451
|
Meng G, Liu F, Fang L, Li C, Zhang Q, Liu L, Wu H, Du H, Shi H, Xia Y, Guo X, Liu X, Bao X, Su Q, Gu Y, Yu F, Yang H, Yu B, Sun S, Wang X, Zhou M, Jia Q, Guo Q, Chen X, Song K, Wang G, Huang G, Niu K. The overall computer/mobile devices usage time is related to newly diagnosed non-alcoholic fatty liver disease: a population-based study. Ann Med 2016; 48:568-576. [PMID: 27649339 DOI: 10.1080/07853890.2016.1219454] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The computer/mobile devices usage time (CMD-UT) is closely related to a sedentary lifestyle, which is an important risk factor for non-alcoholic fatty liver disease (NAFLD). But their direct relationship remains unclear. AIMS We aimed to examine the relationship between CMD-UT and newly diagnosed non-alcoholic fatty liver disease (NAFLD) in Chinese adults. METHODS This cross-sectional study was conducted on 7516 adults in Tianjin, China. The CMD-UT was collected via a questionnaire included five categories. NAFLD [with normal or elevated alanine transaminase (ALT) levels] was diagnosed by at least twice liver ultrasonography examinations and serum ALT concentrations (>41 U/L in males and >33 U/L in females). RESULTS The prevalence of overall NAFLD, NAFLD with normal or elevated ALT levels was 18.2, 14.2, and 4.0%, respectively. After adjustments for potential confounding factors, the odds ratios (95% confidence interval) of having overall NAFLD by increasing CMD-UT levels were 1.00 for <1 h/d, 1.58 (1.22-2.05) for 1-3 h/d, 1.58 (1.18-2.11) for 3-5 h/d, 1.65 (1.21-2.27) for 5-10 h/d, and 1.99 (1.29-3.05) for ≥10h/d (P-trend for CMD-UT levels = 0.02), respectively. Similar relations were observed with the use of NAFLD with normal or elevated ALT levels. CONCLUSIONS The present study is the first to find that CMD-UT levels are independently associated with NAFLD. Key Messages The computer/mobile devices usage time levels are independently associated with the prevalence of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ge Meng
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China
| | - Fangfang Liu
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China
| | - Liyun Fang
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China
| | - Chunlei Li
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China
| | - Qing Zhang
- b Health Management Centre, Tianjin Medical University General Hospital , Tianjin , China
| | - Li Liu
- b Health Management Centre, Tianjin Medical University General Hospital , Tianjin , China
| | - Hongmei Wu
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China.,d Collaborative Innovation Center of Non-communicable Disease , Tianjin Medical University , Tianjin , China
| | - Huanmin Du
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China
| | - Hongbin Shi
- b Health Management Centre, Tianjin Medical University General Hospital , Tianjin , China
| | - Yang Xia
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China.,d Collaborative Innovation Center of Non-communicable Disease , Tianjin Medical University , Tianjin , China
| | - Xiaoyan Guo
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China
| | - Xing Liu
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China
| | - Xue Bao
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China.,d Collaborative Innovation Center of Non-communicable Disease , Tianjin Medical University , Tianjin , China
| | - Qian Su
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China
| | - Yeqing Gu
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China
| | - Fei Yu
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China
| | - Huijun Yang
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China
| | - Bin Yu
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China
| | - Shaomei Sun
- b Health Management Centre, Tianjin Medical University General Hospital , Tianjin , China
| | - Xing Wang
- b Health Management Centre, Tianjin Medical University General Hospital , Tianjin , China
| | - Ming Zhou
- b Health Management Centre, Tianjin Medical University General Hospital , Tianjin , China
| | - Qiyu Jia
- b Health Management Centre, Tianjin Medical University General Hospital , Tianjin , China
| | - Qi Guo
- c Department of Rehabilitation and Sports Medicine , Tianjin Medical University , Tianjin , China
| | - Xin Chen
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China
| | - Kun Song
- b Health Management Centre, Tianjin Medical University General Hospital , Tianjin , China
| | - Guolin Wang
- b Health Management Centre, Tianjin Medical University General Hospital , Tianjin , China
| | - Guowei Huang
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China
| | - Kaijun Niu
- a Nutritional Epidemiology Institute and School of Public Health , Tianjin Medical University , Tianjin , China.,b Health Management Centre, Tianjin Medical University General Hospital , Tianjin , China.,d Collaborative Innovation Center of Non-communicable Disease , Tianjin Medical University , Tianjin , China
| |
Collapse
|
452
|
Tian L, Jin T. The incretin hormone GLP-1 and mechanisms underlying its secretion. J Diabetes 2016; 8:753-765. [PMID: 27287542 DOI: 10.1111/1753-0407.12439] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/09/2016] [Accepted: 06/02/2016] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a cell type-specific post-translational product of proglucagon. It is encoded by the proglucagon gene and released primarily from intestinal endocrine L-cells in response to hormonal, neuronal, and nutritional stimuli. In addition to serving as an incretin in mediating the effect of meal consumption on insulin secretion, GLP-1 exerts other functions in pancreatic islets, including regulation of β-cell proliferation and protection of β-cells against metabolic stresses. Furthermore, GLP-1 exerts numerous other functions in extrapancreatic organs, whereas brain GLP-1 signaling controls satiety. Herein we review the discovery of two incretins and the development of GLP-1-based drugs. We also describe the development of cellular models for studying mechanisms underlying GLP-1 secretion over the past 30 years. However, the main content of this review is a summary of studies on the exploration of mechanisms underlying GLP-1 secretion. We not only summarize studies conducted over the past three decades on elucidating the role of nutritional components and hormonal factors in regulating GLP-1 secretion, but also present a few very recent studies showing the possible role of dietary polyphenols. Finally, the emerging role of gut microbiota in metabolic homeostasis with the potential implication on GLP-1 secretion is discussed.
Collapse
Affiliation(s)
- Lili Tian
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- Banting & Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.
- Banting & Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
453
|
Fava GE, Dong EW, Wu H. Intra-islet glucagon-like peptide 1. J Diabetes Complications 2016; 30:1651-1658. [PMID: 27267264 PMCID: PMC5050074 DOI: 10.1016/j.jdiacomp.2016.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Glucagon-like peptide-1 (GLP-1) is originally identified in the gut as an incretin hormone, and it is potent in stimulating insulin secretion in the pancreas. However, increasing evidence suggests that GLP-1 is also produced locally within pancreatic islets. This review focuses on the past and current discoveries regarding intra-islet GLP-1 production and its functions. MAIN FINDINGS There has been a long-standing debate with regard to whether GLP-1 is produced in the pancreatic α cells. Early controversies lead to the widely accepted conclusion that the vast majority of proglucagon is processed to form glucagon in the pancreas, whereas an insignificant amount is cleaved to produce GLP-1. With technological advancements, recent studies have shown that bioactive GLP-1 is produced locally in the pancreas, and the expression and secretion of GLP-1 within islets are regulated by various factors such as cytokines, hyperglycemia, and β cell injury. CONCLUSIONS GLP-1 is produced by the pancreatic α cells, and it is fully functional as an incretin. Therefore, intra-islet GLP-1 may exert insulinotropic and glucagonostatic effects locally via paracrine and/or autocrine actions, under both normal and diabetic conditions.
Collapse
Affiliation(s)
- Genevieve E Fava
- Endocrinology Section, Department of Medicine, Tulane University Health Science Center, New Orleans, LA, United States
| | - Emily W Dong
- Endocrinology Section, Department of Medicine, Tulane University Health Science Center, New Orleans, LA, United States
| | - Hongju Wu
- Endocrinology Section, Department of Medicine, Tulane University Health Science Center, New Orleans, LA, United States.
| |
Collapse
|
454
|
Kahles F, Meyer C, Diebold S, Foldenauer AC, Stöhr R, Möllmann J, Lebherz C, Findeisen HM, Marx N, Lehrke M. Glucose-dependent insulinotropic peptide secretion is induced by inflammatory stimuli in an interleukin-1-dependent manner in mice. Diabetes Obes Metab 2016; 18:1147-1151. [PMID: 27350651 DOI: 10.1111/dom.12711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/18/2016] [Accepted: 06/22/2016] [Indexed: 12/25/2022]
Abstract
Recently, glucagon-like peptide-1 (GLP-1) levels have been found to be increased in response to inflammatory stimuli, leading to insulin secretion and prevention of hyperglycaemia during endotoxemia in mice. In the present study, we assess the relevance of the other incretin hormone, glucose-dependent insulinotropic peptide (GIP), as a regulator of glucose metabolism under inflammatory conditions. We found that lipopolysaccharide (LPS) increased GIP secretion in a time- and dose-dependent manner in C57BL/6J mice. To elucidate the underlying mechanisms, mice were injected with inflammatory cytokines known to be released by LPS. Circulating GIP levels significantly increased in response to interleukin (IL)-1β but not IL-6 or tumour necrosis factor (TNF)-α administration. Using respective knockout mice we found that LPS-mediated GIP secretion was selectively dependent on IL-1 signalling. To evaluate the functional relevance of inflammatory GIP secretion we pretreated mice with the GIP-receptor antagonist (Pro3)GIP. This blunted LPS-induced TNF-α and IL-6 secretion but did not affect LPS-induced insulin secretion or blood glucose-lowering. In conclusion, GIP provides a novel link between the immune system and the gut, with proinflammatory-immune modulatory function but minor glucose regulatory relevance in the context of acute endotoxemia.
Collapse
Affiliation(s)
- F Kahles
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - C Meyer
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - S Diebold
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - A C Foldenauer
- Department of Medical Statistics, University Hospital Aachen, Aachen, Germany
| | - R Stöhr
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - J Möllmann
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - C Lebherz
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - H M Findeisen
- Department of Cardiology and Angiology, University Hospital Muenster, Muenster, Germany
| | - N Marx
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - M Lehrke
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
455
|
The Effect of a 20 km Run on Appetite Regulation in Long Distance Runners. Nutrients 2016; 8:nu8110672. [PMID: 27792164 PMCID: PMC5133060 DOI: 10.3390/nu8110672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
The purpose of the present study was to investigate appetite-related hormonal responses and energy intake after a 20 km run in trained long distance runners. Twenty-three male long-distance runners completed two trials: either an exercise trial consisting of a 20 km outdoor run (EX) or a control trial with an identical period of rest (CON). Blood samples were collected to determine plasma acylated ghrelin, peptide YY3-36 (PYY3-36) and other hormonal and metabolite concentrations. Energy intake during a buffet test meal was also measured 30 min after the exercise or rest periods. Although plasma acylated ghrelin concentrations were significantly decreased after the 20 km run (p < 0.05), plasma PYY3-36 did not change significantly following exercise. Absolute energy intake during the buffet test meal in EX (1325 ± 55 kcal) was significantly lower than that in CON (1529 ± 55 kcal), and there was a relatively large degree of individual variability for exercise-induced changes in energy intake (−40.2% to 12.8%). However, exercise-induced changes in energy intake were not associated with plasma acylated ghrelin or PYY3-36 responses. The results demonstrated that a 20 km run significantly decreased plasma acylated ghrelin concentrations and absolute energy intake among well-trained long distance runners.
Collapse
|
456
|
Cron L, Allen T, Febbraio MA. The role of gp130 receptor cytokines in the regulation of metabolic homeostasis. ACTA ACUST UNITED AC 2016; 219:259-65. [PMID: 26792338 DOI: 10.1242/jeb.129213] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
It is well known that obesity is responsible, at least in part, for the increased incidence of chronic diseases such as type 2 diabetes, cardiovascular disease and certain types of cancer. Despite public education programs emphasizing lifestyle modifications to arrest this global pandemic, it is now estimated that 10-15% of the world's population are overweight or obese. As a result, new therapeutic options for the treatment of obesity-related disorders are clearly warranted. Much of the benefit of physical activity has been attributed to several mechanisms including reduced adiposity, increased cardiorespiratory fitness, reduced circulating lipids and the maintenance of muscle mass. However, the observation that the gp130 receptor cytokine interleukin-6 (IL-6) was released from skeletal muscle during exercise to improve metabolic homeostasis altered our understanding of the health benefits of exercise and opened avenues for research into potential novel therapeutics to treat metabolic disease. One gp130 receptor cytokine in particular, ciliary neurotrophic factor (CNTF), a pluripotent neurocytokine, showed efficacy as a potential anti-obesogenic therapy. This review examines the potential of gp130 receptor ligands, with a focus on IL-6 and CNTF as therapeutic strategies to treat obesity-related disorders.
Collapse
Affiliation(s)
- Lena Cron
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia Faculty of Biology & Medicine, University of Lausanne, Lausanne,1015 Vaud, Switzerland
| | - Tamara Allen
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, VIC 3004, Australia Division of Diabetes & Metabolism, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
457
|
Lutz TA. The brain needs interleukin-6 (IL-6) to maintain a "healthy" energy balance. Focus on "IL-6 ameliorates defective leptin sensitivity in DIO ventromedial hypothalamic nucleus neurons". Am J Physiol Regul Integr Comp Physiol 2016; 311:R989-R991. [PMID: 27733389 DOI: 10.1152/ajpregu.00426.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 11/22/2022]
Affiliation(s)
- Thomas A Lutz
- Institute of Veterinary Physiology and Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
458
|
Roep BO, Kracht MJ, van Lummel M, Zaldumbide A. A roadmap of the generation of neoantigens as targets of the immune system in type 1 diabetes. Curr Opin Immunol 2016; 43:67-73. [PMID: 27723537 DOI: 10.1016/j.coi.2016.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/16/2016] [Accepted: 09/28/2016] [Indexed: 01/08/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the selective destruction of the insulin-producing beta cells. Beta cell dysfunction caused by an inflammatory microenvironment is believed to trigger the peripheral activation of CD4 and CD8 autoreactive T cells. This review will compile post-transcriptional and post-translational modifications (PTM) involved in the generation of beta cell neoantigens and proposes a reconstruction of the sequence of events connecting environmental changes and autoimmunity.
Collapse
Affiliation(s)
- Bart O Roep
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute at the Beckman Research Institute of the City of Hope, Duarte, CA, USA; Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | - Maria Jl Kracht
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Menno van Lummel
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnaud Zaldumbide
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
459
|
Hazell TJ, Islam H, Hallworth JR, Copeland JL. Total PYY and GLP-1 responses to submaximal continuous and supramaximal sprint interval cycling in men. Appetite 2016; 108:238-244. [PMID: 27721013 DOI: 10.1016/j.appet.2016.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 12/22/2022]
Abstract
Exercise-induced changes in appetite-regulating hormones may be intensity-dependent, however a clear dose-response relationship has not been established. The purpose of this study was to examine changes in anorexigenic markers (total PYY and GLP-1) in response to rest or exercise at submaximal and supramaximal intensities. Ten active males completed four experimental sessions in randomized order: 1) Moderate intensity continuous training (MICT; 30 min cycling at 65% VO2max); 2) High intensity continuous training (HICT; 30 min cycling at 85% VO2max); 3) Sprint interval training (SIT; 6 × 30 s "all-out" cycling bouts with 4 min recovery periods); 4) Control (CTRL; no exercise). Blood samples were obtained immediately pre- and post-exercise, as well as 90-min post-exercise for the measurement of total PYY and GLP-1. Subjective hunger was assessed using a visual analog scale pre-breakfast and at the three blood sampling time-points. Total PYY concentrations increased immediately post-exercise following both HICT (P = 0.006) and SIT (P < 0.001) versus CTRL, while SIT was also greater (P = 0.005) compared to MICT. Total GLP-1 concentrations changed similarly across time-points (P < 0.001), with no differences between sessions (P = 0.280). Perceptions of hunger also changed similarly across time-points (P < 0.001) with no differences between trials (P = 0.085). These findings suggest that total PYY increases only after high-intensity exercise and exhibits a greater responsiveness to SIT compared to moderate-intensity exercise. Compensatory increases in hunger do not seem to occur at any exercise intensity. These findings support a dose-response relationship between exercise intensity and total PYY, though the effects on total GLP-1 and hunger perceptions seem unclear.
Collapse
Affiliation(s)
- Tom J Hazell
- Department of Kinesiology and Physical Education, Faculty of Science, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada.
| | - Hashim Islam
- Department of Kinesiology and Physical Education, Faculty of Science, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada.
| | - Jillian R Hallworth
- Department of Kinesiology and Physical Education, Faculty of Arts and Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada.
| | - Jennifer L Copeland
- Department of Kinesiology and Physical Education, Faculty of Arts and Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada.
| |
Collapse
|
460
|
Woodland DC, Liu W, Leong J, Sears ML, Luo P, Chen X. Short-term high-fat feeding induces islet macrophage infiltration and β-cell replication independently of insulin resistance in mice. Am J Physiol Endocrinol Metab 2016; 311:E763-E771. [PMID: 27577853 PMCID: PMC5241555 DOI: 10.1152/ajpendo.00092.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023]
Abstract
Short-term high-fat consumption stimulates mouse islet β-cell replication through unknown mechanisms. Resident macrophages (MΦs) are capable of secreting various factors involved in islet development and tissue remodeling. We hypothesized that a short-term high-fat diet (HFD) promotes MΦ infiltration in pancreatic islets and that MΦs serve as a regulator of β-cell replication. To test these hypotheses and dissect mechanisms involved in HFD-induced β-cell replication, adult C57BL/6J mice were fed a HFD for 7 days with or without administration of clodronate-containing liposomes, an MΦ-depleting agent. Mouse body and epididymal fat pad weights, and nonfasting blood glucose and fasting serum insulin levels were measured, and pancreatic islet β-cell replication, oxidative stress, and MΦ infiltration were examined. Short-term HFD promoted an increase in body and epididymal fat pad weight and blood glucose levels, along with an increased fasting serum insulin concentration. β-Cell replication, islet MΦ infiltration, and the percentage of inducible NO synthase positive MΦs in the islets increased significantly in mice fed the HFD. Immunofluorescence staining for 8-oxo-2'-deoxyguanosine or activated caspase-3 revealed no significant induction of DNA damage or apoptosis, respectively. In addition, no change in stromal-derived factor 1-expressing cells was found induced by HFD. Despite continuous elevation of nonfasting blood glucose and fasting serum insulin levels, depletion of MΦs through treatments of clodronate abrogated HFD-induced β-cell replication. These findings demonstrated that HFD-induced MΦ infiltration is responsible for β-cell replication. This study suggests the existence of MΦ-mediated mechanisms in β-cell replication that are independent of insulin resistance.
Collapse
Affiliation(s)
- David C Woodland
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York; Department of Surgery, Columbia University Medical Center, New York, New York
| | - Wei Liu
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York; Department of Surgery, Columbia University Medical Center, New York, New York; The Second Clinical Medicine College, Jilin University, Changchun, Jilin Province, China
| | - Jacky Leong
- Touro College of Osteopathic Medicine, New York, New York; and
| | - Mallory L Sears
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York; Department of Surgery, Columbia University Medical Center, New York, New York
| | - Ping Luo
- The Second Clinical Medicine College, Jilin University, Changchun, Jilin Province, China
| | - Xiaojuan Chen
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York; Department of Surgery, Columbia University Medical Center, New York, New York;
| |
Collapse
|
461
|
Chen X, Gong Q, Wang CY, Zhang K, Ji X, Chen YX, Yu XJ. High-Fat Diet Induces Distinct Metabolic Response in Interleukin-6 and Tumor Necrosis Factor-α Knockout Mice. J Interferon Cytokine Res 2016; 36:580-588. [PMID: 27610743 DOI: 10.1089/jir.2016.0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Quan Gong
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Chun-Yu Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zhang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Ji
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Xi Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi-Jie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
462
|
Adamo M, Codella R, Casiraghi F, Ferrulli A, Macrì C, Bazzigaluppi E, Terruzzi I, Inverardi L, Ricordi C, Luzi L. Active Subjects With Autoimmune Type 1 Diabetes Have Better Metabolic Profiles Than Sedentary Controls. Cell Transplant 2016; 26:23-32. [PMID: 27983910 DOI: 10.3727/096368916x693022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Previous studies in humans with type 1 diabetes mellitus (T1D) and in nonobese diabetic mice have investigated the beneficial immunomodulatory potential of aerobic physical activity. Performing high volume of aerobic exercise may favorably regulate autoimmunity in diabetes. We tested whether increased physical activity is a self-sufficient positive factor in T1D subjects. During a 3-month observational period, active (six males; 40.5 ± 6.1 years; BMI: 24.5 ± 2.1) and sedentary (four males, three females; 35.9 ± 8.9 years; BMI: 25.7 ± 3.8) T1D individuals on insulin pump therapy were studied for metabolic, inflammatory, and autoimmune parameters. At baseline and at the end of a 3-month period, glycosylated hemoglobin (HbA1c), autoantibodies (anti-GAD, anti-ZnT8, anti-IA2, and ICA) and proinflammatory cytokines (IL-6 and TNF-α) were evaluated. During the third month of the period, physically active T1D patients showed a significant reduction in the average glucose levels (-9%, p = 0.025, by CGM) compared to the first month values, and even their hyperglycemic episodes (>180 mg/dl) diminished significantly (-24.2%, p = 0.032 vs. first month). Moreover, active T1D subjects exhibited an improved body composition with respect to sedentary controls. No significant changes were detected as to the autoimmune and inflammatory profiles. This study confirms the beneficial role of physical exercise associated with insulin pump therapy in order to improve metabolic control in individuals with T1D. These preliminary positive observations need to be challenged in a prolonged interventional follow-up.
Collapse
|
463
|
Vivot K, Benahmed MA, Seyfritz E, Bietiger W, Elbayed K, Ruhland E, Langlois A, Maillard E, Pinget M, Jeandidier N, Gies JP, Namer IJ, Sigrist S, Reix N. A Metabolomic Approach ( 1H HRMAS NMR Spectroscopy) Supported by Histology to Study Early Post-transplantation Responses in Islet-transplanted Livers. Int J Biol Sci 2016; 12:1168-1180. [PMID: 27766032 PMCID: PMC5069439 DOI: 10.7150/ijbs.15189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/28/2016] [Indexed: 11/05/2022] Open
Abstract
Intrahepatic transplantation of islets requires a lot of islets because more than 50% of the graft is lost during the 24 hours following transplantation. We analyzed, in a rat model, early post-transplantation inflammation using systemic inflammatory markers, or directly in islet-transplanted livers by immunohistochemistry. 1H HRMAS NMR was employed to investigate metabolic responses associated with the transplantation. Inflammatory markers (Interleukin-6, α2-macroglobulin) are not suitable to follow islet reactions as they are not islet specific. To study islet specific inflammatory events, immunohistochemistry was performed on sections of islet transplanted livers for thrombin (indicator of the instant blood-mediated inflammatory reaction (IBMIR)) and granulocytes and macrophages. We observed a specific correlation between IBMIR and granulocyte and macrophage infiltration after 12 h. In parallel, we identified a metabolic response associated with transplantation: after 12 h, glucose, alanine, aspartate, glutamate and glutathione were significantly increased. An increase of glucose is a marker of tissue degradation, and could be explained by immune cell infiltration. Alanine, aspartate and glutamate are inter-connected in a common metabolic pathway known to be activated during hypoxia. An increase of glutathione revealed the presence of antioxidant protection. In this study, IBMIR visualization combined with 1H HRMAS NMR facilitated the characterization of cellular and molecular pathways recruited following islet transplantation.
Collapse
Affiliation(s)
- Kevin Vivot
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Bld René Leriche, 67200 Strasbourg, France
| | - Malika A. Benahmed
- ICube UMR 7357, Université de Strasbourg, CNRS, IMIS, 4 rue Kirschleger, 67085 Strasbourg, France
- Service de Biophysique et Médecine Nucléaire, Hôpitaux Universitaires de Strasbourg, 1 avenue Molière, 67100 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecine, Strasbourg, France
| | - Elodie Seyfritz
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Bld René Leriche, 67200 Strasbourg, France
| | - William Bietiger
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Bld René Leriche, 67200 Strasbourg, France
| | - Karim Elbayed
- ICube UMR 7357, Université de Strasbourg, CNRS, IMIS, 4 rue Kirschleger, 67085 Strasbourg, France
| | - Elisa Ruhland
- ICube UMR 7357, Université de Strasbourg, CNRS, IMIS, 4 rue Kirschleger, 67085 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecine, Strasbourg, France
| | - Allan Langlois
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Bld René Leriche, 67200 Strasbourg, France
| | - Elisa Maillard
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Bld René Leriche, 67200 Strasbourg, France
| | - Michel Pinget
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Bld René Leriche, 67200 Strasbourg, France
- Service d'Endocrinologie - Diabète et Maladies métaboliques, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, 67091 Strasbourg, France
| | - Nathalie Jeandidier
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Bld René Leriche, 67200 Strasbourg, France
- Service d'Endocrinologie - Diabète et Maladies métaboliques, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, 67091 Strasbourg, France
| | - Jean-Pierre Gies
- UMR 7034 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67 401 Illkirch, France
| | - Izzie-Jacques Namer
- ICube UMR 7357, Université de Strasbourg, CNRS, IMIS, 4 rue Kirschleger, 67085 Strasbourg, France
- Service de Biophysique et Médecine Nucléaire, Hôpitaux Universitaires de Strasbourg, 1 avenue Molière, 67100 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecine, Strasbourg, France
| | - Séverine Sigrist
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Bld René Leriche, 67200 Strasbourg, France
| | - Nathalie Reix
- ICube UMR 7357, Université de Strasbourg, CNRS, IMIS, 4 rue Kirschleger, 67085 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de médecine, Strasbourg, France
- Laboratoire de biochimie et biologie moléculaire, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, 67091 Strasbourg, France
| |
Collapse
|
464
|
Meng G, Wu H, Fang L, Li C, Yu F, Zhang Q, Liu L, Du H, Shi H, Xia Y, Guo X, Liu X, Bao X, Su Q, Gu Y, Yang H, Bin Yu, Wu Y, Sun Z, Niu K. Relationship between grip strength and newly diagnosed nonalcoholic fatty liver disease in a large-scale adult population. Sci Rep 2016; 6:33255. [PMID: 27616599 PMCID: PMC5018968 DOI: 10.1038/srep33255] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2022] Open
Abstract
Enhanced muscle strength is often related to improved insulin sensitivity and secretion, control of lipid metabolism, and increased secretion of myokines. These factors have emerged as important mechanisms involved in the development and progression of nonalcoholic fatty liver disease (NAFLD), implying that muscle strength may be a useful predictor for NAFLD. We aimed to assess the relationship between grip strength (GS) and NAFLD in a large-scale adult population. GS was assessed using an electronic hand-grip dynamometer, and NAFLD was diagnosed by the liver ultrasonography. Multiple logistic regression analysis was used to assess the relationship between the quartiles of GS per body weight and the prevalence of NAFLD. After adjusting for potentially confounding factors, the odds ratios (95% confidence interval) for overall NAFLD, NAFLD with normal alanine aminotransferase levels, and NAFLD with elevated alanine aminotransferase levels across the quartiles of GS were 1.00 (reference), 0.89 (0.78, 1.01), 0.77 (0.67, 0.89), and 0.67 (0.57, 0.79); 1.00 (reference), 0.91 (0.80, 1.04), 0.79 (0.68, 0.92), and 0.72 (0.61, 0.85); 1.00 (reference), 0.77 (0.61, 0.98), 0.67 (0.51, 0.86), and 0.53 (0.40, 0.71) (all P for trend < 0.01), respectively. This is the first study shows that increased GS is independently associated with lower prevalence of NAFLD.
Collapse
Affiliation(s)
- Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Collaborative Innovation Center of Non-communicable Disease, Tianjin Medical University, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Collaborative Innovation Center of Non-communicable Disease, Tianjin Medical University, Tianjin, China
| | - Liyun Fang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Chunlei Li
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Fei Yu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanmin Du
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hongbin Shi
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Xia
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Collaborative Innovation Center of Non-communicable Disease, Tianjin Medical University, Tianjin, China
| | - Xiaoyan Guo
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xing Liu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xue Bao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Collaborative Innovation Center of Non-communicable Disease, Tianjin Medical University, Tianjin, China
| | - Qian Su
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yeqing Gu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huijun Yang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Bin Yu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yuntang Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhong Sun
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Collaborative Innovation Center of Non-communicable Disease, Tianjin Medical University, Tianjin, China.,Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
465
|
The ever-expanding myokinome: discovery challenges and therapeutic implications. Nat Rev Drug Discov 2016; 15:719-29. [PMID: 27616294 DOI: 10.1038/nrd.2016.153] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exercise reduces the risk of a multitude of disorders, from metabolic disease to cancer, but the molecular mechanisms mediating the protective effects of exercise are not completely understood. The realization that skeletal muscle is an endocrine organ capable of secreting proteins termed 'myokines', which participate in tissue crosstalk, provided a critical link in the exercise-health paradigm. However, the myokine field is still emerging, and several challenges remain in the discovery and validation of myokines. This Review considers these challenges and highlights some recently identified novel myokines with the potential to be therapeutically exploited in the treatment of metabolic disease and cancer.
Collapse
|
466
|
Abstract
BACKGROUND Beneficial roles for glucagon-like peptide 1 (GLP-1)/GLP-1R signaling have recently been described in diseases, where low-grade inflammation is a common phenomenon. We investigated the effects of GLP-1 in Brunner's glands and duodenum with abundant expression of GLP-1 receptors, as well as GLP-1 effect on colonic inflammation. METHODS RNA from Brunner's glands of GLP-1R knockout and wild-type mice were subjected to full transcriptome profiling. Array results were validated by quantitative reverse transcription polymerase chain reaction in wild-type mice and compared with samples from inflammatory bowel disease (IBD) patients and controls. In addition, we performed a detailed investigation of the effects of exogenous liraglutide dosing in a T-cell driven adoptive transfer (AdTr) colitis mouse model. RESULTS Analyses of the Brunner's gland transcriptomes of GLP-1R knockout and wild-type mice identified 722 differentially expressed genes. Upregulated transcripts after GLP-1 dosing included IL-33, chemokine ligand 20 (CCL20), and mucin 5b. Biopsies from IBD patients and controls, as well as data from the AdTr model, showed deregulated expression of GLP-1R, CCL20, and IL-33 in colon. Circulating levels of GLP-1 were found to be increased in mice with colitis. Finally, the colonic cytokine levels and disease scores of the AdTr model indicated reduced levels of colonic inflammation in liraglutide-dosed animals. CONCLUSIONS We demonstrate that IL-33, GLP-1R, and CCL20 are deregulated in human IBD, and that prophylactic treatment with 0.6 mg/kg liraglutide improves disease in AdTr colitis. In addition, GLP-1 receptor agonists upregulate IL-33, mucin 5b, and CCL20 in murine Brunner's glands. Taken together, our data indicate that GLP-1 receptor agonists affect gut homeostasis in both proximal and distal parts of the gut.
Collapse
|
467
|
Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 2016; 12:504-17. [PMID: 27230949 DOI: 10.1038/nrendo.2016.76] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endurance exercise-mediated multisystemic adaptations are known to mitigate metabolism-related disorders such as obesity and type 2 diabetes mellitus (T2DM). However, the underlying molecular mechanisms that promote crosstalk between organs and orchestrate the pro-metabolic effects of endurance exercise remain unclear. Exercise-induced release of peptides and nucleic acids from skeletal muscle and other organs (collectively termed 'exerkines') has been implicated in mediating these systemic adaptations. Given that the extracellular milieu is probably not a hospitable environment for labile exerkines, a lipid vehicle-based mode of delivery has originated over the course of evolution. Two types of extracellular vesicles, exosomes and microvesicles, have been shown to contain proteins and nucleic acids that participate in a variety of physiological and pathological processes. Exosomes, in particular, have been shown to facilitate the exchange of peptides, microRNA, mRNA and mitochondrial DNA between cells and tissues. Intriguingly, circulatory extracellular vesicle content increases in an intensity-dependant manner in response to endurance exercise. We propose that the systemic benefits of exercise are modulated by exosomes and/or microvesicles functioning in an autocrine, paracrine and/or endocrine manner. Furthermore, we posit that native or modified exosomes, and/or microvesicles enriched with exerkines will have therapeutic utility in the treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Ayesha Saleem
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
468
|
Acute Exercise Improves Insulin Clearance and Increases the Expression of Insulin-Degrading Enzyme in the Liver and Skeletal Muscle of Swiss Mice. PLoS One 2016; 11:e0160239. [PMID: 27467214 PMCID: PMC4965115 DOI: 10.1371/journal.pone.0160239] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/15/2016] [Indexed: 11/19/2022] Open
Abstract
The effects of exercise on insulin clearance and IDE expression are not yet fully elucidated. Here, we have explored the effect of acute exercise on insulin clearance and IDE expression in lean mice. Male Swiss mice were subjected to a single bout of exercise on a speed/angle controlled treadmill for 3-h at approximately 60-70% of maximum oxygen consumption. As expected, acute exercise reduced glycemia and insulinemia, and increased insulin tolerance. The activity of AMPK-ACC, but not of IR-Akt, pathway was increased in the liver and skeletal muscle of trained mice. In an apparent contrast to the reduced insulinemia, glucose-stimulated insulin secretion was increased in isolated islets of these mice. However, insulin clearance was increased after acute exercise and was accompanied by increased expression of the insulin-degrading enzyme (IDE), in the liver and skeletal muscle. Finally, C2C12, but not HEPG2 cells, incubated at different concentrations of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 3-h, showed increased expression of IDE. In conclusion, acute exercise increases insulin clearance, probably due to an augmentation of IDE expression in the liver and skeletal muscle. The elevated IDE expression, in the skeletal muscle, seems to be mediated by activation of AMPK-ACC pathway, in response to exercise. We believe that the increase in the IDE expression, comprise a safety measure to maintain glycemia at or close to physiological levels, turning physical exercise more effective and safe.
Collapse
|
469
|
Abstract
Glucagon-like peptide-1, produced predominantly in enteroendocrine cells, controls glucose metabolism and energy homeostasis through regulation of islet hormone secretion, gastrointestinal motility, and food intake, enabling development of GLP-1 receptor (GLP-1R) agonists for the treatment of diabetes and obesity. GLP-1 also acts on the immune system to suppress inflammation, and GLP-1R signaling in multiple tissues impacts cardiovascular function in health and disease. Here we review how GLP-1 and clinically approved GLP-1R agonists engage mechanisms that influence the risk of developing cardiovascular disease. We discuss how GLP-1R agonists modify inflammation, cardiovascular physiology, and pathophysiology in normal and diabetic animals through direct and indirect mechanisms and review human studies illustrating mechanisms linking GLP-1R signaling to modification of the cardiovascular complications of diabetes. The risks and benefits of GLP-1R agonists are updated in light of recent data suggesting that GLP-1R agonists favorably modify outcomes in diabetic subjects at high risk for cardiovascular events.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
470
|
Timper K, Dalmas E, Dror E, Rütti S, Thienel C, Sauter NS, Bouzakri K, Bédat B, Pattou F, Kerr-Conte J, Böni-Schnetzler M, Donath MY. Glucose-Dependent Insulinotropic Peptide Stimulates Glucagon-Like Peptide 1 Production by Pancreatic Islets via Interleukin 6, Produced by α Cells. Gastroenterology 2016; 151:165-79. [PMID: 26971825 DOI: 10.1053/j.gastro.2016.03.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 02/19/2016] [Accepted: 03/03/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Glucose-dependent insulinotropic peptide (GIP) induces production of interleukin 6 (IL6) by adipocytes. IL6 increases production of glucagon-like peptide (GLP)-1 by L cells and α cells, leading to secretion of insulin from β cells. We investigated whether GIP regulates GLP1 and glycemia via IL6. METHODS We obtained samples of human pancreatic islets and isolated islets from mice; human α cells and β cells were sorted by flow cytometry and incubated with GIP. Islets were analyzed by quantitative polymerase chain reaction and immunohistochemistry. BKS.Cg-Dock7m+/+ Leprdb/J db/db mice (diabetic mice) and db/+ mice, as well as C57BL/6J IL6-knockout mice (IL6-KO) and C57BL/6J mice with the full-length Il6 gene (controls), were fed a chow or a high-fat diet; some mice were given injections of recombinant GIP, IL6, GLP, a neutralizing antibody against IL6 (anti-IL6), lipopolysaccharide, and/or IL1B. Mice were given a glucose challenge and blood samples were collected and analyzed. RESULTS Incubation of mouse and human pancreatic α cells with GIP induced their production of IL6, leading to production of GLP1 and insulin secretion from pancreatic islets. This did not occur in islets from IL6-KO mice or in islets incubated with anti-IL6. Incubation of islets with IL1B resulted in IL6 production but directly reduced GLP1 production. Incubation of mouse islets with the sodium glucose transporter 2 inhibitor dapagliflozin induced production of GLP1 and IL6. Injection of control mice with GIP increased plasma levels of GLP1, insulin, and glucose tolerance; these effects were amplified in mice given lipopolysaccharide but reduced in IL6-KO mice or in mice given anti-IL6. Islets from diabetic mice had increased levels of IL1B and IL6, compared with db/+ mice, but injection of GIP did not lead to production of GLP1 or reduce glycemia. CONCLUSIONS In studies of pancreatic islets from human beings and mice, we found that GIP induces production of IL6 by α cells, leading to islet production of GLP1 and insulin. This process is regulated by inflammation, via IL1B, and by sodium glucose transporter 2. In diabetic mice, increased islet levels of IL6 and IL1B might increase or reduce the production of GLP1 and affect glycemia.
Collapse
Affiliation(s)
- Katharina Timper
- Clinic of Endocrinology, Diabetes and Metabolism, Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.
| | - Elise Dalmas
- Clinic of Endocrinology, Diabetes and Metabolism, Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| | - Erez Dror
- Clinic of Endocrinology, Diabetes and Metabolism, Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| | - Sabine Rütti
- Department of Genetic Medicine and Development, Geneva University, Geneva, Switzerland
| | - Constanze Thienel
- Clinic of Endocrinology, Diabetes and Metabolism, Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| | - Nadine S Sauter
- Clinic of Endocrinology, Diabetes and Metabolism, Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| | - Karim Bouzakri
- Department of Genetic Medicine and Development, Geneva University, Geneva, Switzerland
| | - Benoit Bédat
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University, Hospitals and University of Geneva School of Medicine, Geneva, Switzerland
| | | | | | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism, Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.
| |
Collapse
|
471
|
Perez-Gomez MV, Sanchez-Niño MD, Sanz AB, Zheng B, Martín-Cleary C, Ruiz-Ortega M, Ortiz A, Fernandez-Fernandez B. Targeting inflammation in diabetic kidney disease: early clinical trials. Expert Opin Investig Drugs 2016; 25:1045-58. [PMID: 27268955 DOI: 10.1080/13543784.2016.1196184] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The age-standardized death rate from diabetic kidney disease increased by 106% from 1990 to 2013, indicating that novel therapeutic approaches are needed, in addition to the renin-angiotensin system (RAS) blockers currently in use. Clinical trial results of anti-fibrotic therapy have been disappointing. However, promising anti-inflammatory drugs are currently on phase 1 and 2 randomized controlled trials. AREAS COVERED The authors review the preclinical, phase 1 and 2 clinical trial information of drugs tested for diabetic kidney disease that directly target inflammation as a main or key mode of action. Agents mainly targeting other pathways, such as endothelin receptor or mineralocorticoid receptor blockers and vitamin D receptor activators are not discussed. EXPERT OPINION Agents targeting inflammation have shown promising results in the treatment of diabetic kidney disease when added on top of RAS blockade. The success of pentoxifylline in open label trials supports the concept of targeting inflammation. In early clinical trials, the pentoxifylline derivative CTP-499, the CCR2 inhibitor CCX140-B, the CCL2 inhibitor emapticap pegol and the JAK1/JAK2 inhibitor baricitinib were the most promising drugs for diabetic kidney disease. The termination of trials testing the anti-IL-1β antibody gevokizumab in 2015 will postpone the evaluation of therapies targeting inflammatory cytokines.
Collapse
Affiliation(s)
- Maria Vanessa Perez-Gomez
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Maria Dolores Sanchez-Niño
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Ana Belen Sanz
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Binbin Zheng
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain
| | - Catalina Martín-Cleary
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Marta Ruiz-Ortega
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Alberto Ortiz
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Beatriz Fernandez-Fernandez
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| |
Collapse
|
472
|
Dauriz M, Trombetta M, Boselli L, Santi L, Brangani C, Pichiri I, Bonora E, Bonadonna RC. Interleukin-6 as a potential positive modulator of human beta-cell function: an exploratory analysis-the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 6. Acta Diabetol 2016; 53:393-402. [PMID: 26538364 DOI: 10.1007/s00592-015-0807-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/28/2015] [Indexed: 12/15/2022]
Abstract
AIMS Recent studies in mouse models of T2D showed that interleukin-6 (IL-6), released from skeletal muscle, is associated with increased glucose-dependent insulin secretion. Few data currently exist exploring the relationship between IL-6 and beta-cell function in humans. We investigated whether IL-6 is positively associated with beta-cell function in newly diagnosed T2D. We extended the same analyses to IL-10, because it regulated similarly to IL-6 in skeletal muscle, and TNF-α and C-reactive protein (CRP), as general biomarkers of inflammation. METHODS In 330 VNDS participants, we assessed (1) basal plasma concentrations of IL-6, IL-10, TNF-α, and CRP; (2) beta-cell function, estimated by OGTT minimal modeling and expressed as derivative (DC) and proportional control (PC); (3) insulin sensitivity, by euglycemic insulin clamp. RESULTS IL-6 was positively associated with PC in both univariate analysis (p = 0.04) and after adjustment for age, sex, BMI, HbA1c, and M-clamp (p = 0.01). HbA1c was the major independent contributor to the overall variance of PC (16 %), followed by BMI and IL-6 (~2 % each). Similar results were obtained for IL-10 (p = 0.048, univariate; p = 0.04, fully adjusted). TNF-α and CRP were not significantly associated with any component of beta-cell function. CONCLUSIONS Our data are the first evidence in human subjects that an endocrine loop involving IL-6 may act as positive modulator of glucose-dependent insulin secretion. Further functional studies are needed to corroborate IL-6 system as a potential druggable target in diabetes. CLINICAL TRIAL REGISTRATION NUMBER NCT01526720 ( http://www.clinicaltrial.gov ).
Collapse
Affiliation(s)
- Marco Dauriz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Maddalena Trombetta
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Linda Boselli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Lorenza Santi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Corinna Brangani
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Isabella Pichiri
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Enzo Bonora
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona - Ospedale Civile Maggiore, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Riccardo C Bonadonna
- Division of Endocrinology, Department of Clinical and Experimental Medicine, University of Parma School of Medicine and Azienda Ospedaliera Universitaria - Ospedale Maggiore, Via Gramsci 14, 43126, Parma, Italy.
| |
Collapse
|
473
|
Functionality and antidiabetic utility of β- and L-cell containing pseudoislets. Exp Cell Res 2016; 344:201-9. [DOI: 10.1016/j.yexcr.2016.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022]
|
474
|
Kracht MJL, Zaldumbide A, Roep BO. Neoantigens and Microenvironment in Type 1 Diabetes: Lessons from Antitumor Immunity. Trends Endocrinol Metab 2016; 27:353-362. [PMID: 27094501 DOI: 10.1016/j.tem.2016.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/15/2016] [Accepted: 03/20/2016] [Indexed: 12/24/2022]
Abstract
Type 1 diabetes (T1D) is characterized by the selective and progressive destruction of insulin-producing beta cells by the immune system. An incomplete thymic selection against self-reactive islet antigens partly explains how these T cells reach the periphery and become diabetogenic. Increasing evidence suggest that beta cells themselves also participate to their own demise by generating neoepitopes that could be recognized by the immune surveillance machinery. In this regard, these T cells eradicate self-tissue by mechanisms analogous to a classical antitumor response. Cancer immunotherapy has exploited mutations and transcriptional and translational errors to trigger a specific antitumor response. In this opinion article, we aim at merging insight in antitumor immunology and autoimmunity to reveal processes that had previously been ignored to create beta cell-specific neoantigens.
Collapse
Affiliation(s)
- Maria J L Kracht
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnaud Zaldumbide
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart O Roep
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Diabetes Immunology, Diabetes and Metabolism Research Institute at the Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
475
|
Huffman DM, Schafer MJ, LeBrasseur NK. Energetic interventions for healthspan and resiliency with aging. Exp Gerontol 2016; 86:73-83. [PMID: 27260561 DOI: 10.1016/j.exger.2016.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Abstract
Several behavioral and pharmacological strategies improve longevity, which is indicative of delayed organismal aging, with the most effective interventions extending both life- and healthspan. In free living creatures, maintaining health and function into old age requires resilience against a multitude of stressors. Conversely, in experimental settings, conventional housing of rodents limits exposure to such challenges, thereby obscuring an accurate assessment of resilience. Caloric restriction (CR) and exercise, as well as pharmacologic strategies (resveratrol, rapamycin, metformin, senolytics), are well established to improve indices of health and aging, but some paradoxical effects have been observed on resilience. For instance, CR potently retards the onset of age-related diseases, and improves lifespan to a greater extent than exercise in a variety of models. However, exercise has proven more consistently beneficial to organismal resilience against a broad array of stressors, including infections, surgery, wound healing and frailty. CR can improve cellular stress defenses and protect from frailty, but also impairs the response to infections, bed rest and healing. How an intervention will impact not only longevity, health and function, but also resiliency, is critical to better understanding translational implications. Thus, organismal robustness represents a critical, albeit understudied aspect of aging, which needs more careful attention in order to better inform on how putative age-delaying strategies will impact preservation of health and function in response to stressors with aging in humans.
Collapse
Affiliation(s)
- Derek M Huffman
- Department of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
476
|
Di Rosa M, Malaguarnera L. Chitinase 3 Like-1: An Emerging Molecule Involved in Diabetes and Diabetic Complications. Pathobiology 2016; 83:228-242. [PMID: 27189062 DOI: 10.1159/000444855] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/18/2016] [Indexed: 01/05/2025] Open
Abstract
Chitinase 3 like-1 (CHI3L1) is a chitinase-like protein member of family 18 chitinases, expressed in innate immune cells and involved in endothelial dysfunction and tissue remodelling. Since CHI3L1 is highly expressed in a variety of inflammatory diseases of infectious and non-infectious aetiology, it is recognised as a non-invasive prognostic biomarker for inflammation. A variety of studies revealing the increase in CHI3L1 levels in obesity, insulin resistance and in pathological conditions, such as atherosclerosis, coronary artery disease, acute ischaemic stroke, nephropathy, diabetic retinopathy and osteolytic processes, have suggested that CHI3L1 may also play a critical role in the evolution and complication of diabetes mellitus (DM). In this review we highlight the impact of CHI3L1 expression in DM and its contribution to the complication of this disease.
Collapse
Affiliation(s)
- Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | | |
Collapse
|
477
|
Qu D, Liu J, Lau CW, Huang Y. IL-6 in diabetes and cardiovascular complications. Br J Pharmacol 2016; 171:3595-603. [PMID: 24697653 DOI: 10.1111/bph.12713] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 12/22/2022] Open
Abstract
IL-6 is a pleiotropic cytokine that participates in normal functions of the immune system, haematopoiesis, metabolism, as well as in the pathogenesis of metabolic and cardiovascular diseases. Both pro- and anti-inflammatory roles of IL-6 have been described, which are distinguished by different cascades of signalling transduction, namely classic and trans-signalling. The present review summarizes the basic principles of IL-6 signalling and discusses its roles in diabetes and associated cardiovascular complications, with emphasis on the different outcomes mediated by the two modes of IL-6 signalling and the value of developing therapeutic strategies to specifically target the deleterious trans-signalling of IL-6.
Collapse
Affiliation(s)
- Dan Qu
- Institute of Vascular Medicine, Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
478
|
Lei K, Du W, Lin S, Yang L, Xu Y, Gao Y, Xu B, Tan S, Xu Y, Qian X, Liang X, Liu J. 3B, a novel photosensitizer, inhibits glycolysis and inflammation via miR-155-5p and breaks the JAK/STAT3/SOCS1 feedback loop in human breast cancer cells. Biomed Pharmacother 2016; 82:141-50. [PMID: 27470349 DOI: 10.1016/j.biopha.2016.04.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Compared to normal cells, most cancer cells produce ATP by glycolysis under aerobic conditions rather than via the tricarboxylic acid cycle (TCA). This study is intended to determine whether 3B, a novel photosensitizer, can inhibit glycolysis and inflammation in breast cancer cells. We showed that 3B had the ability to repress glucose consumption as well as the generation of ATP, lactate and lactate dehydrogenase. 3B-PDT not only inhibited the expression of IL-1β and IL-6 but also affected the JAK-STAT3 inflammatory pathway in vitro. The present study showed that 3B featured a significant inhibitory effect on the expression of microRNA-155-5p and SOCS1 might serve as a target gene. In vivo studies revealed that 3B inhibited tumor growth and exhibited almost no side effects. Therefore, through the anti-glycolytic effect and breakage of the JAK/STAT3/SOCS1 feedback loop via miR-155-5p, 3B may potentially serve as a potential therapeutic agent against breast cancer.
Collapse
Affiliation(s)
- Kecheng Lei
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Wenpei Du
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Shengchao Lin
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Liyan Yang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Yichun Xu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Yuwei Gao
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Baixue Xu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Shaoying Tan
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China.
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
479
|
Thyfault JP, Wright DC. "Weighing" the effects of exercise and intrinsic aerobic capacity: are there beneficial effects independent of changes in weight? Appl Physiol Nutr Metab 2016; 41:911-6. [PMID: 27512815 DOI: 10.1139/apnm-2016-0122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has been known for centuries that regularly performed exercise has beneficial effects on metabolic health. Owing to its central role in locomotion and the fact that it accounts for a large majority of whole-body glucose disposal and fatty acid oxidation, the effects of exercise on skeletal muscle has been a central focus in exercise physiology research. With this being said it is becoming increasingly well recognized that both adipose tissue and liver metabolism are robustly modified by exercise, especially in conditions of obesity and insulin resistance. One of the difficult questions to address is if the effects of exercise are direct or occur secondary to exercise-induced weight loss. The purpose of this review is to highlight recent work that has attempted to tease out the protective effects of exercise, or intrinsic aerobic capacity, against metabolic and inflammatory challenges as it relates to the treatment and prevention of obesity and insulin resistance. Recent studies reporting improvements in liver and adipose tissue insulin action following a single bout of exercise will also be discussed. The research highlighted in this review sheds new insight into protective, anti-inflammatory effects of exercise that occur largely independent of changes in adiposity and body weight.
Collapse
Affiliation(s)
- John P Thyfault
- a Molecular and Integrative Physiology, University of Kansas Medical Center, 2067 Hemenway Life Sciences and Innovation Center, MS:3043, 3901 Rainbow Blvd., Kansas, KS 66160, USA.,b Research Service, Kansas City VA Medical Center, Kansas City, MO 64128, USA
| | - David C Wright
- c Department of Human Health and Nutritional Sciences, Room 343 Animal Sciences Building, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
480
|
Bilski J, Mazur-Bialy A, Brzozowski B, Magierowski M, Zahradnik-Bilska J, Wójcik D, Magierowska K, Kwiecien S, Mach T, Brzozowski T. Can exercise affect the course of inflammatory bowel disease? Experimental and clinical evidence. Pharmacol Rep 2016; 68:827-36. [PMID: 27255494 DOI: 10.1016/j.pharep.2016.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/17/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023]
Abstract
The inflammatory bowel disease (IBD) consisting of Crohn's disease (CD) and ulcerative colitis (UC) are defined as idiopathic, chronic and relapsing intestinal disorders occurring in genetically predisposed individuals exposed to environmental risk factors such as diet and microbiome changes. Since conventional drug therapy is expensive and not fully efficient, there is a need for alternative remedies that can improve the outcome in patients suffering from IBD. Whether exercise, which has been proposed as adjunct therapy in IBD, can be beneficial in patients with IBD remains an intriguing question. In this review, we provide an overview of the effects of exercise on human IBD and experimental colitis in animal models that mimic human disease, although the information on exercise in human IBD are sparse and poorly understood. Moderate exercise can exert a beneficial ameliorating effect on IBD and improve the healing of experimental animal colitis due to the activity of protective myokines such as irisin released from working skeletal muscles. CD patients with higher levels of exercise were significantly less likely to develop active disease at six months. Moreover, voluntary exercise has been shown to exert a positive effect on IBD patients' mood, weight maintenance and osteoporosis. On the other hand, depending on its intensity and duration, exercise can evoke transient mild systemic inflammation and enhances pro-inflammatory cytokine release, thereby exacerbating the gastrointestinal symptoms. We discuss recent advances in the mechanism of voluntary and strenuous exercise affecting the outcome of IBD in patients and experimental animal models.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Bartosz Brzozowski
- Gastroenterology and Hepatology Clinic, The University Hospital, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Janina Zahradnik-Bilska
- Gastroenterology and Hepatology Clinic, The University Hospital, Jagiellonian University Medical College, Kraków, Poland
| | - Dagmara Wójcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Slawomir Kwiecien
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Mach
- Gastroenterology and Hepatology Clinic, The University Hospital, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
481
|
Mir-Coll J, Duran J, Slebe F, García-Rocha M, Gomis R, Gasa R, Guinovart JJ. Genetic models rule out a major role of beta cell glycogen in the control of glucose homeostasis. Diabetologia 2016; 59:1012-20. [PMID: 26825527 DOI: 10.1007/s00125-016-3871-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/16/2015] [Indexed: 12/30/2022]
Abstract
AIMS/HYPOTHESIS Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells. METHODS Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid-Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays. RESULTS Gys1 knockout (Gys1 (KO)) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 (KO) and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTG(OE)) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTG(OE) mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model. CONCLUSIONS/INTERPRETATION Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.
Collapse
Affiliation(s)
- Joan Mir-Coll
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Felipe Slebe
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Mar García-Rocha
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Ramon Gomis
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Department of Endocrinology and Nutrition, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Rosa Gasa
- Diabetes and Obesity Research Laboratory, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149-153, 08036, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain, .
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain, .
- Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
482
|
Omar B, Ahlkvist L, Yamada Y, Seino Y, Ahrén B. Incretin hormone receptors are required for normal beta cell development and function in female mice. Peptides 2016; 79:58-65. [PMID: 27020250 DOI: 10.1016/j.peptides.2016.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/01/2016] [Accepted: 03/23/2016] [Indexed: 02/07/2023]
Abstract
The incretin hormones, glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), potentiate insulin secretion and are responsible for the majority of insulin secretion that occurs after a meal. They may also, however, have a fundamental role in pancreatic beta cell development and function, independently of their role in potentiating insulin secretion after a meal. This has led to observations that a loss of GIP or GLP-1 action affects normal beta cell function, however each one of the incretin hormones may compensate when the action of the other is lost and therefore the overall impact of the incretin hormones on beta cell function is not known. We therefore utilized a mouse line deficient in both the GLP-1 and GIP receptor genes, the double incretin receptor knockout (DIRKO), to determine the consequences of a lifelong, complete lack of incretin hormone action on beta cell function, in vivo, in intact animals. We found that DIRKO mice displayed impaired glucose tolerance and insulin secretion in response to both oral glucose and mixed meal tolerance tests compared to wild-type mice. Assessment of beta cell function using the hyperglycemic clamp technique revealed an 80% decrease in first phase insulin response in DIRKO mice, but a normal second phase insulin secretion. A similar decline was seen when wild-type mice were given acute intravenous injection of glucose together with the GLP-1 receptor antagonist Ex9-39. Ex vivo assessments of the pancreas revealed significantly fewer islets in the pancreata of DIRKO mice despite no differences in total pancreatic mass. Insulin secretion from isolated islets of DIRKO mice was impaired to a similar extent to that seen during the hyperglycemic clamp. Insulin secretion in wild-type islets was impaired by acute treatment with Ex9-39 to a similar extent as the in vivo intravenous glucose tolerance tests. In conclusion, a loss of the action of both incretin hormones results in direct impairment of beta cell function both in vivo and in vitro in a process that appears to be independent of the intestinally secreted incretin hormones. We therefore conclude that the incretin hormones together significantly impact both beta-cell function and beta-cell development.
Collapse
Affiliation(s)
- Bilal Omar
- Department of Clinical Sciences, Medicine, Lund University, Sölvegatan 19, 22184 Lund, Sweden.
| | - Linda Ahlkvist
- Department of Clinical Sciences, Medicine, Lund University, Sölvegatan 19, 22184 Lund, Sweden
| | - Yuchiro Yamada
- Graduate School of Medicine, Akita University, Akita, Japan
| | - Yutaka Seino
- Yutaka Seino Distinguished Center for Diabetes Research, Kensai Electric Power Medical Research Institute, Kobe, Japan
| | - Bo Ahrén
- Department of Clinical Sciences, Medicine, Lund University, Sölvegatan 19, 22184 Lund, Sweden
| |
Collapse
|
483
|
Abdel-Maksoud SM, Hassanein SI, Gohar NA, Attia SMM, Gad MZ. Investigation of brain-derived neurotrophic factor (BDNF) gene expression in hypothalamus of obese rats: Modulation by omega-3 fatty acids. Nutr Neurosci 2016; 20:443-448. [DOI: 10.1080/1028415x.2016.1180859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Sally I. Hassanein
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Neveen A. Gohar
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Saad M. M. Attia
- Microbiology Department, Faculty of Science, Azhar University, Cairo, Egypt
| | - Mohamed Z. Gad
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| |
Collapse
|
484
|
Zietek T, Rath E. Inflammation Meets Metabolic Disease: Gut Feeling Mediated by GLP-1. Front Immunol 2016; 7:154. [PMID: 27148273 PMCID: PMC4840214 DOI: 10.3389/fimmu.2016.00154] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/08/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic diseases, such as obesity and diabetes, cardiovascular, and inflammatory bowel diseases (IBD) share common features in their pathology. Metabolic disorders exhibit strong inflammatory underpinnings and vice versa, inflammation is associated with metabolic alterations. Next to cytokines and cellular stress pathways, such as the unfolded protein response (UPR), alterations in the enteroendocrine system are intersections of various pathologies. Enteroendocrine cells (EEC) have been studied extensively for their ability to regulate gastrointestinal motility, secretion, and insulin release by release of peptide hormones. In particular, the L-cell-derived incretin hormone glucagon-like peptide 1 (GLP-1) has gained enormous attention due to its insulinotropic action and relevance in the treatment of type 2 diabetes (T2D). Yet, accumulating data indicate a critical role for EEC and in particular for GLP-1 in metabolic adaptation and in orchestrating immune responses beyond blood glucose control. EEC sense the lamina propria and luminal environment, including the microbiota via receptors and transporters. Subsequently, mediating signals by secreting hormones and cytokines, EEC can be considered as integrators of metabolic and inflammatory signaling. This review focuses on L cell and GLP-1 functions in the context of metabolic and inflammatory diseases. The effects of incretin-based therapies on metabolism and immune system are discussed and the interrelation and common features of metabolic and immune-mediated disorders are highlighted. Moreover, it presents data on the impact of inflammation, in particular of IBD on EEC and discusses the potential role of the microbiota as link between nutrients, metabolism, immunity, and disease.
Collapse
Affiliation(s)
- Tamara Zietek
- Department of Nutritional Physiology, Technische Universität München , Freising , Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München , Freising , Germany
| |
Collapse
|
485
|
Anesten F, Holt MK, Schéle E, Pálsdóttir V, Reimann F, Gribble FM, Safari C, Skibicka KP, Trapp S, Jansson JO. Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca2+ influx in response to IL-6. Am J Physiol Regul Integr Comp Physiol 2016; 311:R115-23. [PMID: 27097661 DOI: 10.1152/ajpregu.00383.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/15/2016] [Indexed: 12/16/2022]
Abstract
Neuronal circuits in the hypothalamus and hindbrain are of importance for control of food intake, energy expenditure, and fat mass. We have recently shown that treatment with exendin-4 (Ex-4), an analog of the proglucagon-derived molecule glucagon-like peptide 1 (GLP-1), markedly increases mRNA expression of the cytokine interleukin-6 (IL-6) in the hypothalamus and hindbrain and that this increase partly mediates the suppression of food intake and body weight by Ex-4. Endogenous GLP-1 in the central nervous system (CNS) is produced by preproglucagon (PPG) neurons of the nucleus of the solitary tract (NTS) in the hindbrain. These neurons project to various parts of the brain, including the hypothalamus. Outside the brain, IL-6 stimulates GLP-1 secretion from the gut and pancreas. In this study, we aim to investigate whether IL-6 can affect GLP-1-producing PPG neurons in the nucleus of the solitary tract (NTS) in mouse hindbrain via the ligand binding part of the IL-6 receptor, IL-6 receptor-α (IL-6Rα). Using immunohistochemistry, we found that IL-6Rα was localized on PPG neurons of the NTS. Recordings of these neurons in GCaMP3/GLP-1 reporter mice showed that IL-6 enhances cytosolic Ca(2+) concentration in neurons capable of expressing PPG. We also show that the Ca(2+) increase originates from the extracellular space. Furthermore, we found that IL-6Rα was localized on cells in the caudal hindbrain expressing immunoreactive NeuN (a neuronal marker) or CNP:ase (an oligodendrocyte marker). In summary, IL-6Rα is present on PPG neurons in the NTS, and IL-6 can stimulate these cells by increasing influx of Ca(2+) to the cytosol from the extracellular space.
Collapse
Affiliation(s)
- Fredrik Anesten
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marie K Holt
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom; and
| | - Erik Schéle
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Vilborg Pálsdóttir
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Frank Reimann
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom
| | - Fiona M Gribble
- Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom
| | - Cecilia Safari
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom; and
| | - John-Olov Jansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden;
| |
Collapse
|
486
|
Giacomelli R, Ruscitti P, Alvaro S, Ciccia F, Liakouli V, Di Benedetto P, Guggino G, Berardicurti O, Carubbi F, Triolo G, Cipriani P. IL-1β at the crossroad between rheumatoid arthritis and type 2 diabetes: may we kill two birds with one stone? Expert Rev Clin Immunol 2016; 12:849-55. [PMID: 26999417 DOI: 10.1586/1744666x.2016.1168293] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although in the past the prevention of joint destruction in rheumatoid arthritis (RA) was strongly emphasized, now a great interest is focused on associated comorbidities in these patients. Multiple data suggest that a large percentage of RA patients are affected by Type 2 Diabetes (T2D), whose incidence has reached epidemic levels in recent years, thus increasing the health care costs. A better knowledge about the pathogenesis of these diseases as well as the mechanisms of action of drugs may allow both policy designers and physicians to choose the most effective treatments, thus lowering the costs. This review will focus on the role of Interleukin (IL)-1β in the pathogenesis of both the diseases, the efficacy of IL-1 blocking molecules in controlling these diseases, and will provide information suggesting that targeting IL-1β, in patients affected by both RA and T2D, may be a promising therapeutic choice.
Collapse
Affiliation(s)
- Roberto Giacomelli
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Piero Ruscitti
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Saverio Alvaro
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Francesco Ciccia
- b Division of Rheumatology, Department of Internal Medicine , University of Palermo , Palermo , Italy
| | - Vasiliki Liakouli
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Paola Di Benedetto
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Giuliana Guggino
- b Division of Rheumatology, Department of Internal Medicine , University of Palermo , Palermo , Italy
| | - Onorina Berardicurti
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Francesco Carubbi
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| | - Giovanni Triolo
- b Division of Rheumatology, Department of Internal Medicine , University of Palermo , Palermo , Italy
| | - Paola Cipriani
- a Division of Rheumatology, Department of Biotechnological and Applied Clinical Science , School of Medicine, University of L'Aquila , L'Aquila , Italy
| |
Collapse
|
487
|
Hussain MA, Akalestou E, Song WJ. Inter-organ communication and regulation of beta cell function. Diabetologia 2016; 59:659-67. [PMID: 26791990 PMCID: PMC4801104 DOI: 10.1007/s00125-015-3862-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/07/2015] [Indexed: 01/18/2023]
Abstract
The physiologically predominant signal for pancreatic beta cells to secrete insulin is glucose. While circulating glucose levels and beta cell glucose metabolism regulate the amount of released insulin, additional signals emanating from other tissues and from neighbouring islet endocrine cells modulate beta cell function. To this end, each individual beta cell can be viewed as a sensor of a multitude of stimuli that are integrated to determine the extent of glucose-dependent insulin release. This review discusses recent advances in our understanding of inter-organ communications that regulate beta cell insulin release in response to elevated glucose levels.
Collapse
Affiliation(s)
- Mehboob A Hussain
- Department of Medicine, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD, 21287, USA.
- Department of Pediatrics, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD, 21287, USA.
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| | - Elina Akalestou
- Department of Pediatrics, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD, 21287, USA
| | - Woo-Jin Song
- Department of Pediatrics, Johns Hopkins University, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD, 21287, USA
| |
Collapse
|
488
|
Kullman EL, Kelly KR, Haus JM, Fealy CE, Scelsi AR, Pagadala MR, Flask CA, McCullough AJ, Kirwan JP. Short-term aerobic exercise training improves gut peptide regulation in nonalcoholic fatty liver disease. J Appl Physiol (1985) 2016; 120:1159-64. [PMID: 27032902 DOI: 10.1152/japplphysiol.00693.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/28/2016] [Indexed: 02/06/2023] Open
Abstract
Obesity-related nonalcoholic fatty liver disease (NAFLD) is now the most common chronic liver disease. Exercise and diet are uniformly prescribed treatments for NAFLD; however, there are limited empirical data on the effects of exercise training on metabolic function in these patients. The purpose of this study was to investigate the fasting and glucose-stimulated adaptation of gut peptides to short-term aerobic exercise training in patients with NAFLD. Twenty-two obese subjects, 16 with NAFLD [body mass index (BMI), 33.2 ± 1.1 (SE) kg/m(2)] and 6 obese controls (BMI, 31.3 ± 1.2 kg/m(2)), were enrolled in a supervised aerobic exercise program (60 min/day, 85% of their heart rate maximum, for 7 days). Fasting and glucose-stimulated glucagon-like peptide-1 (GLP-17-36) and peptide tyrosine tyrosine (PYYTotal) concentrations in plasma were assessed before and after the exercise program. Initially, the NAFLD group had higher fasting PYY (NAFLD = 117 ± 18.6, control = 47.2 ± 6.4 pg/ml, P < 0.05) and GLP-1 (NAFLD = 12.4 ± 2.2, control = 6.2 ± 0.2 pg/ml, P < 0.05) and did not significantly increase GLP-1 or PYY in response to glucose ingestion. After the exercise program, fasting GLP-1 was reduced in the NAFLD group (10.7 ± 2.0 pg/ml, P < 0.05). Furthermore, exercise training led to significant increase in the acute (0-30 min) PYY and GLP-1 responses to glucose in the NAFLD group, while the total area under the glucose-stimulated GLP-1 response curve was reduced in both NAFLD and controls (P < 0.05). In summary, 7 days of vigorous aerobic exercise normalized the dynamic PYY and GLP-1 responses to nutrient stimulation and reduced the GLP-1 response in NAFLD, suggesting that exercise positively modulates gut hormone regulation in obese adults with NAFLD.
Collapse
Affiliation(s)
- Emily L Kullman
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Karen R Kelly
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jacob M Haus
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ciaran E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Amanda R Scelsi
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mangesh R Pagadala
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio
| | - Chris A Flask
- Department of Radiology and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio; and
| | - Arthur J McCullough
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio; Metabolic Translational Research Center, Endocrinology & Metabolism Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
489
|
Kanoski SE, Hayes MR, Skibicka KP. GLP-1 and weight loss: unraveling the diverse neural circuitry. Am J Physiol Regul Integr Comp Physiol 2016; 310:R885-95. [PMID: 27030669 DOI: 10.1152/ajpregu.00520.2015] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/26/2016] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is currently one of the most promising biological systems for the development of effective obesity pharmacotherapies. Long-acting GLP-1 analogs potently reduce food intake and body weight, and recent discoveries reveal that peripheral administration of these drugs reduces food intake largely through humoral pathways involving direct action on brain GLP-1 receptors (GLP-1R). Thus, it is of critical importance to understand the neural systems through which GLP-1 and long-acting GLP-1 analogs reduce food intake and body weight. In this review, we discuss several neural, physiological, cellular and molecular, as well as behavioral mechanisms through which peripheral and central GLP-1R signaling reduces feeding. Particular attention is devoted to discussion regarding the numerous neural substrates through which GLP-1 and GLP-1 analogs act to reduce food intake and body weight, including various hypothalamic nuclei (arcuate nucleus of the hypothalamus, periventricular hypothalamus, lateral hypothalamic area), hindbrain nuclei (parabrachial nucleus, medial nucleus tractus solitarius), hippocampus (ventral subregion; vHP), and nuclei embedded within the mesolimbic reward circuitry [ventral tegmental area (VTA) and nucleus accumbens (NAc)]. In some of these nuclei [VTA, NAc, and vHP], GLP-1R activation reduces food intake and body weight without concomitant nausea responses, suggesting that targeting these specific pathways may be of particular interest for future obesity pharmacotherapy. The widely distributed neural systems through which GLP-1 and GLP-1 analogs act to reduce body weight highlight the complexity of the neural systems regulating energy balance, as well as the challenges for developing effective obesity pharmacotherapies that reduce feeding without producing parallel negative side effects.
Collapse
Affiliation(s)
- Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California;
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia Pennsylvania; and
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
490
|
Gut Microbiota and Lifestyle Interventions in NAFLD. Int J Mol Sci 2016; 17:447. [PMID: 27023533 PMCID: PMC4848903 DOI: 10.3390/ijms17040447] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
The human digestive system harbors a diverse and complex community of microorganisms that work in a symbiotic fashion with the host, contributing to metabolism, immune response and intestinal architecture. However, disruption of a stable and diverse community, termed "dysbiosis", has been shown to have a profound impact upon health and disease. Emerging data demonstrate dysbiosis of the gut microbiota to be linked with non-alcoholic fatty liver disease (NAFLD). Although the exact mechanism(s) remain unknown, inflammation, damage to the intestinal membrane, and translocation of bacteria have all been suggested. Lifestyle intervention is undoubtedly effective at improving NAFLD, however, not all patients respond to these in the same manner. Furthermore, studies investigating the effects of lifestyle interventions on the gut microbiota in NAFLD patients are lacking. A deeper understanding of how different aspects of lifestyle (diet/nutrition/exercise) affect the host-microbiome interaction may allow for a more tailored approach to lifestyle intervention. With gut microbiota representing a key element of personalized medicine and nutrition, we review the effects of lifestyle interventions (diet and physical activity/exercise) on gut microbiota and how this impacts upon NAFLD prognosis.
Collapse
|
491
|
D'Alessio D. Is GLP-1 a hormone: Whether and When? J Diabetes Investig 2016; 7 Suppl 1:50-5. [PMID: 27186356 PMCID: PMC4854505 DOI: 10.1111/jdi.12466] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/21/2015] [Indexed: 01/24/2023] Open
Abstract
Glucagon‐like peptide‐1 (GLP‐1) is a product of proglucagon cleavage synthesized in L cells in the intestinal mucosa, α‐cells in the pancreatic islet, and neurons in the nucleus of the solitary tract. GLP‐1 is essential for normal glucose tolerance and acts through a specific GLP‐1 receptor that is expressed by islet β‐cells as well as other cell types. Because plasma concentrations of GLP‐1 increase following meal ingestion it has been generally presumed that GLP‐1 acts as a hormone, communicating information from the intestine to the endocrine pancreas through the circulation. However, there are a number of problems with this model including low circulating concentrations of GLP‐1 in plasma, limited changes after meal ingestion and rapid metabolism in the plasma. Moreover, antagonism of systemic GLP‐1 action impairs insulin secretion in the fasting state, suggesting that the GLP‐1r is active even when plasma GLP‐1 levels are low and unchanging. Consistent with these observations, deletion of the GLP‐1r from islet β‐cells causes intolerance after IP or IV glucose, challenges that do not induce GLP‐1 secretion. Taken together, these data support a model whereby GLP‐1 acts through neural or paracrine mechanisms to regulate physiologic insulin secretion. In contrast, bariatric surgery seems to be a condition in which circulating GLP‐1 could have an endocrine effect. Both gastric bypass and sleeve gastrectomy are associated with substantial increases in postprandial GLP‐1 release and in these conditions interference with GLP‐1r signaling has a significant impact on glucose regulation after eating. Thus, with either bariatric surgery or treatment with long‐acting GLP‐1r agonists, circulating peptide mediates insulinotropic activity. Overall, a case can be made that physiologic actions of GLP‐1 are not hormonal, but that an endocrine mechanism of GLP‐1r activation can be co‐opted for therapeutics.
Collapse
Affiliation(s)
- David D'Alessio
- Division of Endocrinology, Metabolism and Nutrition Duke University Medical Center Durham North Carolina USA
| |
Collapse
|
492
|
Seino Y, Maekawa R, Ogata H, Hayashi Y. Carbohydrate-induced secretion of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1. J Diabetes Investig 2016; 7 Suppl 1:27-32. [PMID: 27186352 PMCID: PMC4854501 DOI: 10.1111/jdi.12449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022] Open
Abstract
Glucose‐dependent insulinotropic polypeptide (GIP) and glucagon‐like peptide‐1 (GLP‐1) are the incretin hormones secreted from enteroendocrine K‐cells and L‐cells, respectively, by oral ingestion of various nutrients including glucose. K‐cells, L‐cells and pancreatic β‐cells are glucose‐responsive cells with similar glucose‐sensing machinery including glucokinase and an adenosine triphosphate‐sensitive K+ channel comprising KIR6.2 and sulfonylurea receptor 1. However, the physiological role of the adenosine triphosphate‐sensitive K+ channel in GIP secretion in K‐cells and GLP‐1 secretion in L‐cells is not elucidated. Recently, it was reported that GIP and GLP‐1‐producing cells are present also in pancreatic islets, and islet‐derived GIP and GLP‐1 contribute to glucose‐induced insulin secretion from pancreatic β‐cells. In this short review, we focus on GIP and GLP‐1 secretion by monosaccharides, such as glucose or fructose, and the role of the adenosine triphosphate‐sensitive K+ channel in GIP and GLP‐1 secretion.
Collapse
Affiliation(s)
- Yusuke Seino
- Department of Endocrinology and Diabetes Nagoya University Graduate School of Medicine Nagoya Japan
| | - Ryuya Maekawa
- Department of Endocrinology and Diabetes Nagoya University Graduate School of Medicine Nagoya Japan
| | - Hidetada Ogata
- Department of Endocrinology and Diabetes Nagoya University Graduate School of Medicine Nagoya Japan
| | - Yoshitaka Hayashi
- Department of Genetics, Division of Stress Adaptation and Recognition, Research Institute of Environmental Medicine Nagoya University Nagoya Japan
| |
Collapse
|
493
|
Linnemann AK, Davis DB. Glucagon-like peptide-1 and cholecystokinin production and signaling in the pancreatic islet as an adaptive response to obesity. J Diabetes Investig 2016; 7 Suppl 1:44-9. [PMID: 27186355 PMCID: PMC4854504 DOI: 10.1111/jdi.12465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022] Open
Abstract
Precise control of blood glucose is dependent on adequate β‐cell mass and function. Thus, reductions in β‐cell mass and function lead to insufficient insulin production to meet demand, and result in diabetes. Recent evidence suggests that paracrine signaling in the islet might be important in obesity, and disruption of this signaling could play a role in the pathogenesis of diabetes. For example, we recently discovered a novel islet incretin axis where glucagon‐like peptide‐1 regulates β‐cell production of another classic gut hormone, cholecystokinin. This axis is stimulated by obesity, and plays a role in enhancing β‐cell survival. In the present review, we place our observations in the wider context of the literature on incretin regulation in the islet, and discuss the potential for therapeutic targeting of these pathways.
Collapse
Affiliation(s)
- Amelia K Linnemann
- Department of Medicine Division of Endocrinology University of Wisconsin-Madison Madison Wisconsin USA
| | - Dawn Belt Davis
- Department of MedicineDivision of EndocrinologyUniversity of Wisconsin-MadisonMadisonWisconsinUSA; William S Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| |
Collapse
|
494
|
Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med 2016; 48:e219. [PMID: 26964835 PMCID: PMC4892884 DOI: 10.1038/emm.2016.6] [Citation(s) in RCA: 519] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022] Open
Abstract
In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed.
Collapse
Affiliation(s)
- Pia V Röder
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore. E-mail: or
| | - Bingbing Wu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Yixian Liu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Weiping Han
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
- Metabolism in Human Diseases Unit, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore. E-mail: or
| |
Collapse
|
495
|
Morimoto K, Watanabe M, Sugizaki T, Irie JI, Itoh H. Intestinal Bile Acid Composition Modulates Prohormone Convertase 1/3 (PC1/3) Expression and Consequent GLP-1 Production in Male Mice. Endocrinology 2016; 157:1071-81. [PMID: 26789236 DOI: 10.1210/en.2015-1551] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Besides an established medication for hypercholesterolemia, bile acid binding resins (BABRs) present antidiabetic effects. Although the mechanisms underlying these effects are still enigmatic, glucagon-like peptide-1 (GLP-1) appears to be involved. In addition to a few reported mechanisms, we propose prohormone convertase 1/3 (PC1/3), an essential enzyme of GLP-1 production, as a potent molecule in the GLP-1 release induced by BABRs. In our study, the BABR colestimide leads to a bile acid-specific G protein-coupled receptor TGR5-dependent induction of PC1/3 gene expression. Here, we focused on the alteration of intestinal bile acid composition and consequent increase of total TGR5 agonistic activity to explain the TGR5 activation. Furthermore, we demonstrate that nuclear factor of activated T cells mediates the TGR5-triggered PC1/3 gene expression. Altogether, our data indicate that the TGR5-dependent intestinal PC1/3 gene expression supports the BABR-stimulated GLP-1 release. We also propose a combination of BABR and dipeptidyl peptidase-4 inhibitor in the context of GLP-1-based antidiabetic therapy.
Collapse
Affiliation(s)
- Kohkichi Morimoto
- Department of Internal Medicine (K.M., T.S., J.-i.I., H.I.), School of Medicine, Keio University, Tokyo 160-8582, Japan; and Graduate School of Media and Governance (M.W.), Faculty of Environment and Information Studies, Keio University, Kanagawa 252-0882, Japan
| | - Mitsuhiro Watanabe
- Department of Internal Medicine (K.M., T.S., J.-i.I., H.I.), School of Medicine, Keio University, Tokyo 160-8582, Japan; and Graduate School of Media and Governance (M.W.), Faculty of Environment and Information Studies, Keio University, Kanagawa 252-0882, Japan
| | - Taichi Sugizaki
- Department of Internal Medicine (K.M., T.S., J.-i.I., H.I.), School of Medicine, Keio University, Tokyo 160-8582, Japan; and Graduate School of Media and Governance (M.W.), Faculty of Environment and Information Studies, Keio University, Kanagawa 252-0882, Japan
| | - Jun-ichiro Irie
- Department of Internal Medicine (K.M., T.S., J.-i.I., H.I.), School of Medicine, Keio University, Tokyo 160-8582, Japan; and Graduate School of Media and Governance (M.W.), Faculty of Environment and Information Studies, Keio University, Kanagawa 252-0882, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine (K.M., T.S., J.-i.I., H.I.), School of Medicine, Keio University, Tokyo 160-8582, Japan; and Graduate School of Media and Governance (M.W.), Faculty of Environment and Information Studies, Keio University, Kanagawa 252-0882, Japan
| |
Collapse
|
496
|
Hazell TJ, Islam H, Townsend LK, Schmale MS, Copeland JL. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms. Appetite 2016; 98:80-8. [DOI: 10.1016/j.appet.2015.12.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 01/05/2023]
|
497
|
Peppler WT, Anderson ZG, Sutton CD, Rector RS, Wright DC. Voluntary wheel running attenuates lipopolysaccharide-induced liver inflammation in mice. Am J Physiol Regul Integr Comp Physiol 2016; 310:R934-42. [PMID: 26887432 DOI: 10.1152/ajpregu.00497.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/10/2016] [Indexed: 12/11/2022]
Abstract
Sepsis induces an acute inflammatory response in the liver, which can lead to organ failure and death. Given the anti-inflammatory effects of exercise, we hypothesized that habitual physical activity could protect against acute sepsis-induced liver inflammation via mechanisms, including heat shock protein (HSP) 70/72. Male C57BL/6J mice (n = 80, ∼8 wk of age) engaged in physical activity via voluntary wheel running (VWR) or cage control (SED) for 10 wk. To induce sepsis, we injected (2 mg/kg ip) LPS or sterile saline (SAL), and liver was harvested 6 or 12 h later. VWR attenuated increases in body and epididymal adipose tissue mass, improved glucose tolerance, and increased liver protein content of PEPCK (P < 0.05). VWR attenuated increases in LPS-induced IL-6 signaling and mRNA expression of other inflammatory markers (TNF-α, chemokine C-C motif ligand 2, inducible nitric oxide synthase, IL-10, IL-1β) in the liver; however, this was not reflected at the whole body level, as systemic markers of inflammation were similar between SED and VWR. Insulin tolerance was greater in VWR compared with SED at 6 but not 12 h after LPS. The protective effect of VWR occurred in parallel with increases in the liver protein content of HSP70/72, a molecular chaperone that can protect against inflammatory challenges. This study provides novel evidence that physical activity protects against the inflammatory cascade induced by LPS in the liver and that these effects may be mediated via HSP70/72.
Collapse
Affiliation(s)
- Willem T Peppler
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Zachary G Anderson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Charles D Sutton
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - R Scott Rector
- Departments of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; and Department of Medicine, University of Missouri, Columbia, Missouri; and Research Service-Harry S. Truman Memorial VA Hospital, Columbia, Missouri
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada,
| |
Collapse
|
498
|
Rai M, Demontis F. Systemic Nutrient and Stress Signaling via Myokines and Myometabolites. Annu Rev Physiol 2016; 78:85-107. [DOI: 10.1146/annurev-physiol-021115-105305] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mamta Rai
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105;
| | - Fabio Demontis
- Division of Developmental Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105;
| |
Collapse
|
499
|
Lebherz C, Kahles F, Piotrowski K, Vogeser M, Foldenauer AC, Nassau K, Kilger E, Marx N, Parhofer KG, Lehrke M. Interleukin-6 predicts inflammation-induced increase of Glucagon-like peptide-1 in humans in response to cardiac surgery with association to parameters of glucose metabolism. Cardiovasc Diabetol 2016; 15:21. [PMID: 26842302 PMCID: PMC4739342 DOI: 10.1186/s12933-016-0330-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/08/2016] [Indexed: 12/25/2022] Open
Abstract
Objective Glucagon-like peptide-1 (GLP-1) is an incretin hormone, which gets secreted in response to nutritional stimuli from the gut mediating glucose-dependent insulin secretion. Interestingly, GLP-1 was recently found to be also increased in response to inflammatory stimuli in an interleukin 6 (IL-6) dependent manner in mice. The relevance of this finding to humans is unknown but has been suggested by the presence of high circulating GLP-1 levels in critically ill patients that correlated with markers of inflammation. This study was performed to elucidate, whether a direct link exists between inflammation and GLP-1 secretion in humans. Research design and methods We enrolled 22 non-diabetic patients scheduled for cardiac surgery as a reproducible inflammatory stimulus with repeated blood sampling before and after surgery. Results Mean total circulating GLP-1 levels significantly increased in response to surgery from 25.5 ± 15.6 pM to 51.9 ± 42.7 pM which was not found in a control population. This was preceded by an early rise of IL6, which was significantly associated with GLP-1 under inflammatory but not basal conditions. Using repeated measure ANCOVA, IL6 best predicted the observed kinetics of GLP-1, followed by blood glucose concentrations and cortisol plasma levels. Furthermore, GLP-1 plasma concentrations significantly predicted endogenous insulin production as assessed by C-peptide concentrations over time, while an inverse association was found for insulin infusion rate. Conclusion We found GLP-1 secretion to be increased in response to inflammatory stimuli in humans, which was associated to parameters of glucose metabolism and best predicted by IL6. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0330-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corinna Lebherz
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Florian Kahles
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Katja Piotrowski
- Helmholtz Institute Munich, German Research Center for Environmental Health, Neuherberg, Munich, Germany.
| | - Michael Vogeser
- Institute of Laboratory Medicine, University Hospital Munich (LMU), Campus Grosshadern, Munich, Germany.
| | | | - Kirsten Nassau
- Department of Anesthesiology, Campus Grosshadern, Munich, Germany.
| | - Erich Kilger
- Department of Anesthesiology, Campus Grosshadern, Munich, Germany.
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Klaus G Parhofer
- Department of Internal Medicine II, University Hospital Munich (LMU), Campus Grosshadern, Munich, Germany.
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
500
|
Matsushima H, Kuroki T, Adachi T, Kitasato A, Ono S, Tanaka T, Hirabaru M, Kuroshima N, Hirayama T, Sakai Y, Soyama A, Hidaka M, Takatsuki M, Kin T, Shapiro J, Eguchi S. Human Fibroblast Sheet Promotes Human Pancreatic Islet Survival and Function In Vitro. Cell Transplant 2016; 25:1525-1537. [PMID: 26877090 DOI: 10.3727/096368916x690854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In previous work, we engineered functional cell sheets using bone marrow-derived mesenchymal stem cells (BM-MSCs) to promote islet graft survival. In the present study, we hypothesized that a cell sheet using dermal fibroblasts could be an alternative to MSCs, and then we aimed to evaluate the effects of this cell sheet on the functional viability of human islets. Fibroblast sheets were fabricated using temperature-responsive culture dishes. Human islets were seeded onto fibroblast sheets. The efficacy of the fibroblast sheets was evaluated by dividing islets into three groups: the islets-alone group, the coculture with fibroblasts group, and the islet culture on fibroblast sheet group. The ultrastructure of the islets cultured on each fibroblast sheet was examined by electron microscopy. The fibroblast sheet expression of fibronectin (as a component of the extracellular matrix) was quantified by Western blotting. After 3 days of culture, islet viabilities were 70.2 ± 9.8%, 87.4 ± 5.8%, and 88.6 ± 4.5%, and survival rates were 60.3 ± 6.8%, 65.3 ± 3.0%, and 75.8 ± 5.6%, respectively. Insulin secretions in response to high-glucose stimulation were 5.1 ± 1.6, 9.4 ± 3.8, and 23.5 ± 12.4 µIU/islet, and interleukin-6 (IL-6) secretions were 3.0 ± 0.7, 5.1 ± 1.2, and 7.3 ± 1.0 ng/day, respectively. Islets were found to incorporate into the fibroblast sheets while maintaining a three-dimensional structure and well-preserved extracellular matrix. The fibroblast sheets exhibited a higher expression of fibronectin compared to fibroblasts alone. In conclusion, human dermal fibroblast sheets fabricated by tissue-engineering techniques could provide an optimal substrate for human islets, as a source of cytokines and extracellular matrix.
Collapse
Affiliation(s)
- Hajime Matsushima
- Department of Surgery, Nagasaki University, Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|