1
|
Cuttitta F, García-Sanmartín J, Feng Y, Sunday ME, Kim YS, Martínez A. Human Cripto-1 and Cripto-3 Protein Expression in Normal and Malignant Settings That Conflicts with Established Conventions. Cancers (Basel) 2024; 16:3577. [PMID: 39518018 PMCID: PMC11545644 DOI: 10.3390/cancers16213577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: Cripto-1 (CR1) is a plurifunctional embryonic protein required for implantation and re-expressed in the adult during wound repair, inflammation, and tumorigenesis. CR1 and its predicted CR1 pseudogene product Cripto-3/CR3 are highly homologous proteins, and given this physical attribute, commercially available antibodies cannot discriminate between CR1 and CR3. Methods: A series of mouse monoclonal antibodies [MoAbs] were developed with a high-affinity binding that can differentiate human CR1/CR3 proteins and showed no measurable cross-reactivity. Results: Using these reagents, we confirm that CR3 is a bona fide translated protein found in human tumor tissue, cancer cell lysates, and in normal/cancer patient donor sera. We also reveal that CR1 and CR3 compete for binding to signal transduction protein Nodal, glucose-regulated protein 78Da (GRP78), and activin receptor-like kinase 4 (Alk4). Our discriminatory MoAbs provide new reagents to help clarify current CR1/CR3 protein expression vagaries in the Cripto field of study, challenging established CR1 conventions. In addition, our data validate CR3 involvement in human carcinogenesis and cell signaling pathways, with potential clinical relevance in determining cancer patient prognosis and disease severity.
Collapse
Affiliation(s)
- Frank Cuttitta
- Tumor Angiogenesis Unit, Mouse Cancer and Genetics Program, National Cancer Institute/Frederick Facility, Frederick, MD 21701, USA;
| | - Josune García-Sanmartín
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (J.G.-S.); (A.M.)
| | - Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer and Genetics Program, National Cancer Institute/Frederick Facility, Frederick, MD 21701, USA;
| | | | - Young S. Kim
- Cancer Prevention Science Branch, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA;
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (J.G.-S.); (A.M.)
| |
Collapse
|
2
|
Delgado M, Garcia-Sanz JA. Therapeutic Monoclonal Antibodies against Cancer: Present and Future. Cells 2023; 12:2837. [PMID: 38132155 PMCID: PMC10741644 DOI: 10.3390/cells12242837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
A series of monoclonal antibodies with therapeutic potential against cancer have been generated and developed. Ninety-one are currently used in the clinics, either alone or in combination with chemotherapeutic agents or other antibodies, including immune checkpoint antibodies. These advances helped to coin the term personalized medicine or precision medicine. However, it seems evident that in addition to the current work on the analysis of mechanisms to overcome drug resistance, the use of different classes of antibodies (IgA, IgE, or IgM) instead of IgG, the engineering of the Ig molecules to increase their half-life, the acquisition of additional effector functions, or the advantages associated with the use of agonistic antibodies, to allow a broad prospective usage of precision medicine successfully, a strategy change is required. Here, we discuss our view on how these strategic changes should be implemented and consider their pros and cons using therapeutic antibodies against cancer as a model. The same strategy can be applied to therapeutic antibodies against other diseases, such as infectious or autoimmune diseases.
Collapse
Affiliation(s)
| | - Jose A. Garcia-Sanz
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain;
| |
Collapse
|
3
|
Arnouk H, Yum G, Shah D. Cripto-1 as a Key Factor in Tumor Progression, Epithelial to Mesenchymal Transition and Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22179280. [PMID: 34502188 PMCID: PMC8430685 DOI: 10.3390/ijms22179280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cripto-1 is an essential protein for human development that plays a key role in the early phase of gastrulation in the differentiation of an embryo as well as assists with wound healing processes. Importantly, Cripto-1 induces epithelial to mesenchymal transition to turn fixed epithelial cells into a more mobile mesenchymal phenotype through the downregulation of epithelial adhesion molecules such as E-cadherin, occludins, and claudins, and the upregulation of mesenchymal, mobile proteins, such as N-cadherin, Snail, and Slug. Consequently, Cripto-1’s role in inducing EMT to promote cell motility is beneficial in embryogenesis, but detrimental in the formation, progression and metastasis of malignant tumors. Indeed, Cripto-1 is found to be upregulated in most cancers, such as breast, lung, gastrointestinal, hepatic, renal, cervical, ovarian, prostate, and skin cancers. Through its role in EMT, Cripto-1 can remodel cancer cells to enable them to travel through the extracellular matrix as well as blood and lymphatic vessels to metastasize to different organs. Additionally, Cripto-1 promotes the survival of cancer stem cells, which can lead to relapse in cancer patients.
Collapse
Affiliation(s)
- Hilal Arnouk
- Department of Pathology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
- Chicago College of Optometry, Midwestern University, Downers Grove, IL 60515, USA;
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
- College of Dental Medicine-Illinois, Midwestern University, Downers Grove, IL 60515, USA
- Correspondence:
| | - Gloria Yum
- Chicago College of Optometry, Midwestern University, Downers Grove, IL 60515, USA;
| | - Dean Shah
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
- Master of Public Health Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
4
|
Ishii H, Afify SM, Hassan G, Salomon DS, Seno M. Cripto-1 as a Potential Target of Cancer Stem Cells for Immunotherapy. Cancers (Basel) 2021; 13:cancers13102491. [PMID: 34065315 PMCID: PMC8160785 DOI: 10.3390/cancers13102491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer immunotherapy is gaining attention as a potential fourth treatment following surgery, chemotherapy, and radiation therapy. Cancer stem cells have recently been recognized and validated as a key target for cancer treatment. Cripto-1, which is a GPI-anchored membrane-bound protein that functions as a co-receptor of Nodal, is a marker of cancer stem cells. Since Nodal is a member of the TGF-β family, which performs an important role in stem cells and cancer stem cells, the inhibition of Cripto-1 could be a strategy by which to block Nodal signaling and thereby suppress cancer stem cells. We propose that Cripto-1 may be a novel target for cancer immunotherapy. Abstract The immune system has been found to be suppressed in cancer patients. Cancer cells are extremely resistant to chemotherapeutic drugs, conventional immunotherapy, or cancer antigen vaccine therapy. Cancer immunotherapy, which is mainly based on immune checkpoint inhibitors, such as those for PD-1, PD-L1, and CTLA4, is an effective treatment method. However, no immunotherapeutic target has been found that retains validity in the face of tumor diversity. The transforming growth factor (TGF)-β cytokine family possesses broad biological activity and is involved in the induction and/or transdifferentiation of helper T cells, which are important in immunotherapy. Nodal is a member of the TGF-β family playing important roles in tissue stem cells and cancer stem cells (CSCs), interacting with the co-receptor Cripto-1, as well as with Activin type IB (Alk4) and Activin typeIIreceptors, and maintaining stemness and Notch and Wnt/β-catenin signaling in CSCs. In recent years, it has been reported that Cripto-1 could be a potential therapeutic target in CSCs. Here, we review the accumulated literature on the molecular mechanisms by which Cripto-1 functions in CSCs and discuss the potential of Cripto-1 as an immunotherapeutic target in CSCs.
Collapse
Affiliation(s)
- Hiroko Ishii
- GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwa-ku, Osaka 556-0017, Japan;
| | - Said M. Afify
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin ElKoum Menoufia 32511, Egypt
| | - Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
- Correspondence: ; Tel.: +81-86-251-8216
| |
Collapse
|
5
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
6
|
Focà G, Iaccarino E, Focà A, Sanguigno L, Untiveros G, Cuevas-Nunez M, Strizzi L, Leonardi A, Ruvo M, Sandomenico A. Development of conformational antibodies targeting Cripto-1 with neutralizing effects in vitro. Biochimie 2019; 158:246-256. [PMID: 30703478 DOI: 10.1016/j.biochi.2019.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/22/2019] [Indexed: 01/14/2023]
Abstract
Human Cripto-1 (Cripto-1), the founding member of the EGF-CFC superfamily, is a key regulator of many processes during embryonic development and oncogenesis. Cripto-1 is barely present or even absent in normal adult tissues while it is aberrantly re-expressed in various tumors. Blockade of the CFC domain-mediated Cripto-1 functions is acknowledged as a promising therapeutic intervention point to inhibit the tumorigenic activity of the protein. In this work, we report the generation and characterization of murine monoclonal antibodies raised against the synthetic folded CFC [112-150] domain of the human protein. Through subtractive ELISA assays clones were screened for the ability to specifically recognize "hot spot" residues on the CFC domain, which are crucial for the interaction with Activin Type I receptor (ALK4) and GRP78. On selected antibodies, SPR and epitope mapping studies have confirmed their specificity and have revealed that recognition occurs only on a conformational epitope. Furthermore, FACS analyses have confirmed the ability of 1B4 antibody to recognize the membrane-anchored and soluble native Cripto-1 protein in a panel of human cancer cells. Finally, we have evaluated its functional effects through in vitro cellular signaling assays and cell cycle analysis. These findings suggest that the selected anti-CFC mAbs have the potential to neutralize the protein oncogenic activity and may be used as theranostic molecules suitable as tumor homing agents for Cripto-1-overexpressing cancer cells and tissues and to overcome drug-resistance in routine cancer therapies.
Collapse
Affiliation(s)
- Giuseppina Focà
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Emanuela Iaccarino
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Annalia Focà
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Luca Sanguigno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Gustavo Untiveros
- Midwestern University, Colleges of Graduate Studies, Dwners Grove, Chicago, IL, USA
| | - Maria Cuevas-Nunez
- Midwestern University, Colleges of Graduate Studies, Dwners Grove, Chicago, IL, USA; College of Dental Medicine, Dwners Grove, Chicago, IL, USA
| | - Luigi Strizzi
- Midwestern University, Colleges of Graduate Studies, Dwners Grove, Chicago, IL, USA
| | - Antonio Leonardi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy.
| | - Annamaria Sandomenico
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy.
| |
Collapse
|
7
|
Shekari F, Han CL, Lee J, Mirzaei M, Gupta V, Haynes PA, Lee B, Baharvand H, Chen YJ, Hosseini Salekdeh G. Surface markers of human embryonic stem cells: a meta analysis of membrane proteomics reports. Expert Rev Proteomics 2018; 15:911-922. [PMID: 30358457 DOI: 10.1080/14789450.2018.1539669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/19/2018] [Indexed: 12/12/2022]
Abstract
Human embryonic stem cells (hESCs) have unique biological features and attributes that make them attractive in various areas of biomedical research. With heightened applications, there is an ever increasing need for advancement of proteome analysis. Membrane proteins are one of the most important subset of hESC proteins as they can be used as surface markers. Areas covered: This review discusses commonly used surface markers of hESCs, and provides in-depth analysis of available hESC membrane proteome reports and the existence of these markers in many other cell types, especially cancer cells. Appreciating, existing ambiguity in the definition of a membrane protein, we have attempted a meta analysis of the published membrane protein reports of hESCs by using a combination of protein databases and prediction tools to find the most confident plasma membrane proteins in hESCs. Furthermore, responsiveness of plasma membrane proteins to differentiation has been discussed based on available transcriptome profiling data bank. Expert commentary: Combined transcriptome and membrane proteome analysis highlighted additional proteins that may eventually find utility as new cell surface markers.
Collapse
Affiliation(s)
- Faezeh Shekari
- a Department of Molecular Systems Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
- b Department of Developmental Biology , University of Science and Culture, ACECR , Tehran , Iran
| | - Chia-Li Han
- c Chemical Biology and Molecular Biophysics Program , Institute of Chemistry , Taipei , Taiwan , Republic of China
| | - Jaesuk Lee
- d Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Republic of Korea
| | - Mehdi Mirzaei
- e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia
- f Australian Proteome Analysis Facility , Macquarie University , Sydney , NSW , Australia
- g Department of Clinical Medicine , Macquarie University , Sydney , NSW , Australia
| | - Vivek Gupta
- g Department of Clinical Medicine , Macquarie University , Sydney , NSW , Australia
| | - Paul A Haynes
- e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia
| | - Bonghee Lee
- d Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute , Gachon University , Incheon , Republic of Korea
| | - Hossein Baharvand
- b Department of Developmental Biology , University of Science and Culture, ACECR , Tehran , Iran
- h Department of Stem Cells and Developmental Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
| | - Yu-Ju Chen
- c Chemical Biology and Molecular Biophysics Program , Institute of Chemistry , Taipei , Taiwan , Republic of China
| | - Ghasem Hosseini Salekdeh
- a Department of Molecular Systems Biology at Cell Science Research Center , Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran , Iran
- e Department of Molecular Sciences , Macquarie University , Sydney , NSW , Australia
- i Department of Systems and Synthetic biology , Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization , Karaj , Iran
| |
Collapse
|
8
|
The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition. Semin Cancer Biol 2014; 29:51-8. [PMID: 25153355 DOI: 10.1016/j.semcancer.2014.08.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 01/04/2023]
Abstract
Cripto-1 (CR-1)/Teratocarcinoma-derived growth factor1 (TDGF-1) is a cell surface glycosylphosphatidylinositol (GPI)-linked glycoprotein that can function either in cis (autocrine) or in trans (paracrine). The cell membrane cis form is found in lipid rafts and endosomes while the trans acting form lacking the GPI anchor is soluble. As a member of the epidermal growth factor (EGF)/Cripto-1-FRL-1-Cryptic (CFC) family, CR-1 functions as an obligatory co-receptor for the transforming growth factor-β (TGF-β) family members, Nodal and growth and differentiation factors 1 and 3 (GDF1/3) by activating Alk4/Alk7 signaling pathways that involve Smads 2, 3 and 4. In addition, CR-1 can activate non-Smad-dependent signaling elements such as PI3K, Akt and MAPK. Both of these pathways depend upon the 78kDa glucose regulated protein (GRP78). Finally, CR-1 can facilitate signaling through the canonical Wnt/β-catenin and Notch/Cbf-1 pathways by functioning as a chaperone protein for LRP5/6 and Notch, respectively. CR-1 is essential for early embryonic development and maintains embryonic stem cell pluripotentiality. CR-1 performs an essential role in the etiology and progression of several types of human tumors where it is expressed in a population of cancer stem cells (CSCs) and facilitates epithelial-mesenchymal transition (EMT). In this context, CR-1 can significantly enhance tumor cell migration, invasion and angiogenesis. Collectively, these facts suggest that CR-1 may be an attractive target in the diagnosis, prognosis and therapy of several types of human cancer.
Collapse
|
9
|
Park KS, Raffeld M, Moon YW, Xi L, Bianco C, Pham T, Lee LC, Mitsudomi T, Yatabe Y, Okamoto I, Subramaniam D, Mok T, Rosell R, Luo J, Salomon DS, Wang Y, Giaccone G. CRIPTO1 expression in EGFR-mutant NSCLC elicits intrinsic EGFR-inhibitor resistance. J Clin Invest 2014; 124:3003-15. [PMID: 24911146 DOI: 10.1172/jci73048] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 04/25/2014] [Indexed: 01/02/2023] Open
Abstract
The majority of non-small cell lung cancer (NSCLC) patients harbor EGFR-activating mutations that can be therapeutically targeted by EGFR tyrosine kinase inhibitors (EGFR-TKI), such as erlotinib and gefitinib. Unfortunately, a subset of patients with EGFR mutations are refractory to EGFR-TKIs. Resistance to EGFR inhibitors reportedly involves SRC activation and induction of epithelial-to-mesenchymal transition (EMT). Here, we have demonstrated that overexpression of CRIPTO1, an EGF-CFC protein family member, renders EGFR-TKI-sensitive and EGFR-mutated NSCLC cells resistant to erlotinib in culture and in murine xenograft models. Furthermore, tumors from NSCLC patients with EGFR-activating mutations that were intrinsically resistant to EGFR-TKIs expressed higher levels of CRIPTO1 compared with tumors from patients that were sensitive to EGFR-TKIs. Primary NSCLC cells derived from a patient with EGFR-mutated NSCLC that was intrinsically erlotinib resistant were CRIPTO1 positive, but gained erlotinib sensitivity upon loss of CRIPTO1 expression during culture. CRIPTO1 activated SRC and ZEB1 to promote EMT via microRNA-205 (miR-205) downregulation. While miR-205 depletion induced erlotinib resistance, miR-205 overexpression inhibited CRIPTO1-dependent ZEB1 and SRC activation, restoring erlotinib sensitivity. CRIPTO1-induced erlotinib resistance was directly mediated through SRC but not ZEB1; therefore, cotargeting EGFR and SRC synergistically attenuated growth of erlotinib-resistant, CRIPTO1-positive, EGFR-mutated NSCLC cells in vitro and in vivo, suggesting that this combination may overcome intrinsic EGFR-inhibitor resistance in patients with CRIPTO1-positive, EGFR-mutated NSCLC.
Collapse
|
10
|
Karasawa H, Castro NP, Rangel MC, Salomon DS. The Role of Cripto‐1 in Cancer and Cancer Stem Cells. CANCER STEM CELLS 2014:331-345. [DOI: 10.1002/9781118356203.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
MiR-15a-16 represses Cripto and inhibits NSCLC cell progression. Mol Cell Biochem 2014; 391:11-9. [PMID: 24500260 DOI: 10.1007/s11010-014-1981-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/21/2014] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that have important roles in cancer. The altered expressions of miRNAs and their target genes are frequently detected in various tumors. In this study, downregulation of miR-15a-16 in nonsmall cell lung cancer (NSCLC) was found to be inversely correlated with Cripto. Results from the Luciferase reporter assay and Western blot analysis also confirmed that Cripto is a direct target of miR-15a-16. In addition, transfection of miR-15a-16 expression plasmid inhibited the invasion ability and promoted the apoptosis of NCI-H23 and NCI-H358 cells. Moreover, miR-15a-16 overexpression suppressed tumor growth in vivo. These findings clearly suggest that the downregulation of miR-15a-16 with Cripto amplification may be involved in the development of NSCLC.
Collapse
|
12
|
Hu XF, Yang E, Li J, Xing PX. MUC1 cytoplasmic tail: a potential therapeutic target for ovarian carcinoma. Expert Rev Anticancer Ther 2014; 6:1261-71. [PMID: 16925492 DOI: 10.1586/14737140.6.8.1261] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ovarian cancer is often a lethal disease, since the occult progression of the tumor within the peritoneal cavity results in late diagnosis and treatment failure. The identification of molecular events specific to metastasis is critical for the development of effective therapies. MUC1 is aberrantly overexpressed by most ovarian cancer and regarded as a molecular target for ovarian cancer. This review focuses on the latest advances regarding a signaling region in the MUC1 C-terminal subunit-mediated c-Src signaling pathways in malignant transformation, invasion and metastasis. Disruption of MUC1-C-terminal subunit-associated c-Src signaling by targeting the specific sites might represent a novel immunotherapeutic approach for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xiu Feng Hu
- Cancer Immunotherapy Laboratory, Burnet Institute Incorporating Austin Research Institute, Studley Road, Heidelberg, Victoria 3084, Australia.
| | | | | | | |
Collapse
|
13
|
Age-Dependent Association between Protein Expression of the Embryonic Stem Cell Marker Cripto-1 and Survival of Glioblastoma Patients. Transl Oncol 2013; 6:732-41. [PMID: 24466376 DOI: 10.1593/tlo.13427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/13/2013] [Accepted: 08/18/2013] [Indexed: 12/26/2022] Open
Abstract
Exploring the re-emergence of embryonic signaling pathways may reveal important information for cancer biology. Nodal is a transforming growth factor-β (TGF-β)-related morphogen that plays a critical role during embryonic development. Nodal signaling is regulated by the Cripto-1 co-receptor and another TGF-β member, Lefty. Although these molecules are poorly detected in differentiated tissues, they have been found in different human cancers. Poor prognosis of glioblastomas justifies the search for novel signaling pathways that can be exploited as potential therapeutic targets. Because our intracranial glioblastoma rat xenograft model has revealed importance of gene ontology categories related to development and differentiation, we hypothesized that increased activity of Nodal signaling could be found in glioblastomas. We examined the gene expressions of Nodal, Cripto-1, and Lefty in microarrays of invasive and angiogenic xenograft samples developed from four patients with glioblastoma. Protein expression was evaluated by immunohistochemistry in 199 primary glioblastomas, and expression levels were analyzed for detection of correlations with available clinical information. Gene expression of Nodal, Lefty, and Cripto-1 was detected in the glioblastoma xenografts. Most patient samples showed significant levels of Cripto-1 detected by immunohistochemistry, whereas only weak to moderate levels were detected for Nodal and Lefty. Most importantly, the higher Cripto-1 scores were associated with shorter survival in a subset of younger patients. These findings suggest for the first time that Cripto-1, an important molecule in developmental biology, may represent a novel prognostic marker and therapeutic target in categories of younger patients with glioblastoma.
Collapse
|
14
|
Wielscher M, Liou W, Pulverer W, Singer CF, Rappaport-Fuerhauser C, Kandioler D, Egger G, Weinhäusel A. Cytosine 5-Hydroxymethylation of the LZTS1 Gene Is Reduced in Breast Cancer. Transl Oncol 2013; 6:715-21. [PMID: 24466374 PMCID: PMC3890706 DOI: 10.1593/tlo.13523] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 02/07/2023] Open
Abstract
Change of DNA cytosine methylation (5mC) is an early event in the development of cancer, and the recent discovery of a 5-hydroxymethylated form (5hmC) of cytosine suggests a regulatory epigenetic role that might be different from 5-methylcytosine. Here, we aimed at elucidating the role of 5hmC in breast cancer. To interrogate the 5hmC levels of the leucine zipper, putative tumor suppressor 1 (LZTS1) gene in detail, we analyzed 75 primary breast cancer tissue samples from initial diagnosis and 12 normal breast tissue samples derived from healthy persons. Samples were subjected to 5hmC glucosyltransferase treatment followed by restriction digestion and segment-specific amplification of 11 polymerase chain reaction products. Nine of the 11 5'LZTS1 fragments showed significantly lower (fold change of 1.61-6.01, P < .05) 5hmC content in primary breast cancer tissue compared to normal breast tissue samples. No significant differences were observed for 5mC DNA methylation. Furthermore, both LZTS1 and TET1 mRNA expressions were significantly reduced in tumor samples (n = 75, P < .001, Student's t test), which correlated significantly with 5hmC levels in samples. 5hmC levels in breast cancer tissues were associated with unfavorable histopathologic parameters such as lymph node involvement (P < .05, Student's t test). A decrease of 5hmC levels of LZTS1, a classic tumor suppressor gene known to influence metastasis in breast cancer progression, is correlated to down-regulation of LZTS1 mRNA expression in breast cancer and might epigenetically enhance carcinogenesis. The study provides support for the novel hypothesis that suggests a strong influence of 5hmC on mRNA expression. Finally, one may also consider 5hmC as a new biomarker.
Collapse
Affiliation(s)
- Matthias Wielscher
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Willy Liou
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Walter Pulverer
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Christian F Singer
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | | | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Weinhäusel
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| |
Collapse
|
15
|
Boerner BP, George NM, Targy NM, Sarvetnick NE. TGF-β superfamily member Nodal stimulates human β-cell proliferation while maintaining cellular viability. Endocrinology 2013; 154:4099-112. [PMID: 23970788 PMCID: PMC3800770 DOI: 10.1210/en.2013-1197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In an effort to expand human islets and enhance allogeneic islet transplant for the treatment of type 1 diabetes, identifying signaling pathways that stimulate human β-cell proliferation is paramount. TGF-β superfamily members, in particular activin-A, are likely involved in islet development and may contribute to β-cell proliferation. Nodal, another TGF-β member, is present in both embryonic and adult rodent islets. Nodal, along with its coreceptor, Cripto, are pro-proliferative factors in certain cell types. Although Nodal stimulates apoptosis of rat insulinoma cells (INS-1), Nodal and Cripto signaling have not been studied in the context of human islets. The current study investigated the effects of Nodal and Cripto on human β-cell proliferation, differentiation, and viability. In the human pancreas and isolated human islets, we observed Nodal mRNA and protein expression, with protein expression observed in β and α-cells. Cripto expression was absent from human islets. Furthermore, in cultured human islets, exogenous Nodal stimulated modest β-cell proliferation and inhibited α-cell proliferation with no effect on cellular viability, apoptosis, or differentiation. Nodal stimulated the phosphorylation of mothers against decapentaplegic (SMAD)-2, with no effect on AKT or MAPK signaling, suggesting phosphorylated SMAD signaling was involved in β-cell proliferation. Cripto had no effect on human islet cell proliferation, differentiation, or viability. In conclusion, Nodal stimulates human β-cell proliferation while maintaining cellular viability. Nodal signaling warrants further exploration to better understand and enhance human β-cell proliferative capacity.
Collapse
Affiliation(s)
- Brian P Boerner
- MD, and Nora E. Sarvetnick, PhD, University of Nebraska Medical Center, 985965 Nebraska Medical Center, Omaha, Nebraska 68198-5965. ; or
| | | | | | | |
Collapse
|
16
|
Gray PC, Vale W. Cripto/GRP78 modulation of the TGF-β pathway in development and oncogenesis. FEBS Lett 2012; 586:1836-45. [PMID: 22306319 PMCID: PMC3723343 DOI: 10.1016/j.febslet.2012.01.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
Abstract
Cripto is a small, GPI-anchored signaling protein that regulates cellular survival, proliferation, differentiation and migration during normal developmental processes and tumorigenesis. Cripto functions as an obligatory co-receptor for the TGF-β ligands Nodal, GDF1 and GDF3 but attenuates signaling of others such as activin-A, activin-B and TGF-β1. Soluble, secreted forms of Cripto also activate Src, ras/raf/MAPK and PI3K/Akt pathways via a mechanism that remains largely obscure. This review describes the biological roles and signaling mechanisms of Cripto, highlighting our identification of the 78 kDa glucose regulated protein (GRP78) as a cell surface receptor/co-factor required for Cripto signaling via both TGF-β and Src/MAPK/PI3K pathways. We discuss emerging evidence indicating that Cripto/GRP78 signaling regulates normal somatic stem cells and their tumorigenic counterparts.
Collapse
Affiliation(s)
- Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | | |
Collapse
|
17
|
Abstract
Antibody conjugates are a diverse class of therapeutics consisting of a cytotoxic agent linked covalently to an antibody or antibody fragment directed toward a specific cell surface target expressed by tumor cells. The notion that antibodies directed toward targets on the surface of malignant cells could be used for drug delivery is not new. The history of antibody conjugates is marked by hurdles that have been identified and overcome. Early conjugates used mouse antibodies; cytotoxic agents that were immunogenic (proteins), too toxic, or not sufficiently potent; and linkers that were not sufficiently stable in circulation. Investigators have explored 4 main avenues using antibodies to target cytotoxic agents to malignant cells: antibody-protein toxin (or antibody fragment-protein toxin fusion) conjugates, antibody-chelated radionuclide conjugates, antibody-small-molecule drug conjugates, and antibody-enzyme conjugates administered along with small-molecule prodrugs that require metabolism by the conjugated enzyme to release the activated species. Only antibody-radionuclide conjugates and antibody-drug conjugates have reached the regulatory approval stage, and nearly 20 antibody conjugates are currently in clinical trials. The time may have come for this technology to become a major contributor to improving treatment for cancer patients.
Collapse
Affiliation(s)
- Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
18
|
Leibovici J, Itzhaki O, Huszar M, Sinai J. Targeting the tumor microenvironment by immunotherapy: part 2. Immunotherapy 2011; 3:1385-408. [DOI: 10.2217/imt.11.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer therapy was traditionally centered on the neoplastic cells. This included mainly surgery, radiation, and chemotherapy, in some cases hormone therapy and to a lesser extent immunotherapy – all traditionally targeted to the highly proliferating mutated tumor cells. In view of our present understanding of the powerfull influence of the tumor microenvironment (TME) on cancer behavior and response – and lack of response – to treatment, this previously ignored constituent of cancer now has to be considered as an important, even indispensable target for therapy. The TME may be targeted both to its immune and to its nonimmune components. The various immune evasion elements of the TME should be targeted as well.
Collapse
Affiliation(s)
| | - Orit Itzhaki
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Monica Huszar
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Judith Sinai
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| |
Collapse
|
19
|
Akt is the downstream target of GRP78 in mediating cisplatin resistance in ER stress-tolerant human lung cancer cells. Lung Cancer 2011; 71:291-7. [PMID: 20599289 DOI: 10.1016/j.lungcan.2010.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/30/2010] [Accepted: 06/04/2010] [Indexed: 02/05/2023]
Abstract
Cisplatin [cis-diaminodichloroplatinum (II) (CDDP)] is the cornerstone of lung cancer chemotherapy. However, its efficacy is limited due to the development of drug resistance in cancer cells. This study was designed to uncover the mechanisms under CDDP resistance in lung cancer cells involving endoplasmic reticulum (ER) stress tolerance-induced and GRP78-dependant Akt activation. In this study we established ER stress-tolerant (ERST) human lung cancer lines H460et and A549et. We found that the ERST Lung cancer cells are resistant to CDDP treatment. We further showed that, compared to the parental cell lines, H460et and A549et show significantly increased GRP78 and phospho(p)-Akt levels. And phosphorylation of Akt, which can be regulated by GRP78, is essential to the ERST-associated CDDP resistance. Our findings identify a new mechanism of regulating Akt activity and a new mechanism through which CDDP resistance is formed in lung cancer cells.
Collapse
|
20
|
De Luca A, Lamura L, Strizzi L, Roma C, D'Antonio A, Margaryan N, Pirozzi G, Hsu MY, Botti G, Mari E, Hendrix MJC, Salomon DS, Normanno N. Expression and functional role of CRIPTO-1 in cutaneous melanoma. Br J Cancer 2011; 105:1030-8. [PMID: 21863025 PMCID: PMC3185940 DOI: 10.1038/bjc.2011.324] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: CRIPTO-1 (CR-1) is involved in the pathogenesis and progression of human carcinoma of different histological origin. In this study we addressed the expression and the functional role of CR-1 in cutaneous melanoma. Methods: Expression of CR-1 protein in melanomas and melanoma cell lines was assessed by immunohistochemistry, western blotting and/or flow cytometry. Levels of mRNA were evaluated by real-time PCR. Invasion assays were performed in Matrigel-coated modified Boyden chambers. Results: Expression of CR-1 protein and/or mRNA was found in 16 out of 37 primary human cutaneous melanomas and in 12 out of 21 melanoma cell lines. Recombinant CR-1 protein activated in melanoma cells c-Src and, at lesser extent, Smad signalling. In addition, CR-1 significantly increased the invasive ability of melanoma cells that was prevented by treatment with either the ALK4 inhibitor SB-431542 or the c-Src inhibitor saracatinib (AZD0530). Anti-CR-1 siRNAs produced a significant inhibition of the growth and the invasive ability of melanoma cells. Finally, a close correlation was found in melanoma cells between the levels of expression of CR-1 and the effects of saracatinib on cell growth. Conclusion: These data indicate that a significant fraction of cutaneous melanoma expresses CR-1 and that this growth factor is involved in the invasion and proliferation of melanoma cells.
Collapse
Affiliation(s)
- A De Luca
- Cell Biology and Biotherapy Unit, Research Department, INT-Fondazione Pascale, Naples 80131, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yoon HJ, Hong JS, Shin WJ, Lee YJ, Hong KO, Lee JI, Hong SP, Hong SD. The role of Cripto-1 in the tumorigenesis and progression of oral squamous cell carcinoma. Oral Oncol 2011; 47:1023-31. [PMID: 21824804 DOI: 10.1016/j.oraloncology.2011.07.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/20/2011] [Accepted: 07/20/2011] [Indexed: 11/17/2022]
Abstract
Oral squamous cell carcinoma (OSCC), the most common malignancy of the oral cavity, remains a lethal disease in over 50% of cases diagnosed annually, due mostly to late detection of this cancer in its advanced stages despite the easy accessibility of the oral cavity for regular examinations. Cripto-1 is a member of the epidermal growth factor (EGF)-CFC protein family and is involved in the activation of several different signaling pathways during embryonic development and cellular transformation. Although the Cripto-1 protein is overexpressed in several human cancers including breast, colon, cervix, gastric, and pancreatic cancer, no prior study has evaluated Cripto-1 expression in OSCC. Therefore, our aims in this study were to examine Cripto-1 expression in clinical samples of OSCC patients using immunohistochemistry, to analyze the correlation between Cripto-1 expression and clinicopathologic parameters, and to identify the oncogenic roles of Cripto-1 in OSCC cell lines. Both epithelial dysplasia (73.3%) and OSCC (55.5%) tissue samples showed significantly higher expression of Cripto-1 than normal mucosa (20%) (p=0.031). In the OSCC samples, there was a significant correlation between Cripto-1 expression and the histological differentiation of OSCC (p=0.015) and a high PCNA index (p=0.011). The in vitro cell proliferation assays demonstrated that recombinant human Cripto-1 (rhCripto-1) induced both SCC-4 and SCC-25 cells to proliferate as compared with control cells (p<0.05 and p<0.01, respectively). In in vitro migration assays, treatment of SCC-4 and SCC-25 cells with rhCripto-1 protein induced a 2.4-fold and 1.7-fold-increase in cell migration, respectively (p=0.000 and p=0.008, respectively). Taken together, our data suggest that Cripto-1 plays a role in the malignant transformation of the oral mucosa and is involved in the tumorigenesis and progression of OSCC by promoting the growth and migration of malignant cells.
Collapse
Affiliation(s)
- Hye-Jung Yoon
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 28 Yeongeon-dong, Chongno-gu, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Lawrence MG, Margaryan NV, Loessner D, Collins A, Kerr KM, Turner M, Seftor EA, Stephens CR, Lai J, BioResource APC, Postovit LM, Clements JA, Hendrix MJ. Reactivation of embryonic nodal signaling is associated with tumor progression and promotes the growth of prostate cancer cells. Prostate 2011; 71:1198-209. [PMID: 21656830 PMCID: PMC3234312 DOI: 10.1002/pros.21335] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/07/2010] [Indexed: 11/06/2022]
Abstract
BACKGROUND Nodal is a member of the transforming growth factor β (TGFβ) superfamily that directs embryonic patterning and promotes the plasticity and tumorigenicity of tumor cells, but its role in the prostate is unknown. The goal of this study was to characterize the expression and function of Nodal in prostate cancer and determine whether, like other TGFβ ligands, it modulates androgen receptor (AR) activity. METHODS Nodal expression was investigated using immunohistochemistry of tissue microarrays and Western blots of prostate cell lines. The functional role of Nodal was examined using Matrigel and soft agar growth assays. Cross-talk between Nodal and AR signaling was assessed with luciferase reporter assays and expression of endogenous androgen regulated genes. RESULTS Significantly increased Nodal expression was observed in cancer compared with benign prostate specimens. Nodal was only expressed by DU145 and PC3 cells. All cell lines expressed Nodal's co-receptor, Cripto-1, but lacked Lefty, a critical negative regulator of Nodal signaling. Recombinant human Nodal triggered downstream Smad2 phosphorylation in DU145 and LNCaP cells, and stable transfection of pre-pro-Nodal enhanced the growth of LNCaP cells in Matrigel and soft agar. Finally, Nodal attenuated AR signaling, reducing the activity of a PSA promoter construct in luciferase assays and down-regulating the endogenous expression of androgen regulated genes. CONCLUSIONS An aberrant Nodal signaling pathway is re-expressed and functionally active in prostate cancer cells.
Collapse
Affiliation(s)
- Mitchell G. Lawrence
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia, 4059
| | - Naira V. Margaryan
- Program in Cancer Biology and Epigenomics, Children’s Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA, 60614
| | - Daniela Loessner
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia, 4059
| | - Angus Collins
- Sullivan Nicolaides Pathology, Brisbane, Queensland, Australia, 4068
| | - Kris M. Kerr
- Sullivan Nicolaides Pathology, Brisbane, Queensland, Australia, 4068
| | - Megan Turner
- Sullivan Nicolaides Pathology, Brisbane, Queensland, Australia, 4068
| | - Elisabeth A. Seftor
- Program in Cancer Biology and Epigenomics, Children’s Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA, 60614
| | - Carson R. Stephens
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia, 4059
| | - John Lai
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia, 4059
| | | | - Lynne-Marie Postovit
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Judith A. Clements
- Australian Prostate Cancer Research Centre-Queensland and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia, 4059
- Correspondence: Mary J.C. Hendrix, Children’s Memorial Research Center, Northwestern University, Feinberg School of Medicine, 2300 Children’s Plaza, Box 222, Chicago, IL 60614-3394, and Judith A. Clements, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059,
| | - Mary J.C. Hendrix
- Program in Cancer Biology and Epigenomics, Children’s Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA, 60614
- Correspondence: Mary J.C. Hendrix, Children’s Memorial Research Center, Northwestern University, Feinberg School of Medicine, 2300 Children’s Plaza, Box 222, Chicago, IL 60614-3394, and Judith A. Clements, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland, 4059,
| |
Collapse
|
23
|
Ravisankar V, Singh TP, Manoj N. Molecular evolution of the EGF-CFC protein family. Gene 2011; 482:43-50. [PMID: 21640172 DOI: 10.1016/j.gene.2011.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
The epidermal growth factor-Cripto-1/FRL-1/Cryptic (EGF-CFC) proteins, characterized by the highly conserved EGF and CFC domains, are extracellular membrane associated growth factor-like glycoproteins. These proteins are essential components of the Nodal signaling pathway during early vertebrate embryogenesis. Homologs of the EGF-CFC family have also been implicated in tumorigenesis in humans. Yet, little is known about the mode of molecular evolution in this family. Here we investigate the origin, extent of conservation and evolutionary relationships of EGF-CFC proteins across the metazoa. The results suggest that the first appearance of the EGF-CFC gene occurred in the ancestor of the deuterostomes. Phylogenetic analysis supports the classification of the family into distinct subfamilies that appear to have evolved through lineage-specific duplication and divergence. Site-specific analyses of evolutionary rate shifts between the two major mammalian paralogous subfamilies, Cripto and Cryptic, reveal critical amino acid sites that may account for the observed functional divergence. Furthermore, estimates of functional divergence suggest that rapid change of evolutionary rates at sites located mainly in the CFC domain may contribute towards distinct functional properties of the two paralogs.
Collapse
Affiliation(s)
- V Ravisankar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | |
Collapse
|
24
|
Shi Y, Bao YL, Wu Y, Yu CL, Huang YX, Sun Y, Zheng LH, Li YX. Alantolactone Inhibits Cell Proliferation by Interrupting the Interaction between Cripto-1 and Activin Receptor Type II A in Activin Signaling Pathway. ACTA ACUST UNITED AC 2011; 16:525-35. [DOI: 10.1177/1087057111398486] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It has been suggested that deregulation of activin signaling contributes to tumor formation. Activin signaling is blocked in cancer cells due to the complex formed by Cripto-1, activin, and activin receptor type II (ActRII). In this study, the authors used a mammalian two-hybrid system to construct a drug screening model to obtain a small molecular inhibitor capable of interrupting the interaction between Cripto-1 and ActRII. They screened 300 natural components and identified alantolactone. Data suggested that alantolactone induced activin/SMAD3 signaling in human colon adenocarcinoma HCT-8 cells. The authors also found that alantolactone exhibited antiproliferative function specific to tumor cells, with almost no toxicity to normal cells at a concentration of 5 µg/mL. Furthermore, they proved that the antiproliferative function of alantolactone was activin/SMAD3 dependent. These results suggest that alantolactone performs its antitumor effect by interrupting the interaction between Cripto-1 and the activin receptor type IIA in the activin signaling pathway. Moreover, screening for inhibitors of Cripto-1/ActRII is a potentially beneficial approach to aid in discovering novel cancer treatment.
Collapse
Affiliation(s)
- Ying Shi
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China, Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yong Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China, Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yin Wu
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Chun Lei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China, Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yan Xin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Ying Sun
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Li Hua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Yu Xin Li
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China, Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
25
|
Abstract
IMPORTANCE OF THE FIELD Emerging evidence has clearly implicated an inappropriate activation of embryonic regulatory genes during cell transformation in adult tissues. An example of such a case is the embryonic gene Cripto-1. Cripto-1 is critical for embryonic development and is considered a marker of undifferentiated embryonic stem cells. Critpo-1 is expressed at low levels in adult tissues, but is re-expressed at a high frequency in a number of different types of human carcinomas, therefore, representing an attractive therapeutic target in cancer. AREA COVERED IN THIS REVIEW This review surveys different approaches that have been used to target Cripto-1 in cancer as reflected by the relevant patent literature as well as peer-reviewed publications. Potential involvement and targeting of Cripto-1 in neurodegenerative and degenerative muscle diseases are also discussed. WHAT THE READER WILL GAIN The reader will gain an overview of different mAbs, vaccines or oligonucleotides antisense targeting Cripto-1. A humanized anti-Cripto-1 antibody is currently being tested in a Phase I clinical trial in cancer patients. TAKE HOME MESSAGE Targeting Cripto-1 in human tumors has the potential to eliminate not only differentiated cancer cells but also destroy an undifferentiated subpopulation of cancer cells with stem-like characteristics that support tumor initiation and self-renewal.
Collapse
Affiliation(s)
- Caterina Bianco
- National Cancer Institute, National Institutes of Health, Mammary Biology & Tumorigenesis Laboratory, Bethesda, MD 20892, USA.
| | | |
Collapse
|
26
|
Abstract
IMPORTANCE OF THE FIELD The number of disease-associated protein targets has significantly increased over the past decade due to advances in molecular and cellular biology technologies, human genetic mapping efforts and information gathered from the human genome project. The identification of gene products that appear to be involved in supporting the underlying cause of disease has offered the biopharmaceutical industry an opportunity to develop compounds that can specifically target these molecules to improve therapeutic responses and lower the risk of unwanted side effects that are commonly seen in traditional small chemical-based medicines. AREAS COVERED IN THIS REVIEW An overview of targeted drug therapies is presented in this review. We include a review of the various classes of targeted therapeutic agents, the types of disease-associated molecules being targeted by these agents and the challenges currently being encountered for the successful development of these various platforms for the treatment of disease. WHAT THE READER WILL GAIN An understanding of the current targeted therapy landscape, the discovery and selection of disease-specific gene products that are being targeted, and an overview of targeted therapies in preclinical and clinical studies. A description of the various targeted therapeutic platforms, target selection criteria and examples of each are discussed in order to provide the reader with the current status of the field and emerging areas of targeted therapy discovery and development. TAKE HOME MESSAGE Novel medications are in demand for the treatment of serious medical conditions including cancer, autoimmune, infectious and metabolic diseases. Targeted therapies offer a way to develop very specific treatments for serious medical conditions while concomitantly resulting in little to no off-target toxicity. Targeted therapies provide an opportunity to develop personalized medicines with superior treatment modalities for the patient and a better quality of life.
Collapse
|
27
|
Calvanese L, Marasco D, Doti N, Saporito A, D'Auria G, Paolillo L, Ruvo M, Falcigno L. Structural investigations on the Nodal-Cripto binding: A theoretical and experimental approach. Biopolymers 2010; 93:1011-21. [DOI: 10.1002/bip.21517] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
de Castro NP, Rangel MC, Nagaoka T, Salomon DS, Bianco C. Cripto-1: an embryonic gene that promotes tumorigenesis. Future Oncol 2010; 6:1127-42. [PMID: 20624125 DOI: 10.2217/fon.10.68] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several studies have shown that cell fate regulation during embryonic development and oncogenic transformation share common regulatory mechanisms and signaling pathways. Indeed, an embryonic gene member of the EGF–Cripto-1/FRL1/Cryptic family, Cripto-1, has been implicated in embryogenesis and in carcinogenesis. Cripto-1 together with the TGF-β ligand Nodal is a key regulator of embryonic development and is a marker of undifferentiated human and mouse embryonic stem cells. While Cripto-1 expression is very low in normal adult tissues, Cripto-1 is re-expressed at high levels in several different human tumors, modulating cancer cell proliferation, migration, epithelial-to-mesenchymal transition and stimulating tumor angiogenesis. Therefore, inhibition of Cripto-1 expression using blocking antibodies or antisense expression vectors might be a useful modality not only to target fully differentiated cancer cells but also to target a subpopulation of tumor cells with stem-like characteristics.
Collapse
Affiliation(s)
- Nadia Pereira de Castro
- Mammary Biology & Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bldg 37 Room 1112, Bethesda, MD 20892, USA
| | - Maria Cristina Rangel
- Mammary Biology & Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bldg 37 Room 1112, Bethesda, MD 20892, USA
| | - Tadahiro Nagaoka
- Mammary Biology & Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bldg 37 Room 1112, Bethesda, MD 20892, USA
| | - David S Salomon
- Mammary Biology & Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bldg 37 Room 1112, Bethesda, MD 20892, USA
| | | |
Collapse
|
29
|
Zhang JG, Zhao J, Xin Y. Significance and relationship between Cripto-1 and p-STAT3 expression in gastric cancer and precancerous lesions. World J Gastroenterol 2010; 16:571-7. [PMID: 20128024 PMCID: PMC2816268 DOI: 10.3748/wjg.v16.i5.571] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the relationship between Cripto-1 (CR-1) and tyrosine phosphorylation STAT3 (p-STAT3) expressions in gastric cancer (GC) and gastric carcinogensis and metastasis.
METHODS: The PV9000 immunohistochemical method was used to detect the expression of CR-1 and p-STAT3 in 178 cases of GC, 95 matched normal gastric mucosa, 40 chronic atrophic gastritis (CAG), 48 intestinal metaplasia (IM) and 25 dysplasia (DYS).
RESULTS: The positive rates of CR-1 and p-STAT3 expression were significantly higher in CAG (65.0% and 60.0%), in IM (83.3% and 77.1%), DYS (80.0% and 68%) and GC (71.3% and 60.1%) than in normal gastric mucosa (43.2% and 41.1%, P < 0.05), respectively. The expressions of CR-1 and p-STAT3 (78.3% and 66.7%) were significantly higher in GC with lymph node metastasis than in those without metastasis (53.1% and 42.9%, P < 0.05). CR-1 expression was also related to histological and Lauren’s types of GC (P < 0.001). Furthermore, there was positive relationship between CR-1 and p-STAT3 expressions in GC (rk = 0.189, P = 0.002).
CONCLUSION: The up-regulation of CR-1 and p-STAT3 may play important roles in gastric carcinogenesis and lymph node metastasis. CR-1 and p-STAT3 expression in GC was positively correlated, and the relevant molecular mechanism requires further investigations.
Collapse
|
30
|
Li J, Hu XF, Loveland BE, Xing PX. Pim-1 expression and monoclonal antibody targeting in human leukemia cell lines. Exp Hematol 2009; 37:1284-94. [PMID: 19703513 DOI: 10.1016/j.exphem.2009.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 07/30/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Based on our previous findings that Pim-1 was expressed on the cell surface and could be targeted with a highly specific anti-Pim-1 monoclonal antibody (P9), this study aims to evaluate the possibility that Pim-1 could be targeted for the treatment of human leukemia. MATERIALS AND METHODS Pim-1 expression was investigated in a series of human leukemia cell lines with immunohistochemistry and flow cytometry. The inhibitory effect of P9 on cell proliferation was evaluated with (3)H-thymidine incorporation assay. Cell apoptosis was assayed with Annexin-V/propidium iodide dual staining. The in vivo effect of P9 was evaluated with xenograft tumor models in severe combined immunodeficient mice. RESULTS Pim-1 expression varied depending on the cell lines and correlated with the inhibitory effects mediated by P9. An association between Pim-1 expression and drug resistance was observed. Although the drug-resistant CEM/A7R cells were highly resistant to cytotoxic P-glycoprotein substrates, their growth was inhibited by P9 as demonstrated by in vitro proliferation assay and in vivo inhibition of xenograft tumors. P9 had little effect on P-glycoprotein expression and intracellular Rhodamine 123 accumulation, but it inhibited the phosphorylation of Bad and induced apoptosis. CONCLUSIONS Pim-1 is variably expressed in leukemia cell lines and associated with drug resistance. Targeting Pim-1 with monoclonal antibody could be explored for the treatment of leukemia and may represent a novel strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Jie Li
- Cancer Immunotherapy Laboratory, Burnet Institute Incorporating Austin Research Institute, Heidelberg, Victoria, Australia.
| | | | | | | |
Collapse
|
31
|
Bianco C, Salomon DS. Human Cripto-1 as a target for a cancer vaccine: WO2008040759. Expert Opin Ther Pat 2009; 19:141-4. [PMID: 19441915 DOI: 10.1517/13543770802646956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human Cripto-1 is a cell membrane protein that has been shown to be overexpressed in different types of human tumors. Because Cripto-1 is expressed at low levels in normal tissues, it represents a promising candidate for therapeutic intervention in cancer. The present patent describes a novel approach to target Cripto-1 in cancer using a vaccine. Immunization with Cripto-1 modified by addition of a foreign peptide to overcome T-cell tolerance for self-proteins has the potential to generate an antibody-based immune response that ultimately will block Cripto-1 activity in cancer cells. Although targeting Cripto-1 with a vaccine in cancer patients is promising, several experimental and clinical studies need to be done to validate this approach.
Collapse
Affiliation(s)
- Caterina Bianco
- Mammary Biology & Tumorigenesis Laboratory, National Cancer Institutes, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
32
|
Kelber JA, Panopoulos AD, Shani G, Booker EC, Belmonte JC, Vale WW, Gray PC. Blockade of Cripto binding to cell surface GRP78 inhibits oncogenic Cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene 2009; 28:2324-36. [PMID: 19421146 PMCID: PMC2749668 DOI: 10.1038/onc.2009.97] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Revised: 03/23/2009] [Accepted: 03/28/2009] [Indexed: 01/20/2023]
Abstract
Cripto is a developmental oncoprotein that signals via mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt and Smad2/3 pathways. However, the molecular basis for Cripto coupling to these pathways during embryogenesis and tumorigenesis is not fully understood. In this regard, we recently demonstrated that Cripto forms a cell surface complex with the HSP70 family member glucose-regulated protein-78 (GRP78). Here, we provide novel functional evidence demonstrating that cell surface GRP78 is a necessary mediator of Cripto signaling in human tumor, mammary epithelial and embryonic stem cells. We show that targeted disruption of the cell surface Cripto/GRP78 complex using shRNAs or GRP78 immunoneutralization precludes Cripto activation of MAPK/PI3K pathways and modulation of activin-A, activin-B, Nodal and transforming growth factor-beta1 signaling. We further demonstrate that blockade of Cripto binding to cell surface GRP78 prevents Cripto from increasing cellular proliferation, downregulating E-Cadherin, decreasing cell adhesion and promoting pro-proliferative responses to activin-A and Nodal. Thus, disrupting the Cripto/GRP78 binding interface blocks oncogenic Cripto signaling and may have important therapeutic value in the treatment of cancer.
Collapse
Affiliation(s)
- J A Kelber
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Hu XF, Li J, Vandervalk S, Wang Z, Magnuson NS, Xing PX. PIM-1-specific mAb suppresses human and mouse tumor growth by decreasing PIM-1 levels, reducing Akt phosphorylation, and activating apoptosis. J Clin Invest 2009; 119:362-75. [PMID: 19147983 DOI: 10.1172/jci33216] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 12/03/2008] [Indexed: 12/14/2022] Open
Abstract
Provirus integration site for Moloney murine leukemia virus (PIM1) is a proto-oncogene that encodes a serine/threonine kinase with multiple cellular functions. Overexpression of PIM-1 plays a critical role in progression of prostatic and hematopoietic malignancies. Here we describe the generation of a mAb specific for GST-PIM-1, which reacted strongly with most human and mouse cancer tissues and cell lines of prostate, breast, and colon origin but only weakly (if at all) with normal tissues. The mAb binds to PIM-1 in the cytosol and nucleus as well as to PIM-1 on the surface of human and murine cancer cells. Treatment of human and mouse prostate cancer cell lines with the PIM-1-specific mAb resulted in disruption of PIM-1/Hsp90 complexes, decreased PIM-1 and Hsp90 levels, reduced Akt phosphorylation at Ser473, reduced phosphorylation of Bad at Ser112 and Ser136, and increased cleavage of caspase-9, an indicator of activation of the mitochondrial cell death pathway. The mAb induced cancer cell apoptosis and synergistically enhanced antitumor activity when used in combination with cisplatin and epirubicin. In tumor models, the PIM-1-specific mAb substantially inhibited growth of the human prostate cancer cell line DU145 in SCID mice and the mouse prostate cancer cell TRAMP-C1 in C57BL/6 mice. These findings are important because they provide what we believe to be the first in vivo evidence that treatment of prostate cancer may be possible by targeting PIM-1 using an Ab-based therapy.
Collapse
Affiliation(s)
- Xiu Feng Hu
- Cancer Immunotherapy Laboratory, Burnet Institute Incorporating Austin Research Institute, Heidelberg, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Sun C, Orozco O, Olson DL, Choi E, Garber E, Tizard R, Szak S, Sanicola M, Carulli JP. CRIPTO3, a presumed pseudogene, is expressed in cancer. Biochem Biophys Res Commun 2008; 377:215-20. [PMID: 18835250 DOI: 10.1016/j.bbrc.2008.09.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 11/17/2022]
Abstract
Cripto is a cell surface protein highly expressed in certain solid tumors, and overexpression of Cripto protein is oncogenic. Cripto-1 protein is encoded by CRIPTO1 gene. CRIPTO3, a presumed pseudogene, has an open reading frame with six amino acid differences from Cripto-1. We show that CRIPTO3 mRNA is the CRIPTO message expressed in many cancer samples. A CRIPTO3 SAGE tag was found in several cancer SAGE libraries, while the CRIPTO1 tag was found in ES cell libraries. In vitro experiments indicate both Cripto-1 and Cripto-3 proteins are functional in the Nodal-dependent signal pathway. Our data indicate that CRIPTO3 is an expressed gene, particularly in certain cancers, and suggest a potentially novel mechanism of oncogenesis through activation of a retrogene.
Collapse
Affiliation(s)
- Chao Sun
- Department of Drug Discovery, Biogen Idec Inc, 14 Cambridge Center, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
How a cancer is initiated and established remains elusive despite all the advances in decades of cancer research. Recently the cancer stem cell (CSC) hypothesis has been revived, challenging the long-standing model of "clonal evolution" for cancer development and implicating the dawning of a potential cure for cancer [1]. The recent identification of precancerous stem cells (pCSCs) in cancer, an early stage of CSC development, however, implicates that the "clonal evolution" is not contradictory to the CSC hypothesis, but is rather an aspect of the process of CSC development [2]. The discovery of pCSC has revealed and will continue to reveal the volatile properties of CSC with respects to their phenotype, differentiation and tumorigenic capacity during initiation and progression. Both pCSC and CSC might also serve as precursors of tumor stromal components such as tumor vasculogenic stem/progenitor cells (TVPCs). Thus, the CSC hypothesis covers the developing process of tumor-initiating cells (TIC) --> pCSC --> CSC --> cancer, a cellular process that should parallel the histological process of hyperplasia/metaplasia (TIC) --> precancerous lesions (pCSC) --> malignant lesions (CSC --> cancer). The embryonic stem (ES) cell and germline stem (GS) cell genes are subverted in pCSCs. Especially the GS cell protein piwil2 may play an important role during the development of TIC --> pCSC --> CSC, and this protein may be used as a common biomarker for early detection, prevention, and treatment of cancer. As cancer stem cell research is yet in its infancy, definitive conclusions regarding the role of pCSC can not be made at this time. However this review will discuss what we have learned from pCSC and how this has led to innovative ideas that may eventually have major impacts on the understanding and treatment of cancer.
Collapse
Affiliation(s)
- Jian-Xin Gao
- Department of Pathology and Comprehensive Cancer Center, Medical Center, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Watanabe K, Hamada S, Bianco C, Mancino M, Nagaoka T, Gonzales M, Bailly V, Strizzi L, Salomon DS. Requirement of glycosylphosphatidylinositol anchor of Cripto-1 for trans activity as a Nodal co-receptor. J Biol Chem 2007; 282:35772-86. [PMID: 17925387 DOI: 10.1074/jbc.m707351200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cripto-1 (CR-1) has an indispensable role as a Nodal co-receptor for patterning of body axis in embryonic development. CR-1 is reported to have a paracrine activity as a Nodal co-receptor, although CR-1 is primarily produced as a glycosylphosphatidylinositol (GPI)-anchored membrane protein. Regulation of cis and trans function of CR-1 should be important to establish the precise body patterning. However, the mechanism by which GPI-anchored CR-1 can act in trans is not well known. Here we confirmed the paracrine activity of CR-1 by fluorescent cell-labeling and immunofluorescent staining. We generated COOH-terminal-truncated soluble forms of CR-1 based on the attachment site for the GPI moiety (omega-site), which we identified in the present study. GPI-anchored CR-1 has a significantly higher activity than COOH-terminal-truncated soluble forms to induce Nodal signal in trans as well as in cis. Moreover, transmembrane forms of CR-1 partially retained their ability to induce Nodal signaling only when type I receptor Activin-like kinase 4 was overexpressed. NTERA2/D1 cells, which express endogenous CR-1, lost the cell-surface expression of CR-1 after phosphatidylinositol-phospholipase C treatment and became refractory to stimulation of Nodal. These observations suggest that GPI attachment of CR-1 is required for the paracrine activity as a Nodal co-receptor.
Collapse
Affiliation(s)
- Kazuhide Watanabe
- Tumor Growth Factor Section, Mammary Biology and Tumorigenesis Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Watanabe K, Bianco C, Strizzi L, Hamada S, Mancino M, Bailly V, Mo W, Wen D, Miatkowski K, Gonzales M, Sanicola M, Seno M, Salomon DS. Growth factor induction of Cripto-1 shedding by glycosylphosphatidylinositol-phospholipase D and enhancement of endothelial cell migration. J Biol Chem 2007; 282:31643-55. [PMID: 17720976 DOI: 10.1074/jbc.m702713200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cripto-1 (CR-1) is a glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein that has been shown to play an important role in embryogenesis and cellular transformation. CR-1 is reported to function as a membrane-bound co-receptor and as a soluble ligand. Although a number of studies implicate the role of CR-1 as a soluble ligand in tumor progression, it is unclear how transition from the membrane-bound to the soluble form is physiologically regulated and whether differences in biological activity exist between these forms. Here, we demonstrate that CR-1 protein is secreted from tumor cells into the conditioned medium after treatment with serum, epidermal growth factor, or lysophosphatidic acid, and this soluble form of CR-1 exhibits the ability to promote endothelial cell migration as a paracrine chemoattractant. On the other hand, membrane-bound CR-1 can stimulate endothelial cell sprouting through direct cell-cell interaction. Shedding of CR-1 occurs at the GPI-anchorage site by the activity of GPI-phospholipase D (GPI-PLD), because CR-1 shedding was suppressed by siRNA knockdown of GPI-PLD and enhanced by overexpression of GPI-PLD. These findings describe a novel molecular mechanism of CR-1 shedding, which may contribute to endothelial cell migration and possibly tumor angiogenesis.
Collapse
Affiliation(s)
- Kazuhide Watanabe
- Tumor Growth Factor Section, Mammary Biology & Tumorigenesis Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abbott DE, Postovit LM, Seftor EA, Margaryan NV, Seftor REB, Hendrix MJC. Exploiting the Convergence of Embryonic and Tumorigenic Signaling Pathways to Develop New Therapeutic Targets. ACTA ACUST UNITED AC 2007; 3:68-78. [PMID: 17873384 DOI: 10.1007/s12015-007-0010-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
As our understanding of embryonic stem cell biology becomes more sophisticated, the similarities between multipotent cancer cells and these totipotent precursors are increasingly striking. Both multipotent cancer cells and embryonic stem cells possess the ability to self-renew, epigenetically alter their neighboring cellular architecture, and populate a tissue mass with a phenotypically heterogeneous composition of cells. While the molecular signature of these cell types continues to be elucidated, new insights are emerging related to the convergence of embryonic and tumorigenic signaling pathways. Understanding the molecular underpinnings of these two stem cell phenotypes may lead to new therapeutic targets for the elusive cancer cell. While still in its infancy, the potential of adapting embryonic stem cells, and more specifically the factors they produce, is enormous for clinical application. Here we outline evidence that demonstrates the inductive influence of embryonic stem cells and their microenvironment to reprogram cancer cells to exhibit a more benign phenotype, with profound implications for differentiation therapy.
Collapse
Affiliation(s)
- Daniel E Abbott
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | | | | | | | | | | |
Collapse
|
39
|
Postovit LM, Seftor EA, Seftor REB, Hendrix MJC. Targeting Nodal in malignant melanoma cells. Expert Opin Ther Targets 2007; 11:497-505. [PMID: 17373879 DOI: 10.1517/14728222.11.4.497] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Metastatic melanoma continues to be a significantly deadly cancer with a cure rate of < 20% and a median survival of 6 - 9 months. The aggressiveness associated with metastatic melanoma is largely attributable to its inherent plasticity, a property that is mediated by the secretion of Nodal, a stem-cell associated protein belonging to the transforming growth factor-beta superfamily. This is supported by the observations that Nodal expression is limited to invasive vertical growth phase and metastatic melanoma lesions, and that inhibition of Nodal signaling promotes the reversion of metastatic melanoma cells toward a more differentiated, less invasive non-tumorigenic phenotype. Hence, due to its restricted expression pattern and function as a melanoma-tumor-promoter, Nodal (and its signaling partners) present unique targets for both immunologic and pharmacologic therapies.
Collapse
Affiliation(s)
- Lynne-Marie Postovit
- Children's Memorial Research Center, Cancer Biology and Epigenomics Program, Robert H. Lurie Comprehensive Cancer Center, Northwestern University's Feinberg School of Medicine, 2300 Children's Plaza, Box 222, Chicago, IL 60614, USA
| | | | | | | |
Collapse
|
40
|
Hendrix MJC, Seftor EA, Seftor REB, Kasemeier-Kulesa J, Kulesa PM, Postovit LM. Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 2007; 7:246-55. [PMID: 17384580 DOI: 10.1038/nrc2108] [Citation(s) in RCA: 320] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aggressive tumour cells share many characteristics with embryonic progenitors, contributing to the conundrum of tumour cell plasticity. Recent studies using embryonic models of human stem cells, the zebrafish and the chick have shown the reversion of the metastatic phenotype of aggressive melanoma cells, and revealed the convergence of embryonic and tumorigenic signalling pathways, which may help to identify new targets for therapeutic intervention. This Review will summarize the embryonic models used to reverse the metastatic melanoma phenotype, and highlight the prominent signalling pathways that have emerged as noteworthy targets for future consideration.
Collapse
Affiliation(s)
- Mary J C Hendrix
- Cancer Biology and Epigenomics Program, Children's Memorial Research Centre, Robert H. Lurie Comprehensive Cancer Centre, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60614, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Hu XF, Li J, Yang E, Vandervalk S, Xing PX. Anti-Cripto Mab inhibit tumour growth and overcome MDR in a human leukaemia MDR cell line by inhibition of Akt and activation of JNK/SAPK and bad death pathways. Br J Cancer 2007; 96:918-27. [PMID: 17342096 PMCID: PMC2360102 DOI: 10.1038/sj.bjc.6603641] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Doxorubicin (DOX) selection of CCRF-CEM leukaemia cell line resulted in multidrug resistance (MDR) CEM/A7R cell line, which overexpresses MDR, 1 coded P-glycoprotein (Pgp). Here, we report for the first time that oncoprotein Cripto, a founding member of epidermal growth factor-Cripto-FRL, 1-Criptic family is overexpressed in the CEM/A7R cells, and anti-Cripto monoclonal antibodies (Mab) inhibited CEM/A7R cell growth both in vitro and in an established xenograft tumour in severe combined immunodeficiency mice. Cripto Mab synergistically enhanced sensitivity of the MDR cells to Pgp substrates epirubicin (EPI), daunorubicin (DAU) and non-Pgp substrates nucleoside analogue cytosine arabinoside (AraC). In particular, the combination of anti-Cripto Mab at less than 50% of inhibition concentrations with noncytotoxic concentrations of EPI or DAU inhibited more than 90% of CEM/A7R cell growth. Cripto Mab slightly inhibited Pgp expression, and had little effect on Pgp function, indicating that a mechanism independent of Pgp was involved in overcoming MDR. We demonstrated that anti-Cripto Mab-induced CEM/A7R cell apoptosis, which was associated with an enhanced activity of the c-Jun N-terminal kinase/stress-activated protein kinase and inhibition of Akt phosphorylation, resulting in an activation of mitochondrial apoptosis pathway as evidenced by dephosphorylation of Bad at Ser136, Bcl-2 at Ser70 and a cleaved caspase-9.
Collapse
Affiliation(s)
- X F Hu
- Cancer Immunotherapy Laboratory, Burnet Institute Incorporating Austin Research Institute, Heidelberg, Australia
| | - J Li
- Cancer Immunotherapy Laboratory, Burnet Institute Incorporating Austin Research Institute, Heidelberg, Australia
| | - E Yang
- Cancer Immunotherapy Laboratory, Burnet Institute Incorporating Austin Research Institute, Heidelberg, Australia
| | - S Vandervalk
- Cancer Immunotherapy Laboratory, Burnet Institute Incorporating Austin Research Institute, Heidelberg, Australia
| | - P X Xing
- Cancer Immunotherapy Laboratory, Burnet Institute Incorporating Austin Research Institute, Heidelberg, Australia
- E-mail:
| |
Collapse
|
42
|
Mallikarjuna K, Vaijayanthi P, Krishnakumar S. Cripto-1 expression in uveal melanoma: an immunohistochemical study. Exp Eye Res 2007; 84:1060-6. [PMID: 17412323 DOI: 10.1016/j.exer.2007.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 10/26/2006] [Accepted: 01/23/2007] [Indexed: 11/18/2022]
Abstract
Human Cripto, the founder member of the epidermal growth factor-Cripto-FRL1-Cryptic (EGF-CFC) family, plays an important role during early embryonic development and in particular in carcinogenesis and the development of cancer metastases. Cripto-1 is over-expressed in most cancers, but is absent or only weakly expressed in normal cells. For this reason, Cripto-1 could be of potential value in the targeted treatment. There is no information on the expression of Cripto-1 in human uveal melanoma. Cripto-1 reactivity was evaluated by immunohistochemistry on 36 archival uveal melanomas using the polyclonal antibody to Cripto-1. The tumors were divided in to 2 groups. There were 18 uveal melanomas with no intrascleral or extrascleral extension and 18 uveal melanomas with intrascleral/extrascleral extension/liver metastasis. Cripto-1 reactivity was correlated with tumor aggressiveness and cell type. Furthermore, we studied the immunolocalization of Cripto-1 in 4 uveal melanoma cell lines OCM-1, OCM-8, and 92-1, and OMM-1 and in 2 primary uveal melanocyte cultures. Cripto-1 was expressed in both the non-invasive and aggressive uveal melanomas. Cripto-1 was positive in the 4 uveal melanoma cell lines and absent in the primary uveal melanocyte cultures. Retinal tissue did not express Cripto-1. The results suggest that Cripto-1 is expressed in uveal melanoma, negative in the non-neoplastic ocular tissue and point to its use as a target for therapy.
Collapse
Affiliation(s)
- Kandalam Mallikarjuna
- Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, 18 College Road, Nungambakkam, Chennai 600 006, Tamil Nadu, India
| | | | | |
Collapse
|
43
|
Gong YP, Yarrow PM, Carmalt HL, Kwun SY, Kennedy CW, Lin BPC, Xing PX, Gillett DJ. Overexpression of Cripto and its prognostic significance in breast cancer: a study with long-term survival. Eur J Surg Oncol 2006; 33:438-43. [PMID: 17125961 DOI: 10.1016/j.ejso.2006.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Accepted: 10/09/2006] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Cripto is a founding member of the EGF-CFC family, and plays an important role in tumourigenesis, tumour cell proliferation and migration. We aimed to determine the significance of Cripto expression on the survival of patients with breast cancer. METHODS Immunohistochemical detection of Cripto was performed by using mAb C13 on 120 formalin-fixed paraffin-embedded breast tumour specimens in tissue microarrays. This cohort comprises a series of 120 patients with primary operable breast cancer diagnosed between 1989 and 1995, retrieved from the Concord Repatriation General Hospital breast carcinoma database. RESULTS Using a cutoff value of 80%, Cripto overexpressed in 57 of the 120 (47.5%) patients. We found significant associations between overexpression of Cripto and the Nottingham Prognostic Index (NPI, p<0.01), histological grade (p<0.01), pathological tumour type (p=0.04), PR (p=0.02) as well as Ki-67 (p=0.02). Univariate analysis reveals that there is a significant correlation between overexpression of Cripto and survival (p=0.0003). Cox regression analysis indicates that the overexpression of Cripto is an independent prognostic factor in breast cancer (HR 2.79, 95%CI 1.20-6.50). CONCLUSION The unique epitope recognized by mAb C13 is overexpressed on breast tumour tissues. In this series of invasive breast cancers, overexpression of Cripto was more often found in high grade and poor prognosis tumours compared to low grade and good prognosis breast cancers. Moreover, overexpression of Cripto was significantly associated with decreased patient survival.
Collapse
Affiliation(s)
- Y P Gong
- Department of Breast Endocrine Surgery, Concord Repatriation General Hospital, Hospital Road, Concord NSW 2137, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Gray PC, Shani G, Aung K, Kelber J, Vale W. Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling. Mol Cell Biol 2006; 26:9268-78. [PMID: 17030617 PMCID: PMC1698529 DOI: 10.1128/mcb.01168-06] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cripto is a developmental oncoprotein and a member of the epidermal growth factor-Cripto, FRL-1, Cryptic family of extracellular signaling molecules. In addition to having essential functions during embryogenesis, Cripto is highly expressed in tumors and promotes tumorigenesis. During development, Cripto acts as an obligate coreceptor for transforming growth factor beta (TGF-beta) ligands, including nodals, growth and differentiation factor 1 (GDF1), and GDF3. As an oncogene, Cripto is thought to promote tumor growth via mechanisms including activation of mitogenic signaling pathways and antagonism of activin signaling. Here, we provide evidence supporting a novel mechanism in which Cripto inhibits the tumor suppressor function of TGF-beta. Cripto bound TGF-beta and reduced the association of TGF-beta with its type I receptor, TbetaRI. Consistent with its ability to block receptor assembly, Cripto suppressed TGF-beta signaling in multiple cell types and diminished the cytostatic effects of TGF-beta in mammary epithelial cells. Furthermore, targeted disruption of Cripto expression by use of small inhibitory RNA enhanced TGF-beta signaling, indicating that endogenous Cripto plays a role in restraining TGF-beta responses.
Collapse
Affiliation(s)
- Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
45
|
Bianco C, Strizzi L, Mancino M, Rehman A, Hamada S, Watanabe K, De Luca A, Jones B, Balogh G, Russo J, Mailo D, Palaia R, D'Aiuto G, Botti G, Perrone F, Salomon DS, Normanno N. Identification of Cripto-1 as a Novel Serologic Marker for Breast and Colon Cancer. Clin Cancer Res 2006; 12:5158-64. [PMID: 16951234 DOI: 10.1158/1078-0432.ccr-06-0274] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Human Cripto-1 (CR-1), a cell membrane glycosylphosphatidylinositol-anchored glycoprotein that can also be cleaved from the membrane, is expressed at high levels in several different types of human tumors. We evaluated whether CR-1 is present in the plasma of patients with breast and colon cancer, and if it can represent a new biomarker for these malignancies. EXPERIMENTAL DESIGN We determined CR-1 plasma levels using a sandwich-type ELISA in 21 healthy volunteers, 54 patients with breast cancer, 33 patients with colon carcinoma, and 21 patients with benign breast lesions. Immunohistochemical analysis was also used to assess CR-1 expression in cancerous tissues. RESULTS Very low levels of CR-1 (mean+/-SD) were detected in the plasma of healthy volunteers (0.32+/-0.19 ng/mL). A statistically significant increase in the levels of plasma CR-1 was found in patients with colon carcinoma (4.68+/-3.5 ng/mL) and in patients with breast carcinoma (2.97+/-1.48 ng/mL; P<0.001). Although moderate levels of plasma CR-1 were found in women with benign lesions of the breast (1.7+/-0.99 ng/mL), these levels were significantly lower than in patients with breast cancer (P<0.001). Finally, immunohistochemical analysis and real-time reverse transcription-PCR confirmed strong positivity for CR-1 in colon and/or breast tumor tissues. CONCLUSION This study suggests that plasma CR-1 might represent a novel biomarker for the detection of breast and colon carcinomas.
Collapse
Affiliation(s)
- Caterina Bianco
- Tumor Growth Factor Section, Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Marasco D, Saporito A, Ponticelli S, Chambery A, De Falco S, Pedone C, Minchiotti G, Ruvo M. Chemical synthesis of mouse cripto CFC variants. Proteins 2006; 64:779-88. [PMID: 16752415 DOI: 10.1002/prot.21043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report for the first time the chemical synthesis of refolded CFC domain of mouse Cripto (mCFC) and of two variants bearing mutations on residues W107 and H104 involved in Alk4 binding. The domains undergo spontaneous and quantitative refolding in about 4 h, yet with very different kinetics. Disulfide linkages have been assessed by enzyme digestion and mass spectrometry analysis of resulting fragments, and the first experimental studies on structural organization have been conducted by circular dichroism spectroscopy under different pH conditions. Upon refolding, the domains considerably change their conformations, although they do not assume canonical structures, and become highly resistant to enzyme degradation. A comparative study of receptor binding shows that the CFC domain can bind Alk4 and confirms the importance of W107 and H104 for receptor recognition.
Collapse
Affiliation(s)
- Daniela Marasco
- Istituto di Biostrutture e Bioimmagini del CNR, Sezione Biostrutture, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wechselberger C, Bianco C, Strizzi L, Ebert AD, Kenney N, Sun Y, Salomon DS. Modulation of TGF-β signaling by EGF-CFC proteins. Exp Cell Res 2005; 310:249-55. [PMID: 16137677 DOI: 10.1016/j.yexcr.2005.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/01/2005] [Accepted: 07/01/2005] [Indexed: 11/16/2022]
Abstract
Members of the transforming growth factor-beta (TGF-beta) family of ligands exhibit potent growth-suppressive and/or apoptosis-inducing effects on different types of cells. They perform essential roles in the elimination of damaged or abnormal cells from healthy tissues. On the other hand, TGF-betas have also been shown to act as tumor-promoting cytokines in a number of malignancies that are capable of stimulating extracellular matrix production, cell migration, invasion, angiogenesis, and immune suppression. Dissecting the complex, multifaceted roles of different TGF-beta-related peptides especially during the development of pathological conditions and in carcinogenesis is an area of continuous research and development. The characterization of EGF-CFC proteins as essential co-receptors that contribute to the modulation of the physiological activities of some of the TGF-beta ligands will be beneficial for future medical research and the adaptation and possible readjustment of currently applied therapeutic regimes.
Collapse
Affiliation(s)
- Christian Wechselberger
- Upper Austrian Research GmbH, Center for Biomedical Nanotechnology, Scharitzerstrasse 6-8, 4th floor, 4020 Linz, Austria.
| | | | | | | | | | | | | |
Collapse
|
48
|
Sun Y, Strizzi L, Raafat A, Hirota M, Bianco C, Feigenbaum L, Kenney N, Wechselberger C, Callahan R, Salomon DS. Overexpression of human Cripto-1 in transgenic mice delays mammary gland development and differentiation and induces mammary tumorigenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:585-97. [PMID: 16049342 PMCID: PMC1603555 DOI: 10.1016/s0002-9440(10)63000-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Overexpression of Cripto-1 has been reported in several types of human cancers including breast cancer. To investigate the role of human Cripto-1 (CR-1) in mammary gland development and tumorigenesis, we developed transgenic mice that express the human CR-1 transgene under the regulation of the whey acidic protein (WAP) promoter in the FVB/N mouse background. The CR-1 transgene was detected in the mammary gland of 15-week-old virgin WAP-CR-1 female mice that eventually developed hyperplastic lesions. From mid-pregnancy to early lactation, mammary lobulo-alveolar structures in WAP-CR-1 mice were less differentiated and delayed in their development due to decreased cell proliferation as compared to FVB/N mice. Early involution, due to increased apoptosis, was observed in the mammary glands of WAP-CR-1 mice. Higher levels of phosphorylated AKT and MAPK were detected in mammary glands of multiparous WAP-CR-1 mice as compared to multiparous FVB/N mice suggesting increased cell proliferation and survival of the transgenic mammary gland. In addition, more than half (15 of 29) of the WAP-CR-1 multiparous female mice developed multifocal mammary tumors of mixed histological subtypes. These results demonstrate that overexpression of CR-1 during pregnancy and lactation can lead to alterations in mammary gland development and to production of mammary tumors in multiparous mice.
Collapse
Affiliation(s)
- Youping Sun
- Tumor Growth Factor Section, Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wechselberger C, Strizzi L, Kenney N, Hirota M, Sun Y, Ebert A, Orozco O, Bianco C, Khan NI, Wallace-Jones B, Normanno N, Adkins H, Sanicola M, Salomon DS. Human Cripto-1 overexpression in the mouse mammary gland results in the development of hyperplasia and adenocarcinoma. Oncogene 2005; 24:4094-105. [PMID: 15897912 DOI: 10.1038/sj.onc.1208417] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human Cripto-1 (CR-1) is overexpressed in approximately 80% of human breast, colon and lung carcinomas. Mouse Cr-1 upregulation is also observed in a number of transgenic (Tg) mouse mammary tumors. To determine whether CR-1 can alter mammary gland development and/or may contribute to tumorigenesis in vivo, we have generated Tg mouse lines that express human CR-1 under the transcriptional control of the mouse mammary tumor virus (MMTV). Stable Tg MMTV/CR-1 FVB/N lines expressing different levels of CR-1 were analysed. Virgin female MMTV/CR-1 Tg mice exhibited enhanced ductal branching, dilated ducts, intraductal hyperplasia, hyperplastic alveolar nodules and condensation of the mammary stroma. Virgin aged MMTV/CR-1 Tg mice also possessed persistent end buds. In aged multiparous MMTV/CR-1 mice, the hyperplastic phenotype was most pronounced with multifocal hyperplasias. In the highest CR-1-expressing subline, G4, 38% (12/31) of the multiparous animals aged 12-20 months developed hyperplasias and approximately 33% (11/31) developed papillary adenocarcinomas. The long latency period suggests that additional genetic alterations are required to facilitate mammary tumor formation in conjunction with CR-1. This is the first in vivo study that shows hyperplasia and tumor growth in CR-1-overexpressing animals.
Collapse
Affiliation(s)
- Christian Wechselberger
- Tumor Growth Factor Section, Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
One of the recent, significant advances in cancer immunotherapy is the identification of molecules as targets which regulate cell growth by induction of proliferation and survival signalling pathways. Among them, epidermal growth factor receptor and Her2 have been effectively targeted by monoclonal antibodies. Currently, the treatment of cancer has limitations and most cancer deaths result from the local invasion and distant metastasis of tumour cells. An important insight for the understanding of tumour invasion and metastasis came from the recent discovery that the phenotypic changes of increased motility and invasiveness of cancer cells are reminiscent of the epithelial-mesenchymal transition (EMT) that occurs during embryonic development. The human Cripto, a member of the epidermal growth factor-Cripto, Frl1, and Cryptic (EGF-CFC) protein family and a signalling protein during early embryonic development, plays an important role in cancers. Cripto is attached to the cell membrane through a glycosyl-phosphatidylinositol motif, and is upregulated in a wide range of epithelial cancers. In this paper the authors review the role of Cripto expression in tumourigenesis and in EMT to promote tumour invasion, with emphasis that the unique EGF-like region of Cripto plays a critical role in Cripto signalling-mediated tumour growth and EMT. Therefore, the region should be regarded as a therapeutic point for interruption of the oncogenic and metastatic potential of Cripto for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiu Feng Hu
- Austin Research Institute, Kronheimer Building, Studley Road, Heidelberg, Victoria, 3084, Australia
| | | |
Collapse
|