651
|
Abstract
Intestinal microbiota interacts with other systems, especially the immune system, which is responsible for protecting the body by recognizing “stranger” (pathogen associated molecular patterns-PAMPs) and “danger” (damage-associated molecular patterns-DAMPs) molecular motifs. In this manner, it plays an important role in the pathogenesis of various diseases and health. Despite the use of probiotics that modulate the intestinal microbiota in providing health benefits and in the treatment of diseases, there are some possible concerns about the possibility of developing adverse effects, especially in people with suppressed immune systems. Since probiotics provide health benefits with bioactive compounds, studies are carried out on the use of products containing non-living probiotic microorganisms (paraprobiotics) and/or their metabolites (postbiotics) instead of probiotic products. It is even reported that these microbial compounds have more immunomodulatory activities than living microorganisms via some possible mechanism and eliminates some disadvantages of probiotics. Considering the increasing use of functional foods in health and disease, further studies are needed with respect to the benefits and advantages of parabiotic and/or postbiotic use in the food and pharmaceutical industry as well as immune system modulation. Although probiotics have been extensive studied for a long time, it seems that postbiotics are promising tools for future research and applications according to the recent literature. This review aimed to evaluate the interaction of probiotics and postbiotics with the immune systems and also their advantages and disadvantages in the area of food-pharmaceutical industry and immune system modulation.
Collapse
|
652
|
Alberti G, Mazzola M, Gagliardo C, Pitruzzella A, Fucarini A, Giammanco M, Tomasello G, Carini F. Extracellular vesicles derived from gut microbiota in inflammatory bowel disease and colorectal cancer: new players? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:233-240. [PMID: 34282804 DOI: 10.5507/bp.2021.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
The human gut microbiome encompasses inter alia, the myriad bacterial species that create the optimal host-microorganism balance essential for normal metabolic and immune function. Various lines of evidence suggest that dysregulation of the microbiota-host interaction is linked to pathologies such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). Extracellular vesicles (EVs), found in virtually all body fluids and produced by both eukaryotic cells and bacteria are involved in cell-cell communication and crosstalk mechanisms, such as the immune response, barrier function and intestinal flora. This review highlights advancements in knowledge of the functional role that EVs may have in IBD and CRC, and discusses the possible use of EVs derived from intestinal microbiota in therapeutic strategies for treating these conditions.
Collapse
Affiliation(s)
- Giusi Alberti
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Margherita Mazzola
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Carola Gagliardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Palermo, Italy
| | - Alessandro Pitruzzella
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Alberto Fucarini
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Marco Giammanco
- Department of Surgery, Oncologicical and Stomatological Sciences (Di.Chir.On.S), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Giovanni Tomasello
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| | - Francesco Carini
- Institute of Human Anatomy and Histology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, (BIND), University Hospital Policlinico Paolo Giaccone of Palermo, Palermo, Italy
| |
Collapse
|
653
|
Shen W, Tang D, Deng Y, Li H, Wang T, Wan P, Liu R. Association of gut microbiomes with lung and esophageal cancer: a pilot study. World J Microbiol Biotechnol 2021; 37:128. [PMID: 34212246 DOI: 10.1007/s11274-021-03086-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/02/2021] [Indexed: 12/16/2022]
Abstract
Gut microbiota, especially human pathogens, has been shown to be involved in the occurrence and development of cancer. Esophageal squamous cell carcinoma and lung cancer are two malignant cancers, and their relationship with gut microbiota is still unclear. Virulence factor database (VFDB) is an integrated and comprehensive online resource for curating information about human pathogens. Here, based on VFDB database, we analyzed the differences of bacteria at genus level in the gut of patients with esophageal squamous cell carcinoma, lung cancer, and healthy controls. We proposed the possible cancer-associated bacteria in gut and put forward their possible effects. Apart from this, principal coordinate analysis (PCoA) and analysis of similarities (ANSOIM) suggested that some bacteria in the gut can be used as potential biomarkers to screen esophageal squamous cell carcinoma and lung cancer, and their effectiveness was preliminary verified. The relative abundance of Klebsiella and Streptococcus can be used to distinguish patients with esophageal squamous cell carcinoma and lung cancer from healthy controls. The absolute abundance of Klebsiella can further distinguish patients with esophageal squamous cell carcinoma from patients with lung cancer. In particular, the relative abundance of Fusobacterium can directly distinguish between patients with esophageal squamous cell carcinoma and healthy controls. Additionally, the absolute abundance of Haemophilus can distinguish lung cancer from healthy controls. Our study provided a new way based on VFDB database to explore the relationship between gut microbiota and cancer, and initially proposed a feasible cancer screening method.
Collapse
Affiliation(s)
- Weitao Shen
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Derong Tang
- Department of Thoracic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Yali Deng
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Huilin Li
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tian Wang
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ping Wan
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ran Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
654
|
Gut microbiota in pancreatic diseases: possible new therapeutic strategies. Acta Pharmacol Sin 2021; 42:1027-1039. [PMID: 33093569 DOI: 10.1038/s41401-020-00532-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic diseases such as pancreatitis, type 1 diabetes and pancreatic cancer impose substantial health-care costs and contribute to marked morbidity and mortality. Recent studies have suggested a link between gut microbiota dysbiosis and pancreatic diseases; however, the potential roles and mechanisms of action of gut microbiota in pancreatic diseases remain to be fully elucidated. In this review, we summarize the evidence that supports relationship between alterations of gut microbiota and development of pancreatic diseases, and discuss the potential molecular mechanisms of gut microbiota dysbiosis in the pathogenesis of pancreatic diseases. We also propose current strategies toward gut microbiota to advance a developing research field that has clinical potential to reduce the cost of pancreatic diseases.
Collapse
|
655
|
Lu SY, Hua J, Xu J, Wei MY, Liang C, Meng QC, Liu J, Zhang B, Wang W, Yu XJ, Shi S. Microorganisms in chemotherapy for pancreatic cancer: An overview of current research and future directions. Int J Biol Sci 2021; 17:2666-2682. [PMID: 34326701 PMCID: PMC8315022 DOI: 10.7150/ijbs.59117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer is a malignant tumor of the digestive system with a very high mortality rate. While gemcitabine-based chemotherapy is the predominant treatment for terminal pancreatic cancer, its therapeutic effect is not satisfactory. Recently, many studies have found that microorganisms not only play a consequential role in the occurrence and progression of pancreatic cancer but also modulate the effect of chemotherapy to some extent. Moreover, microorganisms may become an important biomarker for predicting pancreatic carcinogenesis and detecting the prognosis of pancreatic cancer. However, the existing experimental literature is not sufficient or convincing. Therefore, further exploration and experiments are imperative to understanding the mechanism underlying the interaction between microorganisms and pancreatic cancer. In this review, we primarily summarize and discuss the influences of oncolytic viruses and bacteria on pancreatic cancer chemotherapy because these are the two types of microorganisms that are most often studied. We focus on some potential methods specific to these two types of microorganisms that can be used to improve the efficacy of chemotherapy in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Si-Yuan Lu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Miao-Yan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qing-Cai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
656
|
Wang Y, Wang M, Wu HX, Xu RH. Advancing to the era of cancer immunotherapy. Cancer Commun (Lond) 2021; 41:803-829. [PMID: 34165252 PMCID: PMC8441060 DOI: 10.1002/cac2.12178] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer greatly affects the quality of life of humans worldwide and the number of patients suffering from it is continuously increasing. Over the last century, numerous treatments have been developed to improve the survival of cancer patients but substantial progress still needs to be made before cancer can be truly cured. In recent years, antitumor immunity has become the most debated topic in cancer research and the booming development of immunotherapy has led to a new epoch in cancer therapy. In this review, we describe the relationships between tumors and the immune system, and the rise of immunotherapy. Then, we summarize the characteristics of tumor‐associated immunity and immunotherapeutic strategies with various molecular mechanisms by showing the typical immune molecules whose antibodies are broadly used in the clinic and those that are still under investigation. We also discuss important elements from individual cells to the whole human body, including cellular mutations and modulation, metabolic reprogramming, the microbiome, and the immune contexture. In addition, we also present new observations and technical advancements of both diagnostic and therapeutic methods aimed at cancer immunotherapy. Lastly, we discuss the controversies and challenges that negatively impact patient outcomes.
Collapse
Affiliation(s)
- Yun Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| | - Min Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| | - Hao-Xiang Wu
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China.,Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
657
|
Weniger M, Hank T, Qadan M, Ciprani D, Michelakos T, Niess H, Heiliger C, Ilmer M, D'Haese JG, Ferrone CR, Warshaw AL, Lillemoe KD, Werner J, Liss A, Fernández-Del Castillo C. Influence of Klebsiella pneumoniae and quinolone treatment on prognosis in patients with pancreatic cancer. Br J Surg 2021; 108:709-716. [PMID: 34157083 DOI: 10.1002/bjs.12003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/03/2020] [Accepted: 07/23/2020] [Indexed: 06/13/2023]
Abstract
BACKGROUND An increasing body of evidence suggests that microbiota may promote progression of pancreatic ductal adenocarcinoma (PDAC). It was hypothesized that gammaproteobacteria (such as Klebsiella pneumoniae) influence survival in PDAC, and that quinolone treatment may attenuate this effect. METHODS This was a retrospective study of patients from the Massachusetts General Hospital (USA) and Ludwig-Maximilians-University (Germany) who underwent preoperative treatment and pancreatoduodenectomy for locally advanced or borderline resectable PDAC between January 2007 and December 2017, and for whom a bile culture was available. Associations between tumour characteristics, survival data, antibiotic use and results of intraoperative bile cultures were investigated. Survival was analysed using Kaplan-Meier curves and Cox regression analysis. RESULTS Analysis of a total of 211 patients revealed that an increasing number of pathogen species found in intraoperative bile cultures was associated with a decrease in progression-free survival (PFS) (-1·9 (95 per cent c.i. -3·3 to -0·5) months per species; P = 0·009). Adjuvant treatment with gemcitabine improved PFS in patients who were negative for K. pneumoniae (26·2 versus 15·3 months; P = 0·039), but not in those who tested positive (19·5 versus 13·2 months; P = 0·137). Quinolone treatment was associated with improved median overall survival (OS) independent of K. pneumoniae status (48·8 versus 26·2 months; P = 0·006) and among those who tested positive for K. pneumoniae (median not reached versus 18·8 months; P = 0·028). Patients with quinolone-resistant K. pneumoniae had shorter PFS than those with quinolone-sensitive K. pneumoniae (9·1 versus 18·8 months; P = 0·001). CONCLUSION K. pneumoniae may promote chemoresistance to adjuvant gemcitabine, and quinolone treatment is associated with improved survival.
Collapse
Affiliation(s)
- M Weniger
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of General, Visceral and Transplantation Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - T Hank
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - M Qadan
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - D Ciprani
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - T Michelakos
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - H Niess
- Department of General, Visceral and Transplantation Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - C Heiliger
- Department of General, Visceral and Transplantation Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - M Ilmer
- Department of General, Visceral and Transplantation Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - J G D'Haese
- Department of General, Visceral and Transplantation Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - C R Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - A L Warshaw
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - K D Lillemoe
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - J Werner
- Department of General, Visceral and Transplantation Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - A Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - C Fernández-Del Castillo
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
658
|
Ahn J, Hayes RB. Environmental Influences on the Human Microbiome and Implications for Noncommunicable Disease. Annu Rev Public Health 2021; 42:277-292. [PMID: 33798404 DOI: 10.1146/annurev-publhealth-012420-105020] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human microbiome contributes metabolic functions, protects against pathogens, educates the immune system, and through these basic functions, directly or indirectly, affects most of our physiologic functions. Here, we consider the human microbiome and its relationship to several major noncommunicable human conditions, including orodigestive tract cancers, neurologic diseases, diabetes, and obesity. We also highlight the scope of contextual macroenvironmental factors (toxicological and chemical environment, built environment, and socioeconomic environment) and individual microenvironmental factors (smoking, alcohol, and diet) that may push the microbiota toward less healthy or more healthy conditions, influencing the development of these diseases. Last, we highlight current uncertainties and challenges in the study of environmental influences on the human microbiome and implications for understanding noncommunicable disease, suggesting a research agenda to strengthen the scientific evidence base.
Collapse
Affiliation(s)
- Jiyoung Ahn
- Department of Population Health, Grossman School of Medicine, New York University, New York, NY 10016, USA.,Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA; ,
| | - Richard B Hayes
- Department of Population Health, Grossman School of Medicine, New York University, New York, NY 10016, USA.,Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA; ,
| |
Collapse
|
659
|
Eibl G, Rozengurt E. Metformin: review of epidemiology and mechanisms of action in pancreatic cancer. Cancer Metastasis Rev 2021; 40:865-878. [PMID: 34142285 DOI: 10.1007/s10555-021-09977-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma continues to be a lethal disease, for which efficient treatment options are very limited. Increasing efforts have been taken to understand how to prevent or intercept this disease at an early stage. There is convincing evidence from epidemiologic and preclinical studies that the antidiabetic drug metformin possesses beneficial effects in pancreatic cancer, including reducing the risk of developing the disease and improving survival in patients with early-stage disease. This review will summarize the current literature about the epidemiological data on metformin and pancreatic cancer as well as describe the preclinical evidence illustrating the anticancer effects of metformin in pancreatic cancer. Underlying mechanisms and targets of metformin will also be discussed. These include direct effects on transformed pancreatic epithelial cells and indirect, systemic effects on extra-pancreatic tissues.
Collapse
Affiliation(s)
- Guido Eibl
- Department of Surgery, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA
| |
Collapse
|
660
|
Matsukawa H, Iida N, Kitamura K, Terashima T, Seishima J, Makino I, Kannon T, Hosomichi K, Yamashita T, Sakai Y, Honda M, Yamashita T, Mizukoshi E, Kaneko S. Dysbiotic gut microbiota in pancreatic cancer patients form correlation networks with the oral microbiota and prognostic factors. Am J Cancer Res 2021; 11:3163-3175. [PMID: 34249452 PMCID: PMC8263681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/17/2021] [Indexed: 06/13/2023] Open
Abstract
Microbiota in the gut and oral cavities of pancreatic cancer (PC) patients differ from those of healthy persons, and bacteria in PC tissues are associated with patients' prognoses. However, the species-level relationship between a dysbiotic gut, oral and cancerous microbiota, and prognostic factors remains unknown. Whole-genome sequencing was performed with fecal DNA from 24 PC patients and 18 healthy persons (HD). Microbial taxonomies, metabolic pathways, and viral presence were determined. DNA was sequenced from saliva and PC tissues, and the association between the gut, oral, and cancer microbiota and prognostic factors in PC patients was analyzed. The PC microbiota were altered from those of the healthy microbiota in terms of microbial taxonomy, pathways and viral presence. Twenty-six species differed significantly between the PC and HD microbiota. Six fecal microbes, including Klebsiella pneumoniae, were associated with an increased hazard of death. In the co-occurrence network, microbes that were abundant in PC patients were plotted close together and formed clusters with prognosis-associated microbes, including K. pneumoniae. Multiple salivary microbes were present in the co-occurrence network. Microbacterium and Stenotrophomonas were detected in the PC tissues and formed a network with the fecal and salivary microbes. The dysbiotic gut microbiota in the PC patients formed a complex network with the oral and cancerous microbiota, and gut microbes abundant in the PC patients were closely linked with poor prognostic factors in the network.
Collapse
Affiliation(s)
- Hiroki Matsukawa
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | - Noriho Iida
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | - Kazuya Kitamura
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | - Takeshi Terashima
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | - Jun Seishima
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | - Isamu Makino
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | - Masao Honda
- Department of Advanced Medical Technology, Graduate School of Health Medicine, Kanazawa University13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Graduate School of Medical Sciences, Kanazawa University13-1 Takara-Machi, Kanazawa, Ishikawa, Japan
| |
Collapse
|
661
|
Li ZY, Chen SY, Weng MH, Yen GC. Ursolic acid restores sensitivity to gemcitabine through the RAGE/NF-κB/MDR1 axis in pancreatic cancer cells and in a mouse xenograft model. J Food Drug Anal 2021; 29:262-274. [PMID: 35696208 PMCID: PMC9261828 DOI: 10.38212/2224-6614.3346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/16/2021] [Indexed: 12/02/2022] Open
Abstract
Gemcitabine (GEM) is a first-line drug for pancreatic cancer therapy, but GEM resistance is easily developed in patients. Growing evidence suggests that cancer chemoprevention and suppression are highly associated with dietary phytochemical and microbiota composition. Ursolic acid (UA) has anti-inflammatory and anticancer effects; however, its role in improving cancer drug resistance in vivo remains unclear. In this study, the aim was to explore the role of UA in managing drug resistance-associated molecular mechanisms and the influence of gut microbiota. The in vitro results showed that receptor for advanced glycation end products (RAGE), nuclear factor kappa B p65 (NF-κB/p65), and multidrug resistance protein 1 (MDR1) protein levels were significantly increased in GEM-resistant pancreatic cancer cells (named MIA PaCa-2 GEMR) compared to MIA PaCa-2 cells. Downregulation of RAGE, pP65, and MDR1 protein expression not only was observed following UA treatment but also was seen in MIA PaCa-2 GEMR cells after transfection with a RAGE siRNA. Remarkably, the enhanced effects of UA coupled with GEM administration dramatically suppressed the RAGE/NF-κB/MDR1 cascade and consequently inhibited subcutaneous tumor growth. Moreover, UA could increase alpha diversity and regulate the composition of gut microbiota, especially in Ruminiclostridium 6. Taken together, these results provide the first direct evidence of MDR1 attenuation and chemosensitivity enhancement through inhibition of the RAGE/NF-κB signaling pathway in vitro and in vivo, implying that UA may be used as an adjuvant for the treatment of pancreatic cancer in the future.
Collapse
Affiliation(s)
| | | | - Ming-Hong Weng
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227,
Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227,
Taiwan
| |
Collapse
|
662
|
LaCourse KD, Johnston CD, Bullman S. The relationship between gastrointestinal cancers and the microbiota. Lancet Gastroenterol Hepatol 2021; 6:498-509. [PMID: 33743198 PMCID: PMC10773981 DOI: 10.1016/s2468-1253(20)30362-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
The contribution of the microbiota to disease progression and treatment efficacy is often neglected when determining who is at the highest risk of developing gastrointestinal cancers or designing treatment strategies for patients. We reviewed the current literature on the effect of the human microbiota on cancer risk, prognosis, and treatment efficacy. We highlight emerging research that seeks to identify microbial signatures as biomarkers for various gastrointestinal cancers, and discuss how we could harness knowledge of the microbiome to detect, prevent, and treat these cancers. Finally, we outline further research needed in the field of gastrointestinal cancers and the microbiota, and describe the efforts required to increase the accuracy and reproducibility of data linking the microbiome to cancer.
Collapse
Affiliation(s)
- Kaitlyn D LaCourse
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christopher D Johnston
- Vaccine and Infection Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
663
|
Naqash AR, Kihn-Alarcón AJ, Stavraka C, Kerrigan K, Maleki Vareki S, Pinato DJ, Puri S. The role of gut microbiome in modulating response to immune checkpoint inhibitor therapy in cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1034. [PMID: 34277834 PMCID: PMC8267312 DOI: 10.21037/atm-20-6427] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Immunotherapy has led to a paradigm shift in the treatment of several cancers. There have been significant efforts to identify biomarkers that can predict response and toxicities related to immune checkpoint inhibitor (ICPI) therapy. Despite these advances, it has been challenging to tease out why a subset of patients benefit more than others or why certain patients experience immune-related adverse events (irAEs). Although the immune-modulating properties of the human gut bacterial ecosystem are yet to be fully elucidated, there has been growing interest in evaluating the role of the gut microbiome in shaping the therapeutic response to cancer immunotherapy. Considerable research efforts are currently directed to utilizing metagenomic and metabolic profiling of stool microbiota in patients on ICPI-based therapies. Dysbiosis or loss of microbial diversity has been associated with a poor treatment response to ICPIs and worse survival outcomes in cancer patients. Emerging data have shown that certain bacterial strains, such as Faecalibacterium that confer sensitivity to ICPI, also have a higher propensity to increase the risk of irAEs. Additionally, the microbiome can modulate the local immune response at the intestinal interface and influence the trafficking of bacterial peptide primed T-cells distally, influencing the toxicity patterns to ICPI. Antibiotic or diet induced alterations in composition of the microbiome can also indirectly alter the production of certain bacterial metabolites such as deoxycholate and short chain fatty acids that can influence the anti-tumor tolerogenesis. Gaining sufficient understanding of the exact mechanisms underpinning the interplay between ICPI induced anti-tumor immunity and the immune modulatory role gut microbiome can be vital in identifying potential avenues of improving outcomes to cancer immunotherapy. In the current review, we have summarized and highlighted the key emerging data supporting the role of gut microbiome in regulating response to ICPIs in cancer.
Collapse
Affiliation(s)
- Abdul Rafeh Naqash
- Department of Investigational Cancer Therapeutics, National Cancer Institute, Bethesda, MD, USA
| | - Alba J Kihn-Alarcón
- Department of Research, Liga Nacional Contra el Cáncer & Instituto de Cancerología, Guatemala City, Guatemala
| | - Chara Stavraka
- Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London, UK
| | - Kathleen Kerrigan
- Division of Medical Oncology Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| | - Saman Maleki Vareki
- Division of Experimental Oncology, Department of Oncology, University of Western Ontario, London, ON, Canada.,Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, Canada.,Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON, Canada
| | | | - Sonam Puri
- Division of Medical Oncology Huntsman Cancer Institute at the University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
664
|
Wei D, Wang L, Zuo X, Bresalier RS. Vitamin D: Promises on the Horizon and Challenges Ahead for Fighting Pancreatic Cancer. Cancers (Basel) 2021; 13:2716. [PMID: 34072725 PMCID: PMC8198176 DOI: 10.3390/cancers13112716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer has a dismal prognosis, while its incidence is increasing. This is attributed, in part, to a profound desmoplastic and immunosuppressive tumor microenvironment associated with this cancer and resistance to current available therapies. Novel and effective intervention strategies are urgently needed to improve the outcomes of patients with pancreatic cancer. Vitamin D has pleiotropic functions beyond calcium-phosphate homeostasis and has been extensively studied both in the laboratory and clinic as a potential preventive agent or adjunct to standard therapies. Accumulating evidence from ecological, observational, and randomized controlled trials suggests that vitamin D has beneficial effects on risk, survival, and mortality in pancreatic cancer, although controversies still exist. Recent advances in demonstrating the important functions of vitamin D/vitamin D receptor (VDR) signaling in the regulation of stromal reprogramming, the microbiome, and immune response and the emergence of checkpoint immunotherapy provide opportunities for using vitamin D or its analogues as an adjunct for pancreatic cancer intervention. Many challenges lie ahead before the benefits of vitamin D can be fully realized in pancreatic cancer. These challenges include the need for randomized controlled trials of vitamin D to assess its impact on the risk and survival of pancreatic cancer, optimizing the timing and dosage of vitamin D or its analogues as an adjunct for pancreatic cancer intervention and elucidating the specific role of vitamin D/VDR signaling in the different stages of pancreatic cancer. Nevertheless, vitamin D holds great promise for reducing risk and improving outcomes of this disease.
Collapse
Affiliation(s)
- Daoyan Wei
- Unit 1466, Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Liang Wang
- Unit 1466, Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Xiangsheng Zuo
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Robert S. Bresalier
- Unit 1466, Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| |
Collapse
|
665
|
Yu D, Wang T, Liang D, Mei Y, Zou W, Guo S. The Landscape of Microbial Composition and Associated Factors in Pancreatic Ductal Adenocarcinoma Using RNA-Seq Data. Front Oncol 2021; 11:651350. [PMID: 34136388 PMCID: PMC8202409 DOI: 10.3389/fonc.2021.651350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
Recent research studies on interrogation of the tumor microbiome (including bacteria, viruses, and fungi) have yielded important insights into the role of microbes in carcinogenesis, therapeutic responses, and resistance. Once thought to be a sterile organ, a number of studies have showed the presence of microbes within this organ in PDAC status. A microbiome–pancreas axis for PDAC (pancreatic ductal adenocarcinoma) carcinogenesis is proposed. However, the microbial composition of localized PDAC tissue is still unclear. The associations between microbiome and PDAC reported in previous studies were detected in an indirect way, which mostly used samples from stool, oral saliva, and intestinal samples. This study integrated 582 samples derived from PDAC tissues across four datasets and presented a landscape of tumor microbiome at the genus level in PDAC based on remining of RNA-Seq data. On average, there are hundreds of genera distributed in the PDAC tissue, and dozens of core microbiota were identified by PDAC tissue. The pan-microbiome of PDAC tissue was also estimated, which might surpass 2,500 genera. In addition, sampling sites (stroma vs. epithelium) and tissue source (human tissue vs. PDX) were found to have great effects on the microbial composition of PDAC tissue, but not the traditional risk factors (sex and age). It is the first study to systematically focus on exploring the microbial composition of PDAC tissue and is helpful to have a deep understanding of tumor microbiome. The identified specific taxa might be potential biomarkers for follow-up research studies.
Collapse
Affiliation(s)
- Dong Yu
- Center of Translational Medicine, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Tengjiao Wang
- Center of Translational Medicine, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Dong Liang
- Center of Translational Medicine, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Yue Mei
- Center of Translational Medicine, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Wenbin Zou
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shiwei Guo
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
666
|
Zou R, Wang Y, Ye F, Zhang X, Wang M, Cui S. Mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade and the emerging role of gut microbiome. Clin Transl Oncol 2021; 23:2237-2252. [PMID: 34002348 DOI: 10.1007/s12094-021-02637-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
As a very promising immunotherapy, PD-1/PD-L1 blockade has revolutionized the treatment of a variety of tumor types, resulting in significant clinical efficacy and lasting responses. However, these therapies do not work for a large proportion of patients initially, which is called primary resistance. And more frustrating is that most patients eventually develop acquired resistance after an initial response to PD-1/PD-L1 blockade. The mechanisms that lead to primary and acquired resistance to PD-1/PD-L1 inhibition have remained largely unclear. Recently, the gut microbiome has emerged as a potential regulator for PD-1/PD-L1 blockade. This review elaborates on the current understanding of the mechanisms in terms of PD-1 related signaling pathways and necessary factors. Moreover, this review discusses new strategies to increase the efficacy of immunotherapy from the perspectives of immune markers and gut microbiome.
Collapse
Affiliation(s)
- R Zou
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Y Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - F Ye
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - X Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - M Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - S Cui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
667
|
Yoon JH, Jung YJ, Moon SH. Immunotherapy for pancreatic cancer. World J Clin Cases 2021; 9:2969-2982. [PMID: 33969083 PMCID: PMC8080736 DOI: 10.12998/wjcc.v9.i13.2969] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer, a highly lethal cancer, has the lowest 5-year survival rate for several reasons, including its tendency for the late diagnosis, a lack of serologic markers for screening, aggressive local invasion, its early metastatic dissemination, and its resistance to chemotherapy/radiotherapy. Pancreatic cancer evades immunologic elimination by a variety of mechanisms, including induction of an immunosuppressive microenvironment. Cancer-associated fibroblasts interact with inhibitory immune cells, such as tumor-associated macrophages and regulatory T cells, to form an inflammatory shell-like desmoplastic stroma around tumor cells. Immunotherapy has the potential to mobilize the immune system to eliminate cancer cells. Nevertheless, although immunotherapy has shown brilliant results across a wide range of malignancies, only anti-programmed cell death 1 antibodies have been approved for use in patients with pancreatic cancer who test positive for microsatellite instability or mismatch repair deficiency. Some patients treated with immunotherapy who show progression based on conventional response criteria may prove to have a durable response later. Continuation of immune-based treatment beyond disease progression can be chosen if the patient is clinically stable. Immunotherapeutic approaches for pancreatic cancer treatment deserve further exploration, given the plethora of combination trials with other immunotherapeutic agents, targeted therapy, stroma-modulating agents, chemotherapy, and multi-way combination therapies.
Collapse
Affiliation(s)
- Jai Hoon Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, South Korea
| | - Ye-Ji Jung
- Department of Internal Medicine, Hallym University, Anyang 14068, South Korea
| | - Sung-Hoon Moon
- Department of Internal Medicine, University of Hallym College of Medicine, Hallym University Sacred Heart Hospital, Anyang 14068, South Korea
| |
Collapse
|
668
|
van den Berg FF, van Dalen D, Hyoju SK, van Santvoort HC, Besselink MG, Wiersinga WJ, Zaborina O, Boermeester MA, Alverdy J. Western-type diet influences mortality from necrotising pancreatitis and demonstrates a central role for butyrate. Gut 2021; 70:915-927. [PMID: 32873697 PMCID: PMC7917160 DOI: 10.1136/gutjnl-2019-320430] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 07/09/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The gut microbiota are the main source of infections in necrotising pancreatitis. We investigated the effect of disruption of the intestinal microbiota by a Western-type diet on mortality and bacterial dissemination in necrotising pancreatitis and its reversal by butyrate supplementation. DESIGN C57BL/6 mice were fed either standard chow or a Western-type diet for 4 weeks and were then subjected to taurocholate-induced necrotising pancreatitis. Blood and pancreas were collected for bacteriology and immune analysis. The cecum microbiota composition of mice was analysed using 16S rRNA gene amplicon sequencing and cecal content metabolites were analysed by targeted (ie, butyrate) and untargeted metabolomics. Prevention of necrotising pancreatitis in this model was compared between faecal microbiota transplantation (FMT) from healthy mice, antibiotic decontamination against Gram-negative bacteria and oral or systemic butyrate administration. Additionally, the faecal microbiota of patients with pancreatitis and healthy subjects were analysed. RESULTS Mortality, systemic inflammation and bacterial dissemination were increased in mice fed Western diet and their gut microbiota were characterised by a loss of diversity, a bloom of Escherichia coli and an altered metabolic profile with butyrate depletion. While antibiotic decontamination decreased mortality, Gram-positive dissemination was increased. Both oral and systemic butyrate supplementation decreased mortality, bacterial dissemination, and reversed the microbiota alterations. Paradoxically, mortality and bacterial dissemination were increased with FMT administration. Finally, patients with acute pancreatitis demonstrated an increase in Proteobacteria and a decrease of butyrate producers compared with healthy subjects. CONCLUSION Butyrate depletion and its repletion appear to play a central role in disease progression towards necrotising pancreatitis.
Collapse
Affiliation(s)
- Fons F van den Berg
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Demi van Dalen
- Department of Surgery, Radboudumc, Nijmegen, The Netherlands
| | - Sanjiv K Hyoju
- Department of Surgery, University of Chicago, Pritzker School of Medicine, Chicago, Illinois, USA
| | - Hjalmar C van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center, Utrecht, The Netherlands,Department of Surgery, Sint Antonius Hospital, Nieuwegein, The Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Willem Joost Wiersinga
- Center for Experimental and Molecular Medicine, Department of Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Olga Zaborina
- Department of Surgery, University of Chicago, Pritzker School of Medicine, Chicago, Illinois, USA
| | - Marja A Boermeester
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - John Alverdy
- Department of Surgery, University of Chicago, Pritzker School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
669
|
Masi AC, Oppong YEA, Haugk B, Lamb CA, Sharp L, Shaw JM, Stewart CJ, Oppong KW. Endoscopic ultrasound (EUS)-guided fine needle biopsy (FNB) formalin fixed paraffin-embedded (FFPE) pancreatic tissue samples are a potential resource for microbiota analysis. Gut 2021; 70:999-1001. [PMID: 32816963 DOI: 10.1136/gutjnl-2020-322457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Andrea C Masi
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yaa E A Oppong
- Department of Infection Biology, Faculty of Infectious and Tropical Medicine, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Beate Haugk
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Christopher A Lamb
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Linda Sharp
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - James M Shaw
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Kofi W Oppong
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK .,HPB Unit and Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| |
Collapse
|
670
|
Kordes M, Larsson L, Engstrand L, Löhr JM. Pancreatic cancer cachexia: three dimensions of a complex syndrome. Br J Cancer 2021; 124:1623-1636. [PMID: 33742145 PMCID: PMC8110983 DOI: 10.1038/s41416-021-01301-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer cachexia is a multifactorial syndrome that is characterised by a loss of skeletal muscle mass, is commonly associated with adipose tissue wasting and malaise, and responds poorly to therapeutic interventions. Although cachexia can affect patients who are severely ill with various malignant or non-malignant conditions, it is particularly common among patients with pancreatic cancer. Pancreatic cancer often leads to the development of cachexia through a combination of distinct factors, which, together, explain its high prevalence and clinical importance in this disease: systemic factors, including metabolic changes and pathogenic signals related to the tumour biology of pancreatic adenocarcinoma; factors resulting from the disruption of the digestive and endocrine functions of the pancreas; and factors related to the close anatomical and functional connection of the pancreas with the gut. In this review, we conceptualise the various insights into the mechanisms underlying pancreatic cancer cachexia according to these three dimensions to expose its particular complexity and the challenges that face clinicians in trying to devise therapeutic interventions.
Collapse
Affiliation(s)
- Maximilian Kordes
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
- Department of Upper Abdominal Diseases, Cancer Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Lars Engstrand
- Department of Clinical Genetics, Science for Life Laboratory, Stockholm, Sweden
| | - J-Matthias Löhr
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
- Department of Upper Abdominal Diseases, Cancer Theme, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
671
|
Park SY, Hwang BO, Lim M, Ok SH, Lee SK, Chun KS, Park KK, Hu Y, Chung WY, Song NY. Oral-Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021; 13:2124. [PMID: 33924899 PMCID: PMC8125773 DOI: 10.3390/cancers13092124] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral-gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral-gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral-gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral-gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral-gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Mihwa Lim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Seung-Ho Ok
- Department of Applied Life Science, The Graduate School, Yonsei University, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea; (S.-Y.P.); (B.-O.H.); (S.-H.O.)
| | - Sun-Kyoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| | - Kwang-Kyun Park
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Won-Yoon Chung
- Department of Oral Biology, Oral Cancer Research Institute, and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Na-Young Song
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea; (M.L.); (S.-K.L.); (K.-K.P.)
| |
Collapse
|
672
|
Chandra V, McAllister F. Therapeutic potential of microbial modulation in pancreatic cancer. Gut 2021; 70:gutjnl-2019-319807. [PMID: 33906958 PMCID: PMC8292583 DOI: 10.1136/gutjnl-2019-319807] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Vidhi Chandra
- Department of Clinical Cancer Prevention, Houston, Texas, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, Houston, Texas, USA
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
673
|
Dumont-Leblond N, Veillette M, Racine C, Joubert P, Duchaine C. Non-small cell lung cancer microbiota characterization: Prevalence of enteric and potentially pathogenic bacteria in cancer tissues. PLoS One 2021; 16:e0249832. [PMID: 33891617 PMCID: PMC8064568 DOI: 10.1371/journal.pone.0249832] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
Following recent findings linking the human gut microbiota to gastrointestinal cancer and its treatment, the plausible relationship between lung microbiota and pulmonary cancer is explored. This study aims at characterizing the intratumoral and adjacent healthy tissue microbiota by applying a 16S rRNA gene amplicon sequencing protocol to tissue samples of 29 non-small cancer patients. Emphasis was put on contaminant management and a comprehensive comparison of bacterial composition between cancerous and healthy adjacent tissues of lung adenocarcinoma and squamous cell carcinoma is provided. A variable degree of similarity between the two tissues of a same patient was observed. Each patient seems to possess its own bacterial signature. The two types of cancer tissue do not have a distinct bacterial profile that is shared by every patient. In addition, enteric, potentially pathogenic and pro-inflammatory bacteria were more frequently found in cancer than healthy tissue. This work brings insights into the dynamic of bacterial communities in lung cancer and provides prospective data for more targeted studies.
Collapse
Affiliation(s)
- Nathan Dumont-Leblond
- Centre de Recherche de l’institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City (QC), Canada
| | - Marc Veillette
- Centre de Recherche de l’institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City (QC), Canada
| | - Christine Racine
- Centre de Recherche de l’institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City (QC), Canada
| | - Philippe Joubert
- Centre de Recherche de l’institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City (QC), Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Quebec City (QC), Canada
| | - Caroline Duchaine
- Centre de Recherche de l’institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City (QC), Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City (QC), Canada
- Canada Research Chair on Bioaerosols, Quebec City (QC), Canada
- * E-mail:
| |
Collapse
|
674
|
Tzeng A, Sangwan N, Jia M, Liu CC, Keslar KS, Downs-Kelly E, Fairchild RL, Al-Hilli Z, Grobmyer SR, Eng C. Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer. Genome Med 2021; 13:60. [PMID: 33863341 PMCID: PMC8052771 DOI: 10.1186/s13073-021-00874-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Currently, over half of breast cancer cases are unrelated to known risk factors, highlighting the importance of discovering other cancer-promoting factors. Since crosstalk between gut microbes and host immunity contributes to many diseases, we hypothesized that similar interactions could occur between the recently described breast microbiome and local immune responses to influence breast cancer pathogenesis. METHODS Using 16S rRNA gene sequencing, we characterized the microbiome of human breast tissue in a total of 221 patients with breast cancer, 18 individuals predisposed to breast cancer, and 69 controls. We performed bioinformatic analyses using a DADA2-based pipeline and applied linear models with White's t or Kruskal-Wallis H-tests with Benjamini-Hochberg multiple testing correction to identify taxonomic groups associated with prognostic clinicopathologic features. We then used network analysis based on Spearman coefficients to correlate specific bacterial taxa with immunological data from NanoString gene expression and 65-plex cytokine assays. RESULTS Multiple bacterial genera exhibited significant differences in relative abundance when stratifying by breast tissue type (tumor, tumor adjacent normal, high-risk, healthy control), cancer stage, grade, histologic subtype, receptor status, lymphovascular invasion, or node-positive status, even after adjusting for confounding variables. Microbiome-immune networks within the breast tended to be bacteria-centric, with sparse structure in tumors and more interconnected structure in benign tissues. Notably, Anaerococcus, Caulobacter, and Streptococcus, which were major bacterial hubs in benign tissue networks, were absent from cancer-associated tissue networks. In addition, Propionibacterium and Staphylococcus, which were depleted in tumors, showed negative associations with oncogenic immune features; Streptococcus and Propionibacterium also correlated positively with T-cell activation-related genes. CONCLUSIONS This study, the largest to date comparing healthy versus cancer-associated breast microbiomes using fresh-frozen surgical specimens and immune correlates, provides insight into microbial profiles that correspond with prognostic clinicopathologic features in breast cancer. It additionally presents evidence for local microbial-immune interplay in breast cancer that merits further investigation and has preventative, diagnostic, and therapeutic potential.
Collapse
Affiliation(s)
- Alice Tzeng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Naseer Sangwan
- Microbiome Composition and Analytics Core, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Margaret Jia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chin-Chih Liu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Karen S Keslar
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Erinn Downs-Kelly
- Department of Anatomic Pathology, Cleveland Clinic, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland, OH, 44195, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Zahraa Al-Hilli
- Department of General Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Stephen R Grobmyer
- Cleveland Clinic Abu Dhabi, Oncology Institute, Abu Dhabi, United Arab Emirates
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA.
- Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH, 44195, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Germline High Risk Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
675
|
Kamer AR, Pushalkar S, Gulivindala D, Butler T, Li Y, Annam KRC, Glodzik L, Ballman KV, Corby PM, Blennow K, Zetterberg H, Saxena D, de Leon MJ. Periodontal dysbiosis associates with reduced CSF Aβ42 in cognitively normal elderly. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12172. [PMID: 33869725 PMCID: PMC8040436 DOI: 10.1002/dad2.12172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Periodontal disease is a chronic, inflammatory bacterial dysbiosis that is associated with both Alzheimer's disease (AD) and Down syndrome. METHODS A total of 48 elderly cognitively normal subjects were evaluated for differences in subgingival periodontal bacteria (assayed by 16S rRNA sequencing) between cerebrospinal fluid (CSF) biomarker groups of amyloid and neurofibrillary pathology. A dysbiotic index (DI) was defined at the genus level as the abundance ratio of known periodontal bacteria to healthy bacteria. Analysis of variance/analysis of covariance (ANOVA/ANCOVA), linear discriminant effect-size analyses (LEfSe) were used to determine the bacterial genera and species differences between the CSF biomarker groups. RESULTS At genera and species levels, higher subgingival periodontal dysbiosis was associated with reduced CSF amyloid beta (Aβ)42 (P = 0.02 and 0.01) but not with P-tau. DISCUSSION We show a selective relationship between periodontal disease bacterial dysbiosis and CSF biomarkers of amyloidosis, but not for tau. Further modeling is needed to establish the direct link between oral bacteria and Aβ.
Collapse
Affiliation(s)
- Angela R. Kamer
- Department of Periodontology and Implant DentistryCollege of DentistryNew York UniversityNew YorkUSA
| | - Smruti Pushalkar
- Department of Molecular PathobiologyCollege of DentistryNew York UniversityNew YorkUSA
| | - Deepthi Gulivindala
- Department of Periodontology and Implant DentistryCollege of DentistryNew York UniversityNew YorkUSA
| | - Tracy Butler
- Department of RadiologyWeill Medical CenterBrain Health Imaging Institute Cornell UniversityNew YorkUSA
| | - Yi Li
- Department of RadiologyWeill Medical CenterBrain Health Imaging Institute Cornell UniversityNew YorkUSA
| | | | - Lidia Glodzik
- Department of RadiologyWeill Medical CenterBrain Health Imaging Institute Cornell UniversityNew YorkUSA
| | - Karla V. Ballman
- Division of BiostatisticsDepartment of Population Health SciencesWeill Medical CenterWeill Cornell MedicineNew YorkUSA
| | - Patricia M. Corby
- Department of Oral MedicineSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research Institute at UCLLondonUK
| | - Deepak Saxena
- Department of Molecular PathobiologyCollege of DentistryNew York UniversityNew YorkUSA
| | - Mony J. de Leon
- Department of RadiologyWeill Medical CenterBrain Health Imaging Institute Cornell UniversityNew YorkUSA
| |
Collapse
|
676
|
The diverse roles of myeloid derived suppressor cells in mucosal immunity. Cell Immunol 2021; 365:104361. [PMID: 33984533 DOI: 10.1016/j.cellimm.2021.104361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The mucosal immune system plays a vital role in protecting the host from the external environment. Its major challenge is to balance immune responses against harmful and harmless agents and serve as a 'homeostatic gate keeper'. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of undifferentiated cells that are characterized by an immunoregulatory and immunosuppressive phenotype. Herein we postulate that MDSCs may be involved in shaping immune responses related to mucosal immunity, due to their immunomodulatory and tissue remodeling functions. Until recently, MDSCs were investigated mainly in cancerous diseases, where they induce and contribute to an immunosuppressive and inflammatory environment that favors tumor development. However, it is now becoming clear that MDSCs participate in non-cancerous conditions such as chronic infections, autoimmune diseases, pregnancy, aging processes and immune tolerance to commensal microbiota at mucosal sites. Since MDSCs are found in the periphery only in small numbers under normal conditions, their role is highlighted during pathologies characterized by acute or chronic inflammation, when they accumulate and become activated. In this review, we describe several aspects of the current knowledge characterizing MDSCs and their involvement in the regulation of the mucosal epithelial barrier, their crosstalk with commensal microbiota and pathogenic microorganisms, and their complex interactions with a variety of surrounding regulatory and effector immune cells. Finally, we discuss the beneficial and harmful outcomes of the MDSC regulatory functions in diseases affecting mucosal tissues. We wish to illuminate the pivotal role of MDSCs in mucosal immunity, the limitations in our understanding of all the players and the intricate challenges stemming from the complex interactions of MDSCs with their environment.
Collapse
|
677
|
Valdez-Palomares F, Nambo-Venegas R, Uribe-García J, Mendoza-Vargas A, Granados-Portillo O, Meraz-Cruz N, Palacios-González B. Intestinal microbiota fingerprint in subjects with irritable bowel syndrome responders to a low FODMAP diet. Food Funct 2021; 12:3206-3218. [PMID: 33877245 DOI: 10.1039/d0fo03162c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Irritable Bowel Syndrome (IBS) is a functional gastrointestinal disorder characterized by abdominal pain and altered bowel habit. IBS patients report that FODMAP (Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols) diet induce or exacerbate their symptoms. It has been reported that low-FODMAP diet (LFD) improves the symptoms in 50%-80% of IBS patients. We aimed to identify IBS responders and non-responders' patients to LFD by determining baseline fecal microbial composition, sequencing the 16S rRNA gene V3-V4 region. Thirty-two participants with IBS were included, 29 women (90.62%) and three men (9.37%), and instructed to follow a four-week LFD, Visual Analogue Scale for IBS was used to assess intervention response. Twenty-two participants were responders (68.75%), and ten were non-responders (31.25%). Differential abundance analysis of Amplicon Sequence Variant (ASVs), before LFD, identified Prevotella 9 and Veillonella genus in responder group, and Barnesiella, Paraprevotella, Bifidobacterium and Ruminococcus 1 genus in non-responder group. After LFD, differentially abundant ASVs were only identified in R, belonging to Veilonella, Butyrivibrio, and 5 ASVs belonging to Ruminiclostridium 6 genus. Linear Discriminant Analysis (LDA), was used to classify patients by responsiveness, considering baseline abundance of 5 bacterial genera, LDA accuracy model was 96.87%, correctly classifying 95.45% of in responder group and 100% and non-responder group. In conclusion, bacterial biomarkers are useful to classify IBS individuals by responsiveness to LFD.
Collapse
Affiliation(s)
- Fernanda Valdez-Palomares
- Unidad de Vinculación Científica, Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico.
| | | | | | | | | | | | | |
Collapse
|
678
|
Oral–Gut Microbiome Axis in Gastrointestinal Disease and Cancer. Cancers (Basel) 2021. [DOI: 10.3390/cancers13071748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral–gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral–gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral–gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral–gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral–gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.
Collapse
|
679
|
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J, Li P, Wang Y, Du L, Wang C. High fat diet, gut microbiome and gastrointestinal cancer. Theranostics 2021; 11:5889-5910. [PMID: 33897888 PMCID: PMC8058730 DOI: 10.7150/thno.56157] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is currently one of the main causes of cancer death, with a large number of cases and a wide range of lesioned sites. A high fat diet, as a public health problem, has been shown to be correlated with various digestive system diseases and tumors, and can accelerate the occurrence of cancer due to inflammation and altered metabolism. The gut microbiome has been the focus of research in recent years, and associated with cell damage or tumor immune microenvironment changes via direct or extra-intestinal effects; this may facilitate the occurrence and development of gastrointestinal tumors. Based on research showing that both a high fat diet and gut microbes can promote the occurrence of gastrointestinal tumors, and that a high fat diet imbalances intestinal microbes, we propose that a high fat diet drives gastrointestinal tumors by changing the composition of intestinal microbes.
Collapse
Affiliation(s)
- Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| |
Collapse
|
680
|
Sipos A, Ujlaki G, Mikó E, Maka E, Szabó J, Uray K, Krasznai Z, Bai P. The role of the microbiome in ovarian cancer: mechanistic insights into oncobiosis and to bacterial metabolite signaling. Mol Med 2021; 27:33. [PMID: 33794773 PMCID: PMC8017782 DOI: 10.1186/s10020-021-00295-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is characterized by dysbiosis, referred to as oncobiosis in neoplastic diseases. In ovarian cancer, oncobiosis was identified in numerous compartments, including the tumor tissue itself, the upper and lower female genital tract, serum, peritoneum, and the intestines. Colonization was linked to Gram-negative bacteria with high inflammatory potential. Local inflammation probably participates in the initiation and continuation of carcinogenesis. Furthermore, local bacterial colonies in the peritoneum may facilitate metastasis formation in ovarian cancer. Vaginal infections (e.g. Neisseria gonorrhoeae or Chlamydia trachomatis) increase the risk of developing ovarian cancer. Bacterial metabolites, produced by the healthy eubiome or the oncobiome, may exert autocrine, paracrine, and hormone-like effects, as was evidenced in breast cancer or pancreas adenocarcinoma. We discuss the possible involvement of lipopolysaccharides, lysophosphatides and tryptophan metabolites, as well as, short-chain fatty acids, secondary bile acids and polyamines in the carcinogenesis of ovarian cancer. We discuss the applicability of nutrients, antibiotics, and probiotics to harness the microbiome and support ovarian cancer therapy. The oncobiome and the most likely bacterial metabolites play vital roles in mediating the effectiveness of chemotherapy. Finally, we discuss the potential of oncobiotic changes as biomarkers for the diagnosis of ovarian cancer and microbial metabolites as possible adjuvant agents in therapy.
Collapse
Affiliation(s)
- Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Eszter Maka
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Judit Szabó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Zoárd Krasznai
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
681
|
Kalaora S, Nagler A, Nejman D, Alon M, Barbolin C, Barnea E, Ketelaars SLC, Cheng K, Vervier K, Shental N, Bussi Y, Rotkopf R, Levy R, Benedek G, Trabish S, Dadosh T, Levin-Zaidman S, Geller LT, Wang K, Greenberg P, Yagel G, Peri A, Fuks G, Bhardwaj N, Reuben A, Hermida L, Johnson SB, Galloway-Peña JR, Shropshire WC, Bernatchez C, Haymaker C, Arora R, Roitman L, Eilam R, Weinberger A, Lotan-Pompan M, Lotem M, Admon A, Levin Y, Lawley TD, Adams DJ, Levesque MP, Besser MJ, Schachter J, Golani O, Segal E, Geva-Zatorsky N, Ruppin E, Kvistborg P, Peterson SN, Wargo JA, Straussman R, Samuels Y. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 2021; 592:138-143. [PMID: 33731925 PMCID: PMC9717498 DOI: 10.1038/s41586-021-03368-8] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2021] [Indexed: 01/31/2023]
Abstract
A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.
Collapse
Affiliation(s)
- Shelly Kalaora
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Nagler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Nejman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Chaya Barbolin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eilon Barnea
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Steven L C Ketelaars
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kuoyuan Cheng
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Noam Shental
- Department of Mathematics and Computer Science, Open University of Israel, Raanana, Israel
| | - Yuval Bussi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Rotkopf
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Hadassah Medical Center, Jerusalem, Israel
| | - Sophie Trabish
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Leore T Geller
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kun Wang
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Polina Greenberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gal Yagel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Aviyah Peri
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Garold Fuks
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Neerupma Bhardwaj
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexandre Reuben
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leandro Hermida
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah B Johnson
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cara Haymaker
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lior Roitman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Lotan-Pompan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Arie Admon
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yishai Levin
- The de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Mitchell P Levesque
- Faculty of Medicine, University of Zurich Hospital, University of Zurich, Zurich, Switzerland
| | - Michal J Besser
- The Ella Lemelbaum Institute for Immuno Oncology and Melanoma, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Schachter
- The Ella Lemelbaum Institute for Immuno Oncology and Melanoma, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Geva-Zatorsky
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- MaRS Centre, Canadian Institute for Advanced Research (CIFAR) Azrieli Global Scholar, Toronto, Ontario, Canada
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Scott N Peterson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
682
|
González‐Sánchez P, DeNicola GM. The microbiome(s) and cancer: know thy neighbor(s). J Pathol 2021; 254:332-343. [DOI: 10.1002/path.5661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Paloma González‐Sánchez
- Department of Cancer Physiology H. Lee Moffitt Cancer Center and Research Institute Tampa FL USA
| | - Gina M DeNicola
- Department of Cancer Physiology H. Lee Moffitt Cancer Center and Research Institute Tampa FL USA
| |
Collapse
|
683
|
A review on the role of gut microbiota in immune checkpoint blockade therapy for cancer. Mamm Genome 2021; 32:223-231. [PMID: 33783613 PMCID: PMC8295158 DOI: 10.1007/s00335-021-09867-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/17/2021] [Indexed: 12/31/2022]
Abstract
Gut microbiota has been studied in relation to human health and disease prediction for decades. Also, immune checkpoints (ICPs) are enthusiastically investigated for anti-tumor immunotherapy. Recent studies show potential of gut microbiome and gut cytokines as biomarkers for carcinogenesis and response prediction of immune checkpoint inhibitor (ICI) response. Evidence has revealed that intestinal microorganisms play a major role in the effectiveness of programmed cell death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade. In this review, we have focused on how microbiome and microbiome-generated cytokines affect immune checkpoints. We have also described the molecular mechanisms behind this interplay and the bacterial strains that have a potential role in immunotherapy.
Collapse
|
684
|
Quinn CM, Porwal M, Meagher NS, Hettiaratchi A, Power C, Jonnaggadala J, McCullough S, Macmillan S, Tang K, Liauw W, Goldstein D, Zeps N, Crowe PJ. Moving with the Times: The Health Science Alliance (HSA) Biobank, Pathway to Sustainability. Biomark Insights 2021; 16:11772719211005745. [PMID: 35173407 PMCID: PMC8842439 DOI: 10.1177/11772719211005745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Human biobanks are recognised as vital components of translational research infrastructure. With the growth in personalised and precision medicine, and the associated expansion of biomarkers and novel therapeutics under development, it is critical that researchers can access a strong collection of patient biospecimens, annotated with clinical data. Biobanks globally are undertaking transformation of their operating models in response to changing research needs; transition from a ‘classic’ model representing a largely retrospective collection of pre-defined specimens to a more targeted, prospective collection model, although there remains a research need for both models to co-exist. Here we introduce the Health Science Alliance (HSA) Biobank, established in 2012 as a classic biobank, now transitioning to a hybrid operational model. Some of the past and current challenges encountered are discussed including clinical annotation, specimen utilisation and biobank sustainability, along with the measures the HSA Biobank is taking to address these challenges. We describe new directions being explored, going beyond traditional specimen collection into areas involving bioimages, microbiota and live cell culture. The HSA Biobank is working in collaboration with clinicians, pathologists and researchers, piloting a sustainable, robust platform with the potential to integrate future needs.
Collapse
Affiliation(s)
- Carmel M Quinn
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
| | - Mamta Porwal
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
| | - Nicola S Meagher
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
- School of Women’s and Children’s Health, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | - Anusha Hettiaratchi
- UNSW Biorepository, Mark Wainwright Analytical Centre, UNSW Sydney, Australia
| | - Carl Power
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Australia
| | - Jitendra Jonnaggadala
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
- School of Population Health, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
| | | | - Stephanie Macmillan
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
| | - Katrina Tang
- NSW Health Pathology, South-East Sydney Local Health District, NSW, Australia
| | - Winston Liauw
- Cancer Care Clinic, St George Hospital, NSW, Australia
| | - David Goldstein
- Translational Cancer Research Network (TCRN), UNSW Sydney, NSW, Australia
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Australia
- Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Nikolajs Zeps
- Epworth Healthcare, VIC, Australia
- Eastern Clinical School, Monash University, Clayton, VIC, Australia
| | - Philip J Crowe
- Prince of Wales Clinical School, UNSW Medicine and Health, UNSW Sydney, NSW, Australia
- Department of Surgery, Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
685
|
Abstract
Microbial roles in cancer formation, diagnosis, prognosis, and treatment have been disputed for centuries. Recent studies have provocatively claimed that bacteria, viruses, and/or fungi are pervasive among cancers, key actors in cancer immunotherapy, and engineerable to treat metastases. Despite these findings, the number of microbes known to directly cause carcinogenesis remains small. Critically evaluating and building frameworks for such evidence in light of modern cancer biology is an important task. In this Review, we delineate between causal and complicit roles of microbes in cancer and trace common themes of their influence through the host's immune system, herein defined as the immuno-oncology-microbiome axis. We further review evidence for intratumoral microbes and approaches that manipulate the host's gut or tumor microbiome while projecting the next phase of experimental discovery.
Collapse
Affiliation(s)
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1015, Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jeff Hasty
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
- Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
686
|
Hanus M, Parada-Venegas D, Landskron G, Wielandt AM, Hurtado C, Alvarez K, Hermoso MA, López-Köstner F, De la Fuente M. Immune System, Microbiota, and Microbial Metabolites: The Unresolved Triad in Colorectal Cancer Microenvironment. Front Immunol 2021; 12:612826. [PMID: 33841394 PMCID: PMC8033001 DOI: 10.3389/fimmu.2021.612826] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. As with other cancers, CRC is a multifactorial disease due to the combined effect of genetic and environmental factors. Most cases are sporadic, but a small proportion is hereditary, estimated at around 5-10%. In both, the tumor interacts with heterogeneous cell populations, such as endothelial, stromal, and immune cells, secreting different signals (cytokines, chemokines or growth factors) to generate a favorable tumor microenvironment for cancer cell invasion and metastasis. There is ample evidence that inflammatory processes have a role in carcinogenesis and tumor progression in CCR. Different profiles of cell activation of the tumor microenvironment can promote pro or anti-tumor pathways; hence they are studied as a key target for the control of cancer progression. Additionally, the intestinal mucosa is in close contact with a microorganism community, including bacteria, bacteriophages, viruses, archaea, and fungi composing the gut microbiota. Aberrant composition of this microbiota, together with alteration in the diet-derived microbial metabolites content (such as butyrate and polyamines) and environmental compounds has been related to CRC. Some bacteria, such as pks+ Escherichia coli or Fusobacterium nucleatum, are involved in colorectal carcinogenesis through different pathomechanisms including the induction of genetic mutations in epithelial cells and modulation of tumor microenvironment. Epithelial and immune cells from intestinal mucosa have Pattern-recognition receptors and G-protein coupled receptors (receptor of butyrate), suggesting that their activation can be regulated by intestinal microbiota and metabolites. In this review, we discuss how dynamics in the gut microbiota, their metabolites, and tumor microenvironment interplays in sporadic and hereditary CRC, modulating tumor progression.
Collapse
Affiliation(s)
- Michelle Hanus
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Daniela Parada-Venegas
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | - Glauben Landskron
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | | | - Claudia Hurtado
- Research Core, Academic Department, Clínica Las Condes, Santiago, Chile
| | - Karin Alvarez
- Cancer Center, Clínica Universidad de los Andes, Santiago, Chile
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
687
|
Guo W, Zhou X, Li X, Zhu Q, Peng J, Zhu B, Zheng X, Lu Y, Yang D, Wang B, Wang J. Depletion of Gut Microbiota Impairs Gut Barrier Function and Antiviral Immune Defense in the Liver. Front Immunol 2021; 12:636803. [PMID: 33841420 PMCID: PMC8027085 DOI: 10.3389/fimmu.2021.636803] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Commensal gut microbiota protects the immune defense of extra-intestinal organs. Gut microbiota depletion by antibiotics can impair host antiviral immune responses and alter hepatitis B virus (HBV) infection outcomes. However, how gut microbiota modulates antiviral immune response in the liver remains unclear. Here, mice were treated with broad-spectrum antibiotics to deplete gut microbiota. Gut integrity was evaluated, and translocation of live commensal gut bacteria and their components into the liver was investigated. An HBV infection model was established to evaluate impairment of antiviral immune response in the liver after gut microbiota depletion. We found that gut microbiota depletion was associated with impairment of colon epithelial integrity, and live commensal gut microbiota could translocate to the liver. Further, T cell antiviral function in the liver was impaired, partially relying on enhanced PD-1 expression, and HBV immune clearance was hampered. In conclusion, gut microbiota depletion by antibiotics can impair gut barrier function and suppress T cell antiviral immune response in the liver.
Collapse
Affiliation(s)
- Weina Guo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoran Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingfeng Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Peng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinping Lu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
688
|
Rebelo R, Polónia B, Santos LL, Vasconcelos MH, Xavier CPR. Drug Repurposing Opportunities in Pancreatic Ductal Adenocarcinoma. Pharmaceuticals (Basel) 2021; 14:280. [PMID: 33804613 PMCID: PMC8003696 DOI: 10.3390/ph14030280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one of the deadliest tumors worldwide. The diagnosis is often possible only in the latter stages of the disease, with patients already presenting an advanced or metastatic tumor. It is also one of the cancers with poorest prognosis, presenting a five-year survival rate of around 5%. Treatment of PDAC is still a major challenge, with cytotoxic chemotherapy remaining the basis of systemic therapy. However, no major advances have been made recently, and therapeutic options are limited and highly toxic. Thus, novel therapeutic options are urgently needed. Drug repurposing is a strategy for the development of novel treatments using approved or investigational drugs outside the scope of the original clinical indication. Since repurposed drugs have already completed several stages of the drug development process, a broad range of data is already available. Thus, when compared with de novo drug development, drug repurposing is time-efficient, inexpensive and has less risk of failure in future clinical trials. Several repurposing candidates have been investigated in the past years for the treatment of PDAC, as single agents or in combination with conventional chemotherapy. This review gives an overview of the main drugs that have been investigated as repurposing candidates, for the potential treatment of PDAC, in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Rita Rebelo
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bárbara Polónia
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO—Instituto Português de Oncologia, 4200-072 Porto, Portugal;
- ICBAS—Biomedical Sciences Institute Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - M. Helena Vasconcelos
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal
| | - Cristina P. R. Xavier
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; (R.R.); (B.P.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy of the University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
689
|
Wu X, Xia Y, He F, Zhu C, Ren W. Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities. MICROBIOME 2021; 9:60. [PMID: 33715629 PMCID: PMC7958491 DOI: 10.1186/s40168-021-01024-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
Bacteria, viruses, protozoa, and fungi establish a complex ecosystem in the gut. Like other microbiota, gut mycobiota plays an indispensable role in modulating intestinal physiology. Notably, the most striking characteristics of intestinal fungi are their extraintestinal functions. Here, we provide a comprehensive review of the importance of gut fungi in the regulation of intestinal, pulmonary, hepatic, renal, pancreatic, and brain functions, and we present possible opportunities for the application of gut mycobiota to alleviate/treat human diseases. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Yaoyao Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Fang He
- College of Animal Science and Technology, Southwest University, Chongqing, 400716 China
| | - Congrui Zhu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
690
|
Pancreatic Cancer Meets Human Microbiota: Close Encounters of the Third Kind. Cancers (Basel) 2021; 13:cancers13061231. [PMID: 33799784 PMCID: PMC7998494 DOI: 10.3390/cancers13061231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The microorganisms colonizing the epithelial surfaces of the human body, called microbiota, have been shown to influence the initiation, progression and response to therapy of many solid tumors, including pancreatic ductal adenocarcinoma, the most prominent form of pancreatic cancer. Here, we summarize the current knowledge about the influence of oral, gut and intratumoral microbiota on pancreatic ductal adenocarcinoma development and chemoresistance. Abstract Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal types of cancer with a dismal prognosis. The five-year survival rate has not changed significantly in over 40 years. Current first-line treatments only offer a modest increase in overall survival in unselected populations, and there is an urgent need to personalize treatment in this aggressive disease and develop new therapeutic strategies. Evolving evidence suggests that the human microbiome impacts cancerogenesis and cancer resistance to therapy. The mechanism of action and interaction of microbiome and PDAC is still under investigation. Direct and indirect effects have been proposed, and the use of several microbiome signatures as predictive and prognostic biomarkers for pancreatic cancer are opening new therapeutic horizons. In this review, we provide an overview for the clinicians of studies describing the influence and associations of oral, gastrointestinal and intratumoral microbiota on PDAC development, progression and resistance to therapy and the potential use of microbiota as a diagnostic, prognostic and predictive biomarker for PDAC.
Collapse
|
691
|
Zhang Y, Chandra V, Riquelme Sanchez E, Dutta P, Quesada PR, Rakoski A, Zoltan M, Arora N, Baydogan S, Horne W, Burks J, Xu H, Hussain P, Wang H, Gupta S, Maitra A, Bailey JM, Moghaddam SJ, Banerjee S, Sahin I, Bhattacharya P, McAllister F. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J Exp Med 2021; 217:152058. [PMID: 32860704 PMCID: PMC7953739 DOI: 10.1084/jem.20190354] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/25/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal malignancy with an immunosuppressive microenvironment that is resistant to most therapies. IL17 is involved in pancreatic tumorigenesis, but its role in invasive PDAC is undetermined. We hypothesized that IL17 triggers and sustains PDAC immunosuppression. We inhibited IL17/IL17RA signaling using pharmacological and genetic strategies alongside mass cytometry and multiplex immunofluorescence techniques. We uncovered that IL17 recruits neutrophils, triggers neutrophil extracellular traps (NETs), and excludes cytotoxic CD8 T cells from tumors. Additionally, IL17 blockade increases immune checkpoint blockade (PD-1, CTLA4) sensitivity. Inhibition of neutrophils or Padi4-dependent NETosis phenocopies IL17 neutralization. NMR spectroscopy revealed changes in tumor lactate as a potential early biomarker for IL17/PD-1 combination efficacy. Higher expression of IL17 and PADI4 in human PDAC corresponds with poorer prognosis, and the serum of patients with PDAC has higher potential for NETosis. Clinical studies with IL17 and checkpoint blockade represent a novel combinatorial therapy with potential efficacy for this lethal disease.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vidhi Chandra
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Erick Riquelme Sanchez
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX.,Center for Integrative Biology, Faculty of Science, Universidad Mayor, Santiago, Chile
| | - Prasanta Dutta
- Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pompeyo R Quesada
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amanda Rakoski
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michelle Zoltan
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Seyda Baydogan
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William Horne
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA
| | - Jared Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hanwen Xu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Perwez Hussain
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD
| | - Huamin Wang
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sonal Gupta
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anirban Maitra
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX.,Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer M Bailey
- Department of Gastroenterology, University of Texas Health Sciences Center, Houston, TX
| | - Seyed J Moghaddam
- Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sulagna Banerjee
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL
| | - Ismet Sahin
- Department of Engineering, Texas Southern University, Houston, TX
| | - Pratip Bhattacharya
- Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX.,Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
692
|
Schacht SR, Olsen A, Dragsted LO, Overvad K, Tjønneland A, Kyrø C. Whole-Grain Intake and Pancreatic Cancer Risk-The Danish, Diet, Cancer and Health Cohort. J Nutr 2021; 151:666-674. [PMID: 33561273 DOI: 10.1093/jn/nxaa385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/18/2020] [Accepted: 11/11/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pancreatic cancer is a highly deadly disease with a poor prognosis. There is limited knowledge about prevention of the disease; thus, identification of risk factors is important to reduce the disease incidence. OBJECTIVE The aim of the present study was to prospectively investigate associations between incidence of pancreatic cancer and whole-grain intake measured in 2 ways: as whole-grain product intake (g whole-grain products/d) and as whole-grain intake (grams of whole grains/d). Moreover, the intake of subgroups of these was also investigated: whole-grain products (rye bread, whole-grain bread, and oatmeal/muesli) and cereals (rye, wheat, and oats). METHODS In total, 55,995 Danish adults aged 50-64 y, of whom 446 developed pancreatic cancer (17.5 y mean follow-up), were included in the study. Detailed information on daily intake of whole-grain products was available from a validated self-administered FFQ, and intake of whole-grain cereals (wheat, rye, and oats) was estimated using information from a 24-h dietary recall. The association between the whole-grain exposures and incidence of pancreatic cancer was investigated by Cox regression analyses adjusted for potential confounders. RESULTS Total whole-grain product intake was associated with a 7% lower incidence of pancreatic cancer per serving (50 g/d) (HR: 0.93; 95% CI: 0.86, 1.00), and in the sex-specific analyses, an inverse association was found only in men. No association was found for total whole-grain intake (per 16-g serving size; HR: 0.96; 95% CI: 0.89, 1.03). When investigating specific whole-grain products and cereals individually, none were alone associated with lower incidence of pancreatic cancer. CONCLUSION Our findings indicate that intake of whole grains is associated with lower risk of pancreatic cancer in middle-aged men. Consuming ample amounts of whole grains may prove beneficial in terms of lowering pancreatic cancer risk.
Collapse
Affiliation(s)
- Simon R Schacht
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus, Denmark.,Aalborg University Hospital, Aalborg, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Kyrø
- Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
693
|
Dieleman S, Aarnoutse R, Ziemons J, Kooreman L, Boleij A, Smidt M. Exploring the Potential of Breast Microbiota as Biomarker for Breast Cancer and Therapeutic Response. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:968-982. [PMID: 33713687 DOI: 10.1016/j.ajpath.2021.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/26/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer tissue contains its own unique microbiota. Emerging preclinical data indicates that breast microbiota dysbiosis contributes to breast cancer initiation and progression. Furthermore, the breast microbiota may be a promising biomarker for treatment selection and prognosis. Differences in breast microbiota composition have been found between breast cancer subtypes and disease severities that may contribute to immunosuppression, enabling tumor cells to evade immune destruction. Interactions between breast microbiota, gut microbiota, and immune system are proposed, all forming potential targets to increase therapeutic efficacy. In addition, because the gut microbiota affects the host immune system and systemic availability of estrogen and bile acids known to influence tumor biology, gut microbiota modulation could be used to manipulate breast microbiota composition. Identifying breast and gut microbial compositions that respond positively to certain anticancer therapeutics could significantly reduce cancer burden. Additional research is needed to unravel the complexity of breast microbiota functioning and its interactions with the gut and the immune system. In this review, developments in the understanding of breast microbiota and its interaction with the immune system and the gut microbiota are discussed. Furthermore, the biomarker potential of breast microbiota is evaluated in conjunction with possible strategies to target microbiota in order to improve breast cancer treatment.
Collapse
Affiliation(s)
- Sabine Dieleman
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Romy Aarnoutse
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Janine Ziemons
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Loes Kooreman
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Annemarie Boleij
- Department of Pathology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, the Netherlands
| | - Marjolein Smidt
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
694
|
Wang L, Peng F, Peng C, Du JR. Gut Microbiota in Tumor Microenvironment: A Critical Regulator in Cancer Initiation and Development as Potential Targets for Chinese Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:609-626. [PMID: 33683187 DOI: 10.1142/s0192415x21500270] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer is a disease with a high mortality and disability rate. Cancer consists not only of cancer cells, but also of the surrounding microenvironment and tumor microenvironment (TME) constantly interacting with tumor cells to support tumor development and progression. Over the last decade, accumulating evidence has implicated that microbiota profoundly influences cancer initiation and progression. Most research focuses on gut microbiota, for the gut harbors the largest collection of microorganisms. Gut microbiota includes bacteria, viruses, protozoa, archaea, and fungi in the gastrointestinal tract, affecting DNA damage, host immune response and chronic inflammation in various types of cancer (i.e., colon cancer, gastric cancer and breast cancer). Notably, gut dysbiosis can reshape tumor microenvironment and make it favorable for tumor growth. Recently, accumulating studies have attached the importance of traditional Chinese medicine (TCM) to cancer treatments, and the bioactive natural compounds have been considered as potential drug candidates to suppress cancer initiation and development. Interestingly, more recent studies demonstrate that TCM could potentially prevent and suppress early-stage cancer progression through the regulation of gut microbiota. This review is on the purpose of exhausting the significance of gut microbiota in the tumor microenvironment as potential targets of Chinese medicine.
Collapse
Affiliation(s)
- Li Wang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
695
|
Approaching precision medicine by tailoring the microbiota. Mamm Genome 2021; 32:206-222. [PMID: 33646347 DOI: 10.1007/s00335-021-09859-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Accumulating evidence has revealed the link between the microbiota and various human diseases. Advances in high-throughput sequencing technologies have identified some consistent disease-associated microbial features, leading to the emerging concept of microbiome-based therapeutics. However, it is also becoming clear that there are considerable variations in the microbiota among patients with the same disease. Variations in the microbial composition and function contribute to substantial differences in metabolic status of the host via production of a myriad of biochemically and functionally different microbial metabolites. Indeed, compelling evidence indicates that individuality of the microbiome may result in individualized responses to microbiome-based therapeutics and other interventions. Mechanistic understanding of the role of the microbiota in diseases and drug metabolism would help us to identify causal relationships and thus guide the development of microbiome-based precision or personalized medicine. In this review, we provide an overview of current efforts to use microbiome-based interventions for the treatment of diseases such as cancer, neurological disorders, and diabetes to approach precision medicine.
Collapse
|
696
|
Zhou CB, Zhou YL, Fang JY. Gut Microbiota in Cancer Immune Response and Immunotherapy. Trends Cancer 2021; 7:647-660. [PMID: 33674230 DOI: 10.1016/j.trecan.2021.01.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022]
Abstract
The gastrointestinal tract (GIT) is the largest immune organ and maintains systemic immune homeostasis in the presence of bacterial challenge. Immune elimination and immune escape are hallmarks of cancer, both of which can be partly bacteria dependent in shaping immunity by mediating host immunomodulation. In addition, host immunity regulates the microbiome by altering bacteria-associated signaling to influence tumor surveillance. Cancer immunotherapy, including immune checkpoint blockade (ICB), appears to have heterogeneous therapeutic effects in different individuals, partially attributed to the microbiota. Thus, the microbiome signature can predict clinical outcomes, prognosis, and immunotherapy responses. In this review, we summarize the intricate crosstalk among the gut microbiome, cancer immune response, and immunotherapy. Interactive modulation of the host microbiota provides new therapeutic strategies to promote anticancer therapy efficacy and/or reduce toxicity.
Collapse
Affiliation(s)
- Cheng-Bei Zhou
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, 145 Middle Shandong Road, Shanghai, China
| | - Yi-Lu Zhou
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, 145 Middle Shandong Road, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease; State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, 145 Middle Shandong Road, Shanghai, China.
| |
Collapse
|
697
|
Tijeras-Raballand A, Hilmi M, Astorgues-Xerri L, Nicolle R, Bièche I, Neuzillet C. Microbiome and pancreatic ductal adenocarcinoma. Clin Res Hepatol Gastroenterol 2021; 45:101589. [PMID: 33607375 DOI: 10.1016/j.clinre.2020.101589] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) incidence and related-deaths are increasing worldwide. PDAC is characterized by poor prognosis due to late diagnosis, high metastatic capacity and resistance to therapy. This is partially due to its specific microenvironment, where the stroma is prominent over tumor cells. Besides the oral and gut microbiota, the intratumor microbiome, i.e. the bacterial and fungal microorganisms present within the tumor, was recently introduced as a new partner of the tumor microenvironment of PDAC modulating pancreatic carcinogenesis, intratumor immune infiltrates, and response to chemotherapy. In this review, we propose an overview of current knowledge about the roles of bacteria and fungi in PDAC development and biology, and discuss potential therapeutic implications.
Collapse
Affiliation(s)
| | - Marc Hilmi
- OncoMEGA, Lamorlaye, France; Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, Saint-Cloud, France
| | | | - Rémy Nicolle
- OncoMEGA, Lamorlaye, France; Carte d'Identité des Tumeurs (Tumors Identity Card), La Ligue Contre le Cancer, Paris, France
| | - Ivan Bièche
- Pharmacogenomic Unit, Genetic Department, Curie Institute, Paris, France
| | - Cindy Neuzillet
- OncoMEGA, Lamorlaye, France; Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, Saint-Cloud, France.
| |
Collapse
|
698
|
Yang K, Hou Y, Zhang Y, Liang H, Sharma A, Zheng W, Wang L, Torres R, Tatebe K, Chmura SJ, Pitroda SP, Gilbert JA, Fu YX, Weichselbaum RR. Suppression of local type I interferon by gut microbiota-derived butyrate impairs antitumor effects of ionizing radiation. J Exp Med 2021; 218:e20201915. [PMID: 33496784 PMCID: PMC7844434 DOI: 10.1084/jem.20201915] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/02/2020] [Accepted: 12/09/2020] [Indexed: 12/27/2022] Open
Abstract
The antitumor effects of ionizing radiation (IR) are mediated in part through activation of innate and adaptive immunity. Here we report that gut microbiota influences tumor control following IR. Vancomycin decreased the abundance of butyrate-producing gut bacteria and enhanced antitumor responses to IR. Oral administration of Lachnospiraceae, a family of vancomycin-sensitive bacteria, was associated with increased systemic and intratumoral butyric acid levels and impaired the efficacy of IR in germ-free (GF) mice. Local butyrate inhibited STING-activated type I IFN expression in dendritic cells (DCs) through blockade of TBK1 and IRF3 phosphorylation, which abrogated IR-induced tumor-specific cytotoxic T cell immune responses without directly protecting tumor cells from radiation. Our findings demonstrate that the selective targeting of butyrate-producing microbiota may provide a novel therapeutic option to enhance tumor radiation sensitivity.
Collapse
Affiliation(s)
- Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Yuzhu Hou
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Yuan Zhang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Hua Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Anukriti Sharma
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA
| | - Wenxin Zheng
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Rolando Torres
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
| | - Ken Tatebe
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
| | - Steven J. Chmura
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| | - Jack A. Gilbert
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL
- The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL
| |
Collapse
|
699
|
Ladaycia A, Loretz B, Passirani C, Lehr CM, Lepeltier E. Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines. Adv Drug Deliv Rev 2021; 170:44-70. [PMID: 33388279 DOI: 10.1016/j.addr.2020.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023]
Abstract
Nanomedicine implication in cancer treatment and diagnosis studies witness huge attention, especially with the promising results obtained in preclinical studies. Despite this, only few nanomedicines succeeded to pass clinical phase. The human microbiota plays obvious roles in cancer development. Nanoparticles have been successfully used to modulate human microbiota and notably tumor associated microbiota. Taking the microbiota involvement under consideration when testing nanomedicines for cancer treatment might be a way to improve the poor translation from preclinical to clinical trials. Co-culture models of bacteria and cancer cells, as well as animal cancer-microbiota models offer a better representation for the tumor microenvironment and so potentially better platforms to test nanomedicine efficacy in cancer treatment. These models would allow closer representation of human cancer and might smoothen the passage from preclinical to clinical cancer studies for nanomedicine efficacy.
Collapse
|
700
|
Chen J, Qiao YD, Li X, Xu JL, Ye QJ, Jiang N, Zhang H, Wu XY. Intratumoral CD45 +CD71 + erythroid cells induce immune tolerance and predict tumor recurrence in hepatocellular carcinoma. Cancer Lett 2021; 499:85-98. [PMID: 33279623 DOI: 10.1016/j.canlet.2020.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023]
Abstract
CD45+CD71+ erythroid cells generated through splenic extramedullary erythropoiesis have recently been found to suppress anti-infection and tumor immunity in neonates and adults with malignances. However, their role in tumor microenvironment has not been investigated. In the present study, we found that the number of CD45+CD71+ erythroid cells was significantly elevated in hepatocellular carcinoma (HCC) tissues compared to that in paratumor region and circulation. Additionally, they were more abundant in HCC tissues compared to some immune suppressive cells as well as CD45-CD71+ erythroid cells. CD45+CD71+ erythroid cells suppressed T cells through generation of reactive oxygen species, IL-10, and TGF-β in a paracrine and cell-cell contact manner, and their suppressive effect was stronger than that of myeloid-derived suppressor cells. The abundance of CD45+CD71+ erythroid cells in tumor tissue, as illustrated via immunofluorescence, predicted disease-free survival and overall survival, and its prognostic value was better than that of Cancer of the Liver Italian Program score. This study demonstrated that accumulation of intratumoral CD45+CD71+ erythroid cells in HCC tissues could play a superior immunosuppressive role in tumor microenvironment and may serve as a valuable biomarker to predict recurrence of HCC.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, CD/metabolism
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/virology
- Cells, Cultured
- Coculture Techniques
- Disease-Free Survival
- Erythroid Cells/immunology
- Erythroid Cells/metabolism
- Female
- Follow-Up Studies
- Hematopoiesis, Extramedullary/immunology
- Hepatectomy
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/pathology
- Hepatitis B, Chronic/virology
- Humans
- Italy/epidemiology
- Kaplan-Meier Estimate
- Leukocyte Common Antigens/metabolism
- Liver/immunology
- Liver/pathology
- Liver/surgery
- Liver/virology
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Liver Neoplasms/virology
- Male
- Middle Aged
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Primary Cell Culture
- Prognosis
- Receptors, Transferrin/metabolism
- Retrospective Studies
- Risk Assessment/methods
- T-Lymphocytes/immunology
- Tumor Escape
- Tumor Microenvironment/immunology
- Young Adult
Collapse
Affiliation(s)
- Jie Chen
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China; Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Yi-Dan Qiao
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China; Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Xing Li
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Jian-Liang Xu
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Qing-Jian Ye
- Department of Gynaecology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China
| | - Nan Jiang
- Department of Transplantation, The Second Affiliated Hospital of Southern University of Science and Technology and the Third People's Hospital of Shenzhen, 29th Bulan Road, Shenzhen, 510623, China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
| | - Xiang-Yuan Wu
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|