501
|
Lan J, Li W, Zhang F, Sun FY, Nagayama T, O'Horo C, Chen J. Inducible repair of oxidative DNA lesions in the rat brain after transient focal ischemia and reperfusion. J Cereb Blood Flow Metab 2003; 23:1324-39. [PMID: 14600440 DOI: 10.1097/01.wcb.0000091540.60196.f2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To determine the role of oxidative DNA damage and repair in brain injury after focal ischemia and reperfusion, the authors investigated DNA base damage and DNA base excision repair (BER) capacity, the predominant repair mechanism for oxidative DNA lesions, in the rat model of temporary middle cerebral artery occlusion. Contents of 8-hydroxyl-2'-deoxyguanosine (8-oxodG) and apurinic/apyrimidinic abasic site (AP site), hallmarks of oxidative DNA damage, were quantitatively measured in nuclear DNA extracts from brains 0.25 to 72 hours after 1 hour of middle cerebral artery occlusion. In parallel to the detection of DNA lesions, the capacity for 8-oxodG- or AP site-dependent DNA repair synthesis was measured in nuclear protein extracts using specific in vitro DNA repair assays. After postischemic reperfusion, the levels of 8-oxodG and AP sites were markedly increased in ischemic tissues. In frontal/parietal cortex, regions that survived ischemia, 8-oxodG and AP sites were efficiently repaired during reperfusion. However, in the caudate, a region that was destined to infarct, the DNA lesions were poorly repaired. In consistent with the patterns of endogenous lesion repair, a markedly induced and long-lasting (at least 72 hours) BER activity was detected in the cortex but not in the caudate after ischemia. The induced BER activity in ischemic cortex was attributed to the upregulation of gene expression and activation of selective BER enzymes, particularly DNA polymerase-beta and OGG1. These results strongly suggest that inducible DNA BER constitutes an important endogenous mechanism that protects brain against ischemia-induced oxidative neuronal injury.
Collapse
Affiliation(s)
- Jing Lan
- Department of Neurology and Pittsburgh Institute of Neurodegenerative Disorders, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
502
|
Abstract
A transient, sublethal ischemic interval confers resistance to a subsequent, otherwise lethal ischemic insult, in a process termed ischemic preconditioning. Poly(ADP-ribose) polymerase-1 (PARP-1) normally functions in DNA repair, but extensive PARP-1 activation is a major cause of ischemic cell death. Because PARP-1 can be cleaved and inactivated by caspases, we investigated the possibility that caspase cleavage of PARP-1 could contribute to ischemic preconditioning. Murine cortical cultures were treated with glucose deprivation combined with 0.5 mm 2-deoxyglucose and 5 mm azide ("chemical ischemia") to model the reversible energy failure that occurs during transient ischemia in vivo. Cortical cultures preconditioned with 15 min of chemical ischemia showed increased resistance to subsequent, longer periods of chemical ischemia. These cultures were also more resistant to the PARP-1 activating agent, N-methyl-N'-nitro-N-nitrosoguanidine, suggesting reduced capacity for PARP-1 activation after preconditioning. Immunostaining for the 89 kDa PARP-1 cleavage fragment and for poly(ADP-ribose) formation confirmed that PARP-1 was cleaved and PARP-1 activity was attenuated in the preconditioned neurons. Preconditioning also produced an increase in activated caspase-3 peptide and an increase in caspase-3 activity in the cortical cultures. A cause-effect relationship between caspase activation, PARP-1 cleavage, and ischemic preconditioning was supported by studies using the caspase inhibitor Ac-Asp-Glu-Val-Asp-aldehyde (DEVD-CHO). Cultures treated with DEVD-CHO after preconditioning showed reduced PARP-1 cleavage and reduced resistance to subsequent ischemia. These findings suggest a novel interaction between the caspase- and PARP-1-mediated cell death pathways in which sublethal caspase activation leads to PARP-1 cleavage, thereby increasing resistance to subsequent ischemic stress.
Collapse
|
503
|
Abstract
Reactive oxygen species have been implicated in brain injury after cerebral ischemia. These oxidants can damage proteins, lipids, and DNA, and lead to cell injury and necrosis. Oxidants are also initiators in intracellular cell death signaling pathways that may lead to apoptosis. The possible targets of this redox signaling include mitochondria, death membrane receptors, and DNA repair enzymes. Genetic manipulation of intrinsic antioxidants and the factors in the signaling pathways has provided substantial progress in understanding the mechanisms in cell death signaling pathways and involvement of oxygen radicals in ischemic brain injury. Future studies of these pathways may provide novel therapeutic strategies in clinical stroke.
Collapse
Affiliation(s)
- Taku Sugawara
- Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
504
|
Besson VC, Croci N, Boulu RG, Plotkine M, Marchand-Verrecchia C. Deleterious poly(ADP-ribose)polymerase-1 pathway activation in traumatic brain injury in rat. Brain Res 2003; 989:58-66. [PMID: 14519512 DOI: 10.1016/s0006-8993(03)03362-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Traumatic brain injury produces nitric oxide and reactive oxygen species. Peroxynitrite, resulting from the combination of nitric oxide and superoxide anions, triggers DNA strand breaks, leading to the activation of poly(ADP-ribose)polymerase-1. As excessive activation of this enzyme induces cell death, we examined the production of nitrosative stress, the activation of poly(ADP-ribose)polymerase-1, and the role of this enzyme in the outcomes of traumatic brain injury produced by fluid percussion in rats. Immunohistochemistry showed that 3-nitrotyrosine, an indicator of nitrosative stress, and poly(ADP-ribose), a marker of poly(ADP-ribose)polymerase-1 activation, were present as early as 30 min post-injury, and that persisted for 72 h. The poly(ADP-ribose)polymerase inhibitor, 3-aminobenzamide, at 10 and 30 mg/kg, significantly improved the neurological deficit, with a 60% reduction in the brain lesion volume and inhibition of poly(ADP-ribose)polymerase-1 activation. Thus, poly(ADP-ribose)polymerase-1 is involved in the neurological consequences of traumatic brain injury and may be a promising therapeutic target in clinical treatment of acute brain trauma.
Collapse
Affiliation(s)
- Valérie C Besson
- Laboratoire de Pharmacologie, Université René Descartes, 4 avenue de l'Observatoire, F-75006 Paris, France
| | | | | | | | | |
Collapse
|
505
|
Luo HR, Hattori H, Hossain MA, Hester L, Huang Y, Lee-Kwon W, Donowitz M, Nagata E, Snyder SH. Akt as a mediator of cell death. Proc Natl Acad Sci U S A 2003; 100:11712-7. [PMID: 14504398 PMCID: PMC208823 DOI: 10.1073/pnas.1634990100] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Protein kinase B/Akt possesses prosurvival and antiapoptotic activities and is involved in growth factor-mediated neuronal protection. In this study we establish Akt deactivation as a causal mediator of cell death. Akt deactivation occurs in multiple models of cell death including N-methyl-d-aspartate excitotoxicity, vascular stroke, and nitric oxide (NO)- and hydrogen peroxide (H2O2)-elicited death of HeLa, PC12, and Jurkat T cells. Akt deactivation characterizes both caspase-dependent and -independent cell death. Conditions rescuing cell death, such as treatment with poly(ADP-ribose) polymerase or NO synthase inhibitors and preconditioning with sublethal concentrations of N-methyl-d-aspartate, restore Akt activity. Infection of neurons with adenovirus expressing constitutively active Akt prevents excitotoxicity, whereas phosphatidylinositol 3-kinase inhibitors or infection with dominant negative Akt induce death of untreated neuronal cells.
Collapse
Affiliation(s)
- Hongbo R Luo
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
506
|
Ying W, Garnier P, Swanson RA. NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem Biophys Res Commun 2003; 308:809-13. [PMID: 12927790 DOI: 10.1016/s0006-291x(03)01483-9] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that is involved in DNA repair and activated by DNA damage. When activated, PARP-1 consumes NAD(+) to form ADP-ribose polymers on acceptor proteins. Extensive activation of PARP-1 leads to glycolytic blockade, energy failure, and cell death. These events have been postulated to result from NAD(+) depletion. Here, we used primary astrocyte cultures to directly test this proposal, utilizing the endogenous expression of connexin-43 hemichannels by astrocytes to manipulate intracellular NAD(+) concentrations. Activation of PARP-1 with the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) produced NAD(+) depletion, glycolytic blockade, and cell death. Cultures incubated in high (10mM) extracellular concentrations of NAD(+) after MNNG exposure showed normalization of intracellular NAD(+) concentrations. Repletion of intracellular NAD(+) in this manner completely restored glycolytic capacity and prevented cell death. These results suggest that NAD(+) depletion is the cause of glycolytic failure after PARP-1 activation.
Collapse
Affiliation(s)
- Weihai Ying
- Department of Neurology, University of California at San Francisco and Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | |
Collapse
|
507
|
Ferraris D, Ficco RP, Dain D, Ginski M, Lautar S, Lee-Wisdom K, Liang S, Lin Q, Lu MXC, Morgan L, Thomas B, Williams LR, Zhang J, Zhou Y, Kalish VJ. Design and synthesis of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. Part 4: biological evaluation of imidazobenzodiazepines as potent PARP-1 inhibitors for treatment of ischemic injuries. Bioorg Med Chem 2003; 11:3695-707. [PMID: 12901915 DOI: 10.1016/s0968-0896(03)00333-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A class of poly(ADP-ribose) polymerase (PARP-1) inhibitors, the imidazobenzodiazepines, are presented in this text. Several derivatives were designed and synthesized with ionizable groups (i.e., tertiary amines) in order to promote the desired pharmaceutical characteristics for administration in ischemic injury. Within this series, several compounds have excellent in vitro potency and our computational models accurately justify the structure-activity relationships (SARs) and highlight essential hydrogen bonding residues and hydrophobic pockets within the catalytic domain of PARP-1. Administration of these compounds (5q, 17a and 17e) in the mouse model of streptozotocin-induced diabetes results in maintainance of glucose levels. Furthermore, one such inhibitor (5g, IC(50)=26 nM) demonstrated significant reduction of infarct volume in the rat model of permanent focal cerebral ischemia.
Collapse
Affiliation(s)
- Dana Ferraris
- Guilford Pharmaceuticals Inc., 6611 Tributary Street, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
508
|
Yanamoto H, Nagata I, Niitsu Y, Xue JH, Zhang Z, Kikuchi H. Evaluation of MCAO stroke models in normotensive rats: standardized neocortical infarction by the 3VO technique. Exp Neurol 2003; 182:261-74. [PMID: 12895438 DOI: 10.1016/s0014-4886(03)00116-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The temporary three-vessel occlusion (3VO) technique with a surgical approach for middle cerebral artery (MCA) produces consistent cerebral infarction in the neocortex in normotensive rats. The intraluminal thread-occlusion technique with an endovascular approach targeting the MCA occlusion (MCAO) is more widely used since it does not require complicated intracranial procedures. The aim of this study was to review the methods/models for MCAO stroke in normotensive rats and to evaluate a 3VO stroke model that provides consistent degrees and variance of cortical stroke injury for additional discussion. First, we analyzed a model with modified temporary 3VO technique requiring less complicated procedures than the temporary 3VO model, i.e., temporary occlusion of the bilateral common carotid arteries (CCAs) superimposed on a permanent occlusion of the MCA, in Sprague-Dawley rats or C57BL/6J mice. In the microvascular tissue (cerebral) perfusion study, significant reductions in regional cerebral perfusion during the 3VO accompanied a rapid return to baseline after release of the CCAs, showing that the technique induces temporary focal ischemia. The average sizes and variances of the neocortical infarction in this model, together with those in the other normotensive rat models caused by the 3VO technique in the literature, indicated a standard size and variance of infarcted lesion in the control groups relative to the specific ischemic period. However, stroke injuries in the neocortex induced by the thread occlusion technique showed greater variability with less consistent lesion sizes. Inclusion/exclusion criteria to avoid inappropriate cases with too mild (no/faint infarction) or too great (huge/fatal infarction) severity in the ischemic injury may differ between laboratories in the thread occlusion model.
Collapse
Affiliation(s)
- Hiroji Yanamoto
- Laboratory for Cerebrovascular Disorders, Research Institute of the National Cardio-Vascular Center, 565-8565, Suita, Japan.
| | | | | | | | | | | |
Collapse
|
509
|
Sadanaga-Akiyoshi F, Yao H, Tanuma SI, Nakahara T, Hong JS, Ibayashi S, Uchimura H, Fujishima M. Nicotinamide attenuates focal ischemic brain injury in rats: with special reference to changes in nicotinamide and NAD+ levels in ischemic core and penumbra. Neurochem Res 2003; 28:1227-34. [PMID: 12834263 DOI: 10.1023/a:1024236614015] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the neuroprotective action of nicotinamide in focal ischemia. Male spontaneously hypertensive rats (5-7 months old) were subjected to photothrombotic occlusion of the right distal middle cerebral artery (MCA). Either nicotinamide (125 or 250 mg/kg) or vehicle was injected i.v. before MCA occlusion. Changes in the cerebral blood flow (CBF) were monitored using laser-Doppler flowmetry, and infarct volumes were determined with TTC staining 3 days after MCA occlusion. In another set of experiments, the brain nicotinamide and nicotinamide adenine dinucleotide (NAD+) levels were analyzed by HPLC using the frozen samples dissected from the regions corresponding to the ischemic core and penumbra. In the 250-mg/kg nicotinamide group, the ischemic CBF was significantly increased compared to that the untreated group, and the infarct volumes were substantially attenuated (-36%). On the other hand, the ischemic CBF in the 125 mg/kg nicotinamide group was not significantly different from the untreated CBF, however, the infarct volumes were substantially attenuated (-38%). Cerebral ischemia per se did not affect the concentrations of nicotinamide and NAD+ both in the penumbra and ischemic core. In the nicotinamide groups, the brain nicotinamide levels increased significantly in all areas examined, and brain NAD+ levels increased in the penumbra but not in the ischemic core. Increased brain levels of nicotinamide are considered to be primarily important for neuroprotection against ischemia, and the protective action may be partly mediated through the increased NAD+ in the penumbra.
Collapse
Affiliation(s)
- Fumiko Sadanaga-Akiyoshi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
510
|
Abstract
Falciparum malaria is a complex disease with no simple explanation, affecting organs where the parasite is rare as well as those organs where it is more common. We continue to argue that it can best be understood in terms of excessive stimulation of normally useful pathways mediated by inflammatory cytokines, the prototype being tumor necrosis factor (TNF). These pathways involve downstream mediators, such as nitric oxide (NO) that the host normally uses to control parasites, but which, when uncontrolled, have bioenergetic failure of patient tissues as their predictable end point. Falciparum malaria is no different from many other infectious diseases that are clinically confused with it. The sequestration of parasitized red blood cells, prominent in some tissues but absent in others with equal functional loss, exacerbates, but does not change, these overriding principles. Recent opportunities to stain a wide range of tissues from African pediatric cases of falciparum malaria and sepsis for the inducible NO synthase (iNOS) and migration inhibitory factor (MIF) have strengthened these arguments considerably. The recent demonstration of bioenergetic failure in tissue removed from sepsis patients being able to predict a fatal outcome fulfils a prediction of these principles, and it is plausible that this will be demonstrable in severe falciparum malaria. Understanding the disease caused by falciparum malaria at a molecular level requires an appreciation of the universality of poly(ADP-ribose) polymerase-1 (PARP-1) and Na(+)/K(+)-ATPase and the protean effects of activation by inflammation of the former that include inactivation of the latter.
Collapse
Affiliation(s)
- Ian A Clark
- School of Biochemistry and Molecular Biology, Australian National University, ACT 0200, Canberra, Australia.
| | | |
Collapse
|
511
|
Lu XCM, Massuda E, Lin Q, Li W, Li JH, Zhang J. Post-treatment with a novel PARG inhibitor reduces infarct in cerebral ischemia in the rat. Brain Res 2003; 978:99-103. [PMID: 12834903 DOI: 10.1016/s0006-8993(03)02774-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Poly(ADP-ribose) is synthesized from nicotinamide adenine dinucleotide (NAD(+)) by poly(ADP-ribose) polymerase (PARP) and degraded by poly(ADP-ribose) glycohydrolase (PARG). Overactivation of the poly(ADP-ribose) pathway increases nicotinamide and decreases cellular NAD(+)/ATP, which leads to cell death. Blocking poly(ADP-ribose) metabolism by inactivating PARP has been shown to reduce ischemia injury. We investigated whether disrupting the poly(ADP-ribose) cycle by PARG inhibition could achieve similar protection. We demonstrate that either pre- or post-ischemia treatment with 40 mg/kg of N-bis-(3-phenyl-propyl)9-oxo-fluorene-2,7-diamide, a novel PARG inhibitor, significantly reduces brain infarct volumes by 40-53% in a rat model of focal cerebral ischemia. Our result provides the first evidence that PARG inhibitors can ameliorate ischemic brain damage in vivo, in support of PARG as a new therapeutic target for treating ischemia injury.
Collapse
Affiliation(s)
- Xi-Chun M Lu
- Guilford Pharmaceuticals Inc, 6611 Tributary Street, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
512
|
Abstract
Cell death following cerebral ischemia is mediated by a complex pathophysiologic interaction of different mechanisms. In this Chapter we will outline the basic principles as well as introduce in vitro and in vivo models of cerebral ischemia. Mechanistically, excitotoxicity, peri-infarct depolarization, inflammation and apoptosis seem to be the most relevant mediators of damage and are promising targets for neuroprotective strategies.
Collapse
Affiliation(s)
- Matthias Endres
- Experimental Neurology, Charit, Humboldt-University of Berlin, D-10098 Berlin, Germany
| | | |
Collapse
|
513
|
Ferraris D, Ko YS, Pahutski T, Ficco RP, Serdyuk L, Alemu C, Bradford C, Chiou T, Hoover R, Huang S, Lautar S, Liang S, Lin Q, Lu MXC, Mooney M, Morgan L, Qian Y, Tran S, Williams LR, Wu QY, Zhang J, Zou Y, Kalish V. Design and synthesis of poly ADP-ribose polymerase-1 inhibitors. 2. Biological evaluation of aza-5[H]-phenanthridin-6-ones as potent, aqueous-soluble compounds for the treatment of ischemic injuries. J Med Chem 2003; 46:3138-51. [PMID: 12825952 DOI: 10.1021/jm030109s] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of aza-5[H]-phenanthridin-6-ones were synthesized and evaluated as inhibitors of poly ADP-ribose polymerase-1 (PARP-1). Inhibitory potency of the unsubstituted aza-5[H]-phenanthridin-6-ones (i.e., benzonaphthyridones) was dependent on the position of the nitrogen atom within the core structure. The A ring nitrogen analogues (7-, 8-, and 10-aza-5[H]-phenanthridin-6-ones) were an order of magnitude less potent than C ring nitrogen analogues (1-, 2-, 3-, and 4-aza-5[H]-phenanthridin-6-ones). Preliminary stroke results from 1- and 2-aza-5[H]-phenanthridin-6-one prompted structure-activity relationships to be established for several 2- and 3-substituted 1-aza-5[H]-phenanthridin-6-ones. The 2-substituted 1-aza-5[H]-phenanthridin-6-ones were designed to improve the solubility and pharmacokinetic profiles for this series of PARP-1 inhibitors. Most importantly, three compounds from this series demonstrated statistically significant protective effects in rat models of stroke and heart ischemia.
Collapse
Affiliation(s)
- Dana Ferraris
- Guilford Pharmaceuticals Inc, 6611 Tributary Street, Baltimore, Maryland 21224, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
514
|
Zingarelli B, Hake PW, O’Connor M, Denenberg A, Kong S, Aronow BJ. Absence of Poly(ADP-ribose) Polymerase-1 Alters Nuclear Factor-κB Activation and Gene Expression of Apoptosis Regulators after Reperfusion Injury. Mol Med 2003. [DOI: 10.1007/bf03402179] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
515
|
Chiarugi A, Meli E, Calvani M, Picca R, Baronti R, Camaioni E, Costantino G, Marinozzi M, Pellegrini-Giampietro DE, Pellicciari R, Moroni F. Novel isoquinolinone-derived inhibitors of poly(ADP-ribose) polymerase-1: pharmacological characterization and neuroprotective effects in an in vitro model of cerebral ischemia. J Pharmacol Exp Ther 2003; 305:943-9. [PMID: 12606624 DOI: 10.1124/jpet.103.048934] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Excessive activation of poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme catalyzing the transfer of ADP-ribose units from NAD to acceptor proteins, induces cellular energy failure by NAD and ATP depletion and has been proposed to play a causative role in a number of pathological conditions, including ischemia/reperfusion injury. In this study, we used an in vitro enzyme activity assay to characterize a series of newly synthesized isoquinolinone derivatives as potential PARP-1 inhibitors. Several compounds displayed powerful inhibitory activity: thieno[2,3-c]isoquinolin-5-one (TIQ-A) displayed a submicromolar IC50 of 0.45 +/- 0.1 microM, whereas the 5-hydroxy and 5-methoxy TIQ-A derivatives had IC50 values of 0.39 +/- 0.19 and 0.21 +/- 0.12 microM, respectively. We then examined the neuroprotective effects of the newly characterized compounds in cultured mouse cortical cells exposed to 60 min of oxygen and glucose deprivation (OGD). When PARP-1 inhibitors were present in the incubation medium during OGD and the subsequent 24-h recovery period, they significantly attenuated neuronal injury. TIQ-A provided neuroprotection even when added to the culture 30 min after OGD and was able to reduce the early activation of PARP induced by OGD as detected by flow cytometry. When the IC50 values observed in the PARP-1 activity assay for selected compounds were compared with their IC50 values for the neuroprotective activity, a significant correlation (r = 0.93, P < 0.01) was observed. Our results suggest that TIQ-A and its derivatives are a new class of neuroprotectants that may be helpful in studies aimed at understanding the involvement of PARP-1 in physiology and pathology.
Collapse
Affiliation(s)
- Alberto Chiarugi
- Dipartimento di Farmacologia Preclinica e Clinica, Università di Firenze, Viale Pieraccini, 6, 50139 Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
516
|
Huettenbrenner S, Maier S, Leisser C, Polgar D, Strasser S, Grusch M, Krupitza G. The evolution of cell death programs as prerequisites of multicellularity. Mutat Res 2003; 543:235-49. [PMID: 12787815 DOI: 10.1016/s1383-5742(02)00110-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
One of the hallmarks of multicellularity is that the individual cellular fate is sacrificed for the benefit of a higher order of life-the organism. The accidental death of cells in a multicellular organism results in swelling and membrane-rupture and inevitably spills cell contents into the surrounding tissue with deleterious effects for the organism. To avoid this form of necrotic death the cells of metazoans have developed complex self-destruction mechanisms, collectively called programmed cell death, which see to an orderly removal of superfluous cells. Since evolution never invents new genes but plays variations on old themes by DNA mutations, it is not surprising, that some of the genes involved in metazoan death pathways apparently have evolved from homologues in unicellular organisms, where they originally had different functions. Interestingly some unicellular protozoans have developed a primitive form of non-necrotic cell death themselves, which could mean that the idea of an altruistic death for the benefit of genetically identical cells predated the invention of multicellularity. The cell death pathways of protozoans, however, show no homology to those in metazoans, where several death pathways seem to have evolved in parallel. Mitochondria stands at the beginning of several death pathways and also determines, whether a cell has sufficient energy to complete a death program. However, the endosymbiotic bacterial ancestors of mitochondria are unlikely to have contributed to the recent mitochondrial death machinery and therefore, these components may derive from mutated eukaryotic precursors and might have invaded the respective mitochondrial compartments. Although there is no direct evidence, it seems that the prokaryotic-eukaryotic symbiosis created the space necessary for sophisticated death mechanisms on command, which in their distinct forms are major factors for the evolution of multicellular organisms.
Collapse
Affiliation(s)
- Simone Huettenbrenner
- Institute of Clinical Pathology, University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
517
|
Nozaki T, Fujihara H, Watanabe M, Tsutsumi M, Nakamoto K, Kusuoka O, Kamada N, Suzuki H, Nakagama H, Sugimura T, Masutani M. Parp-1 deficiency implicated in colon and liver tumorigenesis induced by azoxymethane. Cancer Sci 2003; 94:497-500. [PMID: 12824873 PMCID: PMC11160212 DOI: 10.1111/j.1349-7006.2003.tb01472.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Revised: 03/24/2003] [Accepted: 04/02/2003] [Indexed: 12/27/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (Parp-1) is activated by DNA strand breaks and functions in the maintenance of genomic integrity and cell death control. On the other hand, Parp-1 is also involved in transcriptional regulation of various genes, and the relationship between Parp-1 deficiency and susceptibility to tumorigenesis has not been fully elucidated. In the present study, Parp-1(-/-) mice, harboring exon 1 disruption in Parp-1, and Parp-1(+/+) animals were administered azoxymethane (AOM) at a dose of 10 mg/kg body weight once a week for 6 weeks. At 30 weeks after the first carcinogen treatment, mice were sacrificed. The incidence of animals bearing either adenomas or adenocarcinomas in the colon and the average number of colon tumors per mouse were significantly higher in Parp-1(-/-) mice than in Parp-1(+/+) animals. beta-Catenin accumulation was observed in 43/44 of Parp-1 (-/-) tumors and 19/21 of the Parp-1(+/+) tumors and was not statistically different between the genotypes. This suggests that most tumors developed through a pathway involving the alteration of Wnt-beta-catenin signaling in both Parp-1(-/-) and Parp-1(+/+) mice. In the liver, where AOM is primarily activated, the incidence of animals bearing nodules and the average number of nodules per section were significantly increased in Parp-1(-/-) mice compared with Parp-1(+/+) mice. Therefore, the results indicate that susceptibility to AOM-induced tumorigenesis in the colon and also in the liver is enhanced in Parp-1(-/-) mice, and Parp-1 could have a substantial role in colon and liver tumorigenesis.
Collapse
Affiliation(s)
- Tadashige Nozaki
- Biochemistry Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
518
|
Du L, Zhang X, Han YY, Burke NA, Kochanek PM, Watkins SC, Graham SH, Carcillo JA, Szabó C, Clark RSB. Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J Biol Chem 2003; 278:18426-33. [PMID: 12626504 DOI: 10.1074/jbc.m301295200] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Poly(ADP-ribosylation), primarily via poly(ADP-ribose) polymerase-1 (PARP-1), is a pluripotent cellular process important for maintenance of genomic integrity and RNA transcription in cells. However, during conditions of oxidative stress and energy depletion, poly(ADP-ribosylation) paradoxically contributes to mitochondrial failure and cell death. Although it has been presumed that poly(ADP-ribosylation) within the nucleus mediates this pathologic process, PARP-1 and other poly(ADP-ribosyltransferases) are also localized within mitochondria. To this end, the presence of PARP-1 and poly(ADP-ribosylation) were verified within mitochondrial fractions from primary cortical neurons and fibroblasts. Inhibition of poly(ADP-ribosylation) within the mitochondrial compartment preserved transmembrane potential (DeltaPsi(m)), NAD(+) content, and cellular respiration, prevented release of apoptosis-inducing factor, and reduced neuronal cell death triggered by oxidative stress. Treatment with liposomal NAD(+) also preserved DeltaPsi(m) and cellular respiration during oxidative stress. Furthermore, inhibition of poly(ADP-ribosylation) prevented intranuclear localization of apoptosis-inducing factor and protected neurons from excitotoxic injury; and PARP-1 null fibroblasts were protected from oxidative stress-induced cell death. Collectively these data suggest that poly(ADP-ribosylation) compartmentalized to the mitochondria can be converted from a homeostatic process to a mechanism of cell death when oxidative stress is accompanied by energy depletion. These data implicate intra-mitochondrial poly(ADP-ribosylation) as an important therapeutic target for central nervous system and other diseases associated with oxidative stress and energy failure.
Collapse
Affiliation(s)
- Lina Du
- Department of Critical Care Medicine, University of Pittsburgh, Safar Center for Resuscitation Research, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
519
|
Abstract
The use of appropriate animal models is essential to predict the value and effect of therapeutic approaches in human subjects. Focal (stroke) and global (cardiac arrest) cerebral ischemia represents diseases that are common in the human population. Stroke and cardiac arrest, which are major causes of death and disability, affect millions of individuals around the world and are responsible for the leading health care costs of all diseases. Understanding the mechanisms of injury and neuroprotection in these diseases is critical if we are ever to learn new target sites to treat ischemia. There are many animal models available to investigate injury mechanisms and neuroprotective strategies. This review summarizes many (but not all) small and large animal models of focal and global cerebral ischemia and discusses their advantages and disadvantages.
Collapse
Affiliation(s)
- Richard J Traystman
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
520
|
Narasimhan P, Fujimura M, Noshita N, Chan PH. Role of superoxide in poly(ADP-ribose) polymerase upregulation after transient cerebral ischemia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 113:28-36. [PMID: 12750003 DOI: 10.1016/s0169-328x(03)00062-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative stress plays a pivotal role in ischemic-reperfusion cell injury. Oxygen-derived free radicals trigger DNA strand damage, which is responsible for the activation of poly(ADP-ribose) polymerase (PARP). Recent studies have shown that peroxynitrite is the primary mediator of DNA damage and, hence, PARP activation after ischemia. PARP activation depletes NAD and ATP pools, ultimately resulting in necrotic cell death by loss of energy stores. Our study shows that PARP is upregulated as early as 15 min after 1 h of transient focal cerebral ischemia and remains for 8 h. We also examined the role of superoxide in PARP induction using copper/zinc-superoxide dismutase transgenic mice. Immunohistochemical and Western blotting data showed that there was no increased induction in PARP expression in these mice, suggesting that one of the mechanisms by which ischemic injury is attenuated in these mice might be by the inhibition of PARP induction. Furthermore, double staining of ischemic tissue with a PARP antibody and terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling (TUNEL) indicated that most cells that are positive for TUNEL do not stain for the PARP antibody, confirming recent reports that PARP activation is involved in necrotic cell death rather than apoptosis during ischemic-reperfusion injury.
Collapse
Affiliation(s)
- Purnima Narasimhan
- Department of Neurosurgery, Stanford University School of Medicine, CA 94305, USA
| | | | | | | |
Collapse
|
521
|
Joly LM, Benjelloun N, Plotkine M, Charriaut-Marlangue C. Distribution of Poly(ADP-ribosyl)ation and cell death after cerebral ischemia in the neonatal rat. Pediatr Res 2003; 53:776-82. [PMID: 12621128 DOI: 10.1203/01.pdr.0000059751.00465.f6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nuclear enzyme poly(ADP-ribose) polymerase (PARP) is a key component of molecular mechanisms leading to cell death or survival after an ischemic insult. Oxidative stress damages DNA, and breaks in the DNA strands activate PARP enzyme, leading to poly(ADP-ribosyl)ation of nuclear proteins. In this study, we investigated PARP activation using immunodetection of PAR polymers in the brain of neonatal rat pups subjected to unilateral focal ischemia with reperfusion. PARP activation was detected in the ischemic core between 2 and 18 h, and in the penumbra between 24 and 48 h in the middle cerebral artery (MCA) territory but also in territories of the anterior and posterior cerebral artery, and in white matter tracts. The intranuclear accumulation of PAR in cells preceded a positive terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick-end labeling, suggesting that PARP activation may actually contribute to delayed cell death. Pretreatment with 3-aminobenzamide (3-AB, 10 mg/kg) strongly reduced PARP activation and cell death. These data suggest that PARP activation represents, in the immature brain, the early sign of ischemic cell death. This raises the possibility of the use of PARP inhibitors not only immediately postischemia but perhaps also later to reduce ischemic lesion in the MCA territory and its connected structures.
Collapse
Affiliation(s)
- Luc-Marie Joly
- UPRES EA 2510, Laboratoire de Pharmacologie de la Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | |
Collapse
|
522
|
Satchell MA, Zhang X, Kochanek PM, Dixon CE, Jenkins LW, Melick J, Szabó C, Clark RSB. A dual role for poly-ADP-ribosylation in spatial memory acquisition after traumatic brain injury in mice involving NAD+ depletion and ribosylation of 14-3-3gamma. J Neurochem 2003; 85:697-708. [PMID: 12694396 DOI: 10.1046/j.1471-4159.2003.01707.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a homeostatic enzyme that paradoxically contributes to disturbances in spatial memory acquisition after traumatic brain injury (TBI) in transgenic mice, thought to be related to depletion of its substrate nicotinamide adenine dinucleotide (NAD+). In this study, systemic administration of the PARP-1 inhibitor 5-iodo-6-amino-1,2-benzopyrone (INH2BP) after TBI preserved brain NAD+ levels and dose-dependently reduced poly-ADP-ribosylation 24 h after injury. While moderate-dose INH2BP improved spatial memory acquisition after TBI; strikingly, both injured- and sham-mice receiving high-dose INH2BP were unable to learn in the Morris-water maze. Poly-ADP-ribosylated peptides identified using a proteomics approach yielded several proteins potentially associated with memory, including structural proteins (tubulin alpha and beta, gamma-actin, and alpha-internexin neuronal intermediate filament protein) and 14-3-3gamma. Nuclear poly-ADP-ribosylation of 14-3-3gamma was completely inhibited by the dose of INH2BP that produced profound memory disturbances. Thus, partial inhibition of poly-ADP-ribosylation preserves NAD+ and improves functional outcome after TBI, whereas more complete inhibition impairs spatial memory acquisition independent of injury, and is associated with ribosylation of 14-3-3gamma.
Collapse
Affiliation(s)
- Margaret A Satchell
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
523
|
Zingarelli B, Hake PW, O'Connor M, Denenberg A, Kong S, Aronow BJ. Absence of poly(ADP-ribose)polymerase-1 alters nuclear factor-kappa B activation and gene expression of apoptosis regulators after reperfusion injury. Mol Med 2003; 9:143-53. [PMID: 14571322 PMCID: PMC1430828 DOI: 10.2119/2003-00011.zingarelli] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 06/23/2003] [Indexed: 11/06/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is activated in response to DNA injury in eukaryotic cells and has been implicated in cell dysfunction in reperfusion injury. In this study we investigated the role of PARP-1 on apoptosis in early myocardial reperfusion injury. Mice genetically deficient of PARP-1 (PARP-1-/-) and wild-type littermates were subjected to myocardial ischemia and reperfusion. Myocardial injury was assessed by measuring the serum levels of creatine phosphokinase and oligonucleosomal DNA fragments in the infarcted area. Expression of the anti-apoptotic protein, Bcl-2, and the pro-apoptotic protein, Bax, was analyzed by Western blot. Activation of caspases, important executioners of apoptosis, and activation of the nuclear factor kappa B (NF-kappa B) pathway were evaluated. Gene expression profiles for apoptotic regulators between PARP-1-/- and wild-type mice also were compared. Myocardial damage in PARP-1-/- mice was reduced significantly, as indicated by lower serum creatine phosphokinase levels and reduction of apoptosis, as compared with wild-type mice. Western blot analyses showed increased expression of Bcl-2, which was associated with reduction of caspase-1 and caspase-3 activation. This cardioprotection was associated with significant reduction of the activation of I kappa B kinase complex and NF-kappa B DNA binding. Microarray analysis demonstrated that the expression of 29 known genes of apoptotic regulators was significantly altered in PARP-1-/- mice compared with wild-type mice, whereas 6 known genes were similarly expressed in both genotypes. The data indicate that during reperfusion absence of PARP-1 leads to reduction of myocardial apoptosis, which is associated with reduced NF-kappa B activation and altered gene expression profiles.
Collapse
Affiliation(s)
- Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
524
|
Skaper SD. Poly(ADP-Ribose) polymerase-1 in acute neuronal death and inflammation: a strategy for neuroprotection. Ann N Y Acad Sci 2003; 993:217-28; discussion 287-8. [PMID: 12853316 DOI: 10.1111/j.1749-6632.2003.tb07532.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is an abundant nuclear enzyme that is activated primarily by DNA damage. Upon activation, the enzyme hydrolyzes NAD(+) to nicotinamide and transfers ADP ribose units to a variety of nuclear proteins, including histones and PARP-1 itself. This process is important in facilitating DNA repair. However, excessive activation of PARP-1 can lead to significant decrements in NAD(+), and ATP depletion, and cell death (suicide hypothesis). In response to cellular damage by oxygen radicals or excitotoxicity, a rapid and strong activation of PARP-1 occurs in neurons. Excessive PARP-1 activation is implicated in a variety of insults, including cerebral and cardiac ischemia, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism, traumatic spinal cord injury, and streptozotocin-induced diabetes. The use of PARP inhibitors has, therefore, been proposed as a protective therapy in decreasing excitotoxic neuronal cell death, as well as ischemic and other tissue damage. Excitotoxic brain lesions initially result in the primary destruction of brain parenchyma and subsequently in secondary damage of neighboring neurons hours after the insult. This secondary damage of initially surviving neurons accounts for most of the volume of the infarcted area and the loss of brain function after a stroke. One major component of secondary neuronal damage is the migration of macrophages and microglial cells toward the sites of injury, where they produce large quantities of toxic cytokines and oxygen radicals. Recent evidence indicates that this microglial migration is strongly controlled in living brain tissue by expression of the integrin CD11a, which is regulated in turn by PARP-1, proposing that PARP-1 downregulation may, therefore, be a promising strategy in protecting neurons from this secondary damage, as well. Studies demonstrating an important role for PARP-1 in the regulation of gene transcription have further increased the intricacy of poly(ADP-ribosyl)ation in the control of cell homeostasis and challenge the notion that energy collapse is the sole mechanism by which poly(ADP-ribose) formation contributes to cell death. The hypothesis that PARPs might regulate cell fate as essential modulators of death and survival transcriptional programs is discussed with relation to nuclear factor kappaB and p53.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Neurophysiology and Cell Sciences, Neurology and GI Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Limited, Harlow, United Kingdom.
| |
Collapse
|
525
|
Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 2003; 4:399-415. [PMID: 12728267 DOI: 10.1038/nrn1106] [Citation(s) in RCA: 1315] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Eng H Lo
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
526
|
Tsuchiya D, Hong S, Kayama T, Panter SS, Weinstein PR. Effect of suture size and carotid clip application upon blood flow and infarct volume after permanent and temporary middle cerebral artery occlusion in mice. Brain Res 2003; 970:131-9. [PMID: 12706254 DOI: 10.1016/s0006-8993(03)02300-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Problems with the intraluminal suture method for induction of focal cerebral ischemia in genetically altered mice include occurrence of subarachnoid hemorrhage (SAH) and variability of infarct volume. We hypothesized that use of 5-0 curved or 6-0 straight suture for carotid cannulation might decrease SAH and that the application of a microvascular clip to the common carotid artery (CCA) might decrease variability of infarct volume. The purpose of this study is to evaluate and explain the results of these technical modifications. Strain related differences in vascular anatomy were evaluated. Male C57BL/6 mice were divided into two groups for permanent and temporary middle cerebral artery occlusion (MCAO). Results of 5-0 curved suture and 6-0 straight suture insertion with and without CCA clip application were examined. Cerebral perfusion was monitored by laser-Doppler flowmetry and infarct volume was measured. After permanent MCAO, larger and more consistent infarct volumes resulted using CCA clip application with a 6-0 but not with a 5-0 suture. After temporary MCAO, the SAH rate was 12.5% with a 5-0 curved suture and 11.1% with a 6-0 straight suture. A 40% rate was observed in a pilot study with 5-0 straight suture. Infarct volume after temporary MCAO with a CCA clip was significantly larger and variability of infarct volume was smaller than without the CCA clip using 5-0 curved and 6-0 straight suture. In summary, SAH is less frequent using a 5-0 curved or 6-0 straight suture. Infarct volume is enlarged by application of a CCA clip (249).
Collapse
Affiliation(s)
- Daisuke Tsuchiya
- Department of Neurological Surgery, 787-M, University of California and VA Medical Center, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
527
|
Ferrer I, Planas AM. Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 2003; 62:329-39. [PMID: 12722825 DOI: 10.1093/jnen/62.4.329] [Citation(s) in RCA: 280] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Focal ischemia by middle cerebral artery occlusion (MCAO) results in necrosis at the infarct core and activation of complex signal pathways for cell death and cell survival in the penumbra. Recent studies have shown activation of the extrinsic and intrinsic pathways of caspase-mediated cell death, as well as activation of the caspase-independent signaling pathway of apoptosis in several paradigms of focal cerebral ischemia by transient MCAO to adult rats and mice. The extrinsic pathway (cell-death receptor pathway) is initiated by activation of the Fas receptor after binding to the Fas ligand (Fas-L); increased Fas and Fas-L expression has been shown following focal ischemia. Moreover, focal ischemia is greatly reduced in mice expressing mutated (nonfunctional) Fas. Increased expression of caspase-1, -3, -8, and -9, and of cleaved caspase-8, has been observed in the penumbra. Activation of the intrinsic (mitochondrial) pathway following focal ischemia is triggered by Bax translocation to and competition with Bcl-2 and other members of the Bcl-2 family in the mitochondria membrane that is followed by cytochrome c release to the cytosol. Bcl-2 over-expression reduces infarct size. Cytochrome c binds to Apaf-1 and dATP and recruits and cleaves pro-caspase-9 in the apoptosome. Both caspase-8 and caspase-9 activate caspase-3, among other caspases, which in turn cleave several crucial substrates, including the DNA-repairing enzyme poly(ADP-ribose) polymerase (PARP), into fragments of 89 and 28 kDa. Inhibition of caspase-3 reduces the infarct size, further supporting caspase-3 activation following transient MCAO. In addition, caspase-8 cleaves Bid, the truncated form of which has the capacity to translocate to the mitochondria and induce cytochrome c release. The volume of brain infarct is greatly reduced in Bid-deficient mice, thus indicating activation of the mitochondrial pathway by cell-death receptors following focal ischemia. Recent studies have shown the mitochondrial release of other factors; Smac/DIABLO (Smac: second mitochondrial activator of caspases: DIABLO: direct IAP binding protein with low pI) binds to and neutralizes the effects of the X-linked inhibitor of apoptosis (XIAP). Finally, apoptosis-inducing factor (AIF) translocates to the mitochondria and the nucleus following focal ischemia and produces peripheral chromatin condensation and large-scale DNA strands, thus leading to the caspase-independent cell death pathway of apoptosis. Delineation of the pro-apoptotic and pro-survival signals in the penumbra may not only increase understanding of the process but also help to rationalize strategies geared to reducing brain damage targeted at the periphery of the infarct core.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institut de Neuropatologia, Servei d'Anatomia Patològica, Hospital Princeps d'Espanya, Hospitalet de Llobregat, Spain.
| | | |
Collapse
|
528
|
Abstract
Given the presence of continuous endogenous and exogenous sources of stress, mammalian species have evolved complex systems of protection, detoxification and repair, in order to maintain homeostasis during development and until reproductive maturity for the sake of the species. However, since no system is perfect, complete prevention of damage is unlikely to occur. Accumulation of macromolecular damage, including damage to DNA and genomic instability, is considered a driving force for the ageing process and age-related diseases. One of the immediate eukaryotic cellular responses to DNA breakage is the covalent post-translational modification of nuclear proteins with poly(ADP-ribose) from NAD+ as precursor, mostly catalysed by poly(ADP-ribose) polymerase-1 (PARP-1). Poly(ADP-ribosyl)ation is involved in DNA base-excision repair (BER), DNA-damage signalling and regulation of genomic stability. In recent years, many groups have become involved in PARP field, shedding light on new partners for PARP-1, new members of the PARP family and new physiological and pathophysiological properties for the founding member of the poly(ADP-ribose) polymerase super family. The present review focuses on PARP-1 and its role in the maintenance of genome stability and in mammalian longevity.
Collapse
Affiliation(s)
- Marie-Laure Muiras
- School of Clinical Medical Sciences-Gerontology, University of Newcastle, Newcastle General Hospital, Newcastle upon Tyne NE4 6BE, UK.
| |
Collapse
|
529
|
Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol 2003; 284:F608-27. [PMID: 12620919 DOI: 10.1152/ajprenal.00284.2002] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In humans and experimental models of renal ischemia, tubular cells in various nephron segments undergo necrotic and/or apoptotic cell death. Various factors, including nucleotide depletion, electrolyte imbalance, reactive oxygen species, endonucleases, disruption of mitochondrial integrity, and activation of various components of the apoptotic machinery, have been implicated in renal cell vulnerability. Several approaches to limit the injury and augment the regeneration process, including nucleotide repletion, administration of growth factors, reactive oxygen species scavengers, and inhibition of inducers and executioners of cell death, proved to be effective in animal models. Nevertheless, an effective approach to limit or prevent ischemic renal injury in humans remains elusive, primarily because of an incomplete understanding of the mechanisms of cellular injury. Elucidation of cell death pathways in animal models in the setting of renal injury and extrapolation of the findings to humans will aid in the design of potential therapeutic strategies. This review evaluates our understanding of the molecular signaling events in apoptotic and necrotic cell death and the contribution of various molecular components of these pathways to renal injury.
Collapse
Affiliation(s)
- Babu J Padanilam
- Department of Physiology and Biophysics, University of Nebraska Medical Center, Omaha, Nebraska 68198-4575, USA.
| |
Collapse
|
530
|
Boulares AH, Zoltoski AJ, Sherif ZA, Jolly P, Massaro D, Smulson ME. Gene knockout or pharmacological inhibition of poly(ADP-ribose) polymerase-1 prevents lung inflammation in a murine model of asthma. Am J Respir Cell Mol Biol 2003; 28:322-329. [PMID: 12594058 DOI: 10.1165/rcmb.2001-0015oc] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway inflammation is a central feature of asthma and chronic obstructive pulmonary disease. Reactive oxygen species (ROS) contribute to inflammation by damaging DNA, which, in turn, results in the activation of poly(ADP-ribose) polymerase-1 (PARP-1) and depletion of its substrate, nicotinamide adenine dinucleotide. Here we show that prevention of PARP-1 activation protects against both ROS-induced airway epithelial cell injury in vitro and airway inflammation in vivo. H(2)O(2) induced the generation of ROS, PARP-1 activation and concomitant nicotinamide adenine dinucleotide depletion, and release of lactate dehydrogenase in A549 human airway epithelial cells. These effects were blocked by the PARP-1 inhibitor 3-aminobenzamide (3-AB). Furthermore, 3-AB inhibited both activation of the proinflammatory transcription factor nuclear factor-kappaB and expression of the interleukin-8 gene induced by H(2)O(2) in these cells. In a murine model of allergen-induced asthma, 3-AB prevented airway inflammation elicited by ovalbumin. Moreover, PARP-1 knockout mice were resistant to such ovalbumin-induced inflammation. These protective effects were associated with an inhibition of expression of the inducible nitric oxide synthase. These results implicate PARP-1 activation in airway inflammation, and suggest this enzyme as a potential target for the development of new therapeutic strategies in the treatment of asthma as well as other respiratory disorders such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- A Hamid Boulares
- Department of Biochemistry and Molecular Biology, Lung Laboratory, Georgetown University School of Medicine, Washington, District of Columbia, USA.
| | | | | | | | | | | |
Collapse
|
531
|
Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP, Bhardwaj A. An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A 2003; 100:2106-11. [PMID: 12578959 PMCID: PMC149966 DOI: 10.1073/pnas.0437946100] [Citation(s) in RCA: 408] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The water channel AQP4 is concentrated in perivascular and subpial membrane domains of brain astrocytes. These membranes form the interface between the neuropil and extracerebral liquid spaces. AQP4 is anchored at these membranes by its carboxyl terminus to alpha-syntrophin, an adapter protein associated with dystrophin. To test functions of the perivascular AQP4 pool, we studied mice homozygous for targeted disruption of the gene encoding alpha-syntrophin (alpha-Syn(-/-)). These animals show a marked loss of AQP4 from perivascular and subpial membranes but no decrease in other membrane domains, as judged by quantitative immunogold electron microscopy. In the basal state, perivascular and subpial astroglial end-feet were swollen in brains of alpha-Syn(-/-) mice compared to WT mice, suggesting reduced clearance of water generated by brain metabolism. When stressed by transient cerebral ischemia, brain edema was attenuated in alpha-Syn(-/-) mice, indicative of reduced water influx. Surprisingly, AQP4 was strongly reduced but alpha-syntrophin was retained in perivascular astroglial end-feet in WT mice examined 23 h after transient cerebral ischemia. Thus alpha-syntrophin-dependent anchoring of AQP4 is sensitive to ischemia, and loss of AQP4 from this site may retard the dissipation of postischemic brain edema. These studies identify a specific, syntrophin-dependent AQP4 pool that is expressed at distinct membrane domains and which mediates bidirectional transport of water across the brain-blood interface. The anchoring of AQP4 to alpha-syntrophin may be a target for treatment of brain edema, but therapeutic manipulations of AQP4 must consider the bidirectional water flux through this molecule.
Collapse
Affiliation(s)
- Mahmood Amiry-Moghaddam
- Centre for Molecular Biology and Neuroscience and Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
532
|
Andreone TL, O'Connor M, Denenberg A, Hake PW, Zingarelli B. Poly(ADP-ribose) polymerase-1 regulates activation of activator protein-1 in murine fibroblasts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2113-20. [PMID: 12574383 DOI: 10.4049/jimmunol.170.4.2113] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP)-1 is activated in response to DNA injury in the nucleus of eukaryotic cells and has been implicated in cell dysfunction in inflammation. We investigated the role of PARP-1 on the AP-1 pathway, which is involved in the signal transduction of the inflammatory process. In murine wild-type fibroblasts, oxidative challenge by peroxynitrite and hydrogen peroxide or immunological challenge by IL-1 and 20% FCS induced phosphorylation of the mitogen-activated protein kinase kinase-4, activation of c-Jun N-terminal kinase (JNK), and DNA binding of AP-1. In comparative experiments, peroxynitrite induced DNA binding of heat shock factor-1. Pretreatment of wild-type cells with 5-iodo-6-amino-1,2-benzopyrone, a PARP-1 inhibitor, inhibited JNK activation and DNA binding of AP-1. In parallel experiments in PARP-1-deficient fibroblasts, DNA binding of AP-1 was completely abolished. Activation of JNK was significantly elevated at basal condition, but it exhibited a lesser increase after oxidative or immunological challenge than in wild-type fibroblasts. Nuclear content of phosphorylated mitogen-activated protein kinase kinase-4 was observed in PARP-1-deficient cells after peroxynitrite challenge only. Western blotting analysis for AP-1 subunits indicated that c-Fos was similarly expressed in wild-type and PARP-1-deficient cells. Phosphorylated c-Jun was expressed after oxidative or immunological challenge, but not in basal condition, in wild-type cells; however, it was significantly elevated at basal condition and further enhanced after oxidative or immunological challenge in PARP-1-deficient cells. No DNA binding of heat shock factor-1 was observed in PARP-1-deficient cells. These data demonstrate that PARP-1 plays a pivotal role in the modulation of transcription.
Collapse
Affiliation(s)
- Teresa L Andreone
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
533
|
Muranyi M, Fujioka M, He Q, Han A, Yong G, Csiszar K, Li PA. Diabetes activates cell death pathway after transient focal cerebral ischemia. Diabetes 2003; 52:481-6. [PMID: 12540624 DOI: 10.2337/diabetes.52.2.481] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is well known that diabetes aggravates brain damage in experimental and clinical stroke subjects. Diabetes accelerates maturation of neuronal damage, increases infarct volume, and induces postischemic seizures. The mechanism by which diabetes increases ischemic brain damage is still elusive. Our previous experiments indicate that mitochondria dysfunction may play a role in neuronal death. The objective of this study is to determine whether streptozotocin-induced diabetes activates cell death pathway after a brief period of focal cerebral ischemia. Both diabetic and nondiabetic rats were subjected to 30 min of transient middle cerebral artery occlusion, followed by 0, 0.5, 3, and 6 h of reperfusion. We first determined the pathological outcomes after 7 days of recovery by histopathology, and then detected key components of programmed cell death pathway using immunocytochemistry coupled with confocal laser-scanning microscopy and Western blot analysis. The results show that the cytosolic cytochrome c increased mildly after reperfusion in nondiabetic samples. This increase was markedly enhanced in diabetic rats in both ischemic focus and penumbra. Subsequently, caspase-3 was activated and poly-ADP ribose polymerase (PARP) was cleaved. Our results suggest that activation of apoptotic cell death pathway may play a pivotal role in exaggerating brain damage in diabetic subjects.
Collapse
Affiliation(s)
- Marianna Muranyi
- Pacific Biomedical Research Center and John A. Burns School of Medicine, University of Hawaii, Honolulu 96822, USA
| | | | | | | | | | | | | |
Collapse
|
534
|
Abstract
For a long time necrosis was considered as an alternative to programmed cell death, apoptosis. Indeed, necrosis has distinct morphological features and it is accompanied by rapid permeabilization of plasma membrane. However, recent data indicate that, in contrast to necrosis caused by very extreme conditions, there are many examples when this form of cell death may be a normal physiological and regulated (programmed) event. Various stimuli (e.g., cytokines, ischemia, heat, irradiation, pathogens) can cause both apoptosis and necrosis in the same cell population. Furthermore, signaling pathways, such as death receptors, kinase cascades, and mitochondria, participate in both processes, and by modulating these pathways, it is possible to switch between apoptosis and necrosis. Moreover, antiapoptotic mechanisms (e.g., Bcl-2/Bcl-x proteins, heat shock proteins) are equally effective in protection against apoptosis and necrosis. Therefore, necrosis, along with apoptosis, appears to be a specific form of execution phase of programmed cell death, and there are several examples of necrosis during embryogenesis, a normal tissue renewal, and immune response. However, the consequences of necrotic and apoptotic cell death for a whole organism are quite different. In the case of necrosis, cytosolic constituents that spill into extracellular space through damaged plasma membrane may provoke inflammatory response; during apoptosis these products are safely isolated by membranes and then are consumed by macrophages. The inflammatory response caused by necrosis, however, may have obvious adaptive significance (i.e., emergence of a strong immune response) under some pathological conditions (such as cancer and infection). On the other hand, disturbance of a fine balance between necrosis and apoptosis may be a key element in development of some diseases.
Collapse
|
535
|
Thiemermann C. Membrane-permeable radical scavengers (tempol) for shock, ischemia-reperfusion injury, and inflammation. Crit Care Med 2003; 31:S76-84. [PMID: 12544980 DOI: 10.1097/00003246-200301001-00011] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Christoph Thiemermann
- Department of Experimental Medicine and Nephrology, William Harvey Research Institute, St. Bartholomew's Hospital Medical College, London EC1M6BQ, UK.
| |
Collapse
|
536
|
Chen D, Minami M, Henshall DC, Meller R, Kisby G, Simon RP. Upregulation of mitochondrial base-excision repair capability within rat brain after brief ischemia. J Cereb Blood Flow Metab 2003; 23:88-98. [PMID: 12500094 DOI: 10.1097/01.wcb.0000039286.37737.19] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The mechanism by which brief episodes of cerebral ischemia confer protection (tolerance) against subsequent prolonged ischemic challenges remains unclear, but may involve upregulation of cell injury repair capability. The mitochondrion is a key site for the regulation of cell death pathways, and damage to mitochondrial genes has been linked to a number of neurologic diseases and aging. Therefore, the authors examined the response of the DNA base excision repair (BER) pathway in rat brain mitochondria after either brief (tolerance-inducing) or prolonged (injury-producing) focal cerebral ischemia. Brief (30-minute) middle cerebral artery occlusion (MCAO) induced mild oxidative mitochondrial DNA damage and initiated a prolonged (up to 72-hour) activation above control levels of the principal enzymes of the mitochondrial BER pathway, including uracil DNA glycosylase, apurinic/apyrimidinic (AP) endonuclease, DNA polymerase-gamma, and DNA ligase. In contrast, prolonged (100-minute MCAO) ischemia induced more substantial mitochondrial oxidative DNA damage whereas elevation of BER activity was transient (approximately 1 hour), declining to less than control levels over the course of 4 to 72 hours. These data reveal the differences in BER capacity after brief or prolonged ischemia, which may contribute to the neuron's ability to resist subsequent ischemic insults.
Collapse
Affiliation(s)
- Dexi Chen
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Oregon Health Sciences University, Portland 97232, USA
| | | | | | | | | | | |
Collapse
|
537
|
Tabuchi K, Hoshino T, Murashita H, Oikawa K, Uemaetomari I, Nishimura B, Tobita T, Hara A. Involvement of Poly(ADP-Ribose) Synthetase in Acoustic Trauma of The Cochlea. TOHOKU J EXP MED 2003; 200:195-202. [PMID: 14580150 DOI: 10.1620/tjem.200.195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated effects of poly(ADP-ribose) synthetase (PARS) inhibitors on acoustic trauma. Albino guinea pigs were intravenously given 3-aminobenzamide, nicotinamide or 3-aminobenzoic acid (an inactive analog of 3-aminobenzamide) just prior to exposure to a 2 kHz pure tone of 120 dB sound pressure level (SPL) for 10 minutes. The threshold of the compound action potential (CAP) and the amplitude of distortion-product otoacoustic emissions (DPOAEs) were measured before and 4 hours after the acoustic overexposure. Statistically significant decreases in the CAP threshold shifts and significant increases in the DPOAE amplitudes were observed 4 hours after the acoustic overexposure in the animals treated with 3-aminobenzamide or nicotinamide, whereas 3-aminobenzoic acid did not exert any protective effect. These results strongly suggest that excessive activation of PARS is involved in generation of the acoustic trauma.
Collapse
Affiliation(s)
- Keiji Tabuchi
- Department of Otolaryngology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
538
|
Liu PK. Ischemia-reperfusion-related repair deficit after oxidative stress: implications of faulty transcripts in neuronal sensitivity after brain injury. J Biomed Sci 2003; 10:4-13. [PMID: 12566981 PMCID: PMC2695961 DOI: 10.1007/bf02255992] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2002] [Accepted: 06/26/2002] [Indexed: 01/09/2023] Open
Abstract
Diseases of the heart are the No. 1 killer in industrialized countries. Brain injury can develop as a result of cerebral ischemia-reperfusion due to stroke (brain attack) and other cardiovascular diseases. Learning about the disease is the best way to reduce disability and death. We present here whether gene repair activities are associated with neuronal death in an ischemia-reperfusion model that simulates stroke in male Long-Evans rats. This experimental stroke model is known to induce necrosis in the ischemic cortex. Cerebral ischemia causes overactivation of membrane receptors and accumulation of extracellur glutamate and intracellular calcium, which activates neuronal nitric oxide synthase, causing damage to lipids, proteins, and nucleic acids, and reduces energy sources with consequent functional deterioration, leading to cell death. Restoration processes normally repair genes with few errors. However, ischemia elevates oxidative DNA lesions despite these repair mechanisms. These episodes concurrently occur with the induction of immediate-early genes that critically activate other late genes in the signal transduction pathway. Damage, repair, and transcription of the c-FOS gene are presented here as examples, because Fos peptide, one of the components of activator protein 1, activates nerve growth factor and repair mechanisms. The results of our studies show that treatments with 7-nitroindazole, a specific inhibitor of nitric oxide synthase known to attenuate nitric oxide, oxidative DNA lesions, and necrosis, increase intact c-fos mRNA levels after stroke. This suggests that the accuracy of gene expression could be accounted for the recovery of cellular function after cerebral injury.
Collapse
Affiliation(s)
- Philip K Liu
- Departments of Neurosurgery and Molecular and Cell Biology and Cardiovascular Disease Program of the Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
539
|
Kim SH, Henkel JS, Beers DR, Sengun IS, Simpson EP, Goodman JC, Engelhardt JI, Siklós L, Appel SH. PARP expression is increased in astrocytes but decreased in motor neurons in the spinal cord of sporadic ALS patients. J Neuropathol Exp Neurol 2003; 62:88-103. [PMID: 12528821 DOI: 10.1093/jnen/62.1.88] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evidence for increased oxidative stress and DNA damage in amyotrophic lateral sclerosis (ALS) prompted studies to determine if the expression of poly(ADP-ribose) polymerase (PARP) is increased in ALS. Using Western analyses of postmortem tissue, we demonstrated that PARP-immunoreactivity (PARP-IR) was increased 3-fold in spinal cord tissues of sporadic ALS (sALS) patients compared with non-neurological disease controls. Despite the increased PARP-IR, PARP mRNA expression was not increased significantly. Immunohistochemical analyses revealed PARP-IR was increased in both white and gray matter of sALS spinal cord. While PARP-IR was predominantly seen in astrocytes, large motor neurons displayed reduced staining compared with controls. This result contrasts sharply to the staining of Alzheimer and MPTP-induced Parkinson diseased tissue, where poly(ADP-ribose) (PAR)-IR was seen mostly in neurons, with little astrocytic staining. PARP-IR was increased in the pellet fraction of sALS homogenates compared with control homogenates, representing potential PARP binding to chromatin or membranes and suggesting a possible mechanism of PARP stabilization. The present results demonstrate glial alterations in sALS spinal cord tissue and support the role of glial alterations in sALS pathogenesis. Additionally, these results demonstrate differences in sALS spinal motor neurons and astrocytes compared to brain neurons and astrocytes in Alzheimer disease and MPTP-induced Parkinson disease despite the presence of markers for oxidative stress in all 3 diseases.
Collapse
Affiliation(s)
- Seung H Kim
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
540
|
Pacher P, Cziráki A, Mabley JG, Liaudet L, Papp L, Szabó C. Role of poly(ADP-ribose) polymerase activation in endotoxin-induced cardiac collapse in rodents. Biochem Pharmacol 2002; 64:1785-1791. [PMID: 12445868 DOI: 10.1016/s0006-2952(02)01421-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reactive oxygen and nitrogen species are overproduced in the cardiovascular system during circulatory shock. Oxidant-induced cell injury involves the activation of poly(ADP-ribose) polymerase (PARP). Using a dual approach of PARP-1 suppression, by genetic deletion or pharmacological inhibition with the new potent phenanthridinone PARP inhibitor PJ34 [the hydrochloride salt of N-(oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide], we studied whether the impaired cardiac function in endotoxic shock is dependent upon the PARP pathway. Escherichia coli endotoxin (lipopolysaccharide, LPS) at 55 mg/kg, i.p., induced a severe depression of the systolic and diastolic contractile function, tachycardia, and a reduction in mean arterial blood pressure in both rats and mice. Treatment with PJ34 significantly improved cardiac function and increased the survival of rodents. In addition, LPS-induced depression of left ventricular performance was significantly less pronounced in PARP-1 knockout mice (PARP(-/-)) as compared with their wild-type littermates (PARP(+/+)). Thus, PARP activation in the cardiovascular system is an important contributory factor to the cardiac collapse and death associated with endotoxin shock.
Collapse
Affiliation(s)
- Pál Pacher
- Inotek Corporation, Suite 419E, 100 Cummings Center, Beverly, MA 01915, USA
| | | | | | | | | | | |
Collapse
|
541
|
Abstract
Recent studies using ischemia/reperfusion models of brain injury suggest that there is a period of time during which the formation of oxidative DNA lesions (ODLs) exceeds removal. This interval is a window of opportunity in which to study the effect of gene damage on gene expression in the brain, because the presence of excessive ODLs mimics a deficiency in gene repair, which has been shown to be associated with neurological disorders. Evidence from studies using similar models indicates that expression of faulty transcripts from ODL-infested genes and non-sense mutation in repaired genes occur before the process of cell death. Preventing the formation of ODLs and enhancing ODL repair are shown to increase the expression of intact transcripts and attenuate cell death. Understanding this mechanism could lead to the development of therapeutic techniques (physiologic, pharmacological, and/or genomic) that can enhance recovery.
Collapse
Affiliation(s)
- Philip K Liu
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
542
|
Gan L, Anton KE, Masterson BA, Vincent VAM, Ye S, Gonzalez-Zulueta M. Specific interference with gene expression and gene function mediated by long dsRNA in neural cells. J Neurosci Methods 2002; 121:151-7. [PMID: 12468005 DOI: 10.1016/s0165-0270(02)00230-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Double-stranded (ds) RNA-induced sequence-specific interference with gene expression, RNA interference (RNAi), has been extensively used in invertebrates, allowing for efficient and high-throughput gene silencing and gene function analysis. In vertebrates, however, use of RNAi to study gene function has been limited due to non-specific effects induced by double-stranded RNA (dsRNA)-dependent protein kinase and interferon activation. dsRNA-induced specific inhibition of vertebrate gene expression has only been shown in embryonic and non-differentiated mammalian cells. In this report, we demonstrate dsRNA-induced specific interference of gene expression and gene function in partially as well as fully differentiated mouse neuroblastoma cells. Specific silencing was observed in the expression of an integrated transgene coding for green fluorescent protein and a variety of endogenous genes. Moreover, we show that RNAi-mediated inhibition of poly (ADP-ribose) polymerase (PARP) expression induced cellular resistance to oxygen-glucose deprivation, consistent with the role of PARP in ischemia-induced brain damage. Our results indicate that RNAi can be used as a powerful tool to study gene function in neural cells.
Collapse
Affiliation(s)
- L Gan
- AGY Therapeutics Inc., 290 Utah Avenue, South San Francisco, CA 94080, USA.
| | | | | | | | | | | |
Collapse
|
543
|
Popoff I, Jijon H, Monia B, Tavernini M, Ma M, McKay R, Madsen K. Antisense oligonucleotides to poly(ADP-ribose) polymerase-2 ameliorate colitis in interleukin-10-deficient mice. J Pharmacol Exp Ther 2002; 303:1145-54. [PMID: 12438538 DOI: 10.1124/jpet.102.039768] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
poly(ADP-ribose) polymerase-2 (PARP-2) is a newly described member of the PARP family of nuclear enzymes. Previous studies have shown pharmacological inhibition of PARP activity to have a beneficial role in attenuating inflammation. We developed a chemically modified 2'-O-(2-methoxy)ethyl antisense oligonucleotide (ISIS 110251) inhibitor of PARP-2 and tested it for efficacy in the interleukin (IL)-10-deficient mouse. In tissue culture, ISIS 110251 reduced PARP-2 mRNA expression in a concentration- and sequence-specific manner. In 129 Sv/Ev mice, ISIS 110251 reduced PARP-2 mRNA in liver by 80%. This reduction was dependent upon treatment duration and was independent of the method of delivery. In interleukin-10-deficient mice with established colitis, treatment with ISIS 110251 normalized colonic epithelial barrier and transport function, reduced proinflammatory cytokine secretion and inducible nitric-oxide synthase activity, and attenuated inflammation. Our data demonstrate that selective inhibition of PARP-2 activity results in a marked improvement of colonic inflammatory disease in a mouse model of chronic colitis and a normalization of colonic function.
Collapse
Affiliation(s)
- Ian Popoff
- Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
544
|
Ye B, Sugo N, Hurn PD, Huganir RL. Physiological and pathological caspase cleavage of the neuronal RasGEF GRASP-1 as detected using a cleavage site-specific antibody. Neuroscience 2002; 114:217-27. [PMID: 12207967 DOI: 10.1016/s0306-4522(02)00142-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Caspases are proteases involved in various physiological and pathological processes in the nervous system, including development and pathogenesis. GRASP-1 is a recently identified neuronal substrate of caspase-3-subfamily caspases. It is a Ras-guanine nucleotide exchange factor (RasGEF) that interacts with the glutamate receptor interacting protein (GRIP). This alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor/GRIP protein complex has been proposed to be involved in AMPA receptor synaptic targeting. The caspase-3 cleavage of GRASP-1 separates the N-terminal RasGEF catalytic domain from the C-terminal GRIP-interacting region, potentially disrupting regulation of the RasGEF activity by GRIP. To examine the regulation and regional distribution of the caspase-3 cleavage of GRASP-1 in vivo, we generated a cleavage site-specific antibody, termed CGP, against the cleaved N-terminal fragment of GRASP-1. Using this antibody, we have examined the caspase cleavage of GRASP-1 during postnatal development and following ischemia in mice. We found that caspase cleavage of GRASP-1 occurs in specific brain regions in a time-dependent manner during development and ischemia. This data provides an important account of the brain areas that might require caspase-3 activity in postnatal development and ischemic damage, which has not been documented. It also demonstrates that the CGP antibody is a powerful tool for studying neuronal activity of the caspase-3-subfamily caspases in vivo.
Collapse
Affiliation(s)
- B Ye
- Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, 904A PCTB, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
545
|
Feng Y, LeBlanc MH. Drug-induced hypothermia begun 5 minutes after injury with a poly(adenosine 5'-diphosphate-ribose) polymerase inhibitor reduces hypoxic brain injury in rat pups. Crit Care Med 2002; 30:2420-4. [PMID: 12441748 DOI: 10.1097/00003246-200211000-00003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors have shown promise in hypoxic ischemic brain damage. We wished to see if GPI-6150 (1,11b-dihydro-[2H]benzopyrano[4,3,2-de]isoquinolin-3-one), a specific PARP inhibitor, would reduce brain injury in a newborn animal model. DESIGN Randomized controlled trial. SETTING University laboratory. SUBJECTS Seven-day-old rat pups. INTERVENTION Subjects had the right carotid artery ligated and then received either vehicle or 5, 15, or 30 mg/kg GPI-6150 intraperitoneally 5 mins after the hypoxia. Hypoxia was produced by exposing the pups to 8% oxygen for 2.5 hrs. MEASUREMENTS AND MAIN RESULTS Twenty-two days later, the brains were scored from normal to severely damaged and were weighed by a blinded observer. Twenty-four of 53 (45%) vehicle-treated pups, 11 of 22 (50%) 5 mg/kg treated pups, 22 of 23 (96%) 15 mg/kg treated pups (p <.01 vs. vehicle), and 16 of 31 (52%) 30 mg/kg treated pups were scored as normal. Right hemisphere weight was reduced by 15 +/- 2.6% in the vehicle group, 5.9 +/- 2.8% in the 5 mg/kg group, -0.4 +/- 1.7% in the 15 mg/kg group (p <.01 vs. vehicle), and 13.3 +/- 3.1% in the 30 mg/kg group. GPI-6150 decreased rectal temperature from 33 +/- 0.4 to 29 +/- 0.7 degrees C for 3 hrs after dosing, but temperatures returned to normal by 6 hrs. We maintained the body temperature at 35 degrees C for 6 hrs after injury in a group of pups treated with 15 mg/kg. Nine of 25 (41%) vehicle-treated and 15 of 26 (58%) GPI-6150-treated pups were scored as normal (p = nonsignificant). Right hemisphere weight was reduced by 25 +/- 4% in the vehicle group and 20 +/- 5% in the GPI-6150 group (p = nonsignificant). CONCLUSIONS GPI-6150 at a dose of 15 mg/kg dramatically decreased the number of pups sustaining brain injury, relative to vehicle, but is dependent on an induced decrease in core temperature to produce the effect.
Collapse
Affiliation(s)
- Yangzheng Feng
- University of Mississippi Medical Center, Department of Pediatrics, Jackson, USA
| | | |
Collapse
|
546
|
Mandir AS, Simbulan-Rosenthal CM, Poitras MF, Lumpkin JR, Dawson VL, Smulson ME, Dawson TM. A novel in vivo post-translational modification of p53 by PARP-1 in MPTP-induced parkinsonism. J Neurochem 2002; 83:186-92. [PMID: 12358742 DOI: 10.1046/j.1471-4159.2002.01144.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sporadic Parkinson's disease (PD) affects primarily dopaminergic neurons of the substantia nigra pars compacta. There is evidence of necrotic and apoptotic neuronal death in PD, but the mechanisms behind selected dopaminergic neuronal death remain unknown. The tumor suppressor protein p53 functions to selectively destroy stressed or abnormal cells during life and development by means of necrosis and apoptosis. Activation of p53 leads to death in a variety of cells including neurons. p53 is a target of the nuclear enzyme Poly(ADP-ribose)polymerase (PARP), and PARP is activated following DNA damage that occurs following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. MPTP is the favored in vivo model of PD, and reproduces the pathophysiology, anatomy and biochemistry of PD. p53 protein normally exhibits a fleeting half-life, and regulation of p53 stability and activation is achieved mainly by post-translational modification. We find that p53 is heavily poly(ADP-ribosyl)ated by PARP-1 following MPTP intoxication. This post-translational modification serves to stabilize p53 and alters its transactivation of downstream genes. These influences of PARP-1 on p53 may underlie the mechanisms of MPTP-induced parkinsonism and other models of neuronal death.
Collapse
Affiliation(s)
- Allen S Mandir
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Carnegie 214, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
547
|
Kim YH, Koh JY. The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture. Exp Neurol 2002; 177:407-18. [PMID: 12429187 DOI: 10.1006/exnr.2002.7990] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, we examined the role and the mechanism of poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) activation in zinc-induced cell death in cortical culture. After brief exposure to 400 microM zinc, cortical cells exhibited DNA fragmentation, increased poly(ADP-ribosyl)ation, and decreased levels of nicotinamide adenine dinucleotide (NAD) and ATP and subsequently underwent cell death. Inhibitors of PARP/PARG attenuated both zinc-induced NAD/ATP depletion and cell death, thereby implicating the PARP/PARG cascade in these processes. The zinc-inducible enzymes NADPH oxidase and neuronal nitric oxide synthase (nNOS) contributed to PARP activation as their inhibitors attenuated zinc-induced poly(ADP-ribosyl)ation. Levels of nitric oxide and nitrites increased following zinc exposure, consistent with NOS activation. In addition, Western blots and RT-PCR analysis revealed that protein and mRNA levels of nNOS specifically increased following zinc exposure in a manner similar to that of NADPH oxidase. The present study demonstrates that induction of NADPH oxidase and nNOS actively contributes to PARP/PARG-mediated NAD/ATP depletion and cell death induced by zinc in cortical culture.
Collapse
Affiliation(s)
- Yang-Hee Kim
- National Creative Research Initiative Center for the Study of CNS Zinc, Department of Neurology, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | | |
Collapse
|
548
|
In vitro neurotoxicity of methylisothiazolinone, a commonly used industrial and household biocide, proceeds via a zinc and extracellular signal-regulated kinase mitogen-activated protein kinase-dependent pathway. J Neurosci 2002. [PMID: 12196562 DOI: 10.1523/jneurosci.22-17-07408.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurodegenerative disorders in humans may be triggered or exacerbated by exposure to occupational or environmental agents. Here, we show that a brief exposure to methylisothiazolinone, a widely used industrial and household biocide, is highly toxic to cultured neurons but not to glia. We also show that the toxic actions of this biocide are zinc dependent and require the activation of p44/42 extracellular signal-regulated kinase (ERK) via a 12-lipoxygenase-mediated pathway. The cell death process also involves activation of NADPH oxidase, generation of reactive oxygen species, DNA damage, and overactivation of poly(ADP-ribose) polymerase, all occurring downstream from ERK phosphorylation. The toxic effects of methylisothiazolinone and related biocides on neurons have not been reported previously. Because of their widespread use, the neurotoxic consequences of both acute and chronic human exposure to these toxins need to be evaluated.
Collapse
|
549
|
Pacher P, Liaudet L, Mabley JG, Komjáti K, Szabó C. Pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase may represent a novel therapeutic approach in chronic heart failure. J Am Coll Cardiol 2002; 40:1006-1016. [PMID: 12225730 DOI: 10.1016/s0735-1097(02)02062-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES We investigated the effects of a novel ultrapotent poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitor, PJ34, on cardiac and endothelial dysfunction in a rat model of chronic heart failure (CHF). BACKGROUND Overactivation of the nuclear enzyme PARP importantly contributes to the development of cell dysfunction and tissue injury in various pathophysiologic conditions associated with oxidative stress, including myocardial reperfusion injury, heart transplantation, stroke, shock, and diabetes. METHODS Chronic heart failure was induced in Wistar rats by chronic ligation of the left anterior descending coronary artery. Left ventricular (LV) function and ex vivo vascular contractility and relaxation were measured 10 weeks after the surgery. Nitrotyrosine (NT) formation and PARP activation were detected by immunohistochemistry. RESULTS Chronic heart failure induced increased NT formation and PARP activation in the myocardium and intramural vasculature, depressed LV performance, and impaired vascular relaxation of aortic rings. PJ34 significantly decreased myocardial PARP activation but not NT formation, and improved both cardiac dysfunction and vascular relaxation. CONCLUSIONS Poly(ADP-ribose) polymerase inhibition represents a novel approach for the experimental treatment of CHF.
Collapse
Affiliation(s)
- Pál Pacher
- Inotek Pharmaceuticals Corporation, Beverly, Massachusetts 19105, USA
| | | | | | | | | |
Collapse
|
550
|
Schauwecker PE. Complications associated with genetic background effects in models of experimental epilepsy. PROGRESS IN BRAIN RESEARCH 2002; 135:139-48. [PMID: 12143336 DOI: 10.1016/s0079-6123(02)35014-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To elucidate the genetic influences contributing to susceptibility to seizure disorders, researchers have long used selected lines and inbred strains of rodents. In recent years, the use of genetically altered mice as models of complex human disease has revolutionized biomedical research into the genetics of disease pathogenesis and potential therapeutic interventions. In particular, the study of transgenic and gene-deleted (knockout) mice can provide important insights into the in vivo function and interaction of specific gene products. While a variety of inbred mouse mutations have been used to directly evaluate the genetic basis of seizure disorders, data obtained from such genetically altered mice must be interpreted carefully. An increasing number of scientific articles have reported that the phenotype of a given single gene mutation in mice can be modulated by the genetic background of the inbred strain in which the mutation is maintained. This effect is attributable to so-called modifier genes, which act in combination with the causative gene. In this review, the author points out the importance of considering the genetic background of the strain used to create these animal models, the potential problems with interpretation of phenotype, and solutions to selecting an appropriate mouse model of experimental epilepsy. Despite these potential limitations, knockout mice provide a powerful tool for understanding the genetic and neurobiological mechanisms contributing to experimental epilepsy.
Collapse
Affiliation(s)
- P Elyse Schauwecker
- Department of Cell and Neurobiology, University of Southern California, Keck School of Medicine, BMT 401, 1333 San Pablo Street, Los Angeles, CA 90089-9112, USA.
| |
Collapse
|