10.1016/j.phrs.2017.08.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/02/2017] [Accepted: 08/20/2017] [Indexed: 01/04/2023]
Abstract
Flavonoids are efficacious candidates as pharmaceuticals or nutraceuticals in the treatment of Alzheimer's disease (AD), aging and other age-related chronic inflammatory diseases. Natural flavonoids reduce pathological hallmarks, extracellular amyloid deposits and neurofibrillary tangles by mediating amyloid precursor protein (APP) processing, Aβ accumulation and tau pathology. The antioxidant and anti-inflammatory actions as well as modulation of sirtuins and telomeres are also involved in the amelioration of aging, neurodegeneration and other age-related diseases. Recently, some flavonoids were shown to inhibit poly (ADP-ribose) polymerases (PARPs) and cyclic ADP-ribose (cADP) synthases (CD38 and CD157), elevate intracellular nicotinamide adenine dinucleotide+ (NAD+) levels and activate NAD+ dependent sirtuin -mediated signaling pathways. We summarized how flavonoids reduce the degradation of NAD+ with an emphasis on the mechanisms through which flavonoids affect the NAD+-sirtuin axis to protect against AD. Aging and age-related diseases as well as a decline in the physiological reserve are the risk factors for cognitive frailty. Flavonoids with multiple therapeutic targets may also be potential candidates for the prevention and treatment of cognitive frailty.
Collapse
Affiliation(s)
- Qingwei Ruan
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jian Ruan
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weibin Zhang
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhuowei Yu
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| |
Collapse
|
7
|
KANAI Y. Overview on poly(ADP-ribose) immuno-biomedicine and future prospects. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:222-36. [PMID: 27477457 PMCID: PMC5114291 DOI: 10.2183/pjab.92.222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Poly(ADP-ribose), identified in 1966 independently by three groups Strassbourg, Kyoto and Tokyo, is synthesized by poly(ADP-ribose) polymerases (PARP) from NAD(+) as a substrate in the presence of Mg(2+). The structure was unique in that it has ribose-ribose linkage. In the early-1970s, however, its function in vivo/in vitro was still controversial and the antibody against it was desired to help clear its significance. Thereupon, the author tried to produce antibody against poly(ADP-ribose) in rabbits and succeeded in it for the first time in the world. Eventually, this success has led to the following two groundbreaking papers in Nature: "Naturally-occurring antibody against poly(ADP-ribose) in patients with autoimmune disease SLE", and "Induction of anti-poly(ADP-ribose) antibody by immunization with synthetic double-stranded RNA, poly(A)·poly(U)".On the way to the publication of the first paper, a reviewer gave me a friendly comment that there is "heteroclitic" fashion as a mechanism of the production of natural antibody. This comment was really a God-send for me, and became a train of power for publication of another paper, as described above. Accordingly, I thought this, I would say, episode is worth describing herein. Because of its importance in biomedical phenomena, a certain number of articles related to "heteroclitic" have become to be introduced in this review, although they were not always directly related to immuno-biological works on poly(ADP-ribose). Also, I tried to speculate on the future prospects of poly(ADP-ribose), product of PARP, as an immuno-regulatory molecule, including either induced or naturally-occurring antibodies, in view of "heteroclitic".
Collapse
Affiliation(s)
- Yoshiyuki KANAI
- Choju Medical Institute, Fukushimura Hospital, Noyori, Toyohashi, Aichi, Japan
- Correspondence should be addressed: Y. Kanai, Choju Medical Institute, Fukushimura Hospital, Noyori, Toyohashi, Aichi 441-8124, Japan (e-mail: )
| |
Collapse
|
8
|
Islam BU, Habib S, Ahmad P, Allarakha S, Moinuddin, Ali A. Pathophysiological Role of Peroxynitrite Induced DNA Damage in Human Diseases: A Special Focus on Poly(ADP-ribose) Polymerase (PARP). Indian J Clin Biochem 2015; 30:368-385. [PMID: 26788021 PMCID: PMC4712174 DOI: 10.1007/s12291-014-0475-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
Abstract
Peroxynitrite is formed in biological systems when nitric oxide and superoxide rapidly interact at near equimolar ratio. Peroxynitrite, though not a free radical by chemical nature, is a powerful oxidant which reacts with proteins, DNA and lipids. These reactions trigger a wide array of cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. The present review outlines the various peroxynitrite-induced DNA modifications with special mention to the formation of 8-nitroguanine and 8-oxoguanine as well as the induction of DNA single strand breakage. Low concentrations of peroxynitrite cause apoptotic death, whereas higher concentrations cause necrosis with cellular energetics (ATP and NAD(+)) serving as control between the two modes of cell death. DNA damage induced by peroxynitrite triggers the activation of DNA repair systems. A DNA nick sensing enzyme, poly(ADP-ribose) polymerase-1 (PARP-1) becomes activated upon detecting DNA breakage and it cleaves NAD(+) into nicotinamide and ADP-ribose and polymerizes the latter on nuclear acceptor proteins. Over-activation of PARP induced by peroxynitrite consumes NAD(+) and consequently ATP decreases, culminating in cell dysfunction, apoptosis or necrosis. This mechanism has been implicated in the pathogenesis of various diseases like diabetes, cardiovascular diseases and neurodegenerative diseases. In this review, we have discussed the cytotoxic effects (apoptosis and necrosis) of peroxynitrite in the etiology of the mentioned diseases, focusing on the role of PARP in DNA repair in presence of peroxynitrite.
Collapse
Affiliation(s)
- Badar ul Islam
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Safia Habib
- />Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Parvez Ahmad
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Shaziya Allarakha
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Moinuddin
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Asif Ali
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| |
Collapse
|
9
|
PARP-1 Inhibition Is Neuroprotective in the R6/2 Mouse Model of Huntington's Disease. PLoS One 2015; 10:e0134482. [PMID: 26252217 PMCID: PMC4529170 DOI: 10.1371/journal.pone.0134482] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is involved in physiological processes as DNA repair, genomic stability, and apoptosis. Moreover, published studies demonstrated that PARP-1 mediates necrotic cell death in response to excessive DNA damage under certain pathological conditions. In Huntington’s disease brains, PARP immunoreactivity was described in neurons and in glial cells, thereby suggesting the involvement of apoptosis in HD. In this study, we sought to determine if the PARP-1 inhibitor exerts a neuroprotective effect in R6/2 mutant mice, which recapitulates, in many aspects, human HD. Transgenic mice were treated with the PARP-1 inhibitor INO-1001 mg/Kg daily starting from 4 weeks of age. After transcardial perfusion, histological and immunohistochemical studies were performed. We found that INO 1001-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the vehicle treated ones. Primary outcome measures such as striatal atrophy, morphology of striatal neurons, neuronal intranuclear inclusions and microglial reaction confirmed a neuroprotective effect of the compound. INO-1001 was effective in significantly increasing activated CREB and BDNF in the striatal spiny neurons, which might account for the beneficial effects observed in this model. Our findings show that PARP-1 inhibition could be considered as a valid therapeutic approach for HD.
Collapse
|
10
|
Kalaivani P, Ganesh M, Sathiya S, Ranju V, Gayathiri V, Saravana Babu C. Alteration in Bioenergetic Regulators, SirT1 and Parp1 Expression Precedes Oxidative Stress in Rats Subjected to Transient Cerebral Focal Ischemia: Molecular and Histopathologic Evidences. J Stroke Cerebrovasc Dis 2014; 23:2753-2766. [DOI: 10.1016/j.jstrokecerebrovasdis.2014.06.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 11/25/2022] Open
|
11
|
Permeability transition pore-dependent and PARP-mediated depletion of neuronal pyridine nucleotides during anoxia and glucose deprivation. J Bioenerg Biomembr 2014; 47:53-61. [PMID: 25341378 DOI: 10.1007/s10863-014-9588-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
Exposure of rat cortical neurons to combined oxygen and glucose deprivation results in loss of NAD(P)H autofluorescence that is only partially reversible following restoration of oxygen and glucose, suggesting catabolism of pyridine nucleotides. This study tested the hypothesis that metabolic inhibition caused by cyanide-induced chemical anoxia plus glucose deprivation promotes both release of mitochondrial NAD(H) in response to opening of the permeability transition pore (PTP) and NAD(P)(H) degradation through activation of poly (ADP-ribose) polymerase (PARP). The NAD(P)H autofluorescence of rat neonatal cortical neurons was monitored during and following acute (10-30 min) exposure to the respiratory inhibitor, cyanide, in the absence and presence of glucose. Because nitric oxide-derived peroxynitrite is a known activator of PARP, we additionally assessed the effect of a nitric oxide generating agent on the NAD(P)H autofluorescence response to chemical anoxia plus glucose deprivation. Cyanide induced a rapid increase in autofluorescence, followed by a steady decline promoted by the presence of nitric oxide. This decline was primarily due to NAD(H) catabolism, as verified by measurements of total NAD(H) present in cellular extracts. Catabolism was partially blocked by an inhibitor of PARP, by a PTP inhibitor, and by either glucose or pyruvate as a source of reducing power. Overall, data suggest that metabolic, oxidative, and nitrosative stress during in vitro neuronal anoxia and glucose deprivation result in release of mitochondrial pyridine nucleotides in response to PTP opening and rapid, extensive NAD(H) degradation mediated by PARP activation. These events may contribute to the metabolic dysfunction that occurs in vivo during cerebral ischemia and reperfusion and therefore represent prime targets for neuroprotection.
Collapse
|
12
|
Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 2014; 171:2000-16. [PMID: 24684389 PMCID: PMC3976618 DOI: 10.1111/bph.12416] [Citation(s) in RCA: 414] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022] Open
Abstract
Cells die by a variety of mechanisms. Terminally differentiated cells such as neurones die in a variety of disorders, in part, via parthanatos, a process dependent on the activity of poly (ADP-ribose)-polymerase (PARP). Parthanatos does not require the mediation of caspases for its execution, but is clearly mechanistically dependent on the nuclear translocation of the mitochondrial-associated apoptosis-inducing factor (AIF). The nuclear translocation of this otherwise beneficial mitochondrial protein, occasioned by poly (ADP-ribose) (PAR) produced through PARP overactivation, causes large-scale DNA fragmentation and chromatin condensation, leading to cell death. This review describes the multistep course of parthanatos and its dependence on PAR signalling and nuclear AIF translocation. The review also discusses potential targets in the parthanatos cascade as promising avenues for the development of novel, disease-modifying, therapeutic agents.
Collapse
Affiliation(s)
- Amos A Fatokun
- Institute of Cell Signalling, School of Biomedical Sciences, University of NottinghamNottingham, UK
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
13
|
Ying W. Roles of NAD (+) , PARP-1, and Sirtuins in Cell Death, Ischemic Brain Injury, and Synchrotron Radiation X-Ray-Induced Tissue Injury. SCIENTIFICA 2013; 2013:691251. [PMID: 24386592 PMCID: PMC3872437 DOI: 10.1155/2013/691251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
NAD(+) plays crucial roles in a variety of biological processes including energy metabolism, aging, and calcium homeostasis. Multiple studies have also shown that NAD(+) administration can profoundly decrease oxidative cell death and ischemic brain injury. A number of recent studies have further indicated that NAD(+) administration can decrease ischemic brain damage, traumatic brain damage and synchrotron radiation X-ray-induced tissue injury by such mechanisms as inhibiting inflammation, decreasing autophagy, and reducing DNA damage. Our latest study that applies nano-particles as a NAD(+) carrier has also provided first direct evidence demonstrating a key role of NAD(+) depletion in oxidative stress-induced ATP depletion. Poly(ADP-ribose) polymerase-1 (PARP-1) and sirtuins are key NAD(+)-consuming enzymes that mediate multiple biological processes. Recent studies have provided new information regarding PARP-1 and sirtuins in cell death, ischemic brain damage and synchrotron radiation X-ray-induced tissue damage. These findings have collectively supported the hypothesis that NAD(+) metabolism, PARP-1 and sirtuins play fundamental roles in oxidative stress-induced cell death, ischemic brain injury, and radiation injury. The findings have also supported "the Central Regulatory Network Hypothesis", which proposes that a fundamental network that consists of ATP, NAD(+) and Ca(2+) as its key components is the essential network regulating various biological processes.
Collapse
Affiliation(s)
- Weihai Ying
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200032, China
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
14
|
Curtin N, Szabo C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med 2013; 34:1217-56. [PMID: 23370117 PMCID: PMC3657315 DOI: 10.1016/j.mam.2013.01.006] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/12/2013] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
The aim of this article is to describe the current and potential clinical translation of pharmacological inhibitors of poly(ADP-ribose) polymerase (PARP) for the therapy of various diseases. The first section of the present review summarizes the available preclinical and clinical data with PARP inhibitors in various forms of cancer. In this context, the role of PARP in single-strand DNA break repair is relevant, leading to replication-associated lesions that cannot be repaired if homologous recombination repair (HRR) is defective, and the synthetic lethality of PARP inhibitors in HRR-defective cancer. HRR defects are classically associated with BRCA1 and 2 mutations associated with familial breast and ovarian cancer, but there may be many other causes of HRR defects. Thus, PARP inhibitors may be the drugs of choice for BRCA mutant breast and ovarian cancers, and extend beyond these tumors if appropriate biomarkers can be developed to identify HRR defects. Multiple lines of preclinical data demonstrate that PARP inhibition increases cytotoxicity and tumor growth delay in combination with temozolomide, topoisomerase inhibitors and ionizing radiation. Both single agent and combination clinical trials are underway. The final part of the first section of the present review summarizes the current status of the various PARP inhibitors that are in various stages of clinical development. The second section of the present review summarizes the role of PARP in selected non-oncologic indications. In a number of severe, acute diseases (such as stroke, neurotrauma, circulatory shock and acute myocardial infarction) the clinical translatability of PARP inhibition is supported by multiple lines of preclinical data, as well as observational data demonstrating PARP activation in human tissue samples. In these disease indications, PARP overactivation due to oxidative and nitrative stress drives cell necrosis and pro-inflammatory gene expression, which contributes to disease pathology. Accordingly, multiple lines of preclinical data indicate the efficacy of PARP inhibitors to preserve viable tissue and to down-regulate inflammatory responses. As the clinical trials with PARP inhibitors in various forms of cancer progress, it is hoped that a second line of clinical investigations, aimed at testing of PARP inhibitors for various non-oncologic indications, will be initiated, as well.
Collapse
Affiliation(s)
- Nicola Curtin
- Department of Experimental Cancer Therapy, Northern Institute for Cancer Research, Newcastle University, University of Newcastle Upon Tyne, UK
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
15
|
Ekblad T, Camaioni E, Schüler H, Macchiarulo A. PARP inhibitors: polypharmacology versus selective inhibition. FEBS J 2013; 280:3563-75. [DOI: 10.1111/febs.12298] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Torun Ekblad
- Karolinska Institutet; Department of Medical Biochemistry and Biophysics; Stockholm Sweden
| | - Emidio Camaioni
- Dipartimento di Chimica e Tecnologia del Farmaco; University of Perugia; Perugia Italy
| | - Herwig Schüler
- Karolinska Institutet; Department of Medical Biochemistry and Biophysics; Stockholm Sweden
| | - Antonio Macchiarulo
- Dipartimento di Chimica e Tecnologia del Farmaco; University of Perugia; Perugia Italy
| |
Collapse
|
16
|
Haddad M, Beray-Berthat V, Coqueran B, Plotkine M, Marchand-Leroux C, Margaill I. Combined therapy with PJ34, a poly(ADP-ribose)polymerase inhibitor, reduces tissue plasminogen activator-induced hemorrhagic transformations in cerebral ischemia in mice. Fundam Clin Pharmacol 2012; 27:393-401. [DOI: 10.1111/j.1472-8206.2012.01036.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Ying W, Xiong ZG. Oxidative stress and NAD+ in ischemic brain injury: current advances and future perspectives. Curr Med Chem 2010; 17:2152-8. [PMID: 20423305 DOI: 10.2174/092986710791299911] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/26/2010] [Indexed: 02/01/2023]
Abstract
Numerous studies have indicated oxidative stress as a key pathological factor in ischemic brain injury. One of the key links between oxidative stress and cell death is excessive activation of poly(ADP-ribose) polymerase-1 (PARP-1), which plays an important role in the ischemic brain damage in male animals. Multiple studies have also suggested that NAD+ depletion mediates PARP-1 cytotoxicity, and NAD+ administration can decrease ischemic brain injury. A number of recent studies have provided novel information regarding the mechanisms underlying the roles of oxidative stress and NAD+-dependent enzymes in ischemic brain injury. Of particular interest, there have been exciting progresses regarding the mechanisms underlying the roles of NADPH oxidase and PARP-1 in cerebral ischemia. For examples, it has been suggested that androgen signaling and binding of PARP-1 onto estrogen receptors could account for the intriguing findings that PARP-1 plays remarkably differential roles in the ischemic brain damage of male and female animals; and some studies have suggested casein kinase 2, copper-zinc superoxide dismutase, and estrogen signaling can modulate the expression and activity of NADPH oxidase. This review summarizes these important current advances, and proposes future perspectives for the studies on the roles of oxidative stress and NAD+ in cerebral ischemia. It is increasingly likely that future studies on NAD- and NADP-dependent enzymes, such as NADPH oxidase, PARP-1, and sirtuins, would expose novel mechanisms underlying the roles of oxidative stress in cerebral ischemia, and suggest new therapeutic strategies for treating the debilitating disease.
Collapse
Affiliation(s)
- W Ying
- Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200032, P.R. China.
| | | |
Collapse
|
18
|
Yoo AR, Koh SH, Noh MY, Cho GW, Park JS, Kim Y, Lee HC, Kim MH, Kim SH. Effects of a newly developed tricyclic PARP-1 inhibitor, on ischemic stroke. Drug Dev Res 2010. [DOI: 10.1002/ddr.20368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Lubbers LS, Rowe BA, Hodge LM, Browne SE, Gundersdorf R, Jones P, Hess FJ, Reynolds IJ. PISA, a novel pharmacodynamic assay for assessing poly(ADP-ribose) polymerase (PARP) activity in situ. J Pharmacol Toxicol Methods 2010; 61:319-28. [PMID: 20132901 DOI: 10.1016/j.vascn.2010.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/22/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Poly ADP-ribose polymerase (PARP) maintains genomic integrity by repairing DNA strand breaks, however over-activation of PARP following neural tissue injury is hypothesized to cause neuronal death. Therefore, PARP inhibitors have potential for limiting neural injury under certain conditions. A reliable method for assessing PARP activity in brain is critical for development of novel inhibitors with CNS activity. We developed the PARP In Situ Activity (PISA) assay to provide a direct, quantitative assessment of CNS PARP activity in vitro or in vivo. METHODS The assay utilized brain sections from rats with striatal kainic acid (KA) lesions and 3H- or biotinylated NAD+ as the substrate to assess PARP activity. Following optimization of the assay, it was used to assess in vitro and in vivo efficacy of known and novel PARP inhibitors. The assay also was used to assess PARP activity in male and female gonad-intact and ovariectomized rats. RESULTS Using 3H-NAD+ as the substrate, PARP activity was greater (p<0.01) in tissue from KA-lesioned vs. non-lesioned rats. Using biotinylated NAD+ it was revealed that PARP activity was present ipsilateral to the KA injection site, and labeling was blocked by incubation with excess unlabeled NAD+ or PARP inhibitors. The PARP inhibitor, 3-aminobenzamide and several novel inhibitors reduced (p<0.01) polymerase activity in vitro. Furthermore, the inhibitor MRLSD303 reduced (p<0.001) PARP activity in vivo in both male and female rats. Finally, administration of the novel PARP inhibitor MRLIT115 dose-dependently reduced (p<0.001) polymerase activity in vivo. DISCUSSION The PISA assay provides a direct, quantitative method for assessing PARP activity in vitro and provides critical information on factors underlying in vivo efficacy of chemical inhibitors including brain penetration and target engagement. These findings support use of the PISA assay as a screening tool for testing efficacy of PARP inhibitors in brain.
Collapse
Affiliation(s)
- Laura S Lubbers
- Department of Stroke and Neurodegeneration, Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pacher P, Szabo C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:2-13. [PMID: 18535182 PMCID: PMC2438280 DOI: 10.2353/ajpath.2008.080019] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/17/2008] [Indexed: 01/02/2023]
Abstract
Throughout the last 2 decades, experimental evidence from in vitro studies and preclinical models of disease has demonstrated that reactive oxygen and nitrogen species, including the reactive oxidant peroxynitrite, are generated in parenchymal, endothelial, and infiltrating inflammatory cells during stroke, myocardial and other forms of reperfusion injury, myocardial hypertrophy and heart failure, cardiomyopathies, circulatory shock, cardiovascular aging, atherosclerosis and vascular remodeling after injury, diabetic complications, and neurodegenerative disorders. Peroxynitrite and other reactive species induce oxidative DNA damage and consequent activation of the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1), the most abundant isoform of the PARP enzyme family. PARP overactivation depletes its substrate NAD(+), slowing the rate of glycolysis, electron transport, and ATP formation, eventually leading to functional impairment or death of cells, as well as up-regulation of various proinflammatory pathways. In related animal models of disease, peroxynitrite neutralization or pharmacological inhibition of PARP provides significant therapeutic benefits. Therefore, novel antioxidants and PARP inhibitors have entered clinical development for the experimental therapy of various cardiovascular and other diseases. This review focuses on the human data available on the pathophysiological relevance of the peroxynitrite-PARP pathway in a wide range of disparate diseases, ranging from myocardial ischemia/reperfusion injury, myocarditis, heart failure, circulatory shock, and diabetic complications to atherosclerosis, arthritis, colitis, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Pal Pacher
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda, MD 20892-9413, USA.
| | | |
Collapse
|
21
|
Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 2008; 10:179-206. [PMID: 18020963 DOI: 10.1089/ars.2007.1672] [Citation(s) in RCA: 1099] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence has suggested that NAD (including NAD+ and NADH) and NADP (including NADP+ and NADPH) could belong to the fundamental common mediators of various biological processes, including energy metabolism, mitochondrial functions, calcium homeostasis, antioxidation/generation of oxidative stress, gene expression, immunological functions, aging, and cell death: First, it is established that NAD mediates energy metabolism and mitochondrial functions; second, NADPH is a key component in cellular antioxidation systems; and NADH-dependent reactive oxygen species (ROS) generation from mitochondria and NADPH oxidase-dependent ROS generation are two critical mechanisms of ROS generation; third, cyclic ADP-ribose and several other molecules that are generated from NAD and NADP could mediate calcium homeostasis; fourth, NAD and NADP modulate multiple key factors in cell death, such as mitochondrial permeability transition, energy state, poly(ADP-ribose) polymerase-1, and apoptosis-inducing factor; and fifth, NAD and NADP profoundly affect aging-influencing factors such as oxidative stress and mitochondrial activities, and NAD-dependent sirtuins also mediate the aging process. Moreover, many recent studies have suggested novel paradigms of NAD and NADP metabolism. Future investigation into the metabolism and biological functions of NAD and NADP may expose fundamental properties of life, and suggest new strategies for treating diseases and slowing the aging process.
Collapse
Affiliation(s)
- Weihai Ying
- Department of Neurology, University of California at San Francisco, San Francisco, California 94121, USA.
| |
Collapse
|
22
|
Mitsios N, Gaffney J, Krupinski J, Mathias R, Wang Q, Hayward S, Rubio F, Kumar P, Kumar S, Slevin M. Expression of signaling molecules associated with apoptosis in human ischemic stroke tissue. Cell Biochem Biophys 2008; 47:73-86. [PMID: 17406061 DOI: 10.1385/cbb:47:1:73] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
There is growing evidence that, because of the highly significant differences in gene activation/protein expression between animal models of stroke and stroke patients, the current treatment strategies based on animal stroke models have been unsuccessful. Therefore, it is imperative that the pathobiology of human stroke be studied. As a first step here, Western blotting and immunohistochemistry were employed to examine expression and tissue localization of key apoptotic proteins in infarct and peri-infarcted (penumbra) from grey and white matter in human postmortem tissue of 18 patients who died between 2 and 37 d after stroke caused by large vessel disease. The contralateral hemisphere was used as a control. JNK1, JNK2, and p53 were upregulated in the majority of samples, whereas Bcl-2, caspase-3, active caspase-3, phosphorylated p53 (p-p53), phosphorylated JNK1 (p-JNK1), and phosphorylated JNK2 (p-JNK2) were upregulated in approximately half of the samples. JNK1 expression was positively correlated with JNK2 expression in grey and white matter infarct and penumbra, whereas active caspase-3 levels were positively correlated with p-JNK2 levels in grey and white matter infarct. Using indirect immunoperoxidase staining of paraffin-embedded sections, active caspase-3 was found in infarcted neurons that co-localized with TUNEL-positive cells. p-JNK localization in the nuclei of TUNELpositive cells with the morphological appearance of neurons from infarct and penumbra was also demonstrated. The use of Kaplan Meier survival data demonstrated that the presence of Bcl-2 in penumbra of grey matter correlated significantly with shorter survival (p = 0.006). In conclusion, the present study has identified significantly altered expression of apoptotic proteins in human stroke tissue and shown that the presence of Bcl-2 in penumbra of grey matter has prognostic value. It is tempting to suggest that further studies of apoptotic proteins in human stroke may lead to identification of novel targets for drug discovery.
Collapse
Affiliation(s)
- Nicholas Mitsios
- Department of Biological Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Weihai Ying
- University of California, Department of Neurology, San Francisco, CA, USA and, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| |
Collapse
|
24
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
25
|
Abstract
Primary brain tumors are generally difficult to treat because of the unique location of the lesions. In addition, normal brain structures are often destroyed by the growing neoplasm. Even with effective therapy to surgically resect and destroy the neoplastic tissues, the brain is sometimes still injured, which can leave the patient in a debilitated state. The hemodynamic and metabolic state of such peritumoral brain tissue is not yet well understood, and there are only a small number of experimental hypotheses of its reaction and changes to the growing primary brain tumor. In addition, primary brain tumors may be influenced by certain anticancer drugs, which cause oxidative stress and consecutive cell death, or by gamma-irradiation. Currently, no established diagnostic methods exist to demonstrate and/or quantify the metabolic condition of the peritumoral tissue. The therapeutic strategy for possible pharmacological neuroprotection should, in the future, still be related to metabolic parameters, as well as in the peritumor tissue to treat primary brain tumors without risk to sensitive normal tissue. To achieve this aim, there has been particular emphasis on the biological behavior of primary brain tumors and peritumor tissue, as well as the potential correlation among them. Thus, priority should be given to identifying more target antigens in primary brain tumors and defining those cells present in the brain parenchyma that are essential to maintain a neuroprotective effect. However, at this time, the postinjury enhancement of neurogenesis appears to offer the best hope for long-lasting functional recovery following surgery of primary brain tumors.
Collapse
|
26
|
Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, Medana IM, Miu J, Ball HJ. Immunopathogenesis of cerebral malaria. Int J Parasitol 2006; 36:569-82. [PMID: 16678181 DOI: 10.1016/j.ijpara.2006.02.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 02/09/2006] [Accepted: 02/17/2006] [Indexed: 01/20/2023]
Abstract
Malaria is one of the most important global health problems, potentially affecting more than one third of the world's population. Cerebral malaria (CM) is a deadly complication of Plasmodium falciparum infection, yet its pathogenesis remains incompletely understood. In this review, we discuss some of the principal pathogenic events that have been described in murine models of the disease and relate them to the human condition. One of the earliest events in CM pathogenesis appears to be a mild increase in the permeability to protein of the blood-brain barrier. Recent studies have shown a role for CD8+T cells in mediating damage to the microvascular endothelium and this damage can result in the leakage of cytokines, malaria antigens and other potentially harmful molecules across the blood-brain barrier into the cerebral parenchyma. We suggest that this, in turn, leads to the activation of microglia and the activation and apoptosis of astrocytes. The role of hypoxia in the pathogenesis of cerebral malaria is also discussed, with particular reference to the local reduction of oxygen consumption in the brain as a consequence of vascular obstruction, to cytokine-driven changes in glucose metabolism, and to cytopathic hypoxia. Interferon-gamma, a cytokine known to be produced in malaria infection, induces increased expression, by microvascular endothelial cells, of the haem enzyme indoleamine 2,3-dioxygenase, the first enzyme in the kynurenine pathway of tryptophan metabolism. Enhanced indoleamine 2,3-dioxygenase expression leads to increased production of a range of biologically active metabolites that may be part of a tissue protective response. Damage to astrocytes may result in reduced production of the neuroprotectant molecule kynurenic acid, leading to a decrease in its ratio relative to the neuroexcitotoxic molecule quinolinic acid, which might contribute to some of the neurological symptoms of cerebral malaria. Lastly, we discuss the role of other haem enzymes, cyclooxygenase-2, inducible nitric oxide synthase and haem oxygenase-1, as potentially being components of mechanisms that protect host tissue against the effects of cytokine- and leukocyte-mediated stress induced by malaria infection.
Collapse
Affiliation(s)
- Nicholas H Hunt
- Molecular Immunopathology Unit, Institute for Biomedical Research, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Matsumoto K, Kondo K, Ota T, Kawashima A, Kitamura K, Ishida T. Binding mode of novel 1-substituted quinazoline derivatives to poly(ADP-ribose) polymerase-catalytic domain, revealed by X-ray crystal structure analysis of complexes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:913-9. [PMID: 16631419 DOI: 10.1016/j.bbapap.2006.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 03/08/2006] [Accepted: 03/14/2006] [Indexed: 11/20/2022]
Abstract
In order to clarify the role of the 1-substituent of quinazoline derivatives in their inhibitory activity against poly(ADP-ribose) polymerase (PARP), two novel inhibitors, 1 [8-hydroxy-1-(3-morpholinopropyl)-quinazoline-2,4(1H,3H)-dione] and 2 [8-hydroxy-1-(3-phenoxypropyl)-quinazoline-2,4(1H,3H)-dione], were synthesized and subjected to X-ray crystal analysis in complex with the PARP C-terminal catalytic domain (PARP-CD), which requires NAD+ coenzyme for biological function. The nicotinamide-mimicking part of the quinazoline skeleton of 1 and 2 were both located at the nicotinamide subsite of the NAD+-binding pocket in the same manner as previously reported inhibitors: three hydrogen bonds [(Gly-863)NH-O12, (Gly-863)O-HN3 and (Ser-904)O(gamma)-O12] and stacking interaction between the Tyr-907 phenol and the quinazoline ring. On the other hand, the N-morpholinoprop-3-yl moiety introduced at the 1-position of the quinazoline ring in 1 bridged the large gap between the donor site and the acceptor site through a (Met-890)NH-O20(morpholine) hydrogen bond, where the donor and the acceptor sites are classified as the binding sites of NAD+ and the ADP moiety of the poly(ADP-ribose) chain, respectively. In contrast, the N-phenoxyprop-3-yl moiety in 2 formed hydrophobic interactions close to the adenosine-binding site of NAD+, unlike the hydrogen bond such as in 1. As the inhibitory activities of 1 and 2 for PARP were much more potent than those of the unsubstituted nicotinamide analogues, these results suggest that the occupation of the proximal region of the ADP phosphate-and adenosine-binding subsite of the donor site or that of the gap between the donor and the acceptor site by the 1-substituent of quinazoline may increase the inhibitory activity considerably. The nearly equal inhibitory activities of 1 and 2, despite of their different binding modes at the active site, indicate that this 1-substituent is promising in improving the bioavailability of the inhibitor without compromising its inhibitory activity.
Collapse
Affiliation(s)
- Keita Matsumoto
- Research Center, Taisho Pharmaceutical Co., Ltd., Saitama-shi, Saitama 331-9530, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Stadelmann C, Mews I, Srinivasan A, Deckwerth TL, Lassmann H, Brück W. Expression of cell death-associated proteins in neuronal apoptosis associated with pontosubicular neuron necrosis. Brain Pathol 2006; 11:273-81. [PMID: 11414470 PMCID: PMC8098468 DOI: 10.1111/j.1750-3639.2001.tb00398.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Expression of apoptosis-associated proteins p53, bcl-2, bax, and caspase-3/CPP32, activation of caspase-3, and modification of proteins via poly(ADP-ribosyl)ation was studied in pontosubicular neuron necrosis (PSN), a form of perinatal brain damage revealing the morphological hallmarks of neuronal apoptosis. Immunoreactivity for p53 was completely absent. The majority of cells stained with the bax and procaspase-3 antibodies did not show morphological signs of apoptosis. In contrast, an antibody against activated caspase-3 almost exclusively stained cells with apoptotic morphology. Poly(ADP-ribosyl)ated proteins were only rarely detected in cells with apoptotic morphology. The expression patterns of bax, procaspase-3, bcl-2, and p53 in PSN were similar to that found in age-matched control brains. However, activated caspase-3 and poly-ADP-ribosylated proteins were exclusively found in apoptotic cells. These data indicate that detection of active caspase-3 is a reliable marker for apoptosis in formalin-fixed human tissue, and that neuronal apoptosis in pontosubicular neuron necrosis is accompanied by a pronounced activation of caspase-3.
Collapse
Affiliation(s)
| | - Imke Mews
- Department of Neuropathology, Georg‐August‐Universität, Göttingen, Germany
| | | | | | - Hans Lassmann
- Institute of Brain Research, Department of Neuroimmunology, University of Vienna, Austria
| | - Wolfgang Brück
- Department of Neuropathology, Georg‐August‐Universität, Göttingen, Germany
| |
Collapse
|
29
|
Abstract
Over the past decade, poly(ADP-ribosyl)ation has emerged as a crucial event in the pathogenesis of ischemic stroke. A large body of evidence unambiguously demonstrates that activity of poly(ADP-ribose) polymerase-1 (PARP-1) significantly increases during brain ischemia, and that inhibition of this enzymatic activity affords substantial neuroprotection from ischemic brain injury. This review strictly focuses on literature on poly(ADP-ribosyl)ation and ischemic stroke, highlighting the pathogenetic role of poly(ADP-ribose) in ischemic neuronal death, and the therapeutic relevance of drugs modulating its metabolism to pharmacological treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Alberto Chiarugi
- Department of Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
30
|
Abstract
Astrocytes are essential for neuronal survival and function, neurogenesis, and neural repair. Although astrocytes are more resistant than neurons to most stress conditions in vitro, certain astrocyte subtypes, such as the glial fibrillary acidic protein (GFAP)-negative protoplasmic astrocytes that predominate in gray matter structures, may be equally or more sensitive than neurons to ischemia in vivo. Programmed cell death differs from passive, necrotic death in that cell constituents actively participate in cell demise. Like neurons, astrocytes undergo programmed cell death during normal development. Cell culture studies have shown that astrocytes can be induced to undergo apoptosis and other forms of programmed cell death by many factors relevant to ischemia, including acidosis, oxidative stress, substrate deprivation, and cytokines. Animal models of cerebral ischemia have confirmed nuclear condensation and upregulation of Bax and caspases in a subset of astrocytes exposed to ischemia, especially in immature brain. A causal role for these events in astrocyte death is supported by improved astrocyte survival after inhibition of caspase-dependent cell death pathways. Astrocyte survival is also improved by blocking the poly(ADP-ribose)-1 cell death pathway. Markers of programmed cell death are generally less evident and less widespread in astrocytes than in neighboring neurons. However, most studies to date have relied only on markers of classical apoptosis. In addition, these studies have relied almost exclusively on GFAP to identify astrocytes. Since most protoplasmic astrocytes are poorly immunoreactive for GFAP, the extent of ischemia-induced programmed cell death in this cell type remains uncertain.
Collapse
Affiliation(s)
- Rona G Giffard
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California
| | - Raymond A Swanson
- Department of Neurology, University of California and Veterans Affairs Medical Center, San Francisco, California
| |
Collapse
|
31
|
The role of nitric oxide and PARP in neuronal cell death. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
32
|
Koh SH, Park Y, Song CW, Kim JG, Kim K, Kim J, Kim MH, Lee SR, Kim DW, Yu HJ, Chang DI, Hwang SJ, Kim SH. The effect of PARP inhibitor on ischaemic cell death, its related inflammation and survival signals. Eur J Neurosci 2004; 20:1461-72. [PMID: 15355313 DOI: 10.1111/j.1460-9568.2004.03632.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) plays an important role in ischaemic cell death, and 3-aminobenzamide (3-AB), one of the PARP inhibitors, has a protective effect on ischaemic stroke. We investigated the neuroprotective mechanisms of 3-AB in ischaemic stroke. The occlusion of middle cerebral artery (MCA) was made in 170 Sprague-Dawley rats, and reperfusion was performed 2 h after the occlusion. Another 10 Sprague-Dawley rats were used for sham operation. 3-AB was administered to 85 rats 10 min before the occlusion [3-AB group (n = 85) vs. control group without 3-AB (n = 85)]. Infarct volume and water content were measured, brain magnetic resonance imaging, terminal deoxynucleotidyltransferase (TdT)-mediated dUTP-biotin nick end-labelling (TUNEL) and Cresyl violet staining were performed, and immunoreactivities (IRs) of poly(ADP-ribose) polymer (PAR), cleaved caspase-3, CD11b, intercellular adhesion molecule-1 (ICAM-1), cyclooxygenase-2 (COX-2), phospho-Akt (pAkt) and phospho-glycogen synthase kinase-3 (pGSK-3) were compared in the peri-infarcted region of the 3-AB group and its corresponding ischaemic region of the control group at 2, 8, 24 and 72 h after the occlusion. In the 3-AB group, the infarct volume and the water content were decreased (about 45% and 3.6%, respectively, at 24 h), the number of TUNEL-positive cells was decreased (about 36% at 24 h), and the IRs of PAR, cleaved caspase-3, CD11b, ICAM-1 and COX-2 were significantly reduced, while the IRs of pAkt and pGSK-3 were increased. These results suggest that 3-AB treatment could reduce the infarct volume by reducing ischaemic cell death, its related inflammation and increasing survival signals. The inhibition of PARP could be another potential neuroprotective strategy in ischaemic stroke.
Collapse
Affiliation(s)
- Seong-Ho Koh
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kamanaka Y, Kondo K, Ikeda Y, Kamoshima W, Kitajima T, Suzuki Y, Nakamura Y, Umemura K. Neuroprotective effects of ONO-1924H, an inhibitor of poly ADP-ribose polymerase (PARP), on cytotoxicity of PC12 cells and ischemic cerebral damage. Life Sci 2004; 76:151-62. [PMID: 15519361 DOI: 10.1016/j.lfs.2004.04.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 04/09/2004] [Indexed: 10/26/2022]
Abstract
N-[3-(4-Oxo-3,4-dihydro-phthalazin-1-yl)phenyl]-4-(morpholin-4-yl) butanamide methanesulfonate monohydrate (ONO-1924H) is a novel inhibitor of poly ADP-ribose polymerase (PARP). In this study, we examined the effects of ONO-1924H on cytotoxicity induced by hydrogen peroxide in PC12 cells in vitro and cerebral damage and neurological deficits induced by middle cerebral artery (MCA) thrombus occlusion in vivo in rat. In the in vitro cytotoxicity assay, exposure to 0.5 mmol/L hydrogen peroxide induced cell death in differentiated PC12 cells. ONO-1924H, a PARP inhibitor (Ki=0.21 micromol/L), reduced cell death in a concentration-dependent manner that was correlated with inhibition of PARP activation. A 50% reduction in cell death (EC50) was achieved with 2.4 micromol/L ONO-1924H. In the MCA occlusion model, ONO-1924H was injected intravenously at doses of 3, 10 and 30 mg/kg/h for 3 h, and cerebral damage and neurological deficits were estimated 24 h after MCA occlusion. ONO-1924H treatment led to a significant decrease in cerebral damage in the 10 mg/kg/h-treated group (P < 0.05) and the 30 mg/kg/h-treated group (P < 0.01). Further, ONO-1924H at doses of 30 mg/kg/h significantly (P < 0.05) improved neurological deficits. These findings suggest that the novel PARP inhibitor, ONO-1924H, affords effective neuroprotection and is a useful therapeutic candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yoshihisa Kamanaka
- Minase Research Institute, ONO Pharmaceutical Co. Ltd., 3-1-1, Sakurai,Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Besson VC, Margaill I, Plotkine M, Marchand-Verrecchia C. Deleterious activation of poly(ADP-ribose)polymerase-1 in brain after in vivo oxidative stress. Free Radic Res 2004; 37:1201-8. [PMID: 14703732 DOI: 10.1080/10715760310001612568] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Oxidative stress has been shown to be implicated in the pathogenesis of central nervous system injuries such as cerebral ischemia and trauma, and chronic neurodegenerative diseases. In vitro studies show that oxidative stress, particularly peroxynitrite, could trigger DNA strand breaks, which lead to the activation of repairing enzymes including Poly(ADP-ribose) Polymerase-1 (PARP-1). As excessive activation of this enzyme induces cell death, we examined whether such a cascade also occurs in vivo in a model of oxidative stress in rat brain. For this purpose, the mitochondrial toxin malonate, which promotes free radical production, was infused into the left striatum of rats. Immunohistochemistry showed that 3-nitrotyrosine, an indicator of nitrosative stress, and poly(ADP-ribose), a marker of poly(ADP-ribose)polymerase-1 activation, were present as early as 1 h after malonate, and that they persisted for 24 h. The PARP inhibitor, 3-aminobenzamide, significantly reduced the lesion and inhibited PARP-1 activation induced by malonate. These results demonstrate that oxidative stress induced in vivo in the central nervous system leads to the activation of poly(ADP-ribose)polymerase-1, which contributes to neuronal cell death.
Collapse
Affiliation(s)
- Valérie C Besson
- Laboratoire de Pharmacologie de la Circulation Cérébrale, UPRES EA 2510, Université René Descartes, 4 avenue de l'Observatoire, F-75006 Paris, France
| | | | | | | |
Collapse
|
35
|
Suh SW, Garnier P, Aoyama K, Chen Y, Swanson RA. Zinc release contributes to hypoglycemia-induced neuronal death. Neurobiol Dis 2004; 16:538-45. [PMID: 15262265 DOI: 10.1016/j.nbd.2004.04.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 01/20/2004] [Accepted: 04/16/2004] [Indexed: 10/26/2022] Open
Abstract
Neurons exposed to zinc exhibit activation of poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme that normally participates in DNA repair but promotes cell death when extensively activated. Endogenous, vesicular zinc in brain is released to the extracellular space under conditions causing neuronal depolarization. Here, we used a rat model of insulin-induced hypoglycemia to assess the role of zinc release in PARP-1 activation and neuronal death after severe hypoglycemia. Zinc staining with N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) showed depletion of presynaptic vesicular zinc from hippocampal mossy fiber terminals and accumulation of weakly bound zinc in hippocampal CA1 cell bodies after severe hypoglycemia. Intracerebroventricular injection of the zinc chelator calcium ethylene-diamine tetraacetic acid (CaEDTA) blocked the zinc accumulation and significantly reduced hypoglycemia-induced neuronal death. CaEDTA also attenuated the accumulation of poly(ADP-ribose), the enzymatic product of PARP-1, in hippocampal neurons. These results suggest that zinc translocation is an intermediary step linking hypoglycemia to PARP-1 activation and neuronal death.
Collapse
Affiliation(s)
- Sang Won Suh
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | | | | | | | |
Collapse
|
36
|
Clark IA, Alleva LM, Mills AC, Cowden WB. Pathogenesis of malaria and clinically similar conditions. Clin Microbiol Rev 2004; 17:509-39, table of contents. [PMID: 15258091 PMCID: PMC452556 DOI: 10.1128/cmr.17.3.509-539.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There is now wide acceptance of the concept that the similarity between many acute infectious diseases, be they viral, bacterial, or parasitic in origin, is caused by the overproduction of inflammatory cytokines initiated when the organism interacts with the innate immune system. This is also true of certain noninfectious states, such as the tissue injury syndromes. This review discusses the historical origins of these ideas, which began with tumor necrosis factor (TNF) and spread from their origins in malaria research to other fields. As well the more established proinflammatory mediators, such as TNF, interleukin-1, and lymphotoxin, the roles of nitric oxide and carbon monoxide, which are chiefly inhibitory, are discussed. The established and potential roles of two more recently recognized contributors, overactivity of the enzyme poly(ADP-ribose) polymerase 1 (PARP-1) and the escape of high-mobility-group box 1 (HMGB1) protein from its normal location into the circulation, are also put in context. The pathogenesis of the disease caused by falciparum malaria is then considered in the light of what has been learned about the roles of these mediators in these other diseases, as well as in malaria itself.
Collapse
Affiliation(s)
- Ian A Clark
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
37
|
Hypoglycemic neuronal death and cognitive impairment are prevented by poly(ADP-ribose) polymerase inhibitors administered after hypoglycemia. J Neurosci 2003. [PMID: 14627653 DOI: 10.1523/jneurosci.23-33-10681.2003] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Severe hypoglycemia causes neuronal death and cognitive impairment. Evidence suggests that hypoglycemic neuronal death involves excitotoxicity and DNA damage. Poly(ADP-ribose) polymerase-1 (PARP-1) normally functions in DNA repair, but promotes cell death when extensively activated by DNA damage. Cortical neuron cultures were subjected to glucose deprivation to assess the role of PARP-1 in hypoglycemic neuronal death. PARP-1-/- neurons and wild-type, PARP-1+/+ neurons treated with the PARP inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone both showed increased resistance to glucose deprivation. A rat model of insulin-induced hypoglycemia was used to assess the therapeutic potential of PARP inhibitors after hypoglycemia. Rats subjected to severe hypoglycemia (30 min EEG isoelectricity) accumulated both nitrotyrosine and the PARP-1 product, poly(ADP-ribose), in vulnerable neurons. Treatment with PARP inhibitors immediately after hypoglycemia blocked production of poly(ADP-ribose) and reduced neuronal death by >80% in most brain regions examined. Increased neuronal survival was also achieved when PARP inhibitors were administered up to 2 hr after blood glucose correction. Behavioral and histological assessments performed 6 weeks after hypoglycemia confirmed a sustained salutary effect of PARP inhibition. These results suggest that PARP-1 activation is a major factor mediating hypoglycemic neuronal death and that PARP-1 inhibitors can rescue neurons that would otherwise die after severe hypoglycemia.
Collapse
|
38
|
Goel S, Wharton SB, Brett LP, Whittle IR. Morphological changes and stress responses in neurons in cerebral cortex infiltrated by diffuse astrocytoma. Neuropathology 2003; 23:262-70. [PMID: 14719540 DOI: 10.1046/j.1440-1789.2003.00510.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Local dysfunction in cerebral cortex infiltrated by astrocytoma can cause epilepsy and focal neurological deficits, but the cellular pathology of peritumoral cortex remains poorly defined. The aims of the present study were to define the morphological changes which occur in neurons in tumor-infiltrated cerebral cortex, and to determine whether peritumoral neurons show expression of cell stress-related proteins. Archival specimens of diffuse astrocytoma (n = 28) were identified with areas of both tumor-infiltrated cortex and apparently non-infiltrated cortex. Immunohistochemistry was performed to structural neuronal proteins (MAP-2, neurofilament proteins), beta-amyloid precursor protein, growth associated protein-43 and to injury response proteins (poly(ADP-ribose) polymerase, poly(ADP-ribose), c-fos, and c-jun). Tumor-infiltrated cortex revealed neuronal loss and architectural disarray compared to non-infiltrated cortex. Pyramidal neurons showed thinning of the cytoplasmic rim and their neuritic processes showed increasing tortuosity, varicosity, fragmentation and loss, with axonal spheroid formation and dendritic beading. Poly(ADP-ribose) polymerase, poly(ADP-ribose) and c-fos were up-regulated in both infiltrated and non-infiltrated cortex, but c-jun expression was greater in areas of tumor-infiltrated cortex. Surviving neurons in cortex infiltrated by astrocytoma demonstrate, therefore, a sequence of morphological alterations in their dendritic, somatic and axonal compartments, and demonstrate a cell stress response. The patterns of cellular pathology identified suggest possible mechanisms, by which neurons are damaged and eventually lost in peritumoral brain.
Collapse
Affiliation(s)
- Shom Goel
- Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh, Scotland, United Kingdom
| | | | | | | |
Collapse
|
39
|
Couturier JY, Ding-Zhou L, Croci N, Plotkine M, Margaill I. 3-Aminobenzamide reduces brain infarction and neutrophil infiltration after transient focal cerebral ischemia in mice. Exp Neurol 2003; 184:973-80. [PMID: 14769390 DOI: 10.1016/s0014-4886(03)00367-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Revised: 07/18/2003] [Accepted: 07/18/2003] [Indexed: 10/26/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) was shown to be detrimental in cerebral ischemia but the mechanisms whereby PARP is deleterious have yet to be determined. They may include a role in neutrophil infiltration known to aggravate ischemic damage. In this context, we investigated the effect of 3-aminobenzamide (3-AB), a PARP inhibitor, on brain damage and neutrophil infiltration after transient focal cerebral ischemia in mice. Ischemia was induced in male Swiss mice, anaesthetized with chloral hydrate (400 mg/kg, i.p.), by a 15-min-occlusion of the left middle cerebral artery using an intraluminal suture. Treatments with 3-AB were first administered intraperitoneally 15 min before reperfusion and endpoints measured at 24 h. Among the range of dosages studied (20-320 mg/kg), 40 mg/kg gave the maximal neuroprotection with a 30% decrease in the infarct volume and tended to improve the neurological score evaluated by a grip test. The same dosage was, however, devoid of effect when injection was delayed 2 or 6 h after reperfusion. Myeloperoxidase (MPO) activity used as an index of neutrophil infiltration showed that infiltration peaked 48 h after reperfusion in our model. At this time point, 3-AB (40 mg/kg given 15 min before reperfusion) markedly reduced the neutrophil infiltration, as evidenced by a 72%-decrease in MPO activity, and was still neuroprotective. Our results confirm that 3-AB reduces brain damage. Moreover, for the first time, a quantitative study shows that 3-AB decreases neutrophil infiltration elicited by cerebral ischemia.
Collapse
Affiliation(s)
- Jérôme Y Couturier
- Laboratoire de Pharmacologie, UPRES EA2510, Université René Descartes, F-75006, Paris, France
| | | | | | | | | |
Collapse
|
40
|
Abstract
The death of neurons after brain ischaemia may be associated with activation of cyclin-dependent kinases (CDKs) and upregulation of cyclins, reflecting aberrant entry of neurons into the cell cycle. Little has been published on the expression of cell cycle proteins after brain ischaemia in man. Well-characterized antisera were therefore used to examine the neuronal expression of CDK2, CDK4 and cyclins A, D1 and E in sections of brain from patients who had experienced cardiac arrest or focal brain infarction, and died 3.5 h to 9 days later. Scattered neurons contained elevated levels of cyclin D1, CDK2 and, to a lesser extent, CDK4, but little or no cyclin A or E. Present findings indicate that brain ischaemia induces the entry of some neurons from G0 into the G1 phase of the cell cycle, and suggest a potential therapeutic role for CDK inhibitors in ischaemic stroke.
Collapse
Affiliation(s)
- Seth Love
- Department of Neuropathology, Institute of Clinical Neurosciences, Frenchay Hospital, Bristol BS16 1LE, UK.
| |
Collapse
|
41
|
Abstract
Falciparum malaria is a complex disease with no simple explanation, affecting organs where the parasite is rare as well as those organs where it is more common. We continue to argue that it can best be understood in terms of excessive stimulation of normally useful pathways mediated by inflammatory cytokines, the prototype being tumor necrosis factor (TNF). These pathways involve downstream mediators, such as nitric oxide (NO) that the host normally uses to control parasites, but which, when uncontrolled, have bioenergetic failure of patient tissues as their predictable end point. Falciparum malaria is no different from many other infectious diseases that are clinically confused with it. The sequestration of parasitized red blood cells, prominent in some tissues but absent in others with equal functional loss, exacerbates, but does not change, these overriding principles. Recent opportunities to stain a wide range of tissues from African pediatric cases of falciparum malaria and sepsis for the inducible NO synthase (iNOS) and migration inhibitory factor (MIF) have strengthened these arguments considerably. The recent demonstration of bioenergetic failure in tissue removed from sepsis patients being able to predict a fatal outcome fulfils a prediction of these principles, and it is plausible that this will be demonstrable in severe falciparum malaria. Understanding the disease caused by falciparum malaria at a molecular level requires an appreciation of the universality of poly(ADP-ribose) polymerase-1 (PARP-1) and Na(+)/K(+)-ATPase and the protean effects of activation by inflammation of the former that include inactivation of the latter.
Collapse
Affiliation(s)
- Ian A Clark
- School of Biochemistry and Molecular Biology, Australian National University, ACT 0200, Canberra, Australia.
| | | |
Collapse
|
42
|
Joly LM, Benjelloun N, Plotkine M, Charriaut-Marlangue C. Distribution of Poly(ADP-ribosyl)ation and cell death after cerebral ischemia in the neonatal rat. Pediatr Res 2003; 53:776-82. [PMID: 12621128 DOI: 10.1203/01.pdr.0000059751.00465.f6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nuclear enzyme poly(ADP-ribose) polymerase (PARP) is a key component of molecular mechanisms leading to cell death or survival after an ischemic insult. Oxidative stress damages DNA, and breaks in the DNA strands activate PARP enzyme, leading to poly(ADP-ribosyl)ation of nuclear proteins. In this study, we investigated PARP activation using immunodetection of PAR polymers in the brain of neonatal rat pups subjected to unilateral focal ischemia with reperfusion. PARP activation was detected in the ischemic core between 2 and 18 h, and in the penumbra between 24 and 48 h in the middle cerebral artery (MCA) territory but also in territories of the anterior and posterior cerebral artery, and in white matter tracts. The intranuclear accumulation of PAR in cells preceded a positive terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick-end labeling, suggesting that PARP activation may actually contribute to delayed cell death. Pretreatment with 3-aminobenzamide (3-AB, 10 mg/kg) strongly reduced PARP activation and cell death. These data suggest that PARP activation represents, in the immature brain, the early sign of ischemic cell death. This raises the possibility of the use of PARP inhibitors not only immediately postischemia but perhaps also later to reduce ischemic lesion in the MCA territory and its connected structures.
Collapse
Affiliation(s)
- Luc-Marie Joly
- UPRES EA 2510, Laboratoire de Pharmacologie de la Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | |
Collapse
|
43
|
Reduction but not cleavage of poly(ADP-ribose) polymerase during stress-mediated cell death in the rat hippocampus. Neuroreport 2003. [DOI: 10.1097/00001756-200305230-00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Kim SH, Henkel JS, Beers DR, Sengun IS, Simpson EP, Goodman JC, Engelhardt JI, Siklós L, Appel SH. PARP expression is increased in astrocytes but decreased in motor neurons in the spinal cord of sporadic ALS patients. J Neuropathol Exp Neurol 2003; 62:88-103. [PMID: 12528821 DOI: 10.1093/jnen/62.1.88] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evidence for increased oxidative stress and DNA damage in amyotrophic lateral sclerosis (ALS) prompted studies to determine if the expression of poly(ADP-ribose) polymerase (PARP) is increased in ALS. Using Western analyses of postmortem tissue, we demonstrated that PARP-immunoreactivity (PARP-IR) was increased 3-fold in spinal cord tissues of sporadic ALS (sALS) patients compared with non-neurological disease controls. Despite the increased PARP-IR, PARP mRNA expression was not increased significantly. Immunohistochemical analyses revealed PARP-IR was increased in both white and gray matter of sALS spinal cord. While PARP-IR was predominantly seen in astrocytes, large motor neurons displayed reduced staining compared with controls. This result contrasts sharply to the staining of Alzheimer and MPTP-induced Parkinson diseased tissue, where poly(ADP-ribose) (PAR)-IR was seen mostly in neurons, with little astrocytic staining. PARP-IR was increased in the pellet fraction of sALS homogenates compared with control homogenates, representing potential PARP binding to chromatin or membranes and suggesting a possible mechanism of PARP stabilization. The present results demonstrate glial alterations in sALS spinal cord tissue and support the role of glial alterations in sALS pathogenesis. Additionally, these results demonstrate differences in sALS spinal motor neurons and astrocytes compared to brain neurons and astrocytes in Alzheimer disease and MPTP-induced Parkinson disease despite the presence of markers for oxidative stress in all 3 diseases.
Collapse
Affiliation(s)
- Seung H Kim
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim YH, Koh JY. The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture. Exp Neurol 2002; 177:407-18. [PMID: 12429187 DOI: 10.1006/exnr.2002.7990] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, we examined the role and the mechanism of poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) activation in zinc-induced cell death in cortical culture. After brief exposure to 400 microM zinc, cortical cells exhibited DNA fragmentation, increased poly(ADP-ribosyl)ation, and decreased levels of nicotinamide adenine dinucleotide (NAD) and ATP and subsequently underwent cell death. Inhibitors of PARP/PARG attenuated both zinc-induced NAD/ATP depletion and cell death, thereby implicating the PARP/PARG cascade in these processes. The zinc-inducible enzymes NADPH oxidase and neuronal nitric oxide synthase (nNOS) contributed to PARP activation as their inhibitors attenuated zinc-induced poly(ADP-ribosyl)ation. Levels of nitric oxide and nitrites increased following zinc exposure, consistent with NOS activation. In addition, Western blots and RT-PCR analysis revealed that protein and mRNA levels of nNOS specifically increased following zinc exposure in a manner similar to that of NADPH oxidase. The present study demonstrates that induction of NADPH oxidase and nNOS actively contributes to PARP/PARG-mediated NAD/ATP depletion and cell death induced by zinc in cortical culture.
Collapse
Affiliation(s)
- Yang-Hee Kim
- National Creative Research Initiative Center for the Study of CNS Zinc, Department of Neurology, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | | |
Collapse
|
46
|
Krupinski J, Ferrer I, Barrachina M, Secades JJ, Mercadal J, Lozano R. CDP-choline reduces pro-caspase and cleaved caspase-3 expression, nuclear DNA fragmentation, and specific PARP-cleaved products of caspase activation following middle cerebral artery occlusion in the rat. Neuropharmacology 2002; 42:846-54. [PMID: 12015211 DOI: 10.1016/s0028-3908(02)00032-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Citicoline has been demonstrated to be beneficial in several models of cerebral ischaemia. We tested the hypothesis that citicoline may provide apoptotic pathways following focal cerebral ischaemia. Focal cerebral ischaemia was produced by distal, permanent middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats. The animals were randomised into four groups: (B+A) Citicoline 500 mg/kg IP 24 and 1 h before MCAO, and 23 h after MCAO; (A) citicoline 500 mg/kg IP, within 30 min after MCAO, and 23 h after MCAO; (C) vehicle IP; and (D) sham-operated. The animals were sacrificed at 12 h (n=8 per group) and 24 h (n=8 per group) after MCAO. Immunohistochemistry was performed on free-floating tissue sections with goat polyclonal antibodies to procaspase-1, -2, -3, -6 and -8, and in paraffin-embedded sections processed for cleaved caspase-3 (17 kDa) immunohistochemistry. Finally, some sections were stained with the method of in situ end-labelling of nuclear DNA fragmentation. For gel electrophoresis and Western blotting, antibodies to poly (ADP-ribose) polymerase (PARP) products of 89 kDa were used to reveal specific cleavage substrates of caspases. MCAO induced the expression of all procaspases and the expression of PARP products of 89 kDa, as well as cells with nuclear DNA fragmentation, at 12 and 24 h, in the infarcted core and penumbra. Citicoline reduced the expression of all procaspases at 12 and 24 h after MCAO, as well as the expression of cleaved caspase-3 in cells in the penumbra area. This was accompanied by a reduction in the number of cells bearing nuclear DNA fragments. The expression of caspase-cleaved products of PARP (PARP 89 kDa) was reduced in citicoline-treated ischaemic rats. These results show that citicoline inhibits the expression of proteins involved in apoptosis following MCAO.
Collapse
Affiliation(s)
- J Krupinski
- Unitat de Neuropatologia, Departament de Biologia Cellular i Anatomia Patològica, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Chang ML, Yang J, Kem S, Klaidman L, Sugawara T, Chan PH, Adams JD. Nicotinamide and ketamine reduce infarct volume and DNA fragmentation in rats after brain ischemia and reperfusion. Neurosci Lett 2002; 322:137-40. [PMID: 11897157 DOI: 10.1016/s0304-3940(01)02520-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The possible ability of nicotinamide and ketamine to decrease infarction volume and DNA fragmentation was investigated in a middle cerebral artery occlusion rat model. DNA fragmentation was measured with an enzyme linked immunoassay. Control infarct volume was 223.8 +/- 10.6 mm(3). Ketamine alone did not alter infarct volume, 233.2 +/- 61.8 mm(3). Nicotinamide alone did not alter infarct volume, 235.2 +/- 62.8 mm(3). The combination of ketamine and nicotinamide decreased infarct volume to 83.8 +/- 35.2 mm(3). Ketamine produced hypothermia. Nicotinamide and ketamine decreased brain swelling and DNA fragmentation in the cerebral cortex, striatum and hippocampus in rats perfused for 6 or 24 h. Ketamine may synergize the actions of nicotinamide and partially prevent brain damage from ischemia and reperfusion.
Collapse
Affiliation(s)
- Mei Ling Chang
- Department of Molecular Pharmacology and Toxicology, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, PSC 508, Los Angeles, CA 90089-9121, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Goto S, Xue R, Sugo N, Sawada M, Blizzard KK, Poitras MF, Johns DC, Dawson TM, Dawson VL, Crain BJ, Traystman RJ, Mori S, Hurn PD. Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. Stroke 2002; 33:1101-6. [PMID: 11935067 DOI: 10.1161/01.str.0000014203.65693.1e] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Poly(ADP-ribose) polymerase (PARP-1; Enzyme Commission 2.4.30) is a nuclear DNA repair enzyme that mediates early neuronal ischemic injury. Using novel 3-dimensional, fast spin-echo-based diffusion-weighted imaging, we compared acute (21 hours) and long-term (3 days) ischemic volume after middle cerebral artery (MCA) occlusion in PARP-1-null mutants (PARP-/-) versus genetically matched wild-type mice (WT mice). PARP-/- mice were also treated with viral transfection of wild-type PARP-1 to determine whether protection from MCA occlusion is lost with restoration of the gene product. METHODS Halothane-anesthetized mice were treated with reversible MCA occlusion via intraluminal suture technique. Ischemic volumes were delineated by diffusion-weighted imaging with high spatial and temporal resolution during MCA occlusion and reperfusion. Recombinant Sindbis virus carrying beta-galactosidase (lacZ) or PARP-1 was injected into ipsilateral striatum, then animals underwent MCA occlusion 3 days later. Infarction volume was measured at 22 hours of reperfusion (2,3,5-triphenyltetrazolium chloride histology). RESULTS Reduction in regional water apparent diffusion coefficient (ADC) during occlusion or secondary ADC decline during reperfusion was not different between groups. Ischemic volume was smaller early in occlusion in PARP-/- versus WT mice and remained less at 21 hours of reperfusion. Ischemic volume then increased from 1 to 2 days in all mice, then stabilized without further change. Ischemic damage was smaller in PARP-/- than in WT mice at 3 days. Transfection of PARP-1 into PARP-/- mice increased stroke damage relative to lacZ-injected PARP-/- and increased damage to that of the WT mice. Intraischemic laser-Doppler flowmetry and physiological variables were not different among groups. CONCLUSIONS PARP-1 deficiency provides both early and prolonged protection from experimental focal stroke. The mechanism is not linked to preservation of ADC and mitigation of secondary energy depletion during early reperfusion.
Collapse
Affiliation(s)
- Shozo Goto
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University Schools of Medicine, Baltimore, Md 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chu D, Qiu J, Grafe M, Fabian R, Kent TA, Rassin D, Nesic O, Werrbach-Perez K, Perez-Polo R. Delayed cell death signaling in traumatized central nervous system: hypoxia. Neurochem Res 2002; 27:97-106. [PMID: 11926281 DOI: 10.1023/a:1014858707218] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
There are two different ways for cells to die: necrosis and apoptosis. Cell death has traditionally been described as necrotic or apoptotic based on morphological criteria. There are controversy about the respective roles of apoptosis and necrosis in cell death resulting from trauma to the central nervous system (CNS). An evaluation of work published since 1997 in which electron microscopy was applied to ascertain the role of apoptosis and necrosis in: spinal cord injury, stroke, and hypoxia/ischemia (H/I) showed evidence for necrosis and apoptosis based on DNA degradation, presence of histones in cytoplasm, and morphological evidence in spinal cord. In the aftermath of stroke, many of the biochemical markers for apoptosis were present but the morphological determinations suggested that necrosis is the major source of post-traumatic cell death. This was not the case in H/I where both biochemical assays and the morphological studies gave more consistent results in a manner similar to the spinal cord injury studies. After H/I, major factors affecting cell death outcomes are DNA damage and repair processes, expression of bcl-like gene products and inflammation-triggered cytokine production.
Collapse
Affiliation(s)
- Danielle Chu
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Medana IM, Mai NT, Day NP, Hien TT, Bethell D, Phu NH, Farrar J, White NJ, Turner GD. Cellular stress and injury responses in the brains of adult Vietnamese patients with fatal Plasmodium falciparum malaria. Neuropathol Appl Neurobiol 2001; 27:421-33. [PMID: 11903925 DOI: 10.1046/j.0305-1846.2001.00360.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunohistochemical techniques have been used to investigate specific patterns of potentially reversible cellular injury, DNA damage, and apoptosis in the brainstems of Vietnamese patients who died of severe Plasmodium falciparum malaria. The degree and pattern of neuronal and glial stress responses were compared between patients with cerebral and non-cerebral malaria (CM), and appropriate non-malaria infected controls. The following markers were examined: (i) heat shock protein 70 (HSP70), for reversible injury; (ii) heme oxygenase-1, for oxidative stress; (iii & iv) two DNA-repair proteins, poly(ADP) ribose polymerase (PARP) and DNA-dependent protein kinase catalytic subunit; (v) poly(ADP) ribose, an end-product of PARP activity; and (vi) caspase-3-active, for apoptosis. Stress responses were found in a range of cell types as reflected by the widespread expression of HSP70. Oxidative stress predominated in the vicinity of vessels and haemorrhages. Some degree of DNA damage was found in the majority of malaria patients, but the distribution and frequency of the damage was much less than that observed in controls with irreversible neuronal injury. Similarly, caspase-3-active expression, as a measure of apoptosis, was no higher in the majority of malaria patients than the negative control cases, although 40% of CM cases expressed caspase-3-active in a small number of neurones of the pontine nuclei or within swollen axons of the pontocerebellar and corticospinal tracts. In conclusion, cells within the brainstem of all patients who died from severe malaria showed staining patterns indicative of considerable stress response and reversible neuronal injury. There was no evidence for a specific pattern of widespread irreversible cell damage in those patients with cerebral malaria.
Collapse
Affiliation(s)
- I M Medana
- Nuffield Department of Clinical Laboratory Sciences, The John Radcliffe Hospital, Oxford University, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|