601
|
The Beneficial Effects of Edible Kynurenic Acid from Marine Horseshoe Crab ( Tachypleus tridentatus) on Obesity, Hyperlipidemia, and Gut Microbiota in High-Fat Diet-Fed Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8874503. [PMID: 34055199 PMCID: PMC8112934 DOI: 10.1155/2021/8874503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/08/2021] [Accepted: 04/07/2021] [Indexed: 12/20/2022]
Abstract
The marine horseshoe crab (Tachypleus tridentatus) has been considered as food and traditional medicine for many years. Kynurenic acid (KA) was isolated from horseshoe crab in this study for the first time in the world. A previous study in 2018 reported that intraperitoneal administration of KA prevented high-fat diet- (HFD-) induced body weight gain. Now, we investigated the effects of intragastric gavage of KA on HFD mice and found that KA (5 mg/kg/day) inhibited both the body weight gain and the increase of average daily energy intake. KA reduced serum triglyceride and increased serum high-density lipoprotein cholesterol. KA inhibited HFD-induced the increases of serum low-density lipoprotein cholesterol, coronary artery risk index, and atherosclerosis index. KA also suppressed HFD-induced the increase of the ratio of Firmicutes to Bacteroidetes (two dominant gut microbial phyla). KA partially reversed HFD-induced the changes in the composition of gut microbial genera. These overall effects of KA on HFD mice were similar to that of simvastatin (positive control). But the effects of 1.25 mg/kg/day KA on HFD-caused hyperlipidemia were similar to the effects of 5 mg/kg/day simvastatin. The pattern of relative abundance in 40 key genera of gut microbiota from KA group was closer to that from the normal group than that from the simvastatin group. In addition, our in vitro results showed the potential antioxidant activity of KA, which suggests that the improvement effects of KA on HFD mice may be partially associated with antioxidant activity of KA. Our findings demonstrate the potential role of KA as a functional food ingredient for the treatment of obesity and hyperlipidemia as well as the modulation of gut microbiota.
Collapse
|
602
|
Li W, Chen M, Feng X, Song M, Shao M, Yang Y, Zhang L, Liu Q, Lv L, Su X. Maternal immune activation alters adult behavior, intestinal integrity, gut microbiota and the gut inflammation. Brain Behav 2021; 11:e02133. [PMID: 33793085 PMCID: PMC8119836 DOI: 10.1002/brb3.2133] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/01/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Schizophrenia is characterized by several core behavioral features, in which the gastrointestinal symptoms are frequently reported. Maternal immune activation (MIA) has been developed in a rodent model to study neurodevelopmental disorders such as schizophrenia. However, the changes in the gut environment of MIA rats remain largely unknown. METHODS 10 mg/kg of polyinosinic:polycytidylic acid (Poly I:C) on gestational day 9 was intravenously administered to rats to induce MIA in order to assess changes in behavior, the intestinal barrier and microbiota in offspring. RESULTS Maternal immune activation offspring shown increased anxiety as indicated by reduced exploration of central area in open field test and decreased exploration of open arms in elevated plus test. Cognitive impairment of MIA offspring was confirmed by reduced exploration of novel arm in Y maze test and deficiency of PPI. Intestinal muscle thickness became thinner and some specific microbial anomalies previously identified clinically were observed in MIA offspring. In addition, an increase of inflammatory responses was found in the gut of MIA offspring. CONCLUSIONS Maternal immune activation alters behavior, intestinal integrity, gut microbiota and the gut inflammation in adult offspring.
Collapse
Affiliation(s)
- Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Mengxue Chen
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Xia Feng
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Minglong Shao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Luwen Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Qing Liu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.,Henan Province People's Hospital, Zhengzhou, China
| | - Xi Su
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| |
Collapse
|
603
|
Zuo MT, Wu Y, Wang ZY, Wang N, Huang SJ, Yu H, Zhao XJ, Huang CY, Liu ZY. A comprehensive toxicity evaluation in rats after long-term oral Gelsemium elegans exposure. Biomed Pharmacother 2021; 137:111284. [PMID: 33561641 DOI: 10.1016/j.biopha.2021.111284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Gelsemium elegans (G. elegans) is a flowering plant of the Loganiaceae family, which had been used in traditional Chinese herb medicine for many years for the treatment of rheumatoid pain, neuropathic pain, spasticity, skin ulcers, anxiety and cancer. Acute toxicity of the plant severely limits the application and development of G. elegans; however, long-term toxicity of exposure to G. elegans has not been illuminated. PURPOSE This study is a comprehensive observation of the effects of long-term exposure (21 days at 70 mg/kg) to G. elegans in rats. METHODS AND RESULTS The histopathological examination showed only a mild glial cell proliferation in the brain, and no lesions were observed in other organs. No abnormal changes in the biochemical parameters were observed that would have significant effects. The identification and analysis of absorbed natural ingredients showed that the active ingredients of the G. elegans could distribute to various tissues, and six compounds were identified in the brain, suggesting that they could cross the blood-brain barrier. Based on the intestinal content metabolomics, the tryptophan (Trp) biosynthesis, bile acid synthesis and bile secretion pathways have attracted our attention. Plasma metabolomic results showed that uric acid (UA) was significantly increased. The results of the brain metabolomic tests showed that the level of pyridoxal (PL) was decreased; considering the expression levels of the related enzymes, it was hypothesized that the level of pyridoxal 5'-phosphate (PLP) was decreased. PLP was important for the regulation of the neuronal γ-aminobutyric acid (GABA)/glutamate (Glu) interconversion and therefore neuronal excitability. The data of the study suggested that toxic reaction caused by G. elegans was due to a disruption of the balance of the neurotransmitter GABA/Glu transformation. CONCLUSIONS Overall, G. elegans did not cause significant toxic reaction in the rats after long-term exposure. The results were significant for the future clinical applications of G. elegans and suggested that G. elegans could be potentially developed as a drug. The study provided a scientific basis for investigation of the mechanisms of toxicity and detoxification.
Collapse
Affiliation(s)
- Meng-Ting Zuo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zi-Yuan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Na Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Si-Juan Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Hui Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xue-Jiao Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chong-Yin Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, Hunan, China; Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
604
|
John F, Michelhaugh SK, Barger GR, Mittal S, Juhász C. Depression and tryptophan metabolism in patients with primary brain tumors: Clinical and molecular imaging correlates. Brain Imaging Behav 2021; 15:974-985. [PMID: 32767048 DOI: 10.1007/s11682-020-00305-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Patients with brain tumors have an increased risk for depression, whose underlying pathomechanism may involve dysregulated tryptophan/kynurenine metabolism. In this study, we analyzed the relation of depressive symptoms to clinical and tumor characteristics as well as cerebral and systemic tryptophan metabolism in patients with primary brain tumors. Sixty patients with newly-diagnosed or recurrent primary brain tumor underwent testing with the Beck Depression Inventory-II (BDI-II), and 34 patients also had positron emission tomography (PET) imaging with alpha-[11C]methyl-L-tryptophan (AMT). BDI-II scores were correlated with clinical and tumor-related variables, cerebral regional AMT metabolism measured in the non-tumoral hemisphere, and plasma tryptophan metabolite levels. Sixteen patients (27%) had BDI-II scores indicating depression, including 6 with moderate/severe depression. High BDI-II scores were independent of clinical and tumor-related variables except lower Karnofsky Performance Status scores. In patients with recurrent malignant gliomas, depression was associated with shorter survival (hazard ratio: 3.7; p = 0.048). High BDI-II total and somatic subscale scores were associated with higher frontal cortical and thalamic AMT metabolic values measured on PET. In contrast, plasma tryptophan and kynurenine metabolite levels did not correlate with the BDI-II scores. In conclusion, our results confirm previous data that depression affects more than ¼ of patients with primary brain tumors, it is largely independent of tumor characteristics and is associated with shorter survival in patients with recurrent malignant gliomas. On PET imaging, higher tryptophan metabolism in the frontal cortex and thalamus was found in those with brain tumor-associated depression and supports the role of dysregulated tryptophan/kynurenine metabolism in this condition.
Collapse
Affiliation(s)
- Flóra John
- Department of Pediatrics, Wayne State University and PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, 3901 Beaubien St, MI, Detroit, 48201, USA
| | - Sharon K Michelhaugh
- Department of Neurosurgery, Wayne State University, 4201 St. Antoine St., Detroit, MI, 48201, USA
| | - Geoffrey R Barger
- Department of Neurology, Wayne State University, 4201 St. Antoine St, Detroit, MI, 48201, USA
- Karmanos Cancer Institute, 4100 John R. St, Detroit, MI, 48201, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University, 4201 St. Antoine St., Detroit, MI, 48201, USA
- Karmanos Cancer Institute, 4100 John R. St, Detroit, MI, 48201, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24014, USA
- Virginia Tech School of Neuroscience, Blacksburg, VA, 24061, USA
| | - Csaba Juhász
- Department of Pediatrics, Wayne State University and PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, 3901 Beaubien St, MI, Detroit, 48201, USA.
- Department of Neurosurgery, Wayne State University, 4201 St. Antoine St., Detroit, MI, 48201, USA.
- Department of Neurology, Wayne State University, 4201 St. Antoine St, Detroit, MI, 48201, USA.
- Karmanos Cancer Institute, 4100 John R. St, Detroit, MI, 48201, USA.
| |
Collapse
|
605
|
Li Q, Larouche-Lebel É, Loughran KA, Huh TP, Suchodolski JS, Oyama MA. Metabolomics Analysis Reveals Deranged Energy Metabolism and Amino Acid Metabolic Reprogramming in Dogs With Myxomatous Mitral Valve Disease. J Am Heart Assoc 2021; 10:e018923. [PMID: 33890477 PMCID: PMC8200728 DOI: 10.1161/jaha.120.018923] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Myxomatous mitral valve disease (MMVD), a naturally occurring heart disease, affects 10% to 15% of the canine population. Canine MMVD shares many similarities with human MMVD. Untargeted metabolomics was performed to identify changes in metabolic pathways and biomarkers with potential clinical utilities. Methods and Results Serum samples from 27 healthy, 22 stage B1, 18 stage B2 preclinical MMVD dogs, and 17 MMVD dogs with a history of congestive heart failure (CHF) were analyzed. Linear regression analysis identified 173 known metabolites whose concentrations were different among the 4 groups (adjusted P<0.05), of which 40% belonged to amino acid super pathways, while 30% were lipids. More than 50% of significant metabolites were correlated with left atrial diameter but not left ventricular dimension. Acylcarnitines, tricarboxylic acid cycle intermediates, and creatine accumulated in proportion to MMVD severity. α‐Ketobutyrate and ketone bodies were increased as MMVD advanced. Nicotinamide, a key substrate of the main nicotinamide adenine dinucleotide (NAD+) salvage pathway, was decreased, while quinolinate of the de novo NAD+ biosynthesis was increased in CHF dogs versus healthy dogs. 3‐Methylhistidine, marker for myofibrillar protein degradation, was higher in CHF dogs than non‐CHF dogs. Trimethylamine N‐oxide (TMAO) and TMAO–producing precursors, including carnitine, phosphatidylcholine, betaine, and trimethyllysine, were increased in CHF dogs versus non‐CHF dogs. Elevated levels of uremic toxins, including guanidino compounds, TMAO, and urea, were observed in CHF dogs. Pathway analysis highlighted the importance of bioenergetics and amino acid metabolism in canine MMVD. Conclusions Our study revealed altered energy metabolism, amino acid metabolic programming, and reduced renal function in the development of MMVD and CHF. Complex interplays along the heart‐kidney‐gut axis were implicated.
Collapse
Affiliation(s)
| | - Éva Larouche-Lebel
- Department of Clinical Sciences and Advanced Medicine School of Veterinary Medicine University of Pennsylvania Philadelphia PA
| | - Kerry A Loughran
- Department of Clinical Sciences and Advanced Medicine School of Veterinary Medicine University of Pennsylvania Philadelphia PA
| | - Terry P Huh
- Department of Clinical Sciences and Advanced Medicine School of Veterinary Medicine University of Pennsylvania Philadelphia PA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory Department of Small Animal Clinical Sciences College of Veterinary Medicine and Biomedical Sciences Texas A&M University College Station TX
| | - Mark A Oyama
- Department of Clinical Sciences and Advanced Medicine School of Veterinary Medicine University of Pennsylvania Philadelphia PA
| |
Collapse
|
606
|
Beggiato S, Zuccarini M, Cassano T, Borroto-Escuela DO, Di Iorio P, Schwarcz R, Fuxe K, Ferraro L. Adenosine and Kynurenic Acid Interactions: Possible Relevance for Schizophrenia Treatment? Front Pharmacol 2021; 12:654426. [PMID: 33935767 PMCID: PMC8080066 DOI: 10.3389/fphar.2021.654426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/03/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Robert Schwarcz
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology and LTTA Center, University of Ferrara, Ferrara, Italy
| |
Collapse
|
607
|
Reed MR, Maddukuri L, Ketkar A, Byrum SD, Zafar MK, Bostian ACL, Tackett AJ, Eoff RL. Inhibition of tryptophan 2,3-dioxygenase impairs DNA damage tolerance and repair in glioma cells. NAR Cancer 2021; 3:zcab014. [PMID: 33870196 PMCID: PMC8034706 DOI: 10.1093/narcan/zcab014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 01/21/2023] Open
Abstract
Expression of tryptophan 2,3-dioxygenase (TDO) is a determinant of malignancy in gliomas through kynurenine (KYN) signaling. We report that inhibition of TDO activity attenuated recovery from replication stress and increased the genotoxic effects of bis-chloroethylnitrosourea (BCNU). Activation of the Chk1 arm of the replication stress response (RSR) was reduced when TDO activity was blocked prior to BCNU treatment, whereas phosphorylation of serine 33 (pS33) on replication protein A (RPA) was enhanced—indicative of increased fork collapse. Analysis of quantitative proteomic results revealed that TDO inhibition reduced nuclear 53BP1 and sirtuin levels. We confirmed that cells lacking TDO activity exhibited elevated gamma-H2AX signal and defective recruitment of 53BP1 to chromatin following BCNU treatment, which corresponded with delayed repair of DNA breaks. Addition of exogenous KYN increased the rate of break repair. TDO inhibition diminished SIRT7 deacetylase recruitment to chromatin, which increased histone H3K18 acetylation—a key mark involved in preventing 53BP1 recruitment to sites of DNA damage. TDO inhibition also sensitized cells to ionizing radiation (IR)-induced damage, but this effect did not involve altered 53BP1 recruitment. These experiments support a model where TDO-mediated KYN signaling helps fuel a robust response to replication stress and DNA damage.
Collapse
Affiliation(s)
- Megan R Reed
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Leena Maddukuri
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Amit Ketkar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Maroof K Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - April C L Bostian
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
608
|
Fecal Microbiome Transplantation from Children with Autism Spectrum Disorder Modulates Tryptophan and Serotonergic Synapse Metabolism and Induces Altered Behaviors in Germ-Free Mice. mSystems 2021; 6:6/2/e01343-20. [PMID: 33824200 PMCID: PMC8547010 DOI: 10.1128/msystems.01343-20] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To determine the relationship of the gut microbiota and its metabolites with autism spectrum disorder (ASD)-like behaviors and preliminarily explore the potential molecular mechanisms, the fecal microbiota from donors with ASD and typically developing (TD) donors were transferred into germ-free (GF) mice to obtain ASD-FMT mice and TD-FMT mice, respectively. Behavioral tests were conducted on these mice after 3 weeks. 16S rRNA gene sequencing of the cecal contents and untargeted metabolomic analysis of the cecum, serum, and prefrontal cortex were performed. Untargeted metabolomics was also used to analyze fecal samples of TD and ASD children. Western blotting detected the protein expression levels of tryptophan hydroxylase 1 (TPH1), serotonin transporter (SERT), and serotonin 1A receptor (5-HT1AR) in the colon and TPH2, SERT, and 5-HT1AR in the prefrontal cortex of mice. ASD-FMT mice showed ASD-like behavior and a microbial community structure different from that of TD-FMT mice. Tryptophan and serotonin metabolisms were altered in both ASD and TD children and ASD-FMT and TD-FMT mice. Some microbiota may be related to tryptophan and serotonin metabolism. Compared with TD-FMT mice, ASD-FMT mice showed low SERT and 5-HT1AR and high TPH1 expression levels in the colon. In the prefrontal cortex, the expression levels of TPH2 and SERT were increased in the ASD-FMT group relative to the TD-FMT group. Therefore, the fecal microbiome of ASD children can lead to ASD-like behaviors, different microbial community structures, and altered tryptophan and serotonin metabolism in GF mice. These changes may be related to changes in some key proteins involved in the synthesis and transport of serotonin. IMPORTANCE The relationship between the gut microbiota and ASD is not yet fully understood. Numerous studies have focused on the differences in intestinal microbial and metabolism profiles between TD and ASD children. However, it is still not clear if these microbes and metabolites cause the development of ASD symptoms. Here, we collected fecal samples from TD and ASD children, transplanted them into GF mice, and found that the fecal microbiome of ASD children can lead to ASD-like behaviors, different microbial community structures, and altered tryptophan and serotonin metabolism in GF mice. We also demonstrated that tryptophan and serotonin metabolism was also altered in ASD and TD children. Together, these findings confirm that the microbiome from children with ASD may lead to ASD-like behavior of GF mice through metabolites, especially tryptophan and serotonin metabolism.
Collapse
|
609
|
Wyatt M, Greathouse KL. Targeting Dietary and Microbial Tryptophan-Indole Metabolism as Therapeutic Approaches to Colon Cancer. Nutrients 2021; 13:1189. [PMID: 33916690 PMCID: PMC8066279 DOI: 10.3390/nu13041189] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
Tryptophan metabolism, via the kynurenine (Kyn) pathway, and microbial transformation of tryptophan to indolic compounds are fundamental for host health; both of which are altered in colon carcinogenesis. Alterations in tryptophan metabolism begin early in colon carcinogenesis as an adaptive mechanism for the tumor to escape immune surveillance and metastasize. The microbial community is a key part of the tumor microenvironment and influences cancer initiation, promotion and treatment response. A growing awareness of the impact of the microbiome on tryptophan (Trp) metabolism in the context of carcinogenesis has prompted this review. We first compare the different metabolic pathways of Trp under normal cellular physiology to colon carcinogenesis, in both the host cells and the microbiome. Second, we review how the microbiome, specifically indoles, influence host tryptophan pathways under normal and oncogenic metabolism. We conclude by proposing several dietary, microbial and drug therapeutic modalities that can be utilized in combination to abrogate tumorigenesis.
Collapse
Affiliation(s)
- Madhur Wyatt
- Human Health, Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76798-7346, USA;
| | - K. Leigh Greathouse
- Human Science and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76798-7346, USA
| |
Collapse
|
610
|
Baruch EN, Wang J, Wargo JA. Gut Microbiota and Antitumor Immunity: Potential Mechanisms for Clinical Effect. Cancer Immunol Res 2021; 9:365-370. [PMID: 34003768 DOI: 10.1158/2326-6066.cir-20-0877] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several landmark preclinical studies have shown an association between the gut microbiota and the effectiveness of immunotherapy for cancer. These studies have sparked clinical trials aimed at modulating the gut microbiota in order to improve clinical response rates to immunotherapy. Despite this, the mechanisms through which the gut microbiota influences the effectiveness of immunotherapy are still incompletely characterized. Preclinical and preliminary clinical findings from numerous types of gut microbiota modulation studies, including fecal transplantation, probiotics, consortia, and diet, demonstrate that favorable microbiota modulation is associated with increased intratumoral infiltration of CD8+ effector T cells. This CD8+ T-cell infiltration is often associated with enhanced intratumoral activity of T-helper type 1 cells and dendritic cells and a lower density of immunosuppressive cells. Herein, we discuss how gut microbiota may affect the activity of immune cells by at least three interlacing mechanisms: activation of pattern recognition receptors, molecular mimicry, and impact of metabolites. We also discuss the therapeutic potential and limitations of the different gut microbiota modulation techniques and their putative mechanisms of immune activation.
Collapse
Affiliation(s)
- Erez N Baruch
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, Texas. .,Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jingjing Wang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jennifer A Wargo
- Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
611
|
Platten M, Friedrich M, Wainwright DA, Panitz V, Opitz CA. Tryptophan metabolism in brain tumors - IDO and beyond. Curr Opin Immunol 2021; 70:57-66. [PMID: 33813026 DOI: 10.1016/j.coi.2021.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Metabolism of the essential amino acid tryptophan is a key metabolic pathway that restricts antitumor immunity and is a drug development target for cancer immunotherapy. Tryptophan metabolism is active in brain tumors including gliomas and promotes a malignant phenotype and contributes to the immunosuppressive tumor microenvironment. In recent years, improved understanding of the regulation and downstream function of tryptophan metabolism has been significantly expanded beyond the initial in vitro observation that the enzyme indoleamine-2,3-dioxygenase 1 (IDO1) promotes the depletion of intracellular tryptophan. Here, we revisit the specific roles of tryptophan metabolites in regulating brain functioning and neuronal integrity as well as in the context of brain tumors. This review summarizes recent developments in identifying key regulators, as well as the cellular and molecular effects of tryptophan metabolism with a particular focus on potential therapeutic targets in glioma.
Collapse
Affiliation(s)
- Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany; DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mirco Friedrich
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany; DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Derek A Wainwright
- Departments of Neurological Surgery, Medicine - Division of Hematology/Oncology, and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Verena Panitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurology and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurology and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
612
|
Alahdal M, Sun D, Duan L, Ouyang H, Wang M, Xiong J, Wang D. Forecasting sensitive targets of the kynurenine pathway in pancreatic adenocarcinoma using mathematical modeling. Cancer Sci 2021; 112:1481-1494. [PMID: 33523522 PMCID: PMC8019197 DOI: 10.1111/cas.14832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
In this study, a new mathematical model was established and validated to forecast and define sensitive targets in the kynurenine pathway (Kynp) in pancreatic adenocarcinoma (PDAC). Using the Panc-1 cell line, genetic profiles of Kynp molecules were tested. qPCR data were implemented in the algorithm programming (fmincon and lsqnonlin function) to estimate 35 parameters of Kynp variables by Matlab 2017b. All tested parameters were defined as non-negative and bounded. Then, based on experimental data, the function of the fmincon equation was employed to estimate the approximate range of each parameter. These calculations were confirmed by qPCR and Western blot. The correlation coefficient (R) between model simulation and experimental data (72 hours, in intervals of 6 hours) of every variable was >0.988. The analysis of reliability and predictive accuracy depending on qPCR and Western blot data showed high predictive accuracy of the model; R was >0.988. Using the model calculations, kynurenine (x3, a6), GPR35 (x4, a8), NF-kβp105 (x7, a16), and NF-kβp65 (x8, a18) were recognized as sensitive targets in the Kynp. These predicted targets were confirmed by testing gene and protein expression responses. Therefore, this study provides new interdisciplinary evidence for Kynp-sensitive targets in the treatment of PDAC.
Collapse
Affiliation(s)
- Murad Alahdal
- Shenzhen Key Laboratory of Tissue EngineeringShenzhen Laboratory of Digital Orthopedic EngineeringGuangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)ShenzhenChina
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhouChina
- Department of Medical LaboratoriesFaculty of MedicineHodeidah UniversityAl HudaydahYemen
| | - Deshun Sun
- Shenzhen Key Laboratory of Tissue EngineeringShenzhen Laboratory of Digital Orthopedic EngineeringGuangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)ShenzhenChina
| | - Li Duan
- Shenzhen Key Laboratory of Tissue EngineeringShenzhen Laboratory of Digital Orthopedic EngineeringGuangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)ShenzhenChina
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhouChina
| | - Manyi Wang
- Shenzhen Key Laboratory of Tissue EngineeringShenzhen Laboratory of Digital Orthopedic EngineeringGuangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)ShenzhenChina
| | - Jianyi Xiong
- Shenzhen Key Laboratory of Tissue EngineeringShenzhen Laboratory of Digital Orthopedic EngineeringGuangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)ShenzhenChina
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue EngineeringShenzhen Laboratory of Digital Orthopedic EngineeringGuangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic TechnologyShenzhen Second People’s Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center)ShenzhenChina
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
613
|
Li H, Illés P, Karunaratne CV, Nordstrøm LU, Luo X, Yang A, Qiu Y, Kurland IJ, Lukin DJ, Chen W, Jiskrová E, Krasulová K, Pečinková P, DesMarais VM, Liu Q, Albanese JM, Akki A, Longo M, Coffin B, Dou W, Mani S, Dvořák Z. Deciphering structural bases of intestinal and hepatic selectivity in targeting pregnane X receptor with indole-based microbial mimics. Bioorg Chem 2021; 109:104661. [PMID: 33636438 PMCID: PMC8646148 DOI: 10.1016/j.bioorg.2021.104661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
Microbial metabolite mimicry is a new concept that promises to deliver compounds that have minimal liabilities and enhanced therapeutic effects in a host. In a previous publication, we have shown that microbial metabolites of L-tryptophan, indoles, when chemically altered, yielded potent anti-inflammatory pregnane X Receptor (PXR)-targeting lead compounds, FKK5 and FKK6, targeting intestinal inflammation. Our aim in this study was to further define structure-activity relationships between indole analogs and PXR, we removed the phenyl-sulfonyl group or replaced the pyridyl residue with imidazolopyridyl of FKK6. Our results showed that while removal of the phenyl-sulfonyl group from FKK6 (now called CVK003) shifts agonist activity away from PXR towards the aryl hydrocarbon receptor (AhR), the imidazolopyridyl addition preserves PXR activity in vitro. However, when these compounds are administered to mice, that unlike the parent molecule, FKK6, they exhibit poor induction of PXR target genes in the intestines and the liver. These data suggest that modifications of FKK6 specifically in the pyridyl moiety can result in compounds with weak PXR activity in vivo. These observations are a significant step forward for understanding the structure-activity relationships (SAR) between indole mimics and receptors, PXR and AhR.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter Illés
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | | | | | - Xiaoping Luo
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Annie Yang
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yunping Qiu
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Irwin J Kurland
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dana J Lukin
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weijie Chen
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eva Jiskrová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Kristýna Krasulová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petra Pečinková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Vera M DesMarais
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qiang Liu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joseph M Albanese
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ashwin Akki
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Michael Longo
- Department of Medical Education, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Breyen Coffin
- Department of Medical Education, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Dou
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sridhar Mani
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
614
|
Fang C, Hayashi S, Du X, Cai X, Deng B, Zheng H, Ishido S, Tsutsui H, Sheng J. Caffeine protects against stress-induced murine depression through activation of PPARγC1α-mediated restoration of the kynurenine pathway in the skeletal muscle. Sci Rep 2021; 11:7287. [PMID: 33790369 PMCID: PMC8012704 DOI: 10.1038/s41598-021-86659-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
Exercise prevents depression through peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α)-mediated activation of a particular branch of the kynurenine pathway. From kynurenine (KYN), two independent metabolic pathways produce neurofunctionally different metabolites, mainly in somatic organs: neurotoxic intermediate metabolites via main pathway and neuroprotective end product, kynurenic acid (KYNA) via the branch. Elevated levels of KYN have been found in patients with depression. Herein, we investigated whether and how caffeine prevents depression, focusing on the kynurenine pathway. Mice exposed to chronic mild stress (CMS) exhibited depressive-like behaviours with an increase and decrease in plasma levels of pro-neurotoxic KYN and neuroprotective KYNA, respectively. However, caffeine rescued CMS-exposed mice from depressive-like behaviours and restored the plasma levels of KYN and KYNA. Concomitantly, caffeine induced a key enzyme converting KYN into KYNA, namely kynurenine aminotransferase-1 (KAT1), in murine skeletal muscle. Upon caffeine stimulation murine myotubes exhibited KAT1 induction and its upstream PGC-1α sustainment. Furthermore, a proteasome inhibitor, but not translational inhibitor, impeded caffeine sustainment of PGC-1α, suggesting that caffeine induced KAT1 by inhibiting proteasomal degradation of PGC-1α. Thus, caffeine protection against CMS-induced depression may be associated with sustainment of PGC-1α levels and the resultant KAT1 induction in skeletal muscle, and thereby consumption of pro-neurotoxic KYN.
Collapse
Affiliation(s)
- Chongye Fang
- Yunnan Research Center for Advanced Tea Processing, College of Pu-erh Tea, Yunnan Agricultural University, Kunming, 650201, China
| | - Shuhei Hayashi
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Xiaocui Du
- Yunnan Research Center for Advanced Tea Processing, College of Pu-erh Tea, Yunnan Agricultural University, Kunming, 650201, China
| | - Xianbin Cai
- Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
- Department of Gastroenterology, First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Bin Deng
- Yunnan Rural Science and Technology Service Center, Kunming, Yunnan, China
| | - Hongmei Zheng
- Yunnan Rural Science and Technology Service Center, Kunming, Yunnan, China
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Hiroko Tsutsui
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Jun Sheng
- Yunnan Research Center for Advanced Tea Processing, College of Pu-erh Tea, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Pu-erh Tea Science, The Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
615
|
Lai Y, Liu CW, Chi L, Ru H, Lu K. High-Resolution Metabolomics of 50 Neurotransmitters and Tryptophan Metabolites in Feces, Serum, and Brain Tissues Using UHPLC-ESI-Q Exactive Mass Spectrometry. ACS OMEGA 2021; 6:8094-8103. [PMID: 33817468 PMCID: PMC8014936 DOI: 10.1021/acsomega.0c05789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/25/2021] [Indexed: 05/31/2023]
Abstract
Recent evidence indicates that tryptophan metabolites and neurotransmitters are potential mediators of the microbiome-gut-brain interaction. Here, a high-resolution ultra-high performance liquid chromatography-electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) assay was developed and validated for quantifying 50 neurotransmitters, tryptophan metabolites, and bacterial indole derivatives in mouse serum, feces, and brain. The lower limit of quantitation for the 50 compounds ranged from 0.5 to 100 nmol/L, and sample preparation procedures were adapted for individual compounds to allow quantitation within linearity of the assay with a correlation coefficient >0.99. Reproducibility was tested by intra- and interday precision and accuracy of analysis: intra- and interday precision at the lower limit of quantitation was less than 20% for all compounds, with over two-thirds of the compounds achieving an interday precision below 10%, while the interday accuracy at the lower limit of quantitation ranged from 82.3 to 128.0% for all compounds. The analyte recovery was assessed based on sample-spiked stable-isotope-labeling standards, illustrating a need to consider matrix-specific recovery discrepancies when performing interorgan comparison. Carryover was evaluated by intermittent solvent blank injection. The assay was successfully applied to determining the concentration profiles of neurotransmitter and tryptophan metabolites in serum, feces, and brain of conventionally raised specific pathogen-free (SPF) C57BL/6 mice. Our method may serve as a useful analytical resource for investigating the roles of tryptophan metabolism and neurotransmitter signaling in host-microbiota interaction.
Collapse
|
616
|
Liao W, Jin Q, Liu J, Ruan Y, Li X, Shen Y, Zhang Z, Wang Y, Wu S, Zhang J, Kang L, Wu C. Mahuang Decoction Antagonizes Acute Liver Failure via Modulating Tricarboxylic Acid Cycle and Amino Acids Metabolism. Front Pharmacol 2021; 12:599180. [PMID: 33859560 PMCID: PMC8043081 DOI: 10.3389/fphar.2021.599180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Acute liver failure (ALF) is a serious clinical disorder with high fatality rates. Mahuang decoction (MHD), a well-known traditional Chinese medicine, has multiple pharmacological effects, such as anti-inflammation, anti-allergy, anti-asthma, and anti-hyperglycemia. In this study, we investigated the protective effect of MHD against ALF. In the lipopolysaccharide and D-galactosamine (LPS/D-GalN)-induced ALF mouse model, the elevated activities of the serum alanine and aspartate transaminases as well as the liver pathological damage were markedly alleviated by MHD. Subsequently, a metabolomics study based on the ultrahigh performance liquid chromatograph coupled with Q Exactive Orbitrap mass spectrometry was carried to clarify the therapeutic mechanisms of MHD against ALF. A total of 36 metabolites contributing to LPS/D-GalN-induced ALF were identified in the serum samples, among which the abnormalities of 27 metabolites were ameliorated by MHD. The analysis of metabolic pathways revealed that the therapeutic effects of MHD are likely due to the modulation of the metabolic disorders of tricarboxylic acid (TCA) cycle, retinol metabolism, tryptophan metabolism, arginine and proline metabolism, nicotinate and nicotinamide metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan synthesis, as well as cysteine and methionine metabolism. This study demonstrated for the first time that MHD exerted an obvious protective effect against ALF mainly through the regulation of TCA cycle and amino acid metabolism, highlighting the importance of metabolomics to investigate the drug-targeted metabolic pathways.
Collapse
Affiliation(s)
- Wenting Liao
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Qiwen Jin
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Junning Liu
- Institute of Forensic Science, Nanjing Municipal Public Security Bureau, Nanjing, China
| | - Yiling Ruan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Xinran Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Yueyue Shen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Zhicheng Zhang
- Institute of Forensic Science, Nanjing Municipal Public Security Bureau, Nanjing, China
| | - Yong Wang
- Institute of Forensic Science, Nanjing Municipal Public Security Bureau, Nanjing, China
| | - Shengming Wu
- Nanjing Liuhe District Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Junying Zhang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lifeng Kang
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
617
|
Falabrègue M, Boschat AC, Jouffroy R, Derquennes M, Djemai H, Sanquer S, Barouki R, Coumoul X, Toussaint JF, Hermine O, Noirez P, Côté F. Lack of Skeletal Muscle Serotonin Impairs Physical Performance. Int J Tryptophan Res 2021; 14:11786469211003109. [PMID: 33814916 PMCID: PMC7989111 DOI: 10.1177/11786469211003109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/16/2021] [Indexed: 01/06/2023] Open
Abstract
Low levels of the neurotransmitter serotonin have been associated with the onset of depression. While traditional treatments include antidepressants, physical exercise has emerged as an alternative for patients with depressive disorders. Yet there remains the fundamental question of how exercise is sensed by the brain. The existence of a muscle–brain endocrine loop has been proposed: according to this scenario, exercise modulates metabolization of tryptophan into kynurenine within skeletal muscle, which in turn affects the brain, enhancing resistance to depression. But the breakdown of tryptophan into kynurenine during exercise may also alter serotonin synthesis and help limit depression. In this study, we investigated whether peripheral serotonin might play a role in muscle–brain communication permitting adaptation for endurance training. We first quantified tryptophan metabolites in the blood of 4 trained athletes before and after a long-distance trail race and correlated changes in tryptophan metabolism with physical performance. In parallel, to assess exercise capacity and endurance in trained control and peripheral serotonin–deficient mice, we used a treadmill incremental test. Peripheral serotonin–deficient mice exhibited a significant drop in physical performance despite endurance training. Brain levels of tryptophan metabolites were similar in wild-type and peripheral serotonin–deficient animals, and no products of muscle-induced tryptophan metabolism were found in the plasma or brains of peripheral serotonin–deficient mice. But mass spectrometric analyses revealed a significant decrease in levels of 5-hydroxyindoleacetic acid (5-HIAA), the main serotonin metabolite, in both the soleus and plantaris muscles, demonstrating that metabolization of tryptophan into serotonin in muscles is essential for adaptation to endurance training. In light of these findings, the breakdown of tryptophan into peripheral but not brain serotonin appears to be the rate-limiting step for muscle adaptation to endurance training. The data suggest that there is a peripheral mechanism responsible for the positive effects of exercise, and that muscles are secretory organs with autocrine-paracrine roles in which serotonin has a local effect.
Collapse
Affiliation(s)
- Marion Falabrègue
- Institute for Research in bioMedicine and Epidemiology of Sport (EA 7329), Paris, France.,GR-Ex, Université de Paris, France.,Université de Paris, France.,Institut Imagine, INSERM U1163-ERL8254, Paris, France
| | - Anne-Claire Boschat
- Université de Paris, France.,Institut Imagine, INSERM U1163-ERL8254, Paris, France.,Service de Biochimie Métabolomique et Protéomique, Hôpital Necker-Enfants malades, AP-HP, Paris, France
| | - Romain Jouffroy
- Institute for Research in bioMedicine and Epidemiology of Sport (EA 7329), Paris, France.,Université de Paris, France.,Intensive Care Unit, Hôpital Ambroise Paré, AP-HP, Boulogne-Billancourt, France.,National Institute of Sport, Expertise, and Performance, Paris, France
| | - Marieke Derquennes
- Institute for Research in bioMedicine and Epidemiology of Sport (EA 7329), Paris, France.,Université de Paris, France
| | - Haidar Djemai
- Institute for Research in bioMedicine and Epidemiology of Sport (EA 7329), Paris, France.,GR-Ex, Université de Paris, France.,Université de Paris, France.,National Institute of Sport, Expertise, and Performance, Paris, France.,INSERM UMR-S 1124, Centre Universitaire des Saints-Pères, Université de Paris, France
| | - Sylvia Sanquer
- Service de Biochimie Métabolomique et Protéomique, Hôpital Necker-Enfants malades, AP-HP, Paris, France.,INSERM UMR-S 1124, Centre Universitaire des Saints-Pères, Université de Paris, France
| | - Robert Barouki
- Université de Paris, France.,Service de Biochimie Métabolomique et Protéomique, Hôpital Necker-Enfants malades, AP-HP, Paris, France.,INSERM UMR-S 1124, Centre Universitaire des Saints-Pères, Université de Paris, France
| | - Xavier Coumoul
- Université de Paris, France.,INSERM UMR-S 1124, Centre Universitaire des Saints-Pères, Université de Paris, France
| | - Jean-François Toussaint
- Institute for Research in bioMedicine and Epidemiology of Sport (EA 7329), Paris, France.,Université de Paris, France.,National Institute of Sport, Expertise, and Performance, Paris, France
| | - Olivier Hermine
- GR-Ex, Université de Paris, France.,Université de Paris, France.,Institut Imagine, INSERM U1163-ERL8254, Paris, France.,Department of Hematology, Hôpital Necker AP-HP, Paris, France
| | - Philippe Noirez
- Institute for Research in bioMedicine and Epidemiology of Sport (EA 7329), Paris, France.,GR-Ex, Université de Paris, France.,Université de Paris, France.,National Institute of Sport, Expertise, and Performance, Paris, France.,INSERM UMR-S 1124, Centre Universitaire des Saints-Pères, Université de Paris, France.,Department of Exercise Science, UQAM, Canada.,Performance and Metabolism in Mice Research Facility, Université de Paris, Paris, France
| | - Francine Côté
- GR-Ex, Université de Paris, France.,Université de Paris, France.,Institut Imagine, INSERM U1163-ERL8254, Paris, France
| |
Collapse
|
618
|
Chen D, He J, Li J, Zou Q, Si J, Guo Y, Yu J, Li C, Wang F, Chan T, Shi H. Microbiome and Metabolome Analyses Reveal Novel Interplay Between the Skin Microbiota and Plasma Metabolites in Psoriasis. Front Microbiol 2021; 12:643449. [PMID: 33796091 PMCID: PMC8007969 DOI: 10.3389/fmicb.2021.643449] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease that affects millions of people worldwide. There is still no effective approach for the clinical treatment of psoriasis. This is largely due to the lack of understanding of the pathological mechanism. Here, we comprehensively characterized the skin microbiome and plasma metabolome alterations of psoriasis patients. We observed that some pathogenic bacteria, including Vibrio, were significantly increased in psoriasis patients. The metabolomics results showed alterations in some metabolic pathways, especially pathways for lipid metabolism. In addition, microbiome-specific metabolites, including bile acids and kynurenine, were significantly changed. Correlation analysis revealed the interplay between the skin microbiota and plasma metabolites, especially between Vibrio and several lipids. Our results provide new evidence for the interplay between the skin microbiome and plasma metabolites, which is dramatically disrupted in psoriasis patients. This study also revealed the mechanism underlying the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Dongmei Chen
- Innovation Team for Skin Disease Diagnosis and Treatment Technology & Drug Discovery and Development, The General Hospital of Ningxia Medical University, Yinchuan, China.,Institute of Human Stem Cell Research, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jingquan He
- Biotree Metabolomics Research Center, Biotree, Shanghai, China
| | - Jinping Li
- Department of Oncology Surgery, Ningxia Medical University, Yinchuan, China
| | - Qian Zou
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Jiawei Si
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Yatao Guo
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Jiayu Yu
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Cheng Li
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Fang Wang
- Clinical Medical School, Ningxia Medical University, Yinchuan, China
| | - Tianlong Chan
- Biotree Metabolomics Research Center, Biotree, Shanghai, China
| | - Huijuan Shi
- Innovation Team for Skin Disease Diagnosis and Treatment Technology & Drug Discovery and Development, The General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Dermatovenereology, The General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
619
|
Li SS, Niu M, Jing J, Huang Y, Zhang ZT, Chen SS, Shi GZ, He X, Zhang HZ, Xiao XH, Zou ZS, Yu YC, Wang JB. Metabolomic Signatures of Autoimmune Hepatitis in the Development of Cirrhosis. Front Med (Lausanne) 2021; 8:644376. [PMID: 33777984 PMCID: PMC7994277 DOI: 10.3389/fmed.2021.644376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives: Autoimmune hepatitis (AIH) can progress into severe outcomes, i.e., decompensated cirrhosis, from remarkable and persistent inflammation in the liver. Considering the energy-expending nature of inflammation, we tried to define the metabolomics signatures of AIH to uncover the underlying mechanisms of cirrhosis development and its metabolic biomarkers. Methods: Untargeted metabolomics analysis was performed on sera samples from 79 AIH patients at the stages (phenotypes) of non-cirrhosis (n = 27), compensated cirrhosis (n = 22), and decompensated cirrhosis (n = 30). Pattern recognition was used to find unique metabolite fingerprints of cirrhosis with or without decompensation. Results: Out of the 294 annotated metabolites identified, 2 metabolic fingerprints were found associated with the development of cirrhosis (independent of the decompensated state, 42 metabolites) and the evolution of decompensated cirrhosis (out of 47 metabolites), respectively. The cirrhosis-associated fingerprints (eigenmetabolite) showed better capability to differentiate cirrhosis from non-cirrhosis patients than the aminotransferase-to-platelet ratio index. From the metabolic fingerprints, we found two pairs of metabolites (Mesobilirubinogen/6-Hydroxynicotinic acid and LysoPA(8:0/0:0)/7alpha-Hydroxycholesterol) calculated as ratio of intensities, which revealed robust abilities to identify cirrhosis or predict decompensated patients, respectively. These phenotype-related fingerprint metabolites featured fundamental energy supply disturbance along with the development of AIH cirrhosis and progression to decompensation, which was characterized as increased lipolysis, enhanced proteolysis, and increased glycolysis. Conclusions: Remodeling of metabolism to meet the liver inflammation-related energy supply is one of the key signatures of AIH in the development of cirrhosis and decompensation. Therefore, drug regulation metabolism has great potential in the treatment of AIH.
Collapse
Affiliation(s)
- Shan-shan Li
- School of Pharmacy and Chemistry, Dali University, Dali, China
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- Department of Poisoning Treatment, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Jing
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Huang
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zi-teng Zhang
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuai-shuai Chen
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ge-zi Shi
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xian He
- School of Pharmacy and Chemistry, Dali University, Dali, China
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hai-zhu Zhang
- School of Pharmacy and Chemistry, Dali University, Dali, China
| | - Xiao-he Xiao
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zheng-sheng Zou
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yue-cheng Yu
- Liver Diseases Center of General Hospital of PLA Eastern Theater Command, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-bo Wang
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
620
|
Xiao N, Nie M, Pang H, Wang B, Hu J, Meng X, Li K, Ran X, Long Q, Deng H, Chen N, Li S, Tang N, Huang A, Hu Z. Integrated cytokine and metabolite analysis reveals immunometabolic reprogramming in COVID-19 patients with therapeutic implications. Nat Commun 2021; 12:1618. [PMID: 33712622 PMCID: PMC7955129 DOI: 10.1038/s41467-021-21907-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/19/2021] [Indexed: 01/08/2023] Open
Abstract
Cytokine release syndrome (CRS) is a major cause of the multi-organ injury and fatal outcome induced by SARS-CoV-2 infection in severe COVID-19 patients. Metabolism can modulate the immune responses against infectious diseases, yet our understanding remains limited on how host metabolism correlates with inflammatory responses and affects cytokine release in COVID-19 patients. Here we perform both metabolomics and cytokine/chemokine profiling on serum samples from healthy controls, mild and severe COVID-19 patients, and delineate their global metabolic and immune response landscape. Correlation analyses show tight associations between metabolites and proinflammatory cytokines/chemokines, such as IL-6, M-CSF, IL-1α, IL-1β, and imply a potential regulatory crosstalk between arginine, tryptophan, purine metabolism and hyperinflammation. Importantly, we also demonstrate that targeting metabolism markedly modulates the proinflammatory cytokines release by peripheral blood mononuclear cells isolated from SARS-CoV-2-infected rhesus macaques ex vivo, hinting that exploiting metabolic alterations may be a potential strategy for treating fatal CRS in COVID-19. Metabolism changes can modulate immune responses in many contexts, and vice versa. Here the authors associate metabolomic, as well as cytokine and chemokine, data from stratified COVID-19 patients to find that arginine, tryptophan and purine metabolic pathways correlate with hyperproliferation, thus hinting at potential therapeutic targets for severe COVID-19 patients.
Collapse
Affiliation(s)
- Nan Xiao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Meng Nie
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huanhuan Pang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bohong Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jieli Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiangjun Meng
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaorong Ran
- Agilent Technologies (China), Chaoyang District, Beijing, 100102, China
| | - Quanxin Long
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Haijun Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Na Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics, Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China.
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China.
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China. .,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
621
|
IL4I1-driven AHR signature: a new avenue for cancer therapy. Signal Transduct Target Ther 2021; 6:118. [PMID: 33692337 PMCID: PMC7946875 DOI: 10.1038/s41392-021-00529-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 11/08/2022] Open
|
622
|
Zeng C, Yang P, Cao T, Gu Y, Li N, Zhang B, Xu P, Liu Y, Luo Z, Cai H. Gut microbiota: An intermediary between metabolic syndrome and cognitive deficits in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110097. [PMID: 32916223 DOI: 10.1016/j.pnpbp.2020.110097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Gut microbiome interacts with the central nervous system tract through the gut-brain axis. Such communication involves neuronal, endocrine, and immunological mechanisms, which allows for the microbiota to affect and respond to various behaviors and psychiatric conditions. In addition, the use of atypical antipsychotic drugs (AAPDs) may interact with and even change the abundance of microbiome to potentially cause adverse effects or aggravate the disorders inherent in the disease. The regulate effects of gut microbiome has been described in several psychiatric disorders including anxiety and depression, but only a few reports have discussed the role of microbiota in AAPDs-induced Metabolic syndrome (MetS) and cognitive disorders. The following review systematically summarizes current knowledge about the gut microbiota in behavior and psychiatric illness, with the emphasis of an important role of the microbiome in the metabolism of schizophrenia and the potential for AAPDs to change the gut microbiota to promote adverse events. Prebiotics and probiotics are microbiota-management tools with documented efficacy for metabolic disturbances and cognitive deficits. Novel therapies for targeting microbiota for alleviating AAPDs-induced adverse effects are also under fast development.
Collapse
Affiliation(s)
- CuiRong Zeng
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - Ping Yang
- Department of Psychiatry, The Second People's Hospital of Hunan Province, Changsha 410007, Hunan Province, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - YuXiu Gu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - NaNa Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - BiKui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - YiPing Liu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - ZhiYing Luo
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China
| | - HuaLin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China; The Institute of Clinical Pharmacy, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
623
|
Functional metabolomics reveal the role of AHR/GPR35 mediated kynurenic acid gradient sensing in chemotherapy-induced intestinal damage. Acta Pharm Sin B 2021; 11:763-780. [PMID: 33777681 PMCID: PMC7982426 DOI: 10.1016/j.apsb.2020.07.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Intestinal toxicity induced by chemotherapeutics has become an important reason for the interruption of therapy and withdrawal of approved agents. In this study, we demonstrated that chemotherapeutics-induced intestinal damage were commonly characterized by the sharp upregulation of tryptophan (Trp)−kynurenine (KYN)−kynurenic acid (KA) axis metabolism. Mechanistically, chemotherapy-induced intestinal damage triggered the formation of an interleukin-6 (IL-6)−indoleamine 2,3-dioxygenase 1 (IDO1)−aryl hydrocarbon receptor (AHR) positive feedback loop, which accelerated kynurenine pathway metabolism in gut. Besides, AHR and G protein-coupled receptor 35 (GPR35) negative feedback regulates intestinal damage and inflammation to maintain intestinal integrity and homeostasis through gradually sensing kynurenic acid level in gut and macrophage, respectively. Moreover, based on virtual screening and biological verification, vardenafil and linagliptin as GPR35 and AHR agonists respectively were discovered from 2388 approved drugs. Importantly, the results that vardenafil and linagliptin significantly alleviated chemotherapy-induced intestinal toxicity in vivo suggests that chemotherapeutics combined with the two could be a promising therapeutic strategy for cancer patients in clinic. This work highlights GPR35 and AHR as the guardian of kynurenine pathway metabolism and core component of defense responses against intestinal damage.
Collapse
Key Words
- 1-MT, 1-methyl-tryptophan
- AG, AG490
- AHR
- AHR, aryl hydrocarbon receptor
- ARNT, aryl hydrocarbon receptor nuclear translocator
- BCA, bicinchoninic acid
- BSA, bovine serum albumin
- CH, CH223191
- CPT-11, irinotecan
- CYP1A1, cytochrome P450 1A1
- DAI, disease activity index
- DMSO, dimethyl sulfoxide
- DPP-4, dipeptidyl peptidase-4
- DRE, dioxin response elements
- DSS, dextran sulphate sodium
- Dens-Cl, N-diethyl-amino naphthalene-1-sulfonyl chloride
- Dns-Cl, N-dimethyl-amino naphthalene-1-sulfonyl chloride
- ECL, enhanced chemiluminescence
- ELISA, enzyme-linked immunosorbent assay
- ERK1/2, extracellular regulated protein kinases 1/2
- ESI, electrospray ionization
- FBS, fetal bovine serum
- GE, gastric emptying
- GFP, green fluorescence protein
- GI, gastrointestinal transit
- GPR35
- GPR35, G protein-coupled receptor 35
- Gradually sensing
- HE, hematoxylin and eosin
- HRP, horseradish peroxi-dase
- IBD, inflammatory bowel disease
- IDO1, indoleamine 2,3-dioxygenase 1
- IL-6, interleukin-6
- IS, internal standard
- Intestinal toxicity
- JAK2, janus kinase 2
- KA, kynurenic acid
- KAT, kynurenine aminotransferase
- KYN, kynurenine
- Kynurenine pathway
- LC–MS, liquid chromatography–mass spectrometry
- LPS, lipopolysaccharides
- Linag, linagliptin
- MOE, molecular operating environment
- MOI, multiplicity of infection
- MRM, multiple-reaction monitoring
- MTT, thiazolyl blue tetrazolium bromide
- PBS, phosphate buffer saline
- PDB, protein data bank
- PDE5, phosphodiesterase type-5
- PF, PF-04859989
- PMA, phorbol 12-myristate 13-acetate
- PMSF, phenylmethylsulfonyl fluoride
- RIPA, radioimmunoprecipitation
- RPKM, reads per kilobase per million mapped reads
- RPMI 1640, Roswell Park Memorial Institute 1640
- RT-PCR, real-time polymerase chain reaction
- STAT3, signal transducer and activator of transcription 3
- Trp, tryptophan
- VCR, vincristine
- Vard, vardenafil
Collapse
|
624
|
Yamamura S, Nakano D, Hashida R, Tsutsumi T, Kawaguchi T, Okada M, Isoda H, Takahashi H, Matsuse H, Eguchi Y, Sumida Y, Nakajima A, Gerber L, Younossi ZM, Torimura T. Patient-reported outcomes in patients with non-alcoholic fatty liver disease: A narrative review of Chronic Liver Disease Questionnaire-non-alcoholic fatty liver disease/non-alcoholic steatohepatitis. J Gastroenterol Hepatol 2021; 36:629-636. [PMID: 32627871 DOI: 10.1111/jgh.15172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/17/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide and one of the leading causes of hepatocellular carcinoma and liver transplantation. Moreover, patients with NAFLD frequently complain of non-specific symptoms including fatigue, abdominal discomfort, as well as anxiety, and NAFLD is reported to affect patient-reported outcomes (PROs). Thus, for clarifying the total burden of NAFLD, it is crucial to assess all associated outcomes, including not only clinical and economic outcomes but also PROs. PROs are thought to reflect what is happening in one's daily life and is an important way patients and health-care professionals communicate. There are various instruments for the assessment of PROs. Recently, a NAFLD/non-alcoholic steatohepatitis (NASH)-specific instrument called "Chronic Liver Disease Questionnaire (CLDQ)-NAFLD/NASH" has been developed. CLDQ-NAFLD/NASH comprises six domains: (i) abdominal symptoms, (ii) activity/energy, (iii) emotional health, (iv) fatigue, (v) systemic symptoms, and (vi) worry. CLDQ-NAFLD/NASH has demonstrated excellent internal consistency, face validity, content validity, and test-retest reliability. It has been sufficiently validated in two international phase 3 clinical trials. In this review, we summarize features of various instruments for assessing PROs by focusing on CLDQ-NAFLD/NASH. We also examine the validity of CLDQ-NAFLD/NASH in Japanese patients and alterations in CLDQ-NAFLD/NASH score in Japanese patients with significant hepatic fibrosis. Moreover, we discuss the utility of CLDQ-NAFLD/NASH in phase 3 clinical trials and in a real-world clinical setting.
Collapse
Affiliation(s)
- Sakura Yamamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Dan Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ryuki Hashida
- Department of Orthopedics, Kurume University School of Medicine, Kurume, Japan.,Division of Rehabilitation, Kurume University Hospital, Kurume, Japan
| | - Tsubasa Tsutsumi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Michiaki Okada
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Nabeshima, Japan
| | - Hiroshi Isoda
- Liver Center, Saga University Hospital, Nabeshima, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Nabeshima, Japan
| | - Hiroo Matsuse
- Department of Orthopedics, Kurume University School of Medicine, Kurume, Japan.,Division of Rehabilitation, Kurume University Hospital, Kurume, Japan
| | - Yuichiro Eguchi
- Liver Center, Saga University Hospital, Nabeshima, Japan.,Locomedical General Institution, Medical cooperation Locomedical, Ogi, Japan
| | - Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Lynn Gerber
- Department of Medicine, Center for Liver Disease, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Zobair M Younossi
- Department of Medicine, Center for Liver Disease, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
625
|
Kumar R, Chhikara BS, Gulia K, Chhillar M. Review of nanotheranostics for molecular mechanisms underlying psychiatric disorders and commensurate nanotherapeutics for neuropsychiatry: The mind knockout. Nanotheranostics 2021; 5:288-308. [PMID: 33732601 PMCID: PMC7961125 DOI: 10.7150/ntno.49619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Bio-neuronal led psychiatric abnormalities transpired by the loss of neuronal structure and function (neurodegeneration), pro-inflammatory cytokines, microglial dysfunction, altered neurotransmission, toxicants, serotonin deficiency, kynurenine pathway, and excessively produced neurotoxic substances. These uncontrolled happenings in the etiology of psychiatric disorders initiate further changes in neurotransmitter metabolism, pathologic microglial, cell activation, and impaired neuroplasticity. Inflammatory cytokines, the outcome of dysfunctional mitochondria, dysregulation of the immune system, and under stress functions of the brain are leading biochemical factors for depression and anxiety. Nanoscale drug delivery platforms, inexpensive diagnostics using nanomaterials, nano-scale imaging technologies, and ligand-conjugated nanocrystals used for elucidating the molecular mechanisms and foremost cellular communications liable for such disorders are highly capable features to study for efficient diagnosis and therapy of the mental illness. These theranostic tools made up of multifunctional nanomaterials have the potential for effective and accurate diagnosis, imaging of psychiatric disorders, and are at the forefront of leading technologies in nanotheranostics openings field as they can collectively and efficiently target the stimulated territories of the cerebellum (cells and tissues) through molecular-scale interactions with higher bioavailability, and bio-accessibility. Specifically, the nanoplatforms based neurological changes are playing a significant role in the diagnosis of psychiatric disorders and portraying the routes of functional restoration of mental disorders by newer imaging tools at nano-level in all directions. Because of these nanotherapeutic platforms, the molecules of nanomedicine can penetrate the Blood-Brain Barrier with an increased half-life of drug molecules. The discoveries in nanotheranostics and nanotherapeutics inbuilt unique multi-functionalities are providing the best multiplicities of novel nanotherapeutic potentialities with no toxicity concerns at the level of nano range.
Collapse
Affiliation(s)
- Rajiv Kumar
- NIET, National Institute of Medical Science, India
| | - Bhupender S Chhikara
- Department of Chemistry, Aditi Mahavidyalaya, University of Delhi. Delhi, 110039, India
| | - Kiran Gulia
- Materials and Manufacturing, School of Engineering, University of Wolverhampton, England, TF2 9NN, UK
| | - Mitrabasu Chhillar
- Institute of Nuclear Medicine and Allied Sciences (INMAS) Brig. S. K. Mazumdar Marg Delhi 110054, India
| |
Collapse
|
626
|
Li X, Zhang ZH, Zabed HM, Yun J, Zhang G, Qi X. An Insight into the Roles of Dietary Tryptophan and Its Metabolites in Intestinal Inflammation and Inflammatory Bowel Disease. Mol Nutr Food Res 2021; 65:e2000461. [PMID: 33216452 DOI: 10.1002/mnfr.202000461] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/14/2020] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD) is complex, chronic, and relapsing gastrointestinal inflammatory disorders, which includes mainly two conditions, namely ulcerative colitis (UC) and Crohn's disease (CD). Development of IBD in any individual is closely related to his/her autoimmune regulation, gene-microbiota interactions, and dietary factors. Dietary tryptophan (Trp) is an essential amino acid for intestinal mucosal cells, and it is associated with the intestinal inflammation, epithelial barrier, and energy homeostasis of the host. According to recent studies, Trp and its three major metabolic pathways, namely kynurenine (KYN) pathway, indole pathway, and 5-hydroxytryptamine (5-HT) pathway, have vital roles in the regulation of intestinal inflammation by acting directly or indirectly on the pro/anti-inflammatory cytokines, functions of various immune cells, as well as the intestinal microbial composition and homeostasis. In this review, recent advances in Trp- and its metabolites-associated intestinal inflammation are summarized. It further discusses the complex mechanisms and interrelationships of the three major metabolic pathways of Trp in regulating inflammation, which could elucidate the value of dietary Trp to be used as a nutrient for IBD patients.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zhi-Hong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
627
|
Lim A, Harijanto C, Vogrin S, Guillemin G, Duque G. Does Exercise Influence Kynurenine/Tryptophan Metabolism and Psychological Outcomes in Persons With Age-Related Diseases? A Systematic Review. Int J Tryptophan Res 2021; 14:1178646921991119. [PMID: 33613029 PMCID: PMC7876580 DOI: 10.1177/1178646921991119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The kynurenine (KYN) pathway has been implicated in many diseases associated with inflammation and aging (“inflammaging”). Targeting the kynurenine pathway to modify disease outcomes has been trialled pharmacologically, but the evidence of non-pharmacological means (ie, exercise) remains unclear. Objective: We aim to assess the evidence of the effects of exercise on the kynurenine pathway and psychological outcomes. Methods: Under Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines, a systematic literature search was performed in MEDLINE, EMBASE, EMCARE, and the Cochrane Central Registry of Controlled Trials. The main outcomes were changes in kynurenine pathway metabolite levels and psychological outcomes. Results: Six studies were analyzed (total n = 379) with exercise demonstrating significant concomitant effects on kynurenine pathway metabolite levels and associated psychological outcomes in domains of somatization, anxiety, and depression. Conclusion: Exercise has significant concomitant effect on kynurenine pathway metabolite levels and psychological outcomes. However, clear limitations exist in determining if the changes in the kynurenine pathway can fully explain the changes in psychological outcomes, or whether different diseases and exercise interventions act as confounding factors.
Collapse
Affiliation(s)
- Anthony Lim
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia.,Melbourne Medical School-Western Precinct, The University of Melbourne, St Albans, VIC, Australia
| | - Christel Harijanto
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia.,Melbourne Medical School-Western Precinct, The University of Melbourne, St Albans, VIC, Australia
| | - Sara Vogrin
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, Australia
| | - Gilles Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia.,Melbourne Medical School-Western Precinct, The University of Melbourne, St Albans, VIC, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St Albans, VIC, Australia
| |
Collapse
|
628
|
Straub TJ, Chou WC, Manson AL, Schreiber HL, Walker BJ, Desjardins CA, Chapman SB, Kaspar KL, Kahsai OJ, Traylor E, Dodson KW, Hullar MAJ, Hultgren SJ, Khoo C, Earl AM. Limited effects of long-term daily cranberry consumption on the gut microbiome in a placebo-controlled study of women with recurrent urinary tract infections. BMC Microbiol 2021; 21:53. [PMID: 33596852 PMCID: PMC7890861 DOI: 10.1186/s12866-021-02106-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) affect 15 million women each year in the United States, with > 20% experiencing frequent recurrent UTIs. A recent placebo-controlled clinical trial found a 39% reduction in UTI symptoms among recurrent UTI sufferers who consumed a daily cranberry beverage for 24 weeks. Using metagenomic sequencing of stool from a subset of these trial participants, we assessed the impact of cranberry consumption on the gut microbiota, a reservoir for UTI-causing pathogens such as Escherichia coli, which causes > 80% of UTIs. RESULTS The overall taxonomic composition, community diversity, carriage of functional pathways and gene families, and relative abundances of the vast majority of observed bacterial taxa, including E. coli, were not changed significantly by cranberry consumption. However, one unnamed Flavonifractor species (OTU41), which represented ≤1% of the overall metagenome, was significantly less abundant in cranberry consumers compared to placebo at trial completion. Given Flavonifractor's association with negative human health effects, we sought to determine OTU41 characteristic genes that may explain its differential abundance and/or relationship to key host functions. Using comparative genomic and metagenomic techniques, we identified genes in OTU41 related to transport and metabolism of various compounds, including tryptophan and cobalamin, which have been shown to play roles in host-microbe interactions. CONCLUSION While our results indicated that cranberry juice consumption had little impact on global measures of the microbiome, we found one unnamed Flavonifractor species differed significantly between study arms. This suggests further studies are needed to assess the role of cranberry consumption and Flavonifractor in health and wellbeing in the context of recurrent UTI. TRIAL REGISTRATION Clinical trial registration number: ClinicalTrials.gov NCT01776021 .
Collapse
Affiliation(s)
- Timothy J Straub
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wen-Chi Chou
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Abigail L Manson
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Henry L Schreiber
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bruce J Walker
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Christopher A Desjardins
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Sinéad B Chapman
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | | | - Orsalem J Kahsai
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elizabeth Traylor
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Karen W Dodson
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Meredith A J Hullar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Ashlee M Earl
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
629
|
Abuin-Martínez C, Vidal R, Gutiérrez-López MD, Pérez-Hernández M, Giménez-Gómez P, Morales-Puerto N, O'Shea E, Colado MI. Increased kynurenine concentration attenuates serotonergic neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA) in rats through activation of aryl hydrocarbon receptor. Neuropharmacology 2021; 187:108490. [PMID: 33607146 DOI: 10.1016/j.neuropharm.2021.108490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 01/08/2023]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is an amphetamine derivative that has been shown to produce serotonergic damage in the brains of primates, including humans, and of rats. Tryptophan, the precursor of serotonin, is primarily degraded through the kynurenine (KYN) pathway, producing among others KYN, the main metabolite of this route. KYN has been reported as an endogenous agonist of the aryl hydrocarbon receptor (AhR), a transcription factor involved in several neurological functions. This study aims to determine the effect of MDMA on the KYN pathway and on AhR activity and to establish their role in the long-term serotonergic neurotoxicity induced by the drug in rats. Our results show that MDMA induces the activation of the KYN pathway, mediated by hepatic tryptophan 2,3-dioxygenase (TDO). MDMA also activated AhR as evidenced by increased AhR nuclear translocation and CYP1B1 mRNA expression. Autoradiographic quantification of serotonin transporters showed that both the TDO inhibitor 680C91 and the AhR antagonist CH-223191 potentiated the neurotoxicity induced by MDMA, while administration of exogenous l-kynurenine or of the AhR positive modulator 3,3'-diindolylmethane (DIM) partially prevented the serotonergic damage induced by the drug. The results demonstrate for the first time that MDMA increases KYN levels and AhR activity, and these changes appear to play a role in limiting the neurotoxicity induced by the drug. This work provides a better understanding of the physiological mechanisms that attenuate the brain damage induced by MDMA and identify modulation of the KYN pathway and of AhR as potential therapeutic strategies to limit the negative effects of MDMA.
Collapse
Affiliation(s)
- C Abuin-Martínez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain
| | - R Vidal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain
| | - M D Gutiérrez-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain
| | - M Pérez-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain
| | - P Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain
| | - N Morales-Puerto
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain
| | - E O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain.
| | - M I Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Red de Trastornos Adictivos, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Investigación Neuroquímica (IUIN), Universidad Complutense, Madrid, Spain.
| |
Collapse
|
630
|
Tabone M, Bressa C, García-Merino JA, Moreno-Pérez D, Van EC, Castelli FA, Fenaille F, Larrosa M. The effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes. Sci Rep 2021; 11:3558. [PMID: 33574413 PMCID: PMC7878499 DOI: 10.1038/s41598-021-82947-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/06/2020] [Indexed: 01/30/2023] Open
Abstract
Physical exercise can produce changes in the microbiota, conferring health benefits through mechanisms that are not fully understood. We sought to determine the changes driven by exercise on the gut microbiota and on the serum and fecal metabolome using 16S rRNA gene analysis and untargeted metabolomics. A total of 85 serum and 12 fecal metabolites and six bacterial taxa (Romboutsia, Escherichia coli TOP498, Ruminococcaceae UCG-005, Blautia, Ruminiclostridium 9 and Clostridium phoceensis) were modified following a controlled acute exercise session. Among the bacterial taxa, Ruminiclostridium 9 was the most influenced by fecal and serum metabolites, as revealed by linear multivariate regression analysis. Exercise significantly increased the fecal ammonia content. Functional analysis revealed that alanine, aspartate and glutamate metabolism and the arginine and aminoacyl-tRNA biosynthesis pathways were the most relevant modified pathways in serum, whereas the phenylalanine, tyrosine and tryptophan biosynthesis pathway was the most relevant pathway modified in feces. Correlation analysis between fecal and serum metabolites suggested an exchange of metabolites between both compartments. Thus, the performance of a single exercise bout in cross-country non-professional athletes produces significant changes in the microbiota and in the serum and fecal metabolome, which may have health implications.
Collapse
Affiliation(s)
- Mariangela Tabone
- MAS Microbiota Research Group, Faculty of Biomedical Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odón, Madrid, Spain
| | - Carlo Bressa
- MAS Microbiota Research Group, Faculty of Biomedical Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odón, Madrid, Spain
| | - Jose Angel García-Merino
- MAS Microbiota Research Group, Faculty of Biomedical Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odón, Madrid, Spain
| | - Diego Moreno-Pérez
- Departamento de Educación, Métodos de Investigación y Evaluación, Universidad Pontificia de Comillas, ICAI-ICADE, 28015, Cantoblanco, Madrid, Spain
| | - Emeline Chu Van
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, 91191, Gif sur Yvette, France
| | - Florence A Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, 91191, Gif sur Yvette, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, 91191, Gif sur Yvette, France.
| | - Mar Larrosa
- MAS Microbiota Research Group, Faculty of Biomedical Sciences, Universidad Europea de Madrid, 28670, Villaviciosa de Odón, Madrid, Spain.
| |
Collapse
|
631
|
Crowther RR, Qualls JE. Metabolic Regulation of Immune Responses to Mycobacterium tuberculosis: A Spotlight on L-Arginine and L-Tryptophan Metabolism. Front Immunol 2021; 11:628432. [PMID: 33633745 PMCID: PMC7900187 DOI: 10.3389/fimmu.2020.628432] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a leading cause of death worldwide. Despite decades of research, there is still much to be uncovered regarding the immune response to Mtb infection. Here, we summarize the current knowledge on anti-Mtb immunity, with a spotlight on immune cell amino acid metabolism. Specifically, we discuss L-arginine and L-tryptophan, focusing on their requirements, regulatory roles, and potential use as adjunctive therapy in TB patients. By continuing to uncover the immune cell contribution during Mtb infection and how amino acid utilization regulates their functions, it is anticipated that novel host-directed therapies may be developed and/or refined, helping to eradicate TB.
Collapse
Affiliation(s)
- Rebecca R Crowther
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Joseph E Qualls
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
632
|
Yao Y, Liang H, Fang X, Zhang S, Xing Z, Shi L, Kuang C, Seliger B, Yang Q. What is the prospect of indoleamine 2,3-dioxygenase 1 inhibition in cancer? Extrapolation from the past. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:60. [PMID: 33557876 PMCID: PMC7869231 DOI: 10.1186/s13046-021-01847-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), a monomeric heme-containing enzyme, catalyzes the first and rate-limiting step in the kynurenine pathway of tryptophan metabolism, which plays an important role in immunity and neuronal function. Its implication in different pathophysiologic processes including cancer and neurodegenerative diseases has inspired the development of IDO1 inhibitors in the past decades. However, the negative results of the phase III clinical trial of the would-be first-in-class IDO1 inhibitor (epacadostat) in combination with an anti-PD1 antibody (pembrolizumab) in patients with advanced malignant melanoma call for a better understanding of the role of IDO1 inhibition. In this review, the current status of the clinical development of IDO1 inhibitors will be introduced and the key pre-clinical and clinical data of epacadostat will be summarized. Moreover, based on the cautionary notes obtained from the clinical readout of epacadostat, strategies for the identification of reliable predictive biomarkers and pharmacodynamic markers as well as for the selection of the tumor types to be treated with IDO1inhibitors will be discussed.
Collapse
Affiliation(s)
- Yu Yao
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Heng Liang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Xin Fang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Shengnan Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Zikang Xing
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Lei Shi
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China
| | - Chunxiang Kuang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, China
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06112, Halle (Saale), Germany
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Songhu Road 2005, 200438, Shanghai, China.
| |
Collapse
|
633
|
Doifode T, Giridharan VV, Generoso JS, Bhatti G, Collodel A, Schulz PE, Forlenza OV, Barichello T. The impact of the microbiota-gut-brain axis on Alzheimer's disease pathophysiology. Pharmacol Res 2021; 164:105314. [PMID: 33246175 DOI: 10.1016/j.phrs.2020.105314] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022]
Abstract
The gut microbiota is a complex ecosystem that comprises of more than 100 trillion symbiotic microbial cells. The microbiota, the gut, and the brain form an association, 'the microbiota-gut-brain axis,' and synchronize the gut with the central nervous system and modify the behavior and brain immune homeostasis. The bidirectional communication between gut and brain occurs via the immune system, the vagus nerve, the enteric nervous system, and microbial metabolites, including short-chain fatty acids (SCFAs), proteins, and tryptophan metabolites. Recent studies have implicated the gut microbiota in many neurodegenerative diseases, including Alzheimer's disease (AD). In this review, we present an overview of gut microbiota, including Firmicutes, Bacteroidetes, SCFA, tryptophan, bacterial composition, besides age-related changes in gut microbiota composition, the microbiota-gut-brain axis pathways, the role of gut metabolites in amyloid-beta clearance, and gut microbiota modulation from experimental and clinical AD models. Understanding the role of the microbiota may provide new targets for treatment to delay the onset, progression, or reverse AD, and may help in reducing the prevalence of AD.
Collapse
Affiliation(s)
- Tejaswini Doifode
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jaqueline S Generoso
- Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gursimrat Bhatti
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Allan Collodel
- Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Paul E Schulz
- Neurocognitive Disorders Center, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Orestes V Forlenza
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tatiana Barichello
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
634
|
Tabrizi F, Seyyed Tabaei SJ, Ali Ahmadi N, Arefi Oskouie A. A Nuclear Magnetic Resonance-Based Metabolomic Study to Identify Metabolite Differences between Iranian Isolates of Leishmania major and Leishmania tropica. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:43-51. [PMID: 33487791 PMCID: PMC7812499 DOI: 10.30476/ijms.2019.82120.0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background Cutaneous leishmaniasis caused by Leishmania species (L. spp) is one of the most important parasitic diseases in humans. To gain information on the metabolite variations and biochemical pathways between L. spp, we used the comparative metabolome of metacyclic promastigotes in the Iranian isolates of L. major and L. tropica by proton nuclear magnetic resonance (1H-NMR). Methods L. tropica and L. major were collected from three areas of Iran, namely Gonbad, Mashhad, and Bam, between 2017 and 2018, and were cultured. The metacyclic promastigote of each species was separated, and cell metabolites were extracted. 1H-NMR spectroscopy was applied, and the data were processed using ProMatab in MATLAB (version 7.8.0.347). Multivariate statistical analyses, including the principal component analysis and the orthogonal projections to latent structures discriminant analysis, were performed to identify the discriminative metabolites between the two L. spp. Metabolites with variable influences in projection values of more than one and a P value of less than 0.05 were marked as significant differences. Results A set of metabolites were detected, and 24 significantly differentially expressed metabolites were found between the metacyclic forms of L. major and L. tropica isolates. The top differential metabolites were methionine, aspartate, betaine, and acetylcarnitine, which were increased more in L. tropica than L. major (P<0.005), whereas asparagine, 3-hydroxybutyrate, L-proline, and kynurenine were increased significantly in L. major (P<0.01). The significantly altered metabolites were involved in eight metabolic pathways. Conclusion Metabolomics, as an invaluable technique, yielded significant metabolites, and their biochemical pathways related to the metacyclic promastigotes of L. major and L. tropica. The findings offer greater insights into parasite biology and how pathogens adapt to their hosts.
Collapse
Affiliation(s)
- Fatemeh Tabrizi
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nayeb Ali Ahmadi
- Proteomics Research Center, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Arefi Oskouie
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
635
|
Makhnovskii PA, Bokov RO, Kolpakov FA, Popov DV. Transcriptomic Signatures and Upstream Regulation in Human Skeletal Muscle Adapted to Disuse and Aerobic Exercise. Int J Mol Sci 2021; 22:ijms22031208. [PMID: 33530535 PMCID: PMC7866200 DOI: 10.3390/ijms22031208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/08/2023] Open
Abstract
Inactivity is associated with the development of numerous disorders. Regular aerobic exercise is broadly used as a key intervention to prevent and treat these pathological conditions. In our meta-analysis we aimed to identify and compare (i) the transcriptomic signatures related to disuse, regular and acute aerobic exercise in human skeletal muscle and (ii) the biological effects and transcription factors associated with these transcriptomic changes. A standardized workflow with robust cut-off criteria was used to analyze 27 transcriptomic datasets for the vastus lateralis muscle of healthy humans subjected to disuse, regular and acute aerobic exercise. We evaluated the role of transcriptional regulation in the phenotypic changes described in the literature. The responses to chronic interventions (disuse and regular training) partially correspond to the phenotypic effects. Acute exercise induces changes that are mainly related to the regulation of gene expression, including a strong enrichment of several transcription factors (most of which are related to the ATF/CREB/AP-1 superfamily) and a massive increase in the expression levels of genes encoding transcription factors and co-activators. Overall, the adaptation strategies of skeletal muscle to decreased and increased levels of physical activity differ in direction and demonstrate qualitative differences that are closely associated with the activation of different sets of transcription factors.
Collapse
Affiliation(s)
- Pavel A. Makhnovskii
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
| | - Roman O. Bokov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
| | - Fedor A. Kolpakov
- Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Daniil V. Popov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
636
|
Florensa-Zanuy E, Garro-Martínez E, Adell A, Castro E, Díaz Á, Pazos Á, Mac-Dowell KS, Martín-Hernández D, Pilar-Cuéllar F. Cannabidiol antidepressant-like effect in the lipopolysaccharide model in mice: Modulation of inflammatory pathways. Biochem Pharmacol 2021; 185:114433. [PMID: 33513342 DOI: 10.1016/j.bcp.2021.114433] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Major Depression is a severe psychiatric condition with a still poorly understood etiology. In the last years, evidence supporting the neuroinflammatory hypothesis of depression has increased. In the current clinical scenario, in which the available treatments for depression is far from optimal, there is an urgent need to develop fast-acting drugs with fewer side effects. In this regard, recent pieces of evidence suggest that cannabidiol (CBD), the major non-psychotropic component of Cannabis sativa with anti-inflammatory properties, appears as a drug with antidepressant properties. In this work, CBD 30 mg/kg was administered systemically to mice 30 min before lipopolysaccharide (LPS; 0.83 mg/kg) administration as a neuroinflammatory model, and behavioral tests for depressive-, anhedonic- and anxious-like behavior were performed. NF-ĸB, IκBα and PPARγ levels were analyzed by western blot in nuclear and cytosolic fractions of cortical samples. IL-6 and TNFα levels were determined in plasma and prefrontal cortex using ELISA and qPCR techniques, respectively. The precursor tryptophan (TRP), and its metabolites kynurenine (KYN) and serotonin (5-HT) were measured in hippocampus and cortex by HPLC. The ratios KYN/TRP and KYN/5-HT were used to estimate indoleamine 2,3-dioxygenase (IDO) activity and the balance of both metabolic pathways, respectively. CBD reduced the immobility time in the tail suspension test and increased sucrose preference in the LPS model, without affecting locomotion and central activity in the open-field test. CBD diminished cortical NF-ĸB activation, IL-6 levels in plasma and brain, and the increased KYN/TRP and KYN/5-HT ratios in hippocampus and cortex in the LPS model. Our results demonstrate that CBD produced antidepressant-like effects in the LPS neuroinflammatory model, associated to a reduction in the kynurenine pathway activation, IL-6 levels and NF-ĸB activation. As CBD stands out as a promising antidepressant drug, more research is needed to completely understand its mechanisms of action in depression linked to inflammation.
Collapse
Affiliation(s)
- Eva Florensa-Zanuy
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Emilio Garro-Martínez
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Albert Adell
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Elena Castro
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Álvaro Díaz
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Ángel Pazos
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain
| | - Karina S Mac-Dowell
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Departmento de Farmacología y Toxicología. Facultad de Medicina, Universidad Complutense de Madrid (UCM), IUIN-UCM, Imas12 Hospital 12 de Octubre, Madrid, Spain
| | - David Martín-Hernández
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain; Department of Child and Adolescent Psychiatry, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Fuencisla Pilar-Cuéllar
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Spain.
| |
Collapse
|
637
|
Ge S, Zhong H, Ma X, Zheng Y, Zou Y, Wang F, Wang Y, Hu Y, Li Y, Liu W, Guo W, Xu Q, Lai Y. Discovery of secondary sulphonamides as IDO1 inhibitors with potent antitumour effects in vivo. J Enzyme Inhib Med Chem 2021; 35:1240-1257. [PMID: 32466694 PMCID: PMC7336998 DOI: 10.1080/14756366.2020.1765165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) as a key rate-limiting enzyme in the kynurenine pathway of tryptophan metabolism plays an important role in tumour immune escape. Herein, a variety of secondary sulphonamides were synthesised and evaluated in the HeLa cell-based IDO1/kynurenine assay, leading to the identification of new IDO1 inhibitors. Among them, compounds 5d, 5l and 8g exhibited the strongest inhibitory effect with significantly improved activity over the hit compound BS-1. The in vitro results showed that these compounds could restore the T cell proliferation and inhibit the differentiation of naïve CD4+ T cell into highly immunosuppressive FoxP3+ regulatory T (Treg) cell without affecting the viability of HeLa cells and the expression of IDO1 protein. Importantly, the pharmacodynamic assay showed that compound 5d possessed potent antitumour effect in both CT26 and B16F1 tumours bearing immunocompetent mice but not in immunodeficient mice. Functionally, subsequent experiments demonstrated that compound 5d could effectively inhibit tumour cell proliferation, induce apoptosis, up-regulate the expression of IFN-γ and granzyme B, and suppress FoxP3+ Treg cell differentiation, thereby activate the immune system. Thus, compound 5d could be a potential and efficacious agent for further evaluation.
Collapse
Affiliation(s)
- Shushan Ge
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Haiqing Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xuewei Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yingbo Zheng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yi Zou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Fang Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| | - Yan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yue Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yuezhen Li
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, PR China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yisheng Lai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
638
|
Liu XH, Zhai XY. Role of tryptophan metabolism in cancers and therapeutic implications. Biochimie 2021; 182:131-139. [PMID: 33460767 DOI: 10.1016/j.biochi.2021.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/15/2022]
Abstract
Tryptophan (Trp) metabolism is associated with diverse biological processes, including nerve conduction, inflammation, and the immune response. The majority of free Trp is broken down through the kynurenine (Kyn) pathway (KP), in which indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) catalyze the rate-limiting step. Clinical studies have demonstrated that Trp metabolism promotes tumor progression due to modulation of the immunosuppressive microenvironment through multiple mechanisms. In this process, IDO-expressing dendritic cells (DCs) exhibit tolerogenic potential and orchestrate T cell immune responses. Various signaling molecules control IDO expression, initiating the immunoregulatory pathway of Trp catabolism. Based on these characteristics, KP enzymes and catabolites are emerging as significant prognostic indicators and potential therapeutic targets of cancer. The physiological and oncologic roles of Trp metabolism are briefly summarized here, along with great challenges for treatment strategies.
Collapse
Affiliation(s)
- Xiao-Han Liu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110122, China
| | - Xiao-Yue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
639
|
Current Evidence on the Role of the Gut Microbiome in ADHD Pathophysiology and Therapeutic Implications. Nutrients 2021; 13:nu13010249. [PMID: 33467150 PMCID: PMC7830868 DOI: 10.3390/nu13010249] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Studies suggest that the bidirectional relationship existent between the gut microbiome (GM) and the central nervous system (CNS), or so-called the microbiome–gut–brain axis (MGBA), is involved in diverse neuropsychiatric diseases in children and adults. In pediatric age, most studies have focused on patients with autism. However, evidence of the role played by the MGBA in attention deficit/hyperactivity disorder (ADHD), the most common neurodevelopmental disorder in childhood, is still scanty and heterogeneous. This review aims to provide the current evidence on the functioning of the MGBA in pediatric patients with ADHD and the specific role of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in this interaction, as well as the potential of the GM as a therapeutic target for ADHD. We will explore: (1) the diverse communication pathways between the GM and the CNS; (2) changes in the GM composition in children and adolescents with ADHD and association with ADHD pathophysiology; (3) influence of the GM on the ω-3 PUFA imbalance characteristically found in ADHD; (4) interaction between the GM and circadian rhythm regulation, as sleep disorders are frequently comorbid with ADHD; (5) finally, we will evaluate the most recent studies on the use of probiotics in pediatric patients with ADHD.
Collapse
|
640
|
Yu T, Dong T, Eyvani H, Fang Y, Wang X, Zhang X, Lu X. Metabolic interventions: A new insight into the cancer immunotherapy. Arch Biochem Biophys 2021; 697:108659. [PMID: 33144083 PMCID: PMC8638212 DOI: 10.1016/j.abb.2020.108659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
Abstract
Metabolic reprogramming confers cancer cells plasticity and viability under harsh conditions. Such active alterations lead to cell metabolic dependency, which can be exploited as an attractive target in development of effective antitumor therapies. Similar to cancer cells, activated T cells also execute global metabolic reprogramming for their proliferation and effector functions when recruited to the tumor microenvironment (TME). However, the high metabolic activity of rapidly proliferating cancer cells can compete for nutrients with immune cells in the TME, and consequently, suppressing their anti-tumor functions. Thus, therapeutic strategies could aim to restore T cell metabolism and anti-tumor responses in the TME by targeting the metabolic dependence of cancer cells. In this review, we highlight current research progress on metabolic reprogramming and the interplay between cancer cells and immune cells. We also discuss potential therapeutic intervention strategies for targeting metabolic pathways to improve cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tianhan Dong
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Haniyeh Eyvani
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yuanzhang Fang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiyu Wang
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xinna Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
641
|
Abstract
The present review deals with the recent progress made in the field of the electrochemical detection of serotonin by means of electrochemical sensors based on various nanomaterials incorporated in the sensitive element. Due to the unique chemical and physical properties of these nanomaterials, it was possible to develop sensitive electrochemical sensors with excellent analytical performances, useful in the practice. The main electrochemical sensors used in serotonin detection are based on carbon electrodes modified with carbon nanotubes and various materials, such as benzofuran, polyalizarin red-S, poly(L-arginine), Nafion/Ni(OH)2, or graphene oxide, incorporating silver-silver selenite nanoparticles, as well as screen-printed electrodes modified with zinc oxide or aluminium oxide. Also, the review describes the nanocomposite sensors based on conductive polymers, tin oxide-tin sulphide, silver/polypyrole/copper oxide or a hybrid structure of cerium oxide-gold oxide nanofibers together with ruthenium oxide nanowires. The presentation focused on describing the sensitive materials, characterizing the sensors, the detection techniques, electroanalytical properties, validation and use of sensors in lab practice.
Collapse
|
642
|
Inflammatory cytokines-stimulated human muscle stem cells ameliorate ulcerative colitis via the IDO-TSG6 axis. Stem Cell Res Ther 2021; 12:50. [PMID: 33422134 PMCID: PMC7796621 DOI: 10.1186/s13287-020-02118-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background Muscle stem cells (MuSCs) are absolutely required for the formation, repair, and regeneration of skeletal muscle tissue. Increasing evidence demonstrated that tissue stem cells, especially mesenchymal stem cells (MSCs), can exert therapeutic effects on various degenerative and inflammatory disorders based on their immunoregulatory properties. Human mesenchymal stem cells (hMSCs) treated with interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) were reported to possess anti-inflammatory functions by producing TNF-stimulated gene 6 (TSG-6). However, whether human muscle stem cells (hMuSCs) also possess TSG-6 mediated anti-inflammatory functions has not been explored. Methods The ulcerative colitis mouse model was established by subjecting mice to dextran sulfate sodium (DSS) in drinking water for 7 days. hMuSCs were pretreated with IFN-γ and TNF-α for 48 h and were then transplanted intravenously at day 2 of DSS administration. Body weights were monitored daily. Indoleamine 2,3-dioxygenase (IDO) and TSG-6 in hMuSCs were knocked down with short hairpin RNA (shRNA) and small interfering RNA (siRNA), respectively. Colon tissues were collected for length measurement and histopathological examination. The serum level of IL-6 in mice was measured by enzyme-linked immunosorbent assay (ELISA). Real-time PCR and Western blot analysis were performed to evaluate gene expression. Results hMuSCs treated with inflammatory factors significantly ameliorated inflammatory bowel disease (IBD) symptoms. IDO and TSG-6 were greatly upregulated and required for the beneficial effects of hMuSCs on IBD. Mechanistically, the tryptophan metabolites, kynurenine (KYN) or kynurenic acid (KYNA) produced by IDO, augmented the expression of TSG-6 through activating their common receptor aryl hydrocarbon receptor (AHR). Conclusion Inflammatory cytokines-treated hMuSCs can alleviate DSS-induced colitis through IDO-mediated TSG-6 production. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02118-3.
Collapse
|
643
|
Whiley L, Chappell KE, D'Hondt E, Lewis MR, Jiménez B, Snowden SG, Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas B, Swann JR, Hye A, Lovestone S, Legido-Quigley C, Holmes E. Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer's disease. Alzheimers Res Ther 2021; 13:20. [PMID: 33422142 PMCID: PMC7797094 DOI: 10.1186/s13195-020-00741-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Both serotonergic signalling disruption and systemic inflammation have been associated with the pathogenesis of Alzheimer's disease (AD). The common denominator linking the two is the catabolism of the essential amino acid, tryptophan. Metabolism via tryptophan hydroxylase results in serotonin synthesis, whilst metabolism via indoleamine 2,3-dioxygenase (IDO) results in kynurenine and its downstream derivatives. IDO is reported to be activated in times of host systemic inflammation and therefore is thought to influence both pathways. To investigate metabolic alterations in AD, a large-scale metabolic phenotyping study was conducted on both urine and serum samples collected from a multi-centre clinical cohort, consisting of individuals clinically diagnosed with AD, mild cognitive impairment (MCI) and age-matched controls. METHODS Metabolic phenotyping was applied to both urine (n = 560) and serum (n = 354) from the European-wide AddNeuroMed/Dementia Case Register (DCR) biobank repositories. Metabolite data were subsequently interrogated for inter-group differences; influence of gender and age; comparisons between two subgroups of MCI - versus those who remained cognitively stable at follow-up visits (sMCI); and those who underwent further cognitive decline (cMCI); and the impact of selective serotonin reuptake inhibitor (SSRI) medication on metabolite concentrations. RESULTS Results revealed significantly lower metabolite concentrations of tryptophan pathway metabolites in the AD group: serotonin (urine, serum), 5-hydroxyindoleacetic acid (urine), kynurenine (serum), kynurenic acid (urine), tryptophan (urine, serum), xanthurenic acid (urine, serum), and kynurenine/tryptophan ratio (urine). For each listed metabolite, a decreasing trend in concentrations was observed in-line with clinical diagnosis: control > MCI > AD. There were no significant differences in the two MCI subgroups whilst SSRI medication status influenced observations in serum, but not urine. CONCLUSIONS Urine and serum serotonin concentrations were found to be significantly lower in AD compared with controls, suggesting the bioavailability of the neurotransmitter may be altered in the disease. A significant increase in the kynurenine/tryptophan ratio suggests that this may be a result of a shift to the kynurenine metabolic route due to increased IDO activity, potentially as a result of systemic inflammation. Modulation of the pathways could help improve serotonin bioavailability and signalling in AD patients.
Collapse
Affiliation(s)
- Luke Whiley
- UK Dementia Research Institute, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
- Health Futures Institute, Murdoch University, Perth, WA, 6105, Australia
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Katie E Chappell
- Section of Bioanalytical Chemistry W12 0NN, UK, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
- National Phenome Centre, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Ellie D'Hondt
- imec, Exascience Life Lab, Kapeldreef 75, B-3001, Leuven, Belgium
| | - Matthew R Lewis
- Section of Bioanalytical Chemistry W12 0NN, UK, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
- National Phenome Centre, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Beatriz Jiménez
- National Phenome Centre, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Stuart G Snowden
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Present address: Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Magda Tsolaki
- 3rd Department of Neurology, Aristotle University, Thessaloniki, Greece
| | - Bruno Vellas
- INSERM U 558, University of Toulouse, Toulouse, France
| | - Jonathan R Swann
- Section of Bioanalytical Chemistry W12 0NN, UK, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Abdul Hye
- INSERM U 558, University of Toulouse, Toulouse, France
| | - Simon Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Current affiliation at Janssen-Cilag Ltd, High Wycombe, UK
| | - Cristina Legido-Quigley
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Elaine Holmes
- UK Dementia Research Institute, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.
- Health Futures Institute, Murdoch University, Perth, WA, 6105, Australia.
- The Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
- Section for Nutrition Research, Imperial College, Hammersmith Campus Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
644
|
Effects of long-term antibiotic treatment on mice urinary aromatic amino acid profiles. Biosci Rep 2021; 41:227123. [PMID: 33269386 PMCID: PMC7786327 DOI: 10.1042/bsr20203498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota-host co-metabolites are good indicators for representing the cross-talk between host and gut microbiota in a bi-direct manner. There is increasing evidence that levels of aromatic amino acids (AAAs) are associated with the alteration of intestinal microbial community though the effects of long-term microbial disturbance remain unclear. Here we monitored the gut microbiota composition and host-microbiota co-metabolites AAA profiles of mice after gentamicin and ceftriaxone treatments for nearly 4 months since their weaning to reveal the relationship between host and microbiome in long- term microbial disturbances. The study was performed employing targeted LC-MS measurement of AAA-related metabolites and 16S RNA sequence of mice cecal contents. The results showed obvious decreased gut microbial diversity and decreased Firmicutes/Bacteroidetes ratio in the cecal contents after long-term antibiotics treatment. The accumulated AAA (tyrosine, phenylalanine and tryptophan) and re-distribution of their downstreaming metabolites that produced under the existence of intestinal flora were found in mice treated with antibiotics for 4 months. Our results suggested that the long-term antibiotic treatment significantly changed the composition of the gut microbiota and destroyed the homeostasis in the intestinal metabolism. And the urinary AAA could be an indicator for exploring interactions between host and gut microbiota.
Collapse
|
645
|
Human Adipose Tissue-Derived Mesenchymal Stromal Cells Inhibit CD4+ T Cell Proliferation and Induce Regulatory T Cells as Well as CD127 Expression on CD4+CD25+ T Cells. Cells 2021; 10:cells10010058. [PMID: 33401501 PMCID: PMC7824667 DOI: 10.3390/cells10010058] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSC) exert their immunomodulatory potential on several cell types of the immune system, affecting and influencing the immune response. MSC efficiently inhibit T cell proliferation, reduce the secretion of pro-inflammatory cytokines, limit the differentiation of pro-inflammatory Th subtypes and promote the induction of regulatory T cells (Treg). In this study, we analyzed the immunomodulatory potential of human adipose tissue-derived MSC (ASC), on CD4+ T cells, addressing potential cell-contact dependency in relation to T cell receptor stimulation of whole human peripheral blood mononuclear cells (PBMC). ASC were cultured with not stimulated or anti-CD3/CD28-stimulated PBMC in direct and transwell cocultures; PBMC alone were used as controls. After 7 days, cocultures were harvested and we analyzed: (1) the inhibitory potential of ASC on CD4+ cell proliferation and (2) phenotypic changes in CD4+ cells in respect of Treg marker (CD25, CD127 and FoxP3) expression. We confirmed the inhibitory potential of ASC on CD4+ cell proliferation, which occurs upon PBMC stimulation and is mediated by indoleamine 2,3-dioxygenase. Importantly, ASC reduce both pro- and anti-inflammatory cytokine secretion, without indications on specific Th differentiation. We found that stimulation induces CD25 expression on CD4+ cells and that, despite inhibiting overall CD4+ cell proliferation, ASC can specifically induce the proliferation of CD4+CD25+ cells. We observed that ASC induce Treg (CD4+CD25+CD127−FoxP3+) only in not stimulated cocultures and that ASC increase the ratio of CD4+CD25+CD127+FoxP3− cells at the expense of CD4+CD25+CD127−FoxP3− cells. Our study provides new insights on the interplay between ASC and CD4+ T cells, proposing that ASC-dependent induction of Treg depends on PBMC activation which affects the balance between the different subpopulations of CD4+CD25+ cells expressing CD127 and/or FoxP3.
Collapse
|
646
|
Fernandes Silva L, Vangipurapu J, Smith U, Laakso M. Metabolite Signature of Albuminuria Involves Amino Acid Pathways in 8661 Finnish Men Without Diabetes. J Clin Endocrinol Metab 2021; 106:143-152. [PMID: 32992327 PMCID: PMC7765644 DOI: 10.1210/clinem/dgaa661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To investigate the metabolite signature of albuminuria in individuals without diabetes or chronic kidney disease to identify possible mechanisms that result in increased albuminuria and elevated risk of type 2 diabetes (T2D). RESEARCH DESIGN AND METHODS The study cohort was a population-based Metabolic Syndrome In Men (METSIM) study including 8861 middle-aged and elderly Finnish men without diabetes or chronic kidney disease at baseline. A total of 5504 men participated in a 7.5-year follow-up study, and 5181 of them had metabolomics data measured by Metabolon's ultrahigh performance liquid chromatography-tandem mass spectroscopy. RESULTS We found 32 metabolites significantly (P < 5.8 × 10-5) and positively associated with the urinary albumin excretion (UAE) rate. These metabolites were especially downstream metabolites in the amino acid metabolism pathways (threonine, phenylalanine, leucine, arginine). In our 7.5-year follow-up study, UAE was significantly associated with a 19% increase (hazard ratio 1.19; 95% confidence interval, 1.13-1.25) in the risk of T2D after the adjustment for confounding factors. Conversion to diabetes was more strongly associated with a decrease in insulin secretion than a decrease in insulin sensitivity. CONCLUSIONS Metabolic signature of UAE included multiple metabolites, especially from the amino acid metabolism pathways known to be associated with low-grade inflammation, and accumulation of reactive oxygen species that play an important role in the pathogenesis of UAE. These metabolites were primarily associated with an increase in UAE and were secondarily associated with a decrease in insulin secretion and insulin sensitivity, resulting in an increased risk of incident T2D.
Collapse
Affiliation(s)
- Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
647
|
Zhou Q, Shi Y, Chen C, Wu F, Chen Z. A narrative review of the roles of indoleamine 2,3-dioxygenase and tryptophan-2,3-dioxygenase in liver diseases. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:174. [PMID: 33569476 PMCID: PMC7867903 DOI: 10.21037/atm-20-3594] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are induced by several immune factors, such as interferon-γ, and act as intracellular enzymes that catabolize essential amino acid tryptophan into kynurenine and other downstream metabolites, including kynurenic acid (KYNA), xanthurenic acid (XA) and so on. IDO and TDO work as a double-edge sword. On one hand, they exert the immunomodulatory effects, especially immunosuppressive effects on the microenvironment including infections, pregnancy, tumor cells escape and transplantation. TDO plays the major role under basal conditions, while IDO comes into play under different circumstances of immune activation, thus IDO has a wider spectrum of immune regulation. On the other hand, these enzymes also inhibit pathogens such as Chlamydia pneumoniae, Staphylococcus aureus, Toxoplasma gondii and so on. Moreover, IDO regulates metabolic health through shaping intestinal microbiota. Recently, these enzymes have attracted more and more attention in liver diseases. Several studies have indicated that IDO and TDO can modulate viral hepatitis, autoimmune liver diseases, non-alcoholic fatty liver disease (NAFLD), liver cirrhosis, liver cancer even liver transplantation. Targeting them or their antagonists may provide novel therapeutic treatments for liver diseases. In this review, we will discuss the exact roles that IDO and TDO play in diverse hepatic diseases.
Collapse
Affiliation(s)
- Qihui Zhou
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Shi
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Chen
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fengtian Wu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi Chen
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
648
|
Marx W, Lane M, Hockey M, Aslam H, Berk M, Walder K, Borsini A, Firth J, Pariante CM, Berding K, Cryan JF, Clarke G, Craig JM, Su KP, Mischoulon D, Gomez-Pinilla F, Foster JA, Cani PD, Thuret S, Staudacher HM, Sánchez-Villegas A, Arshad H, Akbaraly T, O'Neil A, Segasby T, Jacka FN. Diet and depression: exploring the biological mechanisms of action. Mol Psychiatry 2021; 26:134-150. [PMID: 33144709 DOI: 10.1038/s41380-020-00925-x] [Citation(s) in RCA: 347] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023]
Abstract
The field of nutritional psychiatry has generated observational and efficacy data supporting a role for healthy dietary patterns in depression onset and symptom management. To guide future clinical trials and targeted dietary therapies, this review provides an overview of what is currently known regarding underlying mechanisms of action by which diet may influence mental and brain health. The mechanisms of action associating diet with health outcomes are complex, multifaceted, interacting, and not restricted to any one biological pathway. Numerous pathways were identified through which diet could plausibly affect mental health. These include modulation of pathways involved in inflammation, oxidative stress, epigenetics, mitochondrial dysfunction, the gut microbiota, tryptophan-kynurenine metabolism, the HPA axis, neurogenesis and BDNF, epigenetics, and obesity. However, the nascent nature of the nutritional psychiatry field to date means that the existing literature identified in this review is largely comprised of preclinical animal studies. To fully identify and elucidate complex mechanisms of action, intervention studies that assess markers related to these pathways within clinically diagnosed human populations are needed.
Collapse
Affiliation(s)
- Wolfgang Marx
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia.
| | - Melissa Lane
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Meghan Hockey
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Hajara Aslam
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Ken Walder
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Metabolic Research Unit, Geelong, VIC, Australia
| | - Alessandra Borsini
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joseph Firth
- Division of Psychology and Mental Health, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Jeffrey M Craig
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Geelong, VIC, Australia
| | - Kuan-Pin Su
- Departments of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - David Mischoulon
- Department of Psychiatry, Depression Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Fernando Gomez-Pinilla
- Departments of Neurosurgery and Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jane A Foster
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Sandrine Thuret
- Basic and Clinical Neuroscience Department, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Heidi M Staudacher
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Almudena Sánchez-Villegas
- Nutrition Research Group, Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Gran Canaria, Spain
- Biomedical Research Center Network on Obesity and Nutrition (CIBERobn) Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Husnain Arshad
- Université Paris-Saclay, UVSQ, Inserm, CESP, "DevPsy", 94807, Villejuif, France
| | - Tasnime Akbaraly
- Université Paris-Saclay, UVSQ, Inserm, CESP, "DevPsy", 94807, Villejuif, France
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Adrienne O'Neil
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
| | - Toby Segasby
- Basic and Clinical Neuroscience Department, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Felice N Jacka
- Deakin University, IMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Geelong, VIC, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- James Cook University, Townsville, QLD, Australia
| |
Collapse
|
649
|
Metabolomic changes in animal models of depression: a systematic analysis. Mol Psychiatry 2021; 26:7328-7336. [PMID: 34471249 PMCID: PMC8872989 DOI: 10.1038/s41380-021-01269-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Extensive research has been carried out on the metabolomic changes in animal models of depression; however, there is no general agreement about which metabolites exhibit constant changes. Therefore, the aim of this study was to identify consistently altered metabolites in large-scale metabolomics studies of depression models. We performed vote counting analyses to identify consistently upregulated or downregulated metabolites in the brain, blood, and urine of animal models of depression based on 3743 differential metabolites from 241 animal metabolomics studies. We found that serotonin, dopamine, gamma-aminobutyric acid, norepinephrine, N-acetyl-L-aspartic acid, anandamide, and tryptophan were downregulated in the brain, while kynurenine, myo-inositol, hydroxykynurenine, and the kynurenine to tryptophan ratio were upregulated. Regarding blood metabolites, tryptophan, leucine, tyrosine, valine, trimethylamine N-oxide, proline, oleamide, pyruvic acid, and serotonin were downregulated, while N-acetyl glycoprotein, corticosterone, and glutamine were upregulated. Moreover, citric acid, oxoglutaric acid, proline, tryptophan, creatine, betaine, L-dopa, palmitic acid, and pimelic acid were downregulated, and hippuric acid was upregulated in urine. We also identified consistently altered metabolites in the hippocampus, prefrontal cortex, serum, and plasma. These findings suggested that metabolomic changes in depression models are characterized by decreased neurotransmitter and increased kynurenine metabolite levels in the brain, decreased amino acid and increased corticosterone levels in blood, and imbalanced energy metabolism and microbial metabolites in urine. This study contributes to existing knowledge of metabolomic changes in depression and revealed that the reproducibility of candidate metabolites was inadequate in previous studies.
Collapse
|
650
|
Gerber L. 2020 Sidney licht lecture: Metabolic syndrome and obesity negatively impact function. THE JOURNAL OF THE INTERNATIONAL SOCIETY OF PHYSICAL AND REHABILITATION MEDICINE 2021. [DOI: 10.4103/jisprm.jisprm_28_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|